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Abstract

In this paper we give an algebraic description of the category of n-slices for an arbitrary group G, in
the sense of Hill-Hopkins-Ravenel. Specifically, given a finite group G and an integer n, we construct an
explicit G-spectrum W (called an isotropic slice n-sphere) with the following properties: (i) the n-slice
of a G-spectrum X is equivalent to the data of a certain quotient of the Mackey functor [W,X] as a
module over the endomorphism Green functor [W,W ]; (ii) the category of n-slices is equivalent to the
full subcategory of right modules over [W,W ] for which a certain restriction map is injective. We use
this theorem to recover the known results on categories of slices to date, and exhibit the utility of our
description in several new examples. We go further and show that the Green functors [W,W ] for certain
slice n-spheres have a special property (they are geometrically split) which reduces the amount of data
necessary to specify a [W,W ]-module. This step is purely algebraic and may be of independent interest.
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Introduction

The stable homotopy category has a standard filtration {τ≥nSp} by its subcategories of n-connective spectra
for n ∈ Z. We have a good computational handle on this filtration for the following reasons:

(i) We can easily build objects in τ≥nSp: all n-connective objects are obtained from a wedge of copies of
Sn by iteratively attaching cells of dimension k ≥ n.

(ii) We can compute when an object Y is n-truncated: we need to check that the homotopy groups of Y
vanish above dimension n.

(iii) We can compute when an object X is in τ≥nSp: we need to check that the homotopy groups of X
vanish below dimension n.

(iv) The category of n-connective and n-truncated objects has a completely algebraic description: it is
equivalent to the category of abelian groups via the Eilenberg-MacLane functor. Moreover, knowledge
of the nth Postnikov layer of a spectrum X is equivalent to knowledge of πnX.

Motivated by the Schubert cell structures on complex Grassmanians, Dan Dugger [Dug05] defined the
slice filtration in C2-equivariant homotopy theory to study Atiyah’s Real K-theory [Ati66]. This filtration
was later generalized to a filtration of G-equivariant stable homotopy theory for any finite group G and used
to great effect by Hill-Hopkins-Ravenel [HHR16] in their solution to the Kervaire invariant one problem.

Associated to the slice filtration on the category SpG of G-spectra are the notions of slice n-connective
and slice n-truncated spectra. (The reader may review the relevant definitions below in Definition 1.46.) A
G-spectrum which is both slice n-connective and slice n-truncated is called an n-slice. The relevant features
of the slice filtration are as follows:

(i) By design, we can easily build slice n-connective G-spectra.

(ii) By definition, we can compute when a G-spectrum is slice n-truncated by computing certain homotopy
classes of maps in from representation spheres.

(iii) Thanks to a recent result of Hill-Yarnall [HY17], it is possible to compute when a G-spectrum is slice
n-connective: we need to check certain connectivity conditions on each of its geometric fixed point
spectra.

The purpose of this paper is to give an analogue of the property (iv) of the Postnikov filtration, in complete
generality. That is, we provide an algebraic description of the layers of the slice filtration together with a
replacement for the functor πn in this context.

As a way to establish notation and provide motivation for our approach, we begin by reviewing the
completely understood case of G = C2. Recall that, given G-spectra X and Y we may form a Mackey
functor [X,Y ] whose value on finite G-sets is given by:

FinG 3 T 7→ [T+ ∧X,Y ]G.

When X = SV is a representation sphere associated to a virtual representation, V , then we define the V th
homotopy Mackey functor by

πVX := [SV , X].

Finally, we denote by Slicen the category of n-slices, by PnnX the n-slice of a G-spectrum X, and by
Mack(G,Ab) the category of Mackey functors valued in abelian groups.

Theorem ([HHR16], [Hil11]). Let G = C2, and let ρ denote the regular representation.

(a) The functor
πnρ−1 : Slice2n−1 −→ Mack(C2,Ab)

is an equivalence of categories.
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(b) The functor
πnρ : Slice2n −→ Mack(C2,Ab)

is fully faithful. The essential image consists of those Mackey functors M such that the restriction map

res : M(∗) −→M(C2)

is injective.

(c) The slices of a G-spectrum X are determined by the formulae:

πnρ−1P
2n−1
2n−1X = πnρ−1X.

πnρP
2n
2nX =

πnρX

ker(res)
.

One might hope that, in general, one may compute n-slices directly in terms of a single RO(G)-graded
homotopy Mackey functor. Unfortunately, n-slices need not be RO(G)-graded suspensions of Eilenberg-
MacLane spectra in general (Counterexample 3.12). Instead, we will need to probe G-spectra by objects
more general than representation spheres. This brings us to the key definition of the paper.

Definition. An isotropic slice n-sphere is a compact G-spectrum W with the property that, for every
subgroup H ⊆ G, the geometric fixed point spectrum WΦH is equivalent to a nonzero, finite wedge of spheres
of dimension bn/|H|c.

Remark. The appearance of the floor function here is inspired by the theorem of [HY17] characterizing the
slice filtration in terms of connectivity conditions on geometric fixed points. We will review that theorem
below in §0 and generalize it in §1.3.

Example. For any group G, Snρ is an isotropic slice n|G|-sphere and Snρ−1 is an isotropic slice (n|G| − 1)-
sphere.

Example. For any group G, the cofiber of the collapse map G+ → S0 is a slice 1-sphere. It is not equivalent
to a representation sphere or an induced representation sphere unless |G| = 2.

Next, we will need a way to state a generalization of the injectivity condition in part (b) above.

Definition. A subgroup H ⊆ G is called an n-jump if the inequality⌊
n+ 1

|H|

⌋
>

⌊
n

|H|

⌋
holds. We denote by Jumpn the set of conjugacy classes of n-jumps.

It is not so obvious that isotropic slice n-spheres exist for arbitrary G and n, but indeed they do (Propo-
sition 2.12).

Finally, we remark that, for any G-spectrum X, the Mackey functor

End(X) := [X,X]

admits the canonical structure of a Green functor (Definition 2.40) under composition. Moreover, given an-
other G-spectrum Y , the Mackey functor [X,Y ] is naturally a right module over End(X) via precomposition.

Now we can state a version of our first main result (Theorem 2.35).

Theorem. Let W be an isotropic slice n-sphere. Define a G-set

T jump :=
∐

[H]∈Jumpn

G/H.
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(a) The functor
[W,−] : Slicen −→ RModEnd(W )

is fully faithful. The essential image consists of those End(W )-modules M with the property that, for
every G-set T , the restriction map associated to the projection T jump × T → T ,

M(T ) −→M(T jump × T )

is injective.

(b) Let
Linj : RModEnd(W ) −→ RModEnd(W )

denote the localization functor which enforces the injectivity constraint in (a). Then the n-slice of a
G-spectrum X is determined by the formula

[W,PnnX] = Linj [W,X].

This result is enough for many applications. For example, it is straightforward to deduce from it the
previous known results on categories of slices (see §3). Nevertheless, the results proved in the body of the
paper are stronger in several respects:

• Using a construction of MacPherson-Vilonen and some special features of the Green functor End(W ),
we provide a simpler description (Theorem 2.82) of the category RModEnd(W ) which cuts down on the
computation necessary to determine an n-slice.

• We do not restrict ourselves to the standard slice filtration, but allow more general filtrations. Thus,
the user can adapt to more situations of interest.

• All of the results are proven in the setting of parameterized stable homotopy theory. One reason is to
allow for more flexible inductive techniques. It also means the results apply to other settings, such as
Goodwillie calculus [Gla16].

We now give a summary of each of the sections.

Section 0. We include this section for the equivariant homotopy theorist eager to find ready-to-use defini-
tions and statements without the need to unravel too much notation or contend with the level of generality
used in the body of the paper. In this section, we survey all of the results of the paper in a form specialized
to the case of the standard slice filtration on G-spectra. We also provide enough of a sketch of the proofs
that an expert may reconstruct the details. After reading this section, a reader versed in equivariant homo-
topy theory should be able to fruitfully skip to §3 and understand the examples presented therein without
contemplating the words ‘parameterized ∞-category’ or ‘inductive orbital category’.
Section 1. In this section we set up the formal backdrop for our work. We review and develop gluing
techniques, inductive techniques, and a sort of ‘six-functor’ formalism for manipulating homotopy theories
parameterized over certain bases which we call inductive orbital categories (Definition 1.10). We define a
notion of slice filtration in this context and prove some elementary results about these. As a quick application
of this formalism, we produce a characterization of slice filtrations which, as a corollary, provides a stream-
lined proof of the main result in [HY17]. The framework of parameterized homotopy theory we use is due to
Barwick-Dotto-Glasman-Nardin-Shah. They have obtained most of the results in this section independently,
using slightly different terminology. To the best of the author’s knowledge, however, the remaining sections,
including the main theorem and description of slices, is new.
Section 2. This section contains the bulk of the work. We begin by introducing slice spheres (Definition
2.3) which generalize (induced) representation spheres. The transition from the category of n-slices, Slicen,
to our final algebraic description takes several steps. First, using slice spheres, or more generally testing
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subcategories of slice spheres, as the collection of free algebras for a Lawvere theory, we prove that Slicen
is a localization of the category of models for this Lawvere theory (Theorem 2.29). After showing that
slice spheres exist in sufficient supply, we prove this using a ‘many-object’ variant of a classical theorem
dating back to Freyd and Gabriel. The key step is to establish that equivalences are detected by the testing
subcategory.

The next step moves from the Lawvere theory to a category of modules over a Green functor. This is
entirely algebraic, and the argument is essentielly a parameterized version of the aforementioned result of
Freyd-Gabriel. From here, we prove that Slicen is a localization of the category RModEnd(W ) where W is an
isotropic slice n-sphere (Definition 2.3, Theorem 2.35).

Next, we distill a special feature of the Green functor End(W ) which shows that its structure is strongly
controlled by the endomorphisms of its geometric fixed points End(WΦT ) for each orbit T . We call Green
functors that share this property geometrically split (Definition 2.48) and digress to prove a purely algebraic
result about the structure of modules over geometrically split Green functors. While this work is purely
algebraic, it is not trivial. For example, one must contend with the combinatorics of the Burnside category
(Proposition 2.64).

By definition, a slice n-sphere W has the property that WΦT is a finite wedge of spheres, so the work
ultimately reduces to understanding modules over the matrix rings Mn(Z). Of course, these rings are Morita
equivalent to Z. This observation leads us to formulate a description of Slicen that does not require com-
puting End(W ) or understanding its action [W,X]. Instead, one need only understand the homology of the

wedge of spheres WΦT as a module over the group Aut(T ) of automorphisms of the orbit T . In practice,
this is much easier. Our main general result identifies Slicen with a localization of the category of twisted
Mackey functors (Definition 2.73, Theorem 2.82).
Section 3. A general theory is no good without examples. We show that the machinery in the first two
sections can be made put to use in cases of interest. First, we show in §3.1 how to recover the known results
on slices of G-spectra to date, i.e. the cases of (n|G| − ε)-slices where ε = 0, 1, 2 ([HHR16; Ull12]). In §3.2
we carry out our theory in the case G = Cp. The categories of slices for Cp were previously determined
by [HY17] in a slightly different form, and we show how to recover their description from ours. Finally, in
§3.3 we move on to a new example. This is the first case where we see slices that are not RO(G)-graded
suspensions of Eilenberg-MacLane spectra, and so are not amenable to previous methods of attack.
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I would like to extend a special thanks to Saul Glasman and Mike Hill. Saul Glasman’s work is responsible

for my current understanding of what equivariant homotopy theory looks like, and the relationship between
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Hill has patiently fielded my questions about equivariant homotopy theory and the slice filtration for many
years now, and I learned most of the tricks of the trade from him.

I am also grateful to Clark Barwick and Denis Nardin for conversations related to this work, and to Peter
May for his comments on an earlier draft. Finally, as these results have their precursors in my thesis, I would
like to thank my advisor Paul Goerss for his support and wisdom.

Notations and conventions.

• If G is a group we denote by ρG (or just ρ, if G is understood) the real, regular representation of G.

• If X and Y are objects in a model category (or, more generally, a relative category) we will use
map(X,Y ) to denote the derived mapping space between X and Y .

• We will use [X,Y ] to denote the set of maps in a homotopy category, with no further decoration if
it is clear where these objects live. So, for example, if X and Y are G-spectra, then [X,Y ] is the set
of maps between X and Y in the homotopy category of G-spectra, not the set of maps between the
underlying spectra in the homotopy category of spectra.

• We say that a spectrum X is n-connective if πk(X) = 0 for all k < n.
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• We say a spectrum X is n-truncated if πk(X) = 0 for all k > n.

• Since W is being used a lot, we will write Aut(G/H) for the automorphisms of the G-set G/H (i.e.
the Weyl group) instead of WH or WGH.

• If C and K are ∞-categories, we denote by PshC(K) the ∞-category of C-valued presheaves. If C

happens to equivalent to a 1-category, for example if C = Set is the category of sets, then there is a
natural equivalence PshC(K) ∼= PshC(hK) where hK denotes the homotopy category of K.

0 An overview in the equivariant case

This section contains a survey of our main results and definitions in the case of G-spectra. We assume the
reader is familiar with the basic definitions of equivariant stable homotopy theory. A nice overview can be
found in §1-§3 of [HHR16]. We begin by reviewing the definition of the slice filtration.

Definition 0.1. • A G-spectrum X is slice n-connective if it belongs to the full subcategory of SpG

generated under extensions and homotopy colimits by the objects

G/H+ ∧ SkρH−ε, ε = 0, 1 and k|H| − ε ≥ n.

We denote the homotopy theory of slice n-connective G-spectra by SpG≥n. We will often write X ≥ n
to indicate that X is slice n-connective.

• A G-spectrum Y is slice n-truncated if, for every X ≥ n+1, the mapping space map(X,Y ) is weakly
contractible. We denote the homotopy theory of slice n-truncated G-spectra by SpG≤n and indicate that
Y is slice n-truncated by writing Y ≤ n.

• We denote by Pn : SpG → SpG≥n a right adjoint to the inclusion, and by Pn : SpG → SpG≤n a left adjoint
to the inclusion.

• We say that A ∈ SpG is an n-slice if A ≤ n and A ≥ n. We denote the category of n-slices by Slicen.

Remark 0.2. If A and B are n-slices, then the mapping space map(A,B) is discrete, which justifies the use
of the word category of n-slices.

Remark 0.3. If G is trivial, then X ≥ n (resp. Y ≤ n) if and only if X is n-connective (resp. n-truncated)
in the classical sense. Hence the slice filtration is the usual Postnikov filtration.

The slice filtration for non-trivial groups is not the filtration associated to a t-structure. Specifically, we
have an inclusion

Σ
(
SpG≥n

)
⊆ SpG≥n+1

which is usually strict. Nevertheless, each subcategory SpG≥n is the collection of connective objects for a

t-structure on SpG. We denote the heart of this t-structure by ♥n. The following is elementary from the
inclusion above:

Lemma 0.4. There is an inclusion Slicen −→ ♥n which exhibits the source as an accessible localization of
the target, i.e. it admits an accessible left adjoint.

While the heart of a t-structure is always an abelian category, the same is not true in general for Slicen.
Our results on Slicen are obtained by first identifying ♥n with a more algebraic category, and then identifying
the localization that yields Slicen.

When the slice filtration was first introduced, one had to exhibit slice n-connectivity by an explicit
construction. Recently, a much simpler characterization of slice connectivity was given by Hill-Yarnall
[HY17].
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Theorem 0.5 (Hill-Yarnall). Let X be a G-spectrum. Then X ≥ n if and only if, for all H ⊆ G, the
spectrum XΦH is (bn/|H|c)-connective.

This motivates the following definition.

Definition 0.6. Let W be a compact G-spectrum.

• W is a slice sphere if, for every H ⊆ G, the spectrum WΦH is a finite (possibly trivial) wedge of
spheres.

• W is a slice n-sphere if, for every H ⊆ G, the spectrum WΦH is a finite (possibly trivial) wedge of
spheres of dimension bn/|H|c.

• W is an isotropic slice n-sphere if it is a slice n-sphere and WΦH is nonzero for each H ⊆ G.

To motivate the next steps, let us imagine that we are trying to identify the heart of SpG with its standard
t-structure, i.e. the t-structure for which X is 0-connective if the (genuine) fixed points XH are 0-connective
for all H ⊆ G. So we would like to understand G-spectra A such that A is 0-connective and 0-truncated.

Now, by definition, a map X → Y is an equivalence if and only if XH → Y H is an equivalence for
all H ⊆ G. We know that S0 detects equivalences between 0-connective and 0-truncated spectra. The
restriction-induction adjunction implies that equivalences between 0-connective, 0-truncated G-spectra are
detected by the subcategory {G/H+∧S0}H⊆G, and hence also by the subcategory {T+∧S0} where T ranges
over all finite G-sets.

Thus, the restricted Yoneda embedding:

π0 :
(
SpG

)♥
−→ Psh×Set({T+ ∧ S0})

is conservative, where Psh×Set denotes the category of product-preserving presheaves of sets. Using the fact
that [T+ ∧ S0, Y ] = 0 when Y is 1-connective, and in particular that

[T+ ∧ S0, Y ] = [T+ ∧ S0, τ≤0Y ],

one shows that π0 preserves cokernels. The Barr-Beck theorem implies π0 is monadic, and the same equality
above applied to Y = G/H+ ∧ S0, shows that the monad in question is the identity functor. We conclude
that the assignment A 7→ {[T+ ∧ S0, A]} yields an equivalence of categories:(

SpG
)♥ ∼= Psh×Set({T+ ∧ S0}).

This is already a sort of algebraic description: categories of product-preserving presheaves are known as
models for Lawvere theories and behave like categories of algebraic objects. Our understanding of a Lawvere
theory is only as good as our understanding of the (maps between) free objects, which in this case are the
objects {T+ ∧ S0}.

Theorem 0.7 (Segal, tom Dieck, Lewis-May-Steinberger). The category {T+ ∧ S0} is equivalent to the
Burnside category of finite G-sets. Hence, from the definition of Mackey functors,

Psh×Set({T+ ∧ S0}) ∼= Mack(G;Ab).

