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Comparing cyclotomic structures on different models for
topological Hochschild homology

Emanuele Dotto, Cary Malkiewich, Irakli Patchkoria, Steffen Sagave and Calvin Woo

Abstract

The topological Hochschild homology THH(A) of an orthogonal ring spectrum A can be defined
by evaluating the cyclic bar construction on A or by applying Bökstedt’s original definition
of THH to A. In this paper, we construct a chain of stable equivalences of cyclotomic spectra
comparing these two models for THH(A). This implies that the two versions of topological cyclic
homology resulting from these variants of THH(A) are equivalent.

1. Introduction

Topological cyclic homology (TC) was introduced by Bökstedt, Hsiang and Madsen in the
influential paper [6]. It is the target of a cyclotomic trace map from algebraic K-theory, and
the study of TC and the cyclotomic trace map has led to many successful computations in
algebraic K-theory (see, for example, [12]). In [6], TC was defined for so-called functors with
smash products F . The first step of the definition is to form Bökstedt’s topological Hochschild
homology THH(F ) [5]. This is the realization of a cyclic object, which is at each simplicial
level a homotopy colimit of loop spaces of smash products of the values of F . The S1-spectrum
THH(F ) admits certain ‘cyclotomic’ structure maps. These give rise to a diagram of fixed point
spectra of THH(F ), and TC(F ) is defined to be the homotopy limit of this diagram.

Soon after the invention of TC, categories of spectra with a structured smash product
were introduced, including the categories of symmetric [15] and orthogonal spectra [22]. In
these categories, functors with smash product can be expressed as ring spectra, which are by
definition monoids with respect to the smash product. This viewpoint allows for a conceptually
simpler definition of topological Hochschild homology: Under a mild cofibrancy hypothesis on
a ring spectrum A, it can be defined to be the cyclic bar construction Bcy(A). This is the
realization of a cyclic object given in degree q by A∧(q+1), the (q + 1)-fold power of A with
respect to the smash product.

For many years, it was not known how to equip the cyclic bar construction Bcy(A) with a
cyclotomic structure so that it can be used as a basis for the definition of TC(A). This situation
changed through progress on the understanding of equivariant orthogonal spectra made in
recent years: Based on the results about norm constructions and geometric fixed points obtained
by Hill, Hopkins and Ravenel [13], Angeltveit et al. [2] defined a cyclotomic structure on the
cyclic bar construction Bcy(A) of a sufficiently cofibrant orthogonal ring spectrum A. Using a
fibrant replacement functor introduced by Blumberg and Mandell [4], this cyclotomic structure
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leads to a definition of TC(A). Independent of this, Stolz [31] studied equivariant orthogonal
spectra by implementing a flat (or S-) model structure. Employing a fibrant replacement functor
from Kro’s thesis [16, § 5.1], Stolz’s work also leads to a construction of TC(A) based on the
cyclic bar construction, see [8, Section 4.6.1; 31, Section 3.6.1].

The first main result of the present paper is that the cyclotomic spectrum coming from
Bcy(A) is equivalent to the cyclotomic spectrum THH(A) considered in [6].
Theorem 1.1. Let A be a flat orthogonal ring spectrum. Then there is a chain of stable

equivalences of cyclotomic spectra

Bcy(A) → thh(shA) ← THH(A)

relating the cyclic bar construction and Bökstedt’s model for THH.

In the theorem, being flat is a mild cofibrancy assumption on the underlying spectrum
that is in particular satisfied by cofibrant associative and cofibrant commutative orthogonal
ring spectra.

We will explain briefly the relationship between this comparison and earlier work. On the
level of topological Hochschild homology, Bcy(A) has been compared to Bökstedt’s THH(A)
by Shipley [29], and one step in the argument has recently been corrected in [25]. However,
the intermediate steps in this comparison do not appear to admit cyclotomic structures, and
thus this comparison does not provide an equivalence of cyclotomic spectra. We note that as
a byproduct, our theorem gives a direct comparison of the different models for topological
Hochschild homology, different from the one carried out by Shipley [29]. The fact that we
work with orthogonal rather than symmetric spectra is no limitation since the corresponding
categories of ring spectra are Quillen equivalent.

Angeltveit et al. [1] also give evidence that Bcy(A) and THH(A) should agree as cyclotomic
spectra, by showing that the equivariant homotopy types of the individual levels of the two
cyclic spectra are equivalent; however these equivalences are not compatible with the cyclic
structure maps. Our comparison theorem also gives a different proof of this main result of [1].
Finally, in the special case where A is commutative, a comparison is described by Brun, Dundas
and Stolz [8, § 4.5.19] between the Loday functor modeled on smash products of orthogonal
spectra and the Loday functor in Γ-spaces modeled on Bökstedt smash products from the
paper of Brun, Carlsson and Dundas [7]. They point out that the behavior of the genuine fixed
points is the same, but highlight some of the remaining work needed to make the comparison
between the genuine fixed points.

Nikolaus and Scholze [24] recently introduced a new and conceptually simpler definition of
cyclotomic spectra and constructed a cyclotomic structure on topological Hochschild homology.
In [24, Theorem III.6.1 and Corollary III.6.8], they show that their approach provides a
cyclotomic spectrum that is equivalent to the cyclotomic spectrum THH(A) considered in
[6]. However, the paper [24] does not give a comparison to the cyclotomic spectrum Bcy(A)
of [2]. Combining the comparison results of [24] with our Theorem 1.1 thus shows that the
Nikolaus–Scholze model for the cyclotomic spectrum THH(A) is equivalent to the cyclotomic
spectrum Bcy(A).

The proof of Theorem 1.1 may be summarized as follows. At simplicial level q � 0 the chain
of equivalences in Theorem 1.1 takes the form

A∧(q+1) ∼−→ hocolim
(n0,...,nq)∈I×(q+1)

Ωn0+···+nq (shn0A ∧ · · · ∧ shnqA)

∼←− hocolim
(n0,...,nq)∈I×(q+1)

Ωn0+···+nqΣ∞(An0 ∧ · · · ∧Anq
). (1.1)

The middle term has a well-defined homotopy type, by a relatively new technical result [10]
that the shift functor sh for orthogonal spectra preserves the property of being flat. As q varies,
these equivalences fit into a zig-zag of maps of cyclic objects, which are good in the appropriate
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sense so that the realizations are also equivalent. For the bookkeeping of structure maps, it
seems easiest to regard the middle and right-hand terms as special cases of a more general
construction. It takes as input a ring object E in symmetric-orthogonal bispectra, and returns
as output a cyclic orthogonal spectrum thh•(E). We also use this general framework to define
a cyclotomic structure on |thh•(E)| and therefore on the terms in the above zig-zag. Finally,
we show that the maps of the zig-zag respect the cyclotomic structure and give equivariant
equivalences on each simplicial level.

1.1. Topological cyclic homology

To construct the topological cyclic homology from the cyclotomic spectrum Bcy(A) for a
sufficiently cofibrant orthogonal ring spectrum A, it is necessary to first replace Bcy(A) by
a fibrant cyclotomic spectrum Bcy(A)fib to ensure that the Cpn -fixed points appearing in the
definition of TC capture a well-defined homotopy type. This can be achieved by using the
fibrant replacement functor for the model∗ structure on cyclotomic spectra of [4].

Theorem 1.3. Let A be a flat orthogonal ring spectrum. For every prime p, there is a chain
of maps

TC((Bcy(A))fib; p) ∼−→ TC((thh(shA))fib; p) ∼←− TC((THH(A))fib; p) ← TC(A; p)

such that the first two maps are stable equivalences. If A is in addition strictly connective,
then the last map is also a stable equivalence.

An analogous statement holds for Goodwillie’s integral TC.

In the theorem, the first three instances of TC take as input cyclotomic spectra whose
cyclotomic structure maps involve geometric fixed points, while the last instance is the classical
TC(A; p) of [6] defined in terms of fixed points. Strictly connective means that An is (n− 1)-
connective. This condition implies that THH(A) is fibrant as a Cpn -Ω-spectrum and does not
need to be fibrantly replaced.

In particular, Theorem 1.3 shows that results about topological cyclic homology verified in
one of the models carry over to the other one. Its proof is based on Theorem 1.1 and a result
about the compatibility of cyclotomic structures defined in terms of geometric and categorical
fixed points.

1.2. Organization

In Section 2, we develop a framework for bispectra that is convenient for keeping track of the
coherences in the zig-zag (1.1). This is used in Section 3 to construct the chain of equivalences
in Theorem 1.1 at the level of orthogonal spectra with S1-action. After setting up foundations
about orthogonal G-spectra in Section 4, we show in Section 5 that the spectra in this chain
admit compatible cyclotomic structures and thereby prove Theorem 1.1. In the final Section 6,
we show how this leads to the comparison of topological cyclic homology spectra formulated
in Theorem 1.3.

1.3. Notation and conventions

We write T for the category of compactly generated weak Hausdorff spaces and T∗ for the
corresponding category of based spaces. We use the Bousfield–Kan formula as our model for
homotopy colimits.

2. Diagram spectra and bispectra

In this section we review basic notions about diagram spectra and introduce symmetric
orthogonal bispectra that will be used later.
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2.1. Diagram spaces and spectra

We begin by recalling from [22] how symmetric and orthogonal spectra can be described as
enriched functors.

