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Preface

Algebraic K-theory draws its importance from its effective codification of a mathematical
phenomenon which occurs in as separate parts of mathematics as number theory, geometric
topology, operator algebras, homotopy theory and algebraic geometry. In reductionistic
language the phenomenon can be phrased as

there is no canonical choice of coordinates,

or, as so elegantly expressed by Hermann Weyl [312, p.49]:

The introduction of numbers as coordinates ... is an act of violence whose only
practical vindication is the special calculatory manageability of the ordinary
number continuum with its four basic operations.

As such, algebraic K-theory is a meta-theme for mathematics, but the successful cod-
ification of this phenomenon in homotopy-theoretic terms is what has made algebraic K-
theory a valuable part of mathematics. For a further discussion of algebraic K-theory we
refer the reader to Chapter I below.

Calculations of algebraic K-theory are very rare and hard to come by. So any device
that allows you to obtain new results is exciting. These notes describe one way to produce
such results.

Assume for the moment that we know what algebraic K-theory is; how does it vary
with its input?

The idea is that algebraic K-theory is like an analytic function, and we have this other
analytic function called topological cyclic homology (TC ) invented by Bökstedt, Hsiang and
Madsen [27], and

the difference between K and TC is locally constant.

This statement will be proven below, and in its integral form it has not appeared elsewhere
before.

The good thing about this, is that TC is occasionally possible to calculate. So whenever
you have a calculation of K-theory you have the possibility of calculating all the K-values
of input “close” to your original calculation.
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Figure 1: The difference between K and TC is locally constant. The left part of the
figure illustrates the difference between K(Z) and TC(Z) is quite substantial, but
once you know this difference you know that it does not change in a “neighborhood”
of Z. In this neighborhood lies for instance all applications of algebraic K-theory of
simply connected spaces, so here TC-calculations ultimately should lead to results in
geometric topology as demonstrated by Rognes.

On the right hand side of the figure you see that close to the finite field with p

elements, K-theory and TC agree (this is a connective and p-adic statement: away

from the characteristic there are other methods that are more convenient). In this

neighborhood you find many interesting rings, ultimately resulting in Hesselholt and

Madsen’s calculations of the K-theory of local fields.

So, for instance, if somebody (please) can calculate K-theory of the integers, many
“nearby” applications in geometric topology (simply connected spaces) are available through
TC-calculations (see e.g., [243], [242]). This means that calculations in motivic cohomol-
ogy (giving K-groups of e.g., the integers) will actually have bearing on our understanding
of diffeomorphisms of manifolds!

On a different end of the scale, Quillen’s calculation of the K-theory of finite fields gives
us access to “nearby” rings, ultimately leading to calculations of the K-theory of local fields
[131]. One should notice that the illustration offered by Figure 1 is not totally misleading:
the difference between K(Z) and TC(Z) is substantial (though locally constant), whereas
around the field Fp with p elements it is negligible.

Taking K-theory for granted (we’ll spend quite some time developing it later), we should
say some words about TC. Since K-theory and TC differ only by some locally constant
term, they must have the same differential: D1K = D1TC. For ordinary rings A this
differential is quite easy to describe: it is the homology of the category PA of finitely
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generated projective modules.
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A

P

11

Figure 2: The differentials “at an S-algebra A

in the direction of the A-bimodule P ” of K and

TC are equal. For discrete rings the differen-

tial is the homology of the category of finitely

generated projective modules. In this illustra-

tion the differential is the magenta straight

line through the origin, K-theory is the red

curve and TC is the shifted curve in cyan.

The homology of a category is
like Hochschild homology, and as
Connes observed, certain models of
Hochschild homology carry a circle
action which is useful when com-
paring with K-theory. Only, in the
case of the homology of categories it
turns out that the ground ring over
which to take Hochschild homology
is not an ordinary ring, but the so-
called sphere spectrum. Taking this
idea seriously, we end up with Bök-
stedt’s topological Hochschild homol-
ogy THH .
One way to motivate the construc-
tion of TC from THH is as fol-
lows. There is a transformation
K → THH which we will call the
Dennis trace map, and there is a
model for THH for which the Den-
nis trace map is just the inclusion of
the fixed points under the circle ac-
tion. That is, the Dennis trace can
be viewed as a composite

K ∼= THH T ⊆ THH

where T is the circle group.
The unfortunate thing about this statement is that it is model dependent in that fixed

points do not preserve weak equivalences: if X → Y is a map of T-spaces which is a weak
equivalence of underlying spaces, normally the induced map XT → Y T will not be a weak
equivalence. So, TC is an attempt to construct the T-fixed points through techniques that
do preserve weak equivalences.

It turns out that there is more to the story than this: THH possesses something
called an epicyclic structure (which is not the case for all T-spaces), and this allows us to
approximate the T-fixed points even better.

So in the end, the cyclotomic trace is a factorization

K → TC → THH

of the Dennis trace map.
The cyclotomic trace is the theme for this book. There is another paper devoted to

this transformation, namely Madsen’s eminent survey [192]. If you can get hold of a copy
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it is a great supplement to the current text.

It was originally an intention that readers who were only interested in discrete rings
would have a path leading far into the material with minimal contact with ring spectra.
This idea has to a great extent been abandoned since ring spectra and the techniques
around them have become much more mainstream while these notes have matured. Some
traces of this earlier approach can still be seen in that Chapter I does not depend at all on
ring spectra, leading to the proof that stable K-theory of rings corresponds to homology
of the category of finitely generated projective modules. Topological Hochschild homology
is, however, interpreted as a functor of ring spectra, so the statement that stable K-theory
is THH requires some background on ring spectra.

General plan The general plan of the book is as follows.

In Section I.1 we give some general background on algebraic K-theory. The length of
this introductory section is justified by the fact that this book is primarily concerned with
algebraic K-theory; the theories that fill the last chapters are just there in order to shed
light on K-theory, we are not really interested in them for any other reason. In Section I.2
we give Waldhausen’s interpretation of algebraic K-theory and study in particular the case
of radical extensions of rings. Finally, Section I.3 compares stable K-theory and homology.

Chapter II aims at giving a crash course on ring spectra. In order to keep the presen-
tation short we have limited our presentation only the simplest version: Segal’s Γ-spaces.
This only gives us connective spectra and the behavior with respect to commutativity is-
sues leaves something to be desired. However, for our purposes Γ-spaces suffice and also
fit well with Segal’s version of algebraic K-theory, which we are using heavily later in the
book.

Chapter III can (and perhaps should) be skipped on a first reading. It only asserts that
various reductions are possible. In particular, K-theory of simplicial rings can be calculated
degreewise “locally” (i.e., in terms of the K-theory of the rings appearing in each degree),
simplicial rings are “dense” in the category of (connective) ring spectra, and all definitions
of algebraic K-theory we encounter give the same result.

In Chapter IV, topological Hochschild homology is at long last introduced, first for ring
spectra, and then in a generality suitable for studying the correspondence with algebraic
K-theory. The equivalence between the topological Hochschild homology of a ring and the
homology of the category of finitely generated projective modules is established in IV.2,
which together with the results in I.3 settle the equivalence between stable K-theory and
topological Hochschild homology of rings.

In order to push the theory further we need an effective comparison between K-theory
and THH , and this is provided by the Dennis trace map K → THH in the following
chapter. We have here chosen a model which “localizes at the weak equivalences”, and so
conforms nicely with the algebraic case. For our purposes this works very well, but the
reader should be aware that other models are more appropriate for proving structural theo-
rems about the trace. The comparison between stable K-theory and topological Hochschild
homology is finalized Section V.3, using the trace. As a more streamlined alternative, we
also offer a new and more direct trace construction in Section V.4.
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In Chapter VI topological cyclic homology is introduced. This is the most involved of
the chapters in the book, since there are so many different aspects of the theory that have
to be set in order. However, when the machinery is set up properly, and the trace has
been lifted to topological cyclic homology, the local correspondence between K-theory and
topological cyclic homology is proved in a couple of pages in Chapter VII.

Chapter VII ends with a quick and inadequate review of the various calculations of
algebraic K-theory that have resulted from trace methods. We first review the general
framework set up by Bökstedt and Madsen for calculating topological cyclic homology,
and follow this through for three important examples: the prime field Fp, the (p-adic)
integers Zp and the Adams summand ℓp. These are all close enough to Fp so that the
local correspondence between K-theory and topological cyclic homology make these cal-
culations into actual calculations of algebraic K-theory. We also discuss very briefly the
Lichtenbaum-Quillen conjecture as seen from a homotopy theoretical viewpoint, which is
made especially attractive through the comparison with topological cyclic homology. The
inner equivariant workings of topological Hochschild homology display a rich and beautiful
algebraic structure, with deep intersections with log geometry through the de Rham-Witt
complex. This is prominent in Hesselholt and Madsen’s calculation of the K-theory of
local fields, but facets are found in almost all the calculations discussed in Section VII.3.
We also briefly touch upon the first problem tackled through trace methods: the algebraic
K-theory Novikov conjecture.

The appendix A collects some material that is used freely throughout the notes. Much
of the material is available elsewhere in the literature, but for the convenience of the
reader we have given the precise formulations we actually need and set them in a common
framework. The reason for pushing this material to an appendix, and not working it into
the text, is that an integration would have produced a serious eddy in the flow of ideas
when only the most diligent readers will need the extra details. In addition, some of the
results are used at places that are meant to be fairly independent of each other.

The rather detailed index is meant as an aid through the plethora of symbols and
complex terminology, and we have allowed ourselves to make the unorthodox twist of
adding hopefully helpful hints in the index itself, where this has not taken too much
space, so that in many cases a brief glance at the index makes checking up the item itself
unnecessary.

Displayed diagrams commute, unless otherwise noted. The ending of proofs that are
just sketched or referred away and of statements whose verification is embedded in the
preceding text are marked with a .. '!&"%#$���� .
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Chapter I

Algebraic K-theory

In this chapter we define and discuss the algebraic K-theory functor. This chapter will
mainly be concerned with the algebraic K-theory of rings, but we will extend this notion
at the end of the chapter. There are various possible extensions, but we will mostly focus
on a class of objects that are close to rings. In later chapters this will be extended again
to include ring spectra and even more exotic objects.

In the first section we give a quick nontechnical overview of K-theory. Many of the
examples are but lightly touched upon and not needed later, but are included to give an
idea of the scope of the theory. Some of the examples in the introduction may refer to
concepts or ideas that are unfamiliar to the reader. If this is the case, the reader may
consult the index to check whether this is a topic that will be touched upon again (and
perhaps even explained), or if it is something that can be left for later investigations. In
any case, the reader is encouraged to ignore such problems at a first reading. Although
it only treats the first three groups, Milnor’s book [213] is still one of the best elementary
introductions to algebraic K-theory with Bass’ book [13] providing the necessary support for
more involved questions. For a more more modern exposition one may consult Rosenberg’s
book [244]. For a fuller historical account, the reader may want to consult for instance
[310] or [14].

In the second section we introduce Waldhausen’s S-construction of algebraic K-theory
and prove some of its basic properties.

The third section concerns itself with comparisons between K-theory and various ho-
mology theories, giving our first identification of the differential of algebraic K-theory, as
discussed in the preface.

1 Introduction

The first appearance of what we now would call truly K-theoretic questions are the inves-
tigations of J. H. C. Whitehead (for instance [314], [315] or the later [316]), and Higman
[133]. The name “K-theory” is much younger (said to be derived from the German word
“Klassen”), and first appears in Grothendieck’s work [1] in 1957 on the Riemann-Roch

15
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theorem, see also [35]. But, even though it was not called K-theory, we can get some
motivation by studying the early examples.

1.1 Motivating example from geometry: Whitehead torsion

The “Hauptvermutung” states that two homeomorphic finite simplicial complexes have
isomorphic subdivisions. The conjecture was formulated by Steinitz and Tietze in 1908,
see [236] for references and a deeper discussion.

Unfortunately, the Hauptvermutung is not true: already in 1961 Milnor [212] gave
concrete counterexamples built from lens spaces in all dimensions greater than six. To
distinguish the simplicial structures he used an invariant of the associated chain complexes
in what he called the Whitehead group. In the decade that followed, the Whitehead group
proved to be an essential tool in topology, and especially in connection with problems
related to “cobordisms”. For a more thorough treatment of the following example, see
Milnor’s very readable article [210].

A cobordism W between a disjoint union M

of two circles and a single circle N .

Let M and N be two smooth n-
dimensional closed manifolds. A
cobordism between M and N is an
n + 1-dimensional smooth compact
manifold W with boundary the dis-
joint union of M and N (in the ori-
ented case we assume that M and N
are oriented, and W is an oriented
cobordism from M to N if it is ori-
ented so that the orientation agrees
with that on N and is the opposite
of that on M).
Here we are interested in a situation
where M and N are deformation re-
tracts of W . Obvious examples are
cylinders M × I, where I = [0, 1] is
the closed unit interval.
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More precisely: Let M be a
closed, connected, smooth
manifold of dimension n >
5. Suppose we are given
an h-cobordism (W ;M,N),
that is, a compact smooth
n+1 dimensional manifold
W , with boundary the dis-
joint union of M and N ,
such that both the inclu-
sions M ⊂ W and N ⊂ W
are homotopy equivalences.

An h-cobordism (W ;M,N). This one is a cylinder.

Question 1.1.1 Is W diffeomorphic to M × I?

It requires some imagination to realize that the answer to this question can be “no”. In
particular, in the low dimensions of the illustrations all h-cobordisms are cylinders.

However, this is not true in high dimensions, and the h-cobordism theorem 1.1.5 below
gives a precise answer to the question.

To fix ideas, let M = L be a lens space of dimension, say, n = 7. That is, the cyclic
group of order l, π = µl = {1, e2πi/l, . . . , e2πi(l−1)/l} ⊆ C, acts on the seven-dimensional
sphere S7 = {x ∈ C4 s.t. |x| = 1} by complex multiplication

π × S7 → S7 (t,x) 7→ (t · x)

and we let the lens space M be the quotient space S7/π = S7/(x ∼ t · x). Then M is a
smooth manifold with fundamental group π.

Let

. . .
∂

−−−→ Ci+1
∂

−−−→ Ci
∂

−−−→ . . . −−−→ C0 −−−→ 0

be the relative cellular complex of the universal cover, calculating the homology H∗ =
H∗(W̃ , M̃) (see sections 7 and 9 in [210] for details). Each Ci is a finitely generated free
Z[π]-module, and, up to orientation and translation by elements in π, has a preferred basis
over Z[π] coming from the i-simplices added to get from M to W in some triangulation of
the universal covering spaces. As always, the groups Zi and Bi of i-cycles and i-boundaries
are the kernel of ∂ : Ci → Ci−1 and image of ∂ : Ci+1 → Ci. Since M ⊂ W is a deformation
retract, we have by homotopy invariance of homology that H∗ = 0, and so B∗ = Z∗.

By induction on i, we see that the exact sequence

0 −−−→ Bi −−−→ Ci −−−→ Bi−1 −−−→ 0

is split. For each i we choose a splitting and consider the resulting isomorphism

Ci
αi−−−→
∼=

Bi ⊕ Bi−1.
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This leads us to the following isomorphism

⊕
i even Ci

L
i even αi−−−−−−→

⊕
i even Bi ⊕Bi−1

∼=

ycan. rearrangement

⊕
i odd Ci

L
i odd αi−−−−−→

⊕
i oddBi ⊕ Bi−1.

(1.1.2)

We will return to this isomorphism shortly in order to define the obstruction to the answer
to the Question 1.1.1 being “yes” (see Section 1.1.4), but first we need some basic definitions
from linear algebra.

1.1.3 K1 and the Whitehead group

For any ring A (all the rings we consider are associative and unital) we may consider the
ring Mk(A) of k × k matrices with entries in A, as a monoid under multiplication (recall
that a monoid satisfies all the axioms of a group except for the requirement that inverses
must exist). The general linear group is the subgroup of invertible elements GLk(A). Take
the colimit (or more concretely, the union) GL(A) = limk→∞GLk(A) =

⋃
k→∞GLk(A)

with respect to the stabilization

GLk(A)
g 7→g⊕1
−−−−→ GLk+1(A)

(thus every element g ∈ GL(A) can be thought of as an infinite matrix

[
g′ 0 0 ...
0 1 0 ...
0 0 1 ...
...

...
...
...

]

with g′ ∈ GLk(A) for some k <∞). Let E(A) be the subgroup of elementary matrices (i.e.,
Ek(A) ⊂ GLk(A) is the subgroup generated by the matrices eaij with ones on the diagonal
and a single nontrivial off-diagonal entry a ∈ A in the ij position). The “Whitehead
lemma” (see 1.2.2 below) implies that the quotient

K1(A) = GL(A)/E(A)

is an abelian group. In the particular case where A is an integral group ring Z[π] we define
the Whitehead group as the quotient

Wh(π) = K1(Z[π])/{±π}

via {±π} ⊆ GL1(Z[π])→ K1(Z[π]).

1.1.4 Classifying cobordisms

Let (W ;M,N) be an h-cobordism, and consider the isomorphism
⊕

i even Ci →
⊕

i oddCi
given in (1.1.2) for the lens spaces, and similarly in general. This depended on several
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choices and in the preferred basis for the Ci it gives a matrix with coefficients in Z[π1(M)].
Stabilizing we get an element τ(W,M)choices ∈ GL(Z[π1(M)]) and a class τ(W,M) =
[τ(W,M)choices] ∈Wh(π1(M)).

The class τ(W,M) is independent of our preferred basis and choices of splittings and
is called the Whitehead torsion.

The Whitehead torsion turns out to be a vital ingredient in Barden (Thesis, 1963),
Mazur [202] and Stallings’ [272] extension of the famous results of Smale [264] (where he
proves the high dimensional Poincaré conjecture) beyond the simply connected case (for a
proof, see also [163]):

Theorem 1.1.5 (Barden, Mazur, Stallings) Let M be a compact, connected, smooth man-
ifold of dimension ≥ 5 and let (W ;M,N) be an h-cobordism. The Whitehead torsion
τ(W,M) ∈Wh(π1(M)) is well defined, and τ induces a bijection

{
diffeomorphism classes (rel. M)

of h-cobordisms (W ;M,N)

}
←→Wh(π1(M))

In particular, (W ;M,N) ∼= (M × I;M,M) if and only if τ(W,M) = 0.

Example 1.1.6 The Whitehead group, Wh(π), has been calculated for only a very limited
set of groups π. We list a few of them; for a detailed study of Wh of finite groups, see
[220]. The first three refer to the lens spaces discussed above (see page 375 in [210] for
references).

1. l = 1, M = S7. “Exercise”: show that K1Z = {±1}, and so Wh(0) = 0. Thus any
h-cobordism of S7 is diffeomorphic to S7 × I.

2. l = 2. M = P 7, the real projective 7-space. “Exercise:” show that K1Z[µ2] = {±µ2},
and so Wh(µ2) = 0. Thus any h-cobordism of P 7 is diffeomorphic to P 7 × I.

3. l = 5. Wh(µ5) ∼= Z generated by the invertible element t + t−1 − 1 ∈ Z[µ5] (where
t is a chosen fifth root of unity) – the inverse is t2 + t−2 − 1. That is, there exist
countably infinitely many non-diffeomorphic h-cobordisms with incoming boundary
component S7/µ5.

4. Waldhausen [297]: If π is a free group, free abelian group, or the fundamental group
of a submanifold of the three-sphere, then Wh(π) = 0.

5. Farrell and Jones [81]: If M is a closed Riemannian manifold with non-positive
sectional curvature, then Wh(π1M) = 0.

Remark 1.1.7 The presentation of the Whitehead torsion differs slightly from that of
[210]. It is easy to see that they are the same in the case where the Bi are free Z[π]-modules
(the splittings ensure that each Bi is “stably free” which is sufficient, but the argument is



20 CHAPTER I. ALGEBRAIC K-THEORY

slightly more involved). Choosing bases we get matrices Mi ∈ GL(Z[π]) representing the
isomorphisms αi : Ci ∼= Bi ⊕Bi−1, and from the definition of τ(W,M)choices we see that

τ(W,M) =

(
∑

i even

[Mi]

)
−

(
∑

i odd

[Mi]

)
=
∑

(−1)i[Mi] ∈Wh(π1(M)).

1.2 K1 of other rings

1. Commutative rings: The map from the units in A

A∗ = GL1(A)→ GL(A)/E(A) = K1(A)

is split by the determinant map, and so the units of A is a split summand in K1(A).
In certain cases (e.g., if A is local (A has a unique maximal ideal), or the inte-
gers in a number field, see next example) this is all of K1(A). We may say that
the rest of K1(A) measures to what extent we can do Gauss elimination, in that
ker{det : K1(A)→ A∗} is the group of equivalence classes of matrices up to stabiliza-
tion in the number of variables and elementary row operations (i.e., multiplication
by elementary matrices and multiplication of a row by an invertible element).

2. Let F be a number field (i.e., a finite extension of the rational numbers), and let
A ⊆ F be the ring of integers in F (i.e., the integral closure of Z in F ). A result
of Dirichlet asserts that A∗ is finitely generated of rank r1 + r2 − 1 where r1 (resp.
2r2) is the number of distinct real (resp. complex) embeddings of F , and in this case
K1(A) ∼= A∗, see [213, Corollary 18.3] or the arguments on page 160–163.

3. Let B → A be an epimorphism of rings with kernel I ⊆ rad(B) – the Jacobson
radical of B (that is, if x ∈ I, then 1 + x is invertible in B). Then

(1 + I)× −−−→ K1(B) −−−→ K1(A) −−−→ 0

is exact, where (1 + I)× ⊂ GL1(B) is the group {1 + x|x ∈ I} under multiplication
(see e.g., page 449 in [13]). Moreover, if B is commutative and B → A is split, then

0 −−−→ (1 + I)× −−−→ K1(B) −−−→ K1(A) −−−→ 0

is exact.

For later reference, we record the Whitehead lemma mentioned above. For this we need
some definitions.

Definition 1.2.1 The commutator [G,G] of a group G is the (normal) subgroup generated
by all commutators [g, h] = ghg−1h−1. A group G is called perfect if it is equal to its
commutator, or in other words, if its first homology group H1(G) = G/[G,G] vanishes.
Any group G has a maximal perfect subgroup, which we call PG, and which is automatically
normal. We say that G is quasi-perfect if PG = [G,G].
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The symmetric group Σn on n ≥ 5 letters is quasi-perfect, since its commutator sub-
group is the alternating group An, which in turn is a simple group. Further examples are
provided by the

Lemma 1.2.2 (The Whitehead lemma) Let A be a unital ring. Then GL(A) is quasi-
perfect with maximal perfect subgroup E(A), i.e.,

[GL(A), GL(A)] = [E(A), GL(A)] = [E(A), E(A)] = E(A)

Proof: See e.g., page 226 in [13].

1.3 The Grothendieck group K0

Definition 1.3.1 Let C be a small category and let E be a collection of diagrams c′ →
c → c′′ in C. Then the Grothendieck group K0(C, E) is the abelian group, defined (up to
unique isomorphism) by the following universal property. Any function f from the set of
isomorphism classes of objects in C to an abelian group A such that f(c) = f(c′) + f(c′′)
for all sequences c′ → c→ c′′ in E , factors uniquely through K0(C).

If there is a final object 0 ∈ obC such that for any isomorphism c′ ∼= c ∈ C the sequence
c′ ∼= c → 0 is in E , then K0(C, E) can be given as the free abelian group on the set of
isomorphism classes [c], of C, modulo the relations [c] = [c′] + [c′′] for c′ → c → c′′ in E .
Notice that [0] = [0] + [0], so that [0] = 0.

Most often the pair (C, E) will be an exact category in the sense that C is an additive
category (i.e., a category with all finite coproducts where the morphism sets are abelian
groups and where composition is bilinear) such that there exists a full embedding of C in
an abelian category A, such that C is closed under extensions in A and E consists of the
sequences in C that are short exact in A.

Any additive category is an exact category if we choose the exact sequences to be the
split exact sequences, but there may be other exact categories with the same underlying
additive category. For instance, the category of abelian groups is an abelian category,
and hence an exact category in the natural way, choosing E to consist of the short exact

sequences. These are not necessary split, e.g., Z
2 //Z //Z/2Z is a short exact sequence

which does not split.
The definition of K0 is a case of “additivity”: K0 is a (or perhaps, the) functor to

abelian groups insensitive to extension issues. We will dwell more on this issue later, when
we introduce the higher K-theories. Higher K-theory plays exactly the same rôle as K0,
except that the receiving category has a much richer structure than the category of abelian
groups.

The choice of E will always be clear from the context, and we drop it from the notation
and write K0(C).

Example 1.3.2 1. Let A be a unital ring. An A-module is an abelian group M , to-
gether with a homomorphism A→ End(M) of rings, or otherwise said, a homomor-
phism A⊗M → M of abelian groups, sending a⊗m to am with the property that
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1m = m and a(bm) = (ab)m. Recall that an A-module M is finitely generated if there
is a surjective homomorphism An = A⊕ · · · ⊕A ։ M (n summands) of A-modules.
An A-module P is projective if for all (solid) diagrams

M

����
P //

==

M ′′

of A-modules where the vertical homomorphism is a surjection, there is a (dotted)
homomorphism P → M making the resulting diagram commute. It is a consequence
that an A-module P is finitely generated and projective precisely when there is an
n and an A-module Q such that An ∼= P ⊕Q. Note that Q is automatically finitely
generated and projective.

If, in a given subcategory of the category of A-modules we say that a certain sequence
is exact, we usually mean that the sequence is exact when considered as a sequence
of A-modules.

If C = PA, the category of finitely generated projective A-modules, with the usual
notion of (short) exact sequences, we often write K0(A) for K0(PA). Note that PA is
split exact, that is, all short exact sequences in PA split. Thus we see that we could
have defined K0(A) as the quotient of the free abelian group on the isomorphism
classes in PA by the relation [P ⊕ Q] ∼ [P ] + [Q]. It follows that all elements in
K0(A) can be represented as a difference [P ] − [F ] where F is a finitely generated
free A-module.

2. Inside PA sits the category FA of finitely generated free A-modules, and we let
Kf

0 (A) = K0(FA). If A is a principal ideal domain, then every submodule of a
free module is free, and so FA = PA. This is so, e.g., for the integers, and we
see that K0(Z) = Kf

0 (Z) ∼= Z, generated by the module of rank one. Generally,
Kf

0 (A)→ K0(A) is an isomorphism if and only if every finitely generated projective
module is stably free (P and P ′ are said to be stably isomorphic if there is a finitely
generated free A-module Q such that P ⊕ Q ∼= P ′ ⊕ Q, and P is stably free if it is
stably isomorphic to a free module). Whereas K0(A × B) ∼= K0(A) × K0(B), the
functor Kf

0 does not preserve products: e.g., Z ∼= Kf
0 (Z×Z), while K0(Z×Z) ∼= Z×Z

giving an easy example of a ring where not all projectives are free.

