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§1. INTRODUCTION 

1.1 Summary 
THE AIM of this paper is to prove a rather general classification theorem for diagrams 
of simplicial sets, which encompasses the classification results for Postnikov conjugates of 
[15] and [3] and those for simplicialfibrations of [1] and [4]. This theorem will be applied 
in [10] to analyze the category of topological spaces on which a topological group G acts. 
It leads to a classification of these G-spaces with respect to weak equivariant homotopy 
equivalences, i.e. with respect to equivariant maps which restrict to weak homotopy 
equivalences on the fixed point sets of a given collection of  subgroups of  G. 

1.2 Motivation 
To motivate our result we start with recalling the essence of the two classification 

results mentioned above: 

I. CLASSIFICATION OF POSTYlKOV CONJUGATES ([3, 15]). Given a fibrant simplicial set X, 
there is a simplicial set L, which is constructed as a homotopy inverse limit and has the 
following properties: 

(i) There is a natural 1-1 correspondence between the components of  L and the homotopy 
types of  the Postnikov conjugates of  X (i.e. the fibrant simplicial sets Y such that, for every 
integer n >t O, the nth Postnikov approximations PnX and PnY have the same homotopy type). 

(ii) For every Postnikov conjugate Y of  X, the corresponding (see (i)) component of  L 
has the homotopy type of  the classifying complex of  the simplicial monoid of  self homotopy 
eqiuvalences of  Y. 

II. CLASSIFICATION OF SIMPUCIAL FIBRATIONS ([1, 4]). Given a simplicial set B and a 
fibrant simplicial set X, there is a simplicial set L, which is constructed as a function complex 
and has the following properties: 

(i) There is a natural 1-1 correspondence between the components of  L and the homotopy 
equivalence classes of  fibrations with base B and all fibres homotopically equivalent to X. 

(ii) For every fibratwn p with base B and all fibres "homotopically equivalent to X, the 
corresponding (see (i)) component of  L has the homotopy type of  the classifying complex of  
the simplicial monoid of  self homotopy equivalences of  p. 

The similarity as well as the dissimilarity of  these two results suggests that they are 
special cases of one much more general classification theorem. The nature of  this more 
general result becomes clear, once one realizes that a function complex is a special case of  
a homotopy inverse limit and that afibration can be considered as a diagram ofsimplicial 
sets indexed by the simplices of  the base. 

1.3 The main result 
Our classification theorem consists essentially of two parts, a more or less formal first 

part and a second part which is more computational. 
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Let S denote the category of simplicial sets, let D be an arbitrary but fixed small 
category and let S D denote the category olD-diagrams of simplicial sets (i.e. functors D ~ S  
and natural transformations between them). Call a map f :  X--* Y ~ S a a weak equivalence 
if, for every object D eD, the mapfD:  XD ~ YD ES is a weak (homotopy) equivalence and 
call two objects X, Y~S D weakly equivalent if they can be connected by a finite string of 
weak equivalences. Finally, for every integer n 1> 0, denote by n the category which has 
the integers 0 , . . . ,  n as objects and which has exactly one map i ~ j  whenever i ~<j, and 
call two diagrams X, Y ~S ° conjugate if, for every integer n >/0 and every functor J: n-~D, 
the induced n-diagram J*X and J* Y are weakly equivalent. 

Our main result now is a classification of  the weak equivalence classes of the conjugates 
with an object X ~ S D. If we define the classification complex cX of X as the nerve of the 
subcategory cX = S D which consists of all weak equivalences between conjugates of X, 
then our result can be summarized as follows: 

FORMAL PART. (i) There is an obvious 1-1 correspondence between the components of 
cX and the weak equivalence classes of the conjugates of X. 

(ii) For every conjugate Y of X, the component of cX containing it has (in a sense that 
will be made precise in §2) the homotopy type of  a classifying complex for the self weak 
equivalences of Y. 

COMPUTATIONAL PART. (iii) The classification complex cX is weakly (homotopy ) equiv- 
alent to (see §3) a homotopy inverse limit involving the much more accessible classification 
complexes cJ*X of the induces n-diagrams mentioned above. 

The substantive part of this result is part (iii) which asserts, along the lines of [9], that 
a certain problem in diagram homotopy theory (the classification problem) can be reduced, 
in an explicit way, to a problem in ordinary homotopy theory (the problem of computing 
a particular homotopy inverse limit). 

1.4 Remark 
By combining the arguments used to prove (i), (ii) and (iii) with 7.3 one readily obtains 

the following somewhat stronger result. Let ~: S ~ h o S  denote the natural functor from 
S to its homotopy category hoS [2, Chap. VIII, §3], let )~: D ~ h o S  be a D-diagram in hoS, 
let a D-diagram Y: D ~ S  be called conjugate to • if, for every integer n/> 0 and every 
functor J: n~D,  the induced n-diagram lr .J* Y and J*)~: n~hoS  are naturally equivalent 
and let c~  denote the nerve of the subcategory of c)~ = S D which consists of all weak 
equivalences between conjugates of )~. Then the above statements (i), (ii) and (iii) remain 
valid with X replaced by X and cX replaced by c~. In particular the homotopy inverse limit 
referred to in (iii) then is non-empty iff 'X is realizable up to conjugacy, i.e. tff there exists 
a D-diagram Y ~ S D which is conjugate to X. 

1.5 Organization of the paper 
In §2 we make clear what we mean by the homotopy type of a classifying complex for 

the self weak equivalences of a diagram of simplicial sets or more generally the homotopy 
type of  a classifying complex for the self weak equivalences of an object in a closed simplicial 
model category. We then obtain a very general classification result for closed simplicial 
model categories which implies the formal part of our main result. 