Let I be the category of finite sets m = {1, . . . ,m} with m � 0 and morphisms the injective
maps. Let L be the topological category of finite-dimensional real inner product spaces and
R-linear isometric embeddings. Let N be the category associated with the partially ordered
set (N,�). We note that there are canonical functors N → I,m �→ m and I → L,m �→ Rm.

If V is an object of L, we write SV for the one point compactification of V . It inherits
an action of the orthogonal group O(V ) = L(V, V ). If V = Rm, then SV is the m-sphere Sm.
The space L(V,W ) is the base space of a ‘complementary’ vector bundle with total space
{(w, φ) ∈ W × L(V,W ) |w ⊥ φ(V )}, and we let LS(V,W ) be the Thom space of this bundle.
The spaces LS(V,W ) assemble to a T∗-enriched category LS with the same objects as L and
composition induced by the composition of L. (Other authors write J instead of LS .) The
choice of a linear isometry φ : V → W induces a homeomorphism

LS(V,W ) ∼= O(W )+ ∧O(W−φ(V )) S
W−φ(V ).

Following [26, 3.1], we define IS to be the T∗-enriched category with the same objects as I
and morphism spaces

IS(m,n) =
∨

α : m→n∈I Sn−α,

where n − α denotes the complement of the image of α. If α : m → n and β : n → p are injec-
tions, then the composition in IS is defined by the composition in I and the homeomorphism
Sp−β ∧ Sn−α → Sp−βα induced by the linear isometry Rp−β ⊕ Rn−α → Rp−βα determined by
α and β. The functor R− : I → L induces a functor IS → LS that we also denote by R−. On
objects it sends m to Rm, and IS(m,n) → LS(Rm,Rn) is the canonical map induced by the
map I(m,n) → L(Rm,Rn) sending an injection to the associated isometry.

For the present paper, it is convenient to view orthogonal and symmetric spectra as enriched
functors (compare [22, Examples 4.2 and 4.4]).

Definition 2.2. (i) A symmetric spectrum is a based continuous functor IS→T∗.
(ii) An orthogonal spectrum is a based continuous functor LS → T∗.

We write SpΣ and SpO for the resulting functor categories. Since IS and LS are symmetric
monoidal under the disjoint union and the sum, SpΣ and SpO inherit ∧-products defined as
Day convolution products. We refer to associative (but not necessarily commutative) monoids
as symmetric or orthogonal ring spectra and recall that they are given by lax monoidal functors
from IS or LS to T∗.

Let T L
∗ be the category of based continuous functors L → T∗. (These are different from

orthogonal spectra SpO, which are based continuous functors LS → T∗.) There is a functor

ΩL : SpO → T L
∗ , X �→

(
V �→ Map(SV , X(V ))

)
. (2.1)

On morphism spaces ΩL is given by the continuous maps

L(V,W ) ∧ Map(SV , X(V )) → Map(SW , X(W ))

(φ, f) �→
(
SW ∼=−→ SV ∧ SW−φ(V ) f∧id−−−→ X(V ) ∧ SW−φ(V ) φ∗−→ X(W )

)
.

For symmetric spectra there is an analogously defined functor
ΩI : SpΣ → T I

∗ , X �→ (n �→ Map(Sn, Xn)) . (2.2)

If X : LS → T∗ is an orthogonal spectrum and m � 0 is an integer, then the m-fold shift of
X is the orthogonal spectrum shmX = X(Rm ⊕−) : LS → T∗. For later use, we note that the
restrictions of the L-diagrams ΩL(shmX) to N -diagrams along the canonical functor N → L



1150 E. DOTTO, C. MALKIEWICH, I. PATCHKORIA, S. SAGAVE AND C. WOO

can be used to detect the homotopy groups and therefore the π∗-isomorphisms between
orthogonal spectra:

Lemma 2.3. A map of orthogonal spectra X → Y is a π∗-isomorphism if and only if the
induced map hocolimN ΩL(shmX) → hocolimN ΩL(shmY ) is a weak homotopy equivalence of
based spaces for all m � 0.

An analogous statement holds for π∗-isomorphisms of symmetric spectra.

Definition 2.4. A map of orthogonal spectra X → Y is a flat cofibration if it is the retract
of a relative cell complex built from cells of the form {LS(V,−) ∧O(V ) (i×O(V )/H)+} where
V is an object of L, H is a closed subgroup of O(V ), and i : ∂Dk → Dk, k � 0, is a generating
cofibration for the standard model structure on T . An orthogonal spectrum X is flat if
∗ → X is a flat cofibration, and an orthogonal ring spectrum is flat if its underlying orthogonal
spectrum is.

Remark 2.5. This use of the term flat follows Schwede’s terminology [27]. Our flat
orthogonal spectra are called S-cofibrant in [31] and should not be confused with the more
general flat objects of [13, Definition B.15].

Flat cofibrations of orthogonal spectra are the cofibrations in a stable model structure
on SpO whose weak equivalences are the π∗-isomorphisms [31, Proposition 1.3.10]. By
[28, Theorem 4.1(3)], both the projective model structure [21] and the flat model structure [31]
on SpO lift to a model structure on the category of associative orthogonal ring spectra ASpO.
Analogously, the category of commutative orthogonal ring spectra CSpO admits a positive
projective [22, Theorem 15.1] and a positive flat [31, Theorem 1.3.28] model structure.

Lemma 2.6. Let A be an orthogonal ring spectrum.

(i) Suppose that A is not the terminal ring spectrum. Then the unit S → A is a flat
cofibration if and only if A is flat as an orthogonal spectrum.

(ii) If A is cofibrant in one of the above model structures on ASpO or CSpO then the unit
S → A is a flat cofibration.

Proof. For the non-trivial implication of (i) we assume that A is flat and non-zero. Then
S0 → A0 is injective. We write A as the retract of a cell complex B. Since attaching cells of the
form LS(Rm,−) ∧ i+ with m > 0 does not change the spectral degree zero part, we can pick
the first cell of B of the form LS(R0,−) ∧ i+ with i : ∂Dn → Dn a generating cofibration that
accommodates the image of the non-basepoint of S0 in its image. After possibly subdividing
Dn, we may assume that the non-basepoint of S0 is a zero-cell B0. Re-indexing the cells of B
so that this new 0-cell comes first, we see that S → B and thus S → A is a retract of a relative
cell complex.

For (ii), we only need to address the flat model structures since projective cofibrant implies
flat cofibrant. The associative case follows from [28, Theorem 4.1(3)] and the commutative
case follows from [31, Theorem 1.3.30]. �

Lemma 2.7. (i) Smashing with flat orthogonal spectra preservers flat cofibrations. In
particular, if X and Y are flat in SpO, then so is X ∧ Y .

(ii) If X is flat in SpO, then X ∧ − preserves π∗-isomorphisms.

Proof. Part (i) holds because the model structure of [31, Proposition 1.3.10] is monoidal,
and part (ii) is [31, Proposition 1.3.11]. �
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Remark 2.8. The flat model structure on orthogonal spectra and the previous lemma also
appear in more general equivariant contexts in [8, Proposition 2.10.1; 27, Theorem III.5.10].

The following result about shifts from [10, Appendix A.2] is a key technical ingredient for
the present paper.

Theorem 2.9. If X is a flat orthogonal spectrum, then its m-fold shift shmX is also flat.

2.2. Symmetric orthogonal bispectra

The following notion of bispectra will be convenient for keeping track of coherences.

Definition 2.11. A symmetric spectrum object in orthogonal spectra is a based continuous
functor E : IS ∧ LS → T∗. We simply call these objects bispectra and write En = E(n,−) for
the orthogonal spectrum obtained by fixing the symmetric spectrum degree of E.

Unraveling definitions, E consists of a sequence of orthogonal spectra En, n � 0, with
Σn-actions through maps in SpO, and structure maps En ∧ S1 → En+1 in SpO that are
compatible with the Σn-action in the same sense required for ordinary symmetric spectra.
So E can be viewed as a symmetric spectrum object in SpO. We will also sometimes view E
as an orthogonal spectrum object in SpΣ.

The symmetric monoidal structures on IS and LS provide a symmetric monoidal structure
on IS ∧ LS that induces a Day convolution product on SpΣ(SpO). Almost immediately from its
definition, this product is canonically isomorphic to the smash product of symmetric spectrum
objects in orthogonal spectra. We therefore call the associative monoids in SpΣ(SpO) symmetric
ring spectra of orthogonal spectra, or simply ring bispectra. They are the lax monoidal functors
IS ∧ LS → T∗.

We shall be interested in two types of examples for symmetric spectra in SpO.

Definition 2.12. Let X be an orthogonal spectrum. Then Σ∞X is the bispectrum given
in level (m,V ) by (Σ∞X)(m,V ) = X(Rm) ∧ SV . The structure maps arise by viewing Σ∞X
as an enriched functor

Σ∞X = X(R−) ∧ LS(0,−) : IS ∧ LS → T∗.

So (Σ∞X)n is the orthogonal suspension spectrum of the nth level Xn = X(Rn) of X. When
A is an orthogonal ring spectrum, then Σ∞A is a smash product of two diagrams that define
symmetric and orthogonal ring spectra, respectively, and is therefore a ring bispectrum.

Definition 2.13. Let X be an orthogonal spectrum. Then shX is the bispectrum given in
level (m,V ) by (shX)(m,V ) = X(Rm ⊕ V ). The structure maps arise by viewing shX as an
enriched functor

shX = X(R− ⊕−) : IS ∧ LS → T∗.