3. Note that K0 does not distinguish between stably isomorphic modules. This is not
important in some special cases. For instance, if A is a commutative Noetherian ring
of Krull dimension d, then every stably free module of rank > d is free ([13, p. 239]).

4. The initial map Z→ A defines a map Z ∼= Kf
0 (Z)→ Kf

0 (A) which is always surjec-
tive, and in most practical circumstances, an isomorphism. If A has the invariance of
basis property, that is, if Am ∼= An if and only if m = n, then Kf

0 (A) ∼= Z. Otherwise,
A = 0, or there is an h > 0 and a k > 0 such that Am ∼= An if and only if either
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m = n or m,n > h and m ≡ n mod k. There are examples of rings with such h and
k for all h, k > 0 (see [171] or [54]): let Ah,k be the quotient of the free ring on the
set {xij , yji|1 ≤ i ≤ h, 1 ≤ j ≤ h + k} by the matrix relations

[xij ] · [yji] = Ih, and [yji] · [xij ] = Ih+k

Commutative (non-trivial) rings always have the invariance of basis property.

5. Let X be a compact Hausdorff topological space, and let C = Vect(X) be the cat-
egory of finite rank complex vector bundles on X, with exact sequences meaning
the usual thing. Then K0(Vect(X)) is the complex K-theory K(X) of Atiyah and
Hirzebruch [9]. Note that the possibility of constructing normal complements assures
that Vect(X) is a split exact category. Swan’s theorem [280] states that the category
Vect(X) is equivalent to the category of finitely generated projective modules over
the ring C(X) of complex valued continuous functions onX. The equivalence is given
by sending a bundle to its C(X)-module of sections. Furthermore, Bott periodicity
(see the survey [36] or the neat proof [119]) states that there is a canonical isomor-
phism K(S2)⊗K(X) ∼= K(S2×X). A direct calculation shows that K(S2) ≃ Z⊕Z

where it is customary to let the first factor be generated by the trivial bundle 1 and
the second by ξ − 1 where ξ is the canonical line bundle on S2 = CP1.

6. Let X be a scheme, and let C = Vect(X) be the category of finite rank vector bundles
on X. Then K0(Vect(X)) is the K(X) of Grothendieck. This is an example of K0

of an exact category which is not split exact. The analogous statement to Swan’s
theorem above is that of Serre [258].

1.3.3 Example of applications to homotopy theory

As an illustration we review Loday’s [178] early application of the functors K0 and K1 to
establishing a result about polynomial functions.

Let T n = {(x1, x2, . . . , x2n−1, x2n) ∈ R2n|x2
2i−1 + x2

2i = 1, i = 1, . . . , n} be the n-
dimensional torus and Sn = {(y0, . . . , yn) ∈ Rn+1|y2

0 + · · · + y2
n = 1} the n-dimensional

sphere. A polynomial function T n → Sn is a polynomial function f : R2n → Rn+1 such
that f(T n) ⊆ Sn.

Proposition 1.3.4 (Loday [178]) Let n > 1. Any polynomial function f : T n → Sn is
homotopic to a constant map.

Sketch proof: We only sketch the case n = 2. The other even dimensional cases are
similar, whereas the odd cases uses K1 instead of K0. The heart of the matter is the
following commutative diagram

C[y0, y1, y2]/(y
2
0 + y2

1 + y2
2 − 1) −−−→ C(S2)

f∗
y f∗

y
C[x1, x2, x3, x4]/(x

2
1 + x2

2 − 1, x2
3 + x2

4 − 1) −−−→ C(T 2)
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of C-algebras, where the vertical maps are induced by the polynomial function f and
the horizontal maps are defined as follows. If X ⊆ Rm is the zero set of some poly-
nomial function p = (p1, . . . , pk) : Rm → Rk there is a preferred map of C-algebras
C[x1, . . . , xm]/(p1, . . . , pk) → C(X) given by sending the generator xl to the composite
function X ⊆ Rm ⊆ Cm ։ C where the last map is projection onto the lth factor.

Let K̃0 be the functor from rings to abelian groups whose value at A is the cokernel of
the canonical map K0(Z)→ K0(A). Considering the resulting diagram

K̃0(C[y0, y1, y2]/(y
2
0 + y2

1 + y2
2 − 1)) −−−→ K̃0(C(S2))

f∗
y f∗

y
K̃0(C[x1, x2, x3, x4]/(x

2
1 + x2

2 − 1, x2
3 + x2

4 − 1)) −−−→ K̃0(C(T 2))

.

By Swan’s theorem 1.3.2.5 we may identify the right hand vertical map with f ∗ : K̃(S2)→

K̃(T 2) (where K̃(X) is the cokernel of the canonical map K(∗) → K(X)). Hence we are
done if we can show

1. The top horizontal map is a surjection,

2. the lower left hand group is trivial and

3. a polynomial function T 2 → S2 is homotopic to a constant map if it induces the
trivial map K̃(S2)→ K̃(T 2).

By the statements about complex K-theory 1.3.2.5, K̃(S2) is a copy of the integers (gener-
ated by ξ−1), so to see that the top horizontal map is a surjection it is enough to see that
a generator is hit (i.e., the canonical line bundle is algebraic), and this is done explicitly
in [178, Lemme 2].

The substitution tk = x2k−1 + ix2k induces an isomorphism

C[x1, x2, x3, x4]/(x
2
1 + x2

2 − 1, x2
3 + x2

4 − 1) ∼= C[t1, t
−1
1 , t2, t

−1
2 ],

and by [13, p. 636] K̃0(C[t1, t
−1
1 , t2, t

−1
2 ]) = 0. This vanishing of a K-group is part of a

more general statement about algebraic K-theory’s behavior with respect to localizations
and about polynomial rings over regular rings.

To see the last statement, one has to know that the Chern class is natural: the diagram

K̃(S2)
c1−−−→ H2(S2;Q) ∼= Q

f∗
y f∗

y
K̃(T 2)

c1−−−→ H2(T 2;Q) ∼= Q

commutes. Since c1(ξ1 − 1) 6= 0 we get that if the left vertical map is trivial, so is the
right vertical map (which is multiplication by the degree). However, a map f : T 2 → S2 is
homotopic to a constant map exactly if its degree is trivial. .. '!&"%#$����
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1.3.5 Geometric example: Wall’s finiteness obstruction

Let A be a space which is dominated by a finite CW-complex X (dominated means that

there are maps A
i //X

r //A such that ri ≃ idA).
Question: is A homotopy equivalent to a finite CW-complex?
The answer is yes if and only if a certain finiteness obstruction in the abelian group

K̃0(Z[π1A]) = ker{K0(Z[π1A]) → K0(Z)} vanishes. So, for instance, if we know that
K̃0(Z[π1A]) vanishes for algebraic reasons, we can always conclude that A is homotopy
equivalent to a finite CW-complex. As for K1, calculations of K0(Z[π]) are very hard, but
we give a short list.

1.3.6 K0 of group rings

1. If Cp is a cyclic group of prime order p less than 23, then K̃0(Z[π]) vanishes. The
first nontrivial group is K̃0(Z[C23]) ∼= Z/3Z (Kummer, see [213, p. 30]).

2. Waldhausen [297]: If π is a free group, free abelian group, or the fundamental group
of a submanifold of the three-sphere, then K̃0(Z[π]) = 0.

3. Farrell and Jones [81]: If M is a closed Riemannian manifold with non-positive
sectional curvature, then K̃0(Z[π1M ]) = 0.

1.3.7 Facts about K0 of rings

1. If A is a commutative ring, then K0(A) has a ring structure. The additive struc-
ture comes from the direct sum of modules, and the multiplication from the tensor
product.

2. If A is local, then K0(A) = Z.

3. Let A be a commutative ring. Define rk0(A) to be the split summand of K0(A) of
classes of rank 0, c.f. [13, p. 459]. The modules P for which there exists a Q such that
P ⊗A Q ∼= A form a category. The isomorphism classes form a group under tensor
product. This group is called the Picard group, and is denoted Pic(A). There is a
“determinant” map rk0(A)→ Pic(A) which is always surjective. If A is a Dedekind
domain (see [13, p. 458–468]) the determinant map is an isomorphism, and Pic(A)
is isomorphic to the ideal class group Cl(A).

4. Let A be the integers in a number field. Then Dirichlet tells us that rk0(A) ∼=
Pic(A) ∼= Cl(A) is finite. For instance, if A = Z[e2πi/p] = Z[t]/

∑p−1
i=0 t

i, the integers
in the cyclotomic field Q(e2πi/p), then K0(A) ∼= K0(Z[Cp]) (1.3.61.).

5. If f : B → A is a surjection of rings with kernel I contained in the Jacobson radical,
rad(B), then K0(B)→ K0(A) is injective ([13, p. 449]). It is an isomorphism if

(a) B is complete in the I-adic topology ([13]),
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(b) (B, I) is a Hensel pair ([88]) or

(c) f is split (as K0 is a functor).

That (B, I) is a Hensel pair means that if f ∈ B[t] has image f̄ ∈ A[t] and a ∈ A =
B/I satisfies f̄(a) = 0 and f ′(a) is a unit in B/I, then there is a b ∈ B mapping to
a, and such that f(b) = 0. It implies that I ⊆ rad(B).

1.3.8 An example from algebraic geometry

Algebraic K-theory appears in Grothendieck’s proof of the Riemann–Roch theorem, see
Borel and Serre [35], where Bott’s entry in Mathematical Reviews can serve as the missing
introduction. Let X be a non-singular quasi-projective variety (i.e., a locally closed sub-
variety of some projective variety) over an algebraically closed field. Let CH(X) be the
Chow ring of cycles under linear equivalence (called A(X) in [35, section 6]) with product
defined by intersection. Tensor product gives a ring structure on K0(X), and Grothendieck
defines a natural ring homomorphism

ch : K0(X)→ CH(X)⊗Q,

similar to the Chern character for vector bundles, cf. [214]. This map has good functoriality
properties with respect to pullback, i.e., if f : X → Y , then

K0(X)
ch
−−−→ CH(X)⊗Q

f !

x f∗
x

K0(Y )
ch
−−−→ CH(Y )⊗Q

commutes, where f ! and f ∗ are given by pulling back along f . For proper morphisms
f : X → Y [35, p. 100] there are “transfer maps” (defined as a sort of Euler characteristic)
f! : K0(X) → K0(Y ) [35, p. 110] and direct image maps f∗ : CH(X) → CH(Y ). The
Riemann–Roch theorem is nothing but a quantitative measure of the fact that

K0(X)
ch
−−−→ CH(X)⊗Q

f!

y f∗

y

K0(Y )
ch
−−−→ CH(Y )⊗Q

fails to commute: ch(f!(x)) · Td(Y ) = f∗(ch(x) · Td(X)) where Td(X) is the value of the
“Todd class” [35, p. 112] on the tangent bundle of X.
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1.3.9 A number-theoretic example

Let F be a number field and A its ring of integers. Then there is an exact sequence
connecting K1 and K0:

0 // K1(A) // K1(F )
EDBC

GF@A
//
⊕

m∈Max(A)K0(A/m) // K0(A) // K0(F ) // 0

(cf. [13, p. 323, 702], or better [232, corollary to theorem 5] plus the fact that K1(A) →
K1(F ) is injective). The zeta function ζF (s) of F is defined as the meromorphic function
on the complex plane C we get as the analytic continuation of

ζF (s) =
∑

I non-zero ideal in A

|A/I|−s.

This series converges for Re(s) > 1. The zeta function has a zero of order r = rank(K1(A))
(see 1.2.(2)) at s = 0, and the class number formula says that

lim
s→0

ζF (s)

sr
= −

R|K0(A)tor|

|K1(A)tor|
,

where | −tor | denotes the cardinality of the torsion subgroup, and the regulator R is a
number that depends on the map δ above, see [175].

This is related to the Lichtenbaum-Quillen conjecture, which is now confirmed due
to work of among many others Voevodsky, Suslin, Rost, Grayson (see Section 1.7 and
Section VII.3.2 for references and a deeper discussion).

1.4 The Mayer–Vietoris sequence

The reader may wonder why one chooses to regard the functors K0 and K1 as related.
Example 1.3.9 provides one motivation, but that is cheating. Historically, it was an insight
of Bass that K1 could be obtained from K0 in analogy with the definition of K1(X) as
K0(S1∧X) (cf. example 1.3.2.5). This manifests itself in exact sequences connecting the
two theories. As an example: if

A −−−→ By f

y
C

g
−−−→ D

is a cartesian square of rings and g (or f) is surjective, then we have a long exact “Mayer–
Vietoris” sequence

K1(A) // K1(B)⊕K1(C) // K1(D)
EDBC

GF@A
// K0(A) // K0(B)⊕K0(C) // K0(D).
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However, it is not true that this continues to the left. For one thing there is no simple
analogy to the Bott periodicity K0(S2∧X) ∼= K0(X). Milnor proposed in [213] a definition
of K2 (see below) which would extend the Mayer–Vietoris sequence if both f and g are
surjective, i.e., we have a long exact sequence

K2(A) // K2(B)⊕K2(C) // K2(D)
EDBC

GF@A
// K1(A) // K1(B)⊕K1(C) // K1(D) // . . . .

However, this was the best one could hope for:

Example 1.4.1 Swan [281] gave the following example showing that there exists no func-
tor K2 giving such a sequence if only g is surjective. Let A be commutative, and consider
the pullback diagram

A[t]/t2
t7→0
−−−→ A

a+bt7→( a b0 a )
y ∆

y

T2(A)
g

−−−→ A× A

where T2(A) is the ring of upper triangular 2 × 2 matrices, g is the projection onto the
diagonal, while ∆ is the diagonal inclusion. As g splits K2(T2(A))⊕K2(A)→ K2(A×A)
must be surjective, but, as we shall see below, K1(A[t]/t2) → K1(T2(A)) ⊕ K1(A) is not
injective.

Recall that, since A is commutative, GL1(A[t]/t2) is a direct summand of K1(A[t]/t2).
The element 1+t ∈ A[t]/t2 is invertible (and not the identity), but [1+t] 6= [1] ∈ K1(A[t]/t2)
is sent onto [1] in K1(A), and onto

[( 1 1
0 1 )] ∼ [

(
( 1 1

0 1 ) 0
0 1

)
] = [

[
e
( 1 0

0 0 )
12 , e

( 0 1
0 0 )

21

]
] ∼ [1] ∈ K1(T2(A))

where the inner brackets are the commutator [g, h] = ghg−1h−1, as in 1.2.1, of two elemen-
tary matrices (which by definition is trivial in K1).

Using trace methods, one can measure the failure of excision and do concrete calcula-
tion, see VII.3.9.

1.5 Milnor’s K2(A)

Milnor’s definition of K2(A) is given in terms of the Steinberg group, and turns out to be
isomorphic to the second homology group H2(E(A)) of the group of elementary matrices.
Another, and more instructive way to say this is the following. The group E(A) is generated
by the matrices eaij , a ∈ A and i 6= j, and generally these generators are subject to lots
of relations. There are, however, some relations which are more important than others,
and furthermore are universal in the sense that they are valid for any ring: the so-called
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Steinberg relations. One defines the Steinberg group St(A) to be exactly the group generated
by symbols xaij for every a ∈ A and i 6= j subject to these relations. Explicitly:

xaijx
b
ij = xa+bij

and

[xaij , x
b
kl] =





1 if i 6= l and j 6= k

xabil if i 6= l and j = k

x−bakj if i = l and j 6= k

One defines K2(A) as the kernel of the surjection

St(A)
xaij 7→e

a
ij

−−−−→ E(A).

In fact,
0 −−−→ K2(A) −−−→ St(A) −−−→ E(A) −−−→ 0

is a central extension of E(A) (hence K2(A) is abelian), and H2(St(A)) = 0, which makes
it the “universal central extension” (see e.g., [165]).

The best references for Ki i ≤ 2 are still Bass’ [13] and Milnor’s [213] books. Swan’s
paper [281] is recommended for an exposition of what optimistic hopes one might have
to extend these ideas, and why some of these could not be realized (for instance, there is
no functor K3 such that the Mayer–Vietoris sequence extends, even if all maps are split
surjective).

1.6 Higher K-theory

At the beginning of the seventies there appeared suddenly a plethora of competing theories
pretending to extend these ideas into a sequence of theories, Ki(A) for i ≥ 0. Some theories
were more interesting than others, and many were equal. The one we are going to discuss
in this paper is the Quillen K-theory, later extended by Waldhausen to a larger class of
rings and categories.

As Quillen defines it, the K-groups are really the homotopy groups of a space. He
gave three equivalent definitions, one by the “plus” construction discussed in 1.6.1 below
(we also use it in Section III.1.1), one via “group completion” and one by what he called
the Q-construction. The group completion line of idea circulated as a preprint for a very
long time, but in 1994 finally made it into the appendix of [87], while the Q-construction
appears already in 1973 in [232]. That the definitions agree appeared in [108]. For a ring
A, the homology of (a component of) the space K(A) is nothing but the group homology of
GL(A). Using the plus construction and homotopy theoretic methods, Quillen calculated
in [228] K(Fq), where Fq is the field with q elements. See 1.7.1 below for more details.

The advantage of the Q-construction is that it is more accessible to structural consid-
erations. In the foundational article [232] Quillen uses the Q-construction to extend to the
higher K-groups most of the general statements that were known to be true for K0 and
K1.
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However, given these fundamental theorems, of Quillen’s definitions it is the plus con-
struction that has proven most directly accessible to calculations (this said, very few groups
were in the end calculated directly from the definitions, and by now indirect methods such
as motivic cohomology and the trace methods that are the topic of this book have extended
our knowledge far beyond the limitations of direct calculations).

1.6.1 Quillen’s plus construction

We will now describe a variant of Quillen’s definition of (a component of) the algebraic
K-theory space of an associative ring A with unit via the plus construction. For more
background, the reader may consult [122], [16], or [87].

We will be working in the category of simplicial sets (as opposed to topological spaces).
The readers who are uncomfortable with this can think of simplicial sets (often referred
to as simply “spaces”) as topological spaces for the moment and consult Section III.1.1
for further details. Later in the text simplicial techniques will become essential, so we
have collected some basic facts about simplicial sets that are particularly useful for our
applications in Appendix A.

If X is a simplicial set, H∗(X) = H(X;Z) will denote the homology of X with trivial
integral coefficients, and H̃∗(X) = ker{H∗(X)→ H∗(pt) = Z} is the reduced homology.

Definition 1.6.2 Let f : X → Y be a map of connected simplicial sets with connected
homotopy fiber F . We say that f is acyclic if H̃∗(F ) = 0.

We see that the homotopy fiber of an acyclic map must have perfect fundamental group
(i.e., 0 = H̃1(F ) ∼= H1(F ) ∼= π1F/[π1F, π1F ]). Recall from 1.2.1 that any group π has a
maximal perfect subgroup, which we call Pπ, and which is automatically normal.

1.6.3 Remarks on the construction

There are various models for X+, and the most usual is Quillen’s original (originally used
by Kervaire [164] on homology spheres, see also [179]). That is, regardX as a CW-complex,
add 2-cells to X to kill Pπ1(X), and then kill the noise created in homology by adding
3-cells. See e.g., [122] for details on this and related issues. This process is also performed
in details for the particular case X = BA5 in Section III.1.2.3.

In our simplicial setting, we will use a slightly different model, giving us strict functo-
riality (not just in the homotopy category), namely the partial integral completion of [40,
p. 219]. Just as K0 was defined by a universal property for functions into abelian groups,
the integral completion constructs a universal element over simplicial abelian groups (the
“partial” is there just to take care of pathologies such as spaces where the fundamental
group is not quasi-perfect). For the present purposes we only have need for the follow-
ing properties of the partial integral completion, and we defer the actual construction to
Section III.1.1.7.

Proposition 1.6.4 1. The assignmentX 7→ X+ is an endofunctor of pointed simplicial
sets, and there is a natural cofibration qX : X → X+,
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2. if X is connected, then qX is acyclic, and

3. if X is connected then π1(qX) is the projection killing the maximal perfect subgroup
of π1X

Then Quillen provides the theorem we need (for a proof and a precise simplicial formu-
lation, see Theorem III.1.1.10):

Theorem 1.6.5 For X connected, 1.6.4.2 and 1.6.4.3 characterizes X+ up to homotopy
under X.

The integral completion will reappear as an important technical tool in a totally differ-
ent setting in Section III.3.

Recall that the general linear group GL(A) was defined as the union of the GLn(A).
Form the classifying space (see A.1.6) of this group, BGL(A). Whether you form the
classifying space before or after taking the union is without consequence. Now, Quillen
defines the connected cover of algebraic K-theory to be the realization |BGL(A)+| or rather,
the homotopy groups,

Ki(A) =

{
πi(BGL(A)+) if i > 0

K0(A) if i = 0
,

to be the K-groups of the ring A. We will use the following notation:

Definition 1.6.6 If A is a ring, then the algebraic K-theory space is

K(A) = BGL(A)+.

Now, the Whitehead Lemma 1.2.2 tells us that GL(A) is quasi-perfect with commutator
E(A), so

π1K(A) ∼= GL(A)/PGL(A) = GL(A)/E(A) = K1(A),

as expected. Furthermore, using the definition of K2(A) via the universal central extension,
1.5, it is not too difficult to prove that the K2’s of Milnor and Quillen agree: K2(A) =
π2(BGL(A)+) ∼= H2(E(A)) (and even K3(A) ∼= H3(St(A)), see [96]).

One might regret that this space K(A) has no homotopy in dimension zero, and this will
be amended later. The reason we choose this definition is that the alternatives available
to us at present all have their disadvantages. We might take K0(A) copies of this space,
and although this would be a nice functor with the right homotopy groups, it will not
agree with a more natural definition to come. Alternatively we could choose to multiply
by Kf

0 (A) of 1.3.2.2 or Z as is more usual, but this has the shortcoming of not respecting
products.
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1.6.7 Other examples of use of the plus construction

1. Let Σn ⊂ GLn(Z) be the symmetric group of all permutations on n letters, and let
Σ∞ = limn→∞Σn. Then the theorem of Barratt–Priddy–Quillen (e.g., [12]) states
that Z × BΣ+

∞ ≃ limk→∞ΩkSk, so the groups π∗(BΣ+
∞) are the “stable homotopy

groups of spheres”.

2. LetX be a connected space with abelian fundamental group. Then Kan and Thurston
[154] have proved that X is homotopy equivalent to a BG+ for some strange group
G. With a slight modification, the theorem can be extended to arbitrary connected
X.

3. Consider the mapping class group Γg of (isotopy classes of) diffeomorphisms of a
surface of genus g (we are suppressing boundary issues). It is known that the colimit
BΓ∞ of the classifying spaces as the genus goes to infinity has the same rational
cohomology as M, the stable moduli space of Riemann surfaces, and Mumford con-
jectured in [218] that the rational cohomology ofM is a polynomial algebra generated
by certain classes – the “Mumford classes” – κi with dimension |κi| = 2i. Since BΓ∞
and BΓ+

∞ have isomorphic cohomology groups, the Mumford conjecture follows by
Madsen and Weiss’ identification [193] of Z × BΓ+

∞ as the infinite loop space of a
certain spectrum called CP∞−1 which (for badly understood reasons) will resurface
in Section VII.3.8.1 (see also [91]). One should notice that prior to this, Tillmann
[285] had identified Z×BΓ+

∞ with the infinite loop space associated to a category of
cobordisms of one-dimensional manifolds.

1.6.8 Alternative definitions of K(A)

In case the partial integral completion bothers you, for the space BGL(A) it can be replaced
by the following construction: choose an acyclic cofibration BGL(Z) → BGL(Z)+ once
and for all (by adding particular 2- and 3-cells), and define algebraic K-theory by means
of the pushout square

BGL(Z) −−−→ BGL(A)y
y

BGL(Z)+ −−−→ BGL(A)+

.

This will of course be functorial in A, and it can be verified that it has the right
homotopy properties. However, at one point (e.g., in chapter III) we will need functoriality
of the plus construction for more general spaces. All the spaces which we will need in these
notes can be reached by choosing to do our handicrafted plus not on BGL(Z), but on the
space BA5. See Section III.1.2.3 for more details.

Another construction is due to Christian Schlichtkrull, [247, 2.2], who observed that
the assignment n → BGLn(A) can be extended to a functor from the category of finite
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sets and injective maps with {1, . . . , n} 7→ BGLn(A), and that the homotopy colimit (see
Appendix A.6.0.1) is naturally equivalent to BGL(A)+.

1.6.9 Comparison with topological K-theory

Quillen’s definition of the algebraic K-theory of a ring fits nicely with the topological coun-
terpart, as discussed in 1.3.2.5. If one considers the (topological) field C, then the general
linear group GLn(C) becomes a topological group. The classifying space construction
applies equally well to topological groups, and we get the classifying space BtopGLn(C).
Vector bundles of rank n over a compact Hausdorff topological space X are classified by
unbased homotopy classes of maps into BtopGLn(C), giving us the topological K-theory of
Atiyah and Hirzebruch as the unbased homotopy classes of maps fromX to Z×BtopGL(C).
If X is based, reduced K-theory is given by based homotopy classes:

Ki(X) ∼= [Si∧X,Z× BtopGL(C)].

The fundamental group of BtopGL(C) is trivial, and so the map

BtopGL(C)→ BtopGL(C)+

is an equivalence. To avoid the cumbersome notation, we notice that the Gram-Schmidt
procedure guarantees that the inclusion of the unitary group U(n) ⊆ GLn(C) is an equiv-
alence, and in the future we can use the convenient notation BU to denote any space with
the homotopy type of BtopGL(C). The space Z × BU is amazingly simple from a homo-
topy group point of view: π∗(Z × BU) is the polynomial ring Z[u], where u is of degree
2 and is represented by the difference between the trivial and the tautological line bundle
on CP1 = S2. That multiplication by u gives an isomorphism πkBU → πk+2BU for k > 0
is a reflection of Bott periodicity Ω2(Z× BU) ≃ Z× BU) (for a cool proof, see [119]).

Similar considerations apply to the real case, with Z×BO classifying real bundles. Its
homotopy groups are 8-periodic.

1.7 Some results and calculations

In this section we will collect some results and calculations of algebraic K-theory that have
been obtained by methods different from those that will be discussed in the chapters to
come. The collection is somewhat idiosyncratic and often just picks out a piece of a more
general result, but the reader is encouraged to pursue the references for further information.

For a discussion of results and calculations that do use trace methods and comparison
to topological cyclic homology, see VII.3.