Our first algebraic description of the category of n-slices follows this outline closely. First, we require a
replacement for the category {T+ ∧ S0} of test objects.

Definition 0.8. We say that a subcategory Testn of the category of slice n-spheres is a testing subcategory
if

(i) For all finite G-sets T and W ∈ Testn, the G-spectrum T+ ∧W is also in Testn.;
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(ii) For every H ⊆ G, there is some W ∈ Testn such that WΦH is nonzero.

It is not obvious from the definition that testing subcategories exist. To show that they do, it suffices to
produce a single isotropic slice n-sphere.

Proposition 0.9. (Proposition 2.12) For any G and n, there exists an isotropic slice n-sphere.

Proof sketch. Begin with the sphere Sk where k = bn/|G|c and then inductively attach induced spheres to
bump up the dimension of each geometric fixed point spectrum without messing up the work you’ve already
done. In order to ensure that the geometric fixed points remain wedges of spheres, one must choose attaching
maps which split upon taking geometric fixed points. The simplest way to achieve this in general is to use
the counit G/H+ ∧X → X.

Now we may define an analog of the functor π0:

Definition 0.10. If Testn is a testing subcategory, define the category of model n-slices by

Modeln := Psh×Set(Testn).

Let π̂n denote the restricted Yoneda embedding:

π̂n : hSpG −→ Modeln.

Theorem 0.11 (Theorem 2.29). (i) The restriction of π̂n to ♥n yields an equivalence of categories

π̂n : ♥n
∼=−→ Modeln.

(ii) Under this equivalence, the category Slicen corresponds to the full subcategory of Modeln spanned by
presheaves F with the property that, for all W ∈ Testn, the projection T jump+ ∧W → W produces an
injective map

F (W ) −→ F (T jump+ ∧W ).

Proof sketch. Part (i) is established following the same outline as in the computation of the heart of the
standard t-structure above. The main step is to prove that the functor is conservative, and this is done by
standard induction arguments using isotropy separation.

For part (ii), let Linj denote the monad on Modeln which enforces the injectivity constraint in the
statement. Then the main computation is that, for any G-spectrum X, Linj π̂nX ∼= π̂nP

nX. The key yet
elementary fact used here is the following: while it is not true that π̂n vanishes on all slice (n+1)-connective
spectra, it is nevertheless the case that π̂nΣX = 0 when X ≥ n. (Proposition ). This allows us to control
the fact that π̂n is not quite exact on Slicen.

This brings the category of n-slices into the realm of algebra. However, as before, our understanding of
Modeln is only as good as our understanding of the testing subcategory. For certain examples, it is possible
to analyze this category directly.

Example 0.12. If n = k|G|, then Skρ generates a testing subcategory equivalent to the category {T+∧S0},
since smashing with Skρ is invertible. Thus,

♥k|G| ∼= Mack(G;Ab)

and, unwinding the definitions, we recover the equivalence [HHR16; Hil11]:

Slicek|G| ∼= {Mackey functors with injective restriction maps}.
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In general, however, it is convenient to have an alternative description. We observe that we already
understand {T+ ∧S0} and attempt to understand Testn in terms of what we know, so as not to reinvent the
wheel. We restrict to the case of testing subcategories generated by a single isotropic slice n-sphere, W , for
ease.

In this case, π̂nX is essentially the data of:

• the Mackey functor [W,X], and

• its interaction with maps T+ ∧W → U+ ∧W for G-sets T,U .

The name for such a thing is a module over a Green functor. So we show, very formally, that

Theorem 0.13 (Theorem 2.35). (i) The functor [W,−] induces an equivalence of categories

[W,−] : ♥n
∼=−→ RModEnd(W ).

(ii) Under this equivalence, the category Slicen corresponds to the full subcategory of RModEnd(W ) spanned
by those modules M such that the restriction map

M(T ) −→M(T jump × T )

is injective for all finite G-sets T .

Proof sketch. In the theory of ordinary abelian categories, one can recognize categories of modules as those
abelian categories that admit a compact, projective generator. A similar result is true in the context of
G-categories to recognize G-categories of modules over a Green functor, and the claim follows.

Again, for some applications, this result suffices.

Example 0.14. If n = k|G|, we get yet another proof that Slicek|G| is the category of Mackey functors with

injective restriction maps. Indeed, since Skρ is invertible,

End(Skρ) ∼= End(S0) ∼= A.

But the Burnside Mackey functor A is the unit in the category of Mackey functors, so a right A-module is
just a Mackey functor.

Remark 0.15. This argument applies more generally whenever one can find an invertible isotropic slice
n-sphere. In this case, the category of n-slices will be equivalent, via the corresponding (Pic-graded) homo-
topy Mackey functor, to the category of Mackey functors satisfying certain injectivity conditions on their
restriction maps.

Now we come to the final simplification which will ultimately remove the need to compute the action
of End(W ) entirely. A (right) module M over a Green functor R consists of, in particular, a collection of
R(G/H)-modules, M(G/H), for each H ⊆ G. However, much of the description of this action is redundant
due to the Frobenius relation dictating the action of a transfer:

m · tr(r) = tr(res(m) · r).

In general, we may not be able to untangle the transferred ring elements from those not in the image of the
transfer, but occasionally we are lucky. We give a name to this situation.

If R is a Green functor then, for each H ⊆ G we can form the quotient:

R(G/H) −→ R(G/H)

〈trHKR(G/K)|K subconjugate to H〉
=: RΦH .
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Definition 0.16. We say that R is geometrically split if the map R(G/H)→ RΦH admits an Aut(G/H)-
equivariant ring section.

If we choose splittings for a geometrically split Mackey functor R, then a right R-module gives rise to a
sequence of RΦH -modules M(G/H) with a compatible action of Aut(G/H). The precise structure remaining
is explained in Definition 2.51 below. We denote the resulting category by RModRΦ .

We then have the following piece of algebra:

Theorem 0.17 (Theorem 2.53). With notation as above, the forgetful functor

RModR −→ RModRΦ

is an equivalence of categories.

Proof sketch. We prove this using the main theorem of [FP04] on comparisons of abelian category recolle-
ments. The key step is showing that RmodR admits a pre-hereditary recollement, in the language of [FP04],
and proving this fact requires actually digging into the structure of the Burnside category. (Proposition
2.64).

To apply this to our situation we need to identify End(W )ΦH .

Proposition 0.18. There is an isotropic slice n-sphere W with the property that, for every H ⊆ G, the
following conditions are satisfied:

(a) The natural map
[W,W ]H −→ End(WΦH)

admits an Aut(G/H)-equivariant ring section.

(b) The natural map
End(W )ΦH −→ End(WΦH)

is an isomorphism.

(c) Let JH = πbn/|H|cW
ΦH as an Aut(G/H)-module and left End(WΦH)-module. Then the map

End(WΦH) −→ EndZ(JH)

is an isomorphism of Aut(G/H)-modules.

Proof sketch. For part (ii), we use isotropy separation and some connectivity arguments. Part (iii) is ele-
mentary because WΦH is a finite wedge of spheres of dimension bn/|H|c. Both of these statements are true
for every isotropic slice n-sphere. Part (i) relies on an inductive argument applied to a specific construction
of an isotropic slice n-sphere.

Remark 0.19. We believe part (i) of this proposition holds for every isotropic slice n-sphere, but we have
not tried to prove this.

By definition, we know that WΦH is a finite, nonzero wedge of spheres. In particular, JH is a free abelian
group. Morita theory, slightly generalized to account for the action of Aut(G/H), then yields an equivalence

RModEnd(WΦH)-Aut(G/H)
∼= ModAut(G/H)

Explicitly the equivalence is given by the functors:

RModEnd(WΦH)-Aut(G/H) 3 N 7→ N ⊗End(WΦH) JH

ModAut(G/H) 3M 7→M ⊗ J∗H
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where tensor products are given the diagonal action and J∗H := HomZ(JH ,Z).
Combining this equivalence with the definition of RModRΦ we get an equivalent category whose objects

consist of the data {M(G/H)} of a collection of Aut(G/H)-modules together with maps between them after
tensoring with iterations of the JK and their duals, satisfying various properties. We call this category
the category of twisted Mackey functors, denoted TwMackn, and the precise definition is contained in
Definition 2.73 below.

In order to apply this algebra to homotopy theory, it will be helpful to do some unraveling. If we choose
a (non-equivariant) Z-summand of JH , then this produces an idempotent in End(JH). We can carry this
across a chosen splitting to an idempotent in [W,W ]H , and from there split off an H-equivariant summand:

W(G/H) →W →W(G/H).

If X is a G-spectrum, then [W(G/H), X]H still has an Aut(G/H)-action coming from the one on (the restric-
tion of) X. These modules are essentially the objects M(G/H) described above.1

If K is subconjugate to H, then composing the inclusions and retractions gives K-equivariant maps:

W(G/K) →W →W(G/H),

W(G/H) →W →W(G/K).

Using these, we get analogues of restriction and transfer maps:

[W(G/H), X]H
res−→ [W(G/H), X]K −→ [W(G/K), X]K ,

[W(G/K), X]K −→ [W(G/H), X]K
tr−→ [W(G/H), X]H .

The relations these maps satisfy satisfy are somewhat more involved than their Mackey functor cousins,
but they are about as manageable in practice. The main point of the algebra above is that these maps are
the only data necessary to describe the associated End(W )-module, and hence determine the n-slice of X.

We summarize this discussion in the following paraphrased theorem:

Theorem 0.20 (Theorem 2.82). (i) The procedure above yields an equivalence of categories:

♥n ∼= TwMackn.

(ii) Under this equivalence, the category Slicen corresponds to the full subcategory of TwMackn spanned by
those objects {M(G/H)} satisfying an explicit injectivity constraint on their restriction maps.

The upshot is the following procedure for computing the n-slice of a G-spectrum X:

Step 1. Find or construct an isotropic slice n-sphere, W .

Step 2. Compute the Aut(G/H) action on each WΦH to determine the modules JH .

Step 3. Choose a summand of JH and determine the corresponding H-equivariant summand W(G/H) of W .

Step 4. Compute the groups [W(G/H), X]H and the ‘twisted’ restrictions and transfers between them.

Step 5. Make the requisite (direct sum of) restriction maps injective.

At this point the reader should be prepared for the examples in §3.

1 One may have to alter the action to account for how the action on JH intertwines the chosen idempotent. In our examples,
we will usually have W(G/H) =↓H W , in which case we take the usual action on homotopy groups, or we’ll have ↓H W = WΦH ,
in which case we may indeed take the trivial action on the summand.
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1 Filtrations on stratified categories

A common strategy for proving statements about SpG is to induct over the poset of subgroups using geometric
fixed points, and eventually reduce to a statement about non-equivariant spectra. We can axiomatize the
structure necessary to make arguments like this and arrive at the notion of a stratified homotopy theory,
which we review in §1.1.

In the situation of SpG we actually have two methods for reducing to non-equivariant considerations:
geometric fixed points and genuine fixed points. Again, we can distill the requisite properties into a definition,
that of a homotopy theory of Mackey functors on an inductive orbital category (Definitions 1.27 and 1.10).
We discuss this in §1.2.

In §1.3, we define slice filtrations (Definition 1.46) associated to dimension functions for homotopy theories
of Mackey functors and explore some of their elementary properties. We give a recognition theorem (Theorem
1.57) for comparing a given filtration to the slice filtration associated to a dimension function. As a corollary,
we obtain a streamlined proof of the theorem of Hill-Yarnall characterizing the original slice filtration in terms
of geometric fixed points (Corollary 1.58).

We pause now to collect some justifications for our chosen level of generality:

• When making inductive arguments about G-spectra, one is often led to consider homotopy theories
associated to families of subgroups of G. These homotopy theories are usually not equivalent to SpH

for any group H.

• There are several homotopy theories of Mackey functors that do not fall under the direct purview of
equivariant homotopy theory, e.g. the homotopy theory of cyclotomic spectra [BG16b; BM13] and
of n-excisive functors [Gla16]. Since it does not require extra work, it seems prudent to develop the
theory in a way that applies to these examples.

• Even when restricting to SpG, it is convenient to consider filtrations other than the standard slice
filtration. For example, the regular slice filtration was used to great effect by Ullman [Ull12] in his
thesis. We allow for yet further variants, so that one may choose a filtration suited to the application
at hand.

Finally, as we mentioned in the introduction, most of the results in §1.3 were obtained independently by
Barwick-Dotto-Glasman-Nardin-Shah. We will try to indicate the major overlaps where they occur.

1.1 Review of recollements and stratifications

There are many situations where we study objects of a homotopy theory C by breaking it up into two pieces.
Here are some examples.

• Let σ denote the sign representation of C2. If X is a C2-spectrum, then X sits in a cofiber sequence

S(∞σ)+ ∧X −→ X −→ S∞σ ∧X

called the isotropy separation sequence. The first term has the property that it is built out free C2-
spectra, in the sense that it has a filteration with associated graded a wedge of copies of suspensions of
C2+ ∧X. The last term has the property that its underlying spectrum vanishes, so all its information
is contained in its fixed points.

Alternatively, we can recover X from the homotopy Cartesian square:

X //

��

S∞σ ∧X

��
F (S(∞σ)+, X) // S∞σ ∧ F (S(∞σ)+, X)

12



which is sometimes called the Tate fracture square. The bottom piece of this square can be studied
entirely in terms of the local system on BC2 which underlies X, and the left vertical map is a sort of
completion while the right horizontal map is a sort of localization.

• Let X be a space, j : U ↪→ X an open embedding with closed complement i : Y ↪→ X, and denote
by Shv(X;Sp) the homotopy theory of sheaves of spectra on X. Then the restriction functor j∗ :
Shv(X;Sp)→ Shv(U ;Sp) admits a left adjoint j! (extension by zero) and every sheaf decomposes into
a natural cofiber sequence:

j!j
∗F −→ F −→ i∗i

∗F.

The first term is supported on U , and the last term is set-theoretically supported on Y (in the sense
that it is annhilated by j∗).

Alternatively, we can recover F from the homotopy Cartesian square:

F //

��

i∗i
∗F

��
j∗j
∗F // i∗i∗j∗j∗F

The right vertical map provides gluing data and is a generalization of a clutching function from the
classical study of vector bundles.

• If M is a complex of abelian groups, then there is a cofiber sequence in the derived category D(Z):

ΓpM −→M −→M

[
1

p

]
where ΓpM has the property that every element of Hk(ΓpM) is annihilated by a power of p, and
M [1/p] has the property that p acts invertibly.

Alternatively, we can recover M from the arithmetic fracture square:

M //

��

M
[

1
p

]
��

L̂M // (L̂M)
[

1
p

]
Here, L̂M denotes the derived functor of p-completion, which plays a prominent role in K(1)-local
homotopy theory.

We collect some common features of these examples into a definition. It is the evident adaptation of the
Grothendieck school’s notion of a recollement to our setting.

Definition 1.1. ([Lur16, A.8.1]) Let C be an ∞-category which admits finite limits, and let C0,C1 ⊆ C

denote full subcategories. We say that C is a recollement of C0 and C1 if the following conditions are
satisfied:

(a) The subcategories C0 and C1 are closed under equivalence.

(b) The inclusion functors Ci ↪→ C admit left adjoints Li.

(c) The functors L0 and L1 are left exact.

(d) The functor L1 carries every object of C0 to a final object of C1.
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(e) The functors L0 and L1 are jointly conservative.

We will need a slight generalization of this definition where C is glued together from more than just two
subcategories. Recall that an interval in a poset P is a subset I ⊆ P such that if x, y ∈ I and x < z < y,
then z ∈ I.

Definition 1.2 ([Gla15]). Let C be an ∞-category which admits finite limits, and let P be a poset. Then a
P-stratification of C is a map of posets

S : {intervals in P} −→ {reflective subcategories of C}

such that:

• S(P) = C,

• S(∅) ⊆ C is the full subcategory of final objects,

• whenever an interval I ⊆ P is decomposed as I = I0q I1 in such a way that no element of I0 is strictly
greater than any element of I1, then S(I) is a recollement of S(I0) and S(I1).

These definitions are meant to generalize the fracture squares that appeared in our motivating examples.
In order to get the entire package, cofiber sequences and all, we need to move to a stable setting. In this
case, there is yet another characterization of stratifications.

Theorem 1.3. Let C be a stable ∞-category and let

S0 : {downward closed intervals in P} −→ {full subcategories of C closed under equivalences}

be a map of posets. The following conditions are equivalent:

(i) Each S0(I) is reflective and coreflective; i.e. the inclusion admits both left and right adjoints, and
S0(P) = C.

(ii) The function S0 extends to a P-stratification of C.

If either of these conditions are satisfied then, when I is downward closed and J is its upwardly closed
complement, we may identify S(J) with the full subcategory of C spanned by those objects Y such that the
mapping space mapC(X,Y ) is contractible for each X ∈ S(I).

Proof. The proof in Barwick-Glasman [BG16a, Lemma 3] works just as well in the case of a poset.

When P = ∆1 it will be useful to set some notation down for the morass of adjoints in play. The reader
is encouraged to keep in mind the example where X is a space, j : U ↪→ X is an open embedding, and
i : Y = X−U ↪→ X is the closed complement. Then C = Shv(X;Sp), C0 = Shv(Y ;Sp), and C1 = Shv(U ;Sp).

Remark 1.4. In the case where C is stable and a recollement of C0 and C1, we have the following diagram
where each arrow is left adjoint to the arrow below it:

C1

j! //

j∗ //
C

j∗oo

i∗ //

i! //
C0

i∗oo

With this notation, C is the oplax limit [GHN15, 2.8] of the exact functor i∗j∗ : C1 → C0. The ∞-category
C1 is now embedded into C in two different ways as a full subcategory: first as a reflective subcategory via
j∗, as in the definition of a recollement, but also as a coreflective subcategory via j!. The essential images are
characterized as the two different orthogonal complements of C0. We will denote the image of j∗ by C∧1 and
the image of j! by C∨1 . The notation is supposed to suggest that the reflective subcategory contains complete
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objects while the coreflective subcategory contains nilpotent objects. An explicit equivalence between these
categories is obtained by the two inverse functors:

j∗j
∗ : C∨1 −→ C∧1

j!j
∗ : C∧1 −→ C∨1

See Barwick-Glasman [BG16a] for details.