For each value of n � 0, the orthogonal spectrum shnX = (shX)n = (shX)(n,−) is the n-fold
shift of X. Since the composite

IS ∧ LS
R

−∧id−−−−→ LS ∧ LS
⊕−→ LS

is a strong symmetric monoidal functor, it follows that an orthogonal ring spectrum A gives
rise to a ring bispectrum shA.
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We note that the structure maps of X induce a canonical morphism of bispectra

Σ∞X → shX (2.3)

that is a morphism of ring bispectra when X is an orthogonal ring spectrum.

Lemma 2.14. Let X be an orthogonal spectrum. In each orthogonal level V , the map (2.3)
is a π∗-isomorphism of symmetric spectra (Σ∞X)(−, V ) → (shX)(−, V ).

Proof. The map in question is the canonical map X(R−) ∧ SV → X(R− ⊕ V ). Essentially
by the definition of semistability, this map is a π∗-isomorphism if and only if the symmetric
spectrum X(R−) is semistable; see [15, Proposition 5.6.2(2)]. The claim follows because X(R−)
is the underlying symmetric spectrum of an orthogonal spectrum. �

The following definition is motivated by Lemma 2.3 and provides one of various equivalent
ways to define π∗-isomorphisms of bispectra. To state it, we note that there is a functor

ΩI×L : SpΣ(SpO) → T I×L
∗ , E �→ ((m, V ) �→ Map(Sm ∧ SV , Em(V )))

that is defined on morphisms in a manner similar to ΩL and ΩI . An I × L-diagram may be
viewed as an N ×N -diagram by restricting along the inclusion N ×N → I × L.

Definition 2.15. A morphism of bispectra D → E is a π∗-isomorphism if for all k, l � 0
the induced map

hocolimN×N ΩI×L(D(k � −,Rl ⊕−)) → hocolimN×N ΩI×L(E(k � −,Rl ⊕−))

is a weak homotopy equivalence of spaces.

Corollary 2.16. If X is an orthogonal spectrum, then Σ∞X → shX is a π∗-isomorphism.

Proof. Lemma 2.14 implies that for fixed V and k, l � 0, the natural transformation

Map(S− ∧ SV , (Σ∞X)(k � −,Rl ⊕ V )) → Map(S− ∧ SV , (shX)(k � −,Rl ⊕ V ))

induces a weak equivalence when evaluating the homotopy colimit over N . The claim follows
by computing hocolimN×N as an iterated homotopy colimit. �

An orthogonal spectrum defines an endofunctor X ∧ − : SpΣ(SpO) → SpΣ(SpO) by forming
the smash product of orthogonal spectra X ∧ En for each level n.

Lemma 2.17. Let D → E be a π∗-isomorphism of bispectra and let X be a flat orthogonal
spectrum. Then X ∧D → X ∧ E is a π∗-isomorphism of bispectra.

Proof. We argue with stabilization SpN(SpO) of the flat stable model structure on SpO

(compare, for example, [14, Section 3]). One can check that a map in SpΣ(SpO) is a π∗-
isomorphism if and only if its underlying map in SpN(SpO) is a weak equivalence. Moreover,
SpN(SpO) is also tensored over SpO and the tensor commutes with the forgetful functor
from SpΣ(SpO). Since a cofibrant replacement Ec → E in SpN(SpO) can be chosen to be a
weak equivalence of spaces in every bidegree, the fact that X ∧ − sends level equivalences of
orthogonal spectra to stable equivalences implies that X ∧ Ec → X ∧ E is a π∗-isomorphism.
So it is enough to show that X ∧ − preserves weak equivalences between cofibrant objects in
SpN(SpO), and this follows from [14, Theorem 6.3]. �
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3. Topological Hochschild homology

We recall the cyclic bar construction in orthogonal spectra. If A is an orthogonal ring spectrum,
we define a cyclic object Bcy

• (A) by

Bcy
q (A) = A∧(q+1),

where the ∧ denotes the smash product of orthogonal spectra. We imagine these are arranged
in a circle. Then the face maps multiply adjacent copies of A, the degeneracy maps insert copies
of A along the unit S → A, and the cyclic structure maps act by cyclic permutations (see, for
example, [19, § 2.1, 20, Section 4.2; 29, Definition 4.1.2).

To define topological Hochschild homology we emulate this cyclic bar construction but with
Bökstedt’s variant of the smash product. Specifically, let X0, . . . , Xq be any (q + 1)-tuple of
bispectra in the sense of Definition 2.11. Their external smash product X0 � · · · �Xq is defined
to be a continuous functor I∧(q+1)

S → SpO sending

(n0, . . . ,nq) �−→ Xn0
0 ∧ · · · ∧Xnq

q ,

where the superscripts are symmetric spectrum levels and ∧ is the smash product of orthogonal
spectra. Here I∧(q+1)

S denotes the q + 1-fold product IS ∧ · · · ∧ IS of the enriched category IS ,
and we view X0 � · · · �Xq as a (q + 1)-multisymmetric spectrum of orthogonal spectra. By
definition, the smash product of bispectra X0 ∧ · · · ∧Xq is obtained from this external smash
product X0 � · · · �Xq by left Kan extension along a direct sum functor ⊕ : I∧(q+1)

S → IS .
The functor ΩI : SpΣ(SpO) → (SpO)I from (2.2) generalizes to a functor

ΩI×(q+1)
: (SpΣ)(q+1)(SpO) → (SpO)I

×(q+1)

from (q + 1)-multisymmetric spectra of orthogonal spectra to I×(q+1)-diagrams of orthogonal
spectra (where I×(q+1) denotes the (q + 1)-fold product I × · · · × I). Evaluated at the external
smash product it is given by the formula

ΩI×(q+1)
(X0 � · · · �Xq) =

(
(n0, . . . ,nq) �→ Map(Sn0 ∧ · · · ∧ Snq , Xn0

0 ∧ · · · ∧Xnq
q )

)
as a functor I×(q+1) → SpO. We define the Bökstedt smash product of the bispectra X0, . . . , Xq

to be its homotopy colimit in the category of orthogonal spectra:

B(X0, . . . , Xq) := hocolim
(n0,...,nq)∈I×(q+1)

Map(Sn0 ∧ · · · ∧ Snq , Xn0
0 ∧ · · · ∧Xnq

q ).

We recall and slightly generalize the following functoriality property for the Bökstedt
smash product. Suppose that X0, . . . , Xq and Y0, . . . , Yp are bispectra. To each map of sets
f : {0, . . . , q} → {0, . . . , p}, with a choice of total ordering on the pre-image of each point, we
define a functor

f∗ : I×(q+1) → I×(p+1), (n0, . . . ,nq) �→
(⊔

i∈f−1(0) ni, . . . ,
⊔

i∈f−1(p) ni

)
, (3.1)

where the terms of the coproduct are ordered according to the chosen ordering of each f−1(j).
For each such f , and each collection of maps of bispectra

ϕj :
∧

i∈f−1(j)

Xi → Yj ,

we define a map of diagrams

ΩI×(q+1)
(X0 � · · · �Xq) → ΩI×(p+1)

(Y0 � · · · � Yp) ◦ f∗
using the ϕj and the evident homeomorphism S

∑
i ni ∼= S

∑
j

∑
i∈f−1(j) ni . In total, the data of

f , the orderings, and the {ϕj} define a map of Bökstedt smash products

B(f, {ϕj}) : B(X0, . . . , Xq) → B(Y0, . . . , Yp).
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The verification of the following is straightforward and identical to the corresponding
verification for symmetric spectra objects of spaces.

Proposition 3.1. The construction B(f, {ϕj}) respects identity maps and compositions,
using the evident dictionary order to compose total orderings.

We specialize to the case where all of the Xi and Yj are the same bispectrum E. In this case
we use the notations ΩI

q+1(E) = ΩI×(q+1)
(E � · · · � E) and define

thhq(E) = hocolim
I×(q+1)

ΩI
q+1(E) = hocolim

(n0,...,nq)
Map(Sn0 ∧ · · · ∧ Snq , En0 ∧ · · · ∧ Enq ) . (3.2)

The notation is meant to suggest that this is the qth simplicial level of the simplicial
object which realizes to the Bökstedt topological Hochschild homology of E. Since thhq(E)
is a Bökstedt smash product B(E, . . . , E), the previous proposition immediately implies the
following.

Corollary 3.2. If E is a ring bispectrum, the multiplication and unit maps of E define a
cyclic structure on the orthogonal spectra thhq(E).

In particular, each face map concatenates two of the sets ni and applies a multiplication
map of orthogonal spectra Eni ∧ Eni+1 → Eni+ni+1 (with the convention that nq+1 = n0),
while each degeneracy map inserts a 0 and a unit map of orthogonal spectra S → E0.

Definition 3.3. We write thh(E) for the realization of the cyclic object thh•(E). In the
case where E = Σ∞A for an orthogonal ring spectrum A, we write THH•(A) for thh•(Σ∞(A))
and THH(A) for its realization.

We note that THH(A) is the orthogonal spectrum version of Bökstedt’s original definition of
topological Hochschild homology (compare [29, Section 4.2]). As discussed in the introduction,
we are primarily interested in this case and in the case of E = shA.

