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1. Introduction 

1.1. Summary. Given a topological group G and a set {Ga}a~A of subgroups of G, 
it is useful (see [2]) to consider the equivalence relation on the class of G-spaces (i.e., 
topological spaces with a continuous left G-action) generated by the equivariant 
maps which restrict to weak homotopy equivalences on the fixed point sets of the 
Ga (a cA).  Our aim in this paper is to classify, up to this equivalence relation, 
those G-spaces X, for  which the fixed point sets X a of  the Ga (a ~ A) have the 
(weak) homotopy type o f  a given set o f  CW-complexes T a (a~A). 

We obtain such a classification by showing its equivalence to a similar 
classification of  certain simplicial diagrams o f  simplicial sets, which in turn can be 
derived from the general classification results for ordinary diagrams o f  simplicial 
sets of [8]. We also show that our classification result admits a considerable 
simplification in the commonly occurring case that the subgroups Ga (aeA)  are 
normal or, more generally, rigid (2.2). This is not surprising in view of the fact that 
[12] equivariant homotopy theory with respect to a set of rigid subgroups is con- 
siderably simpler than general equivariant homotopy theory and is in fact equivalent 
to a relative version of the theory of fibrations, indexed by a partial order. 

1.2. Organization o f  the paper. After giving a more detailed description of the 
classification results mentioned above (in Section 2), we formulate (in Section 3) a 
slightly different, though essentially equivalent, equivariant homotopy classification 
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problem and show (in Section 4) that the latter is equivalent to a similar classifica- 
tion problem for  certain simplicial diagrams of  simplicial sets. In Section 5 we state 
a general classification theorem (5.2) for simplicial diagrams of simplicial sets 
which, for so-called locally grouplike diagrams, admits a considerable simplification 
(6.2). Translation of these results into equivariant language then immediately yields 
the classification results mentioned above. In Sections 7 and 8 we prove Theorem 
5.2 by showing that the classification problem for simplicial diagrams of simplicial 
sets can be reduced, by means of a flattening process, to the classification problem 
for ordinary diagrams of simplicial sets which was solved in [8]. 

In an appendix (Section 9) we discuss a multi-variable version of the bar construc- 
tion, which is slightly different from the ones considered by May [13] and Meyer 
[14]. Given a sequence M0, ..., Mn of simplicial monoids and a sequence X1,... ,  Xn 
of simplicial sets with a commuting right action of Mi_ 1 and left action of Mi on 
each Xi, it produces a simplicial set B(Mo, XI,MI,  ...,Mn). If the simplicial 
monoids are grouplike (1.3(ii)), then B(M 0, xl, Ml, ..., Mn) has the weak homotopy 
type of the total complex of a fibration with as base the product of the classifying 
complexes (1.3(v)) BMo× ... ×BMn and as fibre the product X1 ×- ' -XXn.  

1.3. Notation, terminology, etc. This paper is essentially an application as well as 
a generalization of [8] and [11] and we will therefore freely use the notation, ter- 
minology and results of [7], [8] and [11]. In particular: 

(i) We won't distinguish in notation between a small category and its nerve, nor 
between a small simplicial category and the diagonal of  its nerve. 

(ii) If C is a simplicial category, then we denote, for every two objects X, Y~ C, 
the resulting function complex by hom(X, Y) and write haut XC hom(X, X) for the 
maximal simplicial submonoid which is grouplike (i.e., ~z0haut X is a group). We 
sometimes add a superscript to hom to remove possible ambiguity or merely to re- 
mind the reader which simplicial category we are working in. 

(iii) No separation axioms will be assumed, though our results remain valid if, for 
instance, all topological spaces and topological groups are assumed to be compactly 
generated (but not necessarily Hausdorff) or singularly generated (i.e., the topology 
is the identification topology obtained from the realization of the singular complex). 

(iv) The category M of G-spaces comes with an obvious simplicial structure in 
which, for every two objects X, YeM,  the function complex hom(X, Y) is the 
simplicial set which has as n-simplices the maps X x [A[n] [--* Y~M (where [d[n][ 
denotes the realization of the standard n-simplex A [n], with the trivial G-action). 
Moreover the left G-action on the left coset space G/G a of a subgroup GaC G, 
turns G/Ga into an object of the category M and, for every object X e M ,  the 
simplicial set hom(G/Ga, X)  is naturally isomorphic to the singular complex 
Sing X a of the fixed point set X a of Ca. 

(v) If M is a simplicial monoid, then we denote by BM the classifying complex 
which has as its n-simplices the n-tuples of n-simplices of M. This is the same as the 
diagonal of the nerve of the corresponding simplicial category with a single object. 



Equivariant homotopy classification 271 

2. The main result 

2.1. Preliminaries. In this section we give a more detailed description of the equi- 
variant classification result mentioned above. As the difference between the rigid 
and the non-rigid situation already shows up in the case of a single subgroup and 
as the two subgroup case already exhibits all the essential features of the general 
case, we first consider in detail the cases that the set {Ga}a¢ A of subgroups of G 
consists of only one or two subgroups. 

