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Annals of Mathematics, 140 (1994), 685-701

Stable K-theory and
topological Hochschild homology

By BJ0RN IAN DUNDAS and RANDY MCCARTHY*

Introduction

Tom Goodwillie conjectured that there existed a construction for rings
like that used to compute its Hochschild homology in which one replaced the
tensor products over a ground ring by the "tensor product" over the ring up
to homotopy QS0 - lim= O0 Q?S'. He conjectured further what the weak
homotopy type of this new theory would be for the integers and Z/pZ for any
prime p. Lastly, he conjectured that this theory would be homotopy equivalent
to stable K-theory for any ring.

This new theory was constructed by Marcel Bbkstedt in [3] and is called
the topological Hochschild homology for a ring R. It is generally denoted
THH(R). He computed THH(Z) and THH(Z/pZ) in [4] and showed they
agreed with Goodwillie's original conjecture. In this paper, we give a solu-
tion to Goodwillie's third conjecture that THH(R) is weakly homotopic to
the stable K-theory of R for any ring. A proof of this conjecture including the
A,,-case is expected to appear in [18]. That proof derives the conjecture from
an analysis of Nil-term phenomena arising in an A,,-version of a generalized
free product situation [20]. An outline of the program was indicated in [23].
The two proofs are completely different; the one in [18] will require the tech-
niques of A,,-rings even to obtain the conjecture for simplicial rings, which is
not the case with the present approach. The following is Theorem 5.3.

THEOREM. For any simplicial ring R and simplicial R-bimodule M, there
is a natural weak homotopy equivalence between KS(R,M) and THH (R;M).

The general scheme for this proof goes as follows. It was shown in [17]
that THH(R) is naturally equivalent to the homology of the category of finitely
generated projective right R-modules with coefficients in the bi-functor HomR.
Since we want to compare this theory to algebraic K-theory we "twist" the two
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686 BJ0RN IAN DUNDAS AND RANDY MCCARTHY

theories together to obtain a complex which collapses in two different ways.
One of these ways recovers our original model for THH(R) and the other
way defines a "new" equivalent construction which formally appears similar
to algebraic K-theory.

For an R-bimodule M, we define K(R; M) to be the algebraic K-theory
of the exact category with objects (P, a), where P is a finitely generated pro-
jective module and a is an R-module homomorphism from P to P OR M. We
extend this definition to simplicial R-bimodules degree-wise and we show that
our "new") construction for THH is equivalent to the underlying space of the
Goodwillie derivative of the functor which sends a pointed simplicial set X to
K(R; M[X]/M[*]). We let R (D M denote the new ring with multiplication
defined by (r, m)(r', m') = (rr, rm' + mr'). One can define KS(R, M) as the
Goodwillie derivative of the functor which sends X to QK(R (D M[X]/M[*])
where we use F. Waldhausen's definition for the algebraic K-theory of a sim-
plicial ring.

Thus, the key to comparing KS to THH is a comparison between K(R; )
and K(RE) ). We prove there is a natural homotopy equivalence from
K(R; M[S']/M[*]) to K(R EDM) for any bimodule M. The idea for this equiv-
alence comes from the fact that a morphism from (R E M)m to (R ED M)'
as R (D M-modules is uniquely determined by R-module homomorphisms /
from Rm to Rn and a from Rm to M'. We write such a map as (,3, a). One
can define a map from the bar construction of HomR(R', M') (as an abelian
group) to the nerve of the category of free R ED M-modules with respect to
isomorphisms by sending a to (id, a) because (id, a) o (id, a') = (id, a + a').
This induces a map which we show to be a homotopy equivalence.

The paper is organized as follows. In Section 1 we define a specific res-
olution F. for the homology of the category PR (finitely generated projective
right R-modules) with coefficients in the bi-functor HomR. This is a func-
tor from linear categories to simplicial abelian groups and we derive a few
simple facts about it which we will want to use. In Section 2 we show how
one can incorporate the S construction from [22] in such a way that the com-
posite functor QIF.S.PRI is again naturally THH(R). The main theorem of
Section 2 is that the inclusion by degeneracies produces a homotopy equiva-
lence of FOS.PR with F.S.PR. Using this model FOS.PR, we show by a series
of reductions how one can interpret THH(R) as the underlying space of the
Goodwillie derivative of the functor sending a pointed simplicial set X to the
space K(R; R[X]/R[*]) defined above. We prove our comparison theorem be-
tween the theories K(R; M) and K(R (D M) in Section 4. From this fact and
the observation of Goodwillie that the relative K-theory of a surjective map
of rings with square zero ideal can be computed degree-wise, we deduce our
main result in Section 5.
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STABLE K-THEORY AND TOPOLOGICAL HOCHSCHILD HOMOLOGY 687
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1. The simplicial functor F

In this section we quickly recall a functor from small linear categories to
simplicial abelian groups. This construction can be found in [2] and is an
example of a construction by B. Mitchell in [16].