Of course, since the definition of ΩI
q+1(E) involves smash products of the orthogonal spectra

En, it will only capture a well-defined homotopy type if the En are flat. We will now argue
the same for the realization. We say that a map of orthogonal spectra X → Y is a levelwise
h-cofibration if each map X(Rn) → Y (Rn) has the unbased homotopy extension property,
and that a simplicial orthogonal spectrum is ‘good’ if each degeneracy map is a levelwise h-
cofibration. It is well known that maps of good simplicial spectra X•

∼→ Y• that are stable
equivalences on each simplicial level give stable equivalences on their realizations |X•| ∼→ |Y•|.

Proposition 3.4. If E is a ring bispectrum and En is flat for all n � 0, then thh•(E)
is good.

Proof. Our degeneracy map is a map of based homotopy colimits, induced by the map of
categories f∗ : I×q → I×(q+1) that inserts a 0 and a map of diagrams

ΩI×q

(E � · · · � E) → ΩI×(q+1)
(E � · · · � E) ◦ f∗

whose evaluation at an object (n0, . . . ,nq−1) is the map

Ωn0+···+nq−1
(
(En0∧· · ·∧S∧· · ·∧Enq−1) → (En0∧· · ·∧E0∧· · ·∧Enq−1)

)
(3.3)

induced by identity maps Eni → Eni and the unit S → E0. Since the map f∗ is injective, it
follows from the argument given in the proof of [18, Lemma 6.17] that the map of homotopy
colimits is an h-cofibration as soon as for each object (n0, . . . ,nq−1) the map (3.3) is a levelwise



COMPARING CYCLOTOMIC STRUCTURES ON DIFFERENT MODELS FOR THH 1155

h-cofibration, and for each object (n0, . . . ,nq) the map ∗ → Ωn0+···+nq (En0 ∧ · · · ∧ Enq ) is a
levelwise h-cofibration, that is, the levels are well based.

The map S → E0 is a flat cofibration by Lemma 2.6(i). Therefore, before taking loops, the
map (3.3) is a flat cofibration by Lemma 2.7. Both source and target are flat and are therefore
levelwise well based. To conclude that after loops both spectra are well based and the map is
still a levelwise h-cofibration, it is sufficient to know that the functor Ω(−) on based spaces
preserves h-cofibrations between well based spaces. For closed h-cofibrations in the category
of all topological spaces, this is shown in [30, Application (vi)]. The desired statement in the
category of compactly generated weak Hausdorff spaces T we are working in follows because
h-cofibrations in T are automatically closed (see, for example, [27, Proposition A.31]). �

Returning to the Bökstedt smash product of bispectra X0, . . . , Xq, the inclusion of (0, . . . ,0)
in I×(q+1) gives rise to a functor from the terminal category to I×(q+1), inducing a map of
orthogonal spectra

X0
0 ∧ · · · ∧X0

q → B(X0, . . . , Xq). (3.4)

It is immediate that the map on the right induced by (f, {ϕj}) agrees with the smash product
of the maps ϕ0

j on the left. Specializing again to Xi = E, we get maps for each q

(E0)∧(q+1) → thhq(E) (3.5)

which induce a map of cyclic objects

Bcy
• (E0) → thh•(E) . (3.6)

If A is an orthogonal ring spectrum, the above discussion now gives us maps of cyclic
orthogonal spectra

Bcy
• (A) → thh•(shA) ← thh•(Σ∞A) = THH•(A). (3.7)

The left-hand map is (3.6) for E = shA, and the right-hand map arises from the morphism of
ring bispectra Σ∞A → shA from (2.3) and the naturality of the cyclic structure of Corollary 3.2.

Theorem 3.5. Let A be an orthogonal ring spectrum whose underlying orthogonal spectrum
is flat. Then on geometric realizations, the chain (3.7) induces the following chain of stable
equivalences of orthogonal spectra with S1-action:

Bcy(A) → thh(shA) ← thh(Σ∞A) = THH(A).

By Lemma 2.6(ii), the theorem applies to cofibrant associative and cofibrant commutative
orthogonal ring spectra. We now set up some auxiliary results and prove the theorem at the
end of the section.

Lemma 3.6. Let X be a flat orthogonal spectrum and let q � 0. Then the map X∧(q+1) →
thhq(shX) obtained by setting E = shX in (3.5) is a stable equivalence.

Proof. Since I has an initial object, the classifying space of I×(q+1) is contractible. Therefore
it is sufficient to show that with E = shX, every map in the I×(q+1)-diagram (3.2) is a stable
equivalence of orthogonal spectra.

When q = 0, the map induced by α : m → n can be identified with the m-fold loop of the
map X(Rm ⊕−) → Ωn−α(m)(X(Rn ⊕−)) that is adjoint to the canonical map

shmX ∧ Sn−α(m) = X(Rm ⊕−) ∧ Sn−α(m) → X(Rn ⊕−) = shnX.

That latter map is a π∗-isomorphism since the underlying symmetric spectrum of X is
semistable. This shows the q = 0 case.
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Now let q = 1. Then the map (2.3) induces a commutative square

By Theorem 2.9, the orthogonal spectra shmX, shmX and shm+nX are flat. Since the maps
from the suspensions to the shifts are stable equivalences by the argument for q = 0, this implies
that the horizontal maps are stable equivalences. The left-hand vertical map is an isomorphism.
So we deduce that the right-hand vertical map is a stable equivalence. This reduces the claim
for q = 1 to the case q = 0.

The case q > 1 follows analogously. �

Proposition 3.7. Let D → E be a π∗-isomorphism in SpΣ(SpO). If Em and Dm

are flat orthogonal spectra for all m � 0, then the induced map thhq(D) → thhq(E) is a
π∗-isomorphism of orthogonal spectra.

Proof. We let m � 0 be an integer and write ΩL
m = ΩLshm. Applying ΩL

m to ΩI
q+1(E)

provides a diagram

ΩL
mΩI

q+1(E) : I×(q+1) × L → T∗,

(n0, . . . ,nq;V ) �→ Ωn0+···+nq+V ((En0 ∧ · · · ∧ Enq )(Rm ⊕ V )).

Via the inclusions N → I and N → L, it restricts to an N×(q+1) ×N -diagram of spaces. We
claim that D → E induces a weak equivalence

hocolimN×(q+1)×N ΩL
mΩI

q+1(D) → hocolimN×(q+1)×N ΩL
mΩI

q+1(E) (3.8)

when forming the homotopy colimits of these restricted diagrams. To see this, we first consider
the map of N×(q+1) ×N -diagrams

(n0, . . . , nq; k) �→
(
Ωn0+···+nq+k((Dn0 ∧ · · · ∧Dnq−1 ∧Dnq )(Rm ⊕ Rk))

→ Ωn0+···+nq+k((Dn0 ∧ · · · ∧Dnq−1 ∧ Enq )(Rm ⊕ Rk))
)
.

By Lemma 2.7(i), Dn0 ∧ · · · ∧Dnq−1 is flat. Hence Lemma 2.17 implies that this map induces
a weak equivalence when fixing (n0, . . . , nq−1) and forming hocolimN×N with respect to the
remaining two N -directions. Hence it also induces an equivalence on hocolimN×(q+1)×N . In the
next step, we fix (n0, . . . , nq−2, nq) and argue analogously with the map of N ×N -diagrams
induced by Dnq−1 → Enq−1 . Continuing this process leads to a decomposition of (3.8) into a
composite of q weak equivalences.

Since forming loop spaces commutes up to homotopy with mapping telescopes and homotopy
colimits of spectra are formed levelwise, it follows that

hocolimN ΩL
m hocolimN×(q+1) ΩI

q+1(D) → hocolimN ΩL
m hocolimN×(q+1) ΩI

q+1(E)

is a weak equivalence. Thus, Lemma 2.3 implies that ΩI
q+1(D) → ΩI

q+1(E) induces a π∗-
isomorphism after applying hocolimN×(q+1) . By the obvious generalization of [29, Proposi-
tion 2.2.9] from based spaces to orthogonal spectra, it follows that ΩI

q+1(D) → ΩI
q+1(E) induces

a π∗-isomorphism after applying hocolimI×(q+1) . �

Proof of Theorem 3.5. Lemma 3.6 shows that the first map in (3.7) is a stable equivalence in
every simplicial degree. Combining Corollary 2.16 and Proposition 3.7 implies that the second
map in (3.7) is a stable equivalence in every simplicial degree.
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So it remains to show that each of the simplicial objects is good. For Bcy(A), the degeneracy
maps are flat cofibrations by Lemmas 2.6(ii) and 2.7, and hence in particular the degeneracy
maps are levelwise h-cofibrations. For the two remaining cases we apply Proposition 3.4. The
orthogonal spectrum (shA)n = shnA is flat by Theorem 2.9, and the suspension spectrum
(Σ∞A)n = Σ∞An = An ∧ LS(0,−) is flat because An is cofibrant as a based space. �

4. Orthogonal G-spectra and geometric fixed points

In this section we review some results about equivariant orthogonal spectra that we will need
for the definition of the cyclotomic structures in the next section.

Let G be a compact Lie group. Let (SpO)G denote the category of orthogonal
G-spectra, defined as orthogonal spectra with continuous left G-actions and equivariant maps
between them.

Unless otherwise noted, orthogonal G-spectra will always be considered as objects of this
category, that is, they are always indexed on the trivial universe. This is not a restriction
because for each complete G-universe U , the change of universe functor IU

R∞ gives an equiva-
lence between (SpO)G and the category of orthogonal G-spectra indexed by finite-dimensional
representations in U [21, V.Theorem 1.5].

