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Introduction

It is a truism that algebraic topology is a very young subject. In some of its

most fundamental branches, the foundations have not yet reached a state of shared

consensus. Our theme will be stable homotopy theory and an emerging consensus

on what its foundations should be. The consensus is different than would have been

the case as recently as a decade ago. We shall illustrate the force of the change

of paradigm with new constructions of some of the most basic objects in modern

algebraic topology, namely the various spectra and cohomology theories that can

be derived from complex cobordism. The two following articles will give introduc-

tions to completions in stable homotopy theory and to equivariant stable homotopy

theory. The three papers have a common theme: the relationship between commu-

tative algebra and stable homotopy theory, both relations of analogy and relations

of application.
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Stable homotopy theory began around 1937 with the Freudenthal suspension

theorem. In simplest terms, it states that, if q is small relative to n, then πn+q(S
n)

is independent of n. Stable phenomena had of course appeared earlier, at least

implicitly: reduced homology and cohomology are examples of functors that are

invariant under suspension without limitation on dimension. Stable homotopy the-

ory emerged as a distinct branch of algebraic topology with Adams’ introduction of

his eponymous spectral sequence and his spectacular conceptual use of the notion

of stable phenomena in his solution to the Hopf invariant one problem. Its central-

ity was reinforced by two related developments that occurred at very nearly the

same time, in the late 1950’s. One was the introduction of generalized homology

and cohomology theories and especially K-theory, by Atiyah and Hirzebruch. The

other was the work of Thom which showed how to reduce the problem of classifying

manifolds up to cobordism to a problem, more importantly, a solvable problem, in

stable homotopy theory.

The reduction of geometric phenomena to solvable problems in stable homotopy

theory has remained an important mathematical theme, the most recent major

success being Stolz’s use of Spin cobordism to study the classification of manifolds

with positive scalar curvature. In an entirely different direction, the early 1970’s saw

Quillen’s introduction of higher algebraic K-theory and the recognition by Segal and

others that it could be viewed as a construction in stable homotopy theory. With

algebraic K-theory as an intermediary, there has been a growing volume of work

that relates algebraic geometry to stable homotopy theory. With Waldhausen’s

introduction of the algebraic K-theory of spaces in the late 1970’s, stable homotopy

became a bridge between algebraic K-theory and the study of diffeomorphisms of

manifolds. Within algebraic topology, the study of stable homotopy theory has

been and remains the focus of much of the best work in the subject. The study

of nilpotence and periodic phenomena by Hopkins, Mahowald, Ravenel, and many

others has been especially successful.

We shall focus on the study of structured ring, module, and algebra spectra.

This study plays a significant role in all of the directions of work that we have

just mentioned and would have been technically impossible within the foundational

consensus that existed a decade ago.

Stable homotopy theory demands a category in which to work. One could set up

the ordinary Adams spectral sequence ad hoc, as Adams did, but it would be ugly

at best to set up the Adams spectral sequence based on a generalized homology

theory that way. One wants objects – called spectra – that play the role of spaces

in unstable homotopy theory, and one wants a category in which all of the usual

constructions on spaces are present and, up to homotopy, the suspension functor is

an equivalence. At this point, we introduce a sharp distinction: there is a category
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of point-set level objects, and there is an associated derived category. There has

been consensus on what the latter should be, up to equivalence of categories, since

the fundamental work of Boardman in the 1960’s. The change in paradigm concerns

the point-set level category that underlies the stable homotopy category. There is

a growing recognition that one needs a good point-set level category in order to

study stable topological algebra seriously.

There is an analogy with algebra that is fundamental to an understanding of

this area of mathematics. Suppose given a (discrete) commutative ring R. It has

an associated category MR of (Z-graded) chain complexes, there is a notion of

homotopy between maps of chain complexes, and there is a resulting homotopy

category hMR. However, this is not the category that algebraists are interested in.

For example, if R-modules M and N are regarded as chain complexes concentrated

in degree zero, then, in the derived category, the homology of their tensor product

should be their torsion product TorR
∗
(M, N). Formally, the fundamental invariants

of chain complexes are their homology groups, and one constructs a category that

reflects this. A map of chain complexes is said to be a quasi-isomorphism if it

induces an isomorphism of homology groups. The derived category DR is obtained

by adjoining formal inverses to the quasi-isomorphisms. The best way to make this

rigorous is to introduce a notion of cell R-module such that every quasi-isomorphism

between cell R-modules is a chain homotopy equivalence (Whitehead theorem) and

every chain complex is quasi-isomorphic to a cell R-module. Then DR is equivalent

to the ordinary homotopy category of cell R-modules. See [15, 21]. This is a

topologist’s way of thinking about the appropriate generalization to chain complexes

of projective resolutions of modules.

We think of the sphere spectrum S as the analog of R. We think of spectra

as analogs of chain complexes, or rather as a first approximation to the definitive

analogs, which will be S-modules. We let S denote the category of spectra. There

is a notion of homotopy of maps between spectra, and there is a resulting homotopy

category hS . The fundamental invariants of spectra are their homotopy groups,

and a map of spectra is a weak equivalence if it induces an isomorphism of homotopy

groups. The stable homotopy category, which we denote by h̄S , is obtained by

formally inverting the weak equivalences. This is made rigorous by introducing CW

spectra. A weak equivalence between CW spectra is a homotopy equivalence and

every spectrum is weakly equivalent to a CW spectrum. Then h̄S is equivalent to

the ordinary homotopy category of CW spectra.

Now the category MR has an associative and commutative tensor product. If

we regard R as a chain complex concentrated in degree zero, then R is a unit

for the tensor product. A differential R-algebra A is a chain complex with a unit

R −→ A and product A ⊗R A −→ A such that the evident associativity and unity
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diagrams commute. It is commutative if the evident commutativity diagram also

commutes. These are, obviously enough, point-set level structures. Algebraists

would have trouble taking seriously the idea of an algebra defined in DR, with unit

and product only defined in that category.

The category S has a smash product but, in contrast with the tensor product,

it is not associative, commutative, or unital. The induced smash product on the

stable homotopy category h̄S is associative and commutative, and it has S as unit.

Topologists routinely study ring spectra, which are objects E of h̄S with a unit

η : S −→ E and product φ : E ∧ E −→ E such that the evident unit diagrams

commute; that is, φ◦(η∧ id) = id = φ◦(id∧η) in h̄S . Similarly, E is associative or

commutative if the appropriate diagrams commute in h̄S . Given that the point-set

level smash product is not associative or commutative, it would seem at first sight

that these up to homotopy notions are the only ones possible.

It is a recent discovery that there is a category MS of S-modules that has an

associative, commutative, and unital smash product ∧S [11]. Its objects are spectra

with additional structure, and we say that a map of S-modules is a weak equivalence

if it is a weak equivalence as a map of spectra. The derived category DS is obtained

from MS by formally inverting the weak equivalences, and DS is equivalent to the

stable homotopy category h̄S . Again, this is made rigorous by a theory of CW

S-modules that is just like the theory of CW spectra.

In the category MS , we have a point-set level notion of an S-algebra R that is

defined in terms of maps η : S −→ R and φ : R ∧S R −→ R in MS such that

the standard unit and associativity diagrams commute on the point-set level; we

say that R is commutative if the standard commutativity diagram also commutes.

There were earlier notions with a similar flavor, namely the A∞ and E∞ ring spec-

tra introduced in [19, 20]. Here “A∞” stands historically for “associative up to an

infinite sequence of higher homotopies”; similarly, “E∞” stands for “homotopy ev-

erything”, meaning that the product is associative and commutative up to all higher

coherence homotopies. With the definitions just given, the higher homotopies are

hidden in the definition of the associative and commutative smash product in MS,

but these definitions are essentially equivalent to the earlier ones, in which the

higher homotopies were exhibited in terms of an “operad action”. It is tempting to

simply call these objects associative and commutative ring spectra, but that would

be a mistake. These terms have long established meanings, as associative and com-

mutative rings in the stable homotopy category, and the more precise point-set

level notions do not make the older notions obsolete: there are plenty of examples

of associative or commutative ring spectra that do not admit structures of A∞ or

E∞ ring spectra. It is part of the new paradigm that one must always be aware
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of when one is working in the derived category and when one is working on the

point-set level.

Now fix an S-algebra R. An R-module M is an S-module together with a

map µ : R ∧S M −→ M such that the evident unit and transitivity diagrams

commute. Let MR be the category of R-modules. Again we have a homotopy

category hMR and a derived category DR that is obtained from it by inverting

the weak equivalences, by which we mean the maps of R-modules that are weak

equivalences of underlying spectra. The construction of DR is made rigorous by a

theory of cell R-modules, the one slight catch being that, unless R is connective,

in the sense that its homotopy groups are zero in negative degrees, we cannot

insist that cells be attached only to cells of lower dimension, so that our cell R-

modules cannot be restricted to be CW R-modules. These categories enjoy all of

the good properties that we have described in the special case R = S. There is an

associative, commutative, and unital smash product over R. We can therefore go

on to define R-algebras and commutative R-algebras A in terms of point-set level

associative, unital, and commutative multiplications A ∧R A −→ A. We can also

define derived category level associative and commutative R-ring spectra A, exactly

like the classical associative and commutative ring spectra in the stable homotopy

category.

It is the derived category DR that we wish to focus on in describing the current

state of the art in stable homotopy theory. We can mimic classical commutative

algebra in this category. In particular, for an ideal I and multiplicatively closed

subset Y in the coefficient ring R∗ = π∗(R), we will show how to construct quo-

tients M/IM and localizations M [Y −1]. When applied with R taken to be the

representing spectrum MU for complex cobordism, these constructions specialize

to give simple constructions of various spectra that are central to modern stable

homotopy theory, such as the Morava K-theory spectra. Moreover, we shall see

that these spectra are MU -ring spectra.

This account is largely a summary of parts of the more complete and technical

paper [11], to which the reader is referred for further background, detailed proofs,

and many more applications.
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1. Spectra and the stable homotopy category

We here give a bare bones summary of the construction of the stable homotopy

category, referring to [16] and [11] for details and to [22] for a more leisurely ex-

position. We aim to give just enough of the basic definitional framework that the

reader can feel comfortable with the ideas.

By Brown’s representability theorem [6], if E∗ is a reduced cohomology theory

on based spaces, then there are CW complexes En such that, for CW complexes

X , En(X) is naturally isomorphic to the set [X, En] of homotopy classes of based

maps X −→ En. The suspension isomorphism En(X) ∼= En+1(ΣX) gives rise

to a homotopy equivalence σ̃n : En −→ ΩEn+1. The object E = {En, σ̃n} is

called an Ω-spectrum. A map f : E −→ E′ of Ω-spectra is a sequence of maps

fn : En −→ E′

n that are compatible up to homotopy with the equivalences σ̃n and

σ̃′

n. The category of Ω-spectra is equivalent to the category of cohomology theories

on based spaces and can be thought of as an intuitive first approximation to the

stable homotopy category. However, this category does not have a usable theory of

cofibration sequences and is not suitable for either point-set level or homotopical

work. For that, one needs more precise objects and morphisms that are defined

without use of homotopies but that still represent cohomology theories and their

maps. More subtly, one needs a coordinate-free setting in order to define smash

products sensibly. The nth space En relates to the n-sphere and thus to R
n.

Restricting to spaces En is very much like restricting to the standard basis of R
∞

when doing linear algebra.