1. Quillen [228]: If Fq is the field with q elements, then

Ki(Fq) ∼=





Z if i = 0

Z/(qj − 1)Z if i = 2j − 1

0 if i = 2j > 0

.
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If F̄p is the algebraic closure of the prime field Fp, then

Ki(F̄p) ∼=





Z if i = 0

Q/Z[1/p] if i = 2j − 1

0 if i = 2j > 0

.

The Frobenius automorphism Φ(a) = ap induces multiplication by pj on K2j−1(F̄p),
and the subgroup fixed by Φk is K2j−1(Fpk).

A different way of phrasing this is to say that (the connected cover of) the algebraic K-
theory space of Fq is equivalent to the homotopy fiber of a certain map ψq−1: BU →
BU , where BU is the classifying space of the infinite unitary group (see 1.6.9) and
ψq is the so-called qth Adams operation. The homotopy groups of BU are a copy
of the integers in even positive dimensions and zero otherwise, and the qth Adams
operation acts as qj on π2jBU .

2. Suslin [273]: “The algebraic K-theory of algebraically closed fields only depends on
the characteristic, and away from the characteristic it always agrees with topological
K-theory”. More precisely:

Let F be an algebraically closed field. The group Ki(F ) is divisible for i ≥ 1. The
torsion subgroup of Ki(F ) is zero if i is even, and it is isomorphic to

{
Q/Z[1/p] if char(F ) = p > 0

Q/Z if char(F ) = 0

if i is odd (see [277] for references).

On the space level (not including K0) Suslin’s results are: If p is a prime different
from the characteristic of the algebraically closed field F , then

K(F )̂p ≃ BU p̂

where p̂ is p-completion.

If F is of characteristic p > 0, then K(F )̂p is contractible.

Note in particular the pleasing formulation saying that BGL(C)+ → BtopGL(C)+ ≃
BtopGL(C) is an equivalence after p-completion. Even though R is not algebraically
closed, the analogous result holds in the real case.

3. Naturally, the algebraic K-theory of the integers has been a key prize, and currently
a complete calculation of the groups of degree divisible by 4 appears out of reach
(relying on the so-called Vandiver’s conjecture in number theory, which at present
is known to hold for all prime numbers less than 12 million). We list here a few
concrete results.

• K0(Z) = Z,
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• K1(Z) = Z/2Z,

• K2(Z) = Z/2Z,

• K3(Z) = Z/48Z, (Lee-Szczarba, 1976, [172]),

• K4(Z) = 0 (Rognes, 2000, [241])

• K5(Z) = Z (Elbaz-Vincent, Gangl and Soulé, 2002, [79]).

We note the long time span from the identification of K3(Z) to that of K4(Z). In this
period things did not stand still; there was much work on the so-called Lichtenbaum-
Quillen conjecture, and other closely associated conjectures in motivic cohomology
by a cohort of mathematicians including Voevodsky, Rost, Kahn, Suslin, Beilinson,
Dwyer, Friedlander, Grayson, Mitchell, Levine, Soulé, Thomason, Wiles, Weibel, and
many, many others. See Section VII.3.2 for some further information, or perhaps
better, some more specialized and detailed source like Weibel’s paper [309].

In 2000 Rognes and Weibel published a complete account [239] of the 2-torsion piece
of K∗(Z) following Voevodsky’s proof of the Milnor conjecture [293]. The result can
be stated in terms of a homotopy commutative square

K(Z[1/2]) −−−→ BOy
y

K(F3) −−−→ BU

becoming homotopy cartesian after completion at 2, or in terms of the 2-primary
information in the table one paragraph down.

For a more thorough discussion of the situation at odd primes we refer the reader to
Weibel’s survey [309], from which we have lifted the following table for the K-groups
Kn(Z) for n > 1:

n mod 8 1 2 3 4 5 6 7 8
Kn(Z) Z⊕ Z/2 Z/2ck Z/2w2k 0 Z Z/ck Z/w2k 0

The K-groups of the integers. The validity of the odd primary information

assumes Vandiver’s conjecture. Here k is the integer part of 1 + n
4 , ck is the

numerator and w2k the denominator of (−1)k 1
2ζQ(1− 2k)/2 = Bk/4k (where Bk

is the kth Bernoulli number – numbered so that B1 = 1
6 , B2 = 1

30 ,. . . ), so that

w2 = 24, w4 = 240 etc..

4. Quite early Borel [34] proved the following result. Let OF be the integers in a number
field F and nj the order of vanishing of the zeta function

ζF (s) =
∑

06=I ideal in OF

|OF/I|
−s
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at s = 1− j. Then

rankKi(OF ) =

{
0 if i = 2j > 0

nj if i = 2j − 1

Example: If F = Q, then

nj =

{
1 if j = 2k − 1 > 1

0 otherwise

Furthermore, Quillen [231] proved that the groups Ki(OF ) are finitely generated.

Again, for a more thorough discussion we refer the reader to Weibel’s survey [309]
where the K-groups are expressed in similar terms as that of K∗(Z) in the table
above.

5. If A is a commutative ring, then K∗(A) =
⊕

iKi(A) is a graded commutative ring
[179] (graded commutative means that a·b = (−1)|a||b|b·a). Even more is true: K∗(A)
is a λ-ring [134]/[167] (the definition of a λ ring is most conveniently given by saying
that it is a “coalgebra over the big Witt ring” [318], but the formulas are spelled out in
the references). The λ-operations arise from the exterior powers ΛkM for A-modules
M , and were used directly on this form by Grothendieck. However, for higher K-
groups the fact that the exterior operations are non-linear (if M ′ ֌ M ։ M ′′ is
a short exact sequence we get an equality [ΛkM ] =

∑
i+j=k[Λ

iM ′][ΛjM ′′] in K0)
means that one has to take quite indirect routes to get the operations. In [134]/[167]
this is obtained by exploiting a certain universality over the representations (where
the λ-operations are defined more readily) by the plus construction of BGL(A). In
[98] Gillet and Grayson showed how one could construct the loop space of the S-
construction 2.2.1 to get a combinatorial construction of the λ-operations [111] and
the related Adams operations [113]. The Adams operations are ring homomorphisms

6. Let A be a perfect ring of characteristic p > 0 (in characteristic p > 0 “perfect”
means that the Frobenius endomorphism a 7→ ap is an automorphism. For instance,
all finite fields are perfect). Then the K-groups Ki(A) are uniquely p-divisible for
i > 0, (see [134] or [167]: the map induced by the Frobenius automorphism coincides
with the pth Adams operation).

7. Gersten [97]/Waldhausen [297]: If A is a free associative ring, then the canonical ring
homomorphism Z→ A induces an equivalence K(Z)

∼
→ K(A).

8. Waldhausen [297]: If G is a free group, free abelian group, or the fundamental group
of a submanifold of the three-sphere, then there is a spectral sequence

E2
p,q = Hp(G;Kq(Z))⇒ Kp+q(Z[G]).

This result is related to the algebraic K-theory Novikov conjecture about the so-called
assembly map, which is also discussed briefly in Section VII.3.6.
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9. Waldhausen [302]: The K-theory (in his sense) of the category of retractive spaces
over a given space X, is equivalent to the product of the unreduced suspension
spectrum of X (e.g., add a disjoint basepoint to get a based space X+ and take its
suspension spectrum n 7→ Sn∧X+) and the differentiable Whitehead spectrum of X.
See also Section III.2.3.4 and Section VII.3.8.1.

10. Goodwillie [102]: If A → B is a surjective map of rings such that the kernel is
nilpotent, then the relative K-theory and the relative cyclic homology agree rationally.

11. Suslin/Panin:

K(Zp̂)̂≃ holim
←−n

K(Z/pnZ)̂

where ̂ denotes profinite completion.

1.8 Where to read

The Handbook of algebraic K-theory [86] contains many good surveys on the state of
affairs in algebraic K-theory. Of older sources, one might mention the two very readable
surveys [112] and [277] on the K-theory of fields and related issues. The article [216] is also
recommended. For the K-theory of spaces see [301]. Some introductory books about higher
K-theory exist: [16], [270], [244] and [147], and a “new” one (which looks very promising)
is currently being written by Weibel [306]. The “Reviews in K-theory 1940–84” [194], is
also helpful (although with both Mathematical Reviews and Zentralblatt on the web it
naturally has lost some of its glory).

2 The algebraic K-theory spectrum.

Ideally, the so-called “higher K-theory” is nothing but a reformulation of the idea behind
K0: the difference is that whereas K0 had values in abelian groups, K-theory has values
in spectra, A.2.2. For convenience, we will follow Waldhausen and work with categories
with cofibrations (see 2.1 below). When interested in the K-theory of rings we should, of
course, apply our K-functor to the category PA of finitely generated projective modules.
The finitely generated projective modules form an exact category (see 1.3), which again is
an example of a category with cofibrations.

There are many definitions of K-theory, each with its own advantages and disadvan-
tages. Quillen began the subject with no less than three: the plus construction, the group
completion approach and the “Q”-construction. Soon more versions appeared, but luckily
most turned out to be equivalent to Quillen’s whenever given the same input. We will even-
tually meet three: Waldhausen’s “S”-construction which we will discuss in just a moment,
Segal’s Γ-space approach (see chapter II.3), and Quillen’s plus construction (see 1.6.1 and
Section III.1.1).
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2.1 Categories with cofibrations

The source for these facts is Waldhausen’s [301] from which we steal indiscriminately. That
a category is pointed means that it has a chosen “zero object” 0 that is both initial and
final.

Definition 2.1.1 A category with cofibrations is a pointed category C together with a
subcategory coC satisfying

1. all isomorphisms are in coC

2. all maps from the zero object are in coC

3. if A→ B ∈ coC and A→ C ∈ C, then the pushout

A −−−→ By
y

C −−−→ C
∐

AB

exists in C, and the lower horizontal map is in coC.

We will call the maps in coC simply cofibrations. Cofibrations may occasionally be
written ֌. A functor between categories with cofibrations is exact if it is pointed, takes
cofibrations to cofibrations, and preserves the pushout diagrams of item 3.

Exact categories, as described in Section 1.3, are important examples. In these cases
the monomorphisms in the short exact sequences are the cofibrations. In particular the
category of finitely generated projective modules over a ring is a category with cofibrations:

Example 2.1.2 (The category of finitely generated projective modules) Let A be
a ring (unital and associative as always) and let MA be the category of all A-modules.
Conforming with the notation used elsewhere in the book, where C(c, c′) denotes the set
of maps c→ c′ in some category C, we writeMA(M,N) for the group of A-module homo-
morphisms M → N instead of HomA(M,N).

We will eventually let the K-theory of the ring A be the K-theory of the category PA of
finitely generated projective right A-modules. The interesting structure of PA as a category
with cofibrations is to let the cofibrations be the injections P ′ ֌ P in PA such that the
quotient P/P ′ is also in PA. That is, a homomorphism P ′ ֌ P ∈ PA is a cofibration if it
is the first part of a short exact sequence

0→ P ′ ֌ P ։ P ′′ → 0

of projective modules. In this case the cofibrations are split, i.e., for any cofibration j : P ′ →
P there exists a homomorphism s : P → P ′ in PA such that sj = idP ′. Note that no choice
of splitting is assumed in saying that j is split; some authors use the term “splittable”.
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A ring homomorphism f : B → A induces a pair of adjoint functors

MB

−⊗BA

⇄
f∗
MA

where f ∗ is restriction of scalars. The adjunction isomorphism

MA(Q⊗B A,Q
′) ∼=MB(Q, f ∗Q′)

is given by sending L : Q⊗B A→ Q′ to q 7→ L(q ⊗ 1).
When restricted to finitely generated projective modules−⊗BA induces a mapK0(B)→

K0(A) making K0 into a functor.
Usually authors are not too specific about their choice of PA, but unfortunately this may

not always be good enough. For one thing the assignment A 7→ PA should be functorial,
and the problem is the annoying fact that if

C
g

−−−→ B
f

−−−→ A

are maps of rings, then (M⊗CB)⊗BA and M⊗CA are generally only naturally isomorphic
(not equal).

So whenever pressed, PA is the following category.

Definition 2.1.3 Let A be a ring. The category of finitely generated projective A-modules
PA is the following category with cofibrations. Its objects are the pairs (m, p), where m
is a non-negative integer and p = p2 ∈ Mm(A). A morphism (m, p) → (n, q) is an A-
module homomorphism of images im(p) → im(q). A cofibration is a split monomorphism
(remember, a splitting is not part of the data).

Since p2 = p we get that im(p) ⊆ Am
p
−→ im(p) is the identity, and im(p) is a finitely

generated projective module. Any finitely generated projective module in MA is isomor-
phic to some such image. The full and faithful functor (i.e., bijective on morphism groups)
PA →MA sending (m, p) to im(p) displays PA as a category equivalent to the category of
finitely generated projective objects in MA. With this definition PA becomes a category
with cofibrations, where (m, p) → (n, q) is a cofibration exactly when im(p) → im(q) is.
The coproduct is given by (m, p) ⊕ (n, q) = (m + n, p ⊕ q) where p ⊕ q is block sum of
matrices.

Note that for any morphism a : (m, p)→ (n, q) we may define

xa : Am ։ im(p)
a

−−−→ im(q) ⊆ An,

and we get that xa = xap = qxa. In fact, when (m, p) = (n, q), you get an isomorphism of
rings

PA((m, p), (m, p)) ∼= {y ∈Mm(A)|y = yp = py}

via a 7→ xa, with inverse

y 7→ {im(p) ⊆ Am
y

−−−→ Am
p

−−−→ im(p)}.



40 CHAPTER I. ALGEBRAIC K-THEORY

Note that the unit in the ring on the right hand side is the matrix p.

If f : A → B is a ring homomorphism, then f∗ : PA → PB is given on objects by
f∗(m, p) = (m, f(p)) (f(p) ∈ Mm(B) is the matrix you get by using f on each entry in
p), and on morphisms a : (m, p)→ (n, q) by f∗(a) = f(xa)|im(f(p)), which is well defined as
f(xa) = f(q)f(xa) = f(xa)f(p). There is a natural isomorphism between

PA −−−→ MA
M 7→M⊗AB−−−−−−−→ MB

and

PA
f∗
−−−→ PB −−−→ MB

.

The assignment A 7→ PA is a functor from rings to exact categories.

Example 2.1.4 (The category of finitely generated free modules) Let A be a ring.
To conform with the strict definition of PA in 2.1.3, we define the category FA of finitely
generated free A-modules as the full subcategory of PA with objects of the form (n, 1),
where 1 is the identity An = An. The inclusion FA ⊆ PA is “cofinal” in the sense
that given any object (m, p) in PA there exists another object (n, q) in PA such that
(n, q)⊕ (m, p) = (n +m, q ⊕ p) is isomorphic to a free module. This will have the conse-
quence that the K-theories of FA and PA only differ at K0.

2.1.5 K0 of categories with cofibrations

If C is a category with cofibrations, we let the “short exact sequences” be the cofiber
sequences c′ ֌ c ։ c′′, meaning that c′ ֌ c is a cofibration and the sequence fits in a
pushout square

c′ −−−→ cy
y

0 −−−→ c′′

.

This class is the class of objects of a category which we will call S2C. The maps are
commutative diagrams

c′ // //

��

c // //

��

c′′

��
d′ // // d // // d′′

Note that we can define cofibrations in S2C too: a map like the one above is a cofibration
if the vertical maps are cofibrations and the map from c

∐
c′ d
′ to d is a cofibration.

Lemma 2.1.6 With these definitions S2C is a category with cofibrations.
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Proof: Firstly, we have to prove that a composite of two cofibrations

c′ −−−→ c −−−→ c′′y
y

y
d′ −−−→ d −−−→ d′′y

y
y

e′ −−−→ e −−−→ e′′

again is a cofibration. The only thing to be checked is that the map from c
∐

c′ e
′ to e is a

cofibration, but this follows by 2.1.1.1. and 2.1.1.3. since

c
∐

c′

e′ ∼= c
∐

c′

d′
∐

d′

e′ ֌ d
∐

d′

e′ ֌ e

The axioms 2.1.1.1 and 2.1.1.2 are clear, and for 2.1.1.3 we reason as follows. Consider the
diagram

d′ −−−→ d −−−→ d′′x
x

x
c′ −−−→ c −−−→ c′y

y
y

e′ −−−→ e −−−→ e′′

where the rows are objects of S2C and the downwards pointing maps constitute a cofibration
in S2C. Taking the pushout (which you get by taking the pushout of each column) the
only nontrivial part of 2.1.1.3. is that we have to check that (e′

∐
c′ d
′)
∐

d′ d→ e
∐

c d is a
cofibration. But this is so since it is the composite

(
e′
∐

c′

d′

)
∐

d′

d ∼=

(
e′
∐

c′

c

)
∐

c

d→ e
∐

c

d

and the last map is a cofibration since e′
∐

c′ c→ e is.
There are three important functors

d0, d1, d2 : S2C → C

sending a sequence c = {c′ ֌ c ։ c′′} to d0(c) = c′′, d1(c) = c and d2(c) = c′.

Lemma 2.1.7 The functors di : S2C → C for i = 0, 1, 2, are all exact.

Proof: See [301, p. 323].
If C is a small category with cofibrations, we may define its zeroth algebraic K-group

K0(C) = K0(C, E) as in 1.3.1, with E = obS2C.
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We now give a reformulation of the definition of K0. We let π0(iC) be the set of
isomorphism classes of C. That a functor F from categories with cofibrations to abelian
groups is “under π0i” then means that it comes equipped with a natural map π0(iC)→ F (C),
and a map between such functors must respect this structure.

Lemma 2.1.8 The functor K0 is the universal functor F under π0i to abelian groups
satisfying additivity, i.e., such that the natural map

F (S2C)
(d0,d2)
−−−−→ F (C)× F (C)

is an isomorphism.

Proof: First one shows that K0 satisfies additivity. For objects a and b in C let a ∨ b be
their coproduct (under 0). Consider the splitting K0(C)×K0(C) → K0(S2C) which sends
([a], [b]) to [a ֌ a ∨ b ։ b]. We have to show that the composite

K0(S2C)
(d0,d2)
−−−−→ K0(C)×K0(C) −−−→ K0(S2C)

sending [a′ ֌ a ։ a′′] to [a′ ֌ a′ ∨ a′′ ։ a′′] = [a′ = a′ → 0] + [0 ֌ a′′ = a′′] is the
identity. But this is clear from the diagram

a′ a′ −−−→ 0∥∥∥
y

y
a′ −−−→ a −−−→ a′′y

y
∥∥∥

0 −−−→ a′′ a′′

in S2S2C. Let F be any other functor under π0i satisfying additivity. By additivity the
function π0(iC) → F (C) satisfies the additivity condition used in the definition of K0 in
1.3.1; so there is a unique factorization π0(iC)→ K0(C)→ F (C) which for the same reason
must be functorial.

The question is: can we obtain deeper information about the category C if we allow
ourselves a more fascinating target category than abelian groups? The answer is yes. If
we use a category of spectra instead we get a theory – K-theory – whose homotopy groups
are the K-groups introduced earlier.

2.2 Waldhausen’s S-construction

We now give Waldhausen’s definition of the K-theory of a category with (isomorphisms
and) cofibrations. (According to Waldhausen, the “S” is for “Segal” as in Graeme B.
Segal. According to Segal his construction was close to the “block-triangular” version
given for additive categories in 2.2.4 below. Apparently, Segal and Quillen were aware of
this construction even before Quillen discovered his Q-construction, but it was not before
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Waldhausen reinvented it that it became apparent that the S-construction was truly useful.
In fact, in a letter to Segal [229], Quillen comments: “... But it was only this spring that I
succeeded in freeing myself from the shackles of the simplicial way of thinking and found
the category Q(B)”.)

For any category C, the arrow category ArC (not to be confused with the twisted arrow
category), is the category whose objects are the morphisms in C, and where a morphism
from f : a→ b to g : c→ d is a commutative diagram in C

a −−−→ c

f

y g

y
b −−−→ d

.

If C → D is a functor, we get an induced functor ArC → ArD, and a quick check reveals
that Ar is itself a functor.

Consider the ordered set [n] = {0 < 1 < · · · < n} as a category and its arrow category
Ar[n].

Actually, since orientation differs in varying sources, let us be precise about this. The
simplicial category ∆ may be considered as a full subcategory of the category of small
categories, by identifying [n] with the category {0 ← 1 ← · · · ← n} (the idea is that
you just insert a horizontal line to make < into <−). Many authors consider instead the
opposite category [n]o = {0 → 1 → · · · → n}. Since we want to keep Waldhausen’s
notation, but still be consistent with our chosen convention we consider the arrow category
Ar([n]o). So, in Ar([11]o) there is a unique morphism from the object (2 ≤ 4) to (3 ≤ 7)
and no morphism the other way.

Definition 2.2.1 Let C be a category with cofibrations. Then SC = {[n] 7→ SnC} is the
simplicial category which in degree n is the category SnC of functors C : Ar([n]o) → C
satisfying the following properties

1. For all j ≥ 0 we have that C(j = j) = 0 (the preferred null object in C) and

2. if i ≤ j ≤ k, then C(i ≤ j) ֌ C(i ≤ k) is a cofibration, and

C(i ≤ j) −−−→ C(i ≤ k)y
y

C(j = j) −−−→ C(j ≤ k)

is a pushout.

The simplicial structure is induced by the cosimplicial category [n] 7→ Ar([n]o).

To get one’s hands on each individual category SnC, think of the objects as strings of
cofibrations

C01 ֌ C02 ֌ . . . ֌ C0n
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with compatible choices of cofibers Cij = C0j/C0i, or equivalently as triangles

C01
// // C02

// //

����

C03
// //

����

. . . // // C0,n−1
// //

����

C0n

����
C12

// // C13
// //

����

. . . // // C1,n−1
// //

����

C1n

����
C23

// // . . . // // C2,n−1
// //

����

C2,n

����
. . .

...

����

...

����
Cn−2,n−1

// // Cn−2,n

����
Cn−1,n

with horizontal arrows cofibrations and every square a pushout (the null object is placed
in the corners below the diagonal).

If C is a category, we will let obC be the class of objects in C.
Since obS0C is trivial, the fundamental group π1(obSC) is the quotient of the free group

on the pointed set obC = obS1C by the relation that [c′] = [c′′]−1[c] for every c′ ֌ c ։

c′′ ∈ obS2C (this is the “edge loop” description of the fundamental group, and can be seen
alternatively by using the Kan loop group description of the fundamental group of a space
with only one zero simplex, see the Appendix A.1.6.2). Hence, the difference between
K0(C) and π1(obSC) is that the former is described as the quotient of the free abelian
group on the isomorphism classes of objects in C, modulo the same relations as π1(obSC).

Lemma 2.2.2 Let C be a small category with cofibrations. Then there is a natural iso-
morphism K0(C) ∼= π1(obSC).

Proof: An isomorphism c′
∼=
−→ c in C can be considered as an element c′

∼=
−→ c → 0 ∈

obS2C, and so [c′] = [c] in π1(obSC). Since we then have that

[c′][c′′] = [c′′ ∨ c′] = [c′ ∨ c′′] = [c′′][c′]

we get that the fundamental group is an abelian group, and so π1obSC is the quotient of
the free abelian group on the set of isomorphism classes of C by the relation [c′]+ [c′′] = [c],
which is just the formula for K0(C) arrived at in 1.3

Thus we have that K0(A) = K0(PA) is the fundamental group of obSPA if we choose the
cofibrations to be the split monomorphisms, and it can be shown thatKi(A) is πi+1(obSPA)
for the other groups we discussed in the introduction (namely the algebraic cases i = 1
and i = 2, and also for the definition of the higher groups via the plus construction, see
Section III.2).
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2.2.3 Additive categories

Recall that an Ab-category [191] is a category where the morphism sets are abelian groups
and where composition is bilinear (also called linear category). An additive category is an
Ab-category with all finite products.

Let C be an additive category, regarded as a category with cofibrations by letting the
cofibrations be the split monomorphisms. With this choice we call C a split exact category.

In these cases it is easier to see how the S-construction works. Note that if

c = (c0,1, . . . , ci−1,i, . . . , cn−1,n)

is a sequence of objects, then the sum diagram ψnc with

(ψnc)ij =
⊕

i≤k≤j

ck−1,k

and maps the obvious inclusions and projections, is an element in SnC. Since C is split
exact every element of SnC is isomorphic to such a diagram. Maps between two such sum
diagrams can be thought of as upper triangular matrices:

Definition 2.2.4 Let C be an Ab-category. For every n > 0, we define TnC – the n × n
upper triangular matrices on C – to be the category with objects obCn, and morphisms

TnC((c1, . . . , cn), (d1, . . . , dn)) =
⊕

1≤j≤i≤n

C(ci, dj)

with composition given by matrix multiplication.

Lemma 2.2.5 Let C be additive. Then the assignment ψq given in the discussion above
defines a full and faithful functor

ψq : TqC→ SqC

which is an equivalence of categories since C is split exact. .. '!&"%#$����

2.3 The equivalence obSC → BiSC

Lemma 2.3.1 below displays an amazing – and very useful – property about the simplicial
set of objects of the S-construction: Considered as a functor from small categories with
cofibrations to simplicial sets, it transforms natural isomorphisms to homotopies, and so
sends equivalences of categories to homotopy equivalences.

This is reminiscent to the classifying space construction B discussed below (see also
A.1.4), but is slightly weaker in that the classifying space takes all natural transformations
to homotopies, whereas obS only takes the natural isomorphisms to homotopies.

All categories in this section are assumed to be small. For every n ≥ 0, regard [n] =
{0 < 1 < · · · < n} as a category (if a ≤ b there is a unique map a← b), and maps in ∆ as
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functors (hence we regard ∆ as a full subcategory of the category of small categories). The
classifying space (or nerve) of a small category C is the space (simplicial set) BC defined
by

[q] 7→ BqC = {c0 ← c1 ← · · · ← cq ∈ C} = {functors [q]→ C}.

Note that the standard [q]-simplex ∆[q] = {[n] 7→ ∆([n], [q])} is the nerve of the category
[n]: B[q] = ∆[q]. The standard fact that natural transformations induce homotopies comes
from the fact that a natural transformation is the same as a functor C × [1] → D, and
B(C × [1]) ∼= BC × B[1] = BC ×∆[1]. See also Appendix A.1.4.

Lemma 2.3.1 If
f0, f1 : C → D

are naturally isomorphic exact functors, then they induce simplicially homotopic maps

obSC → obSD.

Hence C 7→ obSC sends equivalences of categories to homotopy equivalences of spaces.