For each closed normal subgroup N � G we write

ΦN : (SpO)G → (SpO)G/N

for the geometric fixed points functor. If X is an orthogonal G-spectrum, ΦN (X) is defined to
be the coequalizer of a diagram

∨
V,W

LS(WN ,−) ∧ LS(V,W )N ∧X(V )N ⇒
∨
V

LS(V N ,−) ∧X(V )N . (4.1)

Here V,W run through all finite-dimensional representations in a complete G-universe U , the
G/N -space LS(V,W )N is the space of N -fixed points that arises from restricting the conjugate
G-action on LS(V,W ) to N , the orthogonal G/N -spectrum LS(WN ,−) is the free one on
the G/N -space WN , and the G/N -space X(V )N is the space of N -fixed points of the G-space
(IU

R∞X)(V ) = L(Rd, V )+ ∧O(d) X(Rd) with diagonal G-action and d = dimV . The two parallel
arrows are induced by composition in LS and by the structure maps of X, respectively.

Remark 4.1. In [13, B.10] this functor appears under the name monoidal geometric fixed
points. The equivalence of the above definition and the one in [21, V.Definition 4.1] follows from
the description of the enriched left Kan extension as a coequalizer (see also [2, Remark 2.11]).

In all of our examples, G will be the circle group S1 or one of its finite subgroups Cr
∼= Z/rZ,

r � 1. We therefore fix once and for all a complete S1-universe U , which is automatically a
complete Cr-universe for all r � 1, and consistently use this universe for the definition of
ΦN . Under this convention, we get the convenient property that the geometric fixed points
functor strictly commutes with forgetting group actions. Specifically, if N � G � S1, then in
the following square each horizontal functor is defined by some coequalizer system, and the
square
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commutes. This is because N � G satisfies Condition 1 from [8, Proposition 3.1.46; 31, Propo-
sition 3.3.57]. We will sometimes refer to the top horizontal functor as the ‘relative’ geometric
fixed points ΦN

rel and to the composite through the lower left-hand corner as the ‘absolute’
geometric fixed points ΦN

abs.
In fact, because G is abelian, it commutes with the action of N and so acts on ΦNX. The

action of N � G is trivial by [20, Proposition 3.25], so ΦN
absX inherits a G/N -action. As we

explain in the proof of Lemma 4.7 below, ΦN
relX and ΦN

absX are isomorphic as G/N -spectra.
We are therefore free to think of geometric fixed points in the ‘absolute’ or ‘relative’ sense
without risk of confusion. This fact that the two notions of ΦN coincide is also used implicitly
in [2, 20].

Remark 4.2. The property that ΦN strictly commutes with forgetful functors holds more
generally for certain subgroups of the n-torus [8, Lemmas 3.1.42 and 4.4.20]. For general N � G,
this commutation is only known to hold on the subcategory of cofibrant spectra because with
consistent choices of universe there is a canonical map ΦN

relX → ΦN
absX of non-equivariant

spectra, and this map is an isomorphism when X is free and therefore also when X is cofibrant.

We summarize some of the properties of ΦN needed later.

Proposition 4.3. Let X and Y be orthogonal G-spectra, N � G � S1 and L be a based
G-space.

(i) The functor ΦN preserves cobase changes along levelwise closed inclusions and
sequential colimits of levelwise closed inclusions.

(ii) There is a canonical natural map ΦN (X) ∧ ΦN (Y ) → ΦN (X ∧ Y ) that turns ΦN into
a lax symmetric monoidal functor.

(iii) There is a canonical isomorphism ΦN (X ∧ L) ∼= (ΦNX) ∧ LN .

Proof. Part (i) is discussed in [13, Proposition B.197; 21, § V.4], part (ii) is [13, (B.198);
21, Proposition V.4.7], and part (iii) is [13, (B.196)]. The uniqueness of the maps in (ii) and
(iii) is from [20, Theorem 3.20 and Remark 3.21] and the above observation that ΦN may be
interpreted in the ‘absolute’ sense. �

The following result about the geometric fixed points of smash powers is a key property of
the geometric fixed points functor.

Proposition 4.4. Let X be an orthogonal spectrum and let r � 1. Then the diagonal map
X → ΦCr (X∧r) is an isomorphism if X is flat.

The proposition generalizes to arbitrary finite groups G (see, for example, [13, Proposi-
tion B.209]), but we shall not use this extra generality.

Proof of Proposition 4.4. The diagonal map is, for example, constructed in [13, Propo-
sition B.209], and the statement that it is an isomorphism for flat X can be found in
[8, Theorem 3.2.16; 31, Theorem 3.4.26]. �

We recall that orthogonal G-spectra are endowed with a stable model structure [21, III.4.2]
in which the weak equivalences are measured by the homotopy groups

πH
k (X) =

⎧⎨
⎩

colim
V⊂U

πk([ΩV X(V )]H) if k � 0

colim
V⊂U, R|k|⊂V

π0([ΩV−R
|k|
X(V )]H) if k < 0,
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where the colimits are taken along inclusions of finite-dimensional subspaces of U , and again
IU
R∞ is used implicitly to describe the levels X(V ).
The geometric fixed points functors ΦH are not left adjoints, but they preserve weak

equivalences between the cofibrant spectra in this model structure. We therefore refer to
ΦH(Xc), where Xc is any cofibrant replacement of X, as the left-derived geometric fixed
points LΦH(X). A map of G-spectra X → Y is a weak equivalence precisely when it induces
an equivalence on the derived geometric fixed points LΦH for all closed subgroups H � G (see,
for example, [23, Theorem XVI.6.4]).

For a G-representation V , we get a natural interchange morphism

ΦG(ΩV X) → ΩV G

ΦG(ΣV ΩV X) → ΩV G

ΦGX, (4.2)

where the first map is the adjoint of the isomorphism in Proposition 4.3(iii) for L = SV and
the second map is the counit. We derive the interchange by assuming that X is cofibrant and
by inserting a cofibrant replacement of ΩV X as shown.

ΦG((ΩV X)c) → ΩV G

ΦG(ΣV (ΩV X)c) → ΩV G

ΦG(ΣV ΩV X) → ΩV G

ΦGX. (4.3)

Lemma 4.5. Let X be an orthogonal G-spectrum such that a cofibrant replacement Xc → X
in (SpO)G induces a stable equivalence ΦG(Xc) → ΦG(X). Then the composite (4.3) is a
stable equivalence.

Proof. By the assumption on X it is sufficient to show that (4.3) is a stable equivalent for
cofibrant X. Since ΩV G

preserves stable equivalences between all objects, the first map in (4.3)
is a stable equivalence since it is the adjoint along a Quillen equivalence of an isomorphism
with cofibrant source. The remaining two maps are ΩV G

ΦG of the composite ΣV (ΩV X)c ∼→
ΣV ΩV X

∼→ X. As the source and target are cofibrant G-spectra, we still get an equivalence
after applying ΩV G

ΦG. �

Below we use the theory of G-diagrams in the sense of [9]. Let G be a finite group and
C a category with a (strict) G-action. We recall that a G-diagram of orthogonal spectra is a
functor Z : C → SpO equipped with maps of orthogonal spectra φg : Zc → Zgc for every g ∈ G
and every object c of C. These maps are natural with respect to the morphisms of C and they
satisfy φ1 = id and φhφg = φhg for every g, h ∈ G. We observe that in particular the spectrum
Zc has an action of the stabilizer group Gc = {g ∈ G | gc = c}, and therefore it is an object
of (SpO)Gc . In particular if c is a fixed point, Zc is a G-spectrum. The homotopy colimit of
Z : C → SpO, defined as the Bousfield–Kan formula

hocolimC Z =

∣∣∣∣∣∣
∨

c∈NC
Zcq

∣∣∣∣∣∣,

where c = (cq → · · · → c0) denotes a q-simplex in the nerve of C, inherits a G-action from the
maps φg [9, Definition 1.16]. The action of g ∈ G is defined as the geometric realization of the
simplicial map that takes the c-summand to the gc = (gcq → · · · → gc0)-summand via the map
φg.

Lemma 4.6. Let G be a finite group, C a category with G-action, Z : C → SpO a G-diagram,
and Δ: CG → C the fixed points inclusion. Then there is a natural isomorphism

ΦG hocolimC Z
∼=−→ hocolimCG ΦG(Z ◦ Δ).
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Proof. The isomorphism arises as the composition of the canonical isomorphisms

ΦG hocolimC Z = ΦG

∣∣∣∣∣∣
∨

c∈NC
Zcq

∣∣∣∣∣∣
∼=

∣∣∣∣∣∣Φ
G

∨
c∈NC

Zcq

∣∣∣∣∣∣
∼=

∣∣∣∣∣∣
∨

c∈(NC)G

ΦGZcq

∣∣∣∣∣∣

=

∣∣∣∣∣∣
∨

c∈N(CG)

ΦGZcq

∣∣∣∣∣∣ = hocolimCG ΦG(Z ◦ Δ).

For the first isomorphism we use that ΦG commutes with geometric realizations since it
preserves cobase change along closed inclusions and sequential colimits of closed inclusions.
The fact that ΦG commutes with indexed coproducts can be immediately verified from the
coend formula defining ΦG. �

To set up a final compatibility result involving ΦG, we let Λr be the variant of the cyclic
category discussed in [6, Definition 1.5] and recall that the realization of a Λr-space has a
canonical R/rZ-action that extends a Cr-action defined on the underlying simplicial space.

