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Annals of Mathematics, 142 (1995), 425-426

Erratum
Stable K-theory and topological
Hochschild homology

By BJoRN IAN DUNDAS AND RANDY MCCARTHY*

Lannes and Oliver have pointed out to us that although F respects prod-
ucts, each Fy(—) will not. Hence the use of additivity in the proof of Theorem
2.6 is not correct. However, by stabilizing in the S direction we get a statement
which is equally suited for the applications:

THEOREM 2.6'. For any ezact category C, the natural map by degenera-
cies

lim QFFy(S®C) — lim QFF(SWC) ~ QF(SC)
k—o0 k—oo
1s a homotopy equivalence.

Proof. More generally, we show that for all n the map
o: lim QFFy(S®e) — Jim QFF,(SC)

given by degeneracies is an equivalence, which implies the result. The map is
split by the face maps, sending (ap; a1, ... an) € Fp(S®C) to §(ag; a1, ..., ay)
= (ap- - ay) € Fy(S®C). We need to show that o o § ~ id.

Let X be any functor from exact categories to (simplicial) abelian groups
satisfying X (0) = 0. Regarding S*)C as a k multisimplicial exact category, we
see that

X(S®c x SKDY = x(S*) x X(SHD)

is 2k connected since the source and target, viewed as 2k multisimplicial
groups, agree in total degree less than 2k. This means that under the weakened
assumptions Lemma 2.2 should read “XS®*)S,(C) — XS®C x XS*)C is 2k
connected”, and Lemma 2.5 should read “dy + do ~ dy: limj_,oc Q¥ X SK*) Gy —
limg oo Q¥ X S*)” where Q is a model for the loops within simplicial abelian
groups.

Now, letting X = F},, we define two natural transformations

Tig, Tp: Jim QFF, sk Jim OFF, 5% S,
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induced by the natural transformations tq,t3: F;, — F,S2 given by sending an
element (ap;a1,...,a,) € F,C to

0 ——— Cp = Cp = = Cp — 0
gy id ®ay id @ag id Dap_1 (id Gap)A
tig(x) = cp —— cpDcg —— cpda pBep_1 —— ¢
g ay az p— ap
cp —— co — c1 Cp—1 — ¢p
and
8
cp — Cp = Cp = = cp = cp
Jr(lﬂaBl)A J(I@Bz)A J(I@Bp)A
tg(z) = ep OO c,@ep 1991 o g idPo2 id@oy 1 p ® Cp1 (idPop)A e
— D —— —_—
JVBI_I Jﬁz—l J'Bp—l JV
a a2 Qp—1
0 —— co — 1 Cp—1 0

where i; (resp. 7;) is the j*! inclusion (resp. projection), A is the diagonal and
Br = [1k<i<q @i- Note the identities

doTid = id, dQTg =00 (5, dzTid = dng =0 and leid = leg.

Hence

id = dolig~diTiq=diTg~dyITg =006 |

We similarly change Definition 3.2 to

DEFINITION 3.2". For M an R bimodule, we let

THH(R;M) = lim 0| € Homguwe(c,c®r M)
e ceob S(k)C

(that is: THH(R, M) = limj_,, 2 THH® using the notation from the proof

of Theorem 3.4); the rest of the argument follows with minor changes as out-
lined above.

(Received April 12, 1995)
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