Definition 1.1. We will call a category linear if it has at least one object,
its Hom sets are abelian groups and composition is bi-linear. A linear functor
between linear categories is a functor such that the induced maps of Hom-sets
are homomorphisms of abelian groups. For C a small linear category, we define
F.(C) to be the following simplicial abelian group:

Fn (C) = 3Homc (C,,Co), C = C1 <-- <- Cn <-Co
CENn(C)

where the direct sum runs over all C1 -- C2 -- <-- Cn <- Co E Nn(C)
and N.(C) denotes the simplicial nerve of C. Face and degeneracy operators
applied to an element like (fo; fi,... , fn) E Homc x Nn (C) are defined by:

((fo 0 fl; f2, *, fn) if i = 0
di (fo;f,...Ifn) fo; fi, *,i fi+f *... fn) if 1<i<n-1

U(fnofo;fil,..,fn-1) if i=n
Sif .o fi N _ | (fo;fi, IfiIidci+lfi+1,...Ifn) if 0 < i < n-1

sifo f0, 1,f** )=n -1. (fo; fi,..., fn, idco) if i = n.

One sees that F.( ) is a covariant functor from the category of small linear
categories to simplicial abelian groups. If G and G' are naturally isomor-
phic linear functors then F.(G) is naturally simplicial homotopic to F.(G')
by (1.11) of [2]. Thus, if C' is a linear category which is equivalent to a small
linear category C, we will define F.(C') to be F.(C) which is well-defined up
to homotopy.

THEOREM 1.2 ([11],[17]). Let R denote a ring and P the linear cate-
gory of finitely generated projective right R-modules. Then there is a natural
sequence of isomorphisms
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688 BJ0RN IAN DUNDAS AND RANDY MCCARTHY

where Hmac(R,R) denotes the MacLane homology of the ring R with co-
efficients in the bimodule R (see [13]) and THH (R) denotes the topological
Hochschild homology for the (discrete) ring R (see [3]). The first isomorphism
is by [11] Section 1 and the second isomorphism is by [17].

Definition 1.3. Given a linear functor G from A to B, we define the
"twisted" product category AGB as follows. We set Obj(AGB) to be Obj(A) x
Obj (B) and

HomAGB((AI B), (A', B')) = HomA (A, A') E HomB(B, B') ED HomB (G(A), B')

with composition defined by (f, g, h)o(f', g', h') = (fof', gog', hoG(f')+goh').

PROPOSITION 1.4. The functor from AG!3 to A x B which is the identity
on objects (and sends (f,g,h) to f x g) induces a homotopy equivalence from

F.(AGB) to F. (A x B).

Proof. We will be defining three chain homotopies which arise from
semi-simplicial homotopies (they satisfy the simplicial homotopy identities
with respect to the face maps; see [14], Section 5). Given a semi-simplicial
homotopy {Hi} one can construct a chain homotopy h by setting hn =

First reduction. The subcomplex of F.AGL3 generated by elements of
the form (ao; al, . .. , an) such that ao = (0, 0, ho) is acyclic.

Proof. We define a semi-simplicial homotopy from 0 to the identity as
follows (we let ai = (fi, gi, hi))

Hi ((O1 O ho); all , .. I an)

= ((0, 0, ho); al1,... ., li , (0,I idsi+l I 0),I (0, i i+1 i 0)) ... i (? gni )) C]

Now we take the quotient of F.AGB by the above acyclic subcomplex
to get a new complex F*AGB. We will write a generating element of this
complex as ((fo, go, *); a1,... , an). The complex F*AGB splits into two sub-
complexes A. and B. generated by elements of the form ((fo, 0, *); 1,.... , an)
and ((Ogo,*);a1.... I an) respectively.

Second reduction. The projection from A. to F.A generated by sending

((fo, O,*); al,.. . ,an) to (fo; fi,.. . , fn) is a homotopy equivalence.