Proof: (the same proof as in [301, 1.4.1]). We define a homotopy

H : obSC ×B[1] −−−→ obSD

from Sf0 to Sf1 as follows. The natural isomorphism η : f1
∼= f0 gives rise to a functor

F : C × [1]→ D with F (c, i) = fi(c), and F (c→ c′, i ≤ i′) equal to the obvious composite
fi′(c) ∼= fi(c)→ fi(c

′). Let c : Ar[n]→ C be an object of SnC, and φ ∈ Bn[1] = ∆([n], [1]).
Then H(c, φ) is the composite

Ar([n]o) −−−→ Ar([n]o)× [n]o
(c,φ)
−−−→ C × [1]o ∼= C × [1]

F
−−−→ D

where the first map sends i ≤ j to (i ≤ j, j), and where we have used the isomorphism
[1]o ∼= [1]. This is an object in SnD since f ∼= g is an isomorphism.

We will use bisimplicial sets (functors from ∆o × ∆o to sets) quite freely, and may
consider a simplicial set as a bisimplicial set which is constant in one simplicial direction.
The diagonal of a bisimplicial set is the simplicial set you get by precomposing with the
diagonal functor ∆o → ∆o × ∆o. We will simply say that a map of bisimplicial sets is
an equivalence if its diagonal is a weak equivalence of simplicial sets. For this and related
technicalities, the reader is invited to consult Appendix A.5.

If C is a category, then iC ⊆ C is the subcategory with all objects, but only isomorphisms
as morphisms.

Corollary 2.3.2 If tC ⊂ iC is a subcategory of the isomorphisms containing all objects,
then the inclusion of the zero skeleton is an equivalence

obSC
≃
−−−→ BtSC

where tSqC ⊆ SqC is the subcategory whose morphisms are natural transformations coming
from tC.
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Proof: This follows by regarding the bisimplicial object

{[p], [q] 7→ BptSqC}

as obSqNp(C, tC), where Np(C, tC) is a full subcategory of the category NpC (see A.1.4)
of functors [p] → C and natural transformations between these. The objects of Np(C, tC)
are the chains of maps in tC, i.e., obNp(C, tC) = BptC.

Consider the functor C → Np(C, tC) given by sending c to the chain of identities on
c (here we need that all identity maps are in tC). It is an equivalence of categories. A
splitting being given by e.g., sending c0 ← · · · ← cp to c0: the natural isomorphism to the
identity on Np(C, tC) is given by

c0
α1←−−− c1

α2←−−− c2
α3←−−− . . .

αp
←−−− cp∥∥∥ α1

y α1α2

y α1α2...αp

y
c0 c0 c0 . . . c0

.

A morphism
c′0

��

c′1oo

��

. . .oo c′poo

��
c0 c1oo . . .oo cpoo

in Np(C, tC) is said to be a cofibration if each of the vertical maps are cofibrations, giving
N(C, tC) the structure of a simplicial category with cofibrations.

Considering obSC → BtSC as a map of bisimplicial sets, we see that by 2.3.1 it is a
homotopy equivalence

obSC = obSN0(C, tC)→ obSNp(C, tC) = BptSC

in every degree, and so by A.5.0.2 we obtain a weak equivalence of diagonals.

2.3.3 Additivity

The fundamental theorem of the S-construction is the additivity theorem. For proofs we
refer the reader to [301] or [203]. This result is actually not used explicitly anywhere
in these notes, but it is our guiding theorem for all of K-theory. In fact, it shows that
the S-construction is a true generalization of K0, giving the same sort of universality for
K-theory considered as a functor into spectra (see below).

Theorem 2.3.4 Let C be a category with cofibrations. The natural map

obS(S2C)→ obS(C)× obS(C)

is a weak equivalence. .. '!&"%#$����

See also the more general formulation in Theorem 2.7.1.
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2.4 The spectrum

Continuing where Lemma 2.1.6 and 2.1.7 left off, one checks that the definition of SC
guarantees that it is in fact a simplicial category with cofibrations.

To be precise,

Definition 2.4.1 Let C be a category with cofibrations. A cofibration c ֌ d ∈ SqC is a
map such that for 0 < i ≤ q the maps

c0i ֌ d0i

and
d0,i−1

∐

c0,i−1

c0i ֌ d0i

are all cofibrations.

Note that if c ֌ d is a cofibration then it follows that all the maps cij ֌ dij are
cofibrations.

This means that we may take S of each SnC, and in this way obtain a bisimplicial
object SSC, and by iteration, a sequence of (multi)-simplicial objects S(m+1)C = SS(m)C.

Recall that a spectrum is a sequence of pointed spaces, m 7→ Xm, m ≥ 0, together
with maps S1∧Xm → Xm+1. See Appendix A.2.2 for further development of the basic
properties of spectra, but recall that given a spectrum X, we define its homotopy groups
as

πqX = lim
−→
k

πk+qX
k

(where the colimit is taken along the adjoint of the structure maps). A map of spectra
f : X → Y is a levelwise equivalence if fn : Xn → Y n is a weak equivalence for every n,
and a stable equivalence if it induces an isomorphism π∗(f) : π∗X → π∗Y . What we call
levelwise equivalences are often called pointwise equivalences.

We will study another model for spectra in more detail in chapter II. Morally, spectra
are beefed up versions of chain complexes, but in reality they give you much more.

If Z is any space (i.e., simplicial set) and m,n ≥ 0, we have a natural map ∆([m], [n])×
Zn → Zm sending (φ, z) to φ∗z, and varying m we get a simplicial map ∆[n]×Zn → Z (an
instance of the Yoneda map). In particular we get a map ∆[1] × obS1C → obSC, which,
given that S0C = ∗ (i.e., SC is reduced) factors uniquely through a map S1∧obS1C → obSC
(since S1 = ∆[1]/∂∆[1]). Upon identifying C and S1C this gives a map

S1∧obC → obSC.

This means that the multi-simplicial sets

m 7→ obS(m)C = obS . . . S︸ ︷︷ ︸
m times

C

form a spectrum after taking the diagonal.
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Since obS(m)C is connected in all of its m simplicial directions, the diagonal will be
m − 1-connected by Corollary A.5.0.9. A consequence of the additivity theorem 2.3.4 is
that this spectrum is almost an “Ω-spectrum” (see A.2.2): more precisely the adjoint maps
obS(m)C → ΩobS(m+1)C are equivalences for all m > 0. This is sometimes summarized by
saying that m 7→ S(m)C is a positive Ω-spectrum. We won’t need this fact.

For any category D, let iD ⊆ D be the subcategory with the same objects, but with
only the isomorphisms as morphisms. As before, we get a map S1∧BiC → BiSC, and
hence another spectrum m 7→ BiS(m)C.

For each n, the degeneracies (i.e., the maps given by the unique maps to [0] in ∆)
induce an inclusion

obS(n)C = B0iS
(n)C → BiS(n)C

giving a map of spectra. That the two spectra are levelwise equivalent (that is, the maps
obS(n)C = B0iS

(n)C → BiS(n)C are all weak equivalences of spaces after taking diagonals)
follows from Corollary 2.3.2.

Definition 2.4.2 Let C be a category with cofibrations. Then

K(C) = {m 7→ obS(m)C}

is the K-theory spectrum of C (with respect to the isomorphisms).

In these notes we will only use this definition for categories with cofibrations which are
Ab-categories. Exact categories are particular examples of Ab-categories with cofibrations.

The additivity theorem 2.3.4 can be restated as a property of the K-theory spectrum:
The natural map

obS(n)(S2C) −−−→ obS(n)(C)× obS(n)(C)

is a weak equivalence for all n ≥ 0. One should note that the claim that the map K(S2C)→
K(C)×K(C) is a stable equivalence follows almost automatically by the construction (see
[301, 1.3.5]).

Scholium 2.4.3 The following fact has been brought to our attention by Lars Hesselholt:
If C is an additive category, then the category S2C becomes an exact category if we define
the sequence c′ → c → c′′ to be exact if c′ → c is a cofibration in S2C and if for each
0 ≤ i < j ≤ 2 the sequence c′ij → cij → c′′ij is split exact. However, all such short exact
sequences split, making S2C itself no more than an additive category: given a cofibration
c′ ֌ c in S2C, we may choose retractions cij → c′ij of c′ij ֌ cij in such a way that
they form a retraction c → c′ in S2C of c′ ֌ c (choose retractions of c′01 ֌ c01 and
c01
∐

c′01
c′02 ֌ c02).

Definition 2.4.4 (K-theory of rings) Let A be a ring (unital and associative as al-
ways). Then we define the K-theory spectrum of A, K(A), to be K(PA); the K-theory of
the category of finitely generated projective right A-modules.
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K-theory behaves nicely with respect to “cofinal” inclusions, see e.g., [271], and we cite
the only case we need: Let FA be the category of finitely generated free A-modules. The
inclusion FA ⊆ PA induces a homotopy fiber sequence (c.f. A.4) of spectra

K(FA) −−−→ K(PA) −−−→ H(K0(A)/Kf
0 (A))

where H(M) is the Eilenberg–Mac Lane spectrum of an abelian group M (a spectrum
whose only nonzero homotopy group is M in dimension zero. See Section A.2.2 for a
construction). Hence the homotopy groups of K(FA) and K(A) = K(PA) coincide in
positive dimensions.

2.5 K-theory of split radical extensions

Recall that if B is a ring, the Jacobson radical rad(M) of a B-module M is the intersection
of all the kernels of maps from M to simple modules [13, p. 83]. Of particular importance
to us is the case of a nilpotent ideal I ⊆ B. Then I ⊆ rad(B) since 1 + I consists of units.

We now turn to the very special task of giving a suitable model for K(B) when f : B →
A is a split surjection with kernel I contained in the Jacobson radical rad(B) ⊆ B. We have
some low dimensional knowledge about this situation, namely 1.2.3. and 1.3.7.5. which tell
us that K0(B) ∼= K0(A) and that the multiplicative group (1 + I)× maps surjectively onto
the kernel of the surjection K1(B) ։ K1(A). Some knowledge of K2 was also available
already in the seventies (see e.g., [60] [292] and [189])

We use the strictly functorial model explained in 2.1.3 for the category of finitely
generated projective modules PA where an object is a pair (m, p) where m is a natural
number and p ∈MmA satisfies p2 = p. If j : A→ B, then j∗(m, p) = (m, j(p)).

Lemma 2.5.1 Let f : B → A be a split surjective k-algebra map with kernel I, and let
j : A→ B be a splitting. Let c = (m, p) ∈ PA and P = im(p), and consider PB(j∗c, j∗c) as
a monoid under composition. The kernel of the monoid map

f∗ : PB(j∗c, j∗c)→ PA(c, c)

is isomorphic to the monoid of matrices x = 1 + y ∈ Mm(B) such that y ∈ MmI and
y = yj(p) = j(p)y. This is also naturally isomorphic to the set MA(P, P ⊗A j

∗I). The
monoid structure induced on MA(P, P ⊗A j

∗I) is given by

α · β = (1 + α) ◦ (1 + β)− 1 = α+ β + α ◦ β

for α, β ∈MA(P, P ⊗A I) where α ◦ β is the composite

P
β

−−−→ P ⊗A I
α⊗1
−−−→ P ⊗A I ⊗A I

multiplication in I
−−−−−−−−−−→ P ⊗A I

Proof: As in definition 2.1.3, we identify PB(j∗c, j∗c) with the set of matrices x ∈Mm(B)
such that x = xj(p) = j(p)x and likewise for PA(c, c). The kernel consists of the matrices
x for which f(x) = p (the identity!), that is, the matrices of the form j(p) + y with
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y ∈ Mm(I) such that y = yj(p) = j(p)y. As a set, this is isomorphic to the claimed
monoid, and the map j(p)+y 7→ 1+y is a monoid isomorphism since (j(p)+y)(j(p)+z) =
j(p)2 + yj(p) + j(p)z + yz = j(p) + y + z + yz 7→ 1 + y + z + yz = (1 + y)(1 + z). The
identification withMA(P, P ⊗A j

∗I) is through the composite

HomA(P, P ⊗A j
∗I)

∼=
−−−→ HomB(P ⊗A B,P ⊗A I)
φ 7→1+φ
−−−−→ HomB(P ⊗A B,P ⊗A B)

∼=
−−−→ PB(j∗c, j∗c)

where the first isomorphism is the adjunction isomorphism and the last isomorphism is the
natural isomorphism between

PA
j∗
−−−→ PB −−−→ MB

and

PA −−−→ MA
−⊗AB−−−−→ MB

.

Lemma 2.5.2 In the same situation as the preceding lemma, if I ⊂ Rad(B), then the
kernel of

f∗ : PB(j∗c, j∗c) −−−→ PA(c, c)

is a group.

Proof: To see this, assume first that P ∼= An. Then

MA(P, P ⊗A I) ∼= MnI ⊆Mn(rad(B)) = rad(Mn(B))

(we have that Mn(rad(B)) = Rad(Mn(B)) since MB(Bn,−) is an equivalence from B-
modules to Mn(B)-modules, [13, p. 86]), and so (1 +Mn(I))

× is a group. If P is a direct
summand of An, say An = P ⊕Q, and α ∈ MA(P, P ⊗A I), then we have a diagram

P ⊗A B
1+α
−−−→ P ⊗A By

y

An ⊗A B
1+(α,0)
−−−−→ An ⊗A B

where the vertical maps are split injections. By the discussion above 1+ (α, 0) must be an
isomorphism, forcing 1 + α to be one too.

All of the above holds true if instead of considering module categories, we consider the
S construction of Waldhausen applied n times to the projective modules. More precisely,
let now c be some object in S

(n)
p PA. Then the set of morphisms S

(n)
p MA(c, c⊗A j

∗I) is still
isomorphic to the monoid of elements sent to the identity under

S
(n)
p PB(j∗c, j∗c)

f∗
−−−→ S

(n)
p PA(c, c)

and, if I is radical, this is a group. We will usually suppress the simplicial indices and
speak of elements in some unspecified dimension. We will also usually suppress the j∗ that
should be inserted whenever I is considered as an A-module.

We need a few technical definitions.
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Definition 2.5.3 Let

0 −−−→ I −−−→ B
f

−−−→ A −−−→ 0

be a split extension of k-algebras with I ⊂ Rad(B), and choose a splitting j : A → B
of f . Let tPB ⊆ PB be the subcategory with all objects, but with morphisms only the
endomorphisms taken to the identity by f∗. Note that, since I ⊆ rad(B), all morphisms
in tPB are automorphisms.

Let
tS(n)

q PB ⊆ iS(n)
q PB

be the subcategory with the same objects, but with morphisms transformations of diagrams
in S

(n)
q PB consisting of morphisms in tPB.
Consider the sequence of (multi) simplicial exact categories n 7→ DnAB given by

obDnAB = obS(n)PA and DnAB(c, d) = S(n)PB(j∗c, j∗d)

Let tDnAB ⊂ D
n
AB be the subcategory containing all objects, but whose only morphisms are

the automorphisms S(n)MA(c, c⊗A I) considered as the subset {b ∈ S(n)PB(j∗c, j∗c)|f∗b =
1} ⊆ DnAB(c, c).

We set
KAB = {n 7→ BtDnAB =

∐

m∈S(n)PA

B
(
S(n)MA(m,m⊗A I)

)
} (2.5.4)

where the bar construction is taken with respect to the group structure.

Recall that in the eyes of K-theory there really is no difference between the special
type of automorphisms coming from t and all isomorphisms since by Corollary 2.3.2 the
inclusions

obS(n)PB ⊆ BtS(n)PB ⊆ BiS(n)PB

are both weak equivalences.
Note that DnAB depends not only on I as an A-bimodule (i.e., A0 ⊗ A-module), but

also on the multiplicative structure it inherits as an ideal in B. We have a factorization

S(n)PA
j!−−−→ DnAB

j#
−−−→ S(n)PB

where j! is the identity on object, and j∗ on morphisms, and j# is the fully faithful functor
sending c ∈ obtDnAB = obS(n)PA to j∗c ∈ obS

(n)PB (and the identity on morphisms). We
see that KAB is a subspectrum of {n 7→ BiS(n)PB} via

tDnAB −−−→ tS(n)PB ⊆ iS(n)PB

Theorem 2.5.5 Let f : B → A be a split surjection of k-algebras with splitting j and
kernel I ⊂ Rad(B). Then

DnAB
j#
−−−→ S(n)PB, and its restriction tDnAB

j#
−−−→ tS(n)PB
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are (degreewise) equivalences of simplicial exact categories, and so the chain

KAB(n) = BtDnAB ⊆ BtS(n)PB ⊇ obS(n)PB = K(B)(n)

consists of weak equivalences.

Proof: To show that

DnAB
j#
−−−→ S(n)PB

is an equivalence, all we have to show is that every object in S(n)PB is isomorphic to
something in the image of j#. We will show that c ∈ S(n)PB is isomorphic to j∗f∗c =
j#(j!f∗c).

Let c = (m, p) ∈ obPB, P = im(p). Consider the diagram with short exact columns

im(p) · I
� _

��

//____ im(jf(p)) · I
� _

��
im(p)

π

��

ηp //_____ im(jf(p))

π′

��
f ∗im(f(p)) f ∗im(fjf(p))

Since im(p) is projective there exist a (not necessarily natural) lifting ηp. Let C be the
cokernel of ηp. A quick diagram chase shows that C · I = C. Since im(jf(p)), and hence
C, is finitely generated, Nakayama’s lemma III.1.4.1 tells us that C is trivial. This implies
that ηp is surjective, but im(jf(p)) is also projective, so ηp must be split surjective. Call
the splitting ǫ. Since πǫ = π′ηpǫ = π′ the argument above applied to ǫ shows that ǫ is
also surjective. Hence ηp is an isomorphism. Thus, every object c ∈ obPB is isomorphic to
j∗(f∗c).

Let c ∈ obS(n)PB. Then c and j∗f∗c are splittable diagrams with isomorphic vertices.
Choosing isomorphisms on the “diagonal” we can extend these to the entire diagram, and
so c and j∗f∗c are indeed isomorphic as claimed, proving the first assertion.

To show that

tDnAB
j#
−−−→ tS(n)PB

is an equivalence, note first that this functor is also fully faithful. We know that any
c ∈ ob tS(n)PB = obS(n)PB is isomorphic in S(n)PB to j∗f∗c, and the only thing we need
to show is that we can choose this isomorphism in t. Let ι : c → j∗f∗c ∈ iS

(n)PB be any
isomorphism. Consider

c
ι

−−−→ j∗f∗c = j∗f∗j∗f∗c
j∗f∗(ι−1)
−−−−−→ j∗f∗c

Since f∗(j∗f∗(ι
−1) ◦ ι) = f∗(ι

−1) ◦ f∗(ι) = 1f∗c the composite j∗f∗(ι
−1) ◦ ι is an isomorphism

in tSnq P from c to j#(j!f∗c).
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Definition 2.5.6 In the context of Definition 2.5.3, let

K̃AB = KAB/K(A) = {n 7→
∨

m∈S(n)PA

B
(
S(n)MA(m,m⊗A I)

)
}.

This is a model for the relative algebraic K-theory of B → A in that Theorem 2.5.5 says
that

K̃AB
∼
−−−→ K(B)/K(A)

is a (levelwise) equivalence of spectra. The latter spectrum is stably equivalent to the
homotopy fiber of K(B)→ K(A). To see this, consider the square

K(B) −−−→ K(A)y
y

K(B)/K(A) −−−→ ∗

It is a (homotopy) cocartesian square of spectra, and hence homotopy cartesian. (In
spectrum dimension n this is a cocartesian square, and the spaces involved are at least
n− 1-connected, and so all maps are n− 1-connected. Then Blakers–Massey A.7.2.2 tells
us that the square is (n − 1) + (n − 1) − 1 = 2n − 3 homotopy cartesian.) This means
that the homotopy fiber of the upper horizontal map maps by a weak equivalence to the
homotopy fiber of the lower horizontal map.

2.5.7 Analyticity properties of KA(B)

The following result will not be called for until Lemma VII.2.1.5, and may be safely skipped
at a first reading until the result is eventually referred back to, but is placed here since it
uses notation that is better kept local.

Although we are not using the notion of calculus of functors in these notes, we will in
many cases come quite close. The next lemma, which shows how KA(B) behaves under
certain inverse limits, can be viewed as an example of this. A twist which will reappear
later is that we do not ask whether the functor turns “cocartesianness” into “cartesianness”,
but rather to what extent the functor preserves inverse limits. The reason for this is that
in many cases the coproduct structure of the source category can be rather messy, whereas
some forgetful functor tells us exactly what the limits should be.

For the basics on cubes see Appendix A.7. In particular, a strongly cocartesian n-cube
is an n-cube where each two-dimensional face is cocartesian.

Let Split be the category of split radical extensions over a given ring A. Note that if
B ։ A is an object in Split with kernel the A-bimodule P , then B ։ A is isomorphic
to A ⋉ P ։ A where A ⋉ P is A ⊕ P as an abelian group with multiplication given by
(a′, p′) · (a, p) = (a′a, a′p+ p′a + p′p).

The category sSplit of simplicial objects in Split then inherits the notion of k-cartesian
cubes via the forgetful functor down to simplicial sets. By “final maps” in an n-cube



2. THE ALGEBRAIC K-THEORY SPECTRUM. 55

we mean the maps induced from the n inclusions of the subsets of cardinality n − 1 in
{1, . . . , n}.

If A ⋉ P ∈ sSplit it makes sense to talk about K(A ⋉ P ) by applying the functor in
every degree, and diagonalizing.

Lemma 2.5.8 Let A⋉ P be a strongly cartesian n-cube in sSplit such all the final maps
are k-connected. Then K(A⋉ P) is (1 + k)n-cartesian.

Proof: Fix the non-negative integer q, the tuple p = (p1, . . . , pq) and the object c ∈

obS
(q)
p PA. The cube S

(q)
p MA(c, c⊗AP) is also strongly cartesian (it is so as a simplicial set,

and so as a simplicial group), and the final maps are still k-connected. Taking the bar of this

gives us a strongly cartesian cube BS
(q)
p MA(c, c⊗AP), but whose final maps will be k+1-

connected. By the Blakers–Massey theorem A.7.2.2 this means that BS
(q)
p MA(c, c⊗A P)

will be (k + 2)n− 1-cocartesian. The same will be true for

∐

c∈obS
(q)
p PA

BS(q)
p MA(c, c⊗A P)

Varying p and remembering that each multi-simplicial space is (q − 1)-connected in the
p direction, we see that the resulting cube is q + (k + 2)n − 1-cocartesian, c.f. A.5.0.9.
Varying also q, we see that this means that the cube of spectra K(A⋉ P) is (k + 2)n− 1
cocartesian, or equivalently (k + 2)n− 1− (n− 1) = (k + 1)n-cartesian.

The importance of this lemma will become apparent as we will approximate elements in
Split by means of cubical diagrams in sSplit where all but the initial node will be “reduced”
in the sense that the zero skeletons will be exactly the trivial extension A = A.

2.6 Categories with cofibrations and weak equivalences

Definition 2.4.2 of the K-theory of a category with cofibrations does not immediately cover
more general situations where we are interested in incorporating some structure of weak
equivalences, e.g., simplicial rings. Waldhausen [301] covers this case also, and demands
only that the category of weak equivalences wC ⊆ C contains all isomorphisms and satisfies
the gluing lemma, that is, if the left horizontal maps in the commutative diagram

d ֋ c → e
↓ ↓ ↓
d′ ֋ c′ → e′

are cofibrations and the vertical maps are weak equivalences, then the induced map

d
∐

c

e→ d′
∐

c′

e′

is also a weak equivalence. C.f. Lemma 5.2.6 of [139] which proves the gluing lemma in
most cases of interest.
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In this case SC inherits a subcategory of weak equivalences, wSC satisfying the same
conditions by declaring that a map is a weak equivalence if it is on all nodes. We iterate
this construction and define

K(C, w) = {m 7→ BwS(m)C}. (2.6.0)

Corollary 2.3.2 then says that

K(C)
≃
−−−→ K(C, i)

is an equivalence of spectra.
One should note that there really is no need for the new definition, since the old covers

all situations by the following observation. If we let NqC be the category of functors [q]→ C
and natural transformations between these, we can let Nq(C, w) be the full subcategory of
NqC with obNq(C, w) = BqwC. Letting q vary, this is a simplicial category with cofibrations,
and we have an canonical isomorphism

K(C, w)(m) = BwS(m)C ∼= obS(m)N(C, w) = K(N(C, w)).

Some authors use the word “Waldhausen category” to signify a category with cofibra-
tions and weak equivalences.

2.7 Other important facts about the K-theory spectrum

The following theorems are important for the general framework of algebraic K-theory and
we include them for the reader’s convenience. We will neither need them for the develop-
ment of the theory nor prove them, but we still want to use them in some examples and
draw the reader’s attention to them. The papers [110] and [271] of Grayson and Staffeldt
give very concrete and nice proofs of Quillen’s original statements in the context of Wald-
hausen’s construction. In addition, Waldhausen [301], Thomason [284] and Schlichting’s
[245] papers are good sources.

Theorem 2.7.1 (Additivity theorem: [301, section 1.4] and [203]) Let C be a cat-
egory with cofibrations and weak equivalences wC. Then

BwSS2C → BwSC ×BwSC

is an equivalence, and the structure map BwS(m)C → ΩBwS(m+1)C is an equivalence for
m > 0. .. '!&"%#$����

In order to state the next theorems, we need to define some important notions about
categories with cofibrations and weak equivalences

Definition 2.7.2 A subcategory of a category is said to satisfy the two-out-of-three prop-
erty if given two composable morphisms

c b
goo a

foo
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in the ambient category, one has that, if two of f , g and gf are in the smaller category,
then all three are.

The category of weak equivalences in a category with cofibrations and weak equivalences
is said to satisfy the extension axiom if for any given map

c // //

��

c′

��
d // // d′

of cofibrations where c→ d and the induced map of cofibers c′/c→ d′/d are weak equiva-
lences it follows that the map c′ → d′ is a weak equivalence too.

Let C andD be categories with weak equivalences and cofibrations. A functor F : C → D
is exact if it preserves weak equivalences and is exact as a functor of categories with
cofibrations (i.e., preserves cofibrations and pushout squares along cofibrations, c.f. 2.1.1).

An exact functor of categories with weak equivalences and cofibrations F : C → D has
the approximation property if

1. wC = F−1(wD)

2. given F (c) → d ∈ D, there is a cofibration c ֌ c′ in C and a weak equivalence
F (c′)

∼
→ d in D such that the induced diagram

F (c) //
##

##G
GGGGGGG

d

F (c′)

∼

>>|||||||||

commutes

Waldhausen refers to the two-out-of-three property by saying that the smaller category sat-
isfies the saturation axiom. One notices how subcategories characterized by some induced
invariant (like homotopy groups) being isomorphisms will always satisfy the two-out-of-
three property. On the other hand, there are interesting applications (like simple maps)
where the twp-out-of-three property does not hold.

We state Schlichting’s version [245, Theorem 10] of the approximation theorem.