In §3 we discuss the computational part. Its statement involves a homotopy inverse limit 
taken over the division of the category D, i.e. the category dD which, roughly speaking, 
has as objects the simplices of the nerve of D and as maps the simplicial operators between 
them. One could also (see ~4) have used a homotopy inverse limit over the much smaller 
subdivision of the category D, i.e. the category sdD which, roughly speaking, has as objects 
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the non-degenerate simplices of the nerve of D and as maps certain equivalence classes of 
iterated face maps between them. This turns out to be particularly useful when (the nerve 
of) D is finite or finite dimensional as in that case the same holds for sdD. Another and 
also very useful variation involves (see §5) a function complex between diagrams indexed 
by a category which can be even smaller than the subdivision. 

In §6 we discuss a special type of functor between small categories which we call 
L-cofinal. We then use this discussion in §7 and §8 to produce a three step proof of the 
computational part of our main result: first a reduction to so-called direct categories, next 
a further reduction to finite dimensional categories and finally a proof for finite 
dimensional categories by induction on the dimension. 

In an Appendix (§9) we briefly review some basic and more or less well known results 
on homotopy limits. 

1.6 Notation, terminology, etc. 
(i) We will freely use the notation and terminology of[9]. In particular we won't 

distinguish between a small category and its nerve and, if D is a small category, then we 
endow the category S D, of  D-diagrams of  simplicial sets, with the closed simplicial model 
category structure of  [9,§2] (in which a map f :  X ~ Y ~ S  D is a weak equivalence or a 
fibration whenever, for every object D ~D, the map fD:  XD-* YD ~S is so). 

(ii) Many of the simplicial sets used in this paper are not small, but only homotopically 
small in the sense of [8, 2.2]. As explained in [8, §2], this does not really matter, i.e. one 
can "do homotropy theory" with them as usual. 

(iii) As [2, Chap. XI] homotopy inverse limits only have invariant homotopy meaning 
when applied to fibrant diagrams, we often have to replace a given diagram X by a weakly 
equivalent fibrant one such as, for instance, Ex*X,  where Ex °~ denotes the functor of [11]. 
To simplify the notation we will write X f instead of  Ex ~X. (Of course, instead of Ex oo, we 
could just as well have used the singular functor on the geometric realization[12]). 

§2. CLASSIFICATION COMPLEXES 

In this section we 
(i) make clear what we mean by the homotopy type of  a classifying complex for the self 

weak equivalences of  a diagram of  simplicial sets, or more generally, the homotopy type of  
a classifying complex for the self weak equivalences of  an object in a closed simplicial model 
category, and 

(ii) obtain a classification result for closed simplicial model categories which implies the 
formal part of our main result. 

We start with defining 

2.1 Classification complexes for closed simpUcial model categories 
Let M be a closed simplicial model category, i.e. [13, Chap. II] a .category with a notion 

of function complexes and with three distinguished classes of maps, weak equivalences, 
fibrations and cofibrations, satisfying certain axioms. Call two objects X, Y ~ M weakly 
equivalent if they can be connected by a finite string of weak equivalences. By a 
classification complex of M we mean the nerve c of any subcategory c c M such that 

(i) every map in c is a weak equivalence, 
(ii) if f :  X ~  Y e M  is a weak equivalence and either X or Y is in c, t hen f i s  in c and 
(iii) c is homotopically small (1.6(ii)). 
Important special cases are the 

2.2 Special classification complexes 
Let X ~ M be an object. The special classification com.plex of X then will be the (unique) 
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classification complex scX which is connected and which contains X. Its usefulness is due 
to the fact that 

(i) scX depends only on the weak equivalence class of X, and 
(ii) scX has "the homotopy type of a classifying complex for the self weak equivalences 

of X.'" 
By this last statement we mean that scX has the property mentioned in the following 

proposition. (Note that this proposition also guarantees that scX has the smallness 
property 2.1(ii).) 

2.3 PROPOSITION. Let M be a closed simplicial model category, let X ~ M be an object 
which is both fibrant and cofibrant and let hautX be its simplicial monoid of self weak 
eqiuvalences (which has as n-simplices the weak equivalences X ( ~  A [n]--*XeM[13, Chap. 
II, §1]). Then the classifying complex IPhautX [12, p. 87] is weakly (homotopy) equivalent 
to scX. 

Proof. This follows readily from [6, 5.5], [7, 2.2] and [8, 4.6 and 4.8]. 

2.4 Remark 
The above proof of proposition 2.3 actually implies the slightly stronger statement that 

ff'hautX and scX can be connected by a finite string of  weak equivalences which is natural 
with respect to all simplicial functors f:  M--*N between closed simplicial model categories 
which preserve weak equivalences and are such that IX ~ N is also both fibrant and cofibrant. 

An immediate consequence is the classification result mentioned at the beginning of this 
section: 

2.5 COROLLARY. Let M be a closed simplicial model category and let c be a classification 
complex for M. Then 

(i) there is an obvious 1-1 correspondence between the components of c and the weak 
equivalence classes of  the objects of  M which are in c, and 

(ii) for every object Y ~ M which is in c, the component of c containing it is exactly sc Y 
and thus has (in the above sense) the homotopy type of  a classifying complex for the self weak 
equivalences of  Y. 

2.6 Examples 
(i) Let D be a small category. Then [9] S D is a closed simplicial model category and 

the above results thus apply. In particular, if X ~ S °, then the classification complex cX of 
1.3 is a classification complex in the sense of  2.1. (The smallness property 2.1(iii) follows 
from the computational part of our main result (3.4)). 

(ii) If n is an integer >I 0 and X ~ S °, then cX =scX. Moreover, if n' is an integer >/0 
and j :  n ' ~n  is a functor which is onto, then it is easy to see (by constructing suitable 
functors and natural transformations) that the induced diagram j * X ~ S  g" is such that 
cX = scX is a deformation retract of cj*X = scj*X. 

