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Preface

Algebraic K-theory draws its importance from its effective codification of a mathematical
phenomenon which occurs in as separate parts of mathematics as number theory, geometric
topology, operator algebras, homotopy theory and algebraic geometry. In reductionistic
language the phenomenon can be phrased as

there is no canonical choice of coordinates,
or, as so elegantly expressed by Hermann Weyl [312, p.49|:

The introduction of numbers as coordinates ... is an act of violence whose only
practical vindication is the special calculatory manageability of the ordinary
number continuum with its four basic operations.

As such, algebraic K-theory is a meta-theme for mathematics, but the successful cod-
ification of this phenomenon in homotopy-theoretic terms is what has made algebraic K-
theory a valuable part of mathematics. For a further discussion of algebraic K-theory we
refer the reader to Chapter I below.

Calculations of algebraic K-theory are very rare and hard to come by. So any device
that allows you to obtain new results is exciting. These notes describe one way to produce
such results.

Assume for the moment that we know what algebraic K-theory is; how does it vary
with its input?

The idea is that algebraic K-theory is like an analytic function, and we have this other
analytic function called topological cyclic homology (TC') invented by Bokstedt, Hsiang and
Madsen [27], and

the difference between K and T'C' is locally constant.

This statement will be proven below, and in its integral form it has not appeared elsewhere
before.

The good thing about this, is that T'C' is occasionally possible to calculate. So whenever
you have a calculation of K-theory you have the possibility of calculating all the K-values
of input “close” to your original calculation.
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Figure 1: The difference between K and T'C is locally constant. The left part of the
figure illustrates the difference between K(Z) and T'C(Z) is quite substantial, but
once you know this difference you know that it does not change in a “neighborhood”
of Z. In this neighborhood lies for instance all applications of algebraic K-theory of
simply connected spaces, so here T'C-calculations ultimately should lead to results in
geometric topology as demonstrated by Rognes.

On the right hand side of the figure you see that close to the finite field with p
elements, K-theory and T'C' agree (this is a connective and p-adic statement: away
from the characteristic there are other methods that are more convenient). In this
neighborhood you find many interesting rings, ultimately resulting in Hesselholt and
Madsen’s calculations of the K-theory of local fields.

So, for instance, if somebody (please) can calculate K-theory of the integers, many
“nearby” applications in geometric topology (simply connected spaces) are available through
TC-calculations (see e.g., [243], [242]). This means that calculations in motivic cohomol-
ogy (giving K-groups of e.g., the integers) will actually have bearing on our understanding
of diffeomorphisms of manifolds!

On a different end of the scale, Quillen’s calculation of the K-theory of finite fields gives
us access to “nearby” rings, ultimately leading to calculations of the K-theory of local fields
[131]. One should notice that the illustration offered by Figure 1 is not totally misleading:
the difference between K(Z) and T'C(Z) is substantial (though locally constant), whereas
around the field F,, with p elements it is negligible.

Taking K-theory for granted (we’ll spend quite some time developing it later), we should
say some words about T'C'. Since K-theory and T'C' differ only by some locally constant
term, they must have the same differential: D;K = D;TC. For ordinary rings A this
differential is quite easy to describe: it is the homology of the category P4 of finitely



generated projective modules.
The homology of a category is

like Hochschild homology, and as
Connes observed, certain models of
Hochschild homology carry a circle
action which is useful when com-
paring with K-theory. Only, in the
case of the homology of categories it
turns out that the ground ring over
; . which to take Hochschild homology
TC / is not an ordinary ring, but the so-
/ 2 g called sphere spectrum. Taking this

D,K(A)(P)= D TC(A)(P)

idea seriously, we end up with Bok-
stedt’s topological Hochschild homol-

.
, ‘
. ‘
. ‘

.
.
K ’ |
. 2 ogy THH .
. g

’ ’ !
!
!

One way to motivate the construc-

P tion of T'C' from THH is as fol-
! > lows.  There is a transformation
A K — THH which we will call the
Dennis trace map, and there is a
Figure 2: The differentials “at an S-algebra A model for THH for which the Den-
in the direction of the A-bimodule P” of K and nis trace map is just the inclusion of
TC are equal. For discrete rings the differen- the fized points under the circle ac-
tial is the homology of the category of finitely tion. That is, the Dennis trace can
generated projective modules. In this illustra- be viewed as a composite
tion the differential is the magenta straight
line through the origin, K-theory is the red K~ THH® C THH

curve and T'C is the shifted curve in cyan.
where T is the circle group.

The unfortunate thing about this statement is that it is model dependent in that fixed
points do not preserve weak equivalences: if X — Y is a map of T-spaces which is a weak
equivalence of underlying spaces, normally the induced map X* — YT will not be a weak
equivalence. So, T'C'is an attempt to construct the T-fixed points through techniques that
do preserve weak equivalences.

It turns out that there is more to the story than this: THH possesses something
called an epicyclic structure (which is not the case for all T-spaces), and this allows us to
approximate the T-fixed points even better.

So in the end, the cyclotomic trace is a factorization

K—-TC— THH

of the Dennis trace map.
The cyclotomic trace is the theme for this book. There is another paper devoted to
this transformation, namely Madsen’s eminent survey [192]. If you can get hold of a copy



it is a great supplement to the current text.

It was originally an intention that readers who were only interested in discrete rings
would have a path leading far into the material with minimal contact with ring spectra.
This idea has to a great extent been abandoned since ring spectra and the techniques
around them have become much more mainstream while these notes have matured. Some
traces of this earlier approach can still be seen in that Chapter Il does not depend at all on
ring spectra, leading to the proof that stable K-theory of rings corresponds to homology
of the category of finitely generated projective modules. Topological Hochschild homology
is, however, interpreted as a functor of ring spectra, so the statement that stable K-theory
is THH requires some background on ring spectra.

General plan The general plan of the book is as follows.

In Section we give some general background on algebraic K-theory. The length of
this introductory section is justified by the fact that this book is primarily concerned with
algebraic K-theory; the theories that fill the last chapters are just there in order to shed
light on K-theory, we are not really interested in them for any other reason. In Section|I.2
we give Waldhausen’s interpretation of algebraic K-theory and study in particular the case
of radical extensions of rings. Finally, Section 13/ compares stable K-theory and homology.

Chapter Il aims at giving a crash course on ring spectra. In order to keep the presen-
tation short we have limited our presentation only the simplest version: Segal’s I'-spaces.
This only gives us connective spectra and the behavior with respect to commutativity is-
sues leaves something to be desired. However, for our purposes [-spaces suffice and also
fit well with Segal’s version of algebraic K-theory, which we are using heavily later in the
book.

Chapter TIT can (and perhaps should) be skipped on a first reading. It only asserts that
various reductions are possible. In particular, K-theory of simplicial rings can be calculated
degreewise “locally” (i.e., in terms of the K-theory of the rings appearing in each degree),
simplicial rings are “dense” in the category of (connective) ring spectra, and all definitions
of algebraic K-theory we encounter give the same result.

In Chapter IV, topological Hochschild homology is at long last introduced, first for ring
spectra, and then in a generality suitable for studying the correspondence with algebraic
K-theory. The equivalence between the topological Hochschild homology of a ring and the
homology of the category of finitely generated projective modules is established in TVI2|
which together with the results in 1.3 settle the equivalence between stable K-theory and
topological Hochschild homology of rings.

In order to push the theory further we need an effective comparison between K-theory
and THH, and this is provided by the Dennis trace map K — THH in the following
chapter. We have here chosen a model which “localizes at the weak equivalences”, and so
conforms nicely with the algebraic case. For our purposes this works very well, but the
reader should be aware that other models are more appropriate for proving structural theo-
rems about the trace. The comparison between stable K-theory and topological Hochschild
homology is finalized Section V3, using the trace. As a more streamlined alternative, we
also offer a new and more direct trace construction in Section V4.



In Chapter topological cyclic homology is introduced. This is the most involved of
the chapters in the book, since there are so many different aspects of the theory that have
to be set in order. However, when the machinery is set up properly, and the trace has
been lifted to topological cyclic homology, the local correspondence between K-theory and
topological cyclic homology is proved in a couple of pages in Chapter [VII.

Chapter VII ends with a quick and inadequate review of the various calculations of
algebraic K-theory that have resulted from trace methods. We first review the general
framework set up by Bokstedt and Madsen for calculating topological cyclic homology,
and follow this through for three important examples: the prime field F,, the (p-adic)
integers Z, and the Adams summand ¢,. These are all close enough to F, so that the
local correspondence between K-theory and topological cyclic homology make these cal-
culations into actual calculations of algebraic K-theory. We also discuss very briefly the
Lichtenbaum-Quillen conjecture as seen from a homotopy theoretical viewpoint, which is
made especially attractive through the comparison with topological cyclic homology. The
inner equivariant workings of topological Hochschild homology display a rich and beautiful
algebraic structure, with deep intersections with log geometry through the de Rham-Witt
complex. This is prominent in Hesselholt and Madsen’s calculation of the K-theory of
local fields, but facets are found in almost all the calculations discussed in Section [VII/3.
We also briefly touch upon the first problem tackled through trace methods: the algebraic
K-theory Novikov conjecture.

The appendix Al collects some material that is used freely throughout the notes. Much
of the material is available elsewhere in the literature, but for the convenience of the
reader we have given the precise formulations we actually need and set them in a common
framework. The reason for pushing this material to an appendix, and not working it into
the text, is that an integration would have produced a serious eddy in the flow of ideas
when only the most diligent readers will need the extra details. In addition, some of the
results are used at places that are meant to be fairly independent of each other.

The rather detailed index is meant as an aid through the plethora of symbols and
complex terminology, and we have allowed ourselves to make the unorthodox twist of
adding hopefully helpful hints in the index itself, where this has not taken too much
space, so that in many cases a brief glance at the index makes checking up the item itself
unnecessary.

Displayed diagrams commute, unless otherwise noted. The ending of proofs that are
just sketched or referred away and of statements whose verification is embedded in the
preceding text are marked with a ©.
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Chapter 1

Algebraic K-theory

In this chapter we define and discuss the algebraic K-theory functor. This chapter will
mainly be concerned with the algebraic K-theory of rings, but we will extend this notion
at the end of the chapter. There are various possible extensions, but we will mostly focus
on a class of objects that are close to rings. In later chapters this will be extended again
to include ring spectra and even more exotic objects.

In the first section we give a quick nontechnical overview of K-theory. Many of the
examples are but lightly touched upon and not needed later, but are included to give an
idea of the scope of the theory. Some of the examples in the introduction may refer to
concepts or ideas that are unfamiliar to the reader. If this is the case, the reader may
consult the index to check whether this is a topic that will be touched upon again (and
perhaps even explained), or if it is something that can be left for later investigations. In
any case, the reader is encouraged to ignore such problems at a first reading. Although
it only treats the first three groups, Milnor’s book [213] is still one of the best elementary
introductions to algebraic K-theory with Bass’ book [13] providing the necessary support for
more involved questions. For a more more modern exposition one may consult Rosenberg’s
book [244]. For a fuller historical account, the reader may want to consult for instance
[310] or [14].

In the second section we introduce Waldhausen’s S-construction of algebraic K-theory
and prove some of its basic properties.

The third section concerns itself with comparisons between K-theory and various ho-
mology theories, giving our first identification of the differential of algebraic K-theory, as
discussed in the preface.

1 Introduction

The first appearance of what we now would call truly K-theoretic questions are the inves-
tigations of J. H. C. Whitehead (for instance [314], [315] or the later |316]), and Higman
[133]. The name “K-theory” is much younger (said to be derived from the German word
“Klassen”), and first appears in Grothendieck’s work [1] in 1957 on the Riemann-Roch
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16 CHAPTER I. ALGEBRAIC K-THEORY

theorem, see also [35]. But, even though it was not called K-theory, we can get some
motivation by studying the early examples.

1.1 Motivating example from geometry: Whitehead torsion

The “Hauptvermutung” states that two homeomorphic finite simplicial complexes have
isomorphic subdivisions. The conjecture was formulated by Steinitz and Tietze in 1908,
see |236] for references and a deeper discussion.

Unfortunately, the Hauptvermutung is not true: already in 1961 Milnor [212] gave
concrete counterexamples built from lens spaces in all dimensions greater than six. To
distinguish the simplicial structures he used an invariant of the associated chain complexes
in what he called the Whitehead group. In the decade that followed, the Whitehead group
proved to be an essential tool in topology, and especially in connection with problems
related to “cobordisms”. For a more thorough treatment of the following example, see
Milnor’s very readable article [210].

Let M and N be two smooth n-
dimensional closed manifolds. A
cobordism between M and N is an
n + l-dimensional smooth compact
manifold W with boundary the dis-
joint union of M and N (in the ori-
ented case we assume that M and N
are oriented, and W is an oriented
cobordism from M to N if it is ori-
ented so that the orientation agrees
with that on N and is the opposite
of that on M).

Here we are interested in a situation
where M and N are deformation re-

A cobordism W between a disjoint union M tracts of W. Obvious examples are

of two circles and a single circle N. cylinders M x I, where I = [0, 1] is
the closed unit interval.




1. INTRODUCTION 17

More precisely: Let M be a
closed, connected, smooth
manifold of dimension n >
5. Suppose we are given
an h-cobordism (W; M, N),
that is, a compact smooth
n+ 1 dimensional manifold
W, with boundary the dis-
joint union of M and N,
such that both the inclu-
sions M c W and N C W An h-cobordism (W; M, N). This one is a cylinder.

are homotopy equivalences.

Question 1.1.1 Is W diffeomorphic to M x 17

It requires some imagination to realize that the answer to this question can be “no”. In
particular, in the low dimensions of the illustrations all h-cobordisms are cylinders.

However, this is not true in high dimensions, and the h-cobordism theorem below
gives a precise answer to the question.

To fix ideas, let M = L be a lens space of dimension, say, n = 7. That is, the cyclic
group of order [, 7 = y; = {1,e2™/! ... e2™(=D/I} C C, acts on the seven-dimensional
sphere S7 = {x € C* s.t. |x| = 1} by complex multiplication

ax ST — 87 (t,x) — (t-x)

and we let the lens space M be the quotient space S7/m = S7/(x ~ t-x). Then M is a
smooth manifold with fundamental group .