Proof. Choose some element b of B. The projection has a section de-
fined by sending (fo; f, . . . , fn) to the equivalence class containing ((foeb, *);

(i, Ob, ?), ... , (fin Ob, 0)) where we let Ob denote the zero endomorphism of b.
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STABLE K-THEORY AND TOPOLOGICAL HOCHSCHILD HOMOLOGY 689

A simplicial homotopy from the identity to the composite can be defined by
setting Hi of ((fo, 0, *); a1 ,... ) an) to be the class of

((Ao, ?, *); (h i Obi 0) *...*, (fii Obi 0) (idAi+l A 0) ,) a~i+1 , .. *, an)

Third reduction. The projection from B. to F13 generated by sending

((0, go, *); ar1,.. aCrn) to (go; 91, . . ., gn) is a homotopy equivalence.

Proof. Choose some element a of A. The projection has a section de-
fined by sending (9o; 91, ... ,gn) to the equivalence class containing ((Oa, 90, *);
(a, 91i, ), ... , (Oa, gn, 0)) where we let Oa denote the zero endomorphism of a.
A simplicial homotopy from the composite to the identity can be defined by
setting Hi of ((0, go, *); 1,...., can) to be the class of

((?, go, *); a 1... , ali) (O. idsi+1,O)7 (Oa) gi+17 0) .. * (Oa 9 n, 0))

We have constructed a diagram of complexes

FAxF.B X F.AGL

A. x B. < F.AG3
with the maps up and down quasi-isomorphisms by reductions 1, 2 and 3 above.
Since the composite around the square is the identity on F.A x F.1 we see
that inc is a quasi-isomorphism. Since the inclusion inc is a section to our mapwe are done. a

Definition 1.5. For A a small linear category and n a natural number,
we let Tn(A) denote the new linear category with Obj(Tn(A)) = Obj(A)n
and HomTn(A)((Al,... , An) , (B, I ... , Bn)) the set of all n x n "matrices" of
the form (oli,) where aij E HomA(Aj, Bi), aij = 0 if j < i and composition
is defined by

(a o /3)i j = En j f3,j

(i.e., matrix multiplication). Thus, Tn( ) is an endo-functor of the category
small linear categories.

COROLLARY 1.6. For any small linear category A with a zero object, the
functor from Tn(A) to An given by the identity on objects induces a homotopy
equivalence F.(Tn(A)) -- F.(An ).

Proof. Let G denote the functor from A to Tn_ (A) defined by sending
an object A to (A, 0, . .. , 0) (where 0 is a zero object). Then Tn(A) is natu-
rally isomorphic to AGTn_1 (A) and the result follows by Proposition 1.4 andinduction. a

This content downloaded from 128.151.13.125 on Sat, 19 Oct 2024 11:14:38 UTC
All use subject to https://about.jstor.org/terms



690 BJ0RN IAN DUNDAS AND RANDY MCCARTHY

2. Incorporating the S construction

We recall some definitions and facts about Waldhausen's S construction
from [22]. Let C be an exact category (with a chosen zero object 0). Let [n]
denote the ordered set (O < 1 < ... < n) (which we think of as a category),
let Ar[n] denote the category of arrows in [n], and let (j/i) denote the arrow
from i to j for i < j. We call a sequence of the form (j/i) -+ (k/i) -* (k/j)
in Ar[n] exact. We define SnC to be the set of exact functors C: Ar[n] - C,
which means:

(a) For all i, C(i/i) = 0;
(b) For all i < j < k, the complex 0 -# C(j/i) -# C(k/i) --+C(k/j) - 0

is an exact sequence in C.
We think of an element of SnC as a sequence of admissible monomorphisms

0 = Co >-+ C, >-+ ... >-+ Cn plus choices C(j/i) for all quotients Cj/Ci.
We can form a simplicial set [n] -4 SnC (called s.C in Section 1.4 of [22]) where
the face and degeneracy maps amount to forgetting or duplicating a Ci, except
that for do (which would forget 0 = Co) we must also factor out by C,. We
define the algebraic K-theory of C to be

K(C) = QjS.CI.

Each SnC can also be considered as a category with the morphisms the
natural transformations of functors. We can further consider this as an exact
category by declaring a sequence C" -+ C -+ C' to be exact if the associated
sequences for all i < j are exact as sequences of C. With these conventions,
we can consider S.C not only as a simplicial set but as a simplicial category or
even as a simplicial exact category.