Remark 1.5. A stratification of C gives rise to a lax functor Pop → Cat∞ recording the atomic localizations,
and C can be recovered as the oplax limit of this lax diagram. In fact, this process yields an equivalence
between the homotopy theory of stratified∞-categories and the homotopy theory of lax functors Pop → Cat∞
(i.e. locally cocartesian fibrations over Pop). Making this precise would take us too far afield, but for a version
of this reconstruction theorem without the language of lax functors see [Gla15, 3.18]. The idea is that a lax
functor out of Pop is the same data as an ordinary functor out of the relaxation of Pop, which is modeled on
the poset of nonempty subsets of Pop.

1.2 Mackey functors

In the homotopy theory of G-spectra there are two a priori unrelated inductive approaches to understanding
a G-spectrum X. On the one hand, we can reduce questions about X to questions about its geometric fixed
points, XΦH . This is the point of view that motivated the previous section. On the other hand, we can
reduce questions about X to questions about its genuine fixed points, XH . At a key point below (namely
in our construction of isotropic slice spheres) we will utilize the interplay between these two approaches.

First, however, we develop a general setting where these two sorts of inductive tools- genuine and geo-
metric fixed points- can both be defined.

Remark 1.6. Many of the definitions and examples in the beginning of this section are pulled directly from
Glasman [Gla15], with the notable exception of Definition 1.10.

Definition 1.7. An epiorbital category is an essentially finite category O satisfying the following condi-
tions:

• Every morphism in O is an epimorphism.

• O admits pushouts and coequalizers.

Define a relation on the set of isomorphism classes of objects in O by [X] ≥ [Y ] if Hom(X,Y ) is nonempty.
It is easy to check that this forms a poset, which we denote PO.

Given an essentially small ∞-category C, we will denote by FinC the ∞-category obtained by freely
adjoining finite coproducts. An explicit model can be obtained as the full subcategory of Psh(C) spanned by
finite coproducts of representable functors. We remark that, in the case when C is an ordinary category, it
doesn’t matter if we use the ∞-category of presheaves of spaces, or the ordinary category of presheaves of
sets in this construction.

Definition 1.8. An orbital ∞-category is an essentially small ∞-category O such that FinO admits
pullbacks. We will often call elements of O orbits.

Proposition 1.9. ([Gla15, 2.14]) Every epiorbital category is orbital.

Unfortunately, neither of these two levels of generality is quite right for what we need. We will prove most
of our theorems by induction on the size of the poset of an epiorbital category, but unfortunately sometimes
the inductive procedure takes us outside the realm of epiorbital categories. We will take a middle ground,
and propose the following.
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Definition 1.10. An inductive orbital category is an essentially finite, orbital, (discrete) category O

with the property that every endomorphism is an isomorphism. Notice that the isomorphism classes of
objects again form a poset, PO.

Warning 1.11. In this definition we use ‘essentially finite’ in the sense of ordinary category theory. Our
inductive orbital categories will generally not be finite as ∞-categories, i.e. they will not usually have only
finitely many non-degenerate simplices.

Remark 1.12. In fact, the condition that the isomorphism classes of objects form a poset under the relation

[X] ≥ [Y ] ⇐⇒ Hom(X,Y ) 6= ∅

is equivalent to the condition that every endomorphism is an isomorphism. Both of these, in turn, are
equivalent to the condition that the category admits a conservative map to a poset. Categories in which
every endomorphism is an isomorphism are sometimes called EI-categories in the literature.

Remark 1.13. Barwick-Dotto-Glasman-Nardin-Shah define and study the more general but related notion
of a perfect orbital ∞-category which is likely the correct setting for the sorts of inductive arguments used
below. All of our results should hold in this generality with minimal change.

We choose this definition because of the following closure properties.

Lemma 1.14. Let O be an inductive orbital category.

(i) If I ⊆ PO is an interval, then the corresponding full subcategory OI ⊆ O is an inductive orbital category.

(ii) It T ∈ FinO, then O/T is an inductive orbital category.

Proof. In both cases, it is clear that every endomorphism is still an isomorphism, and that the categories
are still discrete, so we just need to check that these categories are orbital. For (ii) this is immediate since
FinO/T

∼= (FinO)/T . So we are left with (i). To that end, consider a pullback square in FinO

U ′ //

��

U

��
V ′ // V

where U, V, V ′ ∈ OI . We can write U ′ as a finite coproduct U ′ =
∐
α∈A Sα where each Sα ∈ O. Define

U ′′ ∈ OI to be the coproduct over the subset B ⊆ A of β with Sβ ∈ OI . We claim that the diagram

U ′′ //

��

U

��
V ′ // V

is a pullback square in OI . Indeed, since each Si maps to V ′ ∈ OI , we know that [Si] ≥ p for some p ∈ I.
Since I is an interval, the only way that [Si] could fail to be in I is if every element of I is not greater than
[Si]. So, for every W ∈ FinOI , Hom(W,Si) is empty when Si /∈ OI . The claim now follows from the string
of isomorphisms, for W ∈ OI ,

Hom(W,U ′) = Hom(W,
∐
α

Sα) =
∐
α∈A

Hom(W,Sα) =
∐
β∈B

Hom(W,Sβ) = Hom(W,U ′′).

We now recall the examples of interest.
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Example 1.15. If G is a finite group, then the category OG of non-empty transitive G-sets, i.e. orbits, is an
epiorbital category. The partial order on isomorphism classes is opposite to the poset of conjugacy classes
of subgroups. That is:

[G/H] ≥ [G/K] ⇐⇒ H is subconjugate to K.

More generally, any subgroup H ⊆ G yields a full subcategory OG/H ⊆ OG of those orbits with stabilizers
that contain H up to conjugacy (i.e. the full subcategory corresponding to the downward closed interval
{[T ] ≤ [G/H]}). This is also an epiorbital category, and when N is normal the two possible interpretations
of the symbol OG/N agree.

Example 1.16. Crucially, if F is a family of subgroups of G closed under conjugation and passage to
subgroups, then the full subcategory OF ⊆ OG of transitive G-sets with stabilizers in F is an inductive
orbital category. It is not an epiorbital category in general.

Example 1.17. The category Surj≤n of finite sets of cardinality at most n and surjective maps between
them is an epiorbital category.

Example 1.18. If G is an ∞-groupoid, then it is an orbital ∞-category. Unfortunately, even when G is
finite and discrete, it is not epiorbital because coequalizers do not exist except in trivial cases. In this case,
however, it is an inductive orbital category.

Recall that the twisted arrow category TwArr(C) of an∞-category C is a specific model of a left fibration

TwArr(C) −→ Cop × C

classifying the functor
mapC : Cop × C→ Spaces

Warning 1.19. Different authors have different conventions for the twisted arrow category. For example,
ours agrees with Mac Lane, and with Barwick et. al., but is dual to the fibration used by Lurie and by
Gepner-Haugseng-Nikolaus.

Example 1.20. When C = ∆n, the twisted arrow category is the poset of intervals in [n], ordered by
inclusion.

Definition 1.21 (Barwick [Bar14]). For any orbital∞-category, O, define a simplicial set Aeff(O) by declar-
ing the n-simplices to be the set of functors F : TwArr(∆n)op → FinO such that, for all 0 ≤ i ≤ j ≤ k ≤ ` ≤ n,
the square

Fi` //

��

Fik

��
Fj` // Fjk

is a pullback. We call Aeff(O) the effective Burnside ∞-category of O.

Remark 1.22. Even though O is a discrete category, Aeff(O) will not be discrete in general. Instead, in
this case Aeff(O) will be a (2, 1)-category. The homotopy category hAeff(O) has a more familiar description:
the objects are objects of FinO, the morphisms are isomorphism classes of spans, and composition is given
by pullback.

We will need a condition on the targets of our Mackey functors.

Definition 1.23. Let C be an ∞-category which admits finite products and finite coproducts. Suppose
moreover that C is pointed, i.e. it admits an object 0 which is both initial and final.
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• We say that C is semi-additive if for all X,Y ∈ C, the canonical map(
idX 0
0 idY

)
: X q Y −→ X × Y

is an equivalence. In this case we denote finite coproducts and products by X ⊕ Y and refer to them
as direct sums.

• We say that C is additive if it is semi-additive and each of the resulting commutative monoids [X,Y ]
have inverses.

Example 1.24. Any ordinary abelian category, viewed as an ∞-category, is additive.

Example 1.25. Any stable ∞-category is additive.

Example 1.26. By Barwick [Bar14, 4.3], the ∞-category Aeff(O) is semi-additive.

Definition 1.27. [Bar14] If C is a semi-additive ∞-category and O is an orbital ∞-category, we denote by
Mack(O;C) the ∞-category of functors Aeff(O)→ C which preserve finite direct sums.

When C = Sp we will denote this ∞-category more simply by SpO.

Example 1.28. If G is a connected groupoid, then Mack(G;C) is canonically equivalent to Fun(G,C) [Gla15,
2.27].

Example 1.29. For a finite group, G, the∞-category Mack(OG;Sp) of spectral Mackey functors is equivalent
to the ∞-category underlying the model category of orthogonal G-spectra (cf. Nardin or Guilloiu-May
[Nar16; GM11]). This justifies the notation SpG.

Example 1.30. The ∞-category Mack(Surj≤n;C) is equivalent to the ∞-category of n-excisive functors
from Sp to C. This is proven by Glasman in [Gla16], and in unpublished work of Dwyer-Rezk.

Let I ⊆ PO denote a downward closed interval, and denote by Mack(O;C)ΦI the full subcategory of
Mack(O;C) spanned by those functors which take each element in the complement of I to a zero object in C.

Theorem 1.31 ([Gla15]). If O is an inductive orbital category, and C is stable, then the stable ∞-category
Mack(O;C) admits a canonical PO-stratification which, for downward closed intervals, takes the form:

S0(I) := Mack(O;C)ΦI .

Proof. Either observe that the proof given by Glasman [Gla15] for epiorbital categories works verbatim for
inductive orbital categories, or else apply Proposition 3.13 of [Gla15] to each downward closed I separately
to deduce that S0(I) is the reflective and coreflective piece of a recollement.

Warning 1.32. This theorem is false if C is only assumed to be additive. The issue is that the left adjoint
to the inclusion Mack(O;C)ΦI ⊆ Mack(O;C) is not exact in general. If C is abelian, then a related fact is true
using the theory of stratifications of abelian categories (which is not the same as the notion of stratification
we are using.) Unfortunately, recollements in the theory of abelian categories are less well-behaved than
their ∞-categorical counterparts: it is not possible, in general, to recover a stratified abelian category from
its atomic localizations, even in the case of a recollement.

We will identify the strata of this stratification momentarily. But first we take some time to introduce a
lot of notation.

Notation 1.33. We now collect together our conventions on the various functors that show up in the theory
of Mackey functors. We wouldn’t make such a fuss, but we will use essentially all of these at some point.

Below, O will denote an inductive orbital category unless otherwise specified. All Mackey functors will
take values in a fixed presentable, semi-additive ∞-category C which we suppress (temporarily breaking our
convention) to avoid yet more clutter.
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(a) If F ⊆ PO is upward closed, then let jF : OF ↪→ O denote the inclusion of the full subcategory spanned
by objects whose isomorphism class lies in F. The functor jqF preserves pullbacks, so we get adjoint
functors:

(jF)! : Mack(OF)
//
Mack(O) : (jF)∗oo

(jF)∗ : Mack(O)
//
Mack(OF) : (jF)∗oo

given by left Kan extension, restriction, and right Kan extension, respectively.

(b) If F̃ ⊆ PO is downward closed, then let ψ
F̃

: O
F̃
↪→ O denote the inclusion of the evident full subcategory.

The associated embedding ψq
F̃

admits a right adjoint i
F̃

. We then get the following adjoint pairs:

(i
F̃

)∗ : Mack(O)
//
Mack(O

F̃
) : (i

F̃
)∗oo

(i
F̃

)∗ : Mack(O
F̃

)
//
Mack(O) : (i

F̃
)!oo

We note that, perhaps confusingly, (i
F̃

)∗ is given by left Kan extension.

If F is the upward closed complement of F̃ we will sometimes abuse notation and denote by ΦFX either
(i

F̃
)∗ or (i

F̃
)∗i
∗
F̃

when we believe there is no chance of confusion.

When F̃ = (−∞, T ] is the set of all p ≤ [T ] for some T ∈ O, then we denote i
F̃

by iT . We will sometimes
denote the value (iT )∗X(T ) by XΦT ∈ C.2

(c) In the event that ψq
F̃

preserves pullbacks, we get even more:

(ψ
F̃

)! : Mack(O
F̃

)
//
Mack(O) : (ψ

F̃
)∗oo

(ψ
F̃

)∗ : Mack(O)
//
Mack(O

F̃
) : (ψ

F̃
)∗oo

(d) Given an object T ∈ FinO ⊆ Psh(O), form the category O/T of pairs (x, f) where x ∈ O and f ∈ T (x).
This is also an inductive orbital category, and the map O/T → O induces a restriction map resT :
Mack(O) → Mack(O/T ). The restriction admits both a left and right adjoint (given by left and right
Kan extension respectively).

indT : Mack(O/T )
//
Mack(O) : resToo

resT : Mack(O)
//
Mack(O/T ) : coindToo

A key feature of Mackey functors with values in an additive∞-category (or, more generally, a semiaddi-
tive ∞-category) is that the canonical map indT → coindT is an equivalence. We will often abbreviate
(co)induction and restriction by ↑T and ↓T , possibly decorated further when there is ambiguity.

Remark 1.34. It will be very useful in inductive arguments to note that the poset PO/T ⊆ PO is strictly
smaller unless T contains a representative of each minimal object as a retract. If T =

∐
i Ti for Ti ∈ O, then

PO/T = ∪i{p ≤ Ti}. Beware, however, that O/T is not the same as O∪i{p≤Ti}, using the notation in (b)
above. The latter is the essential image of the former under the projection O/T → O, but the projection is
not full in general.

Remark 1.35. The condition that ψq
F̃

preserve pullbacks is satisfied in the following important cases:

(i) whenever F̃ is a set consisting of minimal elements in PO,

2This leads to an unfortunate clash with the standard equivariant notation, but we don’t know of a way to avoid it.
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(ii) when O = OG and F̃ ⊆ POG is an arbitrary downwardly closed subset.

We will use (i) frequently.
It is not true in general that ψq

F̃
preserves pullbacks. For example, this fails in the case O

F̃
= Surj≤n ⊆

Surj≤n+1 when n > 1.

Definition 1.36. With notation as above, we will refer to the essential image of (jF)! as the subcategory
of F-nilpotent objects, the essential image of (jF)∗ as the subcategory of F-complete objects, and the

essential image of (i
F̃

)∗ as the subcategory of F̃-geometric objects. We denote these in the following
way:

Mack(O;C)F−nil = subcategory of F-nilpotent objects,

Mack(O;C)F−cpl = subcategory of F-complete objects,

Mack(O;C)
ΦF̃

= subcategory of F̃-geometric objects.

The following is straightfoward from the definitions and the non-trivial [Gla15, 2.27].

Lemma 1.37. Let I ⊆ O be an interval, and write it as I = F ∩ F̃ where F and F̃ are the smallest
upward closed and downward closed intervals, respectively, containing I. In the stratification of Mack(O;C)
determined by Theorem 1.31,

S(I) = Mack(O;C)F−cpl ∩Mack(O;C)
ΦF̃
.

When I = {T} for T ∈ O we can identify this intersection with Fun(Aut(T ),C).

To make the notation more memorable, we instantiate each symbol in the example that the reader likely
cares about.

Example 1.38 (Equivariant spectra). Let G be a finite group. Note that POG = SubopG is the poset of
conjugacy classes of subgroups of G ordered by reverse inclusion.

• An upward closed subset of SubopG is just a family of subgroups in the sense of, e.g., tom Dieck [Die79,
7.2]. So there is a universal G-space EF for the family, characterized by the property that

(EF)H ∼=

{
∗ H ∈ F

∅ H /∈ F
.

We then have identifications:
(jF)! = EF+ ∧ (−),

(jF)∗ = F (EF+,−).

• A downward closed subset of SubopG is the complement of a family F of subgroups. We can then form

the G-space ẼF as the cofiber:

EF+ → S0 → ẼF.

The various functors in 1.33(b) are given classically by:

(i
F̃

)∗ = ẼF ∧ (−)

(i
F̃

)∗ =
(

ẼF ∧ (−)
)F

= ΦF(−)

(i
F̃

)! = F (ẼF,−)F

(ψ
F̃

)∗ = (−)F
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Where (−)F is the Lewis-May categorical fixed point functor [Lew+86, I.3]. The functors

(ψ
F̃

)∗, (ψ
F̃

)!

give two different ways of taking an object with some amount of symmetries, and adding more. The
latter is probably more familiar, and corresponds, in the case when F is the set of subgroups subcon-
jugate to H, to the process of taking a (NGH/H)-spectrum, regarding it as an NGH spectrum, and
then inducing up to G.

• An object T ∈ FinOG is just a finite G-set, so we will feel no guilt denoting the category instead by
FinG from now on. If T = G/H, then O/T is equivalent to the orbit category OH . (Co)induction and
restriction are as you’d expect. The asserted equivalence between in induction and coinduction is a
special case of the Wirthmüller isomorphism.

We end this section by recording some properties and relations between these functors for later use.

Lemma 1.39. Fix T ∈ FinO and let F̃ ⊆ PO be a downward closed family. Let F̃T = F̃ ∩ PO/T . Then there
are essentially canonical commutative diagrams:

Mack(O/T )
indT //

(i
F̃T

)∗

��

Mack(O)

(i
F̃

)∗

��
Mack(O

F̃T
)

indT

// Mack(O
F̃

)

Mack(O)
resT //

(i
F̃

)∗

��

Mack(O/T )

(i
F̃T

)∗

��
Mack(O

F̃
)

resT
// Mack(O

F̃T
)

In particular, if [T ] /∈ F̃, then (i
F̃

)∗indT = 0.