Let

0 0

i)
- Ui Ci

Co 0

be the relative cellular complex of the universal cover, calculating the homology H, =
H,(W, M) (see sections 7 and 9 in [210] for details). Each C; is a finitely generated free
Z[r]-module, and, up to orientation and translation by elements in 7, has a preferred basis
over Z[r] coming from the i-simplices added to get from M to W in some triangulation of
the universal covering spaces. As always, the groups Z; and B; of i-cycles and i-boundaries
are the kernel of 0: C; — C;_; and image of 0: C;;1 — C;. Since M C W is a deformation
retract, we have by homotopy invariance of homology that H, = 0, and so B, = Z,.

By induction on i, we see that the exact sequence

0 B, Oz Bi—l — 0

is split. For each ¢ we choose a splitting and consider the resulting isomorphism

Oi %) BZ D Bi—l-
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This leads us to the following isomorphism

®i even i
—_—

@i even CZ @z even BZ ¥ Bi—l

= J/ can. rearrangement ( 1 . 1 . 2)

D oaa Ci Dioaa 2, D, oaa Bi © Bi—1.

We will return to this isomorphism shortly in order to define the obstruction to the answer
to the Question/1.1.1/being “yes” (see Section[1.1.4]), but first we need some basic definitions
from linear algebra.

1.1.3 K, and the Whitehead group

For any ring A (all the rings we consider are associative and unital) we may consider the
ring My (A) of k x k matrices with entries in A, as a monoid under multiplication (recall
that a monoid satisfies all the axioms of a group except for the requirement that inverses
must exist). The general linear group is the subgroup of invertible elements G Ly (A). Take
the colimit (or more concretely, the union) GL(A) = limy_o. GLi(A) = U,_ ., GLk(A)
with respect to the stabilization

GLi(A) L2255 GLiga(A)

(thus every element g € GL(A) can be thought of as an infinite matrix

00 ..
10 ..
01 ..

with ¢’ € GLg(A) for some k < 00). Let E(A) be the subgroup of elementary matrices (i.e.,
Ex(A) C GLi(A) is the subgroup generated by the matrices ef; with ones on the diagonal
and a single nontrivial off-diagonal entry a € A in the ¢j position). The “Whitehead
lemma” (see[1.2.2 below) implies that the quotient

coR

K\(A) = GL(A)/E(A)

is an abelian group. In the particular case where A is an integral group ring Z[r] we define
the Whitehead group as the quotient

Wh(r) = Ky(Z[r])/{*m}
via {+7} C GL,(Z[r]) — K\(Z[r]).

1.1.4 Classifying cobordisms

Let (W; M, N) be an h-cobordism, and consider the isomorphism @, ..., Ci — D, ,qq C:
given in (1.1.2) for the lens spaces, and similarly in general. This depended on several
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choices and in the preferred basis for the C; it gives a matrix with coefficients in Z[mr; (M)].
Stabilizing we get an element 7(W, M)coices € GL(Z[m1(M)]) and a class 7(W, M) =
[T(VV, M)choices] € Wh(ﬂ-l(M))

The class 7(W, M) is independent of our preferred basis and choices of splittings and
is called the Whitehead torsion.

The Whitehead torsion turns out to be a vital ingredient in Barden (Thesis, 1963),
Mazur [202] and Stallings’ [272] extension of the famous results of Smale [264] (where he
proves the high dimensional Poincaré conjecture) beyond the simply connected case (for a
proof, see also [163]):

Theorem 1.1.5 (Barden, Mazur, Stallings) Let M be a compact, connected, smooth man-
ifold of dimension > 5 and let (W;M,N) be an h-cobordism. The Whitehead torsion
T(W, M) € Wh(m(M)) is well defined, and T induces a bijection

diffeomorphism classes (rel. M)
{ of h-cobordisms (W; M, N) —— Wh(m(M))

In particular, (W; M, N) = (M x I; M, M) if and only if 7(W, M) = 0.

Example 1.1.6 The Whitehead group, Wh(r), has been calculated for only a very limited
set of groups m. We list a few of them; for a detailed study of Wh of finite groups, see
[220]. The first three refer to the lens spaces discussed above (see page 375 in [210] for
references).

1. l=1, M = S7. “Exercise”: show that K,Z = {£1}, and so Wh(0) = 0. Thus any
h-cobordism of S” is diffeomorphic to S7 x I.

2. 1 =2. M = P7, the real projective 7-space. “Exercise:” show that K;Z[us] = {dus},
and so Wh(us) = 0. Thus any h-cobordism of P7 is diffeomorphic to P7 x 1.

3. 1 =5. Wh(us) = Z generated by the invertible element ¢ + ¢! — 1 € Z[us] (where
t is a chosen fifth root of unity) — the inverse is t* + ¢~ — 1. That is, there exist
countably infinitely many non-diffeomorphic h-cobordisms with incoming boundary
component S”/us.

4. Waldhausen [297]: If 7 is a free group, free abelian group, or the fundamental group
of a submanifold of the three-sphere, then Wh(m) = 0.

5. Farrell and Jones [81]: If M is a closed Riemannian manifold with non-positive
sectional curvature, then Wh(m M) = 0.

Remark 1.1.7 The presentation of the Whitehead torsion differs slightly from that of
[210]. It is easy to see that they are the same in the case where the B; are free Z[n]-modules
(the splittings ensure that each B; is “stably free” which is sufficient, but the argument is
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slightly more involved). Choosing bases we get matrices M; € GL(Z[r]) representing the
isomorphisms a;: C; = B; @ B;_1, and from the definition of 7(W, M) choices we see that

(W, M) = (Z [Mz]> - (ZU‘M) = Z (—1)Z[Mz] € Wh(mi(M)).

i even i odd

1.2 K, of other rings

1. Commutative rings: The map from the units in A

A* = GLi(A) — GL(A)/E(A) = K, (A)

is split by the determinant map, and so the units of A is a split summand in K;(A).
In certain cases (e.g., if A is local (A has a unique maximal ideal), or the inte-
gers in a number field, see next example) this is all of K;(A). We may say that
the rest of K;(A) measures to what extent we can do Gauss elimination, in that
ker{det: K;(A) — A*} is the group of equivalence classes of matrices up to stabiliza-
tion in the number of variables and elementary row operations (i.e., multiplication
by elementary matrices and multiplication of a row by an invertible element).

. Let F' be a number field (i.e., a finite extension of the rational numbers), and let

A C F be the ring of integers in F' (i.e., the integral closure of Z in F'). A result
of Dirichlet asserts that A* is finitely generated of rank r; + 7o — 1 where r; (resp.
2ry) is the number of distinct real (resp. complex) embeddings of F', and in this case
K (A) =2 A*, see [213, Corollary 18.3] or the arguments on page 160-163.

. Let B — A be an epimorphism of rings with kernel I C rad(B) — the Jacobson

radical of B (that is, if x € I, then 1 + z is invertible in B). Then
(14+1)" —— Ki(B) — Ki(A) — 0

is exact, where (1 + I)* C GLy(B) is the group {1 + z|x € I} under multiplication
(see e.g., page 449 in [13]). Moreover, if B is commutative and B — A is split, then

0 — (14+0)* — Ky(B) — Ki(A) — 0

1s exact.

For later reference, we record the Whitehead lemma mentioned above. For this we need

some definitions.

Definition 1.2.1 The commutator [G, G] of a group G is the (normal) subgroup generated
by all commutators [g,h] = ghg™*h™!. A group G is called perfect if it is equal to its
commutator, or in other words, if its first homology group H;(G) = G/|G, G| vanishes.
Any group G has a mazimal perfect subgroup, which we call PG, and which is automatically
normal. We say that G is quasi-perfect it PG = [G, G].
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The symmetric group >, on n > 5 letters is quasi-perfect, since its commutator sub-
group is the alternating group A,, which in turn is a simple group. Further examples are
provided by the

Lemma 1.2.2 (The Whitehead lemma) Let A be a unital ring. Then GL(A) is quasi-
perfect with mazximal perfect subgroup E(A), i.e.,

[GL(A), GL(A)] = [E(A), GL(A)] = [E(A), E(A)] = E(A)
Proof:  See e.g., page 226 in [13]. [

1.3 The Grothendieck group K

Definition 1.3.1 Let € be a small category and let £ be a collection of diagrams ¢ —
¢ — " in €. Then the Grothendieck group Ky(&, ) is the abelian group, defined (up to
unique isomorphism) by the following universal property. Any function f from the set of
isomorphism classes of objects in € to an abelian group A such that f(c) = f(¢') + f(¢")
for all sequences ¢ — ¢ — ¢’ in &, factors uniquely through Ky(€).

If there is a final object 0 € 0b€ such that for any isomorphism ¢ = ¢ € € the sequence
d =2 c¢— 0isin &, then Ky(€, &) can be given as the free abelian group on the set of
isomorphism classes [¢|, of €, modulo the relations [¢] = [¢] + [¢"] for ¢ — ¢ — " in &.
Notice that [0] = [0] 4+ [0], so that [0] = 0.

Most often the pair (€, &) will be an ezact category in the sense that € is an additive
category (i.e., a category with all finite coproducts where the morphism sets are abelian
groups and where composition is bilinear) such that there exists a full embedding of € in
an abelian category 2, such that € is closed under extensions in 2 and £ consists of the
sequences in € that are short exact in 2.

Any additive category is an exact category if we choose the exact sequences to be the
split exact sequences, but there may be other exact categories with the same underlying
additive category. For instance, the category of abelian groups is an abelian category,
and hence an exact category in the natural way, choosing £ to consist of the short exact

sequences. These are not necessary split, e.g., Z 277 /27 is a short exact sequence
which does not split.

The definition of K, is a case of “additivity”: Kj is a (or perhaps, the) functor to
abelian groups insensitive to extension issues. We will dwell more on this issue later, when
we introduce the higher K-theories. Higher K-theory plays exactly the same role as K,
except that the receiving category has a much richer structure than the category of abelian
groups.

The choice of £ will always be clear from the context, and we drop it from the notation
and write Ky(€).

Example 1.3.2 1. Let A be a unital ring. An A-module is an abelian group M, to-
gether with a homomorphism A — End(M) of rings, or otherwise said, a homomor-
phism A ® M — M of abelian groups, sending a ® m to am with the property that
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1m = m and a(bm) = (ab)m. Recall that an A-module M is finitely generated if there
is a surjective homomorphism A" = A@---® A — M (n summands) of A-modules.
An A-module P is projective if for all (solid) diagrams

M

P M//

of A-modules where the vertical homomorphism is a surjection, there is a (dotted)
homomorphism P — M making the resulting diagram commute. It is a consequence
that an A-module P is finitely generated and projective precisely when there is an
n and an A-module @ such that A = P & (). Note that () is automatically finitely
generated and projective.

If, in a given subcategory of the category of A-modules we say that a certain sequence
is exact, we usually mean that the sequence is exact when considered as a sequence
of A-modules.

If € = P4, the category of finitely generated projective A-modules, with the usual
notion of (short) exact sequences, we often write Ky(A) for Ko(P4). Note that P4 is
split exact, that is, all short exact sequences in P4 split. Thus we see that we could
have defined Ky(A) as the quotient of the free abelian group on the isomorphism
classes in P4 by the relation [P & Q] ~ [P] + [Q]. It follows that all elements in
Ky(A) can be represented as a difference [P] — [F] where F' is a finitely generated
free A-module.

. Inside P, sits the category Fa of finitely generated free A-modules, and we let

K{(A) = Ky(F4). If Ais a principal ideal domain, then every submodule of a
free module is free, and so F4 = P,4. This is so, e.g., for the integers, and we
see that Ky(Z) = K{(Z) = Z, generated by the module of rank one. Generally,
K{(A) — Ky(A) is an isomorphism if and only if every finitely generated projective
module is stably free (P and P’ are said to be stably isomorphic if there is a finitely
generated free A-module @) such that P & Q = P’ & @, and P is stably free if it is
stably isomorphic to a free module). Whereas Ky(A x B) = Ky(A) x Ko(B), the
functor K7 does not preserve products: e.g., Z = K{(ZxZ), while Ko(ZXZ) ~ ZxZ
giving an easy example of a ring where not all projectives are free.

. Note that K, does not distinguish between stably isomorphic modules. This is not

important in some special cases. For instance, if A is a commutative Noetherian ring
of Krull dimension d, then every stably free module of rank > d is free (|13, p. 239)).

. The initial map Z — A defines a map Z = K{(Z) — KJ(A) which is always surjec-

tive, and in most practical circumstances, an isomorphism. If A has the invariance of
basis property, that is, if A™ = A™ if and only if m = n, then Kg(A) = Z. Otherwise,
A =0, or there is an h > 0 and a k£ > 0 such that A™ = A" if and only if either
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m =nor m,n > hand m =n mod k. There are examples of rings with such h and
k for all h,k > 0 (see [171] or [54]): let A, be the quotient of the free ring on the
set {x;j, 51 <i<h,1<j<h+k} by the matrix relations

[255] - [ysi] = In, and [y;] - [2i5] = T
Commutative (non-trivial) rings always have the invariance of basis property.

5. Let X be a compact Hausdorff topological space, and let € = Vect(X) be the cat-
egory of finite rank complex vector bundles on X, with exact sequences meaning
the usual thing. Then Ky(Vect(X)) is the complex K-theory K(X) of Atiyah and
Hirzebruch [9]. Note that the possibility of constructing normal complements assures
that Vect(X) is a split exact category. Swan’s theorem [280] states that the category
Vect(X) is equivalent to the category of finitely generated projective modules over
the ring C'(X) of complex valued continuous functions on X. The equivalence is given
by sending a bundle to its C'(X)-module of sections. Furthermore, Bott periodicity
(see the survey [36] or the neat proof [119]) states that there is a canonical isomor-
phism K (S%)® K(X) = K(S? x X). A direct calculation shows that K(S?) ~ Z®Z
where it is customary to let the first factor be generated by the trivial bundle 1 and
the second by ¢ — 1 where £ is the canonical line bundle on S? = CP!.

6. Let X be a scheme, and let € = Vect(X) be the category of finite rank vector bundles
on X. Then Ky(Vect(X)) is the K(X) of Grothendieck. This is an example of K
of an exact category which is not split exact. The analogous statement to Swan’s
theorem above is that of Serre [258|.

1.3.3 Example of applications to homotopy theory

As an illustration we review Loday’s [178] early application of the functors Ky and K; to
establishing a result about polynomial functions.