We will assume throughout (and in view of 3.4 this is not real restriction) that the 
set {Ga}aE A be reduced, i.e., no two of the Ga (aeA) are conjugate or even (3.6) 
homotopy conjugate (which in the rigid case means that no two of the Ga (a cA) 
are each conjugate to a subgroup of the other). The desired classification then is 
achieved by the set of components of  a function complex homD(H c, U f) between 
suitable diagrams of simplicial sets, in which 

(i) the indexing category D depends only on the topological group G and the 
reduced set {Ga)ae A of subgroups, 

(ii) H ¢ is any (see [7]) cofibrant D-diagram weakly equivalent to H, where 
(iii) H is a D-diagram of simplicial sets which depends only on G and the G~ 

(a e A), and 
(iv) U f is any (see [7]) fibrant D-diagram weakly equivalent to U, where 
(v) U is a D-diagram of simplicial sets which depends only on the CW-complexes 

T a (a~A). 
We start with discussing the notion of 

2.2. Rigid subgroups. Given a topological group G and a subgroup G a C G, denote 
by N'GaC G the subnormalizer, i.e., the topological submonoid which consists of 
the elements h e G such that h-lGah C Ga. Then Ga is called a rigid subgroup of G, 
if the quotient monoid N'Ga/Ga is grouplike, i.e., lto(N'G/Ga) is a group. This is, 
for instance, the case if N'Ga is already a group and therefore coincides with the 
normalizer of Ga (e.g. if Ga is normal in G). In fact, if G is discrete, then Ga is a 
rigid subgroup of G iff N'Ga is a group, i.e., h-lGahCGa implies h-lGah=Ga. 

As for every subgroup GaC G, the fixed point set (G/Ga) a is homeomorphic to 
N'Ga/Ga, it follows readily from 1.3 that Ga is a rigid subgroup of  G iff 
haut G/Ga = hom(G/Ga, G/Ga). 

Now we are ready to discuss 

2.3. The case of  a single subgroup GaC G. If Ga is a rigid subgroup of G, one takes 

D trivial and 

H = B h a u t  G/Ga and U = B h a u t  T a. 

This is what one would expect as (see Section 4) the equivariant homotopy 
theory in question is equivalent to the homotopy theory of simplicial sets with a 
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hom(G/Ga, G/Ga)=haut G/Ga action, which in turn is well known to be 
equivalent to the homotopy theory of fibrations over B haut G/Ga (see [3] for a 
treatment of the special case in which haut G/G a is a simplicial group). 

If Ga is not only rigid, but even normal in G, then N'Ga=G and hence 
haut G/Ga ~ - Sing G/Ga and the classification is well known. 

If G a is not a rigid subgroup of G, then (see Section 4) the resulting equivariant 
homotopy theory is still equivalent to the homotopy theory of simplicial sets with 
a hom(G/G a, G/Ga) action. However, as hom(G/Ga, G/Ga) is not grouplike, the 
latter is no longer equivalent to a homotopy theory of fibrations and one can thus 
no longer expect as simple a classification as in the rigid case. In fact, in this case 
of a single non-rigid subgroup the classification result is essentially as complex as 
in the general case of an arbitrary set of (not necessarily rigid) subgroups (see 2.5). 

Next we consider 

2.4. The case o f  two subgroups Ga, GbCG. If neither of these is conjugate to a 
subgroup of the other, then the classification is the product of the two single sub- 
group classifications with respect to Ga and Gb respectively. One may thus assume 
that one of these subgroups, say Gb, is conjugate to a subgroup of Ga. 

If both Ga and G b are rigid subgroups of G, then one takes for H and U the 
diagrams 

B haut G/Gb*-B(haut G/Gb, hom(G/Gb, G/Ga), haut G/Ga)~B haut G/Ga, 

B haut Tb~B(haut T b, hom(T b, Ta), haut Ta)-~B haut T a 

in which the middle entries are bar constructions (see Section 9) and the maps are 
the obvious ones. If moreover Ga and G b are normal in G, then Gb is actually a 
proper subgroup of Ga and one can take for H the somewhat simpler weakly 
equivalent diagram 

B Sing G/Gb ' id B Sing G/Gb proj, B Sing G/Ga. 

If Ga and Gb are not both rigid subgroups of G, then the same comments apply 
as at the end of 2.3. 

Finally there is 

2.5. The case o f  an arbitrary reduced set {Ga}a~A of  subgroups of  G. If all the Ga 
(a~A) are rigid subgroups of G, then one takes, for the indexing category D, the 
category which has as objects the finite ordered sets (a0,..., an) of distinct elements 
of A such that each Ga~(1 <_i<_n) is conjugate to a (proper) subgroup of Gab_j, and 
which has as maps the 'deletions' and one takes for H and U the diagrams which 
assign to an object (a0, ..., an)e I) the bar constructions (see Section 9) 
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B(haut G/Ga,,hom( G/Gan G/Gan_,), haut O/Gan_,, . . . ,  haut G/Gao), 

B(haut T an, h0m(T an, Tan-t), haut T an-', . . . ,  haut Ta°). 

If moreover the subgroups Ga ( a e A )  are all normal i n G ,  then the objects of this 
indexing category D are just the finite sequences (a0,.. . ,  an) of  elements of A such 
that  each Gai (1 <_i<_n) is a proper subgroup of Gai_~. In this case one can take for 
H the somewhat simpler weakly equivalent diagram which sends an object 
(a0, .. . ,  an) e D to the simplicial set B haut  G/Gan. 