The next proposition is a generalization of the fact that, in equivariant homotopy theory, EF+ ∧ X is
built out of inductions of restrictions of X to subgroups in the family F.

Proposition 1.40. Let F ⊆ PO be upward closed. Let T =
∐
S∈OF

S ∈ FinOF
⊆ FinO. Then there is a

functor
Lj! : Mack(OF)→ Fun(∆op,Mack(O))

with the following properties:

(i) for each n ≥ 0, we have (Lj!)n ∼= (indT ◦ resT )◦n+1,

(ii) there is a natural equivalence of functors

colim
∆op

Lj! ∼= j!.

Proof. We note that (OF)/T = O/T since there are no maps from smaller objects to larger objects. This
means that the target of the restriction functors associated to T agree.

To avoid ambiguity, we will temporarily denote by ind′T the induction functor with target Mack(OF) and
indT the induction functor with target Mack(O). The endofunctor

ind′T ◦ resT : Mack(OF)→ Mack(OF)
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admits a canonical structure of a monad, and so we can form the bar construction Bar : Mack(OF) →
Fun(∆op,Mack(OF)) [Lur16, 4.4.2.7]. We define Lj! as j!◦Bar. To verify (i), note that there is an equivalence
j! ◦ ind′T

∼= indT since a composite of left Kan extensions is a left Kan extension of the composite. To verify
(ii) it suffices, since j! preserves colimits, to check that colim∆op Bar ∼= id. This follows from the fact that
the adjunction ind′T a resT is monadic for our choice of T . Indeed, resT preserves all colimits, so we need
only check that resT : Mack(OF) → Mack(O/T ) is conservative. But equivalences of Mackey functors are
detected objectwise, and every object in OF is accounted for in T .

1.3 Slice filtrations and basic properties

In this section we develop a generalization of the slice filtration suitable for stratified homotopy theories.

Definition 1.41. A filtration of a stable ∞-category C is a sequence of full subcategories

· · ·C≥n ⊆ C≥n−1 ⊆ · · · ⊆ C

such that each C≥n is coreflective in C and closed under extensions. We say the filtration is separated if⋂
C≥n is trivial. We say that the filtration is compatible with suspension if ΣC≥n ⊆ C≥n+1. Objects

X ∈ C≥n will be called n-connective and we’ll indicate this property by writing X ≥ n. We will call a
filtration presentable if each of the C≥n and C are presentable.

If C and C′ are equipped with filtrations and F : C → C′ is a functor we will say that F is filtration
preserving if F (C≥n) ⊆ C′≥n.

Example 1.42. If C has a t-structure then the sequence of subcategories {τ≥nC} is a filtration on C com-
patible with suspensions. If C admits countable products and τ≥0C is stable under these, then separability of
the filtration is equivalent to left completeness of the t-structure [Lur16, 1.2.1.19]. If C is presentable, then
the filtration is presentable if and only if the t-structure is accessible in the sense of [Lur16, 1.4.4.12].

Not every filtration arises from a t-structure, but every presentable filtration gives rise to a sequence of
t-structures.

Definition 1.43. Let {C≥n} be a presentable filtration on a presentable, stable ∞-category C. Then each
subcategory C≥n determines an accessible t-structure with C≥n as the subcategory of 0-connective objects
for that t-structure. The heart is a Grothendieck abelian category [Lur16, 1.3.5.23] which we denote by C♥n .
If C is understood, we will abbreviate this to ♥n. We denote the truncation functors associated to the nth

t-structure by τ
(n)
≤k and τ

(n)
≥k for k ∈ Z.

We offer the following generalization of a perversity suited to our examples.

Definition 1.44. Let P be a poset. A dimension function for P is a function:

ν : Z× P −→ Z

such that for any p ∈ P, ν(−, p) : Z → Z is weakly increasing and surjective. We say that p ∈ P is an
n-jump if ν(n + 1, p) > ν(n, p), otherwise we say that p is an n-rest. We say that ν jumps at n if every
p ∈ P is an n-jump.

Remark 1.45. Barwick-Dotto-Glasman-Nardin-Shah study the almost identital notion of a generalized
perversity in their forthcoming work.

Definition 1.46. Suppose given a presentable, stable, P-stratified ∞-category C, a dimension function ν
for P, and separated, presentable filtrations on the strata Cp for each p ∈ P, compatible with suspension.
Denote by Lp the localization Lp : C → Cp. Then define the ν-slice filtration on C by declaring X ≥ n if
and only if LpX ≥ ν(n, p) for all p ∈ P. Attached to this filtration we will use the following terminology:
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• We will say X is slice n-connective and write X ≥ n if LpX ≥ ν(n, p) for all p ∈ P. The full
subcategory of slice n-connective objects is denoted νC≥n or just C≥n if ν is understood.

• We denote the right adjoint to the inclusion C≥n ⊆ C by Pn and call PnX the slice n-connective
cover of X.

• We will say Y is slice n-truncated and write Y ≤ n if, for every X ≥ n + 1, the mapping space
mapC(X,Y ) is contractible. We denote the full subcategory of slice n-truncated objects by νC≤n or
C≤n if ν is understood.

• We denote the cofiber of Pn+1 → id by Pn and call PnX the nth slice section of X or the slice
n-stage of X.

• We will say A is an n-slice if A ≤ n and A ≥ n. We denote the full subcategory of n-slices by Slicen,
and will further decorate this symbol if either ν or C is unclear from the context.

• There is a canonical equivalence PnPn ∼= PnP
n and we denote either of these functors by Pnn . We call

PnnX the n-slice of X.

We record a few basic consequences of the definition before turning to examples.

Lemma 1.47. The ν-slice filtration is indeed a filtration. As such, it is separated and compatible with
suspension.

Proof. Each C≥n is closed under colimits, extensions, and equivalence since Lp preserves colimits. Since
we’ve assumed C is presentable, this provides the right adjoint. That the filtration is separated follows from
the joint conservativity of the functors Lp together with the fact that ν is weakly increasing and surjective.
Finally, in order for ν to be both weakly increasing and surjective, we must have ν(n + 1, p) ≤ ν(n, p) + 1.
This, together with compatibility with suspension on each stratum, completes the proof.

Lemma 1.48. If ν jumps at n, then ΣC≥n = C≥n+1.

Lemma 1.49. The functor Pn is a left adjoint to the inclusion C≤n ⊆ C.

Proof. This is classical from the theory of Bousfield localizations, but we recall the proof here since it displays
where we use the presentability hypotheses. The subcategory C≤n is evidently closed under limits. From
our presentability conditions, we also see that C≤n ⊆ C is accessible. It follows that the inclusion admits a

left adjoint P̃n [Lur09, 5.5.2.9], and we need to identify it with Pn. To that end, define P̃n+1 as the fiber of
the unit id→ P̃n. For any X ∈ C we have a fiber sequence

P̃n+1X → X → P̃nX.

So for any W ≥ n+ 1, we get a fibration:

map(W, P̃n+1X)→ map(W,X)→ map(W, P̃nX).

The last term vanishes by definition of slice coconnectivity, so the first map is an equivalence. It follows that
P̃n+1X ≥ n+ 1 and that P̃n+1 is a right adjoint to the inclusion C≥n+1 ⊆ C. The result follows.

Proposition 1.50. For each n, Slicen is a reflective subcategory of ♥n. In particular, Slicen is an ordinary,
presentable, additive category. If ν jumps at n, then Slicen = ♥n and is thus Grothendieck abelian.

Proof. The inclusion ΣC≥n ⊆ C≥n+1 yields an inclusion

Slicen ⊆ ♥n,

and Pn provides the desired left adjoint. The last claim is immediate from the definition of jump.

23



Example 1.51 (Perverse t-structures). If X is a space equipped with a finite stratification X =
∐
s∈S Xs,

then the ∞-category of S-constructible sheaves (valued in the derived category of abelian groups, say)
DS−cstr(X) is an S-stratified ∞-category. Here we consider S as a poset by declaring s ≤ s′ if the closure
of Xs′ contains Xs. If p : S → Z is a function (the perversity), then we can define a perverse t-structure on
DS−cstr(X) as the slice filtration associated to the dimension function ν(n, s) = n + p(s). This filtration is
a t-structure because ν jumps at every n ∈ Z.

The homotopy theory of Mackey functors with values in C has the feature that all of its strata are
presheaves valued in C. Thus, a filtration on C determines a filtration on all the strata in a canonical way.
This provides us with the most important class of examples for our work.

Example 1.52. Let O be an inductive orbital category and C a presentable, stable ∞-category equipped
with a presentable, separated filtration τ , and ν a dimension function on PO. Then the ν-slice filtration
on Mack(O;C) is defined by

X ≥ n ⇐⇒ for all T ∈ O, XΦT ∈ τ≥ν(n,T )C.

Convention 1.53. • For the remainder of this section, unless otherwise stated, C will denote a stable,
presentable, ∞-category equipped with a presentable, separated filtration.

• For the remainder of the paper, the homotopy theory Sp will be equipped with its standard t-structure
filtration unless otherwise specified. With this convention, there is an unambiguous ν-slice filtration
on SpO for any inductive orbital category O and dimension function ν.

Definition 1.54. If O is an inductive orbital category, then an O-parameterized filtration on Mack(O;C)
is the data of a filtration, for every T ∈ FinO, on Mack(O/T ;C) with the following properties:

• induction and restriction preserve filtration,

• if T =
∐
i Ti, then the filtration on Mack(O/T ;C) is identified with the product filtration under the

canonical equivalence

Mack(O/T ;C)
∼=−→
∏
i

Mack(OTi ;C).

Remark 1.55. An O-parameterized filtration determines and is determined by a family of filtrations, one
on Mack(O/T ;C) for each T ∈ O, for which induction and restriction between orbits preserve filtration.

The following is immediate from the definitions, and Lemma 1.39.

Proposition 1.56. Let O be an inductive orbital category, and suppose we have a dimension function ν on
PO. For any T ∈ FinO, denote by νT the restriction of ν to PO/T . Then:

(i) The family of νT -slice filtrations is an O-parameterized filtration on Mack(O;C).

(ii) Restriction and induction preserve slice coconnectivity and take n-slices to n-slices.

(iii) Restriction and induction preserve coconnectivty for the t-structures associated to the slice filtration,
and take elements of ♥n to elements of ♥n.

Now we prove a recognition theorem that allows one to identify a given parameterized filtration with the
ν-slice filtration.

Theorem 1.57. Suppose {F≥n} is a parameterized filtration of Mack(O;C). Then it agrees with the ν-slice
filtration on Mack(O;C) if and only if the following two conditions are satisfied:

(i) for all n, F≥n ⊆ νMack(O;C)≥n,
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(ii) for every T ∈ O, the class of objects {XΦT ∈ C≥ν(n,T )|X ∈ F≥n} generates C≥ν(n,T ) under colimits,
extensions, and equivalences.

Proof. Using the functors (iT )∗, it is straightforward to see that (ii) is satisfied for the ν-slice filtration, and
(i) is tautological. So we prove the other direction.

We proceed by induction on the size of PO. So let T ∈ PO be a minimal element, with associated functors
(i∗, i∗), and let (j!, j

∗) be the functors associated to the upward closed complement of T .
Since, by assumption (i), F≥n ⊆ νMack(O;C)≥n, we need to show that any X ≥ n belongs to F≥n. To

that end, consider the cofiber sequence

j!j
∗X → X → i∗i

∗X.

It suffices to show that both j!j
∗X and i∗i

∗X belong to F≥n. That j!j
∗X lies in F≥n follows from the fact

that {F≥n} is a parameterized filtration, together with the induction hypothesis and Proposition 1.40.
To complete the proof, it suffices, by the definition of the slice filtration for Mackey functors, to show

that if Y ∈ Mack(O{T};C)≥n, then i∗Y ∈ F≥n.
To that end, recall that, since O{T} consists of a single object and every endomorphism in an inductive

orbital category is an isomorphism, Mack(O{T};C) ∼= Fun(Aut(T ),C). Under this equivalence,

Mack(O{T};C)≥n ∼= Fun(Aut(T ),C≥ν(n,T ))

Let e : ∗ → Aut(T ) denote the inclusion of the identity. Then the subcategory Fun(Aut(T ),C≥ν(n,T )) is
generated under extensions, equivalence, and colimits by the essential image of the left Kan extension

e! : C≥ν(n,T ) = Fun(∗,C≥ν(n,T ))→ Fun(Aut(T ),C≥ν(n,T )),

also known as Aut(T )+ ∧ (−). By our assumption (ii), this subcategory is also generated by elements of the
form e!X

ΦT for X ∈ F≥n.
Let A denote the class of Y ∈ Mack(O{T};C) such that i∗Y ∈ F≥n. Then A is closed under extensions,

equivalence, and colimits. So it suffices by our assumption (ii) to show that A contains e!Z
ΦT for every

Z ∈ F≥n. Write Z as an extension
j!j
∗Z → Z → i∗i

∗Z.

By the induction hypothesis and the same argument as before, j!j
∗Z ∈ F≥n, and we have assumed Z ∈ F≥n.

Therefore i∗i∗Z ∈ F≥n, and hence Z ∈ A, which completes the proof.

Corollary 1.58 (Hill-Yarnall). • The original slice filtration on SpG agrees with the filtration associated
to the dimension function

νsl(n,H) =

⌊
n

|H|

⌋
.

• The regular slice filtration on SpG agrees with the filtration associated to the dimension function

νreg(n,H) =

⌈
n

|H|

⌉
.

Proof. We give the proof for the original slice filtration, the proof in the regular case is much the same. Let
F≥nSp

G denote the subcategory of spectra which are slice (n− 1)-positive in the sense of [HHR16, 4.8]. It is
elementary to check that this filtration is compatible with restrictions and induction [HHR16, 4.13], so this
defines a parameterized filtration on SpG. To verify condition (i) it suffices to show that

(G+ ∧K SmρK−ε)ΦH ≥
⌊
n

|H|

⌋
whenever ε = 0, 1 and m|K| − ε ≥ n, and this computation is routine using the double-coset formula.

To verify (ii), let m = bn/|H|c and notice that G+ ∧H S(m+1)ρH−1 is in F≥nSp
G and has H-geometric

fixed points a finite wedge of copies of Sm. The result follows since Sm generates Sp≥m under colimits,
extensions, and equivalences.
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We close with an analog of [HY17, 2.10] which, in some cases, allows us to use the values of the Mackey
functor instead of its geometric fixed points.

Lemma 1.59. Let ν be a dimension function and fix n ∈ Z. Suppose that ν(n,−) : PO → Z is order-
preserving. Then

X ≥ n ⇐⇒ for all T ∈ O, X(T ) ∈ C≥ν(n,T ).

Proof. Let T ∈ O be minimal and consider the usual inductive set-up:

j!j
∗X → X → i∗i

∗X.

Ordinary connectivity behaves well under induction and restriction, so the inductive hypothesis tells us that
either assumption on X leads to a j∗X which is slice n-connective and satisfies X(S) = j∗X(S) ∈ C≥ν(n,S)

for all S 6= T . In particular, each j∗X(S) is in C≥ν(n,T ) by our assumption on ν(n,−). It follows from (1.40)
that j!j

∗X is both slice n-connective and satisfies j!j
∗X(T ) ∈ C≥ν(n,T ). But now both conditions are closed

under extensions and cofibers, and XΦT = i∗i
∗X(T ), so the proof is complete.

2 Categories of slices

We saw in the last section that every slice filtration gives rise to a sequence of Grothendieck abelian categories
♥n and distinguished reflective subcategories Slicen ⊆ ♥n. Every Grothendieck abelian category A is a left
exact localization of a category of right modules over a ring (Gabriel-Popescu [PG64]). The ring in question
is the ring of endomorphisms of a chosen generator. Often it is convenient to use a family of generators
instead of a single one, and there is a mild generalization of the theorem in this case.

Theorem 2.1 (Gabriel-Popescu [PG64], Kuhn [Kuh94]). Let A be a Grothendieck abelian category and
A0 ⊆ A an essentially small subcategory closed under finite direct sums. Suppose that, for every object
a ∈ A, there is a set of objects {xα}, with each xα ⊆ A0, and an epimorphism

⊕
α xα → a. Then:

(i) The restricted Yoneda embedding to the category of finite product preserving functors

G : A −→ Psh×(A0,Set)

is fully faithful.

(ii) The functor G admits an exact left adjoint, F .

The following corollary was actually known before the above theorem, and can be found in Freyd’s thesis
[Fre60] and a paper of Gabriel [Gab62], at least in the case of a single generator.

Corollary 2.2 (Freyd-Gabriel). In the situation of the above theorem, if every object of A0 is compact and
projective in A, then G is an equivalence of categories.

Thus, in order to understand ♥n and its localization Slicen, we should search for generators. In the case
of the standard t-structure on Sp we know that Sn is sufficient, and πn identifies Sp≥n ∩ Sp≤n with the
category of abelian groups in this way. In fact, we could have used a finite wedge of copies of Sn just as well.

From the definition of the slice filtration, we are lead to consider spectra which are finite wedges of spheres
on each stratum. Since we hope to apply the corollary above, we restrict attention to compact spectra with
this property, and thus arrive at the notion of a slice sphere.

In §2.1-2.2 we define slice n-spheres and study the elementary properties of the functors they corepresent
(called slice homotopy). Perhaps the only parts that require a bit of care are Proposition 2.12 (showing
that slice n-spheres exist in sufficient supply) and Proposition 2.28 (which identifies the slice homotopy
group of PnX in terms of the slice homotopy group of X.) In §2.3 we check the hypotheses of the result of
Freyd-Gabriel and conclude that ♥n is the category of models for an explicit Lawvere theory, and Slicen is
a specified localization thereof.
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This bridge to algebra made, we reformulate this Lawvere theory in terms of modules over a Green
functor in §2.4. The technique is to use a parameterized version of an argument going back to Gabriel and
Freyd, which may be of independent interest.

Finally, we digress in §2.5 to analyze the structure of modules over Green functors with an additional
condition that allows us to remove redundant data in describing a module. We show in §2.6 that this
condition is satisfied in the case of interest, and this leads to our final description of ♥n and Slicen as
categories of twisted Mackey functors.