§3. THE CLASSIFICATION THEOREM 

To state our mare result we neea 

3.1 The classification diagram ca>X of a diagram X~S D 
Let dD be the division of  D, i.e. [9, §5] the category which has as objects the functors 

n ~ D  (n >1 0) and as maps (Jr: n2~D)~(J2: n2~D) the commutative diagrams 

n 2 ~ III 

D 
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and consider, for every object J: n ~ D  ~ dD, the classification complex cJ*X of the induced 
n-diagram. It is easy to see that these give rise to a classification diagram cdiQ(eS d° which 
has the property. 

3.2 PROPOSITION. Let X ~ S D. Then 

cX = lima%aDX 

In view of this we define 

3.3 The homotopy classification complex hoc X of a diagram X ~ S D 
This is the simplicial set defined by ([2, Chap. XI] and 1.6) 

hoc X = h~im~(CdDX) r. 

Our main result now is the 

3.4 Classification theorem 
Let X ~ S  D. Then 

(i) there is an obvious 1-1 correspondence between the components of  cX and the weak 
equivalence classes of the conjugates of X, 

(ii) for every conjugate Y of X, the component of  cX containing it is exactly scY and 
thus has (in the sense of §2) the homotopy type of  the classifying complex for the self weak 
equivalences of Y, and 

(iii) the obvious ([2, Chap. XI], [11]) map 

cX = limmcmX ~h~ima°(c~J() f = hoc X ~ S 

is a weak (homotopy) equivalence. 

Parts (i) and (ii) of this theorem are a special case of 2.4 and it thus remains to prove 
(iii), which will be done in §8. 

3.5 A slight generalization 
Define two diagrams X, YeS D to be O-conjugate if, for every object D eD, the simplicial 

sets XD and YD are weakly (homotopy) equivalent and define the corresponding notions 
of O-classification complex c °X and homotopy O-classification complex hoc°X of a diagram 
X ~ S  D. It is easy to see that these are disjoint unions of classification complexes and 
homotopy classification complexes respectively and that therefore Theorem 3.4 remains 
valid if  one replaces conjugate by O-conjugate and substitutes c °X and hoc°X for cX and 
hoc X. (The homotopical smallness of c°X is not immediately obvious, even from the 
computational part of our main result. One needs in addition the observation that, if D = n 
for some integer n/> 0 and X~S a, then c°X is homotopically small, or equivalently, has 
a set of components.) 

We end by pointing out the 

3.6 Accessibility of the homotopy type of cX if X ~ S ° 
This follows readily from 2.3 and 2.6. For instance, if n = 0 and Y~S ° = S is fibrant 

(and automatically cofibrant) and weakly equivalent to X, then cX has the same homotopy 
type as I~ haut Y. Similarly, if n > 0, Y e S ° is fibrant and cofibrant and weakly equivalent 

TOP Vol. 23, No. 2--B 
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to X and Y'~S "-~ consists of the first (n - 1) maps of Y and g: Y(n - 1)--* Y(n) denotes 
the last, then cX has the homotopy type of the "g-component"  of the total complex of  
the quasi-fibration over (fie haut Y') x (fie haut Y(n) which has the function complex 
hom(Y(n - 1), Y(n)) as fibre and which is associated with the natural actions of haut Y' 
and haut Y(n) on this function complex. In particular if all the maps in X are weak 
(homotopy) equivalences, then cX has the common homotopy type of all the fie haut Y(/'). • 

§4. REDUCTION TO THE SUBDIVISION 

We now show that the homotopy type of the classification complex cX can also be 
expressed as a homotopy inverse limit over the subdivision of the catogory D, i.e. [9, §5] 
the category sdD obtained from the division dD by turning all the "degeneracy maps" 
(i.e. diagrams as in 3.1 in which the top map is onto) into identity maps. This is particularly 
useful when (the nerve of) D is finite or finite dimensional as in that case sdD has the 

same property. 
To do this we note that 3.4(ii), 9.1 and 9.5 immediately imply. 

4.1 PROPOSITION. Given a small category D and a diagram X E S  v, let g: dD--*E be a 
left cofinal (9.3)functor between small categories and let e ~S E be a fibrant diagram such 
that cuoX is weakly equivalent to the pull back diagram g*e. Then the classification complex 
cX is weakly equivalent to the homotopy inverse limit holimEe. 

Our main result in this section then is 

4.2 Reduction to the subdivision 

Let D be a small category, let X~S D, let s: dD--,sdD be the projection functor[9, §5], 
let s , :  SAP--S ~aD be the "homotopy push down" functor which (9.8) assigns to every diagram 
Y~S a° and object I~sdD, the simplicial set h~imS~/*Y (where j denotes the forgetful 

functor). Then 2.6(ii), 5.3, 5.8, 6.3, 9.1 and 9.2 imply that 
(i) the classification diagram caDX is weakly equivalent to the pull back diagram s*~, 

c~X, and hence (4.1) 
(ii) the classification complex cX is weakly equivalent to holimSaD(~,caDX) ;. 

This result can sometimes be simplified: 

4.3 The retract-free case 
Let D be a small category which is retract-free, i.e. no two non-identity maps in D 

compose to an identity map (this is, for instance, the case if D is finite or finite dimensional 
or more generally, if D or its opposite D °p are direct in the sense of [9; ~4]) and let XES D. 
Then the projection s: d D ~ s d D  admits an obvious cross section t: sdD--*dD and 2.6(ii), 5.6, 

6.3 and 9.3 readily imply that 
(i) the classification diagram caDX is weakly equivalent to the pull back diagram s*t*cmX 

and hence (4.1) 
(ii) the classification complex cX is weakly equivalent to holimSaD(t*caw~') ;. 