In the general case (i.e., if at least one of  the Ga is not a rigid subgroup of G) 
one needs the larger indexing category D, which has as objects the finite ordered 
sets (a0, .. . ,  an) of (not necessarily distinct) elements of  A such that each G/Gai 
(1 <i<<_n) is conjugate to a subgroup of  Ga,_l, and which has as maps the 'de- 
letions and /or  repetitions'. (Note that even in this case of a single subgroup this in- 
dexing category is non-trivial and in fact isomorphic to A op). For H one then takes 
the diagram which assigns to an object (a0, .. . ,  an)¢ D the product 

hom(G/Ga n, G/Ga,,_ ~) x ... X hom(G/Ga~, G/Gao) 

while U(ao, .. . ,  a,,) is, as above, the bar construction 

B(haut T an, hom(T an, Tan-~), haut T a~-~, ..., haut Ta°). 

3. Equivariant homotopy classification 

We formulate (in 3.2) an equivariant homotopy classification problem, which is 
slightly different from the one mentioned in the introduction, though (3.3) essential- 
ly equivalent to it. The topological case will be treated in detail; the simplicial case 
is very similar (3.5). 

We start with recalling from [11] the existence of 

3.1. Model categories f o r  equivariant homotopy. Let G be an arbitrary but fixed 
topological group. Let M be the category of  topological spaces with a left G-action 
and let {Ga}a~A be a set of subgroups of  G. Then it follows immediately from 1.3 
and [11, 1.2] that M admits a closed simplicial model category structure in which 
the simplicial structure is as in 1.3 and in which a map X ~  Y ~ M  is a weak 
equivalence or a fibration iff, for  every a ~ A,  the induced map o f  f ixed point sets 
X a _.~ y a  is a weak homotopy equivalence or a Serre fibration. 

Next we discuss the 

3.2. Classification problem. This is, given an object X ~ M (3.1), to classify the weak 
equivalence classes of  the O-conjugates of  X, where two G-spaces YI and Y2 are 
called O-conjugate if, for every a ~ A, the fixed point sets Y( and Y2 a (or equivalent- 
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ly the simplicial sets hom(G/Ga, YI) and hom(G/Ga, Y2)) are weakly homotopy 
equivalent. 

To do this one forms the O-classification complex cOX of X, i.e., the nerve of the 
subcategory of M, which consists of all weak equivalences between 0-conjugates of 
X, and notes that [8, §2]: 

(i) there is an obvious 1-1 correspondence between the components of  cOX and 
the weak equivalence classes of  the O-conjugates o f  X, and 

(ii) For every O-conjugate Y o f  X, the corresponding (see (i)) component of  cOX 
is weakly equivalent to a classifying complex for  the self weak equivalences of  Y in 
the sense of [8, 2.3], i.e., if, in the closed simplicial model category structure of 3.1, 
the G-space Y' is fibrant and weakly equivalent to Y, the classifying complex 
B haut Y' of the simplicial monoid haut Y' of self weak equivalences of Y', is weakly 
equivalent to the component of cOX which (see (i)) corresponds to Y. 

This solves our classification problem in a trivial manner. More effective solu- 
tions, i.e., various descriptions of the homotopy type of c°X in terms of more 
acessible homotopy types will be obtained in Sections 5 and 6. 

3.3. Remark. As in [8, 14], the techniques of [9] and the present paper actually give 
a little more than we have described above; they give not just a classification of the 
0-conjugates of a given G-space, but also a classification of the realizations of a 
given set of homotopy types for the fixed point sets. We have suppressed this point 
to avoid making the exposition more involved. 

3.4. Remark. Given a set {Ga}ae A of subgroups of a topological group G, and a 
subset BCA, the resulting set {Gb}b~ B of subgroups of G sometimes gives rise to 
the same classification problem: 

If, for instance, for every element a c A ,  there is an element b ~ B such that the 
subgroups Ga and G b are conjugate (or equivalently the coset spaces G/G a and 
G/G b are isomorphic G-spaces), then the sets {Ga}ae,4 and {Gb}beB give rise to 
identical model category structures on M and thus the same classification problem. 

Similarly, if for every a c A ,  there is a b e B such that the subgroups Ga and G b 
are homotopy conjugate (i.e., G/Ga and G/Gb are isomorphic in n0M), then the 
se ts  {Ga}ae A and {Gb}b~B give rise to the same notion of weak equivalence and 
thus also to the same classification problem. Note that two rigid (2.1) subgroups 
Ga, GbC G are homotopy conjugate i f f  each is conjugate to a subgroup of  the 
other. 