Theorem 2.7.3 (Approximation theorem 1.6.7 [301] and [245]) Let C and D be cat-
egories with cofibrations and weak equivalences, where the weak equivalences have the two-
out-of-three property, and suppose that every morphism in C may be factored as a cofibration
followed by a weak equivalence. If the exact functor F : C → D has the approximation prop-
erty, then the induced maps BwC → BwD and BwSC → BwSD are weak equivalences. .. '!&"%#$����

It does not escape notice that with Schlichting’s formulation, even Ravel’s “Fool’s morn-
ing song” (c.f. axiom Cyl 3 on p. 348 of [301]) is redundant.

The next theorem, the so-called fibration theorem is of importance in localization situ-
ations, and is often referred to as the localization theorem, and again we use Schlichting’s
formulation [245, Theorem 11]
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Theorem 2.7.4 (Fibration theorem [301], [245], [108] and [232]) Let C be a cate-
gory with cofibrations and two subcategories vC ⊆ wC of weak equivalences. Let Cw ⊆ C be
the full subcategory with cofibrations of objects c such that the unique map ∗ → c is in wC.
This inherits two subcategories of weak equivalences vCw = Cw ∩ vC and wCw = Cw ∩ wC.
Assume every map in C may be factored as a cofibration followed by a map in wC and
that wC has the two-out-of-three property and satisfies the extension axiom 2.7.2. Then
the square

BwSCw −−−→ BwSCwy
y

BvSC −−−→ BwSC

is homotopy cartesian, and the upper right term, BwSCw is contractible. .. '!&"%#$����

In his foundational paper [232], Quillen states a dévissage theorem for the K-theory of
abelian categories. Although there has been serious effort, this theorem has still not found
a satisfactory formulation in Waldhausen’s setup, see e.g., [317], [110, 5.1], [271, 4.1] (the
last two with short proofs)

Still it is a very important theorem and we state it with the original conditions.

Theorem 2.7.5 (Dévissage theorem [232, theorem 4]) Let A be an essentially small
abelian category and B a full additive subcategory closed under taking subobjects and quo-
tient objects. If for each object a of A there is a finite filtration 0 = a0 ⊆ a1 ⊆ · · · ⊆ an = a
such that each subquotient aj/aj−1 is in B, then the map BiSB → BiSA induced by the
inclusion is a weak equivalence. .. '!&"%#$����

We state the resolution theorem (see also [110, 4.1] and [271, 3.1]).

Theorem 2.7.6 (Resolution theorem [232, theorem 3]) Assume P ⊆ M is a full
exact subcategory of an exact category M, closed under exact sequences, extensions and
cokernels. Assume that for any M ∈ M there is a short exact sequence 0 → M → P →
P ′′ → 0 in M with P, P ′′ in P, then the map BiSP → BiSM induced by the inclusion is
a weak equivalence. .. '!&"%#$����

Some of the theory Waldhausen develops for his construction will appear later in other
contexts. The stable approach we will eventually adopt, avoids the use of machinery such
as spherical objects and cell filtrations.

3 Stable K-theory is homology

In this section we will try to connect K-theory to homology. This is done by considering
“small perturbations” in input in K-theory, giving a “linear” theory: the “directional deriva-
tive” of K-theory. This is then compared with the classical concept of homology, and the
two are shown to be equal.
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This theme will be revisited later, most noticeably in Section V.3 where stable K-theory
is compared with topological Hochschild homology through the trace map. This map is
proved to be an equivalence, using that – in view of Theorem IV2.4.1 and Theorem IV.2.5.21
– the homology of the category of finitely generated modules may be identified with topo-
logical Hochschild homology.

3.1 Split surjections with square-zero kernels

If A is a unital ring, and P is any A-bimodule (i.e., an Ao ⊗ A module, but with no
multiplicative structure as part of the data), we define the ring A⋉P simply to be A⊕ P
as an A-bimodule, and with multiplication (a′, p′)(a, p) = (a′a, a′p+ p′a). That is, P 2 = 0
when P is considered as the kernel of the projection A⋉ P ։ A sending (a, p) to a.

Algebraically, this is considered to be a “small” deformation of A (the elements of P
are so small that their products vanish!). And the difference between K(A⋉P ) and K(A)
reflects the local structure of K-theory. The goal is to measure this difference.

Considered as a functor from A-bimodules, P 7→ K(A⋉ P ) is not additive, even if we
remove the part coming from K(A). That is, if we let

K̃(A⋉ P ) = hofib{K(A⋉ P ) −−−→ K(A)}

then the map K̃(A⋉ (P ⊕Q))→ K̃(A⋉P )× K̃(A⋉Q) induced by the projections is not
an equivalence in general. For instance, we have by [159] that π2K̃(Z⋉P ) ∼=

∧2 P ⊕P/2P
for all abelian groups P . Hence

π2K̃(Z ⋉ (P ⊕Q)) ∼=

2∧
(P ⊕Q)⊕ (P ⊕Q)/2(P ⊕Q)

∼=

(
2∧
P ⊕ P/2P

)
⊕

(
2∧
Q⊕Q/2Q

)
⊕ P ⊗Q

∼= π2K̃(Z ⋉ P )⊕ π2K̃(Z ⋉Q)⊕ (P ⊗Q)

where the tensor product expresses the non-linearity.
There are means of forcing linearity upon a functor, which will eventually give stable

K-theory, and the aim of this section is to prove that this linear theory is equivalent to the
homology of the category of finitely generated projective A-modules.

3.2 The homology of a category

Let C be an Ab-category (that is: a category enriched in Ab, the category of abelian groups,
see Appendix A.9.2.4. Ab-categories are also known as “linear categories”, “ringoids”, “rings
with many objects” and unfortunately, some call them “additive categories”, a term we
reserve for pointed Ab-categories with sum). The important thing to remember is that the
homomorphism sets are equipped with an abelian group structure, such that composition
is bilinear.
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We say that C is flat if the morphism sets are flat as abelian groups. A C-bimodule
is an Ab-functor (linear functor) Co ⊗ C → Ab (see also A.9.4). The category AbC

o⊗C

of C-bimodules forms an abelian category with “enough projectives”, so we are free to
do homological algebra. If C is flat, the Hochschild homology of C with coefficients in
M ∈ AbC

o⊗C is customarily defined as

TorAb
Co⊗C

∗ (M, C)

(see [215] ). There is a standard simplicial abelian group (complex) whose homotopy groups
calculate the Hochschild homology groups, namely

[q] 7→ HH (C,M)q =
⊕

c0,...,cq∈obC

M(c0, cq)⊗
⊗

1≤i≤q

C(ci, ci−1)

with face and degeneracies as in Hochschild homology (see [215], and also below).
Let C be any category (that is, not necessarily an Ab-category). It is not uncommon

to to call functors Co ×C → Ab “bifunctors”. We note immediately that, by adjointness of
the free and forgetful functors

Ens
Z

⇄ Ab

connecting abelian groups to sets, a “bifunctor” is nothing but a ZC-bimodule in the Ab-
enriched world; that is, an Ab-functor ZCo⊗ZC ∼= Z(Co×C)→ Ab. So, for any “bifunctor”
(i.e., ZC-bimodule) M we may define the homology of C with respect to M as

H∗(C,M) = π∗HH (ZC,M)

(notice that ZC is flat). The standard complex HH (ZC,M) calculating this homology, is
naturally isomorphic to the following complex F (C,M):

Definition 3.2.1 Let C be a category and M a ZC-bimodule. Then the homology of C
with coefficients in M , is the simplicial abelian group F (C,M) which in degree q is given
by

Fq(C,M) =
⊕

c0←···←cq∈BqC

M(c0, cq) ∼=
⊕

c0,...,cq∈obC

M(c0, cq)⊗
⊗

1≤i≤q

ZC(ci, ci−1)

and with simplicial structure defined as follows. We write elements of Fq(C,M) as sums of
elements of the form (x, α) where x ∈M(c0, cq) and

α = c0
α1←−−− . . .

αq
←−−− cq ∈ BqC.

Then

di(x, α) =





(M(α1, 1)x, d0α) if i = 0

(x, diα) if 0 < i < q

(M(1, αq)x, dqα) if i = q

and si(x, α) = (x, siα).
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Remark 3.2.2 The homology of C, or rather F (C,−) : AbZCo⊗ZC → sAb, is characterized
up to equivalence by the properties

1. If M ∈ obAbZCo⊗ZC is projective, then F (C,M)→ H0(C,M) is an equivalence,

2. the functor F (C,−) : AbZCo⊗ZC → sAb takes short exact sequences to fiber sequences,
together with

3. the values of H0(C,M).

In particular, this means that if we have a map to or from some other theory satisfying 1.
and 2, and inducing an isomorphism on π0, then this map is an equivalence.

3.3 Incorporating the S-construction

In order to compare with K-theory, we will incorporate the S-construction into the source
of the homology functor.

Let C be a small category, and M a ZC-bimodule (i.e., a functor from Co×C to abelian
groups). Recall how bimodules are extended to diagram categories (see Appendix A.9.4
for the general situation).

If C is an exact category, consider the full subcategory SqC of the category [Ar([q]o),C]
of functors from Ar([q]o) to C. Let M be a C-bimodule. Then SqM is defined, and is given
by

SqM(c, d) = {{mij} ∈
∏

0≤i≤j≤q

M(cij , dij)|M(1, dij → dkl)mij = M(cij → ckl, 1)mkl}

(if you like ends, this has the compact and pleasing notation SqM(c, d) =
∫
i≤j

M(cij , dij)).

Note that, if M is not pointed (i.e., a Z̃C-bimodule) we may have elements in the groups
M(cii, dii) = M(0, 0), but these are uniquely determined by the values in the other groups.
(In fact, if C is split exact, then the projection SqM(c, d)→M(c0q, d0,q) is a split monomor-
phism – a retract is constructed using a choice of splitting).

The construction [q] 7→ SqM is functorial in q, in the sense that for every map φ : [p]→
[q] ∈ ∆ there are natural maps φ∗ : SpM → φ∗SqM . Let C be an exact category, and M a
pointed C-bimodule. Note that, due to the bimodule maps φ∗ : SpM → φ∗SqM

F (SC, SM) = {[p], [q] 7→ Fp(SqC, SqM)}

is a bisimplicial abelian group.
Again we get a map S1∧F (C,M)→ F (SC, SM) making

F(C,M) = {n 7→ F (S(n)C, S(n)M)}

a spectrum. In the special case C = PA, and M(c, d) = HomA(c, d ⊗A P ) for some A-
bimodule P , we define

F(A,P ) = F(PA,HomA(−,−⊗A P )).
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Note that this can not cause any confusion as the spectrum F(C,M) was before only defined
for additive categories (and not for nontrivial rings). We will also consider the associated
spectra Fq for q ≥ 0 (with the obvious definition using Fq instead of F).

Lemma 3.3.1 Let C be an additive category and let M be a pointed ZC-bimodule. Let

η : Fq(C,M)→ ΩFq(SC, SM)

denote the (adjoint of the) structure map. Then the two composites in the non-commutative
diagram

Fq(C,M)
dq0−−−→ F0(C,M)

η

y sq0

y

ΩFq(SC, SM)
η

←−−− Fq(C,M)

are homotopic.

Proof: There are three maps d0, d1, d2 : Fq(S2C, S2M) → Fq(C,M) induced by the struc-
ture maps S2C → S1C = C, see 2.1.7. The two maps

ηd1 and ηd0 ∗ ηd2 : Fq(S2C, S2M)→ Fq(C,M)→ ΩFq(SC, SM)

are homotopic, where ηd0 ∗ ηd2 denotes the loop product (remember: the simplicial loop
space ΩX = S∗(S

1, sin |X|) is isomorphic to the singular complex of the space of based
loops in |X|). This is so for general reasons: if X is a reduced simplicial set, then the two
maps ηd1 and ηd0 ∗ ηd2 are homotopic as maps

X2 → X1
η

−−−→ ΩX

where the latter map is induced by the adjoint of the canonical map S1∧X1 → X (composed
with X → sin |X|).

In the diagrams below we use the following notation:

1. i1 is the inclusion into the first summand, pr2 the second projection, ∆ the diagonal
and ∇ : c⊕ c→ c the difference (a, b) 7→ a− b,

2. βi = αi . . . αq : cq → ci−1, ∆i = (1⊕ βi)∆, and ∇i = ∇(1⊕ βi)

(exercise: check that the claimed elements of S2M(−,−) are well defined). We define two
maps

E,D : Fq(C,M)→ Fq(S2C, S2M)

by sending (α0, {αi}) = (α0 ∈M(c0, cq), {ci−1
αi←− ci}) to E(α0, {αi}) =







0
M(pr2,∆)α0

α0


 ∈ S2M




cq

i1

y
cq ⊕ c0

pr2

y
c0

,

cq

i1

y
cq ⊕ cq

pr2

y
cq




,





cq cq

i1

y i1

y

cq ⊕ ci−1
1⊕αi←−−− cq ⊕ ci

pr2

y pr2

y
ci−1

αi←−−− ci







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and D(α0, {αi}) =





M(β1, 1)α0

M(pr2,∆)α0

0


 ∈ S2M




cq

∆1

y
cq ⊕ c0

∇1

y
c0

,

cq

∆

y
cq ⊕ cq

∇

y
cq




,





cq cq

∆i

y ∆i+1

y

cq ⊕ ci−1
1⊕αi←−−− cq ⊕ ci

∇i

y ∇i+1

y
ci−1

αi←−−− ci








Since d2E = d0D = 0 we get that

η = ηd0E ≃ ηd1E = ηd1D ≃ ηd2D = ηsq0d
q
0

Corollary 3.3.2 In the situation of the lemma, the inclusion of degeneracies induces a
stable equivalence of spectra

F0(C,M)
∼
−−−→ F(C,M)

and in particular, if A is a ring and P an A-bimodule, then

F0(A,P )
∼
−−−→ F(A,P )

Proof: It is enough to show that for every q the map F0(C,M) → Fq(C,M) induced by
the degeneracy is a stable equivalence (since loops of simplicial connected spaces may be
performed in each degree, see A.5.0.5, and since a degreewise equivalence of simplicial
spaces induces an equivalence on the diagonal, see A.5.0.2). In other words, we must show
that for every q and k

π0 limm→∞Ωm+kF0(S
(m)C, S(m)M)

sq0−−−→ π0 limm→∞ Ωm+kFq(S
(m)C, S(m)M)

is an isomorphism. It is a split injection by definition, and a surjection by Lemma 3.3.1.

3.4 K-theory as a theory of bimodules

Let A be a ring and let A ⋉ P → A be any split radical extension. Recall the K̃A

construction of definition 2.5.4. The last part of Theorem 2.5.5 says that

K(A⋉ P )/K(A) ≃ K̃A(A⋉ P ) = {n 7→
∨

m∈obS(n)PA

B
(
S(n)MA(m,m⊗A P )

)
}.

Notice the striking similarity with

F0(PA,M) = {n 7→
⊕

m∈obS(n)PA

M(m,m)}.
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In the special case where P 2 = 0 the group structure on HomA(c, c⊗AP ) for c ∈ S
(n)
q PA

is just the summation of maps: let f, g ∈ HomA(c, c⊗AP ), then f ·g = (1+f)(1+g)−1 =
f + g + f ◦ g, where f ◦ g is the composite

c
g

−−−→ c⊗A P
f⊗1
−−−→ c⊗A P ⊗A P → c⊗A P

where the last map is induced by the multiplication in P ⊆ A ⋉ P , which is trivial. So
f · g = f + g. This means that the natural isomorphism

BqHomA(c, c⊗A P ) =HomA(c, c⊗A P )×q ∼= HomA(c, (c⊗A P )×q)
∼=HomA(c, c⊗A P

×q) = HomA(c, c⊗A BqP )

induces a simplicial isomorphism. Hence

M = B
(
S(n)MA(−,−⊗A P )

)
∼= S(n)MA(−,−⊗A BP )

is a (simplicial) PA-bimodule, and the only difference between K̃A(A⋉P ) and F0(PA,M)
is that the first is built up of wedge summands, whereas the second is built up of direct
sums.

Here stable homotopy enters. Recall that a space X is 0-connected (or just connected,
since in our simplicial setting there is no danger of confusion between notions like connected
and path connected) if π0X is a point, and if X is connected it is k-connected for a k > 0
if for all vertices x ∈ X0 we have that πq(X, x) = 0 for 0 < q ≤ k. A space is −1-connected
by definition if it is nonempty. A map X → Y is k-connected if its homotopy fiber is
(k − 1)-connected. We use the same convention for simplicial rings and modules.

Note 3.4.1 If A is a ring and P is a simplicial A-bimodule, we let A⋉P be the simplicial
ring with q-vertices A⋉ Pq (the square zero extension). When we write K̃A(A⋉P ) in the
statement below, we mean simply {[q] 7→ K̃A(A⋉ Pq)} (or the associated diagonal) – the
“degreewise K-theory”. Taking K-theory degreewise in this sense is quite rarely the right
thing to do, but in the case of radical extensions we will see in Section III.1.4 that it agrees
with the more common definitions the reader will find elsewhere, both in the literature and
in section III.1. Likewise F0(A,BP ) = {[q] 7→ F0(A,BqPq) = F0(A,P

×q
q )}.

The difference between wedge and direct sum vanishes stably, which accounts for

Theorem 3.4.2 Let A be a ring and P an m-connected simplicial A-bimodule, the inclu-
sion

∨
⊆
⊕

induces a 2m+ 2-connected map

K̃A(A⋉ P )→ F0(A,BP ) ∼= BF0(A,P )

Proof: Corollary A.7.2.4 says that if X is n-connected and Y is m-connected, then the
inclusion X∨Y → X×Y is m+n-connected, and so the same goes for finitely many factors.
Now, finite sums of modules are the same as products of underlying sets, and infinite sums
are filtered colimits of the finite sub-sums. Since the functors in question commute with
filtered colimits, and the filtered colimit of k-connected maps is k-connected, the result
follows.
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3.4.3 Removing the bar

What is the rôle of the bar construction in Theorem 3.4.2? Removing it on the K-theory
side, that is in KA(A⋉ P ), we are invited to look at

{n 7→
∐

c∈obS(n)PA

HomA(c, c⊗A P )} (3.4.3)

We identify this as follows. Let EAP be the exact category with objects pairs (c, f) with
c ∈ obPA and f ∈ HomA(c, c⊗A P ), and morphisms (c, f)→ (d, g) commutative diagrams
of A-modules

c
h

−−−→ d

f

y g

y

c⊗A P
h⊗1
−−−→ d⊗A P

We have a functor EAP → PA given by (c, f) 7→ c, and a sequence in EAP is exact if it
is sent to an exact sequence in PA. As examples we have that EA0 is isomorphic to PA,
and EAA is what is usually called the category of endomorphisms on PA. We see that the
expression 3.4.3 is just the K-theory spectrum K(EAP ) = {x 7→ obS(n)EAP}.

Definition 3.4.4 Let A be a unital ring. Set CA to be the functor from the category of
A-bimodules to the category of spectra given by

CA(P ) = K(EAP )/K(A) = {n 7→
∨

c∈S(n)PA

S(n)MA(c, c⊗A P )}

(the homomorphism groups S(n)MA(c, c⊗A P ) are pointed in the zero map).

With this definition we can restate Theorem 2.5.5 for the square zero case as

CA(BP ) ≃ fib{K(A⋉ P )→ K(A)}.

Note that, in the language of definition 2.5.4, yet another way of writing CAP is as the
spectrum {n 7→ N cy

0 tD
n
A(A⋉ P )/N cy

0 tD
n
A(A) = N cy

0 tD
n
A(A⋉ P )/obS(n)PA}.

We are free to introduce yet another spectrum direction in CAP by observing that we
have natural maps S1∧CAP → CA(BP ) given by

S1∧
∨

M ∼=
∨

(S1∧M)→
∨

(Z̃[S1]⊗M) ∼=
∨

BM.

Here Z̃ is the left adjoint of the forgetful functor from abelian groups to pointed sets,
Z̃[X] = Z[X]/Z[∗], see Section A.2.1, which has the property that Z̃[X∧Y ] ∼= Z̃[X]⊗Z̃[Y ],
and we get a canonical isomorphism between the classifying space BM of an abelian group
M and Z̃[S1]⊗M , see A.2.1.2.
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Aside 3.4.5 There are two natural maps K(A)→ K(EAA), given by sending c ∈ obS(n)PA
to either (c, 0) or (c, 1) in obS(n)EAA. The first is used when forming CAP , and the latter
gives rise to a map

K(A)→ CAA

Composing this with CAA → ΩCA(BA) = ΩK̃A(A[t]/t2) → ΩK(A[t]/t2)/K(A), we get
a weak map (i.e., a chain of maps where the arrows pointing the wrong way are weak
equivalences)

K(A)→ ΩK(A[t]/t2)/K(A)
∼
←−−− hofib{K(A[t]/t2)→ K(A)}

(cf. [160] or [299]) where hofib is (a functorial choice representing) the homotopy fiber.
The considerations above are related to the results of Grayson in [109]. Let A be com-

mutative and R = S−1A[t] where S = 1+tA[t]. The theorem above says that K̃A(A[t]/t2) =
K(EA(BA))/K(A) is equivalent to K(A[t]/t2)/K(A), whereas Grayson’s theorem tells us
that the “one-simplices” of this, i.e., CAA = K(EAA)/K(A) is equivalent to the loop of
K̃A(R) ≃ K(R)/K(A).

3.4.6 More general bimodules

Before we go on to reformulate theorem 3.4.2 in the more fashionable form “stable K-theory
is homology” we will allow our K-functor more general bimodules so that we have symmetry
in the input.

Definition 3.4.7 Let C be an exact category and M a pointed ZC-bimodule. Then we
define the spectrum

CC(M) = {n 7→
∨

c∈obS(n)C

S(n)M(c, c)}.

The structure maps

S1∧
∨

c∈obC

M(c, c)→
∨

c∈obSC

SM(c, c)

are well defined, because
∨
c∈obS0CS0M(c, c) = M(0, 0) = 0 since we have demanded that

M is pointed.

The notation should not cause confusion, although CAP = CPAHomA(−, c⊗A P ), since
the ring A is not an exact category (except when A = 0, and then it doesn’t matter).

If M is bilinear, this is the K-theory spectrum of the following category, which we will
call EC(M). The objects are pairs (c, f) with c ∈ obC and f ∈ M(c, c) and a morphism
from (c,m) to (c′, m′) is an f ∈ C(c, c′) such that M(f, 1)m′ = M(1, f)m. A sequence
(c′, m′)→ (c,m)→ (c′′, m′′) is exact if the underlying sequence c′ → c→ c′′ is exact.
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3.5 Stable K-theory

Recall from 3.1 that the functor P 7→ K̃(A⋉P ) is not additive when considered as a functor
from A-bimodules. If F is a pointed (simplicial) functor from A-bimodules to spectra, we
define its first differential, D1F , by

D1F (P ) = lim
−→
k

ΩkF (BkP ),

where F is applied in each degree to the k-fold bar construction. We have a transformation
F → D1F . If F already were additive, then F → D1F would be a weak equivalence. This
means that D1F is initial (in the homotopy category) among additive functors under F ,
and is a left adjoint (in the homotopy categories) to the inclusion of the additive functors
into all functors from A-bimodules to spectra.

Definition 3.5.1 Let A be a simplicial ring and P an A-bimodule. Then

KS(A,P ) = D1CA(P ) = lim
−→
k

Ωk
CA(BkP ).

If C is an exact category and M a C-bimodule, then

KS(C,M) = D1CC(M) = lim
−→
k

Ωk
CC(M ⊗ Sk),

where for a finite pointed set X, M ⊗X is the bimodule sending c, d to M(c, d)⊗ Z̃X.

Again, the isomorphism KS(A,P ) ∼= KS(PA,HomA(−,−⊗A P )) should cause no con-
fusion. If M is a pointed simplicial C-bimodule, we apply CC degreewise.

We note that there is a chain of equivalences

KS(A,P ) = D1ΩCA(BP )

≃

y
D1Ω (K(PA⋉P , i)/K(A))x≃

D1Ω (K(A⋉ P )/K(A))

≃

y
D1Ωhofib{K(A⋉ P )→ K(A)} = holim

−→
k

Ωkhofib{K(A⋉ Bk−1P )→ K(A)}

and the target spectrum is the (spectrum version of the) usual definition of stable K-theory,
c.f. [160] and [299].

In the rational case Goodwillie proved in [101] that stable K-theory is equivalent to
Hochschild homology (see later). In general this is not true, and we now turn to the
necessary modification.
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Theorem 3.5.2 Let C be an exact category and M an m-connected pointed simplicial
C-bimodule. The inclusion

∨
⊆
⊕

induces a 2m-connected map

CCM → F0(C,M)

and
D1CC

≃
−−−→ D1F0(C,−)

≃
←−−− F0(C,−)

are equivalences. Hence

KS(C,M) ≃ F0(C,M)
∼
−−−→ F(C,M)

In particular, for A a ring and P an A-bimodule, the map CAP → F0(A,P ) gives rise to
natural equivalences

KS(A,P ) = D1CA
≃
−−−→ D1F0(A,−)

≃
←−−− F0(A,−)

≃
−−−→ F(A,P )

Proof: The equivalence

D1F0(C,−)
≃
←−−− F0(C,−)

follows since by Corollary 3.3.2 the inclusion by the degeneracies F0(C,−) → F(C,−) is
an equivalence, and the fact that F(C,−) is additive, and so unaffected by the differential.
The rest of the argument follows as before.

Adding up the results, we get the announced theorem:

Corollary 3.5.3 Let C be an additive category, and M a bilinear C bimodule. Then we
have natural isomorphisms

π∗K
S(C,M) ∼= H∗(C,M)

and in particular
π∗K

S(A,P ) ∼= H∗(PA,MA(−,−⊗A P ))

Proof: The calculations of homotopy groups follows from the fact that F(C,M) is an Ω-
spectrum (and so π∗F(C,M) ∼= π∗F (C,M) = H∗(C,M)). This follows from the equivalence

F (C,M) ∼ THH (C,M)

and results on topological Hochschild homology in chapter IV. However, for the readers
who do not plan to cover this material, we provide a proof showing that F is an Ω spectrum
directly without use of stabilizations at the end of this section, see Proposition 3.6.5.

3.6 A direct proof of “F is an Ω-spectrum”

Much of what is to follow makes sense in an Ab-category setting. For convenience, we work
in the setting of additive categories, and we choose zero objects which we always denote 0.



3. STABLE K-THEORY IS HOMOLOGY 69

Definition 3.6.1 Let G : A → B be an additive functor. We let the twisted product
category A×G B be the linear category with objects ob(A)× ob(B) and

A×G B((a, b), (a′, b′)) = A(a, a′)⊕ B(b, b′)⊕ B(G(a), b′)

with composition given by

(f, g, h) ◦ (f ′, g′, h′) = (f ◦ f ′, g ◦ g′, h ◦G(f ′) + g ◦ h′).