A coordinate-free spectrum is indexed on the set of finite dimensional subspaces

V of a “universe” U , namely a real inner product space isomorphic to the sum

R
∞ of countably many copies of R. In detail, writing W − V for the orthogonal

complement of V in W , a spectrum E assigns a based space EV to each finite

dimensional subspace V of U , with (adjoint) structure maps

σ̃V,W : EV
∼=
−→ΩW−V EW

when V ⊂ W , where ΩW X is the function space F (SW , X) of based maps SW −→

X and SW is the one-point compactification of W . The structure maps are required

to satisfy an evident transitivity relation when V ⊂ W ⊂ Z, and they are required

to be homeomorphisms. A map of spectra f : E → E′ is a collection of maps of

based spaces fV : EV → E′V for which each of the following diagrams commutes:

EV
fV //

σ̃V,W

��

E′V

σ̃′

V,W

��

ΩW−V EW
ΩW−V fW // ΩW−V E′W.
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We obtain the category S = S U of spectra indexed on U . We obtain an equivalent

category if we restrict to any cofinal family of indexing spaces. If we drop the

requirement that the maps σ̃V,W be homeomorphisms, we obtain the notion of a

prespectrum and the category P = PU of prespectra indexed on U . The forgetful

functor ℓ : S −→ P has a left adjoint L. When the structure maps σ̃ are inclusions,

(LE)(V ) is just the union of the spaces ΩW−V EW for V ⊂ W . We write σ :

ΣW−V EV −→ EW for the adjoints of the maps σ̃, where ΣV X = X ∧ SV .

Examples 1.1. Let X be a based space. The suspension prespectrum Π∞X is

the prespectrum whose V th space is ΣV X ; the structure maps σ are the evident

identifications ΣW−V ΣV X ∼= ΣW X . The suspension spectrum of X is Σ∞X =

LΠ∞X . Let QX = ∪ΩV ΣV X , where the union is taken over the inclusions obtained

from the adjoints of the cited identifications. Then (Σ∞X)(V ) = Q(ΣV X). The

functor Σ∞ from based spaces to spectra is left adjoint to the functor that assigns

the zeroth space E0 = E({0}) to a spectrum E. More generally, for a fixed subspace

Z ⊂ U , define Π∞

Z X to be the analogous prespectrum whose V th space is ΣV −ZX

if Z ⊂ V and a point otherwise and define Σ∞

Z X = LΠ∞

Z X . Then Σ∞

Z is left

adjoint to the functor that sends a spectrum to its Zth space EZ; these functors

are generally called “shift desuspensions”.

Functors on prespectra that do not preserve spectra are extended to spectra by

applying the functor L. For example, for a based space X and a prespectrum E,

we have the prespectrum E ∧ X specified by (E ∧ X)(V ) = EV ∧ X . When E is

a spectrum, the structure maps for this prespectrum level smash product are not

homeomorphisms, and we understand the smash product E∧X to be the spectrum

L(ℓE ∧X). Function spectra are easier. We set F (X, E)(V ) = F (X, EV ) and find

that this functor on prespectra preserves spectra. If we topologize the set S (E, E′)

as a subspace of the product over V of the function spaces F (EV, E′V ) and let T

be the category of based spaces with sets of maps topologized as function spaces,

then there result homeomorphisms

S (E ∧ X, E′) ∼= T (X, S (E, E′)) ∼= S (E, F (X, E′)).

Recall that a category is said to be cocomplete if it has all colimits and complete

if it has all limits.

Proposition 1.2. The category S is complete and cocomplete.

Proof. Limits and colimits are defined on prespectra spacewise. Limits preserve

spectra, and colimits of spectra are obtained by use of the left adjoint L. �

We write Y+ for the union of a space Y and a disjoint basepoint. A homotopy in

the category of spectra is a map E ∧ I+ −→ E′. We have cofibration and fibration
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sequences that are defined exactly as on the space level (e.g. [29]) and enjoy the

same homotopical properties. Let [E, E′] denote the set of homotopy classes of

maps E −→ E′; we shall later understand that, when using this notation, E must

be of the homotopy type of a CW spectrum. For based spaces X and Y with X

compact, we have

[Σ∞X, Σ∞Y ] ∼= colimn [ΣnX, ΣnY ].

Fix a copy of R
∞ in U . In the equivariant generalization of the present theory, it

is essential not to insist that R
∞ be all of U , but the reader may take U = R

∞ here.

We write Σ∞

n = Σ∞

Rn . For n ≥ 0, the sphere spectrum Sn is Σ∞Sn. For n > 0,

the sphere spectrum S−n is Σ∞

n S0. We write S for the zero sphere spectrum.

The nth homotopy group of a spectrum E is the set [Sn, E] of homotopy classes

of maps Sn −→ E, and this fixes the notion of a weak equivalence of spectra.

The adjunctions of Examples 1.1 make it clear that a map f of spectra is a weak

equivalence if and only if each of its component maps fZ is a weak equivalence

of spaces. The stable homotopy category h̄S is constructed from the homotopy

category of spectra by adjoining formal inverses to the weak equivalences, a process

that is made rigorous by CW approximation.

The theory of CW spectra is developed by taking sphere spectra as the domains

of attaching maps of cells CSn = Sn ∧ I [16, I§5]. The one major difference

from the space level theory of CW complexes is that we have to construct CW

spectra as unions E = ∪En, where E0 is the trivial spectrum and where we are

allowed to attach cells of arbitrary dimension when constructing En+1 from En.

There results a notion of a cell spectrum. We define a CW spectrum to be a cell

spectrum whose cells are attached only to cells of lower dimension. Thus CW

spectra have two filtrations, the sequential filtration {En} that gives the order in

which cells are attached, and the skeletal filtration {Eq}, where Eq is the union

of the cells of dimension at most q. We say that a map between CW spectra is

cellular if it preserves both filtrations. In fact, by redefining the sequential filtration

appropriately, we can always arrange that the sequential filtration is preserved. We

have three basic results, whose proofs are very little different from their space level

counterparts.

Theorem 1.3 (Whitehead). If E is a CW spectrum and f : F −→ F ′ is a weak

equivalence of spectra, then f∗ : [E, F ] −→ [E, F ′] is an isomorphism. Therefore a

weak equivalence between CW spectra is a homotopy equivalence.

Theorem 1.4 (Cellular approximation). Let A be a subcomplex of a CW spectrum

E, let F be a CW spectrum, and let f : E −→ F be a map whose restriction to A is

cellular. Then f is homotopic relative to A to a cellular map. Therefore any map
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E −→ F is homotopic to a cellular map, and any two homotopic cellular maps are

cellularly homotopic.

Theorem 1.5 (Approximation by CW spectra). For a spectrum E, there is a CW

spectrum ΓE and a weak equivalence γ : ΓE −→ E. On the homotopy category

hS , Γ is a functor such that γ is natural.

It follows that the stable category h̄S is equivalent to the homotopy category of

CW spectra. Homotopy-preserving functors on spectra that do not preserve weak

equivalences are transported to the stable category by first replacing their variables

by weakly equivalent CW spectra.

Observe that there has been no mention of space level CW complexes in our

development so far. The total lack of hypotheses on the spaces and structural

maps of our prespectra allows considerable point-set level pathology, even if, as

usual in modern algebraic topology, we restrict attention to compactly generated

weak Hausdorff spaces. Recall that a space X is weak Hausdorff if the diagonal

subspace is closed in the compactly generated product X × X . More restrictively,

a space X is said to be LEC (locally equiconnected) if the inclusion of the diagonal

subspace is a cofibration. We record the following list of special kinds of prespectra

both to prepare for our discussion of smash products and to compare our definitions

with those adopted in the original treatments of the stable homotopy category.

Definition 1.6. A prespectrum D is said to be

(i) Σ-cofibrant if each σ : ΣW−V DV → DW is a based cofibration (that is,

satisfies the based homotopy extension property).

(ii) CW if it is Σ-cofibrant and each DV is LEC and has the homotopy type of

a CW complex.

(iii) strictly CW if each DV is a based CW complex and the structure maps σ

are the inclusions of subcomplexes.

A spectrum E is said to be Σ-cofibrant if it is isomorphic to LD for some Σ-cofibrant

prespectrum D; E is said to be tame if it is of the homotopy type of a Σ-cofibrant

spectrum.

If E is a spectrum, then the maps σ̃ are homeomorphisms. Therefore the under-

lying prespectrum ℓE is not Σ-cofibrant unless it is trivial. However, it is a very

weak condition on a spectrum that it be tame. We shall see that this weak condi-

tion is enough to avoid serious point-set topological problems. If D is a Σ-cofibrant

prespectrum, then the maps σ̃ are inclusions and therefore LD(V ) is just the union

of the spaces ΩW−V DW . We have the following relations between CW prespectra

and CW spectra. Remember that CW spectra are defined in terms of spectrum

level attaching maps.
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Theorem 1.7. If D is a CW prespectrum, then LD has the homotopy type of a

CW spectrum. If E is a CW spectrum, then each space EV has the homotopy type

of a CW complex and E is homotopy equivalent to LD for some CW prespectrum

D. Thus a spectrum has the homotopy type of a CW spectrum if and only if it has

the homotopy type of LD for some CW prespectrum D.

In particular, spectra of the homotopy types of CW spectra are tame.

Implicitly or explicitly, early constructions of the stable homotopy category re-

stricted attention to the spectra arising from strict CW prespectra. This is far

too restrictive for serious point-set level work, and it is also too restrictive to ad-

mit a sensible equivariant analogue. Note that such a category cannot possibly be

complete or have well-behaved point-set level function spectra.

One reason for focusing on Σ-cofibrant spectra is that they are built up out of

their component spaces in a simple fashion.

Proposition 1.8. If E = LD, where D is a Σ-cofibrant prespectrum, then

E ∼= colimV Σ∞

V DV,

where the colimit is computed as the prespectrum level colimit of the maps

Σ∞

W σ : Σ∞

V DV ∼= Σ∞

W ΣW−V DV −→ Σ∞

W DW.

That is, the prespectrum level colimit is a spectrum that is isomorphic to E. The

maps of the colimit system are shift desuspensions of based cofibrations.

Another reason is that general spectra can be replaced functorially by weakly

equivalent Σ-cofibrant spectra.

Proposition 1.9. There is a functor K : PU −→ PU , called the cylinder functor,

such that KD is Σ-cofibrant for any prespectrum D, and there is a natural spacewise

weak equivalence of prespectra KD −→ D. On spectra E, define KE = LKℓE.

Then there is a natural weak equivalence of spectra KE −→ E.

In practice, if one is given a prespectrum D, perhaps indexed only on integers,

and one wishes to construct a spectrum from it that retains homotopical informa-

tion, one forms E = LKD. Then

πn(E) = colimq πn+qDq.

If D is an Ω-spectrum that represents a given cohomology theory on spaces, then

E = LKD is a genuine spectrum that represents the same theory.
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2. Smash products and twisted half-smash products

The construction of the smash product of spectra proceeds by internalization of

an “external smash product”. The latter is an associative and commutative pairing

S U × S U ′ → S (U ⊕ U ′)

for any pair of universes U and U ′. It is constructed by starting with the prespec-

trum level definition

(E ∧ E′)(V ⊕ V ′) = EV ∧ E′V ′.

The structure maps fail to be homeomorphisms when E and E′ are spectra, and

we apply the spectrification functor L to obtain the desired spectrum level smash

product.