Let T" = {(z1,2,..., %90 1,%0,) € R¥22_, + 2% = 1,i = 1,...,n} be the n-
dimensional torus and S™ = {(yo,...,yn) € R"™|y2 + -+ + y2 = 1} the n-dimensional
sphere. A polynomial function 7 — S™ is a polynomial function f: R** — R"! such
that f(7T™) C S™.

Proposition 1.3.4 (Loday [178]) Let n > 1. Any polynomial function f: T" — S™ is

homotopic to a constant map.

Sketch proof: ~We only sketch the case n = 2. The other even dimensional cases are
similar, whereas the odd cases uses K instead of K. The heart of the matter is the
following commutative diagram

Clyo, y1. v/ (g + yi +v5 — 1) — C(5?)

r v

C[$1,$2,I3,$4]/(SL’%+LU% —1,.]7%4‘25"21—1) — C T2
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of C-algebras, where the vertical maps are induced by the polynomial function f and
the horizontal maps are defined as follows. If X C R™ is the zero set of some poly-
nomial function p = (p1,...,px): R™ — RF there is a preferred map of C-algebras
Clzy, ..., xm]/(p1s--.,pr) — C(X) given by sending the generator x; to the composite
function X € R™ C C™ — C where the last map is projection onto the /th factor.

Let K be the functor from rings to abelian groups whose value at A is the cokernel of
the canonical map Ky(Z) — Ky(A). Considering the resulting diagram

Ko(Clyo, 1,90/ (43 + v + 43 — 1)) —— Ko(C(5?))
P

| "]

Ko(Clay, 29, w3, 4]/ (22 + 22 — 1,22 + 22 — 1)) —— K, (C(T?))

By Swan’s theorem [1.3.2l5/we may identify the right hand vertical map with f*: K (S?) —
K(T?) (where K(X) is the cokernel of the canonical map K(x) — K(X)). Hence we are
done if we can show

1. The top horizontal map is a surjection,
2. the lower left hand group is trivial and

3. a polynomial function T 2 — S? is homotopic to a constant map if it induces the
trivial map K(S?%) — K(T?).

By the statements about complex K-theory[1.3.2[5, K (5?) is a copy of the integers (gener-
ated by £ — 1), so to see that the top horizontal map is a surjection it is enough to see that
a generator is hit (i.e., the canonical line bundle is algebraic), and this is done explicitly
in [178, Lemme 2|.

The substitution t; = xor_1 + 279, induces an isomorphism

Clar, wo, w3, 4]/ (27 + 25 — 1,25 + af — 1) = Cltr, t7 12,85,

and by [13, p. 636] Eo(C[tl,tfl,tg,tgl]) = 0. This vanishing of a K-group is part of a
more general statement about algebraic K-theory’s behavior with respect to localizations
and about polynomial rings over regular rings.

To see the last statement, one has to know that the Chern class is natural: the diagram

K(S?) —— H*S%Q)~Q
wl f¢
K(T?) —“— H*(T%Q)=Q

commutes. Since ¢1(§ — 1) # 0 we get that if the left vertical map is trivial, so is the
right vertical map (which is multiplication by the degree). However, a map f: T? — 52 is
homotopic to a constant map exactly if its degree is trivial. ©
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1.3.5 Geometric example: Wall’s finiteness obstruction

Let A be a space which is dominated by a finite CW-complex X (dominated means that

there are maps A ——=X —=A such that ri ~ id,).

Question: is A homotopy equivalent to a finite CW-complex?

The answer is yes if and only if a certain finiteness obstruction in the abelian group
Ko(Z[m A]) = ker{K,(Z[r1A]) — Ky(Z)} vanishes. So, for instance, if we know that
f(O(Z[WlA]) vanishes for algebraic reasons, we can always conclude that A is homotopy
equivalent to a finite CW-complex. As for K7, calculations of Ky(Z[r]) are very hard, but
we give a short list.

1.3.6 K, of group rings

1.

2.

3.

If €} is a cyclic group of prime order p less than 23, then Ko(Z[r]) vanishes. The
first nontrivial group is Ko(Z[Ca3]) = Z/3Z (Kummer, see [213, p. 30]).

Waldhausen [297]: If 7 is a free group, free abelian group, or the fundamental group
of a submanifold of the three-sphere, then Ky(Z[r]) = 0.

Farrell and Jones [81]: If M is a closed Riemannian manifold with non-positive
sectional curvature, then Ko(Z[m M]) = 0.

1.3.7 Facts about K| of rings

1.

If A is a commutative ring, then Ky(A) has a ring structure. The additive struc-
ture comes from the direct sum of modules, and the multiplication from the tensor
product.

If A is local, then Ky(A) = Z.

Let A be a commutative ring. Define rkq(A) to be the split summand of Ky(A) of
classes of rank 0, c.f. [13, p. 459]. The modules P for which there exists a @) such that
P®4Q = A form a category. The isomorphism classes form a group under tensor
product. This group is called the Picard group, and is denoted Pic(A). There is a
“determinant” map rko(A) — Pic(A) which is always surjective. If A is a Dedekind
domain (see [13| p. 458-468|) the determinant map is an isomorphism, and Pic(A)
is isomorphic to the ideal class group CI(A).

Let A be the integers in a number field. Then Dirichlet tells us that rky(A) =
Pic(A) = CI(A) is finite. For instance, if A = Z[e*™/?] = Z[t]/ SV #/, the integers
in the cyclotomic field Q(e2™/P), then Ko(A) = Ko(Z[C,]) (1.3.61.).

If f: B— Ais asurjection of rings with kernel I contained in the Jacobson radical,
rad(B), then Ky(B) — Ky(A) is injective (|13, p. 449]). It is an isomorphism if

(a) B is complete in the I-adic topology ([13]),



26 CHAPTER I. ALGEBRAIC K-THEORY

(b) (B, 1) is a Hensel pair ([88]) or

(c) f is split (as Ky is a functor).

That (B, 1) is a Hensel pair means that if f € B[t] has image f € A[f] and a € A =
B/ satisfies f(a) =0 and f'(a) is a unit in B/I, then there is a b € B mapping to
a, and such that f(b) = 0. It implies that I C rad(B).

1.3.8 An example from algebraic geometry

Algebraic K-theory appears in Grothendieck’s proof of the Riemann—Roch theorem, see
Borel and Serre [35], where Bott’s entry in Mathematical Reviews can serve as the missing
introduction. Let X be a non-singular quasi-projective variety (i.e., a locally closed sub-
variety of some projective variety) over an algebraically closed field. Let C'H(X) be the
Chow ring of cycles under linear equivalence (called A(X) in [35, section 6]) with product
defined by intersection. Tensor product gives a ring structure on Ky(X ), and Grothendieck
defines a natural ring homomorphism

ch: Ko(X) — CH(X)® Q,

similar to the Chern character for vector bundles, cf. [214]. This map has good functoriality
properties with respect to pullback, i.e., if f: X — Y, then

ch

commutes, where f' and f* are given by pulling back along f. For proper morphisms
f: X — Y [35, p. 100] there are “transfer maps” (defined as a sort of Euler characteristic)
fii Ko(X) — Ko(Y) [35, p. 110] and direct image maps f.: CH(X) — CH(Y). The
Riemann—Roch theorem is nothing but a quantitative measure of the fact that

Ko(X) -2 CH(X)® Q

ﬁl f*l

K(Y) -2 cHY)® Q

fails to commute: ch(fi(x))-Td(Y) = fi(ch(z) - Td(X)) where T'd(X) is the value of the
“Todd class” |35, p. 112] on the tangent bundle of X.
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1.3.9 A number-theoretic example

Let F' be a number field and A its ring of integers. Then there is an exact sequence
connecting K, and Kj:

0 Kl(A)—>K1(F)>

<_> @meMax(A) KO(A/m) — KO(A) — KO(F) —0

(cf. [13, p. 323, 702|, or better [232, corollary to theorem 5| plus the fact that K;(A) —
K, (F) is injective). The zeta function (r(s) of F' is defined as the meromorphic function
on the complex plane C we get as the analytic continuation of

Cr(s) = > |A/T|™".
I non-zero ideal in A

This series converges for Re(s) > 1. The zeta function has a zero of order r = rank(K;(A))
(see 1.21(2)) at s = 0, and the class number formula says that

i ) _ Rl
s—0 5" | K1(A) tor]

where | —,,. | denotes the cardinality of the torsion subgroup, and the regulator R is a
number that depends on the map ¢ above, see [175].

This is related to the Lichtenbaum-Quillen conjecture, which is now confirmed due
to work of among many others Voevodsky, Suslin, Rost, Grayson (see Section and
Section [VIII3.2 for references and a deeper discussion).

1.4 The Mayer—Vietoris sequence

The reader may wonder why one chooses to regard the functors Ky and K; as related.
Example [1.3.9 provides one motivation, but that is cheating. Historically, it was an insight
of Bass that K; could be obtained from Kj in analogy with the definition of K'(X) as
K°(S'AX) (cf. example[1.3.2/5). This manifests itself in exact sequences connecting the

two theories. As an example: if
A—— B

Ll
c —<2- D
is a cartesian square of rings and g (or f) is surjective, then we have a long exact “Mayer—

Vietoris” sequence

Ky (A) — Ki(B) ® K, (C) — Ki(D) >

<—> Ko(A) — Ko(B) & Ko(C) — Ko(D).
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However, it is not true that this continues to the left. For one thing there is no simple
analogy to the Bott periodicity K°(S*AX) = K°(X). Milnor proposed in [213] a definition
of Ky (see below) which would extend the Mayer—Vietoris sequence if both f and g are
surjective, i.e., we have a long exact sequence

Ky(A) — Ky(B) ® Ky (C) — K»(D) >

<_>K1(A) — - Ki{(B)® K;(C) —= K{(D) —=- - --
However, this was the best one could hope for:

Example 1.4.1 Swan [281] gave the following example showing that there exists no func-
tor K5 giving such a sequence if only ¢ is surjective. Let A be commutative, and consider
the pullback diagram

A/ 22 4
arim(g1) | a
TQ(A) L Ax A
where T5(A) is the ring of upper triangular 2 x 2 matrices, g is the projection onto the
diagonal, while A is the diagonal inclusion. As g splits Ky(T5(A)) @ Ko(A) — Ky(A x A)
must be surjective, but, as we shall see below, Ki(A[t]/t?) — K (Ty(A)) ® Ki(A) is not
injective.
Recall that, since A is commutative, GL;(A[t]/t?) is a direct summand of K;(A[t]/t?).

The element 1+t € A[t]/t? is invertible (and not the identity), but [1+¢] # [1] € K;(A[t]/t?)
is sent onto [1] in K;(A), and onto

@D~ 1) D)1= (|l dE0 1~ e sy

where the inner brackets are the commutator [g, h] = ghg='h™!, as in[1.2.1] of two elemen-
tary matrices (which by definition is trivial in K;).

Using trace methods, one can measure the failure of excision and do concrete calcula-
tion, see VII!3.9.

1.5 Milnor’s Ky(A)

Milnor’s definition of K3(A) is given in terms of the Steinberg group, and turns out to be
isomorphic to the second homology group Hy(E(A)) of the group of elementary matrices.
Another, and more instructive way to say this is the following. The group E(A) is generated
by the matrices ef;, a € A and i # j, and generally these generators are subject to lots
of relations. There are, however, some relations which are more important than others,
and furthermore are universal in the sense that they are valid for any ring: the so-called
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Steinberg relations. One defines the Steinberg group St(A) to be exactly the group generated
by symbols x7; for every a € A and i # j subject to these relations. Explicitly:

a b _ _a+b

and
1 ifi#£1land j#k
b =<2% ifi#landj=k
x,;jb“ ifi=1land j #k
One defines K5(A) as the kernel of the surjection

(235

¢ r—el

St(A) 227 pA).

In fact,
0 —— K3(A) —— St(A) —— E(A) —— 0

is a central extension of F(A) (hence K»(A) is abelian), and Hy(St(A)) = 0, which makes
it the “universal central extension” (see e.g., [165]).

The best references for K; i < 2 are still Bass’ [13] and Milnor’s [213] books. Swan’s
paper |281] is recommended for an exposition of what optimistic hopes one might have
to extend these ideas, and why some of these could not be realized (for instance, there is
no functor K3 such that the Mayer—Vietoris sequence extends, even if all maps are split
surjective).

1.6 Higher K-theory

At the beginning of the seventies there appeared suddenly a plethora of competing theories
pretending to extend these ideas into a sequence of theories, K;(A) for i > 0. Some theories
were more interesting than others, and many were equal. The one we are going to discuss
in this paper is the Quillen K-theory, later extended by Waldhausen to a larger class of
rings and categories.

As Quillen defines it, the K-groups are really the homotopy groups of a space. He
gave three equivalent definitions, one by the “plus” construction discussed in below
(we also use it in Section III{1.1), one via “group completion” and one by what he called
the Q-construction. The group completion line of idea circulated as a preprint for a very
long time, but in 1994 finally made it into the appendix of [87], while the Q-construction
appears already in 1973 in [232]. That the definitions agree appeared in [108]. For a ring
A, the homology of (a component of) the space K(A) is nothing but the group homology of
GL(A). Using the plus construction and homotopy theoretic methods, Quillen calculated
in [228] K(F,), where F, is the field with ¢ elements. See 1.7.1 below for more details.

The advantage of the Q-construction is that it is more accessible to structural consid-
erations. In the foundational article [232] Quillen uses the Q-construction to extend to the
higher K-groups most of the general statements that were known to be true for K, and
Kl-
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However, given these fundamental theorems, of Quillen’s definitions it is the plus con-
struction that has proven most directly accessible to calculations (this said, very few groups
were in the end calculated directly from the definitions, and by now indirect methods such
as motivic cohomology and the trace methods that are the topic of this book have extended
our knowledge far beyond the limitations of direct calculations).

1.6.1 Quillen’s plus construction

We will now describe a variant of Quillen’s definition of (a component of) the algebraic
K-theory space of an associative ring A with unit via the plus construction. For more
background, the reader may consult [122], [16], or [87].