2.1 Slice spheres

Definition 2.3. Let ν be a dimension function for PO. We say that an object W ∈ SpO is a slice sphere if

(i) W is compact,

(ii) for each T ∈ O, the spectrum WΦT is equivalent to a finite wedge of spheres.

We say that a slice sphere W is homogeneous if the spheres appearing in the decomposition of WΦT are all
of the same dimension. We say that an object W ∈ SpO is a slice n-sphere if it is a slice sphere satisfying
the further requirement that the spheres in condition (ii) have dimension ν(n, T ). We denote the homotopy
category of slice n-spheres by Sphn.

Finally, we define an isotropic slice n-sphere to be a slice n-sphere W ∈ SpO such that, for each T ∈ O,
WΦT is nonzero.

Warning 2.4. The property of being a slice n-sphere depends on the dimension function ν.

Warning 2.5. A slice sphere need not be a slice n-sphere for any n.

Example 2.6. Any representation sphere is a slice sphere in SpG.

Example 2.7. For any group G and subgroup H ⊆ G, the cofiber of the map ∇ : G/H+ → S0 is a slice
sphere. When H is trivial, cof(∇) is an example of a slice 1-sphere for the original slice filtration and a
slice 2-sphere for the regular slice filtration. When |G| > 2, this cofiber is not equivalent to a wedge of
representation spheres.

Remark 2.8. The desire to stick to compact objects is motivated both by computations and to have a good
algebraic theory. This is also the reason why it is difficult to develop the theory for an arbitrary stratified,
stable ∞-category. The trouble is visible already in the case of a recollement. The pushforward functor
i∗ has no reason to preserve compact objects, and in fact does not in our main example of interest. The
pushforward j! does preserve compact objects, but the ones created this way necessarily vanish on the closed
locus. A related disappointment is that one cannot test compactness on strata.

In the case of spectral Mackey functors, however, we have an alternative way to produce examples: using
the functors of the form (ψ

F̃
)!. For formal reasons, these functors do preserve compact objects, and can be

used, in particular, to build a sufficient number of slice spheres.

Remark 2.9. Since slice n-spheres are evidently slice n-connective, the natural map

[W,W ′] −→ [τ
(n)
≤0 W, τ

(n)
≤0 W

′]

is an isomorphism. Thus, we may identify Sphn with a full subcategory of ♥n.

Definition 2.10. A testing subcategory for n-slices is a full subcategory Testn ⊆ Sphn such that, for
any T ∈ FinO:

• indT resT (Testn) ⊆ Testn, and

• if T ∈ O, then there exists some W ∈ Testn with WΦT equivalent to a nonzero, finite wedge of copies
of Sν(n,T ).
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One way of producing a testing subcategory is to generate one from an isotropic slice n-sphere, which is
immediate from the definitions.

Lemma 2.11. If W is an isotropic n-sphere, let Test〈W 〉 be the smallest subcategory of Sphn containing W
and closed under indT resT , for all T ∈ FinO. Then Test〈W 〉 is a testing subcategory.

At the moment, it is not at all clear that testing subcategories even exist. Luckily, the definition is not
vacuous.

Proposition 2.12. Sphn is itself a testing subcategory for n-slices. More precisely, there exists an isotropic
n-sphere in Sphn.

Proof. We begin with a few reductions. First, by (2.11), it suffices to construct a single isotropic n-sphere.
Second, suppose {T1, ..., Tk} is a set containing a representative for each minimal element in PO. If Wi ∈
SpO/Ti is an isotropic n-sphere, for each 1 ≤ i ≤ k, then

∨
i indTiWi is an isotropic n-sphere in SpO. So we

may assume, without loss of generality, that O has a terminal object. We may also assume, by induction,
that the result holds for posets smaller than |PO|. Now we proceed.

Let T ∈ O be terminal. Recall that we have a functor(
ψ{T}

)
!
: Mack(O{T}) ∼= Sp→ Mack(O) = SpO

given by left Kan extension. Define X0 :=
(
ψ{T}

)
!
Sν(n,T ). Then X0 is a slice sphere with the property that

(X0)ΦT ′ = Sν(n,T ) for every T ′ ∈ O. Our goal is to modify X0 until it becomes an isotropic slice n-sphere.
To that end, choose a conservative, surjective map of posets PO → [m] for some m ≥ 0, and an ordering

on each fiber. Then list the elements of PO in dictionary order: PO = {p0, p1, ...., pN}, where N + 1 = |PO|.
We’ll choose the ordering on the fiber over 0 so that p0 = T .

We propose to inductively build Xk with the property that Xk is a homogeneous slice sphere and, for
i ≤ k, (Xk)Φpi is a nonzero wedge of spheres of the form Sν(n,pi). So suppose we have such an Xk for k < N ,
then we describe how to build Xk+1. Since Xk is a homogeneous slice sphere, we know that (Xk)Φpk+1 is
a (possibly trivial) finite wedge of spheres all of the same dimension, say (Xk)Φpk+1 ∼=

∨
Sm. To finish the

proof, we need only treat each of the following three cases.

• Case 1: (Xk)Φpk+1 = 0. In this case, let A ∈ SpO/pk+1 be an isotropic n sphere for the restricted slice
filtration, which exists by the induction, and take Xk+1 = Xk ∨ indpk+1

A.

• Case 2: (Xk)Φpk+1 6= 0 and m ≤ ν(n, pk+1). In this case, let r = ν(n, pk+1) −m ≥ 0 and Xk := Yk,0.
Given Yk,i for i < r, define Yk,i+1 as the cofiber of the counit:

indpk+1
respk+1

Yk,i → Yk,i.

This construction does not affect geometric fixed points at pj for j ≤ k, by the construction of our
ordering, and it modifies all other geometric fixed points by replacing the previous wedge of spheres
with a new wedge of spheres of one higher dimension (or doing nothing if the geometric fixed points
were trivial.) Indeed, on geometric fixed points, the unit of induction-restriction admits a section, and
a summand of a wedge of spheres is still a wedge of spheres. Thus, Xk+1 := Yk,r does the trick.

• Case 3: (Xk)Φpk+1 6= 0 and m > ν(n, pk+1). This is exactly as before, except we define Yk,i+1 as the
fiber of the unit

Yk,i → coindpk+1
respk+1

Yk,i.

Again, we check that this is still a wedge of spheres of appropriate dimension using the fact that the
geometric fixed points of the unit for the coinduction-restriction adjunction admits a retraction.
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Remark 2.13. Isotropic slice spheres with fewer cells may be constructed by modifying the above construc-
tion to be more efficient. Specifically, one may replace the use of indT resTX → X with any map indTY → X
which becomes split upon restriction to T . We suspect that all isotropic slice spheres arise from this more
general procedure, but have not tried to prove it.

For later use, we record an evident but useful observation.

Lemma 2.14. Fix T ∈ FinO and a testing subcategory Testn(O) ⊆ Sphn(O). Then resT (Testn(O)) is a
testing subcategory for n-slices in SpO/T .

2.2 Slice homotopy groups

Having defined the appropriate notion of spheres in our context, we now develop the resulting analogue of
homotopy groups and their basic properties.

Definition 2.15. Fix a testing subcategory Testn ⊆ Sphn. Then the restricted Yoneda embedding defines
a functor:

π̂n : SpO −→ Psh×Set(Testn).

to the category of product-preserving presheaves on Testn. We will call the target of π̂n the category of
n-models and denote it by Modeln. We call π̂nX the n-th slice homotopy group of X.

Remark 2.16. Since Testn is additive, there is a canonical equivalence

Modeln ∼= Psh⊕Ab(Testn)

with the category of additive presheaves. We will often move back and forth between the equivalent inter-
pretations of Modeln for convenience. For example, with this definition, it is clear that Modeln is abelian.

The name ‘slice homotopy group’ is slightly abusive since π̂nX is really a diagram of groups. We don’t
think this will cause confusion.

Warning 2.17. Both the category Modeln and the functor π̂n depend on the dimension function ν and the
choice of testing subcategory.

The following lemma is evident and will often be used without comment.

Lemma 2.18. The functor π̂n is homological, i.e. π̂n sends cofiber sequences to exact sequences.

Warning 2.19. Despite the notation, it is very much not the case that π̂n(ΣX) is the same as π̂n−1X in
general.

Proposition 2.20. For any testing subcategory Testn ⊆ Sphn, the functor

π̂n : ♥n → Modeln

admits a left adjoint, denoted H : Modeln → ♥n. It is determined by the property that, if W ∈ Testn, then

H[−,W ] = τ
(n)
≤0 W . Composing with Pn yields a functor

PnH : Modeln −→ Slicen

left adjoint to the restriction π̂n|Slicen .

Proof. The inclusion ♥n ⊆ SpO≥n preserves limits (since it admits τ
(n)
≤0 as a left adjoint), and so does the

Yoneda embedding and restriction, whence π̂n preserves limits. Since each object of Testn is compact, by
definition, the functor π̂n also preserves filtered colimits. The result now follows from the adjoint functor
theorem, since the source and target are presentable categories. The formula for H follows from checking

that τ
(n)
≤0 W corepresents the expected functor on ♥n.
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Warning 2.21. The functor π̂n is generally not right exact as a functor with domain Slicen.

We will find much use out of the following elementary vanishing conditions for slice homotopy groups.

Proposition 2.22. (a) If X ≥ n, then, for any slice n-sphere W , [W,ΣX] = 0.

(b) If T ∈ O is minimal and an n-jump, and X ∈ Sp≥ν(n+1,T ), then [W, i∗X] = 0 for any slice n-sphere W .

Proof. First we prove (a). By induction on the size of PO, and standard arguments, we’re reduced to
checking that π̂ni∗i

∗ΣX = 0 where (i∗, i∗) is the adjoint pair associated to a minimal element T ∈ O. But
π̂n(i∗i

∗ΣX)(W ) = [WΦT , (ΣX)ΦT ] by adjunction. Since W is an n-slice sphere, WΦT is either 0 or a wedge
of copies of Sν(n,T ). On the other hand, ΣXΦT is (ν(n, T ) + 1)-connective since X ≥ n, so in either case we
get zero. The proof of (b) is similar and easier.

Proposition 2.23. If Y ≤ n, let T jump ∈ FinO be the coproduct over all the n-jumps for ν, in O. Then, for
any T ∈ FinO with T jump as a summand, the map

π̂nA(W )→ π̂nA(indT resTW )

induced by the counit indT resTW →W is injective.

Proof. The assumptions precisely imply that the cofiber of the counit map is slice (n+ 1)-connective.

Definition 2.24. Let Slicealgn ⊆ Modeln denote the full subcategory of functors which satisfy the conclusion
of (2.23). We temporarily call this the category of algebraic n-slices.

Warning 2.25. The category Slicealgn depends on the choice of testing subcategory. We justify this abuse of
notation by Theorem 2.29, below, which implies that changing the testing subcategory yields an equivalent
category of algebraic n-slices.

From Proposition 2.23 we get:

Corollary 2.26. The functor π̂n : Slicen → Modeln factors through Slicealgn .

Given an additive presheaf on Testn, it is easy to change it into an algebraic n-slice.

Lemma 2.27. The inclusion Slicealgn ⊆ Modeln admits a left adjoint Linj described explicitly as

Linjπ(W ) =
π(W )

ker : π(W )→ π(indT resTW )

where T = T jump as in (2.23).

Next, we give some preliminary evidence for the strong relationship between n-slices and algebraic n-slices.

Proposition 2.28. For C ∈ SpO, the localization map C → PnC induces an isomorphism

Linj π̂nC
∼=−→ π̂nP

nC.

Proof. By Proposition 2.23, π̂nP
nC belongs to Slicealgn . By Lemma 2.27, we get a commutative diagram:

π̂nC

f

$$

g

zz
Linj π̂nC

h
// π̂nPnC

Since g is surjective, we can prove that h is an isomorphism by showing that f is surjective and ker(f) ⊆ ker(g)
(the other inclusion is implied by commutativity of the diagram.)
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The obstruction to the surjectivity of f lives in π̂nΣPn+1C, but this group vanishes by Proposition
2.22(a), so f is surjective.

Now suppose W ∈ Testn and W → C → PnC is null. Then we have a factorization W → Pn+1C →
C → PnC. Let T = T jump. Then it suffices to show that the composite

indT resTW →W → Pn+1C

is null. Equivalently, that resTW → resTPn+1C is null. But, by the definition of T jump and the slice filtration,
together with the fact that restrictions preserve slice connective covers, we conclude that resTPn+1C ∈
ΣSp

O/T
≥n . Since resTW is a slice n-sphere, we conclude the vanishing by Proposition 2.22(a), which completes

the proof.

2.3 Slices as models for a Lawvere theory

We are now ready for our first algebraic description of slices.

Theorem 2.29. The functors π̂n and H yield an equivalence of adjoint pairs:

♥n

π̂n
∼= %%

Pn

��

Modeln

Linj

��

H
oo

Slicen

π̂n

∼=
99

BB

Slicealgn

\\

PnHoo

To prove this, we will need the following classical bit of category theory.

Proposition 2.30 (Freyd, Gabriel). Let A be a Grothendieck abelian category and suppose A0 ⊆ A is a full
subcategory closed under finite direct sums and satisfying the following properties:

(i) Every object of A0 is compact.

(ii) Every object of A0 is projective.

(iii) The restricted Yoneda embedding
G : A −→ Psh×Set(A0)

is conservative.

Then G is an equivalence of categories.

Proof. By (i) and (ii), G preserves all colimits. Since the target of G is generated by representables, G is
essentially surjective. On the other hand, we have a functor L : Psh×Set(A0) −→ A induced from the inclusion
A0 ⊆ A by left Kan extension. There is a natural map LG→ id and we will be done if we can check it is an
isomorphism. But G is conservative by assumption, so we need only check that the map

GLG→ G

is an isomorphism. Now, GL is a colimit preserving endofunctor of Psh×Set(A0) which is the identity on A0,
so it is canonically equivalent to the identity. This completes the proof.
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Remark 2.31. Suppose A is any category with equalizers, coproducts, and with the property that monic-
epimorphisms are isomorphisms. If A0 ⊆ A is a full subcategory, then the following are equivalent:

(i) Every object x ∈ A admits an epimorphism
∐
β aβ → x where aβ ∈ A0.

(ii) The restricted Yoneda embedding A −→ PshSet(A0) is faithful.

(iii) The restricted Yoneda embedding A −→ PshSet(A0) is conservative.

In the literature, people use the phrase ‘A0 is a family of generators for A’ inconsistently to mean any of
these, even in situations where they are not all equivalent. (Actually, the first two conditions are always
equivalent. It is the equivalence with the third condition which is transient.)

Proof of Theorem 2.29. Recall that we have already shown (Proposition 2.28) that π̂nP
nC = Linj π̂nC for

any C. Thus, if the top two arrows in the diagram are inverse equivalences, then the two localizations are
necessarily equivalent. Now, by Remark 2.9, we may view Testn as a full subcategory of ♥n, and each slice
n-sphere is compact. We now argue that they are also projective. Indeed, suppose that f : A→ B is a map
between elements of ♥n. Then form the cofiber sequence in SpO:

A→ B → C.

The cokernel of f in ♥n is given by τ
(n)
≤0 C. Suppose f is surjective so that τ

(n)
≤0 C = 0. Then we have

C ∈ τ (n)
≥1 Sp

O so that C is the suspension of something slice n-connective. It follows from Proposition 2.22
that π̂nC = 0 and by Lemma 2.18 that π̂nA → π̂nB is surjective. So we’ve shown that for all W ∈ Testn,
that [W,−] preserves surjections, and hence each W is projective.

By the previous proposition, it now suffices to check that π̂n is conservative on ♥n. This we prove
below.

Proposition 2.32. The functor π̂n : ♥n → Modeln is conservative.

Warning 2.33. The statement is obviously false on the larger domain SpO.

Proof. We proceed by induction on the order of PO. So let T ∈ O be a minimal element with upward closed
complement F, and let (i∗, i∗) and (j!, j

∗) be the usual adjoint pairs associated to this situation.
Assume that f : A → B is a map of objects in ♥n which induces an isomorphism on π̂n and form the

diagram:
j!j
∗A //

��

A //

��

i∗i
∗A

��
j!j
∗B // B // i∗i∗B

It suffices to prove that the left and right vertical maps are equivalences.

• Our induction hypothesis applies to O/T ′ and the restricted testing subcategory (2.14) for any T ′ ∈ F

since, for such T ′, PO/T ′ is strictly smaller than PO (1.34). This, together with Proposition 1.40,

implies that j!j
∗(f) is an equivalence.

• By the definition of testing subcategory, there is some W ∈ Testn with WΦT a wedge of copies of
Sν(n,T ). We have a map of fiber sequences:

map(W,A) //

��

map(W, i∗i
∗A) //

��

map(W,Σj!j
∗A)

��
map(W,B) // map(W, i∗i

∗B) // map(W,Σj!j
∗B)
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The last vertical map is an equivalence because we have already shown j!j
∗ is an equivalence. We

know that [ΣkW,A] = [ΣkW,B] = 0 for k > 0 because A,B ∈ τ (n)
≤0 Sp

O, and ΣkW ∈ τ (n)
≥k Sp

O as W
is slice n-connective. We also know [W,A] = π̂nA(W ) → π̂nB(W ) = [W,B] is an isomorphism by
assumption. Thus, the first vertical map is an equivalence. We deduce that the middle vertical map is
an equivalence.

• Finally, let e : ∗ → Aut(T ) be the inclusion of the identity. Since Sν(n,T ) is a retract of WΦT , we
conclude that e!S

ν(n,T ) is a retract of i∗W . (Here it is important that we are working stably so that
the norm e! → e∗ is an equivalence.) Equivalences are closed under retracts, so we conclude from the
previous bullet and adjunction that

map(Sν(n,T ), AΦT )→ map(Sν(n,T ), BΦT )

is a weak equivalence. But AΦT and BΦT are ν(n, T )-connective by the definition of the slice filtration
and our assumption that A,B ≥ n, so we deduce that i∗f is an equivalence and the proof is complete.