In order to obtain smash products internal to a single universe U , we exploit

the “twisted half-smash product”. The input data for this functor consist of two

universes U and U ′, an unbased space A with a given map α : A → I (U, U ′), and

a spectrum E indexed on U . The output is the spectrum A ⋉ E, which is indexed

on U ′. It must be remembered that the construction depends on α and not just on

A, although different choices of α lead to equivalent functors on the level of stable

categories. When A is a point, α is a choice of a linear isometry f : U −→ U ′ and

we write f∗ for the twisted half-smash product. For a prespectrum D,

(f∗D)(V ′) = D(V ) ∧ SV ′
−f(V ), where V = f−1(V ′ ∩ im f).

For a spectrum E, f∗E is obtained by application of L to the prespectrum level

construction. The functor f∗ is left adjoint to the more elementary functor f∗

specified by (f∗E′)(V ) = E′(f(V )). For general A and α, the intuition is that

A ⋉ E is obtained by suitably topologizing the union of the α(a)∗(E). Another

intuition is that the twisted half-smash product is a generalization to spectra of the

“untwisted” functor A+ ∧ X on based spaces X . This intuition is made precise by

the following “untwisting formula” relating twisted half-smash products and shift

desuspensions.

Proposition 2.1. For a map A −→ I (U, U ′) and an isomorphism V ∼= V ′, where

V ⊂ U and V ′ ⊂ U ′, there is an isomorphism of spectra

A ⋉ Σ∞

V X ∼= A+ ∧ Σ∞

V ′X

that is natural in spaces A over I (U, U ′) and based spaces X.

The twisted-half smash product functor enjoys essentially the same formal prop-

erties as the space level functor A+∧X . The functor A⋉E is homotopy-preserving

in E, and it therefore preserves homotopy equivalences in the variable E. How-

ever, it only preserves homotopies over I (U, U ′) in A. Nevertheless, it very often



12 A. D. ELMENDORF, I. KRIZ, M. A. MANDELL, AND J. P.MAY

preserves homotopy equivalences in the variable A. The following central technical

result is an easy consequence of Propositions 1.8 and 2.1.

Theorem 2.2. Let E ∈ S U be tame and let A be a space over I (U, U ′). If

φ : A′ −→ A is a homotopy equivalence, then φ ⋉ id : A′
⋉ E −→ A ⋉ E is a

homotopy equivalence.

Since A ⋉ E is a CW spectrum if A is a CW complex and E is a CW spectrum,

this has the following consequence.

Corollary 2.3. Let E ∈ S U be a spectrum that has the homotopy type of a CW

spectrum and let A be a space over I (U, U ′) that has the homotopy type of a CW

complex. Then A ⋉ E has the homotopy type of a CW spectrum.

Now, as before, restrict attention to a particular universe U and write S = S U ;

again, the reader may think of U as R
∞. We are especially interested in twisted

half-smash products defined in terms of the following spaces of linear isometries.

Notations 2.4. Let U j be the direct sum of j copies of U and let L (j) = I (U j , U).

The space L (0) is the point i, where i : {0} → U , and L (1) contains the identity

map 1 = idU : U → U . The left action of Σj on U j by permutations induces a free

right action of Σj on the contractible space L (j). Define maps

γ : L (k) × L (j1) × · · · × L (jk) −→ L (j1 + · · · + jk)

by

γ(g; f1, . . . , fk) = g ◦ (f1 ⊕ · · · ⊕ fk).

The spaces L (j) form an operad [18, p.1] with structural maps γ, called the

linear isometries operad. Points f ∈ L (j) give functors f∗ that send spectra

indexed on U j to spectra indexed on U . Applied to a j-fold external smash product

E1∧· · ·∧Ej , there results an internal smash product f∗(E1∧· · ·∧Ej). All of these

smash products become equivalent in the stable category h̄S , but none of them

are associative or commutative on the point set level. More precisely, the following

result holds.

Theorem 2.5. Let St ⊂ S be the full subcategory of tame spectra and let hSt be

its homotopy category. On St, the internal smash products f∗(E ∧ E′) determined

by varying f ∈ L (2) are canonically homotopy equivalent, and hSt is symmetric

monoidal under the internal smash product. For based spaces X and tame spectra

E, there is a natural homotopy equivalence E ∧ X ≃ f∗(E ∧ Σ∞X).

This implies formally that we have arrived at a stable situation. As for spaces,

the suspension functor Σ is given by ΣE = E ∧ S1 and is left adjoint to the loop

functor Ω given by ΩE = F (S1, E). The cofibre Cf of a map f : E −→ E′ of

spectra is the pushout E′ ∪f CE.
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Theorem 2.6. The suspension functor Σ : hSt −→ hSt is an equivalence of

categories. A cofibre sequence E
f

−→E′ −→ Cf in St gives rise to a long exact

sequence of homotopy groups

· · · −→ πq(E) −→ πq(E
′) −→ πq(Cf) −→ πq−1(E) −→ · · · .

Proof. For based spaces X , Σ∞X is naturally isomorphic to (Σ∞

1 X) ∧ S1 because

the structural homeomorphisms σ̃ : E0 −→ ΩE1 on spectra give an isomorphism

between their right adjoints. Thus, for tame spectra E, the previous theorem gives

a natural homotopy equivalence

E = E ∧ S0 ≃ f∗(E ∧ Σ∞S0) ∼= f∗(E ∧ Σ∞

1 S0) ∧ S1.

Therefore Σ is an equivalence of categories with inverse obtained by smashing with

the (−1)-sphere spectrum S−1 = Σ∞

1 S0. It follows categorically that ΩE ≃ f∗(E ∧

S−1) and that the unit and counit

η : E −→ ΩΣE and ε : ΣΩE −→ E

of the adjunction are homotopy equivalences. The last statement is a standard

consequence of the fact that maps can now be desuspended. �

Note that only actual homotopy equivalences, not weak ones, are relevant to

the last two results. For this reason among others, hSt is a technically convenient

halfway house between the homotopy category of spectra and the stable homotopy

category.

3. The category of L-spectra

We need a category of spectra with a canonical smash product. The category

of L-spectra that we introduce here will be shown in the next section to have an

associative and commutative smash product ∧L . This product is not quite unital,

but there is a natural unit weak equivalence λ : S ∧L M −→ M . The S-modules

will be the L-spectra such that λ is an isomorphism.

For f ∈ L (j) and Ei ∈ St, Theorem 2.2 implies that the inclusion {f} ⊂ L (j)

induces a homotopy equivalence

f∗(E1 ∧ · · · ∧ Ej) −→ L (j) ⋉ (E1 ∧ · · · ∧ Ej).

The proof of Theorem 2.5 above is entirely based on the use of such equivalences.

It therefore seems natural to think of

L (j) ⋉ (E1 ∧ · · · ∧ Ej)

as a canonical j-fold smash product. It is still not associative, but it seems closer to

being so. However, to take this idea seriously, we must take note of the difference

between E and its “1-fold smash product” L (1) ⋉ E. The space L (1) is a monoid
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under composition, and the formal properties of twisted half-smash products imply

a natural isomorphism

L (1) ⋉ (L (1) ⋉ E) ∼= (L (1) × L (1)) ⋉ E,

where, on the right, L (1)×L (1) is regarded as a space over L (1) via the compo-

sition product. This product induces a map µ : (L (1)×L (1)) ⋉ E −→ L (1) ⋉ E,

and the inclusion {1} −→ L (1) induces a map η : E −→ L (1)⋉ E. Thus it makes

sense to consider spectra E with an action ξ : L (1)⋉E −→ E of the monoid L (1).

It is required that the following diagrams commute:

(L (1) × L (1)) ⋉ E
µ

//

L (1)⋉ξ

��

L (1) ⋉ E

ξ

��

and E

=
$$HHHHHHHHHH

η
// L (1) ⋉ E

ξ

��

L (1) ⋉ E
ξ

// E E.

Definition 3.1. An L-spectrum is a spectrum E together with an action ξ of L (1).

A map f : E → E′ of L-spectra is a map of spectra such that the following diagram

commutes:

L (1) ⋉ E
L (1)⋉f

//

ξE

��

L (1) ⋉ E′

ξE′

��

E
f

// E′.

We let S [L] denote the category of L-spectra.

A number of basic properties of the category of spectra are directly inherited by

the category of L-spectra.

Theorem 3.2. The category of L-spectra is complete and cocomplete, with both

limits and colimits created in the underlying category S . If X is a based space and

M is an L-spectrum, then M ∧ X and F (X, M) are L-spectra, and the spectrum

level fibre and cofibre of a map of L-spectra are L-spectra.

A homotopy in the category of L-spectra is a map M ∧ I+ −→ M ′. A map of

L-spectra is a weak equivalence if it is a weak equivalence as a map of spectra. The

stable homotopy category h̄S [L] is constructed from the homotopy category of

L-spectra by adjoining formal inverses to the weak equivalences. There is a theory

of CW L-spectra that is exactly like the theory of CW spectra, and, again, the

construction of h̄S [L] is made rigorous by CW approximation. We have a free

functor L from spectra to L-spectra specified by LE = L (1) ⋉ E. The “sphere

L-spectra” that we take as the domains of attaching maps when defining CW L-

spectra are the free L-spectra LSn. Using the freeness adjunction

S [L](LE, M) ∼= S (E, M),
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it is easy to prove Whitehead, cellular approximation, and approximation by CW

L-spectra theorems exactly like those stated for spectra in Section 1, and h̄S [L]

is equivalent to the homotopy category of CW L-spectra. There is one catch:

although S and all other suspension spectra are L-spectra in a natural way, using

the untwisting isomorphism of Proposition 2.1 and the projection L (1) −→ {∗}, S

does not have the homotopy type of a CW L-spectrum. However, it is not hard to

see that the categories h̄S and h̄S [L] are equivalent.

Theorem 3.3. The following conclusions hold.

(i) The free functor L : S −→ S [L] carries CW spectra to CW L-spectra.

(ii) The forgetful functor S [L] −→ S carries L-spectra of the homotopy types

of CW L-spectra to spectra of the homotopy types of CW spectra.

(iii) Every CW L-spectrum M is homotopy equivalent as an L-spectrum to LE

for some CW spectrum E.

(iv) If E ∈ St, for example if E is a CW spectrum, then η : E −→ LE is a

homotopy equivalence of spectra.

(v) If M has the homotopy type of a CW L-spectrum, then ξ : LM −→ M is a

homotopy equivalence of L-spectra.

Therefore the free and forgetful functors establish an adjoint equivalence between

the stable homotopy categories h̄S and h̄S [L].

4. The smash product of L-spectra and function L-spectra

One of the most surprising developments of recent years is the discovery of an

associative and commutative smash product ∧L in the category of L-spectra. We

proceed to define it. To begin with, observe that the monoid L (1) × L (1) acts

from the right on L (2) and acts from the left on L (i)×L (j), via instances of the

structural maps γ of the linear isometries operad. Another instance of γ gives rise

to a map

(1) γ̄ : L (2) ×L (1)×L (1) L (i) × L (j) −→ L (i + j).

The space on the left is the balanced product (formally a coequalizer) of the two

specified actions by L (1) × L (1). The essential, elementary, point is that this

map is a homeomorphism if i ≥ 1 and j ≥ 1. To see this, choose linear isometric

isomorphisms s : U −→ U i and t : U −→ U j. Composition on the right with s ⊕ t

gives vertical homeomorphisms in the commutative diagram

L (2) ×L (1)×L (1) L (i) × L (j)
γ̄

//

��

L (i + j)

��

L (2) ×L (1)×L (1) L (1) × L (1)
γ̄

// L (2),
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and the lower map γ̄ is clearly a homeomorphism. Note also that L (1) acts from the

left on L (2) and that this action commutes with the right action of L (1)×L (1).