We will be working in the category of simplicial sets (as opposed to topological spaces).
The readers who are uncomfortable with this can think of simplicial sets (often referred
to as simply “spaces”) as topological spaces for the moment and consult Section TII/1.1
for further details. Later in the text simplicial techniques will become essential, so we
have collected some basic facts about simplicial sets that are particularly useful for our
applications in Appendix

If X is a simplicial set, H.(X) = H(X;Z) will denote the homology of X with trivial
integral coefficients, and H,(X) = ker{H,(X) — H,(pt) = Z} is the reduced homology.

Definition 1.6.2 Let f: X — Y be a map of connected simplicial sets with connected
homotopy fiber F. We say that f is acyclic if H.(F) = 0.

We see that the homotopy fiber of an acyclic map must have perfect fundamental group
(le,, 0 = Hi(F) = H\(F) 2 mF/[mF,m F]). Recall from that any group 7 has a
maximal perfect subgroup, which we call Pw, and which is automatically normal.

1.6.3 Remarks on the construction

There are various models for Xt and the most usual is Quillen’s original (originally used
by Kervaire [164] on homology spheres, see also [179]). That is, regard X as a CW-complex,
add 2-cells to X to kill Pm(X), and then kill the noise created in homology by adding
3-cells. See e.g., [122] for details on this and related issues. This process is also performed
in details for the particular case X = BAs in Section III1/1.2.3!

In our simplicial setting, we will use a slightly different model, giving us strict functo-
riality (not just in the homotopy category), namely the partial integral completion of [40,
p. 219]. Just as K, was defined by a universal property for functions into abelian groups,
the integral completion constructs a universal element over simplicial abelian groups (the
“partial” is there just to take care of pathologies such as spaces where the fundamental
group is not quasi-perfect). For the present purposes we only have need for the follow-
ing properties of the partial integral completion, and we defer the actual construction to

Section

Proposition 1.6.4 1. The assignment X — X7 is an endofunctor of pointed simplicial
sets, and there is a natural coftbration qx: X — X,
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2. if X 1is connected, then qx is acyclic, and

3. if X is connected then m (qx) is the projection killing the maximal perfect subgroup
of mX

Then Quillen provides the theorem we need (for a proof and a precise simplicial formu-
lation, see Theorem I11.1.1.10)):

Theorem 1.6.5 For X connected, [1.6.412 and|1.6.4l3 characterizes X+ up to homotopy
under X.

The integral completion will reappear as an important technical tool in a totally differ-
ent setting in Section [TII3.

Recall that the general linear group GL(A) was defined as the union of the GL,(A).
Form the classifying space (see of this group, BGL(A). Whether you form the
classifying space before or after taking the union is without consequence. Now, Quillen
defines the connected cover of algebraic K-theory to be the realization | BGL(A) ™| or rather,
the homotopy groups,

 [m(BGL(A)*) ifi>0
Ri(4) = {KO(A) ifi=0

to be the K-groups of the ring A. We will use the following notation:

Definition 1.6.6 If A is a ring, then the algebraic K-theory space is
K(A) = BGL(A)".

Now, the Whitehead Lemma tells us that GL(A) is quasi-perfect with commutator
E(A), so

mK(A) = GL(A)/PGL(A) = GL(A)/E(A) = Ki(A),

as expected. Furthermore, using the definition of K5(A) via the universal central extension,
1.5, it is not too difficult to prove that the K3’s of Milnor and Quillen agree: Ky(A) =
mo(BGL(A)T) = Hy(E(A)) (and even K3(A) = H3(St(A)), see [96]).

One might regret that this space K (A) has no homotopy in dimension zero, and this will
be amended later. The reason we choose this definition is that the alternatives available
to us at present all have their disadvantages. We might take Ky(A) copies of this space,
and although this would be a nice functor with the right homotopy groups, it will not
agree with a more natural definition to come. Alternatively we could choose to multiply
by K({ (A) of or Z as is more usual, but this has the shortcoming of not respecting
products.
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1.6.7 Other examples of use of the plus construction

1. Let X, C GL,(Z) be the symmetric group of all permutations on n letters, and let
Yoo = lim, o 3,. Then the theorem of Barratt—Priddy—Quillen (e.g., [12]) states
that Z x BYE ~ limg_., Q¥S*, so the groups 7, (BXZL) are the “stable homotopy
groups of spheres”.

2. Let X be a connected space with abelian fundamental group. Then Kan and Thurston
[154] have proved that X is homotopy equivalent to a BG™ for some strange group
G. With a slight modification, the theorem can be extended to arbitrary connected
X.

3. Consider the mapping class group I'; of (isotopy classes of) diffeomorphisms of a
surface of genus g (we are suppressing boundary issues). It is known that the colimit
BT', of the classifying spaces as the genus goes to infinity has the same rational
cohomology as M, the stable moduli space of Riemann surfaces, and Mumford con-
jectured in [218] that the rational cohomology of M is a polynomial algebra generated
by certain classes — the “Mumford classes” — k; with dimension |x;| = 2i. Since BT
and BT’ have isomorphic cohomology groups, the Mumford conjecture follows by
Madsen and Weiss’ identification [193] of Z x BI'L as the infinite loop space of a
certain spectrum called CP> which (for badly understood reasons) will resurface
in Section VIII3.8.1 (see also [91]). One should notice that prior to this, Tillmann
[285] had identified Z x BI' with the infinite loop space associated to a category of
cobordisms of one-dimensional manifolds.

1.6.8 Alternative definitions of K(A)

In case the partial integral completion bothers you, for the space BGL(A) it can be replaced
by the following construction: choose an acyclic cofibration BGL(Z) — BGL(Z)" once
and for all (by adding particular 2- and 3-cells), and define algebraic K-theory by means
of the pushout square

BGL(Z) —— BGL(A)

| |

BGL(Z)* —— BGL(A)*

This will of course be functorial in A, and it can be verified that it has the right
homotopy properties. However, at one point (e.g., in chapter ITI) we will need functoriality
of the plus construction for more general spaces. All the spaces which we will need in these
notes can be reached by choosing to do our handicrafted plus not on BGL(Z), but on the
space BAs. See Section for more details.

Another construction is due to Christian Schlichtkrull, [247, 2.2], who observed that
the assignment n — BGL,(A) can be extended to a functor from the category of finite
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sets and injective maps with {1,...,n} — BGL,(A), and that the homotopy colimit (see
Appendix [Al6.0.1) is naturally equivalent to BGL(A)*.

1.6.9 Comparison with topological K-theory

Quillen’s definition of the algebraic K-theory of a ring fits nicely with the topological coun-
terpart, as discussed in[1.3.2/5. If one considers the (topological) field C, then the general
linear group GL,(C) becomes a topological group. The classifying space construction
applies equally well to topological groups, and we get the classifying space B*PGL, (C).
Vector bundles of rank n over a compact Hausdorff topological space X are classified by
unbased homotopy classes of maps into B*PG L, (C), giving us the topological K-theory of
Atiyah and Hirzebruch as the unbased homotopy classes of maps from X to Z x B*PGL(C).
If X is based, reduced K-theory is given by based homotopy classes:

K'(X) 2 [S'AX,Z x B**GL(C)].
The fundamental group of B*PGL(C) is trivial, and so the map
B"*GL(C) — B**GL(C)*

is an equivalence. To avoid the cumbersome notation, we notice that the Gram-Schmidt
procedure guarantees that the inclusion of the unitary group U(n) C GL,(C) is an equiv-
alence, and in the future we can use the convenient notation BU to denote any space with
the homotopy type of BPGL(C). The space Z x BU is amazingly simple from a homo-
topy group point of view: 7.(Z x BU) is the polynomial ring Z[u], where u is of degree
2 and is represented by the difference between the trivial and the tautological line bundle
on CP! = S2%. That multiplication by u gives an isomorphism 7, BU — 7o BU for k > 0
is a reflection of Bott periodicity Q*(Z x BU) ~ Z x BU) (for a cool proof, see [119]).

Similar considerations apply to the real case, with Z x BO classifying real bundles. Its
homotopy groups are 8-periodic.

1.7 Some results and calculations

In this section we will collect some results and calculations of algebraic K-theory that have
been obtained by methods different from those that will be discussed in the chapters to
come. The collection is somewhat idiosyncratic and often just picks out a piece of a more
general result, but the reader is encouraged to pursue the references for further information.

For a discussion of results and calculations that do use trace methods and comparison
to topological cyclic homology, see [VII3.

1. Quillen [228]: If F, is the field with ¢ elements, then
Z ifti=0
Ki(F)=Z/ (¢ —1)Z ifi=2j—1.
0 ifi=2j>0
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If F, is the algebraic closure of the prime field F,, then

Z ifi=0
Ki(F,) = §Q/Z[1/p] iti=2j-1.
0 ifi=2j>0

The Frobenius automorphism ®(a) = a? induces multiplication by p? on Ky;_(F,),
and the subgroup fixed by ®* is Ky;_1(F).

A different way of phrasing this is to say that (the connected cover of) the algebraic K-
theory space of F is equivalent to the homotopy fiber of a certain map ¢7—1: BU —
BU, where BU is the classifying space of the infinite unitary group (see(1.6.9) and
19 is the so-called gth Adams operation. The homotopy groups of BU are a copy
of the integers in even positive dimensions and zero otherwise, and the ¢gth Adams
operation acts as ¢/ on m9; BU.

. Suslin [273]: “The algebraic K-theory of algebraically closed fields only depends on

the characteristic, and away from the characteristic it always agrees with topological
K-theory”. More precisely:

Let F' be an algebraically closed field. The group K;(F') is divisible for ¢ > 1. The
torsion subgroup of K;(F) is zero if ¢ is even, and it is isomorphic to

Q/Z[1/p] if char(F)=p>0
Q/Z if char(F) =0
if 7 is odd (see [277] for references).
On the space level (not including Kj) Suslin’s results are: If p is a prime different
from the characteristic of the algebraically closed field F', then
K(F), ~ BU,

where 7}, is p-completion.
If F' is of characteristic p > 0, then K (F'), is contractible.

Note in particular the pleasing formulation saying that BGL(C)" — B*PGL(C)" ~
B*PGL(C) is an equivalence after p-completion. Even though R is not algebraically
closed, the analogous result holds in the real case.

. Naturally, the algebraic K-theory of the integers has been a key prize, and currently

a complete calculation of the groups of degree divisible by 4 appears out of reach
(relying on the so-called Vandiver’s conjecture in number theory, which at present
is known to hold for all prime numbers less than 12 million). We list here a few
concrete results.

o Ky(Z) =12,
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K\(Z) =7/2Z,

Ky(Z) =7/2Z,

o K3(Z) = 7Z/48Z, (Lee-Szczarba, 1976, [172]),
K4(Z)
Ks(

Z) = 0 (Rognes, 2000, [241])
Z) = Z (Elbaz-Vincent, Gangl and Soul¢, 2002, [79]).

We note the long time span from the identification of K3(Z) to that of K4(Z). In this
period things did not stand still; there was much work on the so-called Lichtenbaum-
Quillen conjecture, and other closely associated conjectures in motivic cohomology
by a cohort of mathematicians including Voevodsky, Rost, Kahn, Suslin, Beilinson,
Dwyer, Friedlander, Grayson, Mitchell, Levine, Soulé, Thomason, Wiles, Weibel, and
many, many others. See Section [VII!3.2 for some further information, or perhaps
better, some more specialized and detailed source like Weibel’s paper [309].

In 2000 Rognes and Weibel published a complete account [239] of the 2-torsion piece
of K,(Z) following Voevodsky’s proof of the Milnor conjecture [293|. The result can
be stated in terms of a homotopy commutative square

K(Z[1/2]) —— BO

! !

becoming homotopy cartesian after completion at 2, or in terms of the 2-primary
information in the table one paragraph down.

For a more thorough discussion of the situation at odd primes we refer the reader to
Weibel’s survey [309], from which we have lifted the following table for the K-groups
K, (Z) for n > 1:

n mod8| 1 2 3 45 6 78
K.(Z) |Z&®Z/2 Z/2c, Z/2wy, 0 Z ZJci, Z/wy, O

The K-groups of the integers. The validity of the odd primary information
assumes Vandiver’s conjecture. Here k is the integer part of 1 + 7, ¢ is the
numerator and woy, the denominator of (—1)¥3(q(1— 2k)/2 = Bk/4k: (where By,
is the kth Bernoulli number — numbered so that B = Bg .), so that
we = 24, wy = 240 etc..

30’ )

4. Quite early Borel |34] proved the following result. Let O be the integers in a number

field F' and n; the order of vanishing of the zeta function

Cr(s)= > |Op/I™*

0+#1 ideal in O
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at s =1—7. Then
0 ifi=2j>0
rank Ki(Op) =4
n; ifi=25-1

Example: If F' = Q, then

1 ifj=2k—-1>1
n; =
I 0 otherwise

Furthermore, Quillen [231] proved that the groups K;(OF) are finitely generated.

Again, for a more thorough discussion we refer the reader to Weibel’s survey [309]
where the K-groups are expressed in similar terms as that of K.(Z) in the table
above.

. If Ais a commutative ring, then K,(A) = @, K;(A) is a graded commutative ring

[179] (graded commutative means that a-b = (—1)!%lp.q). Even more is true: K, (A)
is a A-ring [134]/[167] (the definition of a A ring is most conveniently given by saying
that it is a “coalgebra over the big Witt ring” [318], but the formulas are spelled out in
the references). The M-operations arise from the exterior powers A*M for A-modules
M, and were used directly on this form by Grothendieck. However, for higher K-
groups the fact that the exterior operations are non-linear (if M’ — M — M" is
a short exact sequence we get an equality [A*M] = Y, ik A MA M) in K)
means that one has to take quite indirect routes to get the operations. In [134]/[167]
this is obtained by exploiting a certain universality over the representations (where
the A-operations are defined more readily) by the plus construction of BGL(A). In
[98] Gillet and Grayson showed how one could construct the loop space of the S-
construction 2.2.1 to get a combinatorial construction of the A-operations [111] and
the related Adams operations [113]. The Adams operations are ring homomorphisms

. Let A be a perfect ring of characteristic p > 0 (in characteristic p > 0 “perfect”

means that the Frobenius endomorphism a — a? is an automorphism. For instance,
all finite fields are perfect). Then the K-groups K;(A) are uniquely p-divisible for
i >0, (see [134] or [167]: the map induced by the Frobenius automorphism coincides
with the pth Adams operation).