4.4 The direct case 
If D is direct [9, ~4] and has left cancellation (i.e. fg  = f h  implies g = h) and X ~ S  D is 

both fibrant and cofibrant, then so are the induced diagrams J*X~S  I. Thus one can (see 
2.3) consider the resulting dD-diagram fiehautaw~" of the simplicial sets fiehautJ*X, which 
is readily seen to be the pull back along s: dD---,sdD of an sdD-diagram fiehautsaDX and 

note that (see 2.4). 
(i) The classification diagram CavX is weakly equivalent to the pull back diagram 

s* fiehautsaw~ and hence (4.1) 
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(ii) the classification complex cX is weakly equivalent to 

holimaD(ff'haut~XY and holim'aD(ff'haut~X) r. 

Dually one has 

4.5 The inverse case 
If D is inverse (i.e. D °p is direct), then it is not difficult to verify that S D also admits 

a closed simplicial model category structure in which the simplicial structure and the weak 
equivalences are as in [9, §2] and a map f :  X--, YeS  D is a cofibration iff, for every object 
D ~D, the map fD: X D ~  YD ~S is a cofibration. If D has right cancellation (i.e. g f =  hf 
implies g = h) and a diagram X e S D is bothfibrant and cofibrant with respect to this model 
category structure, then so are the induced diagrams J*X and hence the conclusions of 4.4 
hold. 

4.6 The Postnikov case 
Using 4.5 one can recover the first classification result mentioned in 1.2. Let N be the 

category which has the non-negative integers as objects and which has exactly one map 
nl~n2 whenever n2/> n~. Let YeS  be fibrant and let X e S  N be its Postnikov tower, i.e. 
X(n) = P, Y, the n th Postnikov.approximation of Y, for every integer n >t 0. Then X is both 
fibrant and cofibrant with respect to the model category structure of 4.5. Moreover, if 
{ ff'hautP, Y} denotes the resulting N-diagram of the simplicial sets ff'hautP, Y, then the 
sdN-diagram ff'haut,aNX (4.5) is clearly a pull back of the N-diagram { ff/hautP, Y} along 
the functor p: s d N ~ N  given by [9, §5] (J: n--*N)~J(0). As a result (4.5) the classification 
diagram caNX is weakly eqiuvalent to the pull back diagram s 'p*{ ff'hautP, Y} and hence 
(4.1) the classification complex cX is weakly equivalent to holim"{ ff'hautP, y}r. 

§5. A USEFUL VARIATION 

We now consider another variation on our main result which enables one to express 
the homotopy type of the classification complex cX as a function complex between 
diagrams indexed by a category which can be considerably smaller than the subdivision 
of D. A similar result holds for the 0-classification complex c°X (3.5). 

5.1. PROPOSITION. Given a small category D and a diagram X ~ S  D, let g: dD--.E be a 
functor between small categories and let e ~S ~ be a fibrant diagram such that catrX is weakly 
equivalent to the pull back diagram g*e. Then the classification complex cX is weakly 
equivalent to the function complex homE((g $ --), e). 

Proof. This follows immediately from 3.4(iii), 9.1 and 9.5. 

5.2 Example 
Let (see ~4) E = s d D  and g =s: dD~sdD and let e =~.cmX. 

homE((g~ --), e) is weakly equivalent to holimSm(s.cat~) r. 
Then (see 4.2) 

5.3 Example 
Let D be a group (i.e. D has only one object D and all maps of D are invertible) and 

let X E S D be fibrant. Then one readily verifies (2.3 and 2.6(ii)) that the diagram caDX is 
weakly equivalent to the constant dD-diagram with value ff'hautXD and hence (5.1) the 
classification complex cX is weakly equivalent to the ordinary function complex. 
hom(D, (ff'hautXD)r). In view of [5, §2] this implies the second classification result 
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mentioned in 1.2 for the case that B has the homotopy type of a K(rr, 1). The general case 
can be obtained by a simplicial version of the above argument (see [10, 5.5]). 

5.4 Example 
Let D be a small category with connected nerve, let X ~ S  D be afibrant diagram such 

that, for every map d~D,  the induced, map X d ~ S  is a weak equivalence and let D ~D be 
an object. As in 5.3 one then readily sees that the diagram CdDX is weakly equivalent to the 
constant dD-diagram with value ff 'hautXD and the classification complex cX is therefore 
(5.1) weakly equivalent to the ordinary function complex hom(D, (l~hautXD)r). 

5.5 Remark 
There is of course, an analogue of Proposition 5.1 for the 0-classification complex c°X 

(3.5). In fact, if (see §3) c~DX denotes the dD-diagram consisting of the 0-classification 
complexes c°J*X, then Proposition 5.1 clearly remains true if  one replaces CdaX by c ~ X  
and cX by c°X. 

5.6 Example 
Given a small category D and a diagram X ~ S D let rr.D be the category obtained from 

D by identifying two maps iff they have the same domain and range, let E = drr.D and let 
g: dD---,E be the division of the projection. Clearly the functor C°daX: d D ~ S  factors 
through E and if e denotes the resulting E-diagram, then (5.5) the O-classification complex 
c °X is weakly equivalent to the function complex homE((g J, --), e/). Moreover, if g - ~ ~ S e 
denotes the more or less evident diagram which assigns to every object of E (the nerve of) 
its inverse image under g (which is discrete), then it is not difficult to verify that the obvious 
map (g ~ --)--*g-l~SE is a weak eqiuvalence. 

If D has only one object, then zr.D is trivial and hence E ~ A °p and g - ~ consists of the 
simplices of the nerve of D with the usual simplicial operators between them. 