Remark 2.1. Suppose we have a sub-category T, of C, with the same
set of objects, whose morphisms are always isomorphisms. This determines a
subcategory tSnC of each SnC, again having all the objects (a morphism is a
natural transformation consisting of morphisms from T). Let the bi-simplicial
set N.tS.C be the nerve of the resulting simplicial category. We note that
NotS.C is just S.C and that by 1.4.1 of [22] the natural map of bi-simplicial
sets (given by degeneracies) S.C -* N.tS.C is a homotopy equivalence. This
applies in particular if we choose T to be the sub-category of all isomorphisms
which we will denote N.iS.C.

We now note some very general facts related to "additivity" before re-
turning to our specific examples. We let X. denote a simplicial functor from
the category of small exact categories to based sets such that

(i) X.(*) = *;
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STABLE K-THEORY AND TOPOLOGICAL HOCHSCHILD HOMOLOGY 691

PROPOSITION 2.2. The composite functor X.S. satisfies additivity. That
is, for all exact categories C,

X.S.S2(C) X.S.(C) x X.S.(C)

A)>-+ SCA*B A ) AxB.
Proof. The proof of additivity found in [15] uses only natural homo-

topies by exact functors between exact categories. Thus, we see that for each
n E N we have XnS.S2C XnS.(C x C). By the realization lemma (see for
example Lemma 5.1 of [20]) and (ii) we are done. El

LEMMA 2.3 (after 1.5.5 of [22]). Suppose that X.79 is connected or a sim-
plicial abelian group for every exact category D. Let C be an exact category
such that the natural projections X.SnC ) X.Cn are homotopy equivalences
for all n. Then the natural map from X.C to QX.S.C is a homotopy equiva-
lence.

Proof. Let PS.C denote the simplicial path space of S.C and consider
the sequence X.C ) X.PS.C ) X.S.C. For each fixed n, the associated
sequence X.C - X.PSnC ) X.SnC is homotopy equivalent to the trivial
fibration sequence X.C' ) (X.C)n+l ) (X.C)n. We can conclude by B.4 of
[5] that the original sequence was a fibration sequence up to homotopy. Since
PS.C simplicially contracts to the trivial category (by exact functors), we see
by the realization lemma and (i) that X.PS.C is also contractible and hencethe result. O

Definition 2.4. For ? an exact category, we define the topological Hochs-
child homology of ? by

THH*(?) = 7r*+i(F.S?).

We note that by Theorem 1.2, Corollary 1.6 and Lemma 2.3 this definition
agrees with the usual definition for a discrete ring if one uses the exact category
of finitely generated projective right modules over that ring. That is, SnP is
naturally equivalent to TnP and the composition TnP - SnP - 1n with
the map of Lemma 2.3 is the map used in Corollary 1.6.

LEMMA 2.5. Suppose X. is a functor to simplicial abelian groups (instead
of just pointed sets). Then the two maps X.S.do + X.S.d2 and X.S.dl from
X.S.S2 to X.S. are homotopic.

Proof. Let qo and 01 denote the exact functors from C to S2C defined
by sending an object C to C = C -* 0 and 0 > - C = C respectively. Let q
denote the simplicial map X.S.0o + X.S.01 from X.S.C E X.S.C to X.S.S2C.
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692 BJ0RN IAN DUNDAS AND RANDY MCCARTHY

By proposition 2.2, q is a homotopy equivalence with inverse (X.S.do, X.S.d2)
and since X.S.d1 o q is simply degree-wise addition, we are done. E

THEOREM 2.6. For any exact category C, the natural map FOS.C -
F.S.C is a homotopy equivalence.

Proof. More generally, we show that for all n G N, FnS.C is simplicially
homotopic to FOS.C which implies the result by the realization lemma. Let c be
the natural transformation from Fn to Fo defined by sending (ao; a1, ... I, an)
to (aoal ... an). Let dgn denote the natural transformation from F0 to Fn
obtained from lifting by degeneracies. Since c o dgn = idF0 we need to show
that C = dgn o c is homotopic to the identity when we include S. in the
picture. In other words, we want to show that the simplicial self-map C of
FnS.C defined by sending (ao; al,..., an) to (a0oa ... an; idC0, *idco) is a
homotopy equivalence.

To prove this we are going to use the fact that by Proposition 2.2, FnS.
satisfies additivity (since Fn(C x D) _ FnC x FnD). We define three natural
transformations from Fn to FnS2 which then assemble to give simplicial maps
from FnS.C to FnS.S2C. We will use these to prove that C is a homotopy
equivalence. We define the natural transformations Tid, T-c and Tt as follows.