. Gersten [97]/Waldhausen [297]: If A is a free associative ring, then the canonical ring

homomorphism Z — A induces an equivalence K (Z) — K(A).

. Waldhausen [297]: If G is a free group, free abelian group, or the fundamental group

of a submanifold of the three-sphere, then there is a spectral sequence
E:iq = H,(G; K4(Z)) = Kp14(Z]G]).

This result is related to the algebraic K-theory Nowikov conjecture about the so-called
assembly map, which is also discussed briefly in Section 3.6.
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9. Waldhausen [302]: The K-theory (in his sense) of the category of retractive spaces
over a given space X, is equivalent to the product of the unreduced suspension
spectrum of X (e.g., add a disjoint basepoint to get a based space X, and take its
suspension spectrum n — S"AX, ) and the differentiable Whitehead spectrum of X.
See also Section I11.2.3.4 and Section

10. Goodwillie [102]: If A — B is a surjective map of rings such that the kernel is
nilpotent, then the relative K-theory and the relative cyclic homology agree rationally.

11. Suslin/Panin:
K(Z,) =~ holim K(Z/p"Z)™

where ~ denotes profinite completion.

1.8 Where to read

The Handbook of algebraic K-theory [86] contains many good surveys on the state of
affairs in algebraic K-theory. Of older sources, one might mention the two very readable
surveys [112] and [277] on the K-theory of fields and related issues. The article [216] is also
recommended. For the K-theory of spaces see [301]. Some introductory books about higher
K-theory exist: [16], [270], [244] and [147|, and a “new” one (which looks very promising)
is currently being written by Weibel [306]. The “Reviews in K-theory 1940-84” [194], is
also helpful (although with both Mathematical Reviews and Zentralblatt on the web it
naturally has lost some of its glory).

2 The algebraic K-theory spectrum.

Ideally, the so-called “higher K-theory” is nothing but a reformulation of the idea behind
Ky: the difference is that whereas K, had values in abelian groups, K-theory has values
in spectra, [A[2.2. For convenience, we will follow Waldhausen and work with categories
with cofibrations (see 2.1 below). When interested in the K-theory of rings we should, of
course, apply our K-functor to the category P4 of finitely generated projective modules.
The finitely generated projective modules form an exact category (see(1.3), which again is
an example of a category with cofibrations.

There are many definitions of K-theory, each with its own advantages and disadvan-
tages. Quillen began the subject with no less than three: the plus construction, the group
completion approach and the “QQ”-construction. Soon more versions appeared, but luckily
most turned out to be equivalent to Quillen’s whenever given the same input. We will even-
tually meet three: Waldhausen’s “S”-construction which we will discuss in just a moment,
Segal’s I'-space approach (see chapter [I1.3), and Quillen’s plus construction (see and
Section III[1.1]).
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2.1 Categories with cofibrations

The source for these facts is Waldhausen’s [301] from which we steal indiscriminately. That
a category is pointed means that it has a chosen “zero object” 0 that is both initial and
final.

Definition 2.1.1 A category with cofibrations is a pointed category C together with a
subcategory coC satisfying

1. all isomorphisms are in coC

2. all maps from the zero object are in coC

3. if A— B € coC and A — C € C, then the pushout
A—— B

| J

exists in C, and the lower horizontal map is in coC.

We will call the maps in coC simply cofibrations. Cofibrations may occasionally be
written »—. A functor between categories with cofibrations is exact if it is pointed, takes
cofibrations to cofibrations, and preserves the pushout diagrams of item (3|

Exact categories, as described in Section [1.3, are important examples. In these cases
the monomorphisms in the short exact sequences are the cofibrations. In particular the
category of finitely generated projective modules over a ring is a category with cofibrations:

Example 2.1.2 (The category of finitely generated projective modules) Let A be
a ring (unital and associative as always) and let M4 be the category of all A-modules.
Conforming with the notation used elsewhere in the book, where C(c, ) denotes the set
of maps ¢ — ¢ in some category C, we write M 4(M, N) for the group of A-module homo-
morphisms M — N instead of Hom (M, N).

We will eventually let the K-theory of the ring A be the K-theory of the category P4 of
finitely generated projective right A-modules. The interesting structure of P4 as a category
with cofibrations is to let the cofibrations be the injections P’ ~ P in P4 such that the
quotient P/P’is also in P4. That is, a homomorphism P’ — P € P, is a cofibration if it
is the first part of a short exact sequence

0—-P —P—>P =0

of projective modules. In this case the cofibrations are split, i.e., for any cofibration j: P’ —
P there exists a homomorphism s: P — P’ in P4 such that sj = idp,. Note that no choice
of splitting is assumed in saying that j is split; some authors use the term “splittable”.
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A ring homomorphism f: B — A induces a pair of adjoint functors

_®BA
Mp & My
i

where f* is restriction of scalars. The adjunction isomorphism

Ma(Q®@p A, Q') = Mp(Q, Q")

is given by sending L: Q ® A — Q' to ¢ +— L(g®1).

When restricted to finitely generated projective modules —®p A induces a map Ky(B) —
Ky(A) making K, into a functor.

Usually authors are not too specific about their choice of P4, but unfortunately this may
not always be good enough. For one thing the assignment A — P, should be functorial,
and the problem is the annoying fact that if

c 2.1 .4

are maps of rings, then (M ®¢ B)®p A and M ®¢ A are generally only naturally isomorphic
(not equal).
So whenever pressed, Py is the following category.

Definition 2.1.3 Let A be a ring. The category of finitely generated projective A-modules
Py is the following category with cofibrations. Its objects are the pairs (m,p), where m
is a non-negative integer and p = p* € M,,(A). A morphism (m,p) — (n,q) is an A-
module homomorphism of images im(p) — im(q). A cofibration is a split monomorphism
(remember, a splitting is not part of the data).

Since p* = p we get that im(p) C A™ -5 im(p) is the identity, and im(p) is a finitely
generated projective module. Any finitely generated projective module in M 4 is isomor-
phic to some such image. The full and faithful functor (i.e., bijective on morphism groups)
Ps — M4 sending (m, p) to im(p) displays P4 as a category equivalent to the category of
finitely generated projective objects in M 4. With this definition P4 becomes a category
with cofibrations, where (m,p) — (n,q) is a cofibration exactly when im(p) — im(q) is.
The coproduct is given by (m,p) @& (n,q) = (m + n,p ® q) where p @ ¢ is block sum of
matrices.

Note that for any morphism a: (m,p) — (n,q) we may define

T AT — im(p) —2— im(q) C A",

and we get that x, = z,p = qz,. In fact, when (m,p) = (n,q), you get an isomorphism of
rings
Pal(m,p), (m,p)) = {y € Mu(A)ly = yp = py}

via a — x,, with inverse

y — {im(p) C A" —— A™ —L— im(p)}-
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Note that the unit in the ring on the right hand side is the matrix p.

If f: A — B is a ring homomorphism, then f.: P4 — Pp is given on objects by
fe(m,p) = (m, f(p)) (f(p) € M,(B) is the matrix you get by using f on each entry in
p), and on morphisms a: (m,p) — (n,q) by fi(a) = f(Za)|im(f(p)), Which is well defined as
f(za) = f(@)f(xy) = f(za)f(p). There is a natural isomorphism between

P M M—M® 4B M
and
Py —Ls Py M-

The assignment A — Py is a functor from rings to exact categories.

Example 2.1.4 (The category of finitely generated free modules) Let A be aring.
To conform with the strict definition of P, in 2.1.3, we define the category F,4 of finitely
generated free A-modules as the full subcategory of P, with objects of the form (n,1),
where 1 is the identity A" = A". The inclusion F4 C P, is “cofinal” in the sense
that given any object (m,p) in P, there exists another object (n,q) in P4 such that
(n,q) ® (m,p) = (n+m,q® p) is isomorphic to a free module. This will have the conse-
quence that the K-theories of 4 and P4 only differ at Kj.

2.1.5 K of categories with cofibrations

If C is a category with cofibrations, we let the “short exact sequences” be the cofiber
sequences ¢ — ¢ —» ¢, meaning that ¢ ~— ¢ is a cofibration and the sequence fits in a
pushout square

NS

9}

S —

C
o’

This class is the class of objects of a category which we will call SoC. The maps are
commutative diagrams

c

d

Note that we can define cofibrations in S>C too: a map like the one above is a cofibration
if the vertical maps are cofibrations and the map from ¢ ][, d’ to d is a cofibration.

———

~

= S N C//

(@}

B S

!

&

> > §d/

Lemma 2.1.6 With these definitions SoC is a category with cofibrations.
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Proof:  Firstly, we have to prove that a composite of two cofibrations

Cl Cl/

R
|

J |

/ "
e

(&

again is a cofibration. The only thing to be checked is that the map from c¢[[, ¢’ to e is a
cofibration, but this follows by 1. and 3. since

cHe'%c d'He'>—>dHe'>—>e
c/ c d’ d’

/

The axioms 2.1.1l1]and 2.1.112are clear, and for[2.1.1/3 we reason as follows. Consider the
diagram

1]
1]

where the rows are objects of SoC and the downwards pointing maps constitute a cofibration
in SoC. Taking the pushout (which you get by taking the pushout of each column) the
only nontrivial part of 2.1.113. is that we have to check that (¢/[[,d')[[,d — e]],dis a
cofibration. But this is so since it is the composite

(e (1 e

and the last map is a cofibration since €' [[, ¢ — e is. 1
There are three important functors

d(), dl, dgi SQC —C
sending a sequence ¢ = {¢ — ¢ — "} to dy(c) = ”, di(c) = ¢ and dy(c) = (.

Lemma 2.1.7 The functors d;: SoC — C for i =0,1,2, are all exact.

Proof:  See [301, p. 323]. '
If C is a small category with cofibrations, we may define its zeroth algebraic K-group
Ky(C) = Ko(C, &) as in with €& = 0bSyC.
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We now give a reformulation of the definition of Ky. We let my(iC) be the set of
isomorphism classes of C. That a functor F' from categories with cofibrations to abelian
groups is “under my:” then means that it comes equipped with a natural map 7y (iC) — F(C),
and a map between such functors must respect this structure.

Lemma 2.1.8 The functor Ky is the universal functor F under myt to abelian groups
satisfying additivity, i.e., such that the natural map

(do,d2)
-

F(S:C) F(C) x F(C)

18 an isomorphism.

Proof: First one shows that K| satisfies additivity. For objects a and b in C let a V b be
their coproduct (under 0). Consider the splitting Ko(C) x K¢(C) — Ky(S2C) which sends
([a], [b]) to [a — a VvV b — b]. We have to show that the composite

KQ(SQC) M Ko(C) X Ko(C) —_— Ko(SQC)
sending [@' — a — d"] to [@' — d' Vd" - '] =[d =d — 0]+ [0 — a" = d"] is the
identity. But this is clear from the diagram

a a 0

L

a/ _—q — a//

LD

0 a” a

2

in S5955C. Let F be any other functor under myi satisfying additivity. By additivity the
function m(iC) — F(C) satisfies the additivity condition used in the definition of Kj in
1.3.15 so there is a unique factorization m(iC) — Ky(C) — F(C) which for the same reason
must be functorial. 1

The question is: can we obtain deeper information about the category C if we allow
ourselves a more fascinating target category than abelian groups? The answer is yes. If
we use a category of spectra instead we get a theory — K-theory — whose homotopy groups
are the K-groups introduced earlier.

2.2 Waldhausen’s S-construction

We now give Waldhausen’s definition of the K-theory of a category with (isomorphisms
and) cofibrations. (According to Waldhausen, the “S” is for “Segal” as in Graeme B.
Segal. According to Segal his construction was close to the “block-triangular” version
given for additive categories in [2.2.4 below. Apparently, Segal and Quillen were aware of
this construction even before Quillen discovered his Q-construction, but it was not before
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Waldhausen reinvented it that it became apparent that the S-construction was truly useful.
In fact, in a letter to Segal [229], Quillen comments: “... But it was only this spring that I
succeeded in freeing myself from the shackles of the simplicial way of thinking and found
the category Q(B)”.)

For any category C, the arrow category ArC (not to be confused with the twisted arrow
category), is the category whose objects are the morphisms in C, and where a morphism
from f:a — bto g: c — dis a commutative diagram in C

a ——
o
b

D

QU — O

If C — D is a functor, we get an induced functor ArC — ArD, and a quick check reveals
that Ar is itself a functor.

Consider the ordered set [n] = {0 <1< --- < n} as a category and its arrow category
Ar(n].

Actually, since orientation differs in varying sources, let us be precise about this. The
simplicial category A may be considered as a full subcategory of the category of small
categories, by identifying [n] with the category {0 <« 1 < --- < n} (the idea is that
you just insert a horizontal line to make < into <—). Many authors consider instead the
opposite category [n]° = {0 — 1 — .-+ — n}. Since we want to keep Waldhausen’s
notation, but still be consistent with our chosen convention we consider the arrow category
Ar([n]°). So, in Ar([11]°) there is a unique morphism from the object (2 < 4) to (3 < 7)
and no morphism the other way.

Definition 2.2.1 Let C be a category with cofibrations. Then SC = {[n] — S,C} is the
simplicial category which in degree n is the category S,C of functors C': Ar([n|°) — C
satisfying the following properties

1. For all j > 0 we have that C'(j = j) = 0 (the preferred null object in C) and
2. ifi <j <k, then C(i < j) — C(i < k) is a cofibration, and
Cli<j) — Cl<k)
Cli=7j) — CU<k)
is a pushout.

The simplicial structure is induced by the cosimplicial category [n] — Ar([n]°).

To get one’s hands on each individual category S,,C, think of the objects as strings of
cofibrations
Cor — Coz — ... — Cpy,
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with compatible choices of cofibers C;; = Cy;/Co;, or equivalently as triangles

Cor Coz Cos e Con-1 Con
Cha Cis e Cina1 Cin
Co3 e Con1 Con

C1n—2,n—1 — Cn—2,n

Cn—l,n

with horizontal arrows cofibrations and every square a pushout (the null object is placed
in the corners below the diagonal).

If C is a category, we will let obC be the class of objects in C.