We end with a brief comment on 

3.5. The simplicial case. If G is a simplicial group, M the category of simplicial sets 
with a le f t  G-action and {Ga}aeA a set of  simplicial subgroups of G, then the ob- 
vious simplicial analogues of the above results hold. We leave the details to the 
reader. 
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4. Reduction to simplicial diagrams of simplicial sets 

As a first step towards solving the equivariant classification problem we show 
here that it is equivalent to a similar problem for 

4.1. Simplicial diagrams ofsimplicial sets. Let C be a small simplicial category (with 
in each dimension the same objects), let S be the category of simplicial sets and let 
S c denote the category of C-diagrams of simplicial sets, i.e., the category which 
has as objects the simplicial functors C - 'S  and as maps the natural transformations 
between them. Then S c admits an obvious simplicial structure in which, for every 
two objects X, Y~ S c, the function complex hom(X, Y) is the simplicial set which 
has as n-simplices the maps X x A [ n ] ~ Y e S  c, and one has [11, 1.3]: 

4.2. Proposition. The category S c admits a closed simplicial model category struc- 
ture in which the simplicial structure is as in 4.1 and in which a map X ~  Y e S c is 
a weak equivalence or a fibration iff, for every object C~ C, the induced map 
X C  ~ YC ~ S is so. 

Now we can formulate 

4.3. The O-classification problem for simplicial diagrams of  simplicial sets. This is, 
given an object X e  S c, to classify the weak equivalence classes of the O-conjugates 
of X, where two objects Yl, Y2 ¢Sc  are called O-conjugate if, for every object 
C ~ C ,  the simplicial sets Y1C and Y2C are weakly (homotopy) equivalent. 

As in 3.2 this can be done by means of the O-classification complex cOX of X, 
i.e., the nerve of the subcategory of S c which consists of all weak equivalences bet- 
ween O-conjugates of X. Again [8, §2] implies that 

(i) there is an obvious 1-1 correspondence between the components o f  cOX and 
the weak equivalence classes o f  the O-conjugates o f  X, and 

(ii) for every O-conjugate Y of X, the (see (i)) corresponding component o f  cOX 
is weakly equivalent to a classifying complex for  the self weak equivalences o f  Y, 
in the sense of [8, 2.3]. 

It thus remains to show that the equivariant classification problem (3.2) can be 
reduced to the above one. To do this let O C M  be the orbit category, i.e, the full 
simplicial subcategory spanned by the objects G/Ga (a ~ A). Then the functor 

hom(O, - )  : M--* S o°p 

clearly preserves weak equivalences and thus induces, for every object X ~  M, a map 
c°X--,c 0 horn(O, X). The desired result now follows from [11, 1.6] which implies 
that the functor horn(O, - )  induces an equivalence of homotopy theories and that, 
as a consequence 
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4.4. Proposition. For every object X e  M, the functor hom(O,-)  induces a weak 
equivalence c ° X -  c o hom(O, X). 

4.5. Remark. If C is a small simplicial category and X e  S c an object, then one can 
also consider the problem of classifying the weak equivalence classes of the con- 
jugates of X, where two objects YI, Y2 ~ SC are called conjugate if, for every in- 
teger n > 0  and every functor J :  n ~ C  (where n denotes the category which has the 
integers 0, ..., n as objects a.nd which has exactly one map i-~j whenever i<_j), the 
induced n-diagrams J'Y1 and J'Y2 are weakly equivalent [8, 1.3]. This is solved by 
means of the classification complex cX of X, which is the nerve of the subcategory 
of S c which consists of all weak equivalences between conjugates of X. Clearly the 
O-classification complex of  X is a disjoint union o f  such classification complexes (of 
suitable 0-conjugates of X). 

4.6. Remark. If C is an ordinary small category (i.e., a small simplicial category in 
which all function complexes are discrete), then the closed simplicial model category 
structure of 4.1 reduces to the one considered in [7] and [8] and the classification 
problems of 4.2 and 4.5 reduce to the ones which were solved in [8]. 

5. A general 0-classification result 

We now state a general 0-classification result for simplicial diagrams of simplicial 
sets, which expresses the homotopy type of the 0-classification complex in terms of 
more accessible homotopy types and which, together with 3.3 and 4.4, readily im- 
plies the general equivariant classification described in 2.5. We assume throughout 
that the simplicial indexing category C be reduced (5.1); in view of [10] this is no 
real restriction. 

5.1. Preliminaries. Given a small simplicial category C which is reduced (i.e., the 
only isomorphisms in n0C are automorphisms) and given a diagram XE S c, con- 
sider, for every integer n > 0 and every functor J :  n--*C (4.5), the induced n-diagram 
J*X and note that the O-classification complexes c°J*X depend only on X and on 
the composition 

J proj 
!1 ~ C ~ 7t.C, 

where 7t.C denotes the (ordinary) category obtained from C by identifying two maps 
whenever they have the same domain and range. Hence they give rise to a dTt.C- 
diagram c°~.c X, where drt.C denotes the division of the category n.C [8, §3]. For 
every integer k > 0 ,  let qk:dCk~drt.C be the projection. Then we denote by 
( q . ~ - )  the drt.C-diagram which assigns to an object IEdrt.C, the diagonal of the 
bisimplicial set which in dimension (.,  k) consists of the nerve of the over category 
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q~J,I. If for a simplicial set Y, the symbol Yf stands for a fibrant simplicial set 
which is naturally weakly equivalent to Y [8, 1.5(ii)], then one has 

5.2. Theorem. Let C be a reduced small simplicial category and let X e S c. Then 
the O-classification complex cOX is naturally weakly equivalent to the function 
complex 

homdn'C((q.~ -),  (c°x.cx)f). 