§6. L-COFINAL FUNCTORS 

In preparation for the proof of Theorem 3.4 we discuss here a special type of functors 
between small categories, called an L-cofinal functor, and derive the following 

6.1 Properties of L-eofinal functors 
(i) An L-cofinal functor u: A ~ B  induces an equivalence (6.5) between the homotopy 

theory of B-diagrams of simplicial sets and the homotopy theory of u -~B-diagrams of 
simplicial sets. (An u- tB-diagram is a functor X : A ~ S  such that X a e S  is a weak 
equivalence whenever ua ~ B is an identity map.) This we prove by means of a pair of  
adjoint functors (6.4) 

u,:  SU- ~s ~--* SS: u* 

where S u- ~s c S A denotes the full subcategory generated by the u -1B-diagrams, u* is a 
blown up version of the pull back functor Ss--~S u- ,s and u ,  is a "homotopy push down 

functor". 
(ii) L-cofinal functors are very well behaved with respect to homotopy limits. Their 

definition immediately implies that they are left cofinal (6.6), but it turns out that they are 
also right cofinal (6.7) and in addition permit a mixed push down theorem (6.8) for 
homotopy inverse limits. 

6.2 L-cofinal functors 
A functor u: A ~ B  between two small categories will be called L-cofinal if, for every 

object B ~ B, 
(i) the inverse image category u-~B is contractible (1.6(i)), and 
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(ii) its inclusion in the over category u - t B ~ u ~ B  is right cofinal (9.4). 
In view of 9.4 and 9.10 this definition readily implies the following 

6.3 Key property 
f lu:  A ~ B  is an L-cofinal functor and X: A ~ S  is a u -tB-diagram (6.1), then, for every 

object A e A, the obvious map [2, Chap. XII] 

XA ~holim~*~Aj*X e S 

(where j denotes the forgetful functor) is a weak equivalence. 

In order to formulate the equivalence of homotopy theories mentioned above (6. l(i)) 
we need 

6.4 A pair of adjoint functors 
Let u: A ~ B  be a functor between small categories. A lengthy but straightforward 

calculation then yields that the homotopy push down functor u,:  SA~S a of 9.8 has as right 
adjoint the functor u*: SB~S A given by 

u* YA = homB((A lulB),  Y) 

for every diagram Y e S  B and object A cA. Here A +u~BeS B assigns to every object B eB 
the (nerve of the) "between category" A ~u+B which has as objects the pairs of maps 
(A ~A"  eA, uA ' ~ B  eB. 

Actually u*Y is a u-lB-diagram and in fact a blown up version of the induced 
u -  'B-diagram u*Y. To prove this one notes that 

(i) A ~u ~B is a free [9, 2.4] and hence cofibrant B-diagram, 
(ii) lr0(A ~u~B) is a strong deformation retract of  A~u~B, 

(iii) rr0(A ~u~B) ~ uA ~B is free on one generator and hence homB(n0(A ~uSB), Y) 
u* YA, and 
(iv) by (ii) and (iii) the projections A ~ulB--*n0(A lu~B) induce weak equivalences [9, §1 

and §2] 

u* YA ~ homa(n0(A ~u,~B), Y)~homa((A +u ~B, Y) ,~ u* YA. 

Combined with standard arguments, Proposition 6.3 leads to the following result: 

6.5 Equivalence of homotopy theories 
Let u: A-,B be a functor between small categories. Then one has: 

(i) The functor u* perserves fibrations and weak equivalences. 
(ii) The functor u ,  preserves cofibrations and weak equivalences. 

(iii) I f  u is L-cofinal, then, for every cofibrant object X eS  u-~B and every fibrant object 
Y e S a, a map X--*u*Y e S ~- tB is a weak equivalence iff its adjoint u,X--* Y e S B is so. 

(it,) Consequently, if u is L-cofinal, then the functors u* and u ,  induce equivalences 
between the homotopy theory of the diagram category S B and the homotopy theory of the 
diagram category S u- ,B (i.e. [8, 5.4] these functors induce weak equivalences between the 
appropriate simplicial localizations). 

Next we investigate the behavior of L-cofinal functors with respect to homotopy limits. 
Definition 6.2 immediately implies 

6.6 PROPOSITION. Ever), L-cofinal functor is left cofinal (9.3). 
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Somewhat surprisingly one also has 

6.7 PROPOSITION. Every L-cofinal functor is right cofinal (9.4). 

Proof. Let B ~ B be an arbitrary but fixed object and consider the functor hom(B, - ) :  
B--*(sets) c S. By inspection, (the nerve of) the over category B+u is isomorphic to 
holimAu*hom(B, - )  which, by 9.8, is weakly equivalent to holimBu,u *horn(B, - ) .  On the 
other hand B+B ~ holimBhom(B,-) is contractible and the desired result now follows 
readily from 6.3. 

Also useful and somewhat unexpected is the 

6.8 Mixed push down theorem for homotopy inverse limits 
Let u: A--*B be an L-cofinal functor, let X~S u-~a be fibrant and let u , X  ~ Y ~S B be a 

weak equivalence such that Y is fibrant. Then holimAX is in a natural manner, weakly 
equivalent to holim B Y. 

Proof. In view of 6.5, 6.6 and 9.1 there is a natural sequence of weak equivalences 

holim" r ~ holimAu * Y ~ holimAu * Y ~ holim AX 

Some easy examples of L-cofinal functors are the result of the readily verified 

6.9 PROPOSITION. Let u: A--*B be a functor between small categories such that for every 
object B ~ B, 

(i) the inverse image category u -  IB is contractible, and 
(ii) its inclusion in the over category u - l B ~ u + B  has a left adjoint. 

Then u is L-cofinal. 

6.10 Examples. (i) Let D be a small category and let C be a small category which is 
contractible. Then the projection D x C ~ D  is L-cofinal. 

(ii) For a small category D, let sdD be the opposite of its subdivision (see §4). Then 
the functor q: sdD--*D given by the formula (J: n~D)--*J(n), is L-cofinal [9, 5.5 and 5.6]. 