Example 2.34. Let A(G) denote the full subcategory of SpG containing S0 and closed under smashing
with finite G-sets. It is a consequence of the tom Dieck splitting that hA(G) is equivalent to the classical
Burnside category [Lew+86, V.9.6]. So if one finds a representation sphere SV which is also an isotropic
slice n-sphere, then we get an equivalence of categories:

hA(G)
SV ∧(−) // Test〈SV 〉 ,

and hence an equivalence:

Mack(G;Ab)
∼=−→ Modeln ∼= ♥n.

Unwinding the definitions we learn that in this case the n-slice of a spectrum is determined by a quotient of
its V th homotopy Mackey functor.

This works more generally for any isotropic slice n-sphere in the Picard group, and more generally still
for any inductive orbital category in place of OG.

2.4 Slices as modules over a Green functor

In the case when Testn is generated by an isotropic slice n-sphere W , the functor π̂nX records the following
data:

• For each T ∈ FinO, the homotopy groups [↓T W, ↓T X] = [↑T ↓T W,X].

• For each map ↑T ↓T W →↑T ′↓T ′ W , the induced map

[↑T ′↓T ′ W,X]→ [↑T ↓T W,X].

In this section we identify the above data with the End(W )-module structure on the homotopy Mackey
functor [W,X]. The notations and notions in this theorem will be defined in the body of the section, but we
state it now in any case:

Theorem 2.35. The functor [W,−] yields an equivalence of adjoint pairs:
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♥n
[W,−]

∼=
//

Pn

��

RModEnd(W )

Linj

��
Slicen

[W,−]

∼= //

BB

RModloc
End(W )

[[

This identification is straightforward, but is conceptually pleasing and serves as a stepping stone to our
simplification at the end of §2. The reader is encouraged to use this section as a quick reminder of the
definitions of Green functors and modules over them, and then proceed to §2.5.

We begin by reviewing the symmetric monoidal structure on Mack(O;Ab). Classically, one begins with
a symmetric monoidal structure on hAeff(G) (or hA(G)) which arises from the product of finite G-sets.
Unfortunately, the categories FinO need not admit products in general. For example, the categories FinOF

associated to a family of subgroups of a group G usually do not have terminal objects.

Remark 2.36. The author actually does not know of an example of an inductive orbital category where
FinO does not admit nonempty finite products. If no such example exists, the discussion of the symmetric
monoidal structure on Mack(O,Ab) below could be simplified somewhat.

Nevertheless, the presheaf that a product would represent can always be defined, and this puts a
promonoidal structure on hAeff(O) which we now describe.

Definition 2.37. Given U, V ∈ hAeff(O), define a presheaf of sets (U × V ) : hAeff(O)op −→ Set by

(U × V )(T ) := {triples (S → T, S → U, S → V )}/ ∼

Here the maps are in FinO and two triples are equivalent if there is an isomorphism S
∼=→ S′ commuting with

all the specified maps. Functoriality comes from pullback and composition. This construction produces a
functor

× : hAeff(O)× hAeff(O) −→ PshSet(hA
eff(O))

(i.e. a profunctor hAeff(O)×2 → hAeff(O).)

Definition 2.38. The box product of abelian group valued Mackey functors M and N on O is defined by
left Kan extension and restriction via the diagram:

hAeff(O)× hAeff(O)

×
��

(M,N) // Ab× Ab
⊗ // Ab

PshSet(hA
eff(O))

×!
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hAeff(O)

OO

M2N

??

This gives Mack(O;Ab) the structure of a symmetric monoidal category. For a reference in much greater
generality than we need, see [BGS15].

Definition 2.39. The Burnside Mackey functor, A, is the unit for the symmetric monoidal structure
on Mack(O;Ab) defined above. Explicitly, it is given by

T 7→ Grothendieck group of the maximal subgroupoid of (FinO)/T with respect to q

Functoriality is given by pullback and composition.
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Definition 2.40. A Green functor is an associative algebra in Mack(O;Ab) with respect to the box
product. Given a Green functor R we let RModR denote the category of right modules over the associative
algebra R.

Example 2.41. For any X,Y ∈ SpO the assignment

FinO 3 T 7→ [↓T X, ↓T Y ]

extends to an abelian group valued Mackey functor on O. In the caseX = Y , composition endows this Mackey
functor with the structure of a Green functor, the endomorphism Green functor, denoted End(X). For
any Y , the Mackey functor [X,Y ] is a right End(X)-module in a canonical way.

Next we’ll need the condition that corresponds to the localization Pn.

Definition 2.42. Let W be an isotropic slice n-sphere and let T jump ∈ FinO denote the coproduct of all
(isomorphism classes) of n-jumps. We say that a right End(W )-module M is slice local if, for all T ∈ FinO,
the map

M(T ) −→M(T jump × T )

induced by the projection T jump × T → T is injective.

With these definitions in hand, we can prove the theorem.

Proof of Theorem 2.35. Given T ∈ FinO denote by End(W )T the Mackey functor

FinO 3 U 7→ [↑U↓U W, ↑T ↓T W ].

Note that evaluation at T gives an isomorphism:

HomEnd(W )(End(W )T ,M)
∼=−→M(T ). (∗)

So each module End(W )T is compact and projective, and together they detect isomorphisms. Let A0 denote
the full subcategory of RModEnd(W ) spanned by the objects End(W )T . Then A0 satisfies the hypotheses of
Proposition 2.30. Thus, the restricted Yoneda embedding

RModEnd(W ) −→ Psh×Set(A0)

is an equivalence of categories. On the other hand, we have a functor

Test〈W 〉 −→ A0

given by ↑T ↓T W 7→ End(W )T . This is an equivalence in view of the formula (∗) above together with the
induction-restriction adjunction.

So we have a commutative diagram

♥n
[W,−]

ww

π̂n

&&
RModEnd(W ) ∼=

// Psh×Set(A0) ∼=
// Modeln

By Theorem 2.29 we know that π̂n is an equivalence, hence so is [W,−]. The identification of Slicen as

RModloc
End(W ) is immediate from the definitions and the corresponding statement in Theorem 2.29.
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Remark 2.43. In this extended remark we place the elementary result in this section into the broader setting
of parameterized category theory. We will assume the reader is familiar with the notions of parameterized
category theory found in [Bar+16; Nar16]. The reader unfamiliar or uninterested in these ideas can safely
skip this remark.

First notice that, given a Green functor R, we can define an O-category RModR by the assignment

O 3 T 7→ RModresTR.

This O-category is O-semiadditive in the sense of [Nar16, 5.3]. A priori, homomorphisms in an O-category
form an object in SetO, but O-semiadditivity canonically promotes these to elements in Mack(O;CMon), i.e.
Mackey functors valued in commutative monoids. In fact, each of the commutative monoids in question are
group-like, so we’ll call such an O-category ‘O-additive.’ Finally, each of the fibers is abelian, and in this
case we’ll say that the O-category is O-abelian.

Now, in general, given a cocartesian section C : Oop → A of an O-abelian category A, we get an O-functor

HomA(C,−) : A −→ Mack(O;Ab)

Using this functor we have natural candidates for the notions of (i) O-compact, (ii) O-projective, and (iii)
being an O-generator. The key point is to use O-indexed colimits in place of ordinary colimits for each
definition. Now the proof of Proposition 2.30 carries over essentially verbatim to prove:

• Suppose A is an O-presentable, O-abelian O-category with an O-compact, O-projective, O-generator
C. Then the O-functor

Hom(C,−) : A −→ RModEnd(C)

is an equivalence of O-categories.

The evident generalization to a family of O-generators also applies, as does the analogue of the Gabriel-
Kuhn-Popescu theorem. All of the proofs are straightforward adaptations of the classical ones, once you’ve
pinned down the proper definitions (as above).

2.5 Digression: Modules over geometrically split Green functors

The Green functor End(W ) for an isotropic slice n-sphere W has several special features which simplifies its
category of modules. We single out one of these in this section and study the resulting bit of algebra.

Definition 2.44. Given an abelian group valued Mackey functor M and an orbit T ∈ O. For maps of orbits
U → T denote the associated transfer by

trTU : M(U)→M(T ).

Then we define an abelian group MΦT by:

MΦT :=
M(T )

〈im(trTU )〉U→T
.

Remark 2.45. The action of Aut(T ) on M(T ) descends to an action on MΦT .

Remark 2.46. If R is a Green functor, then RΦT is a ring because the submodule we quotient by is an
idea. Similarly, if M is a right R-module, then MΦT is naturally a right RΦT -module.

Example 2.47. We will prove below (Lemma 2.68) that ifW is an isotropic slice n-sphere, then End(W )ΦT =
End(WΦT ).
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If one unwinds the definition of a module over a Green functor, one finds the formula:

m · trTU (r) = trTU (resTU (m) · r).

Thus, the action of transferred elements is somewhat redundant. Of course, it is not usually possible to
systematically express an element r ∈ R(T ) as the sum of transferred elements and an element not in the
image of any transfer. We will show below (Lemma 2.69) that this does happen our case of interest. This
leads us to the following definition.

Definition 2.48. A Green functor R is called geometrically splittable if, for all T ∈ O, the ring map

R(T ) −→ RΦT

admits an Aut(T )-equivariant section. A geometrically split Green functor is a geometrically splittable
Green functor R equipped with chosen splittings sT : RΦT −→ R(T ) as above.

Example 2.49. The Burnside Mackey functor (2.39) A is geometrically split. Indeed, AΦT = Z with trivial
Aut(T )-action, so there is a unique splitting of the augmentation A(T )→ Z.

If M is a module over a geometrically split Green functor, then restriction along sT gives each M(T )
the structure of a module over RΦT . Enumerating the remaining structure on M visible to the rings RΦT ,
one is lead to define the category in Definition 2.51 below. We will need a little notation before making this
definition, however.

Definition 2.50. If M is an abelian group and S is a set, we denote by M ⊗ S and MS the abelian groups
M ⊗Z{S} and Hom(Z{S},M), respectively. There is a canonical map M ⊗S →MS given by sending m⊗s
to the function with value m at s and zero otherwise; thus we may view elements of M ⊗ S as elements in
MS .

If a finite group H acts on M and S, define

trace : M ⊗ S −→MS

by m⊗ s 7→
∑
h∈H hm⊗ hs. This induces a map by the same name:

trace : (M ⊗ S)H −→
(
MS

)H
.

Definition 2.51. Let R be a geometrically split Green functor. We define the category of (right) RΦ-
modules, RModRΦ , to consist of objects M which consist of the following data:

(i) For each [T ] ∈ PO an RΦT -Aut(T )-module M(T );

(ii) (Restrictions and transfers) For each pair [T ] ≥ [T ′], maps of RΦT ′ -Aut(T ′)-modules:

(M(T )⊗Hom(T, T ′))Aut(T ) −→M(T ′)

M(T ′) −→
(
M(T )Hom(T,T ′)

)Aut(T )

of RΦT ′ -Aut(T ′)-modules.

subject to the following conditions:

• (Double-coset formula) For each pair, [T ] ≥ [T ′], the diagram

(M(T )⊗Hom(T, T ′))Aut(T )
trace //

((

(
M(T ′)Hom(T,T ′)

)Aut(T )

M(T ′)

66

commutes;
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• (Composition of restrictions and transfers) For each triple [T0] ≥ [T1] ≥ [T2], the diagrams[
(M(T0)⊗Hom(T0, T1))Aut(T0) ⊗Hom(T1, T2)

]
Aut(T1)

//

∼=

��

(M(T1)⊗Hom(T1, T2))Aut(T1)

��
(M(T0)⊗Hom(T0, T2))Aut(T0)

// M(T2)

M(T2) //

��

(
M(T0)Hom(T0,T2)

)Aut(T0)

��(
M(T1)Hom(T1,T2)

)Aut(T1) //
[((

M(T0)Hom(T0,T1)
)Aut(T0)

)Hom(T1,T2)
]Aut(T1)

commute.

Remark 2.52. Each object M is, in particular, a Mackey functor. The definition above just keeps track of
the interaction with the RΦT -module structures.

By design, there is a forgetful functor:

RModR −→ RModRΦ .

Theorem 2.53. The forgetful functor
RModR −→ RModRΦ

is an equivalence.

As usual, the proof relies on induction over the poset PO. To set up this induction, we’ll need to extend
the functors ((jF)!, j

∗
F, (jF)∗) and (i∗

F̃
, (i

F̃
)∗, (iF̃)!) to the setting of modules over Green functors.

We begin by recalling a few definitions.

Definition 2.54. [BR70; Lur09] Suppose we are given a diagram of categories

C′

ψ∗

��

G̃ // C

φ∗

��
D′

G
// D

commuting up to a specified natural isomorphism η : φ∗ ◦ G̃
∼=→ G ◦ ψ∗. We say that the diagram is left

adjointable or satisfies the left Beck-Chevalley condition if G and G̃ admit left adjoints F and F̃ and
the exchange transformation

F ◦ φ∗ → F ◦ φ∗ ◦ G̃ ◦ F̃
η∼= F ◦G ◦ ψ∗ ◦ F̃ → ψ∗ ◦ F̃

is an isomorphism. We say the diagram is right adjointable if the functors G and G̃ admit right adjoints
H and H̃ and the exchange transformation

ψ∗ ◦ H̃ → H ◦G ◦ ψ∗ ◦ H̃
η−1

∼= H ◦ φ∗ ◦ G̃ ◦ H̃ → H ◦ φ∗

is an isomorphism.
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Remark 2.55. A square is right adjointable if and only if the square becomes left adjointable upon applying
the functor (−)op : Cat→ Cat.

The following lemma is elementary and left to the reader.

Lemma 2.56. Suppose we have a square of functors:

C′

ψ∗

��

G̃ // C

φ∗

��
D′

G
// D

commuting up to a specified natural isomorphism. Suppose further that G and G̃ admit left adjoints F and
F̃ , respectively and that ψ∗ and φ∗ admit right adjoints ψ∗ and φ∗, respectively. Then the above square is
left adjointable if and only if the square

C′
ψ∗ //

G̃
��

D′

G
��

C
φ∗
// D

is right adjointable.

Construction 2.57. Let F ⊆ PO be upward closed with downward closed complement F̃ and suppose R is
a Green functor. Denote by RF the restriction of the Green functor to OF and by ΦFR the Green functor
on O

F̃
defined by

(
i
F̃

)∗
R (as in Notation 1.33).

Restriction defines a functor:
j∗ : RModR −→ RModRF

.

Extension by zero defines a functor:

i∗ : RModΦFR −→ RModR.

Repeated use of the adjoint functor theorem produces a string of adjoints:

RModRF

j! //

j∗ //
RModR

j∗oo

i∗ //

i! //
RModΦFR

i∗oo

Any R-module M has an underlying Mackey functor, and a priori it is not clear how the functors above
compare to the similarly named functors applied to the underlying Mackey functor. Luckily, the two notions
agree.

Proposition 2.58. The formation of the functors (j!, j
∗, j∗) and (i∗, i∗, i

!) on modules commutes with pas-
sage to underlying Mackey functors.

Proof. The forgetful functor
φ : RModR −→ Mack(O;Ab)

admits a left adjoint, given by (−)2R, and a right adjoint, given by Hom(R,−). The formation of j∗

commutes with both of these, and the formation of i∗ and i∗ commutes with the first of these. The result
now follows by repeated application of Lemma 2.56.

Warning 2.59. The category RModR is not a recollement of RModRF
and RMod

RΦF̃ in the sense of Defi-

nition 1.1, in general, because i∗ fails to be left exact in general. Instead, it is an example of a recollement
of abelian categories as defined, for example, in [FP04], or in Definition 2.60 below.
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We would like to make an inductive argument by showing that, in the geometrically split case, the
theorem is true for OF and for O

F̃
and then conclude the result for O. Unfortunately, recollements of abelian

categories are less well-behaved than their ∞-categorical cousins, and it is not true in general that a map
of recollements is an equivalence if it is so on each piece of the recollement (see [FP04, 2.2]). However, this
equivalence criterion is true under further hypotheses on the recollement.

Definition 2.60. [FP04] Suppose we have a collection of additive functors between abelian categories

A1

j! //

j∗ //
A

j∗oo

i∗ //

i! //
A0

i∗oo

where each functor is left adjoint to the functor below it. We say this presents a recollement of abelian
categories if the following additional conditions are satisfied:

(i) The functors j!, j∗, and i∗ are fully faithful,

(ii) The functor i∗ has essential image precisely those objects a ∈ A such that j∗a = 0.

If moreover each category has enough projectives, we say that the recollement of abelian categories is pre-
hereditary if, for any projective V ∈ A0, we have (L2i

∗)(i∗V ) = 0.

We will also require one additional functor which only exists when R is geometrically split.

Construction 2.61. Suppose R is geometrically split, and F̃ ⊆ PO is a set of minimal elements. We define
a functor

r : RModR −→ RModΦFR

as follows. For an R-module M , the underlying Mackey functor of rM is the restriction ψ∗
F̃
M of M to O

F̃
.

Since PO
F̃

is a collection of pairwise incomparable elements, the Green functor ΦFR amounts to the data

of the rings RΦT with Aut(T ) action as [T ] ranges over the elements of F̃. A module is just a module over
each of these rings with compatible Aut(T )-action. In our case, we use the RΦT -Aut(T )-module structure
on (rM)(T ) = M(T ) defined by restricting the R(T )-module structure along sT .

Example 2.62. In the case R = A is the Burnside Mackey functor, r = ψ∗
F̃

is just given by restriction.

Lemma 2.63. The functor r defined above is exact and gives a retract of i∗. Moreover, r admits a left
adjoint, r!, which lifts the functor (ψ

F̃
)! on underlying Mackey functors.

Proof. Exactness can be checked pointwise, where it is clear. The R(T )-module structure on i∗M(T ) auto-
matically factors through the quotient to an RΦT -module structure, since the source of the relevant transfer
maps on M is zero by the definition if i∗. The claim that r is a retraction now follows from the fact that the
composite

RΦT sT−→ R(T ) −→ RΦT

is the identity, by assumption.