The proof is quite technical and will be postponed until Section 8. 
The usefulness of this theorem is due to the accessibility of the d~t.C-diagrams 

involved: 

5.3. Accessibility of  c°~.c x .  The diagram c°x.c X of 0-classification complexes is 
weakly equivalent to the dlt.C-diagram of  bar constructions (see Section 9) and 
natural maps between them which assigns to a sequence Co ~--. ~Cn of maps in 
dn.C, the bar construction (9.3) 

B(haut XC f, hom(XC0 f, XC[ ), haut XC[, .. . , haut XC f ). 

5.4. Accessibility o f  (q .~-) .  The dTt.C-diagram ( q . ~ - )  depends only on C and is 
weakly equivalent to the rather simple dlt.C-diagram q. l ,  which assigns to a se- 
quence Co--,---~Cn of maps in 7t.C, the product of function complexes in C 

horn(C0, Cl) ×--. x hom(Cn_ l, Cn). 

In fact it is not difficult to see that the obvious map (q.~ _)__,q.1 ~ Sd~.c is a weak 
equivalence. 

We end with applying all this to 

5.5. The general equivariant case. Let G be a topological group, let M be the 
category of left G-spaces, let X e M  and let {Ga}a~a be a reduced (2.1) set of 
subgroups of G. Then the resulting orbit category O CM (i.e., the full simplicial 
subcategory spanned by the left coset spaces G/Ga (a cA)) is reduced (5.1) and 4.4 
and 5.2 now immediately imply that the O-classification complex cOX is weakly 
equivalent to the function complex 

hom d~.°°p((q,~ -),  (c°~.oophom(O, x))f). 

Together with 3.3, 5.3 and 5.4 this yields the general equivariant classification 
result of 2.5. 

6. 0-classification for grouplike diagrams 

If the indexing category C is locally grouplike (6.1), then the general 0-classifica- 
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tion Theorem 5.2 can be considerably simplified and the corresponding equivariant 
result is just the rigid equivariant classification described in 2.3-5. 

We start with a brief discussion of 

6.1. Locally grouplike categories. A simplicial category C will be called locally 
grouplike if, for every object C e C, one has 

haut C = hom(C, C) 

This definition readily implies: 
(i) A locally grouplike simplicial category with only one object is just a 

grouplike simplicial monoid. 
(ii) Let G be a topological group, M the category o f  left G-spaces and {Ga}a~A 

a set o f  subgroups o f  G. Then the resulting orbit category (Section 4) O C M is 
locally grouplike i f f  the Ga (aeA)  are all rigid subgroups o f  G. 

(iii) I f  C is locally grouplike and reduced (5.1), then lt.C is retract free [8, 4.3] 
and hence the projection s : d~z.C-~ sdrt.C (where sdn.C denotes the subdivision of 
the category dlt.C [7, §5]) has an obvious cross section t : sd~z.C-~dn.C. 

Now we can formulate, using the notation of 5.1: 

6.2. Theorem. Let C be a small simplicial category which is locally grouplike and 
reduced and let X e S  c. Then the O-classification complex cOX is, in a natural 
manner, weakly equivalent to the function complex 

homSan'C((sq,~ -), ( t*C°n.cX)f  ). 

Proof. The function complexes 

homdn'C((q. ~ -), (C° .cX)f  ) and homdn'C((q, ~ -),  (s*t*c~n.cX) f) 

are weakly equivariant because, as is easy to verify, the drt.C-diagrams c°n.c X and 
s*t*c°n.cX are weakly equivalent. The desired result now follows readily from 

Theorem 5.2 and [8, 9.5]. 

Theorem 6.2 is a considerable improvement on Theorem 5.2 as the indexing 
category sdlt.C is much smaller than d l t .C  (even if C has only one object) and 
because one still has the 

6.3. Accessibility o f  (sq.J,-). The cofibrant sdTt.C-diagram (sq .~- )  is weakly 
equivalent to the diagram of  bar constructions and natural maps between them, 
which assigns to each sequence C o-~...-~ Cn o f  non-identity maps in n.C, the bar 
construction (9.2) 

B(haut Co, horn(C0, C1), haut Cl, ..., haut Cn). 

Because C is locally grouplike, the homotopy types of these bar constructions are 
indeed quite accessible (9.1(vii)). 
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To prove this one first notes the existence of an obvious weak equivalence 
(sq,J,-)---~(sq,) -1 ES sdTr'c, where (sq,) -1 assigns to an object (I: n~zt .C) esdrt.C, 

the diagonal of the bisimplicial set, which in dimension (,, k) consists of the nerve 
of the subcategory (sqg)-llCdCk. As (sqk)-lI can be considered as an ( n + l ) -  
simplicial set, its nerve is naturally weakly equivalent to its diagonal which is just 
the (see 9.4) classical bar construction on the pull back functor I * C ~ n .  The 
desired result now follows as in 9.6. 

6.4. Example. Let C be a simplicial group (i.e., C is a simplicial category with only 
one object C and all maps in C are invertible) and let X e  SC be fibrant. Then 6.2 
and 6.3 imply that the O-classification complex cOX (which in this case coincides 
with the classification complex cX (4.5)) is weakly equivalent to the ordinary func- 
tion complex hom(C, (B haut x c ) f ) .  In view of [3, §2] this implies the second 
classification result mentioned in [8, 1.2]. 