Since 0bSyC is trivial, the fundamental group 7 (0bSC) is the quotient of the free group
on the pointed set obC = 0bS;C by the relation that ['] = [¢"]7![c] for every ¢ »— ¢ —
" € 0bSsC (this is the “edge loop” description of the fundamental group, and can be seen
alternatively by using the Kan loop group description of the fundamental group of a space
with only one zero simplex, see the Appendix [A[1.6.2). Hence, the difference between
Ky(C) and m(0bSC) is that the former is described as the quotient of the free abelian
group on the isomorphism classes of objects in C, modulo the same relations as 71 (0bSC).

Lemma 2.2.2 Let C be a small category with cofibrations. Then there is a natural iso-
morphism Ko(C) = m(0bSC).

Proof:  An isomorphism ¢ =, ¢in C can be considered as an element ¢ — ¢ — 0 €
0bS2C, and so [¢'] = [¢] in m1(0bSC). Since we then have that
)= v el = ¢ v el = 1]

we get that the fundamental group is an abelian group, and so m0bSC is the quotient of
the free abelian group on the set of isomorphism classes of C by the relation [¢'] + [¢"] = [c],
which is just the formula for K,(C) arrived at in '

Thus we have that Ky(A) = Ky(P4) is the fundamental group of 0bSP, if we choose the
cofibrations to be the split monomorphisms, and it can be shown that K;(A) is m;11(0bSP4)
for the other groups we discussed in the introduction (namely the algebraic cases i = 1

and ¢ = 2, and also for the definition of the higher groups via the plus construction, see
Section [I11/2).
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2.2.3 Additive categories

Recall that an Ab-category [191] is a category where the morphism sets are abelian groups
and where composition is bilinear (also called linear category). An additive category is an
Ab-category with all finite products.
Let € be an additive category, regarded as a category with cofibrations by letting the
cofibrations be the split monomorphisms. With this choice we call € a split exact category.
In these cases it is easier to see how the S-construction works. Note that if

CcC = (0071, P aci—l,i> P acn—l,n)

is a sequence of objects, then the sum diagram ,,c with

and maps the obvious inclusions and projections, is an element in S,&. Since € is split
exact every element of S,,€ is isomorphic to such a diagram. Maps between two such sum
diagrams can be thought of as upper triangular matrices:

Definition 2.2.4 Let C be an Ab-category. For every n > 0, we define T,,C — the n x n
upper triangular matrices on C — to be the category with objects 0bC™, and morphisms

T.C((c1, .- ca) (dr, ... da)) = €D Clei,dy)

1<j<i<n
with composition given by matrix multiplication.

Lemma 2.2.5 Let € be additive. Then the assignment 1, given in the discussion above
defines a full and faithful functor

Ye: T,€ — S,€

which is an equivalence of categories since € is split exact. ©

2.3 The equivalence 0bSC — BiSC

Lemma [2.3.1| below displays an amazing — and very useful — property about the simplicial
set of objects of the S-construction: Considered as a functor from small categories with
cofibrations to simplicial sets, it transforms natural isomorphisms to homotopies, and so
sends equivalences of categories to homotopy equivalences.

This is reminiscent to the classifying space construction B discussed below (see also
'Al1.4), but is slightly weaker in that the classifying space takes all natural transformations
to homotopies, whereas 0bS only takes the natural ¢somorphisms to homotopies.

All categories in this section are assumed to be small. For every n > 0, regard [n] =
{0 <1< --- < n} asa category (if a < b there is a unique map a < b), and maps in A as
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functors (hence we regard A as a full subcategory of the category of small categories). The
classifying space (or nerve) of a small category C is the space (simplicial set) BC defined
by

lq] — B,C = {co ¢ « -+ — ¢, € C} = {functors [¢] — C}.

Note that the standard [¢]-simplex Alq] = {[n] — A([n],[q])} is the nerve of the category
[n]: Blg] = Alg]. The standard fact that natural transformations induce homotopies comes
from the fact that a natural transformation is the same as a functor C x [1] — D, and

B(C x [1]) & BC x B[1] = BC x All]. See also Appendix Al1.4!

Lemma 2.3.1 If
f07 fI: C — D

are naturally isomorphic exact functors, then they induce simplicially homotopic maps
obSC — obSD.

Hence C — 0bSC sends equivalences of categories to homotopy equivalences of spaces.

Proof: (the same proof as in [301, 1.4.1]). We define a homotopy
H: 0bSC x B[l] —— 0bSD

from Sfy to Sf; as follows. The natural isomorphism 7: f; = fy gives rise to a functor
F:C x [1] = D with F(c,i) = fi(c), and F(c — ,i < i) equal to the obvious composite
fir(e) = fi(e) = fi(¢)). Let ¢: Ar[n] — C be an object of S,C, and ¢ € B,[1] = A([n], [1]).
Then H(c, ¢) is the composite

Ar([n]?) —— Ar([n)°) x [ 22 exe=cex 1] = D

where the first map sends ¢ < j to (i < j,7), and where we have used the isomorphism
[1]° = [1]. This is an object in S, D since f = g is an isomorphism. '

We will use bisimplicial sets (functors from A° x A° to sets) quite freely, and may
consider a simplicial set as a bisimplicial set which is constant in one simplicial direction.
The diagonal of a bisimplicial set is the simplicial set you get by precomposing with the
diagonal functor A° — A° x A°. We will simply say that a map of bisimplicial sets is
an equivalence if its diagonal is a weak equivalence of simplicial sets. For this and related
technicalities, the reader is invited to consult Appendix AJ5.

If C is a category, then iC C C is the subcategory with all objects, but only isomorphisms
as morphisms.

Corollary 2.3.2 [IftC C iC is a subcategory of the isomorphisms containing all objects,
then the inclusion of the zero skeleton is an equivalence

0bSC ——— BtSC

where tS,C C S,C is the subcategory whose morphisms are natural transformations coming
from tC.
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Proof: This follows by regarding the bisimplicial object

{[p); [q] = BytS,C}

as 0bS,N,(C,tC), where N, (C,tC) is a full subcategory of the category N,C (see[All1.4)
of functors [p] — C and natural transformations between these. The objects of N,(C,tC)
are the chains of maps in tC, i.e., 0DN,(C, tC) = B,tC.

Consider the functor C — N,(C,tC) given by sending ¢ to the chain of identities on
¢ (here we need that all identity maps are in tC). It is an equivalence of categories. A
splitting being given by e.g., sending ¢y < - - - < ¢, to ¢p: the natural isomorphism to the
identity on N,(C,tC) is given by

[o %1 g as Qp

Co C1 Co A i &)
H alj/ O!laQJ/ oeuxg...oz;,J/.
Co Co Co . Co
A morphism
06 0’1 ... C/p
| |
Co C1 c. Cp

in N,(C,tC) is said to be a cofibration if each of the vertical maps are cofibrations, giving
N(C, tC) the structure of a simplicial category with cofibrations.

Considering obSC — BtSC as a map of bisimplicial sets, we see that by [2.3.1 it is a
homotopy equivalence

0bSC = 0bSN(C, tC) — 0bSN,(C,1C) = B,tSC

in every degree, and so by [Al5.0.2 we obtain a weak equivalence of diagonals. [

2.3.3  Additivity

The fundamental theorem of the S-construction is the additivity theorem. For proofs we
refer the reader to [301] or [203]. This result is actually not used explicitly anywhere
in these notes, but it is our guiding theorem for all of K-theory. In fact, it shows that
the S-construction is a true generalization of Ky, giving the same sort of universality for
K-theory considered as a functor into spectra (see below).

Theorem 2.3.4 Let C be a category with cofibrations. The natural map
0bS(55C) — 0bS(C) x 0bS(C)
1s a weak equivalence. ©

See also the more general formulation in Theorem 2.7.1
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2.4 The spectrum

Continuing where Lemma 2.1.6/ and 2.1.7 left off, one checks that the definition of SC
guarantees that it is in fact a simplicial category with cofibrations.
To be precise,

Definition 2.4.1 Let C be a category with cofibrations. A cofibration ¢ — d € S,C is a
map such that for 0 < i < ¢ the maps

coi — do;

and
dO,i—l H coi = doj
C0,i—1

are all cofibrations.

Note that if ¢ — d is a cofibration then it follows that all the maps ¢;; — d;; are
cofibrations.

This means that we may take S of each S,C, and in this way obtain a bisimplicial
object SSC, and by iteration, a sequence of (multi)-simplicial objects S(™*+1C = SSM)C.

Recall that a spectrum is a sequence of pointed spaces, m — X™, m > 0, together
with maps S'AX™ — X™F See Appendix for further development of the basic
properties of spectra, but recall that given a spectrum X, we define its homotopy groups
as

7o X = lim o X"
k

(where the colimit is taken along the adjoint of the structure maps). A map of spectra
f: X — Y is a levelwise equivalence if f: X™ — Y™ is a weak equivalence for every n,
and a stable equivalence if it induces an isomorphism 7, (f): 7.X — m.Y. What we call
levelwise equivalences are often called pointwise equivalences.

We will study another model for spectra in more detail in chapter Morally, spectra
are beefed up versions of chain complexes, but in reality they give you much more.

If Z is any space (i.e., simplicial set) and m,n > 0, we have a natural map A([m], [n]) x
Zn — Zpy sending (¢, z) to ¢*z, and varying m we get a simplicial map A[n] x Z,, — Z (an
instance of the Yoneda map). In particular we get a map A[l] x 0bS;C — 0bSC, which,
given that SoC = x (i.e., SC is reduced) factors uniquely through a map S'A0bS;C — 0bSC
(since S' = A[1]/0A[1]). Upon identifying C and S;C this gives a map

S'AobC — 0bSC.

This means that the multi-simplicial sets

(m)p _
m — obS\"C = obS...SC

m times

form a spectrum after taking the diagonal.
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Since 0bS™C is connected in all of its m simplicial directions, the diagonal will be
m — l-connected by Corollary [Al5.0.91 A consequence of the additivity theorem 2.3.4 is
that this spectrum is almost an “Q-spectrum” (see/Al2.2): more precisely the adjoint maps
0bS™C — QobS™HNC are equivalences for all m > 0. This is sometimes summarized by
saying that m — SU™C is a positive Q-spectrum. We won’t need this fact.

For any category D, let D C D be the subcategory with the same objects, but with
only the isomorphisms as morphisms. As before, we get a map S'ABiC — BiSC, and
hence another spectrum m — BiS™C.

For each n, the degeneracies (i.e., the maps given by the unique maps to [0] in A)
induce an inclusion

obS™¢C = ByiS"™C — BiS™¢

giving a map of spectra. That the two spectra are levelwise equivalent (that is, the maps
0bS™C = ByiS™C — BiS™C are all weak equivalences of spaces after taking diagonals)
follows from Corollary

Definition 2.4.2 Let C be a category with cofibrations. Then
K(C) = {m + 0bS™(C}

is the K-theory spectrum of C (with respect to the isomorphisms).

In these notes we will only use this definition for categories with cofibrations which are
Ab-categories. Exact categories are particular examples of Ab-categories with cofibrations.

The additivity theorem 2.3.4/ can be restated as a property of the K-theory spectrum:
The natural map

0bS™(S5C) —— 0bS™(C) x 0bS™(C)

is a weak equivalence for all n > 0. One should note that the claim that the map K(S5C) —
K(C) x K(C) is a stable equivalence follows almost automatically by the construction (see
[301, 1.3.5]).

Scholium 2.4.3 The following fact has been brought to our attention by Lars Hesselholt:
If € is an additive category, then the category So&€ becomes an exact category if we define
the sequence ¢ — ¢ — " to be exact if ¢ — ¢ is a cofibration in So&€ and if for each
0 <i < j <2 the sequence ¢i; — cij — ¢y is split exact. However, all such short ezact
sequences split, making So€ itself no more than an additive category: given a cofibration
d — cin Sp&, we may choose retractions c;; — c; of ¢i; = cij in such a way that
they form a retraction ¢ — ¢ in S9€ of ¢ — ¢ (choose retractions of ¢y — co1 and

o1 Hc(’n Chg ™ Co2)-

Definition 2.4.4 (K-theory of rings) Let A be a ring (unital and associative as al-
ways). Then we define the K-theory spectrum of A, K(A), to be K(P,); the K-theory of
the category of finitely generated projective right A-modules.
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K-theory behaves nicely with respect to “cofinal” inclusions, see e.g., [271], and we cite
the only case we need: Let F4 be the category of finitely generated free A-modules. The
inclusion F4 C P4 induces a homotopy fiber sequence (c.f. [Al4) of spectra

K(Fa) —— K(Pa) —— H(Ko(A)/K](A))

where H(M) is the Eilenberg-Mac Lane spectrum of an abelian group M (a spectrum
whose only nonzero homotopy group is M in dimension zero. See Section [A[2.2 for a
construction). Hence the homotopy groups of K(F4) and K(A) = K(P4) coincide in
positive dimensions.

2.5 K-theory of split radical extensions

Recall that if B is a ring, the Jacobson radical rad(M) of a B-module M is the intersection
of all the kernels of maps from M to simple modules [13, p. 83]. Of particular importance
to us is the case of a nilpotent ideal I C B. Then I C rad(B) since 1+ I consists of units.

We now turn to the very special task of giving a suitable model for K(B) when f: B —
A is a split surjection with kernel I contained in the Jacobson radical rad(B) C B. We have
some low dimensional knowledge about this situation, namely[1.2.3. and 1.3.7.5. which tell
us that Ky(B) = Ky(A) and that the multiplicative group (1+ )* maps surjectively onto
the kernel of the surjection K;(B) — K;(A). Some knowledge of K, was also available
already in the seventies (see e.g., [60] [292] and [189])

We use the strictly functorial model explained in for the category of finitely
generated projective modules P4 where an object is a pair (m,p) where m is a natural
number and p € M,, A satisfies p> = p. If j: A — B, then j.(m,p) = (m, j(p)).