Regard L (1)×L (1) as a space over I (U2, U2) via the direct sum of isometries

map. If M and N are L-spectra, then L (1) × L (1) acts from the left on the

external smash product M ∧ N via the map

ξ : (L (1) × L (1)) ⋉ (M ∧ N) ∼= (L (1) ⋉ M) ∧ (L (1) ⋉ N)
ξ∧ξ

// M ∧ N.

The operadic smash product of M and N is simply the balanced product (again,

formally a coequalizer)

(2) M ∧L N = L (2) ⋉L (1)×L (1) (M ∧ N).

The left action of L (1) on L (2) induces a left action of L (1) on M∧L N that gives

it a structure of L-spectrum. Use of the transposition σ ∈ Σ2 and the commutativity

of the external smash product easily gives a commutativity isomorphism

τ : M ∧L N −→ N ∧L M.

More substantially, there is a natural associativity isomorphism

(M ∧L N) ∧L P ∼= M ∧S (N ∧L P ).

In fact, using the case i = 2 and j = 1 of the homeomorphism γ̄, we obtain

isomorphisms

(M ∧L N) ∧L P ∼= L (2) ⋉L (1)2 (L (2) ⋉L (1)2 (M ∧ N)) ∧ (L (1) ⋉L (1) P )

∼= (L (2) ×L (1)2 L (2) × L (1)) ⋉L (1)3 (M ∧ N ∧ P )

∼= L (3) ⋉L (1)3 M ∧ N ∧ P.

The symmetric argument shows that this is also isomorphic to M ∧L (N ∧L P ). In

view of the generality of the homeomorphisms (4.1), the argument iterates to give

(3) M1 ∧L · · · ∧L Mj
∼= L (j) ⋉L (1)j (M1 ∧ · · · ∧ Mj),

where the iterated smash product on the left is associated in any fashion.

On passage to the derived category h̄S [L], the smash product of L-spectra just

constructed can be used interchangeably with the internal smash product on the

stable category h̄S . To see this, one defines the latter by use of a linear isometric

isomorphism f : U2 −→ U (not just an isometry). With this choice, it is not hard

to check the following result.

Proposition 4.1. For spectra E and F , there are isomorphisms of L-spectra

LE ∧L LF ∼= L (2) ⋉ E ∧ F ∼= Lf∗(E ∧ F ).

For CW L-spectra M and N , M ∧L N is a CW L-spectrum with one (p + q)-cell

for each p-cell of M and q-cell of N .



MODERN FOUNDATIONS FOR STABLE HOMOTOPY THEORY 17

However, we need a deeper result, one that depends on the fine structure of

the linear isometries operad, to complete the comparison of smash products. By

arguments like those in the proof of Theorem 2.6, its first statement implies its

second statement.

Proposition 4.2. For L-spectra N , there is a natural weak equivalence of L-spectra

ω : LS ∧L N −→ N , and Σ : πn(N) −→ πn+1(ΣN) is an isomorphism for all

integers n. Therefore the unit η : N −→ ΩΣN and counit ε : ΣΩN −→ N of the

(Σ, Ω)-adjunction are weak equivalences and any cofibre sequence N
f

−→N ′ −→ Cf

of L-spectra gives rise to a long exact sequence of homotopy groups

· · · −→ πq(N) −→ πq(N
′) −→ πq(Cf) −→ πq−1(N) −→ · · · .

It is a pleasant technical feature of the theory that this result holds whether or

not the given L -spectra are tame. In particular, we have the following consequence,

which is the L-spectrum analog of the algebraic statement that, when computing

torsion products, one need only resolve one of the tensor factors by a projective

resolution.

Proposition 4.3. If M is a CW L-spectrum and φ : N −→ N ′ is a weak equiva-

lence of L-spectra, then id∧L φ : M ∧L N −→ M ∧L N ′ is a weak equivalence of

L-spectra.

The previous results lead easily to the promised comparison between the internal

smash product of spectra and the operadic smash product of L-spectra.

Theorem 4.4. For L-spectra M and N , there is a natural map of spectra

α : f∗(M ∧ N) −→ M ∧L N,

and α is a weak equivalence when M is a CW L-spectrum and N is a tame spectrum.

For any L-spectrum N , the functors (?) ∧L N and f∗(? ∧ N) from h̄S [L] to h̄S

are naturally isomorphic.

Thus, under the forgetful functor, the operadic smash product in h̄S [L] agrees

with the internal smash product in h̄S .

There is a function L-spectrum functor to go with the operad smash product.

The twisted half-smash product functor A ⋉ E has a right adjoint twisted function

spectrum functor F [A, E′) and the external smash product has a right adjoint func-

tion spectrum functor. Using these functors and appropriate equalizer diagrams,

dual to the coequalizer diagrams that were implicit in the definition of ∧L , we

obtain the following result.

Theorem 4.5. There is a function L-spectrum functor FL (M, N) such that

S [L](M ∧L N, P ) ∼= S [L](M, FL (N, P ))
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for L-spectra M , N , and P .

Given the adjunction, we can deduce the homotopical behavior of FL from that

of ∧L . There is an internal function spectrum functor F that is induced from

the external spectrum functor by use of our chosen linear isometric isomorphism

f : U2 −→ U . Our function L -spectrum functor gives a canonical substitute.

Proposition 4.6. If M is a CW L-spectrum and φ : N → N ′ is a weak equivalence

of L-spectra, then

FL (id, φ) : FL (M, N) −→ FL (M, N ′)

is a weak equivalence of L-spectra.

Theorem 4.7. For L-spectra M and N , there is a natural map of spectra

α̃ : FL (M, N) −→ F (M, f∗N),

and α̃ is a weak equivalence when M is a CW L-spectrum. The forgetful functor

h̄S [L] −→ h̄S carries the function L-spectrum functor FL to the internal function

spectrum functor F .

We must still address the question of units.

Proposition 4.8. For L-spectra N , there is a natural unit map of L-spectra λ :

S∧L N −→ N . It is a weak equivalence for any N , and it is a homotopy equivalence

of L-spectra if N is a CW L-spectrum.

Proof. Consider the map γ̄ of (4.1). It is a non-trivial property of the linear isome-

tries operad that γ̄, although not a homeomorphism, is a homotopy equivalence

when i = 0 and j > 0. When N is the free S-module LE = L (1) ⋉ E generated

by a spectrum E, λ is given by the map

S ∧S LE = L (2) ⋉L (1)×L (1) (L (0) ⋉ S0) ∧ (L (1) ⋉ E)

∼= (L (2) ×L (1)×L (1) L (0) × L (1)) ⋉ (S0 ∧ E)

γ̄⋉id
−→L (1) ⋉ E = LE.

Since γ̄ is a homotopy equivalence, Theorem 2.2 implies that λ is a homotopy

equivalence when E ∈ St. For general N , the map just constructed for LN induces

the required map for N by a comparison of coequalizer diagrams. Although the

arguments are not transparent, the rest can be deduced from this. �

There is one important case when λ is an isomorphism. It turns out that the

map γ̄ of (4.1) is a homeomorphism when i = j = 0; that is, non-obviously since

L (1) is a monoid but not a group, the domain L (2)/L (1)×L (1) of (4.1) is then

a point. This implies that S ∧L S ∼= S. More generally, it implies that the smash
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product over L precisely generalizes the smash product of based spaces, in the

sense that

Σ∞X ∧L Σ∞Y ∼= Σ∞(X ∧ Y ).

5. The category of S-modules

Here, finally, is the promised definition of S-modules.

Definition 5.1. Define an S-module to be an L-spectrum M which is unital in

the sense that λ : S ∧L M −→ M is an isomorphism. Let MS denote the full

subcategory of S [L] whose objects are the S-modules. For S-modules M and N ,

define

M ∧S N = M ∧L N and FS(M, N) = S ∧L FL (M, N).

The justification for the name “S-module” is given by the commutative diagrams

S ∧S S ∧S M
λ∧id //

id∧λ

��

S ∧S M

λ

��

and M
λ−1

//

id
##HHHHHHHHH

S ∧S M

λ

��

S ∧S M
λ

// M M.

We consistently retain the notation M ∧L N when the given L-spectra M and N

are not restricted to be S-modules. We have the following examples of S-modules.

Proposition 5.2. For any based space X, Σ∞X is an S-module, and

Σ∞X ∧S Σ∞Y ∼= Σ∞(X ∧ Y ).

For any S-module M and any L-spectrum N , M ∧L N is an S-module. In partic-

ular, S ∧L N is an S-module for any L-spectrum N .

We have the following categorical relationship between S [L] and MS .

Lemma 5.3. The functor S ∧L (?) : S [L] −→ MS is left adjoint to the functor

FL (S, ?) : MS −→ S [L] and right adjoint to the inclusion ℓ : MS −→ S [L].

This implies that to lift right adjoint functors from S [L] to MS , we must first

forget down to S [L], next apply the given functor, and then apply the functor

S ∧L (?). For example, limits in MS are created in this fashion.

Proposition 5.4. The category of S-modules is complete and cocomplete. Its col-

imits are created in S [L]. Its limits are created by applying the functor S ∧S (?)

to limits in S [L]. If X is a based space and M is an S-module, then M ∧ X is

an S-module, and the spectrum level cofibre of a map of S-modules is an S-module.

For a based space X and S-modules M and N ,

MS(M ∧ X, N) ∼= MS(M, S ∧L F (X, N)).
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Moreover,

M ∧ X ∼= M ∧S Σ∞X and S ∧L F (X, M) ∼= FS(Σ∞X, M).

Lemma 5.3 also explains our definition of function S-modules. Its second adjunc-

tion and the adjunction of Theorem 4.8 compose to give the adjunction displayed

in the following theorem.

Theorem 5.5. The category MS is symmetric monoidal under ∧S , and

MS(M ∧S N, P ) ∼= MS(M, FS(N, P ))

for S-modules M , N , and P .

A homotopy in the category of S-modules is a map M ∧ I+ −→ N . A map of

S-modules is a weak equivalence if it is a weak equivalence as a map of spectra.

The derived category DS of S-modules is constructed from the homotopy category

hMS by adjoining formal inverses to the weak equivalences; again, the process is

made rigorous by CW approximation. We define sphere S-modules

(4) Sn
S ≡ S ∧L LSn

and use them as the domains of attaching maps when defining cell and CW S-

modules. From here, the theory of cell and CW S-modules is exactly like the

theory of cell and CW spectra and is obtained by specialization of the theory of

cell R-modules to be discussed shortly. A weak equivalence of cell S-modules is

a homotopy equivalence, any S-module is weakly equivalent to a CW S-module,

and DS is equivalent to the homotopy category of CW S-modules. Again, the S-

module S does not have the homotopy type of a CW S-module. When working

homotopically, we replace it with SS ≡ S0
S .

The following comparison between CW S-modules and CW L-spectra establishes

an equivalence between DS and h̄S [L] and thus between DS and h̄S . It is largely

a recapitulation of results already discussed.

Theorem 5.6. The following conclusions hold.

(i) The functor S ∧L (?) : S [L] −→ MS carries CW L-spectra to CW S-

modules.

(ii) The forgetful functor MS −→ S [L] carries S-modules of the homotopy

types of CW S-modules to L-spectra of the homotopy types of CW L-spectra.

(iii) Every CW S-module M is homotopy equivalent as an S-module to S ∧S N

for some CW L-spectrum N .