Let a- = (Co 4ao C a ... Cn Ca o) denote an element of FnC
and let aic...j denote the composite cjai+1 ... aj. Then

- O < C0 = CO = ... = CO O
1 Clso Clso Clso 0

1,n 0 = C0 = .. =

Tid(') = Co '?Co ? C O = C2 ... Co - C ,a C0
11l 17rc, 17C2 arcedn_ CO ( C 1(2 {O(n CO0 ( Cl (as C2 (2 nl Cn 0
1 loul l0o1 0,1 0 l

{ {1..n {2..n1 ani {
TC 0 CO - Co = C Co C2 ... - Co =C C S11 '7rco 7rco 17TcO

_Co (a ... Co o .. Co = Co
0 Co Co..... o - C Co =Co

11 ?Rl ..n 1,a2 ..n O?an 1
Tt~a Co O-n CO ED C1 (1~1Co ED C2 ...2 13R- Co 3~ Cn*A

1~~~~a .. n- a2 ...n-1 anBr-1O C Co o .. Co = C
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STABLE K-THEORY AND TOPOLOGICAL HOCHSCHILD HOMOLOGY 693

Now we note the following relations:

doTid = id doT-c =-C doTt = 0

diTt = dlTid + diT-c d2Tid = d2T-c = d2Tt = 0.

By Lemma 2.5 we obtain

id - C = doTid + doT-c

= (dOTid + d2Tid) + (doT-c + d2T-c)

dlTid + dlT.c
= dTt

?? doTt + d2Tt = 0.

3. THH(R) as a Goodwillie derivative

We are now going to show how one can interpret THH(R) as the underly-
ing space of a derivative in the sense of T. Goodwillie in [9]. We let R denote
a ring, P its exact category of finitely generated projective right R-modules
and M its exact category of right modules.

Definition 3.1. For M an R-bimodule, we define K(R; M) to be:

K(R; M) = Q J HomSM (C, C OR M)

We note that K(R; 0) _ K(R), K(R; R) _ K(End(P)) and that K(R; ) is a
functor of R-bimodules. We also note that K(R; M) is the usual algebraic K-
theory for the exact category with objects the pairs (P, al) consisting of P E P
and al an R-module homomorphism from P to P OR M with morphisms

Hom((P, ai), (Q, 3)) = {f E HomR(P, Q)Ii0 o f = (f 0 idM) o al}.

A sequence (P", a") -- (P, al) -- (P'a') is exact if and only if P" -+ P -F P'
is an exact sequence in P.

We extend K(R; ) to simplicial R-bimodules degree-wise. That is, for M.
a simplicial R-bimodule, K(R; M.) is the realization of the simplicial space
[n] -- K(R; Mn). Since CESp Homs.M (C, C OR M) is connected, K(R; M.)
can equivalently be defined as the loop space of the realization of the associated
bi-simplicial set. For X a pointed space (= pointed finite simplicial set), we
define K(R; M; X) to be K(R; M[X]/M[*]). By the realization lemma (1.5 of
[20]), K(R; M; ) is a homotopy functor taking homotopy equivalent spaces to
homotopy equivalent spaces.
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694 BJ0RN IAN DUNDAS AND RANDY MCCARTHY

Definition 3.2. For M an R-bimodule, we let

THH(R; M) = Q Homs.M(C, C (R M)

By a direct transliteration of the methods of Sections 1 and 2, we see that
THH(R; M) is naturally homotopy equivalent to the realization of the simpli-
cial abelian group

Fn W; M) = Homp(Pl,Po eR M), P = Pi Pn P -Po
PENn (P)

(with structure maps like F.(P) in 1.1). Thus, THH(R; M) is naturally weak
homotopy equivalent with the space THH(R; M) as defined in [17].

We extend this definition to simplicial bimodules degree-wise and define
THH(R; M; X) for a pointed space X by THH(R; M[X]/M[*]). We note that
THH(R; M; *) = 0, THH(R; R; S) _ THH(R) and that THH(R; M; ) is
excisive: a generalized homology theory.

Definition 3.3. We define K(R; M; X) to be the (homotopy) fiber of the
natural retraction from K(R; M; X) to K(R; 0; *) = K(R). Since K(R; M; X)
is an infinite loop space and the map in question is a map of infinite loop
spaces, we see that K(R; M; X) is weakly homotopic to K(R) x K(R; M; X).
The Goodwillie differential of the homotopy functor K(R; M; ) at X is

DK(R; M; X) = lim QnK(R; M; Sn A X).
ne-4on

The derivative of K(R; M; ) is a spectrum naturally associated to its differ-
ential and in our case it is simply the spectrum K(R; M; Sn) with the obvious
structure maps.