Proposition 2.64. Let R be a geometrically split Green functor, F̃ ⊆ PO a collection of minimal elements
with upward closed complement F. Then the string of adjoints from Construction 2.57 presents a pre-
hereditary recollement of abelian categories.

Proof. The fact that we have a recollement of abelian categories is straightforward, so we prove that the
recollement is pre-hereditary. We claim that the following sequence of functors RModΦFR −→ RModR is
exact:

0→ j!j
∗r! → r! → i∗ → 0. (∗)
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(Here r! → i∗ is adjoint to id ∼= ri∗.) Suppose for a moment we have established this exactness. Then we can
mimic the argument in [FP04, 8.5] to establish the pre-hereditary condition. To elaborate, we first apply i∗

to obtain an exact sequence
(L2i

∗)r! → (L2i
∗)i∗ → (L1i

∗)j!j
∗r!

and then evaluate on a projective V ∈ RModΦFR. The first term vanishes because r! preserves projectives,
being the left adjoint of an exact functor. The last term vanishes because the composite (L1i

∗)j! always
vanishes in a recollement. (Indeed, this follows formally from the fact that j! preserves projectives together
with the identity i∗j! = 0.) Thus the middle term vanishes, which was to be shown.

So we are left with checking the exactness of (∗). Note that for any recollement of abelian categories, we
have an exact sequence

j!j
∗ → id→ i∗i

∗ → 0.

Since r! is right exact, the sequence
j!j
∗r! → r! → i∗i

∗r! → 0

is exact. But i∗r!
∼= id since it is adjoint to ri∗ ∼= id, so we learn that (∗) is exact except possibly at the first

nontrivial term. In other words, it suffices to show that

j!j
∗r! → r!

is injective.
This is detected on underlying Mackey functors, so we need only check the injectivity of

j!j
∗(ψ

F̃
)! → (ψ

F̃
)!

We do this by evaluating on each T ∈ O. If T /∈ F̃, then i∗ will evaluate to zero, and it is always the case
that j!j

∗ → id is an equivalence for such T .
So we are left with showing that, for any M ∈ Mack(O

F̃
;Ab), and any T ∈ F̃, the map

(j!j
∗(ψF)!M)(T )→ ((ψ

F̃
)!M)(T )

is injective. In fact, we will show that it admits a natural retract. To construct this retract, we will need
to unpack the left Kan extensions taking place on each side. We set-up some temporary notation to handle
this.

• We will denote morphisms in effective Burnside categories by  to remind the reader that they are
represented by spans.

• Let K denote the category whose objects are strings V  U  T where V ∈ FinO
F̃

, U ∈ FinOF
, and

the morphisms take place in hAeff(O). The arrows are commutative diagrams:

V
f //

��

V ′

��
U

��

g // U ′

~~
T

where f is a morphism in hAeff(O
F̃

) and g is a morphism in hAeff(OF).
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• Let K ′ denote the category whose objects are arrows V  T in hAeff(O) where V ∈ FinO
F̃

. Morphisms
are commutative diagrams:

V
f //

��

V ′

~~
T

where f belongs to hAeff(O
F̃

).

Composition provides a functor K → K ′. From the definitions of j!, j
∗, and (ψ

F̃
)! we get:

colimKM(V ) //

∼=
��

colimK′M(V )

∼=
��

(j!j
∗(ψ

F̃
)!M)(T ) // ((ψ

F̃
)!M)(T )

We now decompose K ′ into two pieces.

• Let K ′0 denote the full subcategory of K ′ spanned by objects of the form V ← S → T where S ∈ FinO
F̃

.

Note that, since F̃ consists of minimal elements, this forces [S] = [V ] = [T ].

• Let K ′1 denote the full subcategory spanned by objects of the form V ← S → T where S ∈ FinOF
.

We have a functor K ′1 → K given by

(V ← S → T ) 7→ (V ← S = S = S → T )

and hence a natural factorization:

colimK′1
M(V )

tt ��
colimKM(V ) // colimK′M(V )

We are thus reduced to proving the following two claims:

(i) The category K ′ decomposes as a disjoint union K ′ = K ′0
∐
K ′1 so that the right vertical map above

has a natural splitting.

(ii) The functor K ′1 → K is final, so that the diagonal arrow above is an isomorphism.

The statement (i) follows from the fact that the morphisms in K ′ between (V  T ) and (T  T ) (where
the latter lies in K ′0) involve a morphism in FinO

F̃
V  T or T  V . In order to make the resulting diagram

commute, we conclude that V must be of the form V ← S → T where S ∈ FinO
F̃

, and hence (V  T ) /∈ K ′1.
The statement (ii) follows from the fact that K ′1 → K is right adjoint to the map K → K ′1.

We now have a good understanding of the left hand side of Theorem 2.53, so we turn to the right hand
side. The category RModRΦ is built by iterated application of a procedure due to Macpherson-Vilonen
[MV86].

Definition 2.65 ([MV86]). Let U and Z be abelian categories, and let ξ : F → G be a natural transformation
between two additive functors F,G : U→ Z. Define a category A(ξ) as follows:
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• Objects consist of pairs U ∈ U and Z ∈ Z equipped with a factorization:

FU
ξ //

!!

GU

Z

==

• Morphisms are maps of pairs (U,Z)→ (U ′, Z ′) commuting with the chosen factorizations of ξ.

We say that A(ξ) is the MacPherson-Vilonen recollement associated to ξ.

Construction 2.66. Let F̃ ⊆ PO be the set of minimal elements, with upward closed complement F,
and let R be geometrically split, let i∗ and j∗ be the usual functors associated to this situation. Define
U := RModj∗RΦ . Define Z := RModi∗RΦ . Define F,G : U→ Z for T ′ ∈ F̃ by

(FM)(T ′) =
⊕

[T ]>[T ′]

(M(T )⊗Hom(T, T ′))Aut(T )

(GM)(T ′) =
∏

[T ]>[T ′]

(
M(T )Hom(T,T ′)

)Aut(T )

and use the trace to define a natural transformation ξ : F → G.

By design, we get the following proposition:

Proposition 2.67. With notation as above, the functor RModRΦ → A(ξ) is an equivalence of categories.

Proof of Theorem 2.53. We induct on the size of PO. If PO is discrete, the theorem is clear. For the inductive
step, let F̃ ⊂ PO be the set of minimal elements in PO. Then the forgetful functor

RModR −→ RModRΦ

respects the recollement data on source and target. It is an equivalence on each stratum by the induction
hypothesis. By Proposition 2.64 and [FP04, Prop. 8.6] combined with Proposition 2.67, we know that both
the source and target of the forgetful functor are pre-hereditary. Now Theorem 8.4 in loc. cit. implies that
the forgetful functor is an equivalence of categories, which was to be shown.

2.6 Slices as twisted Mackey functors

In order to apply the results from the previous section, we first need to compute End(W )ΦT for W an
isotropic slice n-sphere, and show that End(W ) is geometrically splittable, at least for some choice of W .
These statements follow by combining the next two lemmas.

Lemma 2.68. Let W be an isotropic slice n-sphere, and T ∈ O be arbitrary. Then taking geometric fixed
points of endomorphisms gives an Aut(T )-equivariant isomorphism

End(W )ΦT −→ End(WΦT ).

Proof. The map is Aut(T )-equivariant by functoriality of geometric fixed points, so we may as well replace

O by O/T so that T is terminal in O. This leads to a recollement situation for F̃ = {T} and a fiber sequence

j!j
∗W −→W −→ i∗W

ΦT
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First, let f : WΦT −→WΦT be an endomorphism, and consider the diagram of solid arrows:

W //

��

i∗W
ΦT

i∗f

��
W // i∗WΦT // Σj!j∗W

The composite W → Σj!j
∗W is null by Proposition 2.22, so the dotted arrow exists. Thus,

[W,W ]→ [WΦT ,WΦT ]

is surjective.
Now suppose f : W → W is an endomorphism such that fΦT = 0. That is, we have a diagram of solid

arrows:
W

f

��||

// i∗WΦT

0

��
j!j
∗W // W // i∗WΦT

The dotted arrow exists since the composite W → W → i∗W
ΦT is null by commutativity of the diagram.

Thus f factors as a composite:
W → j!j

∗W →W.

Let S =
∐
U∈O−{T} U ∈ FinO. By Proposition 1.40, there is a natural equivalence

hocolim
∆op

(indS ◦ resS)◦(n+1)j∗W ∼= j!j
∗W.

In particular, there is a map indSresSj
∗W → j!j

∗W and the cofiber has an associated graded which is a
wedge of nontrivial suspensions of slice n-connective objects. By Proposition 1.40 again, we deduce that f
factors as

W
g−→ indSresSW

ε−→W,

where the second map is the counit of the adjunction. Now, by the definition of the unit of an adjunction,
we may further factor f as a composite:

W
η−→ indSresSW

indS g̃−→ indSresSW
ε−→W

where g̃ : resSW → resSW is the adjoint of g. Breaking S into its component orbits, we learn that f is a
sum of maps each transferred up from U ∈ O− {T}.

Putting it all together, we’ve shown that if fΦT = 0 then f lies in the transfer ideal in End(W )(T ). The
other inclusion always holds, so the result follows.

Lemma 2.69. There exists an isotropic slice n-sphere W such that, for any T ∈ O, the map

[↓TW, ↓TW ]→ [WΦT ,WΦT ]

admits an Aut(T )-equivariant ring section.

Proof. Let’s temporarily call an O-spectrum good if it satisfies the conclusion of the lemma. Revisiting the
proof of we see that it is enough to prove the following closure properties for the class of good O-spectra.

(i) If U ∈ O is minimal, and X ∈ SpO/U is good, then so is indUX ∈ SpO.

(ii) If X is good and U ∈ O is arbitrary, then the cofiber of ↑U↓UX → X is also good.
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(iii) If X is good and U ∈ O is arbitrary, then the fiber of X →↑U↓UX is also good.

Claim (i) follows from the more general observation that if X is good then so is U+∧X for any set U because
taking geometric fixed points commutes with colimits.

To prove (ii), denote the cofiber by Y . We need to find, for each T , an Aut(T )-equivariant ring section
of [↓T Y, ↓T Y ]→ [Y ΦT , Y ΦT ]. The argument depends on the relationship between T and U .

• If [U ] ≤ [T ], then the map
↓T ↑U↓UX →↓T X

has a functorial splitting, so ↓T Y is an Aut(T )-equivariant summand of ↓T ↑U↓UX and the conclusion
follows.

• If [U ] and [T ] are incomparable, then ↓T ↑U= 0 and the conclusion is vacuously satisfied.

• If [T ] ≤ [U ] then we have
↓T ↑U↓U=↑TU↓TU↓T

Naturality of the counit of an adjunction, together with (homotopical) functoriality of the cofiber
provides us with maps

map (↓T X, ↓T X) −→ map
(
↑TU↓TU↓T X →↓T X, ↑TU↓TU↓T X →↓T X

)
−→ map(↓T Y, ↓T Y )

Taking the composite on π0 yields:
[↓T X, ↓T X]→ [↓T Y, ↓T Y ]

and naturality ensures that the Aut(T ) action and ring structure (from composition) are preserved. Finally,
in this case Y ΦT = XΦT so precomposing with the assumed splitting [XΦT , XΦT ]→ [↓T X, ↓T X] gives the
result.

Claim (iii) is proved in the same way as claim (ii).

Remark 2.70. This proof can be modified to treat the isotropic slice spheres constructed via the method
described in Remark 2.13. As a corollary of our hunch in that remark, we guess that every isotropic slice
n-sphere satisfies the conclusion of the preceding lemma. We have not tried to prove this.

Remark 2.71. If WΦT is a single sphere, the splitting trivially exists at T . If T is maximal, then the
splitting also always exists because ↓TW = WΦT . Combining these observations we learn that if W is a slice
n-sphere with the property that WΦT is a single sphere for non-maximal T , then W satisfies the conclusion
of the above lemma. This is enough to cover the examples in the next section, for example.

These results, combined with those of §2.5 and Theorem 2.35, now reduce the study of Slicen to the
study of Mackey functors equipped with compatible Aut(T )-equivariant actions of the rings End(WΦT ).
Since WΦT is a wedge of spheres of a single dimension, this endomorphism ring is abstractly equivalent to
the matrix ring Mk(Z). Moreover, the action of Aut(T ) comes from an action on Z⊕k.

We now apply some Morita theory to our problem.

Lemma 2.72. Let J be a finitely generated, free abelian group with an action of a finite group G. Let
R = End(J) with its induced left action of G by conjugation. Denote by J∗ the right R-module HomZ(J,Z)
with its left, G-action by conjugation (which intertwines the R-module structure). Then the functors:

RModR-G −→ ModG

N 7→ N ⊗R J

ModG −→ RModR-G

M 7→M ⊗ J∗

are inverse equivalences of categories.
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Proof. This is immediate from classical Morita theory once one observes that the unit and counit of the
adjunction on underlying modules respect the prescribed G-actions. But, of course, they were defined so
that this is the case.

Definition 2.73. The category of n-twisted Mackey functors associated to an isotropic slice n-sphere
W with chosen splittings sT is the category whose objects consist of the following data:

• For each T ∈ O, an abelian group M(T ) with an action of Aut(T );

• The structure of an object in RModEnd(W )Φ on the collection {M(T ) ⊗ J∗T }.

Here JT = πν(n,T )W
ΦT . We denote by TwMackloc

n the full subcategory spanned by those n-twisted Mackey
functors with the property that, under the equivalence of Theorem 2.53, the associated End(W )-module is
slice local in the sense of Definition 2.42.

Remark 2.74. We can express the condition that an n-twisted Mackey functor be slice local directly as
follows. For each T ∈ O write T × T jump =

∐
Uα in FinO as a coproduct of orbits. Then an n-twisted

Mackey functor M(−) is slice local if and only if, for every T ∈ O, the sum of restriction maps

M(T ) ⊗ J∗T −→
⊕
α

M(Uα) ⊗ J∗Uα

induced by the projection T × T jump → T , is injective.

Remark 2.75. Notice that there are canonical isomorphisms

End(WΦT ) ∼= End(JT )

[WΦT , Sν(n,T )] ∼= J∗T

of Aut(T )-modules, given by assigning to a map between wedges of spheres its behavior on πν(n,T ).

Remark 2.76. We will often modify this definition somewhat by noting that giving an End(WΦT ′)-module
map

M(T ) ⊗ J∗T →M(T ′) ⊗ JT ′

is equivalent to giving a map of abelian groups

M(T ) ⊗ J∗T ⊗End(WΦT ′ ) JT ′ →M(T ′).

A similar observation applies to the restriction maps. Working out the relations between the maps presented
this way is more easily done in practice than in theory, as we will see in the next section.

Construction 2.77. Let W be an isotropic slice n-sphere with a prescribed splitting sT : End(WΦT ) →
End(↓TW ). Choose an Sν(n,T ) summand of the spectrum WΦT with corresponding idempotent e ∈
End(WΦT ) and retraction

pr : WΦT → Sν(n,T ).

Let W(T ) be the summand of ↓TW obtained from the image of e in End(↓TW ). Now define a map, for any

X ∈ SpO,
[W(T ), ↓T X]⊗ [WΦT , Sν(n,T )] −→ [↓TW, ↓T X].

Given an element f ⊗ g write g as prA where A : WΦT →WΦT is an endomorphism. Then

f ⊗ g 7→ (↓TW
sT (A)−→ ↓TW →W(T )

f−→↓T X).

Lemma 2.78. The map constructed in (2.77) is an End(WΦT )-isomorphism.

46



Proof. That this map is an isomorphism is a general fact that belongs to Morita theory: if e ∈ End(J) is
a full idempotent corresponding to a Z summand of J , then there is a canonical isomorphism of abelian
groups M · e ∼= M ⊗End(J) J . In our case, [↓TW, ↓T X] · e ∼= [W(T ), ↓T X] and the map in Construction 2.77
is precisely the composite

M · e⊗ J∗ ∼= M ⊗End(J) J ⊗ J∗ ∼= M

in our setting.

Warning 2.79. The source of the map in 2.77 does not usually have an obvious Aut(T )-action, and hence
must inherit one from the target. It is possible to compute what this action must be in terms of the action
on J , the chosen idempotent, and the action on [W(T ), ↓T X] designated by placing the trivial action on
W(T ). However, this is another procedure more easily carried out in practice than in theory.

Definition 2.80. Let W be an isotropic slice n-sphere with chosen splittings sT , and summands W(T ) of

each ↓TW arising from an Sν(n,T ) summand of WΦT . Then define

π̂n : SpO −→ TwMackn

by the assignment
X 7→ {[W(T ), ↓T X]}

equipped with the natural End(W )Φ-module structure on the collection

{[W(T ), ↓T X]⊗ [WΦT , Sν(n,T )]} ∼= {[↓TW, ↓T X]}.

Remark 2.81. Notice that π̂n as defined above contains essentially the same data as the previously defined
π̂n for the case of the testing subcategory generated by the W(T ). We hope this justifies our recycling of the
notation.

Finally, combining Theorem 2.53 and Theorem 2.35 we conclude:

Theorem 2.82. The functor π̂n yields an equivalence of adjoint pairs:

♥n
π̂n
∼=

//

Pn

��

TwMackn

Linj

��
Slicen

π̂n

∼= //

BB

TwMackloc
n

\\

3 Examples and special cases

We now apply the general theory of §2 to several examples. We begin in §3.1 by collecting together the
known results for G-spectra in general. Then, in §3.2 we compare our classification of slices for Cp with the
one due to [HY17]. Finally, in §3.3 we apply our machinery to a new example: the case of C4. The slices for
C4 are not all RO(C4)-graded suspensions of Eilenberg-MacLane spectra. As a result, the previous methods
for studying slices fail in this case and something like theory we’ve developed is necessary.
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3.1 G-spectra

In this section we will restrict attention to the original slice filtration on G-spectra, which we recall is the
one associated to the dimension function

ν(n,H) =

⌊
n

|H|

⌋
.

Remark 3.1. Statements about the regular slice filtration may be recovered from the equality⌈
n+ 1

|H|

⌉
− 1 =

⌊
n

|H|

⌋
.