The remainder of this section will be devoted to proving the following two propositions 
which provide less obvious examples of L-cofinal functors. 

6.11 PROPOSITION. Let D be a small category. Then the projection s : d D ~ s d D  is 

L-co final. 

This is a special case 

6.12 PROPOSITION. Let u : A ~ B  be a functor between small categories. 
composition 

s (sa3u 
V: dA--*sdA , sdB 

Then the 

satisfied 6.2(ii). Moreover, i f  u is L-cofinal, then so is v. 

6.13 COROLLARY. Let u : A ~ B  be an L-cofinal functor. 
(sd)u: s d A ~ s d B  is both left and right cofinal. 

Then the induced functor 
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This follows from 6.11, 6.12 and the observation that, i fafunctor y and a composite 
functor xy are both left (or both right) cofinal, then x is also left (or right) cofinal. 

Proof of  6.12. Let )7~s dB and z e v~Y be objects and let c: v-1)7~v])7 denote the 
inclusion functor. We first show that z~c is contractible. To do this let y: n ~ B  be a 

"non-degenerate" [9, 5.3] functor such that sy =)7, let 

k x A 
) 

f ~  ,~u 
n y B 

) 

be a commutative diagram of functors representing z and let, for every integer i with 
0 ~< i ~< n, Vi denote the set integers j such that 0 <~j ~< k and 

ux (min(fi, j)--*max(fi,j)) e B 

is an identity map. Then the objects of  z ~c are in an obvious 1-1 correspondence with the 
sequences of integers 

0-.< ao°...< • • • ..< a°o < aol ~<." . a l l  < "''<aon<~'''<~anlv. <~k 

such that agi~ Vi for all 0 ~< g ~< Ni and 0 ~< i ~< n, and the maps of z~c correspond to 
deletions and/or repetitions of integers. Using this presentation it is not difficult to show 
that the identity functor of z ~c can be connected to a constant functor by a sequences of  
natural transformations and that z~c is thus contractible. As moreover s -  1)7 e dB has y 
as initial object and hence s -  I)7 is contractible, this proves 6.11. 

To complete the proof of 6.12, assume that )7 and y are as above. If  n = 0, then 
v -  lfi = d (u -  ly (0)) and hence (6.11) v -~)7 is contractible. If  n > 0, let y ' :  n -  1 ~ B  be the 
restriction o f y  to all of n but the object n, let )7'= sy', let x: k--.A be an object of v-~)7' 
and let r: v-1)7~v-~)7' be the restriction functor. Then it is not difficult to see that r~x 
retracts to r -  Ix and that r -  tx is isomorphic to d(x'~c), where c: u -  ~y(n)~u~y(n) is the 
inclusion functor and x '~  u~y(n) is the object determined by x(k)  and y(n - l ~ n ) .  The 
desired result now follows from the definition of L-cofinality. 

6.14 Remark  

The above argument actually proves the slightly stronger statement: In the notation of  
6.12, let s d ' B c s d B  be a full subcategory and let d 'A=v- l ( sd 'B )  c d A .  Then the 
restriction v': d'A---,ds'B of  v satisfies 6.2(ii). Moreover, if u is L-cofinal, then so is v'. 

We end with some obvious comments on 

6.15 R-eofinal  functors 

One calls a functor u: A--*B between two small categories R-cofinal if its opposite is 
L-cofinal, i.e. if, for every object B e B, 

(i) the inverse image category u -  1B is contractible, and 
(ii) its inclusion in the under category u - l B ~ B ~ u  is left cofinal (9.3). 
It is clear that all the results of this section can be reformulated to apply to R-cofinal 

functors. In particular, an R-cofinal functor u: A--*B induces an equivalence between the 
homotopy theory of  S B and the homotopy theory of S u- ~s. 
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§7. A L E M M A  

This section contains a Lemma (7.2) which plays an important role in the proof of part 
(iii) of Theorem 3.4 (in §8). In order to formulate it we need the notion of 

7.1 Initial subcategories 
A subcategory C of a category D is called initial if d: D~ --+D 2 ~ D and D: ~ C imply d ~ C. 
One then has: 

7.2 LEMMA. Let 

f 
C' ,C 

D" , D  
g 

be a push out diagram of  small categories such that i' and f map C' isomorphically onto initial 
subcategories of D' and C respectively (and hence i and g map C and D' isomorphically onto 
initial subcategories D). Then, for every diagram XD ~ S D, the induced diagram 

cXD , cX , 

cXc , cXc, 

(where Xc, Xc and XD denote the induced C-, C'- and D'-diagrams) is, up to homotopy, a 
fibre square. 

Proof. Let W denote the category with five objects and four non,identity maps 
u---,v,--w--+x,---y, let E' denote the category obtained from C' × W by "replacing C' x u 
by a copy of D"' and let E be obtained from E' by "replacing C' x y by a copy of C". 
Then the obvious functors r': E'--* D' and r: E ~ D  are readily verified to be R-cofinal (6.15) 
and hence (6.5) it suffices to prove the desired result for the push out diagram 

C '  , C 

Jl l/ 
E' ,E 

and an r -~D-diagram YE eSr-~D. This we will do by showing that, for every r -~D-diagram 
YE~S t-'D, the natural "end point restriction" diagram 

cYE ,crE, 

cYc × cYD, ' C}c" x cYD, 

is, up to homotopy, a fibre square. But this last diagram is a pull back diagram and the 
top map thus induces isomorphisms of the fibres. It therefore remains to show that the 
inclusion of these fibres in the homotopy fibres are weak equivalences. 