If M is an A-bimodule and N is a B-bimodule, with an A-bimodule map G∗ : M → G∗N
we define the A×G B-bimodule M ×G N by

M ×G N((a, b), (a′, b′)) = M(a, a′)⊕N(b, b′)⊕N(G(a), b′)

with bimodule action defined by

(M ×G N)((f, g, h), (f ′, g′, h′))(m,n, nG)

= (M(f, f ′)m,N(g, g′), N(Gf, h′)G∗m+N(h, g′)n +N(Gf, g′)nG).

From now on, we assume for convenience that M and N are pointed (i.e., take zero in
either coordinate to zero). Note the following structure.

1. An inclusion

A
inA−−−→ A×G B

sending f : a→ a′ obA to (f, 0, 0) : (a, 0)→ (a′, 0),

2. an A-bimodule map M → in∗A(M ×G N),

3. a projection

A×G B
prA−−−→ A,

4. and an A×G B-bimodule map M ×G N → pr∗AM .

Likewise for B. The composite

F (A,M)⊕ F (B, N)
inA+inB−−−−−→ F (A×G B,M ×G N)

(prA⊕prB)∆
−−−−−−−→ F (A,M)⊕ F (B, N)

is the identity.

Lemma 3.6.2 (F is “additive”) With the notation as above

F (A,M)⊕ F (B, N)
inA+inB−−−−−→ F (A×G B,M ×G N)

is an equivalence.



70 CHAPTER I. ALGEBRAIC K-THEORY

Proof: We will show that the “other” composite

F (A×G B,M ×G N)
(prA⊕prB)∆
−−−−−−−→ F (A,M)⊕ F (B, N)

inA+inB−−−−−→ F (A×G B,M ×G N)

is homotopic to the identity. Let x = (x0; x1, . . . , xq) ∈ Fq(A×G B,M ×G N), where

x0 = (m,n, nG) ∈M ×G N((a0, b0), (aq, bq)), and

xi = (fi, gi, hi) ∈ A×G B((ai, bi), (ai−1, bi−1)), for i > 0.

Then x is sent to

J(x) = ((m, 0, 0); inAprAx1, . . . , inAprAxq) + ((0, n, 0); inBprBx1, . . . , inBprBxq)

We define a homotopy between the identity and J as follows. Let x1
i = (fi, 0, 0) ∈ (A×G

B)((ai, bi), (ai−1, 0)) and x2
i = (0, gi, 0) ∈ (A×G B)((0, bi), (ai−1, bi−1)). If φi ∈ ∆([q], [1]) is

the map with inverse image of 0 of cardinality i, we define

H : F (A×G B,M ×G N)×∆→ F (A×G B,M ×G N)

by the formula

H(x, φi) =((m, 0, 0); inAprAx1, . . . , inAprAxi−1, x
1
i , xi+1, . . . , xq)

−((0, n, nG); x1, . . . , xi−1, x
2
i , inBprBxi+1, . . . , inBprBxq)

+((0, n, 0); inBprBx1, . . . , inBprBxq)

+((0, n, nG); x1, . . . , xq)

(note that in the negative summand, it is implicit that nG is taken away when i = 0).

Lemma 3.6.3 Let C be an additive category and M a bilinear bimodule. Then the natural
map

SqC
c 7→(c0,1,...,cq−1,q)
−−−−−−−−−−→ C×q

induces an equivalence

F (SqC, SqM)
∼
−−−→ F (C×q,M×q)

∼
−−−→ F (C,M)×q

Proof: Recall the equivalence ψq : TqC→ SqC of lemma 2.2.5, and note that ifGq : C→ TqC
is defined by c 7→ Gq(c) = (0, . . . , 0, c), then we have an isomorphism Tq+1C ∼= C×Gq TqC.
Furthermore, if M is a linear bimodule, then we define TqM = ψ∗qSqM , and we have that
Tq+1M ∼= M ×G TqM .

Hence

F (SqC, SqM)
∼
←−−− F (TqC, TqM) ∼= F (C×G Tq−1C,M ×G Tq−1M)

∼
←−−− F (C,M)⊕ F (Tq−1C, Tq−1M)

and by induction we get that

F (SqC, SqM)
∼
←−−− F (C,M)×q

and this map is a right inverse to the map in the statement.
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Definition 3.6.4 (c.f A.1.7) For any simplicial category D we may define the path cate-
gory PD by setting PqD = Dq+1 and letting the face and degeneracy functors be given by
raising all indices by one. The unused d0 defines a functor PD → D, and we have a map
D1 = P0D → PD given by the degeneracies.

Then D0 → PD (given by degeneracies in D) defines a simplicial homotopy equivalence,
see A.1.7.2, with inverse given by

∏
1≤i≤q+1 di : PqD → D0.

Proposition 3.6.5 Let C be an additive category, and M a bilinear bimodule, then

F (C,M)→ ΩF (SC, SM)

is an equivalences.

Proof: Consider
F (C,M)→ F (PSC, PSM)→ F (SC, SM) (3.6.6)

For every q we have equivalences

F (C,M) −−−→ F (PqSC, PqSM) −−−→ F (SqC, SqM)∥∥∥ ≀

y ≀

y
F (C,M) −−−→ F (C,M)×q+1 −−−→ F (C,M)×q

where the lower sequence is the trivial split fibration. As all terms are bisimplicial abelian
groups the sequence 3.6.6 must be a fiber sequence (see A.5.0.4) where the total space is
contractible.



72 CHAPTER I. ALGEBRAIC K-THEORY



Chapter II

Gamma-spaces and S-algebras

In this chapter we will introduce the so-called Γ-spaces. The reader can think of these
as (very slight) generalizations of (simplicial) abelian groups. The surprising fact is that
this minor generalization is big enough to encompass a wide and exotic variety of new
examples.

The use of Γ-spaces also fixes another disparity. Quillen defined algebraic K-theory to
be a functor from things with abelian group structure (such as rings or exact categories)
to abelian groups. We have taken the view that K-theory takes values in spectra, and
although spectra are almost as good as abelian groups, this is somehow unsatisfactory.
The introduction of Γ-spaces evens this out, in that K-theory now takes things with a Γ-
space structure (such as S-algebras, or the Γ-space analog of exact categories) to Γ-spaces.

Furthermore, this generalization enables us to include new fields of study, such as the
K-theory of spaces, into serious consideration. It is also an aid – almost a prerequisite –
when trying to understand the theories to be introduced in later chapters.

To be quite honest, Γ-spaces should not be thought of as a generalization of simplicial
abelian groups, but rather of simplicial abelian (symmetric) monoids, since there need
not be anything resembling inverses in the setting we use (as opposed to Segal’s original
approach). On the other hand, it is very easy to “group complete”: it is a stabilization
process.

0.1 An aside on the history of the smash product

The reader should be aware that Γ-spaces give us just one of several solutions to an old and
important problem in stable homotopy theory. After having been put on sound foundations
by Boardman in the mid 1960’s (see [295] or [4, III]), the smash product played a central rôle
in stable homotopy theory for decades, but until the 1990’s one only knew the construction
in the “stable homotopy category”, and did not know how to realize the smash products in
any category of spectra without inverting the stable equivalences.

Several solutions to this problem came more or less at the same time. In the summer
of 1993 Elmendorf, Kriz and May’s built the categorical foundations for a point set level
smash product, influenced by an observation of Hopkins [138] on coequalizers, making

73
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their original intended approach using “monadic bar constructions” more or less obsolete.
The team was later joined by Mandell and the construction underwent some changes (for
instance, some problems with the unit were solved) before it appeared in the book [80].
Around the same time, Jeff Smith gave talks where he offered another solution which he
called “symmetric spectra”. Together with Hovey and Shipley he documented this approach
in [141] (see also the unpublished notes on symmetric spectra by Schwede [251]).

The Γ-space approach to the problem of having a point set level construction of the
smash product appeared in 1999 [188] in a paper by Lydakis, and has the advantage of
being by far the simplest, but the disadvantage of only giving connective spectra. The
solution is simple, and the techniques were well known in the 1970’s, and the authors have
come to understand that the construction of the smash product in Γ-spaces was known,
but dismissed as “much too simple” to have the right homotopy properties, see also 1.2.8
below.

Since then many variants have been introduced (most notably, orthogonal spectra)
and there has been some reconciliation between the different setups (see in particular
[196]). In retrospect, it turns out that Bökstedt in his investigations [30] in the 1980’s
on topological Hochschild homology had struck upon the smash product for simplicial
functors [187] in the sense that he gave the correct definition for what it means for a
simplicial functor to be an algebra over the sphere spectrum, see also Gunnarsson’s preprint
[117]. Bökstedt called what was to become S-algebras in simplicial functors (with some
connectivity hypotheses) “FSP”, short for “functors with smash products”. Also, orthogonal
ring spectra had appeared in [200], although not recognized as monoids in a monoidal
structure.

The Γ-spaces have one serious shortcoming, and that is that they do not model strictly
commutative ring spectra in the same manner as their competitors (see Lawson [170]).
Although this mars the otherwise beautiful structure, it will not affect anything of what
we will be doing, and we use Γ-spaces because of their superior concreteness and simplicity.

1 Algebraic structure

1.1 Γ-objects

A Γ-object is a functor from the category of finite sets. We need to be quite precise about
this, and the details follow.

1.1.1 The Category Γo

Roughly, Γo is the category of pointed finite sets – a fundamental building block for much
of mathematics. To be more precise, we choose a skeleton, and let Γo be the category
with one object k+ = {0, 1, . . . , k} for every natural number k, and with morphism sets
Γo(m+, n+) the set of functions f : {0, 1, . . . , m} → {0, 1, . . . , n} such that f(0) = 0. The
notation k+ is chosen to distinguish it from the ordered set [k] = {0 < 1 < · · · < k}.
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In [257] Segal considered the opposite category and called it Γ, and this accounts for the
awkward situation where we call the most fundamental object in mathematics the opposite
of something. Some people object to this so strongly that they write Γ when Segal writes
Γo. We follow Segal’s convention.

1.1.2 Motivation

A symmetric monoid is a set M together with a multiplication and a unit element so that
any two maps M×j → M obtained by composing maps in the diagram

∗ unit //M

m7→(1,m) //

m7→(m,1) //
M ×M

twist

��multiplicationoo M ×M ×M(m1,m2m3)← [(m1,m2,m3)oo

(m1m2,m3)← [(m1,m2,m3)oo

(1.1.3)

are equal. Thinking of multiplication as “two things coming together” as in the map
2+ → 1+ given by

2+ = { 0_

��

1_

��

2}
A

����
��

��
��

1+ = { 0 1 }

we see that the diagram (1.1.3) is mirrored by the diagram

0+
// 1+

//
// 2+

��
oo 3+oo

oo

in Γo, where the two arrows 1+ → 2+ are given by

{0
_

��

1}
_

��
{0 1 2}

and {0
_

��

1}
�

��?
??

??
??

{0 1 2}

and the maps 3+ → 2+ are

{0
_

��

1_

��

2A

����
��

��
��

3}
?

����
��

��
�

{0 1 2}

and {0
_

��

1_

��

2_

��

3}
?

����
��

��
�

{0 1 2}

(there are more maps in Γo, but these suffice for the moment). So we could say that
a symmetric monoid is a functor from this part of Γo to pointed sets sending 0+ to the
one-point set and sending wedge sum to product (e.g., 3+ = 2+ ∨ 1+ must be sent to the
product of the values at 2+ and 1+, i.e., the triple product of the value at 1+).

This doesn’t seem very helpful until one notices that this extends to all of Γo, and the
requirement of sending 0+ to the one-point set and wedge sum to product fixes the behavior
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in the sense that there is a one-to-one correspondence between such functors from Γo to
sets and symmetric monoids; see example 1.2.1.1 below for more details.

The reason for introducing this new perspective is that we can model multiplicative
structures functorially, and relaxing the requirement that the functor sends wedge to prod-
uct is just the trick needed to study more general multiplicative structures. For instance,
one could imagine situations where the multiplication is not naturally defined on M ×M ,
but on some bigger space like M×M×X, giving an entire family of multiplications varying
over the space X. This is exactly what we need when we are going to study objects that
are, say, commutative only up to homotopy. Variants of this idea are Lawvere’s algebraic
theories, operads and multicategories.

1.1.4 Γ-objects

If C is a pointed category (i.e., it has a chosen object which is both initial and final)
one may consider pointed functors Γo → C (often called a Γ-object in C) and natural
transformations between such functors. This defines a category we call ΓC. Most notably
we have the category

ΓS∗

of Γ-spaces, that is pointed functors from Γo to pointed simplicial sets, or equivalently, of
simplicial Γ-objects in the category of pointed sets. If A = sAb is the category of simplicial
abelian groups, we may define

ΓA,

the category of simplicial Γ-objects in abelian groups. Likewise for other module categories.
Another example is the category of Γ-categories, i.e., pointed functors from Γo to categories.
These must not be confused with the notion of ΓS∗-categories (see section 1.6).

1.2 The category ΓS∗ of Γ-spaces

We start with some examples of Γ-spaces.

Example 1.2.1 1. Let M be an abelian group. If we consider M as a mere pointed
set, we can not reconstruct the abelian group structure. However, if we consider M
as a Γ-pointed set, HM , as follows, there is no loss of structure. Send k+ to the set

HM(k+) = M ⊗ Z̃[k+] ∼= M×k,

where Z̃[k+] is the free abelian group on the pointed set k+ (and so is the sum
of k copies of Z). A function f ∈ Γo(k+, n+) gives rise to the homomorphism
f∗ : HM(k+)→ HM(n+) sending the k-tuple (m1, . . . , mk) ∈M

×k to the n-tuple


(

∑

j∈f−1(1)

mj), . . . , (
∑

j∈f−1(n)

mj)



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(where m0 = 0).

Alternative description: HM(X) = Ens∗(X,M), and if f : X → Y ∈ Γo, then
f∗ : HM(X)→ HM(Y ) sends φ to y 7→ f∗φ(y) =

∑
x∈f−1(y) φ(x).

In effect, this defines a functor

H̄ : sAb = A → ΓA,

and we follow by the forgetful functor U : ΓA → ΓS∗, so that

H = UH̄.

Both HM and H̄M will be referred to as the Eilenberg–Mac Lane objects associated
with M . The reason is that, through the functor from Γ-spaces to spectra defined in
2.1.13, these Γ-objects naturally give rise to the so-called Eilenberg-Mac Lane spectra
A.2.2.

2. The inclusion Γo ⊂ Ens∗ ⊂ S∗ is called in varying sources, S (for “sphere spectrum”),
Id (for “identity”), etc. We will call it S.

Curiously, the Barratt–Priddy–Quillen theorem (see e.g., [257] or [12]) states that S

is “stably equivalent” (defined in 2.1.7) to the K-theory of the category Γo (in the
interpretation of II.3).

3. If X is a pointed simplicial set and M is a Γ-space, then M∧X is the Γ-space sending
Y ∈ obΓo to M(Y )∧X. Dually, we let S∗(X,M) be the Γ-space

Y 7→ S∗(X,M(Y )) = {[q] 7→ S∗(X∧∆[q]+,M(Y ))}

(see A.1.3 for facts on function spaces). Note that ΓS∗(M∧X,N) is naturally iso-
morphic to ΓS∗(M,S∗(X,N)): the former set consists of natural maps M(Y )∧X →
N(Y ), whereas the latter consists of natural maps M(Y ) → S∗(X,N(Y )). The
natural isomorphism is then induced by the adjunction between ∧ and the internal
mapping space in S∗.

For any simplicial set X, we let S[X] = S∧X+, and we see that this is a left adjoint
to the functor R : ΓS∗ → S∗ evaluating at 1+.

4. For X ∈ obΓo, let ΓX ∈ obΓS∗ be given by

ΓX(Y ) = Γo(X, Y )

Note that S = Γ1+ .

The notion of Γ-spaces we are working with is slightly more general than Segal’s, [257].
It is usual to call Segal’s Γ-spaces special:
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Definition 1.2.2 A Γ-space M is said to be special if the canonical maps

M(k+)→
∏

k

M(1+)

(induced by the k maps k+ → 1+ with support a single element) are weak equivalences for
all k+ ∈ obΓ. This induces a symmetric monoid structure on π0M(1+) via

π0M(1+)× π0M(1+)
∼=
←−−− π0M(2+) −−−→ π0M(1+),

induced by the function φ : 2+ → 1+ with φ−1(1) = {1, 2}, and we say that M is very
special if this is an abelian group structure.

The difference between Γ-spaces and very special Γ-spaces is not really important.
Any Γ-space M gives rise to a very special Γ-space, say QM , in one of many functorial
ways, such that there is a “stable equivalence” M

∼
→ QM (see 2.1.7). However, the larger

category of all Γ-spaces is nicer for formal reasons, and the very special Γ-spaces are just
nice representatives in each stable homotopy class.

1.2.3 The smash product

There is a close connection between Γ-spaces and spectra (there is a functor defined in
2.1.13 that induces an equivalence on homotopy categories), and so the question of what
the smash product of two Γ-spaces should be could be expected to be a complicated issue.
M. Lydakis [188][187] realized that this was not the case: the simplest candidate works
just beautifully.

If we have two Γ-spaces M and N , we may consider the “external smash”, i.e., the
functor Γo × Γo → S∗ which sends (X, Y ) to M(X)∧N(Y ). The category Γo has its own
smash product, and we want some “universal filler” in

Γo × Γo
(X,Y )7→M(X)∧N(Y )
−−−−−−−−−−−−→ S∗

∧

y
Γo

,

where ∧ : Γo×Γo → Γo is the smash (sending (X, Y ) to X∧Y ). The solutions to these kinds
of questions are called “left Kan extensions” [191], and in our case it takes the following
form:

Let Z ∈ Γo and let ∧/Z be the over category (c.f. A.1.4.3), i.e., the category whose
objects are tuples (X, Y, v) where (X, Y ) ∈ Γo × Γo and v : X∧Y → Z ∈ Γo, and where a
morphism (X, Y, v) → (X ′, Y ′, v′) is a pair of functions f : X → X ′ and g : Y → Y ′ in Γo

such that v = v′ ◦ (f∧g).
Then the smash product (M∧N)(Z) is defined as the colimit of the composite

∧/Z
(X,Y,v)7→(X,Y )
−−−−−−−−−→ Γo × Γo

(X,Y )7→M(X)∧N(Y )
−−−−−−−−−−−−→ S∗,
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that is
(M∧N)(Z) = lim

−−−−−−−−−→
(X,Y,v)∈∧/Z

M(X)∧N(Y )

In the language of coends, this becomes particularly perceptive:

(M∧N)(Z) =

∫ (X,Y )

(M(X)∧N(Y ))∧Γo(X∧Y, Z)

the “weighted average of all the handicrafted smash products M(X)∧N(Y )”; the weight
being the number of functions X∧Y → Z.

Remark 1.2.4 Note that a map from a smash product M∧M ′ → N ∈ ΓS∗ is uniquely
described by giving a map M(X)∧M ′(Y )→ N(X∧Y ) which is natural in X, Y ∈ obΓo.

1.2.5 The closed structure

Theorem 1.2.6 below states that the smash product endows the category of Γ-spaces with a
structure of a closed category (which is short for closed symmetric monoidal category). For
a thorough discussion see Appendix A.9.1.1, but for now recall that symmetric monoidal
means that the functor ∧ : ΓS∗ × ΓS∗ → ΓS∗ is associative, symmetric and unital (S is the
unit) up to coherent isomorphisms, and that it is closed means that in addition there is an
“internal morphism object” with reasonable behavior.

The Γ-space of morphisms from M to N is defined by setting

ΓS∗(M,N) = {(k+, [q]) 7→ ΓS∗(M,N)(k+)q = ΓS∗(M∧∆[q]+, N(k+∧−))}.

Theorem 1.2.6 (Lydakis) With these definitions of smash and morphism object, there
are choices of coherency isomorphisms such that (ΓS∗,∧,S) becomes a closed category
(cf. A.9.1.1).

Proof: (See [188] for further details) First one uses the definitions to show that there is a
natural isomorphism ΓS∗(M∧N,P ) ∼= ΓS∗(N,ΓS∗(M,P )) (using the (co)end-descriptions
of smash and internal morphism objects this can be written as follows

ΓS∗(M∧N,P )(V ) =

∫

Z

S∗(

∫ X,Y

M(X)∧N(Y )∧Γo(X∧Y, Z), P (V ∧Z))

∼=

∫

X,Y

S∗(M(X)∧N(Y ),

∫

Z

S∗(Γ
o(X∧Y, Z), P (V ∧Z)))

∼=

∫

X,Y

S∗(M(X)∧N(Y ), P (V ∧(X∧Y )))

∼=

∫

X

S∗(N(Y ),

∫

Y

S∗(M(X), P ((V ∧X)∧Y ))))

= ΓS∗(N,ΓS∗(M,P ))(V ),



80 CHAPTER II. GAMMA-SPACES AND S-ALGEBRAS

with X, Y, Z, V ∈ obΓo and where the isomorphisms are induced by the (dual) Yoneda
lemma, associativity and the closed structure of S∗).

The symmetry M∧N ∼= N∧M follows from the construction of the smash product, and
associativity follows by comparing with

M∧N∧P = {V 7→ lim
−−−−−−−−−→
X∧Y ∧Z→V

M(X)∧N(Y )∧P (Z)}.

Recall from 1.2.1.4 that ΓX(Y ) = Γo(X, Y ) and note that S = Γ1+ , ΓS∗(Γ
X ,M) ∼=

M(X∧−) and ΓX∧ΓY ∼= ΓX∧Y . We get that M∧S = M∧Γ1+ ∼= M since ΓS∗(M∧S, N) ∼=
ΓS∗(M,ΓS∗(S, N)) ∼= ΓS∗(M,N) for any N .

That all diagrams that must commute actually do so follows from the crucial observa-
tion 1.2.7 below (with the obvious definition of the multiple smash product).

Lemma 1.2.7 Any natural automorphism φ of expressions of the form

M1∧M2∧ . . .∧Mn

must be the identity (i.e., Aut(
∧n : ΓS∗

×n → ΓS∗) is the trivial group).

Proof: The analogous statement is true in Γo, since any element in X1∧X2∧ . . .∧Xn is in
the image of a map from 1+∧1+∧ . . .∧1+, and so any natural automorphism must fix this
element.

Fixing a dimension, we may assume that the Mi are discrete, and we must show that
φ(z) = z for any z ∈

∧
Mi(Z). By construction, z is an equivalence class represented,

say, by an element (x1, . . . , xm) ∈
∧
Mi(Xi) in the f :

∧
Xi → Z summand of the colimit.

Represent each xi ∈ Mi(Xi) by a map fi : ΓXi → Mi (so that fi(Xi = Xi) = xi). Then z
is the image of ∧idXi in the f -summand of the composite

(
∧

ΓXi)(Z)
∧fi−−−→ (

∧
Mi)(Z).

Hence it is enough to prove the lemma for Mi = ΓXi for varying Xi. But
∧

ΓXi ∼= Γ
V
Xi

and

ΓS∗(Γ
V
Xi ,Γ

V
Xi) ∼= Γo(

∧
Xi,
∧

Xi),

and we are done.
The crucial word in Lemma 1.2.7 is “natural”. There is just one automorphism of the func-
tor

∧n : ΓS∗
×n → ΓS∗ whereas there are, of course, nontrivial actions on individual expres-

sions M1∧ . . .∧Mn. One should note that the functor in one variable M 7→ M∧ . . .∧M
has full Σn-symmetry.

1.2.8 Day’s product

Theorem 1.2.6 also follows from a much more general theorem of Day [59], not relying on
the special situation in Lemma 1.2.7.
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In hindsight it may appear as a mystery that the smash product took so long to appear
on the stage, given that the problem was well publicized and the technical construction
had been known since 1970. Rainer Vogt had considered this briefly, and commented
in an email in 2009: “I did not know of Day’s product but discovered it myself (later
than Day in the 80’s). Then Roland [Schwänzl] and I thought a little about it. Since we
considered special Γ-spaces only and the product did not preserve those we lost interest,
in particular after we realised that we would get an associative and commutative smash
product for connective spectra which we did not believe exists. When many years later
Lydakis exploited this construction we could have kicked ourselves.”

1.3 Variants

The proof that ΓS∗ is a closed category works if S∗ is exchanged for other suitable closed
categories with colimits. In particular ΓA, the category of Γ-objects in the category A =
sAb of simplicial abelian groups, is a closed category. The unit is H̄Z = {X 7→ Z̃[X]} (it
is HZ as a set, but we remember the group structure, see example 1.2.1.1), the tensor is
given by

(M ⊗N)(Z) = lim
−−−−−−→
X∧Y→Z

M(X)⊗N(Y )

and the internal function object is given by

ΓA(M,N) = {X, [q] 7→ ΓA(M ⊗ Z[∆[q]], N(−∧X))}.

1.3.1 ΓS∗ vs. ΓA

The adjoint functor pair between abelian groups and pointed sets

Ens∗
Z̃

⇄
U

Ab,

where U is the forgetful functor, induces an adjoint functor pair

ΓS∗
Z̃

⇄
U

ΓA.

The homomorphisms Z→ Z̃(1+) (sending n to n · 1) and Z̃(X)∧Z̃(Y )→ Z̃(X∧Y ) (send-
ing the generator x ⊗ y to the generator x∧y) are isomorphisms and Z̃ : (Ens∗,∧, 1+) →
(Ab,⊗,Z) is a strong symmetric monoidal functor (see A.9.1.3 for details, but briefly
a strong symmetric monoidal functor is a symmetric monoidal functor F such that the
structure maps F (a)⊗ F (b) → F (a⊗ b) and 1 → F (1) are isomorphisms). It follows im-
mediately that Z̃ : (ΓS∗,∧,S)→ (ΓA,⊗, H̄Z) is strong symmetric monoidal. In particular
Z̃S ∼= H̄Z,

Z̃(M∧N) ∼= Z̃M ⊗ Z̃N
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and
ΓS∗(M,UP ) ∼= UΓA(Z̃M,P )

satisfying the necessary associativity, commutativity and unit conditions.
Later, we will see that the category ΓA, for all practical (homotopical) purposes can be

exchanged for sAb = A. The comparison functors come from the adjoint pair

A
H̄

⇄
R

ΓA

where H̄P (X) = P ⊗ Z̃[X] and RM = M(1+). We see that RH̄ = idA. The other
adjunction, H̄R→ idΓA, is discussed in Lemma 1.3.3 below. Both H̄ and R are symmetric
monoidal functors.