(iv) The unit λ : S ∧L M −→ M is a weak equivalence for all L-spectra M and

is a homotopy equivalence of L-spectra if M has the homotopy type of a

CW L-spectrum.
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The functors S ∧L (?) and the forgetful functor establish an adjoint equivalence

between the stable homotopy category h̄S [L] and the derived category DS . This

equivalence of categories preserves smash products and function spectra.

When doing classical homotopy theory, we can work interchangeably in any of

the categories h̄S , h̄S [L], or DS . These three categories are equivalent, and the

equivalences preserve all structure in sight. When working on the point set level,

we have reached a nearly ideal situation with our construction of MS, and the rest

of the article will describe how to exploit this.

6. S-algebras and their categories of modules

Intuitively, S-algebras are as near to associative rings with unit as one can get

in stable homotopy theory, and commutative S-algebras are as near as one can get

to commutative rings.

Definition 6.1. An S-algebra is an S-module R together with maps of S-modules

η : S −→ R and φ : R ∧S R → R such that the following diagrams of S-modules

commute:

S ∧S R
η∧Sid

//

λ
%%KKKKKKKKKKK

R ∧S R

φ

��

R ∧S S
id∧Sη
oo

λτ
yysssssssssss

and R ∧S R ∧S R

φ∧S id

��

id∧Sφ
// R ∧S R

φ

��

R R ∧S R
φ

// R;

R is commutative if the following diagram also commutes:

R ∧S R

φ
##HH

HH
HH

HH
H

τ // R ∧S R

φ
{{vv

vv
vv

vv
v

R.

We shall not review the older definitions of A∞ and E∞ ring spectra. It turns

out that they are equivalent to the structures that are given by the definition above,

with the single exception that the unit map λ of an A∞ or E∞ ring spectrum need

not be an isomorphism. In other words, the natural ground category for A∞ and

E∞ ring spectra is the category of L-spectra rather than the category of S-modules.

We state this formally.

Theorem 6.2. An S-algebra or commutative S-algebra is an A∞ or E∞ ring spec-

trum which is also an S-module. If A is an A∞ ring spectrum, then S ∧L A is a

weakly equivalent S-algebra. If A is an E∞ ring spectrum, then S ∧L A is a weakly

equivalent commutative S-algebra.

This means that we can use the older theory to construct examples. For example,

the classical Thom spectra occur in nature as E∞ ring spectra, and [20] gives a
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machine for manufacturing A∞ and E∞ ring spectra from space level data. It shows

that the Eilenberg-MacLane spectrum Hk of a ring k is an A∞ ring spectrum and is

an E∞ ring spectrum if k is commutative and that the algebraic K-theory spectrum

Kk of a commutative ring k is an E∞ ring spectrum. Similarly, the spectra ko and

ku that represent real and complex connective K-theory are E∞ ring spectra.

Since it is very convenient to have strict units, we shall always work with S-

algebras.

Definition 6.3. Let R be an S-algebra. A (left) R-module M is an S-module

together with a map µ : R ∧S M → M of S-modules such that the following

diagrams commute:

S ∧S M
η∧S id

//

λ
&&LLLLLLLLLLL

R ∧S M

µ

��

and R ∧S R ∧S M

φ∧S id

��

id∧Sµ
// R ∧S M

µ

��

M R ∧S M
µ

// M.

A map f : M −→ M ′ of R-modules is a map of S-modules such that the following

diagram commutes:

R ∧S M
id∧f

//

µ

��

R ∧S M ′

µ′

��

M
f

// M ′.

We let MR denote the category of R-modules.

If R is commutative, then an R-module is the same thing as a left module over R

regarded as an S-algebra, exactly as in algebra. From here, we can mimic vast areas

of algebra, one particularly striking direction being the development of topological

Hochschild homology. However, we shall concentrate on the generalized analog of

stable homotopy theory that we obtain by studying the homotopy theory of R-

modules for a fixed commutative S-algebra R. Everything that makes sense is also

true in the non-commutative case.

Theorem 6.4. The category of R-modules is complete and cocomplete, with both

limits and colimits created in the underlying category MS. Let X be a based space,

K be an S-module, and M and N be R-modules. Then the following conclusions

hold, where the displayed isomorphisms are obtained by restriction of the corre-

sponding isomorphisms for S-modules.

(i) M∧X is an R-module and the spectrum level cofibre of a map of R-modules

is an R-module.

(ii) S ∧L F (X, N) is an R-module and

MR(M ∧ X, N) ∼= MR(M, S ∧L F (X, N)).
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(iii) M ∧S K and FS(K, N) are R-modules and

MR(M ∧S K, N) ∼= MR(M, FS(K, N)).

(iv) FS(M, K) is an R-module.

(v) As R-modules,

M ∧ X ∼= M ∧S Σ∞X and S ∧L F (X, N) ∼= FS(Σ∞X, N).

A homotopy in the category of R-modules is a map M ∧ I+ −→ M ′. A map of

R-modules is a weak equivalence if it is a weak equivalence as a map of spectra. The

derived category DR is constructed from the homotopy category hMR by adjoining

formal inverses to the weak equivalences; again, the process is made rigorous by

the approximation of general R-modules by cell R-modules.

Cell theory is based on the free R-module functor FR from spectra to R-modules

that is specified by FRX = R ∧S FSX , where FSX = S ∧L LX . The term “free”

is a slight misnomer, in view of the following result.

Proposition 6.5. The functor FR : S −→ MR is left adjoint to the functor that

sends an R-module M to the spectrum FL (S, M), and there is a natural map of

R-modules ξ : FRM −→ M whose adjoint M −→ FL (S, M) is a weak equivalence

of spectra. Therefore

πn(M) ∼= hMR(FRSn, M).

In the stable homotopy category h̄S , FRX is naturally isomorphic to the internal

smash product R ∧ X when X is tame.

Thus FR is left adjoint to a functor that is weakly equivalent to the obvious

forgetful functor. This is the price to be paid for insisting on strict units, and it

introduces no serious complications in the theory. Homotopically, the functor FR

behaves as one would expect. Generalizing (5.6), we define sphere R-modules by

(5) Sn
R = FRSn,

and we use them as the domains of attaching maps when developing the cell theory

of R-modules. For cells, we note that the cone functor CE = E ∧ I commutes

with FR, so that CSn
R

∼= FRCSn. Thus, via the adjunction, maps out of sphere

R-modules and their cones are induced by maps on the spectrum level. Using this,

we can simply parrot the theory of cell spectra in the context of R-modules, reduc-

ing proofs to the spectrum level via adjunction. We easily obtain the Whitehead

theorem for cell R-modules, and the approximation theorem to the effect that any

R-module is weakly equivalent to a cell R-module. The category DR is equivalent

to the homotopy category of cell R-modules. If R is connective, but not otherwise,

we obtain the cellular approximation theorem when we restrict attention to CW
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R-modules, namely cell R-modules such that cells are only attached to cells of lower

dimension.

The category DR has all homotopy limits and colimits; the former are created as

the corresponding constructions on the underlying diagrams of spectra; the latter

require application of the functor S ∧L (?). Thus we have enough information to

quote the categorical form of Brown’s representability theorem given in [6]. Adams’

analog [3] for functors defined only on finite CW spectra also applies in our context,

with the same proof.

Theorem 6.6 (Brown). A contravariant functor k : DR → Sets is representable in

the form k(M) ∼= DR(M, N) for some R-module N if and only if k converts wedges

to products and converts homotopy pushouts to weak pullbacks.

Theorem 6.7 (Adams). A contravariant group-valued functor k on the homotopy

category of finite cell R-modules is representable in the form k(M) ∼= DR(M, N)

for some R-module N if and only if k converts finite wedges to direct products and

converts homotopy pushouts to weak pullbacks of underlying sets.

In fact, Brown’s theorem is the kind of formal result that can be derived in any

(closed) model category in the sense of Quillen (see [8] for a good exposition), and

we have the following result. Serre fibrations of spectra are maps that satisfy the

covering homotopy property with respect to the set of cone spectra

{Σ∞

q CSn|q ≥ 0 and n ≥ 0}.

Relative cell R-modules M −→ N are constructed exactly like cell R-modules,

except that one starts the inductive construction of N = ∪Nn with N0 = M .

We write q-cofibrations and q-fibrations here to avoid confusion with cofibrations

(HEP) and fibrations (CHP); the ambiguous use of the same term for both the

classical and the model theoretic concepts is one of the banes of the literature.

Theorem 6.8. The category of R-modules is a model category. Its weak equiv-

alences are the maps of R-modules that are weak equivalences of spectra. Its q-

cofibrations are the retracts of relative cell R-modules. Its q-fibrations are the maps

M −→ N such that FL (S, M) −→ FL (S, N) is a Serre fibration of spectra.

7. The smash product of R-modules and function R-modules

Continuing to work with our fixed commutative S-algebra R, we mimic the

definition of tensor products of modules over algebras.

Definition 7.1. For R-modules M and N , define M ∧R N to be the coequalizer

displayed in the following diagram of S-modules:

M ∧S R ∧S N
µ∧S id

//

id∧Sν
// M ∧S N // M ∧R N.
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where µ and ν are the given actions of R on M and N . Then M∧RN has a canonical

R-module structure induced from the R-module structure of M or, equivalently, N .

Of course, S is a commutative S-algebra and our new M ∧S N coincides with

our old M ∧S N . The functor ∧R preserves colimits in each of its variables, and

smash products with spaces commute with ∧R, in the sense that

X ∧ (M ∧R N) ∼= (X ∧ M) ∧R N.

Therefore the functor ∧R commutes with cofibre sequences in each of its variables.

We have analogous relations with smash products over S and an adjunction that

can be thought of as completing Proposition 5.4.

Proposition 7.2. For an S-module K,

K ∧S (M ∧R N) ∼= (K ∧S M) ∧R N

and

MS(M ∧R N, K) ∼= MR(N, FS(M, K)).

The associativity, commutativity, and unity of the smash product over S is

inherited by the smash product over R.

Theorem 7.3. Under the smash product over R, the category of R-modules is

symmetric monoidal with unit R.

We can deduce not only formal but also homotopical properties of ∧R from

corresponding properties of ∧S . As in Section 4, we use an isomorphism of universes

f : U ⊕ U → U to define the internal smash product f∗(E ∧ F ).

Proposition 7.4. Let X and Y be spectra and let N be an R-module. There is a

natural isomorphism of R-modules

FRX ∧R N ∼= FSX ∧S N.

There is also a natural isomorphism of R-modules

FRX ∧R FRY ∼= FRf∗(X ∧ Y ).

If M and N are cell R-modules, then M∧RN is a cell R-module with one (p+q)-cell

for each p-cell of M and q-cell of N .

Theorem 7.5. If M is a cell R-module and φ : N −→ N ′ is a weak equivalence of

R-modules, then

id∧Rφ : M ∧R N −→ M ∧R N ′

is a weak equivalence of R-modules.
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We construct ∧R as a functor DR × DR → DR by approximating one of the

variables by a cell R-module.

We have a function spectrum functor FR to go with our smash product. It is

defined as the equalizer of a certain pair of maps FS(M, N) −→ FS(R ∧S M, N).

The details are dictated by the expected adjunction. Again, FR(M, N) inherits a

structure of R-module from M or, equivalently, N .

Proposition 7.6. For R-modules N and P and an S-module K,

MR(K ∧S N, P ) ∼= MS(K, FR(N, P )).