Let Y• : Λop
r → SpO be a Λr-object in orthogonal spectra. Since the Cr-action also commutes

with the Crn-action in simplicial degree n− 1, we may view Y• as a Λr-object in orthogonal
Cr-spectra. Taking (absolute) Cr-geometric fixed points in each level gives rise to a
Λr-orthogonal spectrum ΦCr (Y•). Its realization |ΦCr (Y•)| has an S1-action with trivial
underlying Cr-action, and thus an S1/Cr-action. On the other hand, we may apply the
(relative) ΦCr to the orthogonal S1-spectrum |Y•|.

Lemma 4.7. In this situation, there is a natural S1/Cr-equivariant isomorphism |ΦCr (Y•)| ∼=
ΦCr |Y•|.

Proof. We construct a homeomorphism which is S1-equivariant with respect to the S1-action
that restricts to a trivial Cr-action. As a first step, commuting the realization with coequalizer,
smash products and Cr-fixed points provides a homeomorphism |ΦCr (Y•)| ∼= ΦCr |(Y•)|, where
ΦCr is understood in the absolute sense. This homeomorphism can be checked to be
S1-equivariant. In the second step, we note that the S1-actions on the relative and the absolute
versions of ΦCr |(Y•)| coincide: The action of g ∈ S1 sends a point represented by

((α,w), β, x) ∈ LS(V Cr ,Rk) ∧ L(RdimV , V )+ ∧ |(Y•)|(RdimV )

to ((α,w), β, gx) in the first case and to ((α ◦ g−1, w), g ◦ β, gx) in the second case, and these
points get identified in the coequalizer. �

5. Cyclotomic structures

In this section we show that the chain of stable equivalences in Theorem 3.5 is in fact a chain
of equivalences of cyclotomic spectra, in the sense to be reviewed below.

5.1. Construction of cyclotomic structures

We recall the following notion of cyclotomic spectra from [4]. As usual ρr : S1 → S1/Cr is the
group isomorphism induced by the r-fold root, and ρ∗r denotes restriction along ρr.
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Definition 5.2. (i) A pre-cyclotomic spectrum is an orthogonal S1-spectrum T with
choices of maps of S1-spectra

cr : ρ∗rΦ
CrT → T

for every integer r � 1 such that following square commutes for any r and s:

(5.1)

Here it is the map cr,s from [4, Proposition 2.6]; its definition is also forced from
[20, Theorem 3.23].

(ii) A cyclotomic spectrum is a pre-cyclotomic spectrum T such that the induced map out
of the derived geometric fixed points

ρ∗rLΦCrT → ρ∗rΦ
CrT

cr−→ T

is a stable equivalence of underlying orthogonal spectra for all r � 1.

Remark 5.3. The definition of a cyclotomic spectrum [4, Definition 4.10] requires the map
ρ∗rLΦCrT → ρ∗rΦ

CrT → T to be an F-equivalence, that is, a map that induces an equivalence
on derived Cs-geometric fixed points for every integer s � 1. It is however sufficient to require
these maps to be underlying equivalences. Indeed by condition (i) the diagram

commutes, where the upper left vertical map is an equivalence since ρ∗rLΦCrT is a cofibrant S1-
spectrum, and the lower left vertical map is an equivalence by [4, Proposition 2.6]. By condition
(ii) the lower horizontal and the right vertical composites are equivalences, and therefore so is
the composite of the top row.

We also recall from [4, Proposition 5.5] that if T and T ′ are cyclotomic spectra, any stable
equivalence T → T ′ of underlying non-equivariant spectra commuting with the maps cr is
automatically an F-equivalence.

Let E be a symmetric spectrum object in SpO such that En is a flat orthogonal spectrum
for all n � 0. As usual, we write sdr for the r-fold edgewise subdivision. Now consider the
composite

γr : ΦCr (sdrthh•(E))q
=−→ ΦCr hocolim

I×(q+1)r
ΩI

(q+1)r(E)

∼=−→ hocolim
I×(q+1)

ΦCr (ΩI
(q+1)r(E) ◦ Δr)

=−→ hocolim
(n0,...,nq)∈I×(q+1)

ΦCrΩr(n0+···+nq)((En0 ∧ · · · ∧ Enq )∧r)
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λ−→ hocolim
(n0,...,nq)∈I×(q+1)

Ωn0+···+nq
(
ΦCr (En0 ∧ · · · ∧ Enq )∧r

)

∼=−→ hocolim
(n0,...,nq)∈I×(q+1)

Ωn0+···+nq (En0 ∧ · · · ∧ Enq ). (5.2)

Here Δr stands for the diagonal I×(q+1) → I×(q+1)r, which is the inclusion of the fixed points
category of I×(q+1)r under the Cr-action. The first isomorphism is the canonical interchange
discussed in Lemma 4.6. The map λ is an instance of the interchange map (4.2). It is a
straightforward but tedious diagram-chase to verify that λ defines a map of diagrams over
I×(q+1). Finally, the last map above is induced by the inverse of the diagonal isomorphism
from Proposition 4.4 for the flat orthogonal spectrum X = En0 ∧ · · · ∧ Enq . Note that ΦCr is
taken in the ‘absolute’ sense when defining these maps.

For the statement of the following result, we use the fact that ΦCr sdr(−) preserves cyclic
objects in orthogonal spectra, see, for example, [2, Theorem 4.6; 20, Proposition 4.1].

Proposition 5.4. Let E be a ring bispectrum. The map γr from (5.2) is a morphism of
cyclic objects.

Proof. We claim that the naturality of the isomorphism in Lemma 4.6 defines uniquely a
cyclic structure on

hocolim
I×(q+1)

ΦCr (ΩI
(q+1)r(E) ◦ Δr)

so that the first isomorphism in (5.2) is cyclic. For example, in the case of the face operators,
we have the following commutative diagram:

Here d
[r]
i stands for the ith face operator of the r-fold subdivision. In fact, we abuse here

notation and use d
[r]
i for the natural Cr-transformation of Cr-diagrams

d
[r]
i : ΩI

(q+1)r(E) → ΩI
qr(E) ◦ d[r]

i

and for the Cr-equivariant functor d
[r]
i : I×(q+1)r → I×qr. The symbol can denotes the change

of diagrams transformation. We also note that d[r]
i ◦ Δr = Δr ◦ di. The vertical composites are

the ith face operators. All the other cyclic structure maps are handled similarly, including the
cyclic operators.

The next step is to check that the map

hocolim
I×(q+1)

ΦCr (ΩI
(q+1)r(E) ◦ Δr) → hocolim

(n0,...,nq)∈I×(q+1)
Ωn0+···+nq (En0 ∧ · · · ∧ Enq )
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is cyclic. Compatibility with the degeneracy maps and all the face maps except the last one is
straightforward. We will now show that the latter map respects the cyclic operators. This will
imply the desired result.

We need to show that the diagram

commutes, where the vertical maps arise from the cyclic structure and the horizontal maps
arise from (5.2). Here t

[r]
q denotes the Λr-cyclic operator for the r-fold subdivision in degree q.

More precisely, we have a functor t
[r]
q : I(q+1)r → I(q+1)r and a natural transformation

t[r]q : ΩI
(q+1)r(E) → ΩI

(q+1)r(E) ◦ t[r]q .

Also note that t
[r]
q ◦ Δr = Δr ◦ tq.

The commutativity of the lower square follows from the naturality of the canonical change
of diagrams map can. The commutativity of the upper square requires an argument. In fact
the diagram commutes before passing to homotopy colimits, in other words, the diagram

is commutative. Recall that the horizontal maps are induced from the natural transformation
ΦG(ΩV X) → ΩV G

ΦGX and the diagonal isomorphism X → ΦCr (X∧r). When analyzing the
cyclic permutations on the left and right, we see that the one on left is the composition of the
r-fold smash power of the one on the right and a cyclic permutation of the nq coordinates.
The Cr-geometric fixed points of such a cyclic permutation of smash factors is the identity
by [20, Proposition 3.26] (see also [2, Lemma 4.5]). Moreover Cr-fixed points of the cyclic
permutation of the r-fold sum Rrn = Rn ⊕ · · · ⊕ Rn is also the identity. This completes the
proof by the naturality of ΦG(ΩV X) → ΩV G

ΦGX and the diagonal isomorphism. �

As a consequence of the latter proposition we get an S1-equivariant map

|γr| : |ΦCr (sdrthh•(E))| → |thh•(E))| = thh(E). (5.3)

Proposition 5.5. There is an isomorphism of S1-spectra

|ΦCr (sdrthh•(E))|
∼=−→ ρ∗rΦ

Cr |thh•(E)|. (5.4)
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Proof. This is [20, Proposition 4.1]. The middle isomorphism |PrΦCrsdrX•| ∼= ΦCr |sdrX•|
appearing in that argument is a consequence of Lemma 4.7. The isomorphism in the proposition
also appears in [2, Theorem 4.6]. �

Combining the two morphisms (5.3) and (5.4) we get S1-equivariant maps

cr : ρ∗rΦ
Cr thh(E) → thh(E)

for all r � 1.

Proposition 5.6. The maps cr define a pre-cyclotomic structure on thh(E).

Remark 5.7. When E = Σ∞R for an orthogonal ring spectrum R this proposition is
[3, Theorem 4.9], since the maps constructed above coincide with the maps constructed in
[3, Section 4]. To construct the pre-cyclotomic structure maps in [3] the authors use the
original approach from [12], which specifies the morphisms levelwise and then Kan extends
to pass to geometric fixed points. Our approach works entirely in the category of orthogonal
spectra without specifying the levels, and we construct the pre-cyclotomic structure maps
as the realization of cyclic maps (see Remark 6.3). In our comparison theorem we will need
Proposition 5.6 for E = shR.