That is, regular n-slices are the same as original (n− 1)-slices. We warn the reader that this does not mean
that the regular n-slice of a spectrum X is the same as its original (n− 1)-slice.

To test the effectiveness of our general theory, we show how to recover the previously known results about
the slice filtration which hold for an arbitrary group G. Of course, in many cases the original proof is simpler
or morally the same as the one given here, this is only meant to be a proof of concept.

Theorem 3.2. (i) ([HHR16; Hil11]) The functor Σkρ yields an equivalence

Σkρ : Slicen
∼=−→ Slicen+k|G|.

(ii) ([HHR16; Hil11]) The category of (k|G| − 1)-slices is equivalent via the functor

M 7→ Σkρ−1HM.

to the category of Mackey functors.

(iii) ([HHR16; Hil11]) The category of k|G|-slices is equivalent via the functor

M 7→ ΣkρHM

to the category of Mackey functors all of whose restriction maps are injective.

(iv) [Ull13] The category of (k|G| − 2)-slices is equivalent via the functor

M 7→ Σkρ−2HM

to the category of Mackey functors all of whose transfer maps are surjective.

(v) [HY17] Fix n, k ∈ Z. Let V be a virtual representation with the property that, for all H ⊆ G,

dim(V H) +

⌊
n

|H|

⌋
≥
⌊
n+ k

|H|

⌋
. (∗)

Then smashing with SV gives a functor

ΣV : SpG≥n −→ SpG≥n+k.

This functor is an equivalence if and only if equality holds in (∗).

Proof. Part (v) implies part (i) and both follow immediately from the formula (SV ∧X)ΦH ∼= (SV
H ∧XΦH).

Using this, the statements in (ii)-(iv) follow from the special case when k = 0. We treat each in turn.

(ii) The spectrum S−1 is an isotropic slice (−1)-sphere and (−1) is a jump for the dimension function.
The result now follows from, e.g, Theorem 2.35.
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(iii) The spectrum S0 is an isotropic slice 0-sphere and the only 0-jump is the trivial subgroup. So, by
Theorem 2.35, 0-slices are the full subcategory of the category of Mackey functors spanned by those
M such that the restriction

M(G/H)→M(G×G/H) = M(G)⊕|G/H|

is injective for all H ⊆ G. But this restriction map is given by the usual restriction M(G/H)→M(G)
followed by the diagonal, so it is injective exactly when the usual restriction is injective. Since any
restriction map followed by restriction to M(G) must be injective, we conclude that all restriction maps
are injective. The result follows.

(iv) If A is a (−2)-slice, then Σ2A ≥ 0 and so A is (−2)-connective in the usual sense by Lemma 1.59. On
the other hand, G/H+ ∧ Sn ≥ −1 for all n ≥ −1 by inspection of the floor function, so that πnA = 0
for n ≥ −1. We conclude that A ∼= Σ−2HM for some Mackey functor M . We claim that Σ−2HM is
a (−2)-slice if and only if M has surjective transfer maps.

Define WH by the cofiber sequence

S−2 tr−→ G/H+ ∧ S−2 −→WH .

Then WH is a slice (−2)-sphere. Indeed, the underlying cofiber sequence splits so that WΦe
H is a wedge

of copies of S−2, while, for K ( G, the middle term vanishes and WΦK
H is a (possibly vanishing) wedge

of copies of S−1. This is as prescribed by the floor function b−2/|H|c.
But now Proposition 2.22 implies that [Σ−1WH , X] = 0 for any X ≥ −2 and any subgroup H ⊆ G.
This forces the transfers in π−2X to be surjective by inspection of the long exact sequence associated to
the defining cofiber sequence for WH . We conclude that the condition on Mackey functors is necessary.

Now suppose that M is a Mackey functor. If W ≥ −1 then Σ2W ≥ 1 and, in particular, is 1-
connective by Lemma 1.59. So [Σ2W,HM ] = [W,Σ−2HM ] = 0. Thus, we always have Σ−2HM ≤ −2.
If moreover M has surjective transfer maps, we need to show that Σ−2HM is slice (−2)-connective.
To that end, consider the diagram in SpH for |H| 6= 1, where we use the usual recollement functors on

SpH associated to F̃ = {H/H}:

Σ−2j!j
∗ ↓HHM // Σ−2 ↓HHM // Σ−2i∗i

∗ ↓HHM // Σ−1j!j
∗ ↓HHM

Σ−2 ↑H1 ↓G1 HM

OO 66

(Notice that if H is the trivial subgroup, the top left object is zero and the vertical arrow does not
exist because we are using the fact that {1} ⊂ H is a proper subgroup to define that map.) Applying
πH−2 we get:

πH0 (j!j
∗ ↓HHM)

f // M(G/H) // π−2

(
Σ−2HM

)ΦH // 0

M(G)

OO 77

Since the diagonal arrow is surjective by assumption, so is f , and hence π−2

(
Σ−2HM

)ΦH
= 0 for all

nontrivial subgroups H ⊆ G. It follows that (Σ−2HM)ΦH ≥ −1 = b(−2)/|H|c when |H| 6= 1 so that
Σ−2HM ≥ −2, which was to be shown.
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Remark 3.3. Though it is the case that Slice−2 is a localization of the category of Mackey functors, it is
not true in general that ♥−2 is equivalent to the category of Mackey functors, as we will see in the next
section when G = Cp.

The above theorem is more than enough to recover the known description of slices for the group G = C2.

Corollary 3.4 ([HHR16; Hil11]). Let G = C2.

(i) The functor
πnρ−1 : Slice2n−1 −→ Mack(C2,Ab)

is an equivalence of categories.

(ii) The functor
πnρ : Slice2n −→ Mack(C2,Ab)

is fully faithful. The essential image consists of those Mackey functors M such that the restriction map

res : M(∗) −→M(C2)

is injective.

(iii) The slices of a G-spectrum X are determined by the formulae:

πnρ−1P
2n−1
2n−1X = πnρ−1X.

πnρP
2n
2nX =

πnρX

ker(res)
.

3.2 Cp-spectra

By the results in §3.1, we can already deduce a description of the all the categories of slices for Cp-spectra.
We find, as in [HY17], that a description is possible purely in terms of RO(Cp)-graded homotopy Mackey
functors. In this section we will employ the following notation:

• We fix an odd prime p.

• We fix a generator γ of Cp.

• We denote by λ the 2-dimensional real representation of Cp where γ acts by rotation through the angle
2π/p.

• Given a Mackey functor M for Cp valued in abelian groups, we denote by tr(M) the sub-Mackey
functor generated under the transfer by M(Cp). Equivalently, tr(M) is defined by the exact sequence:

0→ tr(M)→M → ΦCpM → 0.

Theorem 3.5 (Hill-Yarnall [HY17]). (i) The functor

πnρ−1 : Slicepn−1 −→ Mack(Cp,Ab)

is an equivalence of categories for all n ∈ Z.

(ii) The functor
πnρ+kλ : Slicepn+2k −→ Mack(Cp,Ab)

is fully faithful for all n ∈ Z and 0 ≤ k ≤ p− 3

2
. The essential image is spanned by those Mackey

functors all of whose restriction maps are injective.

50



(iii) The functor
πnρ+kλ−1 : Slicepn+2k−1 −→ Mack(Cp,Ab)

is fully faithful for all n ∈ Z and 1 ≤ k ≤ p− 1

2
. The essential image is spanned by those Mackey

functors all of whose transfer maps are surjective.

(iv) Given a Cp-spectrum X, its slices are determined by the formulae:

πnρ−1P
pn−1
pn−1X = πnρ−1X.

πnρ+kλP
pn+2k
pn+2kX =

πnρ+kλX

ker(res)
, 0 ≤ k ≤ p− 3

2
.

πnρ+kλ−1P
pn+2k−1
pn+2k−1X = tr

(
πnρ+kλ−1X

)
, 1 ≤ k ≤ p− 1

2
.

Proof. This follows from the Hill-Yarnall result on periodicity (seen above as Theorem 3.2(v)) applied to the
representation λ, together with parts (ii)-(iv) of that same theorem.

In this section we give a different take on this result. We find that, even though Slice1 is a localization of
the category of Mackey functors, it is not the case that ♥1 is equivalent to the category of Mackey functors.
We then describe explicitly how to move back and forth between the two different descriptions of Slice1.

We begin by recalling an example of an isotropic slice 1-sphere.

Definition 3.6. Let Sλ/2 denote the cofiber of the fold map

Cp+ → S0.

This is an isotropic slice 1-sphere by inspection.

The reason for the name is the following lemma.

Lemma 3.7. There is a cofiber sequence

Cp+ ∧ S1 → Sλ/2 → Sλ.

Proof. Let S(λ) denote the unit sphere in the representation λ. Let sk0S(λ) = {z : zp = 1} ∼= Cp. And
notice that we have a cofiber sequence

Cp+ → Cp+ → S(λ)+

corresponding to attaching the 1-cell Cp × I. Now use the cofiber sequence

S(λ)+ ↪→ D(λ)+ → Sλ

to induce a cell structure on Sλ. The attaching maps for this cell structure show that sk1S
λ = Sλ/2 (after

taking suspension spectra) and produce the desired cofiber sequence above.

From §2 we know that we must study the Weyl group action on the geometric fixed points. Luckily, there
aren’t many subgroups of Cp.

Lemma 3.8. Let J denote the augmentation ideal in Z[Cp]. Then there is a canonical Cp-equivariant
isomorphism

π1(↓1Sλ/2)
∼=−→ J.

Proof. Apply π1 to the cofiber sequence:

S0 →↓1Sλ/2 −→↓1Cp+ ∧ S1 −→ S1.
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Proposition 3.9. The category TwMack1 is equivalent to the category whose objects consist of the following
data:

• An abelian group M(Cp/Cp),

• A Cp-module M(Cp),

• Maps of abelian groups:
R : M(Cp/Cp) →M(Cp)

T : M(Cp) →M(Cp/Cp)

subject to the conditions:

• T ((1 + · · ·+ γp−1)x) = 0,

• (1 + · · ·+ γp−1)R(x) = 0,

• TR(x) = (1− γ)x.

Proof. By definition, an object of TwMack1 consists of

• An abelian group M(Cp/Cp),

• A Cp-module M(Cp),

• A commutative diagram:(
M(Cp) ⊗ J∗

)
Cp

trace //

T ′

''

(
M(Cp) ⊗ J∗

)Cp

M(Cp/Cp)

R′

77

We compute the top two pieces of this diagram in more explicit terms. Consider the exact sequence dual to
the one defining J :

0→ Z→ Z[Cp]→ J∗ → 0

The first map is given by 1 7→ (1 + · · ·+ γp−1). Since this is split exact as a sequence of abelian groups, we
get an exact sequence:

0→M(Cp) → Z[Cp]⊗M(Cp) →M(Cp) ⊗ J∗ → 0.

Now apply Cp coinvariants to get

M(Cp)/(1− γ)
(1+···+γp−1)−→ M(Cp) → (M(Cp) ⊗ J∗)Cp → 0.

The map Z[Cp]→ J given by 1 7→ (1− γ) induces an isomorphism J∗ ∼= J , and a similar argument with the
defining exact sequence for J yields(

M(Cp) ⊗ J∗
)Cp ∼= ker

(
(1 + · · ·+ γp−1) : M(Cp) →M

Cp
(Cp)

)
.

Tracing through the identifications transforms the trace map into (1− γ), and the result is proved.

52



For definiteness, we choose the Z-summand of J corresponding to the element (1 − γ) in the basis
(1− γ), (γ − γ2), ..., (γp−2 − γp−1). This produces a specific inclusion and retraction:

S1 →↓1Sλ/2 → S1

and hence natural transformations:
R : [Sλ/2,−]→ [S1, ↓1 (−)],

T : [S1, ↓1 (−)]→ [Sλ/2,−].

Combining the previous result with Theorem 2.82 gives:

Theorem 3.10. The assignment π̂1 given by

X 7→

[Sλ/2, X]

R

��
[S1, ↓1X]

T

UU

gives an equivalence of categories:

π̂1 : ♥1

∼=−→ TwMack1.

Under this equivalence, the subcategory Slice1 corresponds to precisely those objects of TwMack1 for which
the map R is injective.

We now describe how to move back and forth between this description and that of Hill-Yarnall.

Proposition 3.11. Let X be a Cp-spectrum. Then there is a natural isomorphism

im (tr : π1(↓1X)→ πλ−1(X)) ∼= cok
(
R : [Sλ/2, X]→ π1(↓1X)

)
.

In particular, the 1-twisted Mackey functor associated to X determines tr(πλ−1X) and vice-versa.

Proof. This follows from the exact sequence associated to the cofiber sequence:

Sλ−1 → Cp+ ∧ S1 → Sλ/2 → Sλ.

3.3 C4-spectra

In this section we will see some phenomena not covered by previous techniques. To orient the reader,
we begin with a counterexample to the statement that every slice is an RO(G)-graded suspension of an
Eilenberg-MacLane spectrum.

Counterexample 3.12. Let M denote the Mackey functor for C2 which is a copy of Z concentrated at
[C2/C2]. Let σ denote the sign representation of C2. Then define

A := ↑C4 ΣHZ ∨ ↑C4

C2
ΣσHM.

Since slices are preserved under induction, A is a 1-slice for C4. Now suppose V is a virtual representation of
C4 with the property that Σ−VA is an Eilenberg-MacLane spectrum. The collection of Eilenberg-MacLane
spectra is closed under retracts and restriction, from which we conclude that the virtual dimension of V is
1 and that ↓C2 V makes

Σσ−↓C2
VHM
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an Eilenberg-MacLane spectrum. Since M is concentrated on [C2/C2], it only sees the fixed points of the
representations we suspend by. That is, we may conclude that Σ−aHM is an Eilenberg-MacLane spectrum,
where a is the (virtual) dimension of the fixed points of V . This spectrum is nonzero, and an Eilenberg-
MacLane spectrum, which means π0 6= 0. This forces a = 0. There aren’t many representations of C2 with
underlying dimension 1 and fixed point dimension 0, so we conclude that ↓C2

V is equivalent to the sign
representation σ. But there is no virtual real representation of C4 which restricts to the regular representation
of C2, so no such V exists.

We now proceed with the program from §2 to study slices for C4.

Construction 3.13. Let S(λ) denote the unit sphere in the representation λ. Then it has a cell structure
with sk0S(λ) = {z : z4 = 1}, and sk1S(λ) = S(λ) obtained by attaching a (C4×D1)-cell. We get an induced
cell structure on Σ∞(D(λ)/S(λ)) ∼= Sλ and define Sλ/2 as the 1-skeleton. Notice that this construction
produces cofiber sequences:

C4+ → S0 → Sλ/2,

C4+ ∧ S1 → Sλ/2 → Sλ.

We have already noted that the cofiber cof(G+ → S0) is always an isotropic slice 1-sphere. Indeed, all
of the geometric fixed points for proper subgroups are just S0 (with trivial Weyl group action), while the
underlying spectrum is a wedge of (|G| − 1) copies of S1.

The following is proved exactly as in Lemma 3.8.

Lemma 3.14. There is a canonical C4-equivariant isomorphism

π1(↓1Sλ/2) ∼= J := ker
(
Z[C4]

ε−→ Z
)

Now we can give a concrete description of TwMack1.

Proposition 3.15. The category TwMack1 is equivalent to the category whose objects consist of the data of
the diagram of abelian groups:

M(C4/C4)

R
C4
C2

��
M(C4/C2)

R
C2
1

��

T
C4
C2

TT

M(C4)

T
C2
1

TT

Where M(C4) is a C4-module, M(C4/C2) is a C4/C2-module, and the maps are additive and subject to the
following relations:

• (Group action and restrictions)
(1 + γ2) ·RC2

1 = 0

(1− γ2) ·RC4

C2
= 0

(1 + γ + γ2 + γ3) ·RC2
1 RC4

C2
= 0

• (Group action and transfers)
TC2

1 ◦ (1 + γ2) = 0

TC4

C2
◦ (1− γ2) = 0

TC4

C2
TC2

1 ◦ (1 + γ + γ2 + γ3) = 0
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• (Double coset formulae)
RC2

1 TC2
1 = (1− γ)

RC4

C2
TC4

C2
= (1 + γ)

RC2
1 RC4

C2
TC4

C2
TC2

1 = (1− γ)

Under this equivalence, the category of 1-slices is equivalent to the subcategory of those diagrams for which
the map

M(C4/C4)

(R
C4
C2
,R
C4
1 )

−→ M(C4/C2) ⊕M(C4)

is injective.

Proof. Arguing as in the case of Cp, one establishes isomorphisms:

(M ⊗ J∗)C2
∼=↑C4/C2 (M/(1 + γ2)), (M ⊗ J∗)C2 ∼=↑C4/C2 (ker((1 + γ2) : M →M).

(M ⊗ J∗)C4
∼= M/(1 + γ + γ2 + γ3), (M ⊗ J∗)C4 ∼= ker((1 + γ + γ2 + γ3) : M →M)

and does a diagram chase.

Now we establish the link with homotopy theory.

Lemma 3.16. There is a C2-equivalence

↓C2
Sλ/2 ∼= Sτ∨ ↑C2

1 S1.

Proof. As a C2-set, C4+ = (C2 q C2)+. It follows that the cofiber cof(C2+ → S0) ∼= Sτ is a summand, and
the remaining piece is the cofiber cof(C2+ → 0) which is ↑C2

1 S1.

While this splitting does not behave nicely with respect to the (C4/C2)-action, it does tell us what groups
one needs to compute. As in the previous section, the element (1− γ) ∈ J together with the standard basis
(γi − γi+1) of J gives a splitting:

S1 →↓1Sλ/2 → S1.

We get the following theorem as a corollary of our main results:

Theorem 3.17. The assignment

X 7→

[Sλ/2, X]

R
C4
C2
��

[Sτ∨ ↑C2 S1, ↓C2X]

R
C2
1

��

T
C4
C2

UU

[S1, ↓C4X]

T
C2
1

UU

gives an equivalence of categories

♥1

∼=−→ TwMack1.

Under this equivalence, the 1-slice of a spectrum is computed by forcing RC2
1 ⊕R

C4

C2
to be injective.
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