Now we get our application to 

6.5. The rigid equivariant case. Let G be a topological group, let M be the category 
of left G-spaces, let X e M  and let {Ga}a~A be a reduced (2.1) set of rigid 
subgroups of G. Then 4.4, together with the above results, implies that the resulting 
orbit category 0 C M is locally grouplike and reduced and that O-classification com- 
plex cOX is weakly equivalent to the function complex 

hom sd~'°°p((sq,j, -), (t*c°~.oophom(O, x))f) .  

The rigid equivariant classification results of 2.3-5 now follow from 3.3 and 6.3. 

We end with 

6.6. The normal equivariant case. The normal equivariant classification results of 
2.3-5 follow immediately from the rigid ones (6.5) and (9.1(iv)). 

7. Flattening simplicial diagrams of simplicial sets 

In preparation for the proof of Theorem 5.2 we show here that the classification 
problems for simplicial diagrams of simplicial sets can be reduced to similar pro- 
blems for ordinary diagrams of simplicial sets, which were solved in [8]. To do this 

we need 

7.1. The flattening o f  a simplicial category. The flattening of a small simplicial 
category C will be the category bC which has as objects the pairs (C, n), where C e C 
is an object and n is an integer >_0, and which has as maps (Cl,nO~(C2, n 2) the 
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pairs (c,f), where f is a simplicial operator (i.e., map of A °p) from dimension nl 
to dimension n 2 and c is a map c:C~--} C2 e Cn2. 

7.2. Remark. If one considers C as a functor C :A°P-~Cat (the category of small 
categories), then bC is just the one-sided Grothendieck construction .®aoDC of 
[8, 9.1]. It then follows readily from [8, 9.4] and [1, Ch. XII, 4.3 and 5.1] that the 
diagonal o f  the nerve o f  C is, in a natural manner, weakly equivalent to the nerve 
o f  bC. 

A straightforward calculation now yields 

7.3. Proposition. Let C be a small simplicial category. Then there is a pair o f  adjoint 
functors 

/~ : Sbc'~sC : b 

where b : S S ~ S  bc is the flattening functor which assigns to every pair o f  objects 
Y~ S c and (C, n) e bC, the simplicial set hom(A In], YC) and fl : S bc~  S c is the fat- 
tening functor which assigns to every pair o f  objects X ~ S  bs and CeC,  the 
diagonal o f  X(C,-) .  Moreover 

(i) both functors preserve weak equivalences, 
(ii) for  every object Y ~ S c, the adjunction map flb Y ~  Y is a weak equivalence, 

and 
(iii) for  every object X e  S bc which has the property that, for  every object C e C 

and simplicial operator f ,  the map X(ic, f )  is a weak equivalence, the adjunction 
map X ~ bflX is a weak equivalence. 

7.4. Remark. Proposition 7.3 asserts that the homotopy theory o f  C-diagrams is 
equivalent to the homotopy theory o f  certain (but not all) bC-diagrams. It follows 
that, for every object Ye S c, the O-classification complex cOy is weakly equivalent 
to a "disjoint summand" o f  c°b Y. Moreover (see 4.5 and 4.6) the flatteningfunctor 
does induce a weak equivalence c Y - c b  Y o f  classification complexes. 

8. Proof of Theorem 5.2 

Let h : d0C~drc.C and rk :dCk~d~zo C (k>_O) be the projections. Then it is not 
difficult to verify that [10, §3] ( q , ~ - )  is weakly equivalent to the homotopy 
pushdown h . ( r . ~ - )  and hence Theorem 5.2 follows from [10, §3] and 

8.1. Theorem. Let C be a small simplicial category and let X ~ S  c. Then the 
O-classification complex cOX is weakly equivalent to the function complex 

homdn°C((r.~-), (h*c°n.cx)f ). 
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For every integer n >_ 0 and functor J: n ~ C, the classification complex cJ*X (4.5) 
depends only on X and the composition 

J proj 
n , C ~ r toC.  

Hence they give rise to a drt0C-diagram Cd~oCX. Theorem 8.1 is now an easy 
consequence of 4.5 and 

8.2. Theorem. Let C be a small simplicial category and let X ~ S  c. Then the 
classification complex cX is weakly equivalent to the function complex 

homdn°C((r,~ - ) ,  (CdltoCX) f) 

It thus remains to prove Theorem 8.2. 
To do this, let bdC be the result of applying the Grothendieck construction 

of 7.2 to the 'simplicial category; dC (which is the functor A°P~Cat obtained 
by applying the division functor d dimensionwise to the simplicial category 

C) and let u'bdC--'dTtoC and o 'dbC~drtoC be the projections. Then clearly 
(7.3) cat, c X =  o*CdnoC X and hence (7.4 and [8, 3.4]) cX is weakly equivalent to 
holimabC(o*CanocX)f. Furthermore (7.2) the dn0C-diagram ( r ,~ - )  is weakly equi- 
valent to the (free and hence also cofibrant) drt0C-diagram (u~-)  and thus [8, 9.1 
and 9.51 hom((r,~-),(cd~ocX) f) is weakly equivalent to holimtaC(u*Ca~ocX)f). It 
remains to prove the weak equivalence of 

holimba~:(U*CdnoCX) f and holimabC(o*CdnocX) f. 