If M is an R-module, then

MR(M ∧R N, P ) ∼= MR(M, FR(N, P )).

Therefore

FR(M ∧R N, P ) ∼= FR(M, FR(N, P )).

Formal arguments from the adjunction, as in algebra, give a natural associative

and unital composition pairing

(6) π : FR(N, P ) ∧R FR(M, N) −→ FR(M, P ).

Parenthetically, we note that this gives rise to a host of examples of S-algebras;

in fact, R itself need not be commutative in the following result.

Proposition 7.7. For an R-module M , FR(M, M) is an S-algebra; For R-modules

M and N , FR(M, N) is an (FR(N, N), FR(M, M))-bimodule.

Proposition 7.8. Let X be a spectrum and M be an R-module. There is a natural

isomorphism of R-modules

FR(FRX, M) ∼= FS(FSX, M).

The functor FR(M, N) converts colimits and cofibre sequences in M to limits and

fibre sequences. It preserves limits and fibre sequences in N . Using the previous

result to deal with sphere R-modules, we obtain the analog of Theorem 7.5.

Proposition 7.9. If M is a cell R-module and φ : N −→ N ′ is a weak equivalence

of R-modules, then

FR(id, φ) : FR(M, N) −→ FR(M, N ′)

is a weak equivalence of R-modules.

In the derived category DR, FR(M, N) means FR(ΓM, N), where ΓM is a cell

approximation of M .

Summarizing, we obtain the following derived category level conclusion.



MODERN FOUNDATIONS FOR STABLE HOMOTOPY THEORY 27

Theorem 7.10. The derived category DR is symmetric monoidal under the product

derived from ∧R, and

DR(M ∧R N, P ) ∼= DR(M, FR(N, P )).

There is a formal theory of duality (explained in [16, Ch. III]) that now applies

to DR. We define the dual of an R-module M to be DRM = FR(M, R). We have

an evaluation map ε : DRM ∧R M −→ R and a map η : R → FR(M, M), namely

the adjoint of λ : R ∧R M −→ M . There is also a natural map

(7) ν : FR(L, M) ∧R N −→ FR(L, M ∧R N).

By composition with FR(id, λ), ν specializes to a map

(8) ν : DRM ∧R M −→ FR(M, M).

We say that M is “strongly dualizable” if it has a coevaluation map η̄ : R −→

M ∧R DRM such that the following diagram commutes in DR:

(9)

R
η̄

//

η

��

M ∧R DRM

τ

��

FR(M, M) DRM ∧R M.
ν

oo

The definition has many purely formal implications. The map ν of (7.12) is an

isomorphism in DR if either L or N is strongly dualizable. The map ν of (7.13) is

an isomorphism if and only if M is strongly dualizable, and the coevaluation map

η̄ is then the composite τν−1η in (7.14). The natural map

ρ : M −→ DRDRM

is an isomorphism if M is strongly dualizable. The natural map

∧ : FR(M, N) ∧R FR(M ′, N ′) −→ FR(M ∧R M ′, N ∧R N ′)

is an isomorphism if M and M ′ are strongly dualizable or if M is strongly dualizable

and N = R.

Say that a cell R-module N is a wedge summand up to homotopy of a cell R-

module M if there is a homotopy equivalence of R-modules between M and N ∨N ′

for some cell R-module N ′. We say that N is semi-finite if it is a wedge summand up

to homotopy of a finite cell R-module. In contrast with the usual stable homotopy

category, a semi-finite R-module need not have the homotopy type of a finite cell

R-module.

Theorem 7.11. A cell R-module is strongly dualizable if and only if it is semi-

finite.

The analogy with finitely generated projective modules in algebra should be

clear.
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8. Tor and Ext in topology and algebra

Still restricting for definiteness to a commutative S-algebra R and its modules,

we define Tor and Ext groups as the homotopy groups of derived smash product

and function modules.

Definition 8.1. For R-modules M and N , define

TorR
n (M, N) = πn(M ∧R N)

and

Extn
R(M, N) = π−n(FR(M, N)).

Note that TorR
∗
(M, N) and Ext∗R(M, N) are π∗(R)-modules.

We emphasize that the smash product and function spectra are understood to

be taken in the derived category DR. At this point in our exposition, we act as

traditional topologists, taking it for granted that all spectra and modules are to

be approximated as cell modules, without change of notation, whenever necessary.

Various properties reminiscent of those of the classical Tor and Ext functors follow

directly from the definition and the results of the previous sections. The intuition

is that the definition gives an analogue of the differential Tor and Ext functors

(alias hyperhomology and cohomology functors) in the context of differential graded

modules over differential graded algebras. In particular, the grading should not be

thought of as the resolution grading of the classical torsion product, but rather as

a total grading that sums a resolution degree and an internal degree; this idea will

be made precise by the grading of the spectral sequences that we shall describe for

the calculation of these functors.

Proposition 8.2. TorR
∗
(M, N) satisfies the following properties.

(i) If R, M , and N are connective, then TorR
n (M, N) = 0 for n < 0.

(ii) A cofibre sequence N ′ → N → N ′′ gives rise to a long exact sequence

· · · → TorR
n (M, N ′) → TorR

n (M, N) → TorR
n (M, N ′′) → TorR

n−1(M, N ′) → · · · .

(iii) TorR
∗
(M, R) ∼= π∗(M) and, for a spectrum X,

TorR
∗
(M, FX) ∼= π∗(M ∧ X).

(iv) The functor TorR
∗
(M, ?) carries wedges to direct sums.

The commutativity and associativity relations for the smash product imply var-

ious further properties. We content ourselves with the following examples:

TorR
∗
(M, N) ∼= TorR

∗
(N, M)

and

TorR
∗
(M ∧R N, P ) ∼= TorR

∗
(M, N ∧R P ).

Say that a spectrum N is coconnective if πn(N) = 0 for n > 0.
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Proposition 8.3. Ext∗R(M, N) satisfies the following properties.

(i) If R and M are connective and N is coconnective, then Extn
R(M, N) = 0

for n < 0.

(ii) Fibre sequences N ′ → N → N ′′ and cofibre sequences M ′ → M → M ′′ give

rise to long exact sequences

· · · → Extn
R(M, N ′) → ExtnR(M, N) → Extn

R(M, N ′′) → Extn+1
R (M, N ′) → · · ·

and

· · · → ExtnR(M ′′, N) → Extn
R(M, N) → ExtnR(M ′, N) → Extn+1

R (M ′′, N) → · · · .

(iii) Ext∗R(R, N) ∼= π−∗(N) and, for a spectrum X,

Ext∗R(FX, N) ∼= π−∗(F (X, N)).

(iv) The functor Ext∗R(?, N) carries wedges to products.

Passing to homotopy groups from the pairings (7.7), we obtain the following

further property. As usual, for a spectrum E, abbreviate

En = πn(E) = E−n.

Proposition 8.4. There is a natural, associative, and unital system of pairings of

R∗-modules

π∗ : Ext∗R(M, N) ⊗R∗ Ext∗R(L, M) −→ Ext∗R(L, N).

The formal duality theory of the previous section implies the following result,

together with various other such isomorphisms.

Proposition 8.5. For a finite cell R-module M and any R-module N ,

TorR
n (DRM, N) ∼= Ext−n

R (M, N).

Thinking of the derived category DR as a stable homotopy category, we may

change notations and reinterpret the functors Tor and Ext as prescribing homology

and cohomology theories in this category.

Definition 8.6. Let M and E be R-modules. Define

ER
n (M) = πn(E ∧R M) and En

R(M) = π−n(FR(M, E)).

The properties of Tor and Ext translate directly to statements about homology

and cohomology. All of the standard homotopical machinery is available to us, and

the previous result now takes the form of Spanier-Whitehead duality.

Corollary 8.7. For a finite cell R-module M and any R-module E,

ER
n (DRM) ∼= E−n

R (M).
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Since the equivalence between the classical stable homotopy category and the

derived category of S-modules preserves smash products and function spectra, we

obtain all of the usual homology and cohomology theories by taking R = S.

We also obtain the classical algebraic Tor and Ext groups as special cases, by

specialization to Eilenberg-MacLane spectra. Thus let R be a discrete commutative

ring for a moment. Recall that HR denotes a spectrum whose zeroth homotopy

group is R and whose remaining homotopy groups are zero. It follows from mul-

tiplicative infinite loop space theory [20] that the Eilenberg-MacLane spectrum

HR = K(R, 0) is an E∞ ring spectrum. Analogously, if M is an R-module, then

HM can be constructed as an HR-module. We shall see a quick and easy construc-

tion shortly. Granting this, we have the following result.

Theorem 8.8. For a discrete commutative ring R and R-modules M and N ,

TorR
∗
(M, N) ∼= TorHR

∗
(HM, HN)

and

Ext∗R(M, N) ∼= Ext∗HR(HM, HN).

Under the second isomorphism, the topologically defined pairing

Ext∗HR(HM, HN) ⊗R Ext∗HR(HL, HM) −→ Ext∗HR(HL, HN)

coincides with the algebraic Yoneda product.

The proof is clear enough: we just check the axioms for Tor and Ext.

We can elaborate this result to an equivalence of derived categories. Recall from

[28] or [15, Ch.III] that the derived category DR is obtained from the homotopy

category of chain complexes over R by formally inverting the quasi-isomorphisms,

exactly as we obtained the category DHR from the homotopy category of HR-

modules by inverting the weak equivalences. The algebraic theory of cell and CW

chain complexes over R in the latter source makes the analogy precise and gives

a treatment of tensor products and Hom functors in DR that exactly parallels our

treatment of ∧HR and FHR. The proof of the equivalence is quite easy. The

category DHR is equivalent to the homotopy category of CW HR-modules and

cellular maps. It is a simple matter to see that CW HR-modules have associated

chain complexes. This gives a functor DHR −→ DR. An inverse functor Φ is

obtained by applying Brown’s representability theorem. Indeed, for a given chain

complex X , the functor k on DHR specified by k(M) = DR(C∗(M), X) satisfies the

hypotheses of that result, and we let Φ(X) represent this functor. Specialization

to R-modules regarded as chain complexes concentrated in degree zero gives the

promised construction of Eilenberg-MacLane HR-modules from R-modules.
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Theorem 8.9. The cellular chain functor C∗ on HR-modules induces an equiva-

lence of categories DHR −→ DR. The functor C∗ satisfies H∗(C∗(M)) ∼= π∗(M)

and carries the functors ∧HR and FHR to the functors ⊗R and HomR. The inverse

equivalence Φ satisfies π∗(Φ(X)) ∼= H∗(X) and carries the functors ⊗R and HomR

to the functors ∧HR and FHR.

Proof. By construction, we have an adjunction

DR(C∗(M), X) ∼= DHR(M, Φ(X)),

and one checks that its unit and counit are isomorphisms. The statements relating

∧HR and FHR to ⊗R and HomR are all consequences of the fact that if M and N

are CW HR-modules, then M ∧HR N is a CW HR-module such that

C∗(M ∧HR N) ∼= C∗(M) ⊗R C∗(N). �

9. Universal coefficient and Künneth spectral sequences

Returning to our general commutative S-algebra R, we find spectral sequences

for the calculation of our Tor and Ext groups that are analogous to the Eilenberg-

Moore (or hyperhomology) spectral sequences in differential homological algebra.

Compare [9, 13, 15]. They may be viewed as giving universal coefficient and

Künneth spectral sequences for homology and cohomology theories on R-modules,

and they specialize to give such spectral sequences for homology and cohomology

theories on spectra.