Proof of Proposition 5.6. Let us write X• := thh•(E). We have to show that diagram (5.1)
commutes. This is the diagram

where the unlabeled isomorphisms are from Proposition 5.5 (we are also using that
ΦCrΦCs sdrs = ΦCr sdr ΦCs sds). The proof from [20, Theorem 4.6] takes care of all but the
top-left region. But all of the maps in that region are realizations of simplicial maps, so it
suffices to show that the simplicial maps themselves commute:

Remembering that Xq is the (q + 1)-fold Bökstedt smash product

hocolim
I×(q+1)

ΩI
(q+1)(E) = hocolim

(n0,...,nq)∈I×(q+1)
Ωn0+···+nq (En0 ∧ · · · ∧ Enq )
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for a ring bispectrum E, this final square may be decomposed in the following way (where we
omit the decorations of Ω and E to improve readability):

where δr : X → ΦCr (X∧r) is the diagonal isomorphism from Proposition 4.4. The upper left-
hand square commutes by [20, Proposition 3.29]. The remaining regions are formal diagram-
chases in which [20, Theorem 1.2] occasionally saves some effort. �

Our next task is to show that this pre-cyclotomic structure is actually cyclotomic.

Proposition 5.8. Let E be a ring bispectrum such that En is a flat orthogonal spectrum
for all n � 0. Then the above defined pre-cyclotomic structure on thh(E) is cyclotomic.

Proof. We need to prove that the composite

LΦCr |thh•(E)| → ΦCr |thh•(E)| cr−→ |thh•(E)|

is a stable equivalence of orthogonal spectra, where LΦCr stands for the derived geometric
fixed points.

Let P• → sdrthh•(E) denote a projective cofibrant replacement in the Reedy model structure
of simplicial Cr-spectra, built from the level model structure of Cr-spectra. Then the
geometric realization |P•| is cofibrant as a Cr-spectrum. To argue that |P•| → |sdrthh•(E)|
is a level equivalence of Cr-spectra, it suffices to show for each k|r that both P

Cr/k
• and

sdrthh•(E)Cr/k are good, meaning that each degeneracy is a levelwise h-cofibration of spectra.
For sdrthh•(E)Cr/k , we use essentially the same argument as [18, Lemma 6.17(ii)], but
with the extra ingredient that an r/k-fold smash power of a flat cofibration of orthogonal
spectra is a Cr/k-flat cofibration [31, 3.4.23], and therefore has the Cr/k-equivariant homotopy

extension property on each spectrum level. The goodness of PCr/k
• also follows from the fact

that Cr-cofibrations of spectra have the Cr-equivariant homotopy extension property on each
spectrum level.

Therefore |P•| → |thh•(E)| is a level equivalence of Cr-spectra, so ΦCr |P•| models the derived
geometric fixed points LΦCr |thh•(E)|. There is a commutative diagram
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and it therefore suffices to show that the composite

|ΦCrP•| → |ΦCr (sdrthh•(E))| → |thh•(E)| = thh(E)

is a weak equivalence.
The simplicial object thh•(E) is good by Proposition 3.4. To see that ΦCrP• is a good

simplicial object we observe that the Reedy cofibrant object P• on degeneracy maps provides
Cr-cofibrations, which ΦCr takes to cofibrations of orthogonal spectra, which in particular are
levelwise h-cofibrations. Since both simplicial objects are good, it is sufficient to show that for
any q � 0, the map

ΦCrPq → ΦCr (sdrthhq(E)) → thhq(E)

is a weak equivalence. Since a Reedy cofibration gives a cofibration in each simplicial level, Pq →
sdrthhq(E) is a cofibrant replacement in Cr-spectra. Since ΦCr preserves equivalences between
cofibrant Cr-spectra, we may replace Pq by any cofibrant approximation of the individual
orthogonal Cr-spectrum sdrthhq(E). The cofibrant replacement we use is the homotopy colimit
of a cofibrant replacement of the diagram ΩI

(q+1)r(E) in the Cr-projective model structure
on equivariant diagrams of [9, Theorem 2.6]. Let us denote this cofibrant replacement by
(ΩI

(q+1)r(E))c ∼−→ ΩI
(q+1)r(E). Then we have a commuting diagram

We remark that by [9, Proposition 2.10] the values of the diagram ΩI
(q+1)r(E)c at the objects of

I×(q+1) ∼= (I×(q+1)r)Cr are cofibrant orthogonal Cr-spectra. To see that the diagonal map is a
stable equivalence, we apply Lemma 4.5. It reduces the claim to showing that ΦCr captures the
homotopy type of its left-derived functor when evaluated on (En0 ∧ · · · ∧ Enq )∧r. This follows
from our flatness assumptions and [8, Theorem 3.2.14 and Proposition 4.5.14], which imply
that this Cr-spectrum is built out of induced regular Cr-cells in the sense of [8, Theorem 3.2.14;
31, Proposition 3.4.25]. The composite which goes through the upper right corner is exactly
the map we are interested in. �

We are now ready to prove the first main theorem from the introduction.

Proof of Theorem 1.1. Theorem 3.5 provides a chain of stable equivalences

Bcy(A) → thh(shA) ← THH(A),

and it remains to show that these are maps of cyclotomic spectra. The cyclotomic structure
on thh(shA) and THH(A) = thh(Σ∞A) was established in Proposition 5.8 (whose hypotheses
were already checked in the proof of Theorem 3.5); the naturality of this construction with
respect to E demonstrates that the right-hand map of our zig-zag commutes with the cyclotomic
structures. Finally we observe that when the cyclotomic structure map defined at the beginning
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of this section is restricted to the (0, . . . ,0) ∈ I×(q+1) term, it becomes just the norm diagonal,
which gives the cyclotomic structure map for Bcy(A) [2]; this takes care of the left-hand
map. �

Remark 5.9. The final stage of the proof of Proposition 5.8, and the proof of Theorem 3.5,
give equivalences on every simplicial level, not just on the realization. They also do not use
any face or degeneracy maps, and hence do not use the ring structure on A. Thus we have
also obtained a new proof of the main result of [1]: for each flat orthogonal spectrum X
and integer k � 1, there is a natural zig-zag of genuine equivalences of orthogonal Ck-spectra
X∧k  thhk−1(Σ∞X). In slightly more detail, the maps of our zig-zag

X∧k → thhk−1(shX) ← thhk−1(Σ∞X)

are non-equivariant equivalences by the proof of Theorem 3.5, and equivalences on derived
geometric fixed points by a reduction to the non-equivariant case. The reduction is by the
following commuting diagram, in which the vertical equivalences are from the last stage of the
proof of Proposition 5.8.

6. Comparison of TC models

Let A be an orthogonal ring spectrum. In this section we show that under suitable assumptions
on A, the topological cyclic homology spectrum resulting from the cyclotomic structure on
Bcy(A) is equivalent to the original topological cyclic homology spectrum built from THH(A).
We start by restricting our attention to the underlying p-cyclotomic spectra, that is, to the
fixed points of p-power cyclic subgroups.

Let p be a prime and let X be a pre-cyclotomic spectrum in the sense of Definition 5.2. The
cyclotomic structure maps yield S1-equivariant maps

Rpm,pn : ρ∗pm+nX
Cpm+n → ρ∗pnXCpn (6.1)

defined as the composite

ρ∗pm+nX
Cpm+n → ρ∗pn(ρ∗pmΦCpmX)Cpn → ρ∗pnXCpn ,

where the first map is induced by the canonical map from the fixed points to the geometric
fixed points [21, § V.4] and the second map is the Cpn -fixed points of the cyclotomic structure
map. We also have non-equivariant maps

Fpm,pn : XCpm+n → XCpn (6.2)

arising from the inclusion of fixed points of a larger group to a smaller group.
Let I be the category with objects [r] for every natural number r � 1 and with morphisms

generated by Rr,s and Fr,s : [rs] → [s] subject to the relations

R1,s = F1,s = id[s], Rs,tRr,st = Rrs,t,

Rs,tFr,st = Fs,tRr,st, Fs,tFr,st = Frs,t
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(see, for example, [4, 19]). Let Ip be the full subcategory of I on the objects [pm] with m � 0.
Then the maps (6.1) and (6.2) define an Ip-diagram sending [pn] to XCpn , and the p-typical
topological cyclic homology of X is defined as

TC(X; p) = holimF,R XCpn .

This is only a homotopy invariant notion if X is a Cpn -equivariant Ω-spectrum for all n � 0. To
enforce this condition, we write X → Xfib for the fibrant replacement in the model∗ structure
on pre-cyclotomic spectra constructed in [4, § 5] and note that Xfib has the desired Ω-spectrum
property. In particular, we can define the topological cyclic homology of a flat orthogonal ring
spectrum A by the formula TC((Bcy(A))fib; p); see [2, § 3.2].

We will recall in Section 6.1 how TC(A; p) is defined in terms of Bökstedt’s model for THH
in earlier literature on TC.

Remark 6.1. Classically, topological cyclic homology was defined under certain connectivity
assumptions. In the language of [18] a ring spectrum A is called strictly connective if An is
(n− 1)-connected, very well pointed if An is well pointed and the unit S0 → A0 is an h-
cofibration, and convergent if the structure map An → ΩAn+1 is n + λ(n)-connected, where
λ(n) → ∞ when n → ∞. If A is strictly connective, very well pointed and convergent, then
THH(A) is a fibrant cyclotomic spectrum. In this case TC(THH(A); p) is then equivalent to
the original definition of TC(A; p).