1.3.2 Special objects

We say that M ∈ obΓA is special if its underlying Γ-space UM ∈ obΓS∗ is special, i.e., if
for all finite pointed sets X and Y the canonical map

UM(X ∨ Y )
∼
→ UM(X)× UM(Y )

is a weak equivalence in S∗. The following lemma has the consequence that all special
objects in ΓA can be considered to be in the image of H̄ : sAb = A → ΓA:

Lemma 1.3.3 Let M ∈ obΓA be special. Then the unit of adjunction (H̄RM)(k+) →
M(k+) is an equivalence.

Proof: Since M is special, we have that M(k+) →
∏

kM(1+) is an equivalence. On the
other hand, if we precompose this map with the unit of adjunction

(H̄RM)(k+) = M(1+)⊗ Z̃[k+]→ M(k+)

we get an isomorphism.

1.3.4 Additivization

There is also a Dold-Puppe–type construction: L : ΓA → A which is left adjoint to H̄ :
Consider the three pointed functions pr1, pr2,∇ : 2+ → 1+ with nonzero value pr1(1) =
∇(1) = ∇(2) = pr2(2) = 1. Then L is given by

LM = coker{M(pr1)−M(∇) +M(pr2) : M(2+)→M(1+)}.

This functor is intimately connected with the subcategory of ΓA consisting of “additive”,
or coproduct preserving functors Γo → A.

The additive objects are uniquely defined by their value at 1+, and we get an isomor-
phism M ∼= H̄(M(1+)) = H̄RM . Using this we may identify A with the full subcategory
of additive objects in ΓA, and the inclusion into ΓA has a left adjoint given by H̄L.
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Note that all the functors L, R and H̄ between A and ΓA are strong symmetric
monoidal.

Just the same considerations could be made with Ab exchanged for the category of
k-modules for any commutative ring k.

1.4 S-algebras

In any monoidal category there is a notion of a monoid (see definition A.9.1.5). The reason
for the name is that a monoid in the usual sense is a monoid in (Ens ,×, ∗). Furthermore,
the axioms for a ring is nothing but the statement that it is a monoid in (Ab,⊗,Z). For a
commutative ring k, a k-algebra is no more than a monoid in (k-mod,⊗k, k), and so it is
natural to define S-algebras the same way:

Definition 1.4.1 An S-algebra A is a monoid in (ΓS∗,∧,S).

This means that A is a Γ-space together with maps µ = µA : A∧A→ A and 1: S→ A
such that the diagrams

A∧(A∧A)
∼= //

id∧µ

��

(A∧A)∧A
µ∧id // A∧A

µ

��
A∧A

µ // A

(the isomorphism is the associativity isomorphism of the smash product) and

S∧A
1∧id //

∼=
$$I

II
II

II
II

I A∧A

µ

��

A∧S
id∧1oo

∼=
zzuuu

uu
uu

uu
u

A

commute, where the diagonal maps are the natural unit isomorphisms.
We say that an S-algebra is commutative if µ = µ ◦ tw where

A∧A
tw
−−−→
∼=

A∧A

is the twist isomorphism.

Remark 1.4.2 In the definition of an S-algebra, any knowledge of the symmetric monoidal
category structure is actually never needed, since maps M∧N → P out of the smash
products is uniquely characterized by a map M(X)∧N(Y ) → P (X∧Y ) natural in X, Y ∈
obΓo. So, since the multiplication is a map from the smash A∧A→ A, it can alternatively
be defined as a map A(X)∧A(Y )→ A(X∧Y ) natural in both X and Y .

This was the approach of Bökstedt [30] when he defined FSP’s . These are simplicial
functors from finite spaces to spaces with multiplication and unit, such that the natural dia-
grams commute, plus some stability conditions. These stability conditions are automatically
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satisfied if we start out with functors from Γo (and then apply degreewise and diagonalize
if we want X ∈ sΓo as input), see Lemma 2.1.5. On the other hand, we shall later see that
there is no loss of generality to consider only S-algebras.

1.4.3 Variants

An H̄Z-algebra is a monoid in (ΓA,⊗, H̄Z). (This is, for all practical purposes, equivalent
to the more sophisticated notion of HZ = UH̄Z-algebras arising from the fact that there
is a closed category (HZ-mod,∧HZ, HZ), see 1.5.6 below). Since the functors

ΓS∗
Z̃ //

ΓA
U

oo

L //

R
//
A

H̄oo

all are monoidal they send monoids to monoids. For instance, if A is a simplicial ring, then
H̄A is an H̄Z-algebra and HA is an S-algebra (it is even an HZ-algebra):

Example 1.4.4 1. Let A be a simplicial ring, then HA is an S-algebra with multipli-
cation

HA∧HA→ H(A⊗ A)→ HA

and unit S→ Z̃S ∼= HZ→ HA.

In particular, note the S-algebra HZ. It is given by X 7→ Z̃[X], the “integral ho-
mology”, and the unit map X = S(X) → HZ(X) = Z̃[X] is the Hurewicz map of
Appendix A.2.1.

2. Of course, S is the initial S-algebra. If M is a simplicial monoid, the spherical monoid
algebra S[M ] is given by

S[M ](X) = M+∧X

with obvious unit and with multiplication coming from the monoid structure. Note
that RZ̃S[M ] ∼= Z[M ].

3. If A is an S-algebra, then Ao, the opposite of A, is the S-algebra given by the Γ-space
A with the same unit S→ A, but with the twisted multiplication

A∧A
tw
−−−→
∼=

A∧A
µ

−−−→ A.

4. If A and B are S-algebras, their smash A∧B is a new S-algebra with multiplication

(A∧B)∧(A∧B)
id∧tw∧id
−−−−−→ (A∧A)∧(B∧B)→ A∧B,

and unit S ∼= S∧S→ A∧B.

5. If A and B are two S-algebras, the product A×B is formed pointwise: (A×B)(X) =
A(X) × B(X) and with componentwise multiplication and diagonal unit. The co-
product also exists, but is more involved.
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6. Matrices: If A is an S-algebra, we define the S-algebra of n× n matrices MatnA by

MatnA(X) = S∗(n+, n+∧A(X)) ∼=
∏

n

∨

n

A(X)

– the matrices with only “one entry in each column”. The unit is the diagonal, whereas
the multiplication is determined by

MatnA(X)∧MatnA(Y ) = S∗(n+, n+∧A(X))∧S∗(n+, n+∧A(Y ))yid∧(smashing with idA(X))

S∗(n+, n+∧A(X))∧S∗(n+∧A(X), n+∧A(X)∧A(Y ))ycomposition

S∗(n+, n+∧A(X)∧A(Y ))ymultiplication

S∗(n+, n+∧A(X∧Y )) = MatnA(X∧Y )

We note that for a simplicial ring B, there is a natural map of S-algebras (sending
some wedges to products, and rearranging the order)

MatnHB → HMnB

where MnB is the ordinary matrix ring. This map is a stable equivalence as defined
in 2.1.7. We also have a “Whitehead sum”

Matn(A)×Matm(A)
∨

−−−→ Matn+m(A)

which is the block sum listing the first matrix in the upper left hand corner and
the second matrix in the lower right hand corner. This sum is sent to the ordinary
Whitehead sum under the map MatnHB → HMnB.

1.5 A-modules

If A is a ring, we define a left A-module to be an abelian group M together with a map
A⊗M → M satisfying certain properties. In other words, it is a “(A⊗−)-algebra” where
(A⊗−) is the triple on abelian groups sending P to A⊗ P . Likewise

Definition 1.5.1 Let A be an S-algebra. A (left) A-module is an (A∧−)-algebra.

To be more explicit, a left A-module is a pair (M,µM) where M ∈ obΓS∗ and

A∧M
µM

−−−→ M ∈ ΓS∗
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such that

A∧A∧M
id∧µM
−−−−→ A∧M

µA∧id

y µM

y

A∧M
µM

−−−→ M

commutes and such that the composite

M ∼= S∧M
1∧id
−−−→ A∧M

µM

−−−→ M

is the identity.
If M and N are A-modules, an A-module map M → N is a map of Γ-spaces compatible

with the A-module structure (an “(A∧−)-algebra morphism”).

Remark 1.5.2 1. Note that, as remarked for S-algebras in 1.4.2, the structure maps
defining A-modules could again be defined directly without reference to the internal
smash in ΓS∗.

2. One defines right A-modules and A-bimodules as Ao-modules and Ao∧A-modules.

3. Note that an S-module is no more than a Γ-space. In general, if A is a commutative
S-algebra, then the concepts of left or right modules agree.

4. If A is a simplicial ring, then an HA-module does not need to be of the sort HP for an
A-module P , but we shall see that the difference between A-modules and HA-modules
is for most applications irrelevant.

Definition 1.5.3 Let A be an S-algebra. Let M be an A-module and M ′ an Ao-module.
The smash product M ′∧AM is the Γ-space given by the coequalizer

M ′∧AM = lim
−→
{M ′∧A∧M ⇉ M ′∧M}

where the two maps represent the two actions.

Definition 1.5.4 Let A be an S-algebra and let M,N be A-modules. The Γ-space of
A-module maps is defined as the equalizer

MA(M,N) = lim
←−
{ΓS∗(M,N) ⇉ ΓS∗(A∧M,N)}

where the first map is induced by the action of A on M , and the second is

ΓS∗(M,N)→ ΓS∗(A∧M,A∧N)→ ΓS∗(A∧M,N)

induced by the action of A on N .

From these definitions, the following proposition is immediate.
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Proposition 1.5.5 Let k be a commutative S-algebra. Then the smash product and mor-
phism object over k endow the category Mk of k-modules with the structure of a closed
category. .. '!&"%#$����

Example 1.5.6 (k-algebras) If k is a commutative S-algebra, the monoids in the closed
monoidal category (k-mod,∧k, k) are called k-algebras. The most important example to
us is the category of HZ-algebras. A crucial point we shall return to later is that the
homotopy categories of HZ-algebras and simplicial rings are equivalent.

1.6 ΓS∗-categories

Since (ΓS∗,∧,S) is a (symmetric monoidal) closed category it makes sense to talk of a ΓS∗-
category, i.e., a collection of objects obC and for each pair of objects c, d ∈ obC a Γ-space
C(c, d) of “morphisms”, with multiplication

C(c, d)∧C(b, c) −−−→ C(b, d)

and unit
S −−−→ C(c, c)

satisfying the usual identities analogous to the notion of an S-algebra (as a matter of fact:
an S-algebra is precisely (the Γ-space of morphisms in) a ΓS∗-category with one object).
See section A.9.2 for more details on enriched category theory.

In particular, ΓS∗ is itself a ΓS∗-category. As another example; from definition 1.5.4 of
the Γ-space of A-module morphisms, the following fact follows immediately.

Proposition 1.6.1 Let A be an S-algebra. Then the category of A-modules is a ΓS∗-
category. .. '!&"%#$����

Further examples of ΓS∗-categories:

Example 1.6.2 1. Any ΓS∗-category C has an underlying S∗-category RC, or just C
again for short, with function spaces (RC)(c, d) = R(C(c, d)) = C(c, d)(1+) (see
1.2.1.3). The prime example being ΓS∗ itself, where we always drop the R from
the notation.

A ΓS∗-category with only one object is what we call an S-algebra (just as a k-
mod-category with only one object is a k-algebra), and this is closely connected to
Bökstedt’s notion of an FSP. In fact, a “ring functor” in the sense of [70] is the same
as a ΓS∗-category when restricted to Γo ⊆ S∗, and conversely, any ΓS∗-category is a
ring functor when extended degreewise.

2. Just as the Eilenberg–Mac Lane construction takes rings to S-algebras 1.4.4.1, it
takes Ab-categories to ΓS∗-categories. Let E be an Ab-category (i.e., enriched in
abelian groups). Then using the Eilenberg–Mac Lane-construction of 1.4.4.1 on the
morphism groups gives a ΓS∗-category which we will call Ẽ (it could be argued that
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it ought to be called HE , but somewhere there has got to be a conflict of notation,
and we choose to sin here). To be explicit: if c, d ∈ obE , then Ẽ(c, d) is the Γ-space
which sends X ∈ obΓo to E(c, d)⊗ Z̃[X] = H(E(c, d))(X).

3. Let C be a pointed S∗-category. The category ΓC of pointed functors Γo → C is a
ΓS∗-category by declaring that

ΓC(c, d)(X) = ΓC(c, d(X∧−)) ∈ obS∗.

4. Let (C,⊔, e) be a symmetric monoidal category. An augmented symmetric monoid
in C is an object c together with maps c ⊔ c → c, e → c → e satisfying the usual
identities. A slick way of encoding all the identities of an augmented symmetric
monoid c is to identify it with its bar complex (Eilenberg–Mac Lane object) H̄c : Γo →
C where

H̄c(k+) = ⊔k+c =

k times︷ ︸︸ ︷
c ⊔ . . . ⊔ c, (⊔0+c = e).

That is, an augmented symmetric monoid is a rigid kind of Γ-object in C; it is an
Eilenberg–Mac Lane object.

5. Adding 3 and 4 together we get a functor from symmetric monoidal categories to
ΓS∗-categories, sending (C,⊔, e) to the ΓS∗-category with objects the augmented sym-
metric monoids, and with morphism objects

ΓC(H̄c, H̄d(X∧−)).

6. Important special case: If (C,∨, e) is a category with sum (i.e., e is both final and
initial in C, and ∨ is a coproduct), then all objects are augmented symmetric monoids
and

ΓC(H̄c, H̄d(k+∧−)) ∼= C(c,

k+∨
d),

where
∨k+ d = d ∨ · · · ∨ d (k-summands).

1.6.3 The ΓS∗-category C∨

The last example (1.6.2.6) is so important that we introduce the following notation. Let
(C,∨, e) be a category with sum (i.e., e is both final and initial in C, and ∨ is a coproduct),
then C∨ is the ΓS∗-category with obC∨ = obC and

C∨(c, d)(X) = C(c,
X∨
d).

If (E ,⊕, 0) is an Ab-category with sum (what is often called an additive category), then
the Ẽ of 1.6.2.2 and E⊕ coincide:

Ẽ(c, d)(n+) ∼= E(c, d)×n ∼= E(c, d⊕n) = E⊕(c, d)(n+),
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since finite sums and products coincide in an additive category, see [191, p. 194].
It is worth noting that the structure of 1.6.2.6 when applied to (ΓS∗,∨, 0+) is different

from the ΓS∗-enrichment we have given to ΓS∗ when declaring it to be a symmetric monoidal
closed category under the smash product. Then ΓS∗(M,N)(X) = ΓS∗(M,N(X∧−)).
However, ∨XN ∼= X∧N → N(X∧−) is a stable equivalence (see definition 2.1.7), and in
some cases this is enough to ensure that

ΓS∗
∨(M,N)(X) ∼= ΓS∗(M,X∧N)→ ΓS∗(M,N(X∧−)) = ΓS∗(M,N)(X)

is a stable equivalence.

1.6.4 A reformulation

When talking in the language of Ab-categories (linear categories), a ring is just (the mor-
phism group in) an Ab-category with one object, and an A-module M corresponds to a
functor from A to Ab: the ring homomorphism A→ End(M) giving the abelian group M
a structure of an A-module is exactly the data needed to give a functor from the category
(corresponding to) A to Ab sending the single object to M .

In the setting of ΓS∗-categories, we can similarly reinterpret S-algebras and their mod-
ules. An S-algebra A is simply a ΓS∗-category with only one object, and an A-module is a
ΓS∗-functor from A to ΓS∗.

Thinking of A-modules as ΓS∗-functors A→ ΓS∗ the definitions of smash and morphism
objects can be elegantly expressed as

M ′∧AM =

∫ A

M ′∧M

and

HomA(M,N) =

∫

A

ΓS∗(M,N).

If B is another S-algebra, M ′ a B∧Ao-module we get ΓS∗-adjoint functors

MA

M ′∧A−

⇆
MB(M ′,−)

MB

due to the canonical isomorphism

MB(M ′∧AN,P ) =

∫

B

ΓS∗(

∫ A

M ′∧N,P )

∼=

∫

A

ΓS∗(M
′,

∫

B

ΓS∗(N,P )) =MA(N,MB(M ′, P )

which follows from the definitions, the Fubini theorem for ends and the fact that ΓS∗ is
closed symmetric monoidal (P ∈ obMB).
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2 Stable structures

In this section we will discuss the homotopical properties of Γ-spaces and S-algebras. His-
torically Γ-spaces are nice representations of connective spectra and the choice of equiv-
alences reflects this. That is, in addition to the obvious pointwise equivalences, we have
the so-called stable equivalences. The functors of S-algebras we will define, such as K-
theory, should respect stable equivalences. Any S-algebra can, up to a canonical stable
equivalence, be replaced by a very special one.

2.1 The homotopy theory of Γ-spaces

To define the stable structure we need to take a different view to Γ-spaces.

2.1.1 Gamma-spaces as functors of spaces

LetM be a Γ-space. It is a (pointed) functorM : Γo → S∗, and by extension by colimits and
degreewise application followed by the diagonal we may think of it as a functor S∗ → S∗.
To be explicit, we first extend from the skeletal category Γo to all finite pointed sets (in a
chosen universe) by, for each finite pointed set S of cardinality k + 1, choosing a pointed
isomorphism αS : S ∼= k+ (αk+ is chosen to be the identity), setting M(S) = M(k+) and if
f : S → T is a pointed function of finite sets we define M(f) to be M(αT fα

−1
S ). If X is a

pointed set, we define

M(X) = lim
−−−→
Y⊆X

M(Y ),

where the colimit varies over the finite pointed subsets Y ⊆ X, and so M is a (pointed)
functor Ens∗ → S∗. For this to be functorial, we - as always - assume that all colimits are
actually chosen (and not something only defined up to unique isomorphism). Finally, if
X ∈ obS∗, we set

M(X) = diag∗{[q] 7→M(Xq)} = {[q] 7→M(Xq)q}.

Aside 2.1.2 For those familiar with the language of coends, the extensions of a Γ-space
M to an endofunctor on spaces can be done all at once: if X is a space, then

M(X) =

∫ k+

X×k∧M(k+).

In yet other words, we do the left Kan extension

Γo
M //

S

��

S∗

S∗.

>>
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2.1.3 Gamma-spaces as simplicial functors

The fact that these functors come from degreewise applications of a functor on (discrete)
sets make them “simplicial” (more precisely: they are S∗-functors), i.e., they give rise to
simplicial maps

S∗(X, Y )→ S∗(M(X), N(Y ))

which results in natural maps

M(X)∧Y →M(X∧Y )

coming from the identity on X∧Y through the composite

S∗(X∧Y,X∧Y ) ∼= S∗(Y,S∗(X,X∧Y ))

→ S∗(Y,S∗(M(X),M(X∧Y ))) ∼= S∗(M(X)∧Y,M(X∧Y ))

(where the isomorphisms are the adjunction isomorphisms of the smash/function space
adjoint pair). In particular this means that Γ-spaces define spectra: the nth term is given
by M(Sn), and the structure map is S1∧M(Sn)→ M(Sn+1) where Sn is S1 = ∆[1]/∂∆[1]
smashed with itself n times, see also 2.1.13 below.

Definition 2.1.4 If M ∈ obΓS∗, then the homotopy groups of M are defined as

πqM = lim
−→
k

πk+qM(Sk).

Note that πqM = 0 for q < 0, by the following lemma.

Lemma 2.1.5 Let M ∈ ΓS∗.

1. If Y
∼
→ Y ′ ∈ S∗ is a weak equivalence then M(Y )

∼
→ M(Y ′) is a weak equivalence

also.

2. If X is an n-connected pointed space, then M(X) is n-connected also.

3. If X is an n-connected pointed space, then the canonical map of 2.1.3 M(X)∧Y →
M(X∧Y ) is 2n-connected.

Proof: Let LM be the simplicial Γ-space given by

LM(X)p =
∨

Z0,...,Zp∈(Γo)×p+1

M(Z0)∧Γo(Z0, Z1)∧ · · · ∧Γo(Zp−1, Zp)∧Γo(Zp, X)

with operators determined by

di(f∧α1∧ . . .∧αp∧β) =





(M(α1)(f)∧α2∧ . . .∧αp∧β) if i = 0,

(f∧α1∧ . . .∧αi+1 ◦ αi∧ . . .∧β) if 1 ≤ i ≤ p− 1,

(f∧α1∧ . . .∧αp−1∧(β ◦ αp)) if i = p,
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sj(f∧α1∧ . . .∧αp∧β) = (f∧ . . . αj∧id∧αj+1 . . .∧β)

(LM is an example of a “homotopy coend”, or a “one-sided bar construction”). Consider
the natural transformation

LM
η

−−−→ M

determined by

(f∧α1∧ . . .∧β) 7→M(β ◦ αp ◦ · · · ◦ α1)(f).

For each Z ∈ obΓo we obtain a simplicial homotopy inverse to ηZ by sending f ∈M(Z) to
(f∧idZ∧ . . .∧idZ). Since LM and M both commute with filtered colimits we see that η
is an equivalence on all pointed sets and so by A.5.0.2, η is an equivalence for all pointed
simplicial sets because LM and M are applied degreewise. Thus, for all pointed simplicial
sets X the map ηX is a weak equivalence

LM(X)
∼
→M(X).

(1) If Y
∼
→ Y ′ is a weak equivalence then S∗(k+, Y ) ∼= Y ×k

∼
→ (Y ′)×k ∼= S∗(k+, Y

′) is a
weak equivalence for all k. But this implies that LM(Y )p

∼
→ LM(Y ′)p for all p and hence,

by A.5.0.2, that LM(Y )
∼
→ LM(Y ′).

(2) If X is n-connected for some n ≥ 0, then S∗(k+, X) ∼= X×k is n-connected for all
k and hence LM(X)p is n-connected for all p. Thus, by A.5.0.6 we see that LM(X) is
n-connected also.

(3) If X is n-connected and X ′ is m-connected then, by Corollary A.7.2.4, X ∨ X ′ →
X×X ′ is (m+n)-connected and so Y ∧(X×X ′)→ (Y ∧X ′)×(Y ∧X ′) is (m+n)-connected
also by the commuting diagram

Y ∧(X ∨X ′) −−−→ Y ∧(X ×X ′)

∼=

y
y

(Y ∧X) ∨ (Y ∧X ′) −−−→ (Y ∧X)× (Y ∧X ′)

since both horizontal maps are (m+ n)-connected. By induction we see that

Y ∧S∗(k+, X)→ S∗(k+, Y ∧X)

is 2n-connected for all k and so Y ∧LM(X)p → LM(Y ∧X)p is 2n-connected for all p. Since
a simplicial space which is k > 0-connected in every degree has a k-connected diagonal (e.g.,
by Theorem A.5.0.6) we can conclude that Y ∧LM(X)→ LM(Y ∧X) is 2n-connected.

Following Schwede [253] we now define two closed model category structures on ΓS∗
(these differ very slightly from the structures considered by Bousfield and Friedlander [39]
and Lydakis [188]). For basics on model categories see Appendix A.3. We will call these
model structures the “pointwise” and the “stable” structures”:
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Definition 2.1.6 Pointwise structure: A map M → N ∈ ΓS∗ is a pointwise fibration (resp.
pointwise equivalence) if M(X) → N(X) ∈ S∗ is a fibration (resp. weak equivalence)
for every X ∈ obΓ. The map is a (pointwise) cofibration if it has the lifting property
with respect to maps that are both pointwise fibrations and pointwise equivalences, i.e.,
i : A→ X ∈ ΓS∗ is a cofibration if for every pointwise fibration f : E → B ∈ ΓS∗ that is a
pointwise equivalence and for every solid commutative diagram

A //

i
��

E

f≃
����

X

s
>>}

}
}

}
// B

there exists a (dotted) map s : X → E making the resulting diagram commute.

From this one constructs the stable structure. Note that the cofibrations in the two
structures are the same! Because of this we often omit the words “pointwise” and “stable”
when referring to cofibrations.

Definition 2.1.7 Stable structure: A map of Γ-spaces is a stable equivalence if it induces
an isomorphism on homotopy groups (defined in 2.1.4). It is a (stable) cofibration if it is a
(pointwise) cofibration, and it is a stable fibration if it has the lifting property with respect
to all maps that are both stable equivalences and cofibrations.

As opposed to simplicial sets, not all Γ-spaces are cofibrant. Examples of cofibrant
objects are the Γ-spaces ΓX of 1.2.1.4 (and so the simplicial Γ-spaces LM defined in the
proof of Lemma 2.1.5 are cofibrant in every degree, so that LM → M can be thought of
as a cofibrant resolution).

We shall see in 2.1.10 that the stably fibrant objects are the very special Γ-spaces which
are pointwise fibrant.

2.1.8 Important convention

The stable structure will by far be the most important to us, and so when we occasionally
forget the qualification “stable”, and say that a map of Γ-spaces is a fibration, a cofibration
or an equivalence this is short for it being a stable fibration, cofibration or equivalence.
We will say “pointwise” when appropriate.

Theorem 2.1.9 Both the pointwise and the stable structures define closed model category
structures (see A.3.2) on ΓS∗. Furthermore, these structures are compatible with the ΓS∗-

category structure. More precisely: If M
i

֌ N is a cofibration and P
p
։ Q is a pointwise

(resp. stable) fibration, then the canonical map

ΓS∗(N,P )→ ΓS∗(M,P )
∏

ΓS∗(M,Q)

ΓS∗(N,Q) (2.1.9)

is a pointwise (resp. stable) fibration, and if in addition i or p is a pointwise (resp. stable)
equivalence, then 2.1.9 is a pointwise (resp. stable) equivalence.
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Sketch proof: (cf. Schwede [253]) That the pointwise structure is a closed simplicial model
category is essentially an application of Quillen’s basic theorem [235, II4] to the category
of Γ-sets. The rest of the pointwise claim follows from the definition of ΓS∗(−,−).

As to the stable structure, all the axioms but one follows from the pointwise structure.

If f : M → N ∈ ΓS∗, one must show that there is a factorization M
∼
֌ X ։ N of f as a

cofibration which is a stable equivalence, followed by a stable fibration. We refer the reader
to [253]. We refer the reader to the same source for compatibility of the stable structure
with the ΓS∗-enrichment. .. '!&"%#$����

Note that, since the cofibrations are the same in the pointwise and the stable structure,
a map is both a pointwise equivalence and a pointwise fibration if and only if it is both a
stable equivalence and a stable fibration.

Corollary 2.1.10 Let M be a Γ-space. Then M is stably fibrant (i.e., M → ∗ is a stable
fibration) if and only if it is very special and pointwise fibrant.