Theorem 9.1. For R-modules M and N , there are natural spectral sequences of

differential R∗-modules

E2
p,q = TorR∗

p,q(M∗, N∗) =⇒ TorR
p+q(M, N)

and

Ep,q
2 = Extp,q

R∗ (M∗, N∗) =⇒ Extp+q
R (M, N).

Moreover, the pairing FR(M, N) ∧R FR(L, M) → FR(L, N) induces a pairing of

spectral sequences that coincides with the algebraic Yoneda pairing

Ext∗,∗
R∗ (M∗, N∗) ⊗R∗ Ext∗,∗

R∗ (L∗, M∗) −→ Ext∗,∗
R∗ (L∗, N∗)

on the E2-level and that converges to the induced pairing of Ext groups.

The Tor spectral sequence is of standard homological type, with

dr
p,q : Er

p,q −→ Er
p−r,q+r−1.

It lies in the right half-plane, and it converges strongly. The Ext spectral sequence

is of standard cohomological type, with

dr : Ep,q
r → Ep+r,q−r+1

r .
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It lies in the right half plane. In the language of Boardman [5] (see also [12, App

B]), it is conditionally convergent. It therefore converges strongly if, for each fixed

(p, q), there are only finitely many r such that dr is non-zero on Ep,q
r .

Setting M = FRX in the two spectral sequences of Theorem 8.1, we obtain a

universal coefficient spectral sequence. We have written the stars to indicate the

way the grading is usually thought of in cohomology.

Theorem 9.2 (Universal coefficient). For an R-module N and any spectrum X,

there are spectral sequences of the form

TorR∗

∗,∗(R∗(X), N∗) =⇒ N∗(X)

and

Ext∗,∗
R∗ (R−∗(X), N∗) =⇒ N∗(X).

Of course, replacing R and N by Eilenberg-MacLane spectra HR and HN for

a ring R and R-module N , we obtain the classical universal coefficient theorems.

Replacing N by FRY and by FR(FRY, R) in the two universal coefficient spectral

sequences, we arrive at Künneth spectral sequences.

Theorem 9.3 (Künneth). For any spectra X and Y , there are spectral sequences

of the form

TorR∗

∗,∗(R∗(X), R∗(Y )) =⇒ R∗(X ∧ Y )

and

Ext∗,∗
R∗ (R−∗(X), R∗(Y )) =⇒ R∗(X ∧ Y ).

Adams [1] first observed that one can derive Künneth spectral sequences from

universal coefficient spectral sequences, and he observed that, by duality, the four

spectral sequences of Theorems 9.2 and 9.3 imply two more universal coefficient

and two more Künneth spectral sequences. He derived spectral sequences of this

sort under the hypothesis that his given ring spectrum E is the colimit of finite

subspectra Eα such that H∗(Eα; E∗) is E∗-projective and the Atiyah-Hirzebruch

spectral sequence converging from H∗(Eα; E∗) to E∗(Eα) satisfies E2 = E∞. Of

course, this is an ad hoc calculational hypothesis that requires case-by-case verifica-

tion. It covers some cases that are not covered by the results above, and conversely.

The cited paper of Adams, and his later book [2], are prime sources for the first

flowering of stable homotopy theory. While some of their foundational parts may

be obsolete, their applications and calculational parts certainly are not.

The following generalized Künneth theorem admits a number of variants; see

[11].

Theorem 9.4. Let E and R be commutative S-algebras and M and N be R-

modules. Then there is a spectral sequence of differential E∗(R)-modules of the
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form

TorE∗(R)
p,q (E∗(M), E∗(N)) =⇒ Ep+q(M ∧R N).

10. Algebraic constructions in the derived category of R-modules

If we replace the pair (S, R) by a pair (R, A) in Definition 6.1, we arrive at

the notion of an algebra A over a commutative S-algebra R. For example, the

S-algebras FR(M, M) of Proposition 7.8 are actually R-algebras. Again, if A is an

algebra over a discrete commutative ring R, then HA is an HR-algebra. Proceeding

in this line, we can, for instance, construct R-modules whose homotopy groups

realize the Hochschild homology of A with coefficients in (A, A)-bimodules.

However, we now proceed in a more homotopical direction, thinking of the de-

rived category of R-modules as an analog of the stable homotopy category. From

this point of view, we have the notion of an R-ring spectrum, which is just like the

classical notion of a ring spectrum in the stable homotopy category.

Definition 10.1. An R-ring spectrum A is an R-module A with unit η : R −→ A

and product φ : A ∧R A −→ A in DR such that the following left and right unit

diagram commutes in DR.

R ∧R A
η∧id

//

λ
%%LLLLLLLLLLL

A ∧R A

φ

��

A ∧R R
id∧η

oo

λτ
yyrrrrrrrrrrr

A

A is associative or commutative if the appropriate diagram commutes in DR.

Lemma 10.2. If A and B are R-ring spectrum, then so is A ∧R B. If A and B

are associative or commutative, then so is A ∧R B.

By neglect of structure, an R-ring spectrum A is a ring spectrum in the sense of

classical stable homotopy theory; its unit is the composite of the unit of R and the

unit of A and its product is the composite of the product of A and the canonical

map

A ∧ A ≃ A ∧S A −→ A ∧R A.

Similarly, for an R-algebra A, we have the evident homotopical notion of an A-

module spectrum. These structures play a role in the study of DR analogous to the

role played by ring spectra and their module spectra in classical stable homotopy

theory. When R = S, S-ring spectra and their module spectra are equivalent to

classical ring spectra and their module spectra.

We show in this section how to construct quotients M/IM and localizations

M [Y −1] of modules over a commutative S-algebra R and indicate in the next section

when these constructions inherit a structure of R-ring spectrum from an R-ring
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spectrum structure on M . When specialized to MU , these results give highly

structured versions of spectra that in the past were constructed by means of the

Baas-Sullivan theory of manifolds with singularities or the Landweber exact functor

theorem. At least at odd primes, the results give an entirely satisfactory, and very

simple, treatment of MU -ring structures on the resulting MU -modules.

We are interested in homotopy groups, and we make use of the isomorphisms

(10) Mn = hS (Sn, M) ∼= hMS(Sn
S , M) ∼= hMR(Sn

R, M)

to represent elements as maps of R-modules. For x ∈ Rn, the composite map of

R-modules

(11) Sn
R ∧R M

x∧id // R ∧R M
λ // M

is a module theoretic version of the map x· : ΣnM −→ M , and we agree to write

ΣnM for Sn
R ∧R M in this section. By Proposition 7.4, Sn

R ∧R M is isomorphic as

an R-module to Sn
S ∧S M and, by Theorem 4.7, Sn

S ∧S M is weakly equivalent as a

spectrum to Sn ∧ M . Therefore, the R-module ΣnM is a model for the spectrum

level suspension of M .

Definition 10.3. Define M/xM to be the cofibre of the map (9.4) and let ρ :

M −→ M/xM be the canonical map. Inductively, for a finite sequence {x1, . . . , xn}

of elements of R∗, define

M/(x1, . . . , xn)M = N/xnN, where N = M/(x1, . . . , xn−1)M.

For a (countably) infinite sequence X = {xi}, define M/XM to be the telescope of

the M/(x1, . . . , xn)M , where the telescope is taken with respect to the successive

canonical maps ρ.

Clearly we have a long exact sequence

(12) · · · −→ πq−n(M)
x·
−→πq(M)

ρ∗

−→πq(M/xM) −→ πq−n−1(M) −→ · · · .

If x is not a zero divisor for π∗(M), then ρ∗ induces an isomorphism of R∗-modules

(13) π∗(M)/x · π∗(M) ∼= π∗(M/xM).

If {x1, . . . , xn} is a regular sequence for π∗(M), in the sense that xi is not a zero

divisor for π∗(M)/(x1, . . . , xi−1)π∗(M) for 1 ≤ i ≤ n, then

(14) π∗(M)/(x1, . . . , xn)π∗(M) ∼= π∗(M/(x1, . . . , xn)M),

and similarly for a possibly infinite regular sequence X = {xi}. The following result

implies that M/XM is independent of the ordering of the elements of the set X .

We write R/X instead of R/XR.
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Lemma 10.4. For a set X of elements of R∗, there is a natural weak equivalence

(R/X) ∧R M −→ M/XM.

In particular, for a finite set X = {x1, . . . , xn},

R/(x1, . . . , xn) ≃ (R/x1) ∧R · · · ∧R (R/xn).

If I denotes the ideal generated by X , then it is reasonable to define

(15) M/IM = M/XM.

However, this notation must be used with caution since, if we fail to restrict atten-

tion to regular sequences X , the homotopy type of M/XM will depend on the set

X and not just on the ideal it generates. For example, quite different modules are

obtained if we repeat a generator xi of I in our construction.

We next construct localizations of R-modules at countable multiplicatively closed

subsets Y of R∗. Let {yi} be any cofinal sequence of Y , with yi ∈ Rni
, so that every

y ∈ Y divides some yi. We may represent yi by an R-map S0
R −→ S−ni

R , which we

also denote by yi. Let q0 = 0 and, inductively, qi = qi−1 + ni. The R-map

S0
R ∧R M

yi∧id
−→S−ni

R ∧R M

represents yi·. Smashing over R with S
−qi−1

R , we obtain a sequence of R-maps

(16) S
−qi−1

R ∧R M −→ S−qi

R ∧R M.

Definition 10.5. Define the localization of M at Y , denoted M [Y −1], to be the

telescope of the sequence of maps (10.11). Since M ∼= S0
R ∧R M in DR, we may

regard the inclusion of the initial stage S0
R ∧R M of the telescope as a natural map

λ : M −→ M [Y −1].

Since homotopy groups commute with localization, we see immediately that λ

induces an isomorphism of R∗-modules

(17) π∗(M [Y −1]) ∼= π∗(M)[Y −1].

As in Lemma 10.9, the localization of M is the smash product of M with the

localization of R.

Lemma 10.6. For a multiplicatively closed set Y of elements of R∗, there is a

natural equivalence

R[Y −1] ∧R M −→ M [Y −1].

Moreover, R[Y −1] is independent of the ordering of the elements of Y . For sets X

and Y , R[(X ∪ Y )−1] is equivalent to the composite localization R[X−1][Y −1].
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11. R-ring structures on localizations and on quotients by ideals

The behavior of localizations with respect to R-ring structures is immediate.

Proposition 11.1. Let Y be a multiplicatively closed set of elements of R∗. If A is

an R-ring spectrum, then A[Y −1] is an R-ring spectrum such that λ : A −→ A[Y −1]

is a map of R-ring spectra. If A is associative or commutative, then so is A[Y −1].

Proof. By Lemmas 10.2 and 10.14, it suffices to observe that R[Y −1] is an associa-

tive and commutative R-ring spectrum with unit λ and product the equivalence

R[Y −1] ∧R R[Y −1] ≃ R[Y −1][Y −1] ≃ R[Y −1]. �

This doesn’t work for quotients since (R/X)/X is not equivalent to R/X . How-

ever, we can analyze the problem by analyzing the deviation, and, by Lemma 10.9,

we may as well work one element at a time. We have a necessary condition for R/x

to be an R-ring spectrum that is familiar from classical stable homotopy theory.

Lemma 11.2. Let A be an R-ring spectrum. If A/xA admits an R-ring spectrum

structure such that ρ : A −→ A/xA is a map of R-ring spectra, then x : A/xA −→

A/xA is null homotopic as a map of R-modules.