Lemma 2.5.1 Let f: B — A be a split surjective k-algebra map with kernel I, and let
j: A — B be a splitting. Let ¢ = (m,p) € Pa and P = im(p), and consider Pg(j.c, j.c) as
a monoid under composition. The kernel of the monoid map

f*: PB(j*Cvj*C) - 7DA(Cv C)

is isomorphic to the monoid of matrices x = 1 +y € M,,(B) such that y € M,,I and
y = yj(p) = j(p)y. This is also naturally isomorphic to the set Mu(P, P ®4 j*I). The
monoid structure induced on M (P, P ®4 j*I) is given by

a-B=(1+a)o(l+p)~1=a+B+aocf

for a, € Ma(P,P®4 I) where oo [3 is the composite

a®1 multiplication in I

PLP®A1—>P®AI®A[ P®al

Proof:  As in definition we identify Pg(j.c, j.c) with the set of matrices z € M,,(B)
such that z = xj(p) = j(p)x and likewise for Pa(c, c). The kernel consists of the matrices
x for which f(z) = p (the identity!), that is, the matrices of the form j(p) + y with
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y € M, (I) such that y = yj(p) = j(p)y. As a set, this is isomorphic to the claimed
monoid, and the map j(p)+y — 1+ is a monoid isomorphism since (j(p) +y)(j(p) +2z) =
iw)?+yilp) +ip)z +yz = jlp) +y+z+yz—>1+y+z+yz=(1+y)(1+2). The
identification with M (P, P ® 4 5*I) is through the composite

Hom(P, P ®4 j*I) ——— Homp(P ®4 B, P&, 1)
22, Homp(P ®a B, P @4 B) —— Pp(juc, juc)

where the first isomorphism is the adjunction isomorphism and the last isomorphism is the
natural isomorphism between

Pa R LA Py —— Msp
and
Pa —— Ma =25 My

Lemma 2.5.2 In the same situation as the preceding lemma, if I C Rad(B), then the
kernel of
f*: PB(.j*Ca.j*C) - PA(Q C)
18 a group.
Proof: To see this, assume first that P = A". Then
Ma(P,P®aI)= M, C M,(rad(B)) = rad(M,(B))

(we have that M, (rad(B)) = Rad(M,(B)) since Mp(B",—) is an equivalence from B-
modules to M, (B)-modules, [13, p. 86]), and so (14 M,(I))* is a group. If P is a direct
summand of A" say A" = P® @, and « € M4(P, P ®4 I), then we have a diagram

P®sB te, P®s B

l l

An®AB M An®AB

where the vertical maps are split injections. By the discussion above 1+ («,0) must be an
isomorphism, forcing 1 4+ « to be one too. [

All of the above holds true if instead of considering module categories, we consider the
S construction of Waldhausen applied n times to the projective modules. More precisely,
let now ¢ be some object in S;,(,H)PA. Then the set of morphisms SI(,")MA(C, c®a 1) is still
isomorphic to the monoid of elements sent to the identity under

SI(;")PB(j*c,j*c) LN SI(,n)PA(c, c)

and, if [ is radical, this is a group. We will usually suppress the simplicial indices and
speak of elements in some unspecified dimension. We will also usually suppress the j* that
should be inserted whenever I is considered as an A-module.

We need a few technical definitions.
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Definition 2.5.3 Let

0 I B 1.4 0

be a split extension of k-algebras with I C Rad(B), and choose a splitting j: A — B
of f. Let tPp C Pp be the subcategory with all objects, but with morphisms only the
endomorphisms taken to the identity by f.. Note that, since I C rad(B), all morphisms
in tPp are automorphisms.
Let
tS{MPp C S Py

be the subcategory with the same objects, but with morphisms transformations of diagrams
in SSH)PB consisting of morphisms in tPg.
Consider the sequence of (multi) simplicial exact categories n — D’} B given by

obD"% B = 0bS™ P, and D% B(c,d) = S™Pg(j.c, j.d)

Let tD’i B C D' B be the subcategory containing all objects, but whose only morphisms are
the automorphisms S™ M 4(c,c®4 I) considered as the subset {b € S Py (j.c, j.c)|fub =
1} € D4 B(c,c).
We set
KiB={n—BD}B=[[ B(S"Ma(m,meal))} (2.5.4)
meSMm Py

where the bar construction is taken with respect to the group structure.
Recall that in the eyes of K-theory there really is no difference between the special

type of automorphisms coming from ¢ and all isomorphisms since by Corollary the
inclusions

obS™M Py C BtS™M Py C BiSM Py

are both weak equivalences.
Note that D% B depends not only on I as an A-bimodule (i.e., A° ® A-module), but
also on the multiplicative structure it inherits as an ideal in B. We have a factorization

smp, —L, prp I, gmp,

where ji is the identity on object, and j, on morphisms, and jy is the fully faithful functor
sending ¢ € obtD% B = 0bS™ P, to j.c € 0bSM™ Py (and the identity on morphisms). We
see that K4 B is a subspectrum of {n — BiS™Pg} via

tD"B —— tSM Py CiSMPy

Theorem 2.5.5 Let f: B — A be a split surjection of k-algebras with splitting j and
kernel I C Rad(B). Then

DL B LN SMPy, and its restriction tD B LN tSM Py
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are (degreewise) equivalences of simplicial exact categories, and so the chain
KaB(n) = BtD}B C BtS™Pg 2 0bS™Py = K(B)(n)

consists of weak equivalences.

Proof: To show that
DB 2, spy

is an equivalence, all we have to show is that every object in S™Pp is isomorphic to
something in the image of ju. We will show that ¢ € S™7Pp is isomorphic to j,f.c =
J# (i fsc).

Let ¢ = (m,p) € obPg, P = im(p). Consider the diagram with short exact columns

im(p) - I ---=im(jf(p)) -1

Since im(p) is projective there exist a (not necessarily natural) lifting 7,. Let C' be the
cokernel of 7,. A quick diagram chase shows that C'- I = C. Since im(jf(p)), and hence
C, is finitely generated, Nakayama’s lemma T11/1.4.1] tells us that C' is trivial. This implies
that 7, is surjective, but im(jf(p)) is also projective, so 1, must be split surjective. Call
the splitting e. Since me = n'n,e = 7’ the argument above applied to e shows that € is
also surjective. Hence 7, is an isomorphism. Thus, every object ¢ € 0obPp is isomorphic to
Ji(fic).

Let ¢ € 0bS™Pg. Then ¢ and j, f.c are splittable diagrams with isomorphic vertices.
Choosing isomorphisms on the “diagonal” we can extend these to the entire diagram, and
so ¢ and j, f.c are indeed isomorphic as claimed, proving the first assertion.

To show that

DB 2, 1Py,
is an equivalence, note first that this functor is also fully faithful. We know that any
c € obtS™MPy = 0bS™Pp is isomorphic in S™Pg to j, f.c, and the only thing we need
to show is that we can choose this isomorphism in t. Let ¢: ¢ — j,f.c € iS™ Py be any
isomorphism. Consider

L . . . j*f*(bil) .
¢ —— JufiC = Jufidufic —— i fic

Since fi(jufu(t™1)01) = fu(t™') o fu(t) = 1y.. the composite j. f.(¢7) o ¢ is an isomorphism
in tSPP from c to ju(jifsc). [
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Definition 2.5.6 In the context of Definition let

KiB=KiB/K(A) ={n— \/ B(S"Ma(m,meal)}
meS(m)py

This is a model for the relative algebraic K-theory of B — A in that Theorem 2.5.5 says
that

K, B —— K(B)/K(A)

is a (levelwise) equivalence of spectra. The latter spectrum is stably equivalent to the
homotopy fiber of K(B) — K(A). To see this, consider the square

K(B) —— K(A)

| !

K(B)/K(A) ——

It is a (homotopy) cocartesian square of spectra, and hence homotopy cartesian. (In
spectrum dimension n this is a cocartesian square, and the spaces involved are at least
n — l-connected, and so all maps are n — 1-connected. Then Blakers—Massey A7.2.2 tells
us that the square is (n — 1) + (n — 1) — 1 = 2n — 3 homotopy cartesian.) This means
that the homotopy fiber of the upper horizontal map maps by a weak equivalence to the
homotopy fiber of the lower horizontal map.

2.5.7 Analyticity properties of K,(B)

The following result will not be called for until Lemma VII2.1.5, and may be safely skipped
at a first reading until the result is eventually referred back to, but is placed here since it
uses notation that is better kept local.

Although we are not using the notion of calculus of functors in these notes, we will in
many cases come quite close. The next lemma, which shows how K(B) behaves under
certain inverse limits, can be viewed as an example of this. A twist which will reappear
later is that we do not ask whether the functor turns “cocartesianness” into “cartesianness”,
but rather to what extent the functor preserves inverse limits. The reason for this is that
in many cases the coproduct structure of the source category can be rather messy, whereas
some forgetful functor tells us exactly what the limits should be.

For the basics on cubes see Appendix[Al7. In particular, a strongly cocartesian n-cube
is an n-cube where each two-dimensional face is cocartesian.

Let Split be the category of split radical extensions over a given ring A. Note that if
B — A is an object in Split with kernel the A-bimodule P, then B — A is isomorphic
to Ax P - A where A X Pis A® P as an abelian group with multiplication given by
(a",p) - (a,p) = (d'a,a'p + p'a+p'p).

The category sSplit of simplicial objects in Split then inherits the notion of k-cartesian
cubes via the forgetful functor down to simplicial sets. By “final maps” in an n-cube
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we mean the maps induced from the n inclusions of the subsets of cardinality n — 1 in

{1,...,n}.
If Ax P € sSplit it makes sense to talk about K(A x P) by applying the functor in
every degree, and diagonalizing.

Lemma 2.5.8 Let A x P be a strongly cartesian n-cube in sSplit such all the final maps
are k-connected. Then K(A x P) is (14 k)n-cartesian.

Proof:  Fix the non-negative integer ¢, the tuple p = (pi1,...,p,) and the object ¢ €
ObS;,(;q)PA. The cube S;,(,q)/\/lA(c, c®4P) is also strongly cartesian (it is so as a simplicial set,
and so as a simplicial group), and the final maps are still k-connected. Taking the bar of this
gives us a strongly cartesian cube BS,()q)MA(c, c®4P), but whose final maps will be k + 1-
connected. By the Blakers-Massey theorem this means that B S,()q)./\/l alc,c®aP)
will be (k + 2)n — 1-cocartesian. The same will be true for

[T BSYMua(c,c@aP)

S

Varying p and remembering that each multi-simplicial space is (¢ — 1)-connected in the
p direction, we see that the resulting cube is ¢ + (k + 2)n — 1-cocartesian, c.f. [Al5.0.9.
Varying also ¢, we see that this means that the cube of spectra K(A x P) is (k + 2)n — 1
cocartesian, or equivalently (k4 2)n — 1 — (n — 1) = (k + 1)n-cartesian. '

The importance of this lemma will become apparent as we will approximate elements in
Split by means of cubical diagrams in sSplit where all but the initial node will be “reduced”
in the sense that the zero skeletons will be exactly the trivial extension A = A.

2.6 Categories with cofibrations and weak equivalences

Definition of the K-theory of a category with cofibrations does not immediately cover
more general situations where we are interested in incorporating some structure of weak
equivalences, e.g., simplicial rings. Waldhausen [301] covers this case also, and demands
only that the category of weak equivalences wC C C contains all isomorphisms and satisfies
the gluing lemma, that is, if the left horizontal maps in the commutative diagram

d «—~ ¢ — e

! l l

d — Jd — ¢
are cofibrations and the vertical maps are weak equivalences, then the induced map

dHeHd’He’

is also a weak equivalence. C.f. Lemma 5.2.6 of [139] which proves the gluing lemma in
most cases of interest.
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In this case SC inherits a subcategory of weak equivalences, wSC satisfying the same
conditions by declaring that a map is a weak equivalence if it is on all nodes. We iterate
this construction and define

K(C,w) = {m — BwS™¢}. (2.6.0)

Corollary 2.3.2 then says that
K(C) —— K(C,i)

is an equivalence of spectra.

One should note that there really is no need for the new definition, since the old covers
all situations by the following observation. If we let N,C be the category of functors [¢] — C
and natural transformations between these, we can let N, (C,w) be the full subcategory of
N,C with obN,(C,w) = B,wC. Letting g vary, this is a simplicial category with cofibrations,
and we have an canonical isomorphism

K(C,w)(m) = BwS™C = obS™N(C,w) = K(N(C, w)).

Some authors use the word “Waldhausen category” to signify a category with cofibra-
tions and weak equivalences.

2.7 Other important facts about the K-theory spectrum

The following theorems are important for the general framework of algebraic K-theory and
we include them for the reader’s convenience. We will neither need them for the develop-
ment of the theory nor prove them, but we still want to use them in some examples and
draw the reader’s attention to them. The papers [110] and [271] of Grayson and Staffeldt
give very concrete and nice proofs of Quillen’s original statements in the context of Wald-
hausen’s construction. In addition, Waldhausen [301]|, Thomason [284] and Schlichting’s
[245] papers are good sources.

Theorem 2.7.1 (Additivity theorem: [301, section 1.4] and [203]) Let C be a cat-
egory with cofibrations and weak equivalences wC. Then

BwSS,C — BwSC x BwSC

is an equivalence, and the structure map BwS™C — QBwS™*VC is an equivalence for

m > 0. ©

In order to state the next theorems, we need to define some important notions about
categories with cofibrations and weak equivalences

Definition 2.7.2 A subcategory of a category is said to satisfy the two-out-of-three prop-
erty if given two composable morphisms

g f

c<—ph=<—a
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in the ambient category, one has that, if two of f, g and gf are in the smaller category,
then all three are.

The category of weak equivalences in a category with cofibrations and weak equivalences
is said to satisfy the extension aziom if for any given map

C>—>c,

|

d——=d

of cofibrations where ¢ — d and the induced map of cofibers ¢’ /¢ — d'/d are weak equiva-
lences it follows that the map ¢ — d’ is a weak equivalence too.

Let C and D be categories with weak equivalences and cofibrations. A functor F': C — D
is exact if it preserves weak equivalences and is exact as a functor of categories with
cofibrations (i.e., preserves cofibrations and pushout squares along cofibrations, c.f. 2.1.1).

An exact functor of categories with weak equivalences and cofibrations F': C — D has
the approximation property if

1. wC = F~Y(wD)

2. given F(c¢) — d € D, there is a cofibration ¢ — ¢ in C and a weak equivalence
F(c) = d in D such that the induced diagram

F(c d
%
F(c)

Waldhausen refers to the two-out-of-three property by saying that the smaller category sat-
isfies the saturation axiom. One notices how subcategories characterized by some induced
invariant (like homotopy groups) being isomorphisms will always satisfy the two-out-of-
three property. On the other hand, there are interesting applications (like simple maps)
where the twp-out-of-three property does not hold.