We note that there is a natural transformation from K(R; M; ) to
THH(R; M; ) induced by the natural map from the coproduct of the un-
derlying set of groups to the direct sum of the groups. Since THH(R; M; ) is
excisive, the natural map THH(R; M; X) ) Q THH(R; M; EX) is an equiv-
alence for all X and we have a natural diagram

K(R; M; X) ) THH(R; M; X)

DK(R; M; X) ) DTHH(R; M; X)

THEOREM 3.4. For M. an m-connected simplicial R-bimodule (r*(IM.I)
- 0 for * < m), the map K(R;M) ) THH (R;M) is 2m-connected and thus
DK (R;M; ) is naturally weak homotopy equivalent to DTHH (R;M; ).
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STABLE K-THEORY AND TOPOLOGICAL HOCHSCHILD HOMOLOGY 695

Proof. We are indebted to T. Goodwillie for pointing out an error in
our earlier version of this proof. For each p, we let SW denote the diagonal of
the iteration of the S construction p-times. We define

fib(P)= fiber: JJ Homs(P)M(C, C OR M) ' IS.PI,
Ces~~Pp

(eP) 0
cof(P) = cofiber: Is.(PI P J Homs(p)M (CC R M) i

CES(P)P

THH(P)- G HomS(p)M (C, CR M)
CeS9P)P

We now note that the natural map from k(R; M) to THH(R; M) can be put
into the following commutative diagram

K(R; M) THH(R; M)17 17
QP fib(P) ap QP cof (P) 3p QP THH(P) .

The vertical maps are homotopy equivalences by additivity and Lemma 2.3.
We claim that the map alp is at least p - 3 connected and the map fp is 2m
connected. Assuming our claims, we are finished by choosing p > 2m + 3.

To see that the maps ap are at least p - 3 connected, we consider the
commuting diagram

cS(p)P Hom(p) M(0, C OR M)| S.(P),P

P Homs(p)M (C, C OR M) | Is*.VCES(p)P~m~)(,0M ~ *
This diagram satisfies the Blakers-Massey theorem (see for example [24], 7.4)
with all the spaces at least p - 1-connected. Consequently the map of the
homotopy fibers is at least 2p - 3-connected. Thus, acp is at least p - 3-
connected.

Now we show that the maps /P are at least 2m-connected for all p. First
we note that for each fixed n, the natural map

(1) V Homs(p)M(C, C (OR MI) ) HomS(p)M(CC ($OR M)
E S n~ P CESn pP

is 2m+ 1-connected. This is because the map from the wedge of a finite number
of m-connected spaces to their product is 2m + 1-connected (essentially by the
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696 BJ0RN IAN DUNDAS AND RANDY MCCARTHY

Blakers-Massey theorem again), and to extend this to arbitrary index systems
we take the inductive limit over all finite subsets. Letting n vary, we see that
the (homotopy) fiber of the natural map in (1) is equivalent to a bi-simplicial
space Z.. such that Zq,. is contractible if 0 < q < p - 1 and 2m + 1-connected
if q > p. By standard spectral sequence arguments it follows that the natural
map is 2m + p-connected and hence that f3p is 2m-connected. E

4. The relation between K(R; M) and K(R 0 M)

In order to compare stable K-theory to THH it is going to be convenient
for us to examine first the relationship between K(R; M) and K(R e M)
(where R E M denotes the augmented ring with underlying group R E M and
multiplication (r, m)(r', m') = (rr', rm' + mr')) for any R-bimodule M. We
will let K(R 0 M) denote the fiber of the natural map from K(R 0 M) to
K(R) induced by the ring homomorphism sending (r, m) to r. This is a map
of infinite loop spaces with a section, so K(R 0 M) is weakly homotopic to
K(R) x K(R E M).

The rest of this section is devoted to proving the following theorem. We
let B.M denote the bar construction naturally considered as a simplicial R-
bimodule; in particular K(R; B.M) -K(R; M; S1).

THEOREM 4.1. For any R-bimodule M, there exists a natural weak ho-
motopy equivalence TI(R,M)

K(R; B.M) K(R 0 M)

which factors to give a homotopy equivalence TI(RM) from K(R,B.M) to
K(REM).