We further observe that since in our setting A is an orthogonal ring spectrum, the same
conclusion holds if we just assume that A is strictly connective and very well pointed. This
is because convergence is used only to invoke Bökstedt’s approximation Lemma, which holds
automatically if A is semistable (see [12, Proposition 2.4]).

We can now prove our second main theorem from the introduction.

Proof of Theorem 1.3. Since a fibrant replacement in pre-cyclotomic spectra sends a
stable equivalence between cyclotomic spectra to a stable equivalence between Cpn -equivariant
Ω-spectra for all n � 0, it follows from Theorem 3.5 that the first two maps in the zig-zag

TC((Bcy(A))fib; p) ∼−→ TC((thh(shA))fib; p) ∼←− TC((THH(A))fib; p) ← TC(A; p)

are stable equivalences. Now assume that A is strictly connective. By [12, Proposition 2.4],
THH(A) = thh(Σ∞A) is a Cpn -Ω-spectrum for all n � 0. Hence the fibrant replacement
THH(A) → THH(A)fib in pre-cyclotomic spectra induces a stable equivalence on TC. The
final step is to check that the resulting spectrum TC(THH(A); p) is naturally equivalent to the
classical definition of TC(A; p). The only non-obvious part is that our restriction maps agree
with the classical ones found in, for example, [12], and we do this in Proposition 6.4.

We now explain how we can bootstrap the equivalences for the p-typical versions of TC to
equivalences of integral topological cyclic homology. We recall from [11, § 6.4.3] that for a
cyclotomic spectrum X, Goodwillie’s integral topological cyclic homology TC(X) is defined as
the homotopy pullback of the diagram

where p varies through all primes. The homotopy limit is taken over the fixed points
inclusions induced by Cpn ⊂ Cpn+1 and it is equivalent to XhS1

after p-completion (see
[11, Lemma 6.3.1.1]). The right pointing map is induced by the fixed points inclusions of
Cpn ⊂ S1 and by the maps into the p-completions. The left pointing map is the product of the
completions of the maps

TC(X; p) = holimF,R XCpn −→ holimF XCpn −→ holimF XhCpn ,
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where the first map restricts the limit to the subcategory generated by the maps F and the
second map is the limit of the forgetful maps from fixed points to homotopy fixed points. Since
this pullback diagram is natural with respect to morphisms of cyclotomic spectra the zig-zag
above extends to a zig-zag on the homotopy pullbacks

TC((Bcy(A))fib) ∼−→ TC((thh(shA))fib) ∼←− TC((THH(A))fib) ← TC(A),

where the third map is an equivalence when A is strictly connective. �

6.1. Equivalence of restriction maps

It remains to check that our method for defining restriction maps gives the same result as the
more classical method. For this purpose we drop the prime p and note that the definition of the
restriction maps in (6.1) works for any cyclic group Cr. Applying this to THH(A) = thh(Σ∞A)
with the cyclotomic structure maps from (5.2) provides maps

Rr,s : ρ∗rsthh(Σ∞A)Crs → ρ∗sthh(Σ∞A)Cs . (6.3)

To compare these to the analogous maps from [12], we recall the construction from [12]; see
also [11, 18]. Consider for each n the map of cyclic spaces which in simplicial level q is defined
as

(sdrthh•(Σ∞A))q(R
n)Cr

=−→ (hocolim
I×(q+1)r

ΩI
(q+1)r(Σ

∞A)(Rn))Cr

∼=−→ hocolim
I×(q+1)

((ΩI
(q+1)r(Σ

∞A) ◦ Δr)(Rn))Cr

=−→ hocolim
(n0,...,nq)∈I×(q+1)

(Ωr(n0+···+nq)
(
(An0 ∧ · · · ∧Anq

)∧r ∧ Sn
)
)Cr

χ→ hocolim
(n0,...,nq)∈I×(q+1)

Ωn0+···+nq
(
((An0 ∧ · · · ∧Anq

)∧r)Cr ∧ Sn
)

∼=−→ hocolim
(n0,...,nq)∈I×(q+1)

Ωn0+···+nq (An0 ∧ · · · ∧Anq
∧ Sn)

=−→ thhq(Σ∞A)(Rn). (6.4)

The unlabeled maps are the canonical commutation of fixed points with homotopy colimits
and the unique natural isomorphism of spaces (B∧r)Cr ∼= B. The map χ : (ΩV X)G → ΩV G

XG

restricts each equivariant map out of a sphere to the fixed points of that sphere. Of course, as
n varies these fit together into a map of orthogonal spectra.

Remark 6.3. It is essential that the sphere Sn in (6.4) is a trivial S1-representation sphere.
The analogous map

(sdrthh•(Σ∞A))q(V )Cr → thhq(Σ∞A)(V Cr )

considered in [12, 2.5] for a non-trivial S1-representation sphere SV is simplicial. However, the
obvious residual actions of Cq+1

∼= C(q+1)r/Cr on

(sdrthh•(Σ∞A))q(V )Cr

∼= hocolim
(n0,...,nq)∈I×(q+1)

(Ωr(n0+···+nq)
(
(An0 ∧ · · · ∧Anq

)∧r ∧ SV
)
)Cr

for all q � 0 do not define a cyclic object. For example, the cyclic identities d0tq = dq fail in
general since the left-hand side involves a potentially non-trivial action on SV and the right-
hand side does not. However, one can still show that the map is S1-equivariant after taking
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geometric realizations with respect to the diagonal S1-action on the source. This follows by
checking that the realized map is C-equivariant for any finite C � S1 using subdivisions and
then observing that Q/Z is dense in S1. We thank Amalie Høgenhaven for pointing out this
argument to us.

After geometric realization, the composite in (6.4) provides an S1-equivariant map of
orthogonal spectra on the trivial universe,

ρ∗rthh(Σ∞A)Cr → thh(Σ∞A).

By further taking Cs-fixed points we also get an S1-map

Rr,s : ρ∗rsthh(Σ∞A)Crs → ρ∗sthh(Σ∞A)Cs . (6.5)

Proposition 6.4. The restriction maps ρ∗rsthh(Σ∞A)Crs → ρ∗sthh(Σ∞A)Cs defined in (6.3)
and (6.5) coincide.

Proof. It is enough to show that Rr,1 = Rr,1. For this we recall the canonical map R from
fixed points to geometric fixed points from [21, Section V.4] in more detail. For any orthogonal
Cr-spectrum X, let XCr denote the point-set level categorical fixed points. One has a natural
morphism of orthogonal spectra

R : XCr → ΦCrX =
∫ V

LS(V Cr ,−) ∧X(V )Cr ,

where
∫ V is shorthand for the coequalizer from (4.1). The map R sends x ∈ X(Rn)Cr to the

equivalence class of id ∧ x ∈ LS(Rn,Rn) ∧X(Rn)Cr .
In order to prove Rr,1 = Rr,1 it suffices to show that the composite of R with the cyclotomic

structure map of this paper

(sdrthh•(Σ∞A))q(R
n)Cr

R→ ΦCr (sdrthh•(Σ∞A))q(R
n) → thhq(Σ∞A)(Rn)

coincides with the cyclic map (6.4). This follows from several general observations about R.
The first observation is that it commutes with the interchange of fixed points with homotopy
colimits in the following way: for each Cr-diagram Z over a Cr-category C the diagram

commutes, where Δ: CCr → C is the inclusion of fixed points.
The second observation is that on each spectrum level n we have a commutative diagram

where χ restricts an equivariant map to the fixed points. This can be verified directly, by
describing λ as the map induced by the composite∨

W

LS ∧ (ΩV X(W ))N
χ−→

∨
W

LS ∧ ΩV N

(X(W )N ) −→ ΩV N ∨
W

LS ∧ (X(W )N ),
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where LS = LS(WN ,−) and the second map is the composite of the assembly of the loop
functor and the canonical map that commutes a functor with a coproduct. The last observation
is that R coincides with the diagonal isomorphism on the spectrum Σ∞(B∧r) for any cofibrant
space B, for instance using [20, Theorem 1.2]. �

Remark 6.5. The remaining steps that match the maps Rr,s with those in classical models
of TC are straightforward translations between different models of spectra. For instance,
in [12] Hesselholt and Madsen assume A is a continuous functor instead of an orthogonal
spectrum. But since they only use the symmetric spectrum structure of A, this poses no issue.
Furthermore, they take the underlying S1-prespectrum t (indexed by U) of the orthogonal S1-
spectrum THH(A) we defined here, and apply a thickening t′ and spectrification functor to get
an S1-equivariant spectrum T , in the sense of [17]. But they prove that the spectrification map
induces an equivalence on the C-fixed points of every representation level ([12, Proposition 2.4],
see also [18]), and therefore the homotopy limit that defines TC takes this spectrification map
to an equivalence of prespectra. Translating their definition of R back to the thickening t′ by
restricting to the first term of the colimit systems for TCr and ΦCrT , translating further to t,
and finally restricting to the trivial representation levels (since those are the only levels we use
to define TC), we get the map tCr (Rn) → t((Rn)Cr ) = t(Rn) given by (6.4). In summary, the
notion of TC defined using the maps Rr,s above is naturally equivalent to the one considered
in [12].
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