To do this consider the underlying functors 

b h" 
cYE 'cYc × cYD, and cYE, ~cYc x cYD, 
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and note that, for every object ( P , Q ) ~ e Y c x  CYD,, (the nerve of) b - ~ ( P , Q )  is a 
deformation retract of (P, Q)~b. Furthermore it readily follows from [6, 5.5] and [7, 2.2 
and 6.2] that b - ~(P, Q) has the homotopy type of the loops on scP (2.2) and the functor 
b thus satisfies the conditions of Theorem A of Quillen [14]. A similar argument can be 
applied to b'  and the desired result is now immediate. 

7.3 R e m a r k  

In order to prove the somewhat stronger result than 3.4 mentioned in 1.4, one needs 
the following addition to Lemma 7.2: If YD.~S D" and Zc~S  c are such that the induced 

diagrams Yc" and Zc, e S  c' are weakly equivalent, then there exists a diagram )(DES D such 
that the induced diagrams XD,~S D' and Xc~S c are weakly eqiuvalent to YD' and Z c 
respectively. 

To prove this one notes that (in the above notation) there is an r -  ~D-diagram which 
"restricts at the end points" to YD, and Zc and the desired result now follows readily from 
6.5 and the R-cofinality (6.15) of the functor r: E--*D. 

§8. PROOF OF PART (iii) OF THEOREM 3.4 

The proof of 3.4(iii) consists of three parts. 

I. Reduction to the direct ease 

Here we show that it__suffices to consider the case that D is a direct[9, ~ ]  category. To 
do this let (see [9, §5]) sdD be the opposite of the subdivision of D and q:sdD-- ,D  the 
functor given by_(J: n---,D)---,J(n). The desired result then follows immediately from the 
fact that [9, ~4] sdD is direct and 

8.1 PROPOSITION. Let D be a small category, let X ~ S D and let 

cX , hocX 

1 1 
cq*X , hocq*X 

be the commutative diagram in which the horizontal maps are as in 3.4 the vertical maps are 

induced by q. Then both vertical maps are weak equivalences. 

Proof  For the map on the left this follows from 6.5 and 6.10 and for the map on the 
right from 6.6, 6.10, 6.11 and 9.3. 

II.  Reduction to the finite dimensional ease 

For this it suffices to show: 

8.2 PROPOSmON. Let D be a small category which is the union o f  an increasing sequence 
D ° c • .. c D* c . . .  o f  initial subcategories such that 3.4(iii) holds for  all W(i I> 0). Then 
3.4(iii) also holds for  D. 

To prove this we need the 

8.3 PROPOSITION. If 3.4(iii) holds for a set {D ~} of  small categories, then it also holds 
for their disjoint union I1 D ~. 

2 

Proof  Let C = H D ~. If X ~ S c, then cX ~ FI cX~ and hocX ~, Yl hocX~, where X~ 
denotes the restrictio~ of t" to D ~. The hocX, are fibrant and hence the product rj hocX~ 
has homotopy meaning (i.e. rt~ ~ hocX~ ~ ~ 7[" i hocX~ for every choice of base point and 
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integer i t> 0) and the desired result now follows from the following proposition which 
states that the product ~cX~ also has homotopy meaning (even though the cX~ are not 
necessarily fibrant). 

8.4 PROPOSITION. For every set of  diagrams { X ~ S  w} the obvious map ~cX~ ~ ~(cX~y 
(1.6(iii)) is a weak equivalence. 

Proof. One may assume that the X~ are both fibrant and cofibrant. Let again C = H D ~ 
and let X ~ S  c be the diagram which on D ~ restricts to X~. Then X is also fibrant ~and 

cofibrant and 

haut X ~, H hautX~ and ff 'hautX ~ rI~ #hautX~ 

As the hautX~ are fibrant, the product IIhautX~ has homotopy meaning and as 

re, ff 'hautX ,~ ~z,_ t hautX ~ H n , _  lhautX~ ~ H ~ ,  if" hautX~ 

so has the product ~ff 'hautX~. The proposition now follows readily form 2.3. 

Proof of Proposition 8.2. Let C be the disjoint union C = H D  ~ and let V be the category 
i 

with three objects and two non-identity maps u--,v ,---w. Then there is a map of  push out 
diagrams 

C H C  , C x V  C I I C  I , C  

g'l 1 1 
C x V  ,D*  C ,D 

in which f is the folding functor and g* (resp. g) sends the first copy of D i into D ~ x u 
(resp. D i) and the second copy into D i+l x w(resp. Di+~). Given a diagram XDES v, this 
map induces (in the notation of  §7) a map of pull back diagrams 

cXD , cXc cXD. ,cXcx v 

cXc ' CXcuc CXc × v ' CXcuc 

One readily verifies that the functors C x V ~ C  and D*--,D are R-cofinal (6.15) and 
therefore induce weak equivalences cXc ~ cXc × v and cXD ~ cXD,. Moreover (7.2) the 
diagram on the right is, up to homotopy, a fibre square and so is therefore the diagram 
on the left. Using 8.3 it is not difficult to show that the inclusion cXv~holimi(cXd)fis a 
weak equivalence and the desired result now follows readily from the fact ' that  hocXo is 
the inverse limit of the tower of fibrations {hocXvi}. 

III. The finite dimensional ease  
The 0-dimensional case follows from 8.3 and the following proposition which is an easy 

consequence of the fact that dn has an initial object [2, Chap. XI, 4.1(iii)]. 