To do this consider the commutative diagram 

Odj j' 
bdC , bd(pJ,-)  , dbC 

in which 
(i) p :bC-- 'A °p denotes the projection, 

(ii) j : (p~- ) -*C is the obvious simplicial functor, and 
(iii) j '  is induced by the functor which assigns to every object n e A °p the forget- 

ful functor p ~ n-* bC. 
A straightforward calculation then yields that j '  is L-cofinal and thus left cofinal 

[8, §6] and that therefore 

holimdbC(v*Cd~ocX) f and holimbd(P~-)(W*Cd~ocX) f 

are weakly equivalent. Furthermore, let s: dnoC~sdnoC and g,: d(p.[ - ) ~ d n o C  be 
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the projections. Then it is not difficult to verify that, for every object k e Zl op, the 
functor j : ( p ~ k ) ~ C k  is L-cofinal and that therefore [8, 6.14], for every object 
EesdrtoC,  the functor j induces weak equivalences (sCvk)- lE~(sak)- lE and 
(sCvkJ, E ) ~ ( s a k ~ E )  and hence (7.2) a weak equivalence of cofibrant sdrtoC- 

diagrams ( s w ] - ) ~ ( s u ~ - ) .  Finally [8, §6] the dnoC-diagram S*S.Cd,~ocX is weakly 
equivalent to ca,rocX and it now follows from [8, 9.1 and 9.5] that j induces a 
weak equivalence between 

holimbdC(u*CdnoCX)f and holimbd(p~-)(W*CdnocX)f. 

9. A generalization of the bar construction 

9.1. Introduction. Given an integer n_>0, a sequence M 0 , . . . , M  n of simplicial 
monoids and a sequence Xl , . . . ,  Xn of simplicial sets with a commuting right action 
of Mi_ 1 and left action of Mi on each Xi, we describe a bar construction 

B(M0, X1, MI, ..., M,) ,  which is a simplicial set with all of the following properties 
(which will be formulated more precisely in 9.2) 

(i) I f  n=0 ,  then B(Mo) is the classifying complex BMo (1.3(v)) (see 9.2(i)). 
(ii) The bar construction is natural in M 0, X 1, MI, ..., Mn (see 9.2(ii)). 

(iii) The bar construction preserves weak equivalences (9.2(vi)). 
(iv) The bar construction is natural in n (9.2(iii)). 
(v) I f  X ,  = M , ,  with the obvious left Mn-action, then the projection 

B(Mo, Xl  , MI , . . . ,  Mn) ~ B(Mo, Xl  , MI , . . . , M ,  _ l) 

is a weak equivalence (9.2(iv)). 
(iv) I f  Mo, ..., Mn are simplicial groups, then the projection 

B(M o, X I M  1 , . . . ,  M n ) ~  B M  o x "" x B M  n 

is a fibration with X 1 x . . .  x Xn as f ibre (9.2(v)). 
(vii) I f  the simplicial monoids  M0, ..., M n are locally grouplike, then the f ibre 

X 1 × ... × X n o f  the projection B(M0, XI, Ml, ..., Mn) -~BM o ×. . .  x B M  n is also its 
homotopy f ibre (9.2(vii)). 

9.2. The bar construction. Given M0, ..., Mn and Xl , . . . ,  Xn as above, define the 
bar construction B ( M  o,)(1, Ml ,  . . . ,Mn)  as the diagonal of the bisimplicial set, 
which in dimension (,, k) consists of the nerve of the category which has as objects 
the n-tuples (xl, ..., Xn), where each xi is a k-simplex of Xi and as maps (xl, . . . ,  xn)--' 
(x~, ..., x~) between such objects the (n + 1)-tuples (m 0, ..., ran) such that each mi is 
a k-simplex of M i and x ; m i _ l = m i x i  for l<_i<_n. 

It is sometimes convenient to work with a slightly more general notion: Given a 
small simplicial category C and a functor g: C ~ n  (4.5), let B(C/n) denote the 
diagonal of the bisimplicial set, which in dimension (., k) consists of the nerve of 
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the category of  k-dimensional cross sections of g (which has as objects the cross sec- 
tions of gk : Ck -~n and as maps the natural transformations between them). If each 
of  the subcategories g - l ( i ) C C  (O<_i<_n) contains exactly one object Ci, then 
B(C/n) is isomorphic to the bar construction B (M  o,)(1, M1, ...,  Mn) where each 
Mi = hom(Ci, Ci) and each X i = hom(Ci_ 1, Ci). For this reason we will also call 
B(C/n) a bar construction. (Conversely, given M0, ..., Mn and Xj , . . . ,  Xn as above, 
it is easy to construct a simplicial category C together with a functor C-~n such that 
B(C/n) = B(Mo,  X~,  M I ,  ... , M n ) . )  

This definition immediately implies: 
(i) I f  n = O, then B(C/0) is jus t  the diagonal o f  the nerve o f  C. 