Construction of TI(R, M).
Recall that BnM = M n and HomS.M(C, C OR (M$n)) is naturally

isomorphic to HomS.M(C, C OR M)$n. We construct a natural map of bi-
simplicial sets T.,. from Hc1ES.p Homs.M (C, C OR M)* to N*iS.PReM (nota-
tion is from Remark 2.1). Using the ring map from R to R E M (sending r to
(r, 0)) we see that there is an exact functor from P to PReM. This functor is
naturally isomorphic to the exact functor G which sends P to P 0 (P OR M)
with (p, (p' 0i m'))(r, m) = (pr, p' 0 m'r + p 0 m). Given an R-module homo-
morphism a from P to P OR M, we define the isomorphism (id, a) of G(P)
(as an R E M-module) by (id, a)(p, p'i m) = (p, a(p) +p'0 m). We note that
(id, a) o (id, 3) = (id, a + ,3). The map "'p,q is defined by sending

(C; a,,. . , a,) E Sq1P x HOmSqM(C C OR M)P
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to

(G(C) ('dcl G(C) (ia2 ... (issp G(C5)) E NpiSqPR0m

There is a commuting diagram

K(R; B.M) - i K(R ED M)

K(R; 0) - K(R);
thus, TI naturally produces a map 'I from K(R; B.M) to K(R f M) and T is
a weak homotopy equivalence if and only if 'i is one also.

To show that TI is a homotopy equivalence it is convenient to restrict
our attention to free modules. That is, to use the subcategories of finitely
generated free modules (denoted F) instead of all of the projectives. We note
that the map TI is still well-defined if we restrict to F.

Reduction. It suffices to show that TI is an equivalence on the bi-simpli-
cial subsets defined using free modules.

Proof. Let the decoration "f " mean the appropriate construction using
the exact category of free modules as opposed to projectives. By cofinality (see
for example [10], 1.1) we know that the natural map Kf (R; M) -> K(R; M)
(induced by the exact inclusion functor) is an isomorphism on all the homo-
topy groups except possibly 0. Each class [(P, a)] of iroK(R; M) is equiv-
alent to [(P 0D P', a 0 0)] - [(P', 0)] and in choosing P' so that P 0 P' is
free we see that 7roKf(R; M) - 7roK(R; M) and hence the natural map
Kf (R; M) -* K(R; M) is a weak homotopy equivalence. By the realization
lemma, we conclude that this is true for simplicial R-bimodules as well.

Again by cofinality, we know that the natural map from Kf (R ?D M)
to K(R 0 M) is an isomorphism on all homotopy groups except possibly
zero. Since lroKf (R) - 7roKf (R ED M) and iroK(R) =7roK(R 0f M) (use
Nakayama's lemma; (see for example [1], IX.1.3)) we see that the natural map
Kf (R 0D M) -- K(R 0D M) is a weak homotopy equivalence.

By these remarks, if If (R, M) is a weak homotopy equivalence, then
'I(R, M) will be one also which will imply that 'I(R, M) is one too. El

Proof (of Theorem 4.1). The following is a simplification by the referee
of our original argument. By the above reduction, we can assume that we are
working with the respective categories of free modules. We pass to equivalent
exact categories with one object for each nonnegative integer. We can consider
.FR as a subcategory of FReM with all of the objects (one for each natural
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698 BJ0RN IAN DUNDAS AND RANDY MCCARTHY

number), but having only the morphisms (3, 0). Note, however, that for q > 1
the subcategory Sq.FR of SqFRM does not have all the objects.

Let U be the exact functor from FREM to FR which takes every object to
itself and takes (,3, a) to (,3, 0). It is a retraction (UU = U) with image FR.
Let T be the class of isomorphisms of the form (1, a). These are precisely the
morphisms which U takes to the identity maps.

The bi-simplicial map T.,. which defines IQ is an injection into N.tS.FR?M.
By Remark 2.1 and the realization lemma it will be enough if we show that
for each q the inclusion of the image of TI. q into N.tSq.FRM is a homotopy
equivalence. The image of I.Nq is the nerve of a full subcategory of tSq.FReM,
namely that which has the same objects as Sq.FR. We complete the proof by
showing that every object C of Sq.FReiM is t-isomorphic to an object of SqYR,
namely Sq(U)(C).