8.5 PROPOSITION. Theorem 3.4(iii) holds if D = n for some n > O. 

The higher dimensional case is proved by induction or n. Let dimD = n > 0. Then there 
is, in the notation of [9, §4], a push out diagram of  categories 
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m a 

A' = LI sd(Dn-t)~i  ,sd(IY'-~) = A 
le(sdD),, 

u' = incl.~ $incl. = u (8.6) 

B ' =  LI sdD~I , s d D = B  

B m 

in which each sdDJ, I ,~ sdn and hence (8.1) it suffices to show that, in the notation of §7, 
for each diagram YBeS a, the induced diagrams 

cYa ' cYn, hocYB , hoc Yn, 
~ and ~ 

c YA , C YA' hoe YA , hoe YA" (8.7) 

are up to homotopy, fibre squares. 
To do this for the diagram on the left, let V be as in the Proof of 8.2 and consider 

the factorization of diagram 8.6 

A' ,A" ,A 

B' ,B" , B  (8.8) 

in which A" and B" are obtained from the push out diagrams 

× I t  

A' 'A A' 'A" 
xw ~ and ~ 

A ' x V  ,A" B'.. .~B" 

and the functors A"~A and B"~B are induced by the projection A" x V~A' .  The desired 
result then follows readily from the R-cofinality (6.15) of the functors A"~A and B"~B 
and the fact that the left hand square in 8.8 satisfies the conditions of Lemma 7.2. 

To prove that in 8.7 the square on the fight is, up to homotopy, a fibre square, let 
P = (c,aYA) r and Q = (c,~Ys) t and note that there is a commutative diagram (9.7) 

hoc YB = holimdeQ ~ ' holim4id, Q 

hoc YA = holim'aP ~ ' ho.limaedu, P 

in which the horizontal (push down) maps are weak equivalences. Furthermore, let E c d B  
be the full (initial)subcategory generated by the objects which are not in dA, let e: E ~ d B  
be the inclusion functor and let e*: $ 8 ~ S  *~ be the functor given by 

e * Z J = Z J  for J ~ E  
e *ZJ  = * otherwise 

for every object Z e S 4. Then there is a commutative diagram 

h~im"a/d,Q , holim~e * i_d,Q , holimEe*i_d,Q 

holim~du,P , holim~e*du,P , holimEe*du,P 
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in which the indicated maps are clearly isomorphisms and the square on the left is [2, p. 
303] a fibre square, because the square of dB-diagrams involved is so for every object 
J s d B .  The desired result now follows from the fact that the map hocYB,--.hocY A gives 
rise to similar diagrams in which the last vertical map (between the holimE 's) is, in an 
obvious manner, isomorphic to the above map (between the holim E's). 

§9. APPENDIX ON HOMOTOPY LIMITS 

This is a brief review of  some of the basic properties of homotopy limits from [2, Chaps. 
X! and XII] as well as some similar "well knowns" results. 

9.1 Homotopy invariance of homotopy inverse limits [2, p. 3041 
Let D be a small category and let g: X---, Y ~ S  ° be a weak equivalence between fibrant 

objects (1.6(i)). Then the induced map holimDg: holimDX---,holimDY~S is also a weak 

equivalence. 

9.2 Homotopy invariance of homotopy direct limits [2, p. 3351 
Let D be a small category and let g: X ~  Y ~ S  D be a weak equivalence. Then so is the 

reduced map holimDg: holimI~X--,holimDY ~S. 

9.3 Cofinality theorem for homotopy inverse limits [2, p. 317] 
Let u: A ~ B  be a functor between small categories which is left cofinal (i.e. the over 

category u J, B is contractible, for every object B ~B), and let Y ~ S  B be fibrant. Then the 
induced map holimBY--*holimAu * Y ~S is a weak equivalence. 

Using similar double complex arguments one can also prove: 

9.4 Cofinality theorem for homotopy direct limits 
Let u: A ~ B  be a functor between small categories which is right cofinal (i.e. B ~u is 

contractible for every object B~B)  and let Y ¢ S  a. Then the induced map 
holimAu* Y ~ holim s Y ~ S is weak equivalence. 

9.5 Reduction theorem for homotopy inverse limits 
Let A ~ B  be a functor between small categories and let Y ~ S  s be fibrant. Then the 

B-diagram u J , -  is cofibrant [9, §2] and the obvious map homB((u ~ - ) ,  Y)~ho l imAu*  y ~ S  

is a weak equivalence. 

9.6 Reduction theorem for homotopy direct limits 
Let u: A ~ B be a functor between small categories. Let Y ~ S n and let ( - J,u) x a Y denote 

the difference kernel as in [2, p. 328]. Then the obvious map holimAu * Y~ ( - - ~ u )  x BYeS 
is a weak equivalence. 

9.7 Push down theorem for homotopy inverse limits 
Let u: A ~ B  be a functor between small categories. Let X ~ S A be fibrant and let u X ~ S B 

be the "'homotopy push down" given by u X B  = holimS~uj*X for  every object B ~B (1" 

denotes as usual the forgetful functor). Then the obvious map holimAX ~ho l imBu,  X ~ S is 
a weak equivalence. 

9.8 Push down theorem for homotopy direct limits 
Let u: A ~ B  be a functor between small categories, let X ~ S  A and let u X ~ S  B be the 

"homotopy push down" given by u XB  = holimu~Bj*X for  every object B*~B. Then the 
obvious map holimau.x--*holimAXES is a weak equivalence. 
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Other  useful results are 

9.9 PROPOSITION. Let D be a small category and let X ~ S ° be a constant diagram [2, 

p. 300]. Then there are obvious isomorphisms (1.6(i)) 

h o l i m ° X  ~ D × X and ho l i m° X  = hom(D, X) 

This  follows immediate ly  from the definitions. 

9.10 PROPOSITION. Let D be a contractible small category and let X ~ S D be such that, 

for  every map d ~ D, Xd  is a weak equivalence. Then, for  every object D ~D, 

(i) the obvious map XD---,holim°X is a weak equivalence, and 
(ii) i f  X is fibrant, then the obvious map h o l i m ° X - , X D  is also a weak equivalence. 

Proof. The first par t  is a cosnequence of  the Lemma on p. 90 (98) of[14] and  the second 

part  follows readily from the first par t  t~sing 9.1 and  9.9. 
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