Thus, for example, the Moore spectrum S/2 is not an S-ring spectrum since the

map 2 : S/2 −→ S/2 is not null homotopic. To give a criterion for when R/x does

have an R-ring spectrum structure, we first note an easy formal lemma.

Lemma 11.3. Let ρ : R −→ M be any map of R-modules. Then

(ρ ∧ id) ◦ ρ ≃ (id∧ρ) ◦ ρ : R −→ M ∧R M.

Theorem 11.4. Let x ∈ Rm and assume that πm+1(R/x) = 0 and π2m+1(R/x) =

0. Then R/x admits a structure of R-ring spectrum with unit ρ : R −→ R/x.

Therefore A/XA admits a structure of R-ring spectrum such that ρ : A −→ A/XA

is a map of R-ring spectra for every R-ring spectrum A and every sequence X of

elements of R∗ such that πm+1(R/x) = 0 and π2m+1(R/x) = 0 if x ∈ X has degree

m.
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Proof. Consider the following diagram in the derived category DR:

(18)

Σ2m+1R

x

��

Σm+1R

ρ

��

ν

vvm
m

m
m

m
m

m

x // ΣR

ρ

��

Σm(R/x)
x // R/x

ρ∧id
// (R/x) ∧R (R/x)

π //

φ
oo_ _ _ Σm+1(R/x)

x //

π′

��

σ
oo_ _ _ Σ(R/x)

Σ2m+2R.

The map x is that specified by (10.4). The bottom row is the cofibre sequence that

results from the equivalence

(R/x) ∧R (R/x) ≃ (R/x)/x

of Lemma 10.9, and the column is also a cofibre sequence. The composite x ◦ ρ is

null homotopic since ρ ◦ x is null homotopic and the square commutes. Therefore

there is a map ν such that π ◦ ν = ρ, and ν is unique since πm+1(R/x) = 0.

Since π ◦ ν ◦ x = ρ ◦ x = 0, ν ◦ x factors through a map Σ2m+1R −→ R/x. Since

π2m+1(R/x) = 0, such maps are null homotopic. Thus ν ◦ x is null homotopic.

Therefore there is a map σ such that σ ◦ ρ = ν. Now π ◦ σ ◦ ρ = π ◦ ν = ρ, hence

(π◦σ−id)ρ = 0. Therefore π◦σ−id factors through a map Σ2m+2R −→ Σm+1(R/x).

Again, such maps are null homotopic. Therefore π◦σ = id. Thus the bottom cofibre

sequence splits (proving in passing that x : Σm(R/x) −→ R/x is null homotopic, as

it must be). A choice φ of a splitting gives a product on R/x. The unit condition

φ ◦ (ρ ∧ id) = id is automatic. To see that φ ◦ (id∧ρ) = id, we observe that, by the

lemma,

(φ ◦ (id∧ρ) − id) ◦ ρ = φ ◦ (id∧ρ − ρ ∧ id) ◦ ρ = 0.

Therefore φ ◦ (id∧ρ) − id factors through a map Σm+1R −→ R/x. Again, such

maps are null homotopic, hence φ ◦ (id∧ρ) = id. This completes the proof that

R/x is an R-ring spectrum with unit ρ. The rest follows from Lemmas 10.9 and

10.2. �

The product on R/x can be described a little more concretely. The wedge sum

(19) (ρ ∧ id) ∨ σ : (R/x) ∨ Σm+1(R/x) −→ (R/x) ∧R (R/x)

is an equivalence. The product φ restricts to the identity on the first wedge sum-

mand and to the trivial map on the second wedge summand. Thus the product is

determined by the choice of σ, and two choices of σ differ by a composite

(20) Σm+1(R/x)
π′

// Σ2m+2R // (R/x) ∧R (R/x).
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By the splitting (10.6) and the assumption that πm+1(R/x) = 0, we can view the

second map as an element of π2m+2(R/x). If x is not a zero divisor, then π′

∗
= 0 on

homotopy groups and any two products have the same effect on homotopy groups.

For an R-ring spectrum A and an element x as in the theorem, we give A/xA ≃

(R/x) ∧R A the product induced by one of our constructed products on R/x and

the given product on A. We refer to any such product as a “canonical” product on

A/xA. Observe that, by first using the product on A, the product on A/xA can be

factored through

φ ∧R id : (R/x) ∧R (R/x) ∧R A −→ (R/x) ∧R A.

This allows us to smash any diagram giving information about the product on

R/x with A and so obtain information about the product on A/xA. Obviously any

diagram so constructed is a diagram of right A-modules via the product action of A

on itself. This smashing with A can kill obstructions. Clearly, a map of A-modules

ΣqA −→ M is determined by its restriction Sq −→ M along the unit of A regarded

as a map of spectra (or S-modules), which is just an element of πq(M). This leads

to the following result.

Theorem 11.5. Let x ∈ Rm and assume that πm+1(R/x) = 0 and π2m+1(R/x) =

0. Let A be an R-ring spectrum and assume that π2m+2(A/xA) = 0. Then there is

a unique canonical product on A/xA. If A is commutative, then A/xA is commu-

tative. If A is associative and π3m+3(A/xA) = 0, then A/xA is associative.

Proof. The second arrow of (11.7) becomes zero after smashing with A since it

is then given by an element of π2m+2(A/xA) = 0. This proves the uniqueness

statement. The commutativity statement follows since if φ is a canonical product

on A/xA, then so is φτ . The associativity statement requires consideration of the

restriction of the iterated product to the wedge summands of A/xA ∧R A/xA ∧R

A/xA. The details are similar to, but simpler than, those in the proof of Theorem

11.4. �

Iterating and observing that passage to telescopes can kill obstructions, we arrive

at the following fundamental conclusion.

Theorem 11.6. Assume that Ri = 0 if i is odd. Let X be a sequence of non

zero divisors in R∗ such that π∗(R/X) is concentrated in degrees congruent to zero

mod 4. Then R/X has a unique canonical structure of R-ring spectrum, and it is

commutative and associative.

12. The specialization to MU-modules and MU-ring spectra

The classical Thom spectra arise in nature as E∞ ring spectra. In fact, it was

inspection of their prespectrum level definition in terms of Grassmannians that



MODERN FOUNDATIONS FOR STABLE HOMOTOPY THEORY 39

first led to the theory of E∞ ring spectra [19]. Applying the functor S ∧L (?),

we obtain models for Thom spectra which are commutative S-algebras. Of course,

the homotopy groups of MU are concentrated in even degrees, and every non-zero

element is a non zero divisor. Thus the results above have the following immediate

corollary.

Theorem 12.1. Let X be a regular sequence in MU∗, let I be the ideal generated

by X, and let Y be any sequence in MU∗. Then there is an MU -ring spectrum

(MU/X)[Y −1] and a natural map of MU -ring spectra (the unit map)

η : MU −→ (MU/X)[Y −1]

such that

η∗ : MU∗ −→ π∗((MU/X)[Y −1])

realizes the natural homomorphism of MU∗-algebras

MU∗ −→ (MU∗/I)[Y −1].

If MU∗/I is concentrated in degrees congruent to zero mod 4, then there is a unique

canonical product on (MU/X)[Y −1], and this product is commutative and associa-

tive.

In comparison with earlier constructions of this sort based on the Baas-Sullivan

theory of manifolds with singularities or on Landweber’s exact functor theorem

(where it applies), we have obtained a simpler proof of a substantially stronger

result. We emphasize that an MU -ring spectrum is a much richer structure than

just a ring spectrum and that commutativity and associativity in the MU -ring

spectrum sense are much more stringent conditions than mere commutativity and

associativity of the underlying ring spectrum.

We illustrate by explaining how BP appears in this context. Fix a prime p and

write (?)p for localization at p. Let BP be the Brown-Peterson spectrum at p. We

are thinking of Quillen’s idempotent construction [24], and we have the splitting

maps i : BP −→ MUp and e : MUp −→ BP . These are maps of commutative and

associative ring spectra such that e ◦ i = id. Let I be the kernel of the composite

MU∗ −→ MUp∗ −→ BP∗.

Then I is generated by a regular sequence X , and our MU/X is a canonical integral

version of BP . For the moment, let BP ′ = (MU/X)p. Let ξ : BP −→ BP ′ be the

composite

BP
i // MUp

ηp
// BP ′.

It is immediate that ξ is an equivalence. In effect, since we have arranged that

ηp has the same effect on homotopy groups as e, ξ induces the identity map of
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(MU∗/I)p on homotopy groups. By the splitting of MUp and the fact that self-

maps of MUp are determined by their effect on homotopy groups [2, II.9.3], maps

MUp −→ BP are determined by their effect on homotopy groups. This implies

that ξ ◦ e = ηp : MUp −→ BP ′. The product on BP is the composite

BP ∧ BP
i∧i // MUp ∧ MUp

φ
// MUp

e // BP.

Since ηp is a map of MU -ring spectra and thus of ring spectra, a trivial diagram

chase now shows that the equivalence ξ : BP −→ BP ′ is a map of ring spectra.

We conclude that our BP ′ is a model for BP that is an MU -ring spectrum,

commutative and associative if p > 2. The situation for p = 2 is interesting. We

conclude from the equivalence that BP ′ is commutative and associative as a ring

spectrum, although we do not know that it is commutative or associative as an

MU -ring spectrum.

Recall that π∗(BP ) = Z(p)[vi|deg(vi) = 2(pi − 1)], where the generators vi come

from π∗(MU) (provided that we use the Hazewinkel generators). We list a few of

the spectra derived from BP , with their coefficient rings. Let Fp denote the field

with p elements.

BP 〈n〉 Z(p)[v1, . . . , vn] E(n) Z(p)[v1, . . . , vn, v−1
n ]

P (n) Fp[vn, vn+1, . . .] B(n) Fp[v
−1
n , vn, vn+1, . . .]

k(n) Fp[vn] K(n) Fp[vn, v−1
n ]

By the method just illustrated, we can construct canonical integral versions of

the BP 〈n〉 and E(n). All of these spectra fit into the context of Theorem 11.1.

If p > 2, they all have unique canonical commutative and associative MU -ring

spectrum structures. Further study is needed when p = 2. In any case, this theory

makes it unnecessary to appeal to Baas-Sullivan theory or to Landweber’s exact

functor theorem for the construction and analysis of spectra such as these.

With more sophisticated techniques, the second author [14] has proven that BP

can be constructed as a commutative S-algebra, and in fact admits uncountably

many distinct such structures. There is much other ongoing work on the construc-

tion and application of new commutative S-algebras, by Hopkins, Miller, McClure,

and others, and we have recently proven that the periodic K-theory spectra KO

and KU can be constructed as commutative S-algebras. The enriched multiplica-

tive structures on rings and modules that we have discussed are rapidly becoming

a standard tool in the study of periodicity phenomena in stable homotopy theory.
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[28] J.L. Verdier. Catégories dérivées. Springer Lecture Notes in Mathematics Vol. 569, 1977,

262-311.
[29] G.W. Whitehead. Elements of homotopy theory. Springer-Verlag. 1978.

Purdue University Calumet, Hammond, IN 46323 USA

E-mail address: aelmendo@@math.purdue.edu

The University of Michigan, Ann Arbor, MI 48109-1003 USA

E-mail address: ikriz@@math.lsa.umich.edu

The University of Chicago, Chicago, IL 60637 USA

E-mail address: mandell@@math.uchicago.edu

The University of Chicago, Chicago, IL 60637 USA

E-mail address: may@@math.uchicago.edu