We state Schlichting’s version [245, Theorem 10| of the approximation theorem.

commutes

Theorem 2.7.3 (Approximation theorem 1.6.7 [301] and [245]) LetC and D be cat-
egories with cofibrations and weak equivalences, where the weak equivalences have the two-
out-of-three property, and suppose that every morphism in C may be factored as a cofibration
followed by a weak equivalence. If the exact functor F': C — D has the approximation prop-
erty, then the induced maps BwC — BwD and BwSC — BwSD are weak equivalences. Q)

It does not escape notice that with Schlichting’s formulation, even Ravel’s “Fool’s morn-
ing song” (c.f. axiom Cyl 3 on p. 348 of [301]) is redundant.

The next theorem, the so-called fibration theorem is of importance in localization situ-
ations, and is often referred to as the localization theorem, and again we use Schlichting’s
formulation [245, Theorem 11|
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Theorem 2.7.4 (Fibration theorem [301], [245], [108] and [232]) Let C be a cate-
gory with cofibrations and two subcategories vC C wC of weak equivalences. Let C* C C be
the full subcategory with cofibrations of objects ¢ such that the unique map * — c is in wC.
This inherits two subcategories of weak equivalences vC* = C* NvC and wC” = C¥ NwC.
Assume every map in C may be factored as a cofibration followed by a map in wC and
that wC has the two-out-of-three property and satisfies the extension axiom 2.7.2. Then

the square
BwSC* —— BwSC"

J !

BvSC —— BwSC
1s homotopy cartesian, and the upper right term, BwSC"™ is contractible. ©

In his foundational paper [232], Quillen states a dévissage theorem for the K-theory of
abelian categories. Although there has been serious effort, this theorem has still not found
a satisfactory formulation in Waldhausen’s setup, see e.g., [317], [110, 5.1], [271, 4.1] (the
last two with short proofs)

Still it is a very important theorem and we state it with the original conditions.

Theorem 2.7.5 (Dévissage theorem [232, theorem 4]) Let A be an essentially small
abelian category and B a full additive subcategory closed under taking subobjects and quo-
tient objects. If for each object a of A there is a finite filtration 0 =ay Ca; C--- Ca, =a
such that each subquotient a;/a;_y is in B, then the map BiSB — BiSA induced by the
inclusion is a weak equivalence. ©

We state the resolution theorem (see also [110, 4.1] and [271} 3.1]).

Theorem 2.7.6 (Resolution theorem [232, theorem 3]) Assume P C M is a full
exact subcategory of an exact category M, closed under exact sequences, extensions and
cokernels. Assume that for any M € M there is a short exact sequence 0 — M — P —
P" — 0 in M with P, P" in P, then the map BiSP — BiSM induced by the inclusion is
a weak equivalence. ©

Some of the theory Waldhausen develops for his construction will appear later in other
contexts. The stable approach we will eventually adopt, avoids the use of machinery such
as spherical objects and cell filtrations.

3 Stable K-theory is homology

In this section we will try to connect K-theory to homology. This is done by considering
“small perturbations” in input in K-theory, giving a “linear” theory: the “directional deriva-
tive” of K-theory. This is then compared with the classical concept of homology, and the
two are shown to be equal.
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This theme will be revisited later, most noticeably in Section VI3/where stable K-theory
is compared with topological Hochschild homology through the trace map. This map is
proved to be an equivalence, using that — in view of Theorem TVR.4.1]and Theorem IV [2.5.21
— the homology of the category of finitely generated modules may be identified with topo-
logical Hochschild homology.

3.1 Split surjections with square-zero kernels

If A is a unital ring, and P is any A-bimodule (i.e., an A° ® A module, but with no
multiplicative structure as part of the data), we define the ring A x P simply to be A® P
as an A-bimodule, and with multiplication (da’,p')(a, p) = (d’a,a’p + p'a). That is, P? =0
when P is considered as the kernel of the projection A x P — A sending (a,p) to a.

Algebraically, this is considered to be a “small” deformation of A (the elements of P
are so small that their products vanish!). And the difference between K (A x P) and K(A)
reflects the local structure of K-theory. The goal is to measure this difference.

Considered as a functor from A-bimodules, P — K(A x P) is not additive, even if we
remove the part coming from K(A). That is, if we let

K(A x P) = hofib{K(A x P) —— K(A)}

then the map K(Ax (P& Q)) — K(Ax P) x K(Ax Q) induced by the projections is not
an equivalence in general. For instance, we have by [159] that mK(Z x P) = \*> P& P/2P
for all abelian groups P. Hence

2

mK(Zx (PoQ)= \(POQ) @ (PDQ)/2AP Q)

= (/\P@P/QP> @ (/\QEBQ/%?) ®PeQ
~,K(Zx P)®emK(Zx Q)& (P® Q)

where the tensor product expresses the non-linearity.

There are means of forcing linearity upon a functor, which will eventually give stable
K-theory, and the aim of this section is to prove that this linear theory is equivalent to the
homology of the category of finitely generated projective A-modules.

3.2 The homology of a category
Let C be an Ab-category (that is: a category enriched in Ab, the category of abelian groups,

see Appendix|Al9.2.4. Ab-categories are also known as “linear categories”, “ringoids”, “rings
with many objects” and unfortunately, some call them “additive categories”, a term we
reserve for pointed Ab-categories with sum). The important thing to remember is that the
homomorphism sets are equipped with an abelian group structure, such that composition

is bilinear.
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We say that C is flat if the morphism sets are flat as abelian groups. A C-bimodule
is an Ab-functor (linear functor) C° ® C — Ab (see also [A9.4). The category Ap° ¢
of C-bimodules forms an abelian category with “enough projectives”, so we are free to
do homological algebra. If C is flat, the Hochschild homology of C with coefficients in
M € Ab®°®C is customarily defined as

bCO®C (

Tor? M,C)

(see |215] ). There is a standard simplicial abelian group (complex) whose homotopy groups
calculate the Hochschild homology groups, namely

) = HH(C. M), = €D  M(co,c)® @ Clesscim)

o,...,cq€0bC 1<i<q

with face and degeneracies as in Hochschild homology (see [215], and also below).

Let C be any category (that is, not necessarily an Ab-category). It is not uncommon
to to call functors C° x C — Ab “bifunctors”. We note immediately that, by adjointness of
the free and forgetful functors

z
Ens = Ab

connecting abelian groups to sets, a “bifunctor” is nothing but a ZC-bimodule in the Ab-
enriched world; that is, an Ab-functor ZC° Q@ ZC = Z(C° xC) — Ab. So, for any “bifunctor”
(i.e., ZC-bimodule) M we may define the homology of C with respect to M as

H.(C,M) = r,HH(ZC, M)

(notice that ZC is flat). The standard complex HH (ZC, M) calculating this homology, is
naturally isomorphic to the following complex F'(C, M):

Definition 3.2.1 Let C be a category and M a ZC-bimodule. Then the homology of C
with coefficients in M, is the simplicial abelian group F'(C, M) which in degree ¢ is given
by

FC.M)= P Meoc)= P M) ® K ZC(ci cii)

co—+—cq€BLC c,...,cq€0bC 1<i<q

and with simplicial structure defined as follows. We write elements of F,(C, M) as sums of
elements of the form (x, ) where z € M(co, ¢,) and

e} Q
a=c¢ —— ... —— ¢, € BLC.

Then
(M(Oél, 1)213‘, d(]Oé) ifi=0
di(z, ) =} (z,d;a) if0<i<gq
(M(1,0q)x,dger) ifi=gq

and s;(z, a) = (z, s;).
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Remark 3.2.2 The homology of C, or rather F(C,—): AYECTSEC 5 Ab, is characterized
up to equivalence by the properties

1. If M € obAb*C°®%C is projective, then F(C, M) — Hy(C, M) is an equivalence,

2. the functor F(C,—): AbZ“"®%C s sAb takes short ezact sequences to fiber sequences,
together with

3. the values of Ho(C, M).

In particular, this means that if we have a map to or from some other theory satisfying 1.
and 2, and inducing an isomorphism on my, then this map is an equivalence.

3.3 Incorporating the S-construction

In order to compare with K-theory, we will incorporate the S-construction into the source
of the homology functor.

Let C be a small category, and M a ZC-bimodule (i.e., a functor from C° x C to abelian
groups). Recall how bimodules are extended to diagram categories (see Appendix [A9.4
for the general situation).

If € is an exact category, consider the full subcategory S, of the category [Ar([g]°), €]
of functors from Ar([g]°) to €. Let M be a €-bimodule. Then S,M is defined, and is given
by

SeM(c,d) = {{mi;} € ] Mlcij, dip)|M(1, dij — dra)ms; = M(cij — i, 1)m}

0<i<j<q

(if you like ends, this has the compact and pleasing notation S,M(c, d) = ij M(cij, d;j)).
Note that, if M is not pointed (i.e., a ZQ:-bimodule) we may have elements in the groups
M ¢y, di) = M(0,0), but these are uniquely determined by the values in the other groups.
(In fact, if € is split exact, then the projection S, M (¢, d) — M(coq, do 4) is a split monomor-
phism — a retract is constructed using a choice of splitting).

The construction [q] — S, M is functorial in ¢, in the sense that for every map ¢: [p| —
[q] € A there are natural maps ¢*: S,M — ¢*S,M. Let € be an exact category, and M a
pointed €-bimodule. Note that, due to the bimodule maps ¢*: S,M — ¢*S,M

F(S€,5M) = {lpl, [q] = Fp(5,&, S,M)}

is a bisimplicial abelian group.

Again we get a map S'AF(€, M) — F(S€, SM) making
F(¢, M) = {n+— F(S™¢, S™M)}

a spectrum. In the special case € = Py, and M(c,d) = Homy(c,d ®4 P) for some A-
bimodule P, we define

F(A, P) = F(P,, Homu(—, — ®4 P)).
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Note that this can not cause any confusion as the spectrum F (&, M) was before only defined
for additive categories (and not for nontrivial rings). We will also consider the associated
spectra F, for ¢ > 0 (with the obvious definition using F, instead of F).

Lemma 3.3.1 Let € be an additive category and let M be a pointed ZC-bimodule. Let

n: Fy (€, M) — QF,(S¢, SM)
denote the (adjoint of the) structure map. Then the two composites in the non-commutative
diagram

F(e, M) —2 Fye,M)
| 4|

QF,(S¢,SM) «— F,(¢, M)
are homotopic.
Proof: There are three maps do, dy, dy: F,(S2C, S9M) — F,(C, M) induced by the struc-
ture maps S2C — S1C = C, see(2.1.7. The two maps

ndy and ndy * ndy: F,(S2C, SaM) — F,(C, M) — QF,(SC,SM)

are homotopic, where ndy * ndy denotes the loop product (remember: the simplicial loop
space QX = S,(S1,sin|X]|) is isomorphic to the singular complex of the space of based
loops in | X|). This is so for general reasons: if X is a reduced simplicial set, then the two
maps nd; and ndy * nd, are homotopic as maps

Xy — X; —— QX

where the latter map is induced by the adjoint of the canonical map S*AX; — X (composed
with X — sin | X]).
In the diagrams below we use the following notation:

1. 41 is the inclusion into the first summand, prs the second projection, A the diagonal
and V: ¢ @ ¢ — c the difference (a,b) — a — b,

2. Bi=ai...opcq— o, A= (1@ F)A and V, =V(1 & 5)

(exercise: check that the claimed elements of SoM(—, —) are well defined). We define two
maps
E, D: Fq(Q:, M) — Fq(SQQ, SQM)

by sending (g, {a;}) = (g € M(co, cy), {ci_1 <= ¢;}) to E(ag, {as}) =

Cq Cq ( Cq e— Cq
i1 J/ i1 J/ (51 J/ i1 J/
0 1®
;
M(p’l“g, A)Oéo € SQM Cq S¥ Co, Cq D Cq , Cq PDci_1 — Cq D¢
Qo pro l pra J pra J pra J
Q;
Co Cq \ Ci—1 AE— C; )
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and D(ap, {ay}) =

Cq Cq ( Cg == G
AlJ, AJ/ AiJ, Ai+lJ/
M (1, 1) 1o
M (pro, A)ag | € SoM | ¢q® co,Cq D Cq |, CqD i1 —— cqD ¢
0 V1J VJ Vli Vz‘+1l
Co Cq \ Ci—1 — G )

Since do ¥ = dgD = 0 we get that
n=ndoE ~ndiE = nd,D ~ ndyD = ns{d}
[ |

Corollary 3.3.2 In the situation of the lemma, the inclusion of degeneracies induces a
stable equivalence of spectra

and in particular, if A is a ring and P an A-bimodule, then

Proof: 1t is enough to show that for every ¢ the map Fo(€, M) — F, (€, M) induced by
the degeneracy is a stable equivalence (since loops of simplicial connected spaces may be
performed in each degree, see [A5.0.5] and since a degreewise equivalence of simplicial
spaces induces an equivalence on the diagonal, see Al5.0.2)). In other words, we must show
that for every ¢ and k

70 iy oo QM Fy (SME, S M)~ 7 limyy oo QM (SME, S M)

is an isomorphism. It is a split injection by definition, and a surjection by Lemma
'

3.4 K-theory as a theory of bimodules

Let A be a ring and let A x P — A be any split radical extension. Recall the K4
construction of definition [2.5.4l The last part of Theorem 2.5.5/says that

K(Ax P)/K(A) ~Ks(Ax P)={n— \/ B(S"Mua(m,m®4P))}.
meobS (M Py
Notice the striking similarity with
Fo(Pa,M)={n— & M(@m,m)}.

meobS (M Py
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In the special case where P? = 0 the group structure on Hom(c, c®4 P) for ¢ € Sén)PA
is just the summation of maps: let f,g € Homa(c,c®4 P), then f-g=(1+f)(1+g)—1=
f+ g+ fog, where f o g is the composite

c —2— c®, P fet, cQAP®AP —c®aP

where the last map is induced by the multiplication in P C A x P, which is trivial. So
f+g=f+g. This means that the natural isomorphism

B,Homu(c,c ®4 P) =Homy(c,c ®4 P)*? = Homy(c, (c®4 P)*?)
=Homy(c,c ®4 P*?) = Homy(c,c ®4 B,P)

induces a simplicial isomorphism. Hence
M =B (S™Mu(—,—®4 P)) 2 SWMy(—,— @4 BP)

is a (simplicial) P 4-bimodule, and the only difference between K (A x P) and Fo(P4, M)
is t