The fact that C is isomorphic to Sq(U) (C) follows from the fact that in

.FReM every short exact sequence splits. (Every filtered object C is a split
object, and so its isomorphism class is determined by the isomorphism classes
of its subquotients C(i + 1/i), 1 < i < q). If i is an isomorphism from C to
Sq(U)(C), then putting i = Sq(U)(i/), we see that i-1 o i1 is a t-isomorphism
because Sq(U)(ir1 o a) = Sq(U)(i)1 o Sq(U)(i/) = r/10 = 1. [

5. Stable K-theory and THH

For R. a simplicial ring, we let K(R.) denote its algebraic K-theory as
defined by F. Waldhausen in [21], Section 6. For M. a simplicial R.-bimodule,
we let R. 0 M. denote the new simplicial ring which is Rn GE Mn in dimension
n. We let K(R. 0 M.) = fiber(K(R. 0 M.) ) K(R.)). Since this is a map
of infinite loop spaces with a retract, K(R. 0 M.) is weakly homotopic to
K(R.) x K(R. 0 M.). In general, K(R.) is not equivalent to the realization
of the simplicial space [n] -* K(Rn). We recall, however, a fact noted by
T. Goodwillie.

PROPOSITION 5.1 (Lemma I.2.2 of [8]). For any simplicial ring R. and
R.-bimodule M., K(R. 0 M.) is naturally weak homotopy equivalent to the
realization of the simplicial space [n] -> K(R& 0 Mn).

There is a gap in the proof of this statement in [8]. The diagram on
page 359 of [8] is not shown to be homotopy-cartesian, but this can now be
deduced from 2.7 of [6].

For A. a simplicial abelian group and X a pointed space (= pointed
finite simplicial set) we let A.[X] denote the new simplicial abelian group
[n] -> An[Xn]/An*[*]
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Definition 5.2. C. Kassel defined the stable K-theory of the simplicial
ring R. with coefficients in the simplicial R.-bimodule M. (see [12], 2.3) by

K8(R., M.) = lim QnK(R. 0 M.[Sn-i]).
nl--+o

We recall that for any pointed space X, this is an equivalent definition (up to
weak equivalence) with K8(R, X) defined in [21] Section 6 when we let M. be
R.[X] (see page 388 of [21]).

THEOREM 5.3. For any simplicial ring R. and R.-bimodule M., there
is a natural weak equivalence between K8(R.,M.) and THH (R.;M.) (where
THH (R.;M.) is the realization of the simplicial space [n] -+ THH (Rn;Mn)).

Proof. We note that by Proposition 5.1 above, it suffices to prove the
case for R and M discrete. By Theorem 4.1 we have a natural homotopy
equivalence TJ(R, M) from K(R; B.M) to K(R 0D M). If we use the model of
S1 obtained by using the category of based finite sets (see for example [19]),
then there is a natural isomorphism of simplicial abelian groups M[S1 A X] X
B.M[X] for any pointed space X. We define 'J(R, M, X) to be the natural
map of simplicial spaces given in degree n by 'J(R, M[Xn]). Using the fact
that we can define K(REM[X]) degree-wise (again by Proposition 5.1) and by
the realization lemma, 'J(R, M, X) produces a natural homotopy equivalence
from K(R; M; S1 A X) to K(R 0 M[X]) for all pointed spaces X. Thus, we
have constructed a map of limit systems (starting with q = 1)

QqT!RM Sq) : Qqk (;M Sq) Qqk( M[Sq-1]).

Hence, KS(R, M) is naturally weak homotopy equivalent to DK(R; M; SO)
(see Definition 3.3) and by Proposition 3.4 this is naturally weak homotopy
equivalent to THH(R; M; SO) = THH(R; M). El

Remark 5.4 (the Dennis trace map). We recall that there is a natural
transformation from K(R) to K8(R, R). This map is produced by a natural
map from K(R) to QK(R 0 R) which one obtains by taking a product with
the element "e" of irlK(Z 0 Z) determined by the class of Z0Z e - Z 0D Z

in NliSlPzez with e = (O 1) (see for example 4.2 of [12]).

The zero and identity endomorphisms produce natural exact functors from
PR to End(PR) and hence a natural map " 1- 0" (using the H-space structure)
from K(R) to K(End(R)) = K(R; R) which then maps to K(R; R). This
produces a natural map from K(R) to THH(R; R) which agrees with the
usual map to stable K-theory via our natural isomorphism by the commuting
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diagram:

K(R) K(R; R)
{xe

QK(R E R) QJiRR) ?K(R; B. R)

UNIVERSITY OF OSLO, OSLO, NORWAY

UNIVERSITY OF ILLINOIS, URBANA, IL
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