(ii) B(C/n) is natural in C i.e., a commutative diagram 

C ~ C'  

induces a map B(C/n) -~B(C' /n)~  S. 
(iii) B(C/n) is natural in n, i.e., a pullback diagram 

J*C ' C 

J 
k , n  

gives rise to a map B ( C / n ) - ~ B ( J * C / k ) e S .  
Moreover, rather straightforward calculations yield 
(iv) Let J : n - l ~ n  be the func tor  given by Ji = i for  0 <_ i < n - 1 and assume that, 

for  every integer k < O, the inclusion g;l(n)--* Ck has a left adjoin t. Then the projec- 

tion B ( C / n ) ~ B ( J * C / n -  1) is a weak equivalence. 
(v) Suppose that each g-l( i )  is a simplicial groupoid, let Ci e g-l( / )  be an object 

(0 <_ i <_ n), let Mi = horn(C/, Ci) and let Xi = hom(Ci_ 1, Ci). Then the projection 

B(Mo, X i , . . . , M n ) ~ B M o x . . .  x B M  n is a fibration with Xl  x . . .  ×Xn as fibre. 
More difficult to prove is: 
(iv) Let 

h 
C ,C" 

n 

be a commutative diagram such that h is a weak equivalence, i.e., [6, §2] ztoh is an 
equivalence o f  categories and h induces, for  every two objects CI, C2 e C, a weak 
equivalence hom(Cl ,  C2)-*hom(hCl, hC2). Then h induces a weak equivalence o f  
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bar constructions B(C/n) - ,B(C' /n) .  This is clear if h is an equivalence of simplicial 
categories and [5, 5.7] if h is 1-1 and onto on objects. The general case now follows 
readily from the existence (in the notation of [4]) of the commutative diagram 

C ,  , F , C [ F , W  -~ ] 

c '  , F , C '  ~. F , C ' W W  '-~ ] 

F,C  

L 
in which W C C  and W'CC '  are the maximal full subcategories such that now and 
noW' are groupoids and in which the horizontal maps are 1-1 and onto on objects 
as well as weak equivalences [4, 2.6 and 5.1] and the map on the fight is an 
equivalence of simplicial categories. Moreover combination of this argument with 
(v) yields 

(vii) Let  each 7tog-l(i) be a groupoid, let C i e g - l ( i )  be an object (O<_i<n), let 
Mi = hom(Ci, Ci) and let X i = hom(Ci_ 1, Ci). Then the f ibre XI x ... x Xn o f  the pro- 
jection B(Mo, X1,M1, ... , Mn)- ,  BMo × ... x B M  n is also its homotopy fibre. 

In general it is difficult to describe the homotopy fibre of the projection B(C/n)--, 
Bg-  1 (0) x . . .  x Bg-I  (n). However a nice solution exists in the following useful 

9.3. Special case. Let n be an integer >_ 0 and Ye S*. Then clearly the O-classifica- 
tion complex o f  Y is o f  the form c°Y= B(C/n)  for a functor g: C--,n such that each 
g- l ( i )  is the ordinary category of all weak equivalences between simplicial sets 
weakly, equivalent to Y(i ), which is clearly not a groupoid. Moreover (in the nota- 
tion of 5.1) cOy is weakly equivalent to the bar construction 

B(haut Y(0)f horn(Y(0) f Y(1)f),haut Y(1)f.. . ,haut Y(n) f) 

in a manner which is natural in Y as well as in n. 
To prove this let S,  denote the simplicial category of simplicial sets and sf, CS ,  

the fuji simplicial subcategory spanned by the fibrant objects, and note that their 
k-dimensional categories come with obvious notions of weak equivalences. The 
djagam Y therefore gives rise to corresponding 0-classification complexes c°~Y and 
c°Y ~ and one readily verifies that the obvious maps c ° Y ~ c ° Y  and c ° Y f ~ c ~ Y  and 
hence.the resulting maps c°Y~diag c o y  and diag c°Yf-+diag c o y  are weak equi- 
val.ences [6, 7.3]. Moreover diag c°,Yf= B(Cf /n )  for an obvious function gf" Cf,--,n 
and the desired result now follows from the fact that the inclusion c f c c f ,  of the 
full simplicial category spanned by the objects Y(i) f (O<_i<_n), is a weak equi- 
valence. 

9.4. Remark. Given a sequence M o, . . . ,  Mn of simplicial monoids and a sequence 
Xl, ..., Xn of simplicial sets with a commuting fight action of M i -  1 and left action 
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of  Mi on each X i, one can also consider the 'classical' bar construction, i.e., the 
simplicial set which has as k-simplices the ordered (kn + k + n)-tuples of k-simplices 

l ,mlk,... x m~) ( m  1 , . . . , m k o ,  x l , m l  , . . .  , m  n, . . . ,  

where each m{ e Mi and each xi e Xi and it is not difficult to verify the properties 
listed in 9.1, except that the naturality in n only holds with respect to non-degenerate 
(i.e., 1-1) functors. Moreover this classical bar construction is weakly equivalent to 
the one considered above, in a manner which is natural in M0, X1, M l , . . . ,  M,  as 
well as in n (with respect to non-degenerate functors only, of course). One can prove 
this using [5, 9.5]. However, in the important ease that the Mj are locally grouplike 
this follows easily from the properties listed in 9.1 and the fact that both bar con- 
structions are isomorphic whenever the Mi are actually simplicial groups. 
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