Proof: If M is stably fibrant, M → ∗ has the lifting property with respect to all maps that
are stable equivalences and cofibrations, and hence also to the maps that are pointwise
equivalences and cofibrations; that is, M is pointwise fibrant. Let X, Y ∈ obΓo, then
ΓX ∨ ΓY → ΓX∨Y ∼= ΓX × ΓY is a cofibration and a (stable) equivalence. This means that
if M is stably fibrant, then

ΓS∗(Γ
X∨Y ,M)→ ΓS∗(Γ

X ∨ ΓY ,M)

is a stable equivalence and a stable fibration, which is the same as saying that it is a
pointwise equivalence and a pointwise fibration, which means that

M(X ∨ Y ) ∼= ΓS∗(Γ
X∨Y ,M)→ ΓS∗(Γ

X ∨ ΓY ,M) ∼= M(X)×M(Y )

is an equivalence. Here, as elsewhere, we have written ΓS∗(−,−) for the underlying mor-
phism space RΓS∗(−,−). Similarly, the map

S ∨ S
in1+∆
−−−−→ S× S

is a stable equivalence. When π0ΓS∗(−,M) is applied to this map we get (a, b) 7→ (a, a +
b) : π0M(1+)×2 → π0M(1+)×2.

If M is fibrant this must be an isomorphism, and so π0M(1+) has inverses.

Conversely, suppose that M is pointwise fibrant and very special. Let M
i

֌
∼
N ։ ∗ be

a factorization into a map that is a stable equivalence and cofibration followed by a stable
fibration. Since both M and N are very special i must be a pointwise equivalence, and so
has a section (from the pointwise structure), which means that M is a retract of a stably
fibrant object since we have a lifting in the diagram in the pointwise structure

M
��

i≃
��

M

.
����

N // ∗
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2.1.11 A simple fibrant replacement functor

In the approach we will follow, it is a strange fact that we will never need to replace a
Γ-space with a cofibrant one, but we will constantly need to replace them by stably fibrant
ones. There is a particularly easy way to do this: let M be any Γ-space, and set

QM(X) = lim
−→
k

ΩkM(Sk∧X),

c.f. the analogous construction for spectra in A.2.2.3. Obviously the map M → QM is a
stable equivalence, and QM is pointwise fibrant and very special (use e.g., Lemma 2.1.5).
For various purposes, this replacement Q will not be good enough. Its main deficiency is
that it will not take S-algebras to S-algebras.

2.1.12 Comparison with spectra

We have already observed that Γ-spaces give rise to spectra:

Definition 2.1.13 Let M be a Γ-space. Then the spectrum associated with M is the
sequence

M = {k 7→M(Sk)}

where Sk is S1 = ∆[1]/∂∆[1] smashed with itself k times, together with the structure maps
S1∧M(Sk)→ M(S1∧Sk) = M(Sk+1) of 2.1.3.

The assignment M 7→M is a simplicial functor

ΓS∗
M 7→M
−−−−→ Spt

(where Spt is the category of spectra, see Appendix A2.2 for details). and it follows from
the considerations in [39] that it induces an equivalence between the stable homotopy
categories of Γ-spaces and connective spectra.

Crucial for the general acceptance of Lydakis’ definition of the smash product was the
following (where conn(X) is the connectivity of X):

Proposition 2.1.14 Let M and N be Γ-spaces and X and Y spaces. If M is cofibrant,
then the canonical map

M(X)∧N(Y )→ (M∧N)(X∧Y )

is n-connected with n = conn(X) + conn(Y ) + min(conn(X), conn(Y )).

Sketch proof: (see [188] for further details). The proof goes by induction, first treat-
ing the case M = Γo(n+,−), and observing that then M(X)∧N(Y ) ∼= X×n∧N(Y ) and
(M∧N)(X∧Y ) ∼= N((X∧Y )×n). Hence, in this case the result follows from Lemma 2.1.4.3.

.. '!&"%#$����
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Corollary 2.1.15 Let M and N be Γ-spaces with M cofibrant. Then M∧N is stably
equivalent to a handicrafted smash product of spectra, e.g.,

n 7→ {lim
−→
k,l

Ωk+l(Sn∧M(Sk)∧N(Sl))}. .. '!&"%#$����

2.2 A fibrant replacement for S-algebras

Note that if A is a simplicial ring, then the Eilenberg–Mac Lane object HA of 1.1 is a
very special Γ-space, and so maps between simplicial rings induce maps that are stable
equivalences if and only if they are pointwise equivalences. Hence any functor respecting
pointwise equivalences of S-algebras will have good homotopy properties when restricted
to simplicial rings.

When we want to apply functors to all S-algebras A, we frequently need to replace
our S-algebras by a very special S-algebras before feeding them to our functor in order
to ensure that the functor will preserve stable equivalences. This is a potential problem
since the fibrant replacement functor Q presented in 2.1.11 does not take S-algebras to
S-algebras.

For this we need a gadget explored by Breen [41] and Bökstedt [30]. Breen noted the
need for a refined stabilization of the Eilenberg-Mac Lane spaces for rings and Bökstedt
noted that when he wanted to extend Hochschild homology to S-algebras or rather FSPs
(see chapter IV) in general, the face maps were problematic as they involved the multipli-
cation, and this was not well behaved with respect to naïve stabilization. Both mention
Illusie [145] as a source of inspiration.

2.2.1 The category I

Let I ⊂ Γo be the subcategory with all objects, but only the injective maps. This has
much more structure than the natural numbers considered as the subcategory where we
only allow the standard inclusion {0, 1, . . . , n− 1} ⊂ {0, 1, . . . , n}. Most importantly, the
wedge sum of two sets x0, x1 7→ x0 ∨ x1 induces a natural transformation I × I → I. To
be quite precise, the sum is given by k+ ∨ l+ = (k+ l)+ with inclusion maps k+ → (k+ l)+

sending i ∈ k+ to i ∈ (k+l)+, and l+ → (k+l)+ sending j > 0 ∈ l+ to k+j ∈ (k+l)+. Note
that ∨ is strictly associative and unital: (x∨ y)∨ z = x∨ (y ∨ z) and 0+ ∨ x = x = x∨ 0+

(but symmetric only up to isomorphism).
This results in a simplicial category {[p] 7→ Ip+1} with structure maps given by sending

x = (x0, . . . , xq) ∈ I
q+1 to

di(x) =

{
(x0, . . . , xi ∨ xi+1, . . . , xq) for 0 ≤ i < q,

(xq ∨ x0, , x1, . . . , xp−1) for i = q

si(x) =(x0, . . . , xi, 0+, xi+1, . . . , xp) for 0 ≤ i ≤ q.

Below, and many times later, we will use the symbol Map∗(X, Y ) to signify the homotopy-
theoretically sensible mapping space S∗(X, sin |Y |) (which, in view of the geometric real-
ization/singular complex adjunction is naturally isomorphic to the singular complex of the



2. STABLE STRUCTURES 97

space Top∗(|X|, |Y |) of pointed maps with the compact open topology) between pointed
simplicial sets X and Y . If Y is fibrant, the map S∗(X, Y ) → Map∗(X, Y ) induced by
the unit of adjunction Y → sin |Y | is a weak equivalence. For more details on the geo-
metric realization/singular complex adjoint pair, the reader may consult Appendix A.1.1.
On several occasions we will need that smashing with a pointed space A induces a map
Map∗(X, Y )→ Map∗(A∧X,A∧Y ), sending the q-simplex ∆[q]+∧X → sin |Y | to

∆[q]+∧(A∧X) ∼= A∧(∆[q]+∧X)→ A∧ sin |Y | → sin |A∧Y |,

where the first isomorphism is the symmetry structure isomorphism of ∧, the middle map
is induced by the map in question and the last map is adjoint to the composite A →
S∗(Y,A∧Y ) → S∗(sin |Y |, sin |A∧Y |) (where the first map is adjoint to the identity and
the last map induced by the S∗-functor sin | − |).

Definition 2.2.2 If x = k+ ∈ obI, we let |x| = k – the number of non-base points. We
will often not distinguish notationally between x and |x|. For instance, an expression like
Sx will mean S1 smashed with itself |x| times: S0+ = S0, S(k+1)+ = S1∧Sk+ . Likewise
Ωx will mean Map∗(S

x,−). If φ : x → y ∈ I, then S(|y|−|x|)∧Sx → Sy is the isomorphism
which inserts the jth factor of Sx as the φ(j)th factor of Sy and distributes the factors of
S(|y|−|x|) over the remaining factors of Sy, keeping the order. If M is a Γ-space and X is a
finite pointed set, the assignment x 7→ ΩxM(Sx∧X) is a functor, where φ : x → y is sent
to

ΩxM(Sx∧X)→ Ω(|y|−|x|)+|x|(S(|y|−|x|)∧M(Sx∧X))→

Ω(|y|−|x|)+|x|M(S(|y|−|x|)∧Sx∧X) ∼= ΩyM(Sy∧X),

where the first map is the suspension, the second is induced by the structure map of M
and the last isomorphism is conjugation by the isomorphism S(|y|−|x|)∧Sx → Sy described
above. Let T0M be the Γ-space

T0M = {X 7→ holim
−−→
x∈I

ΩxM(Sx∧X)}

The reason for the notation T0M will become apparent in chapter IV (no, it is not because
it is the tangent space of something).

We would like to know that this has the right homotopy properties, i.e., that T0M is
equivalent to

QM = {X 7→ lim
−→
k

ΩkM(Sk∧X)}.

One should note that, as opposed to N, the category I is not filtering, so we must stick
with the homotopy colimits. However, I possesses certain good properties which overcome
this difficulty. Bökstedt attributes the idea behind the following very important stabiliza-
tion lemma to Illusie [145]. Still, we attach Bökstedt’s name to the result to signify the
importance his insight at this point was to the development of the cyclotomic trace. See
[30, 1.5], but also [192, 2.3.7] or [42, 2.5.1] and compare with [145, VI, 4.6.12] and [41].
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Lemma 2.2.3 (Bökstedt’s approximation lemma) Let G : Iq+1 → S∗ be a functor,
x ∈ obIq+1, and consider the full subcategory Fx ⊆ I

q+1 of objects supporting maps from
x. Assume G sends maps in Fx to n-connected maps. Then the canonical map

G(x)→ holim
−−−→
Iq+1

G

is n-connected.

Proof: Since Iq+1 has an initial object, Lemma A.6.4.1 tells us that we may work with
unbased homotopy colimits. Consider the functor

µx : Iq+1 y 7→µx(y)=x∨y
−−−−−−−−→ Iq+1,

factoring over the inclusion Fx ⊆ I
q+1 The second inclusion y ⊆ x ∨ y defines a natural

transformation ηx from the identity to µx. This natural transformation translates to a
homotopy from the identity to the map

holim
−−−→
Iq+1

G
Gηx
−−−→ holim

−−−→
Iq+1

Gµx

(µx)∗
−−−→ holim

−−−→
Iq+1

G,

showing that holim−→
Fx

G → holim−−−→
Iq+1 G is a split surjection in the homotopy category.

Likewise, the same natural transformation restricted to Fx gives a homotopy from the
identity to

holim
−→
Fx

G
Gηx
−−−→ holim

−→
Fx

Gµx

(µx)∗
−−−→ holim

−→
Fx

G,

showing that holim−→
Fx

G → holim−−−→
Iq+1 G is a split injection in the homotopy category. To-

gether this shows that the map holim−→
Fx

G → holim−−−→
Iq+1 G is a weak equivalence. Hence it

is enough to show that G(x)→ holim−→
Fx

G is n-connected.
Repeating the same argument as above with the constant functor ∗ instead of G, we

see that B(Fx) ∼= holim−→
Fx

∗ → holim−−−→
Iq+1 ∗ ∼= B(Iq+1) is an equivalence, and the latter

space is contractible since Iq+1 has an initial object. Quillen’s theorem B in the form of
Lemma A.6.4.2 then states that G(x)→ holim−→

Fx

G is n-connected.

Lemma 2.2.4 Let M be a Γ-space. Then T0M is very special and the natural transfor-
mation M → T0M is a stable equivalence of Γ-spaces.

Proof: Let X and Y be pointed finite sets and y = k+ ∈ obI. Consider the diagram

Ωy [M(Sy)∧(X ∨ Y )] −−−→ Ωy(M(Sy)∧X)× Ωy(M(Sy)∧Y )y
y

Ωy [M(Sy∧(X ∨ Y ))] −−−→ ΩyM(Sy∧X)× ΩyM(Sy∧Y )y
y

holim
−−→
x∈I

Ωx [M(Sx∧(X ∨ Y ))] −−−→ holim
−−→
x∈I

ΩxM(Sx∧X)× holim
−−→
x∈I

M(Sx∧Y )
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where the horizontal maps are induced by the projections from X ∨ Y to X and to Y and
are k−2-connected by the Freudenthal suspension Theorem A.7.2.3; the top vertical maps
are the maps defined in 2.1.3 and are k − 2-connected by Lemma 2.1.5.3; and the bottom
vertical maps are the canonical maps into the homotopy colimits and are k-connected by
Bökstedt’s approximation Lemma 2.2.3. The bottom map is the map T0M(X ∨ Y ) →
T0M(X) × T0M(Y ) induced by the projections. Since k can be chosen arbitrarily, this
shows that the Γ-space T0M is very special.

The same reasoning shows that the canonical map

holim
−−−→
k∈N

ΩkM(Sk∧X)→ holim
−−→
x∈I

ΩxM(Sx∧X)

induced by the inclusion N ⊆ I is a weak equivalence underM(X). Since by Lemma A.6.3.2
the canonical map holim−−−→

k∈N
ΩkM(Sk∧X) → lim−−−→

k∈N
ΩkM(Sk∧X) = (QM)(X) is a weak

equivalence under M(X) we are done.
Note that T0M(X) is usually not a fibrant space, and so T0M is not stably fibrant

either, but the lemma shows that e.g., sin |T0M | is stably fibrant.
A stable equivalence of S-algebras is a map of S-algebras that is a stable equivalence

when considered as a map of Γ-spaces.

Lemma 2.2.5 The functor T0 maps S-algebras to S-algebras, and the natural transforma-
tion id→ T0 is a stable equivalence of S-algebras.

Proof: Given 2.2.4, we only need to establish the multiplicative properties. Let A be an
S-algebra. We have to define the multiplication and the unit of T0A. The unit is obvious:
S→ T0S→ T0A.

If F,G : J → S∗ are functors, distributivity of ∧ over ∨ gives a natural isomorphism(
holim−→

J
F
)
∧
(
holim−→

J
G
)
∼= holim−−→

J×J
F∧G. Using the map ΩxA(Sx∧X)∧ΩyA(Sy∧Y )→

Ωx∨y(A(Sx∧X)∧A(Sy∧Y )) that smashes maps together, the multiplication in A and the
concatenation in I, the multiplication in T0A is given by the composite

T0A(X)∧T0A(Y ) −−−→ holim
−−−−−−→
(x,y)∈I2

Ωx∨y (A(Sx∧X)∧A(Sy∧Y ))

mult. in A
−−−−−−→ holim

−−−−−−→
(x,y)∈I2

Ωx∨yA(Sx∨y∧X∧Y )

∨ in I
−−−→ holim

−−→
z∈I

ΩzA(Sz∧X∧Y ) = T0A(X∧Y )

.

Checking that this gives a unital and associative structure on T0A follows by using the
same properties in I and A. That the map A → T0A is a map of S-algebras is now
immediate.

Remark 2.2.6 It is noteworthy that the fibrant replacement Q is not monoidal and will
not take S-algebras to S-algebras; the presence of nontrivial automorphisms in I is of vital
importance. We discuss this further in IV.1.2.9 since it crucial to Bökstedt’s definition of
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topological Hochschild homology. Notice that if A is an S-algebra, then the multiplication
in A provides T0A(1+) with the structure of a simplicial monoid. However, even if A is
commutative, the automorphisms of I prevent T0M(1+) from being commutative (unless
A = ∗), thus saving us from Lewis’ pitfalls [174].

Corollary 2.2.7 Any H̄Z-algebra is functorially stably equivalent to H̄ of a simplicial
ring. In particular, if A is an S-algebra, then Z̃A is functorially stably equivalent to H of
a simplicial ring.

Proof: The T0 construction can equally well be performed in H̄Z-modules: let Ω1
Ab
M

be S∗(S
1,M), which is an H̄Z-module if M is, and let the homotopy colimit be given

by the usual formula except the wedges are replaced by sums (see A.6.4.3 for further
details). Let R0A = holim−−→

x∈I
Ωx

Ab
A(Sx). This is an H̄Z-algebra if A is. There is a natural

equivalence R0A → R0(sin |A|) and a natural transformation T0UA → UR0(sin |A|) (U is
the forgetful functor). By Lemma A.6.4.7 and Lemma 2.1.5.2 you get that T0UA(Sn) →
UR0(sin |A|)(S

n) is (2n − 1)-connected. But since both sides are special Γ-spaces, this

means that T0UA
∼ //UR0 sin |A| UR0A

∼oo is a natural chain of weak equivalences.

(Alternatively, we could have adapted Bökstedt’s approximation theorem to prove directly
that A→ R0A is a stable equivalence.)

Consequently, if A is a H̄Z-algebra, there is a functorial stable equivalence A → R0A
of H̄Z-algebras. But R0A is special and for such algebras the unit of adjunction H̄R→ 1
is an equivalence by Lemma 1.3.3.

2.3 Homotopical algebra in the category of A-modules

Although it is not necessary for the subsequent development, we list a few facts pertaining
to the homotopy structure on categories of modules over S-algebras. The stable structure
on A-modules is inherited in the usual way from the stable structure on Γ-spaces.

Definition 2.3.1 Let A be an S-algebra. We say that an A-module map is an equivalence
(resp. fibration) if it is a stable equivalence (resp. stable fibration) of Γ-spaces. The
cofibrations are defined by the lifting property.

Theorem 2.3.2 With these definitions, the category of A-modules is a closed model cat-

egory compatibly enriched in ΓS∗: if M
i

֌ N is a cofibration and P
p
։ Q is a fibration,

then the canonical map

HomA(N,P )
(i∗,p∗)
−−−→ HomA(M,P )

∏
HomA(M,Q) HomA(N,Q)

is a stable fibration, and if in addition i or p is an equivalence, then (i∗, p∗) is a stable
equivalence.

Sketch proof: (For a full proof, consult [253]). For the proof of the closed model category
structure, see [255, 3.1.1]. For the proof of the compatibility with the enrichment, see the
proof of [255, 3.1.2] where the commutative case is treated. .. '!&"%#$����
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The smash product behaves as expected (see [188] and [253] for proofs):

Proposition 2.3.3 Let A be an S-algebra, and let M be a cofibrant Ao-module. Then
M∧A− : A-mod → ΓS∗ sends stable equivalences to stable equivalences. If N is an A-
module there are first quadrant spectral sequences

Torπ∗Ap (π∗M,π∗N)q)⇒πp+q(M∧AN)

πp(M∧A(HπqN))⇒πp+q(M∧AN)

If A→ B is a stable equivalence of S-algebras, then the derived functor of B∧A− induces
an equivalence between the homotopy categories of A and B-modules. .. '!&"%#$����

2.3.4 k-algebras

Let k be a commutative S-algebra. In the category of k-algebras, we call a map a fibration
or a weak equivalence if it is a stable fibration or stable equivalence of Γ-spaces. The
cofibrations are as usual the maps with the right (right meaning correct: in this case left is
right) lifting property. With these definitions the category of k-algebras becomes a closed
simplicial model category [253]. We will need the analogous result for ΓS∗-categories:

2.4 Homotopical algebra in the category of ΓS∗-categories

Definition 2.4.1 A ΓS∗-functor of ΓS∗-categories F : C → D is a stable equivalence if for
all c, c′ ∈ obC the map

C(c, c′)→ D(Fc, Fc′) ∈ ΓS∗

is a stable equivalence, and for any d ∈ obD there is a c ∈ obC and an isomorphism Fc ∼= d.
Likewise, an S-functor of S-categories F : C → D is a weak equivalence if for all c, c′ ∈

obC the map C(c, c′) → D(Fc, Fc′) ∈ S is a weak equivalence, and for any d ∈ obD there
is a c ∈ obC and an isomorphism Fc ∼= d.

A functor which is surjective on isomorphism classes is sometimes called “essentially sur-
jective”.

Recall that a ΓS∗-equivalence is a ΓS∗-functor C F //D for which there exists a ΓS∗-

functor C DGoo and ΓS∗-natural isomorphisms idC ∼= GF and idD ∼= FG.

Lemma 2.4.2 Every stable equivalence of ΓS∗-categories can be written as a composite of
a stable equivalence inducing the identity on the objects and a ΓS∗-equivalence.

Proof: Let F : C → D be a stable equivalence. let F be the ΓS∗-category with the same
objects as C, but with morphisms given by F (c, c′) = D(Fc, Fc′). Then F factors as
C → F → D where the first map is the identity on objects and a stable equivalence on
morphisms, and the second is induced by F on objects, and is the identity on morphisms.
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The latter map is a ΓS∗-equivalence: for every d ∈ obD choose a cd ∈ obC and an isomor-
phism d ∼= Fcd. As one checks, the application d 7→ cd defines the inverse ΓS∗-equivalence.

So stable equivalences are the more general, and may be characterized as composites
of ΓS∗-equivalences and stable equivalences that induce the identity on the set of objects.
Likewise for weak equivalences of S-categories.

3 Algebraic K-theory

3.1 K-theory of symmetric monoidal categories

A symmetric monoid can be viewed as a symmetric monoidal category (an SMC) with just
identity morphisms. A symmetric monoid M gives rise to a Γ-space HM via the formula
k+ 7→ M×k (see example 1.1 and [257]), the Eilenberg–Mac Lane object of M . Algebraic
K-theory, as developed in Segal’s paper [257], is an extension of this to symmetric monoidal
categories (see also [260] or [282]), such that for every symmetric monoidal category C we
have a Γ-category H̄C.

For a finite set X, let PX be the set of subsets of X. If S and T are two disjoint subsets
of X, then S

∐
T is again a subset of X. If all the coherence isomorphisms symmetric

monoidal category (C,⊔, e) were identities we could define the algebraic K-theory as the
Γ-category which evaluated at k+ ∈ Γo was the category whose objects were all functions
P{1, . . . , k} → obC sending

∐
to ⊔ and ∅ to e:


P{1, . . . , k}∐

∅


→



obC
⊔
e


 .

Such a function is uniquely given by declaring what its values are on all subsets {i} ⊂
{1, . . . , k} and so this is nothing but C times itself k times.

In the non-strict case this loosens up only a bit. If (C,⊔, e) is a symmetric monoidal cat-
egory, H̄C(k+) is the symmetric monoidal category whose objects are the pointed functors
P{1, . . . , k} → C taking

∐
to ⊔ up to coherent isomorphisms. More precisely (remember-

ing that displayed diagrams commute unless otherwise explicitly stated not to)

Definition 3.1.1 Let (C,⊔, e) be a symmetric monoidal category. Let k+ ∈ obΓo. An
object of H̄C(X) is a function a : P{1, . . . , k} → obC together with a choice of isomorphisms

αS,T : aS ⊔ aT → aS
‘
T

for every pair S, T ⊆ {1, . . . , k} such that S ∩ T = ∅, satisfying the following conditions:

1. a∅ = e,

2. the morphisms a∅,S : e ⊔ aS → a∅‘
S = aS and aS,∅ : aS ⊔ e → aS‘

∅ = aS are the
structure isomorphisms in C,
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3. the diagram

(aS ⊔ aT ) ⊔ aU
associativity //

αS,T⊔id

��

aS ⊔ (aT ⊔ aU)

id⊔αT,U
��

aS
‘
T ⊔ aU αS‘

T,U

// aS
‘
T

‘
U aS ⊔ aT ‘

UαS,T
‘

U

oo

commutes and

4. the diagram
aS ⊔ aT //

αS,T

((QQQQQQQQQQQQ
aT ⊔ aS

αT,S

��
aS

‘
T = aT

‘
S

commutes, where the unlabelled arrow is the corresponding structure isomorphism
in C.

A morphism f : (a, α)→ (b, β) ∈ H̄C(X) is a collection of morphisms

fS : aS → bS ∈ C

such that

1. f∅ = ide and

2. the diagram

aS ⊔ aT
fS⊔fT−−−−→ bS ⊔ bT

αS,T

y βS,T

y

aS
‘
T

fS
‘

T
−−−→ bS

‘
T

commutes.

If φ : k+ → l+ ∈ Γo, then H̄C(k+)→ H̄C(l+) is defined by sending a : P{1, . . . , k} → C
to

P{1, . . . , l}
φ−1

−−−→ P{1, . . . , k}
a

−−−→ C

(this makes sense as φ was pointed at 0), with corresponding isomorphism

aφ−1(S),φ−1(T ) : aφ−1S ⊔ aφ−1T → aφ−1(S)
‘
φ−1(T ) = aφ−1(S

‘
T ).

This defines the Γ-category H̄C, which again is obviously functorial in C, giving the
functor

H̄ : symmetric monoidal categories→ Γ-categories

The classifying space BH̄C forms a Γ–space which is often called the (direct sum)
algebraic K-theory of C.
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If C is discrete, or in other words, C = obC is a symmetric monoid, then this is exactly the
Eilenberg–Mac Lane spectrum of obC.

Note that H̄C becomes a special Γ-category in the sense that

Lemma 3.1.2 Let (C,⊔, e) be a symmetric monoidal category. The canonical map

H̄C(k+)→ H̄C(1+)× · · · × H̄C(1+)

is an equivalence of categories.

Proof: We do this by producing an equivalence Ek : C×k → H̄C(k+) such that

C×k C×k

Ek

y E×k
1

y
H̄C(k+) −−−→ H̄C(1+)×k

commutes. The equivalence Ek is given by sending (c1, . . . , ck) ∈ obC
×k to Ek(c1, . . . , ck) =

{(aS, αS,T )} where

a{i1,...,ij} = ci1 ⊔ (ci2 ⊔ . . . ⊔ (cik−1
⊔ cik) . . . )

and αS,T is the unique isomorphism we can write up using only the structure isomorphisms
in C. Likewise for morphisms. A quick check reveals that this is an equivalence (check the
case k = 1 first), and that the diagram commutes.

3.1.3 Enrichment in ΓS∗

The definitions above make perfect sense also in the ΓS∗-enriched world, and we may speak
about symmetric monoidal ΓS∗-categories C.

A bit more explicitly: a symmetric monoidal ΓS∗-category is a tuple (C,⊔, e, α, λ, ρ, γ)
such that C is a ΓS∗-category, ⊔ : C ×C → C is a ΓS∗-functor, e ∈ obC and α, λ, ρ and γ are
ΓS∗-natural transformations satisfying the usual requirements listed in Appendix A.9.1.1.

The definition of H̄C at this generality is as follows: the objects in H̄C(k+) are the
same as before (3.1.1), and the Γ-space H̄C((a, α), (b, β)) is defined as the equalizer

H̄C((a, α), (b, β))(k+) −−−→
∏

∅6=S⊆{1,...,k}

C(aS, bS) ⇉
∏

∅6=S,T⊆{1,...,k}
S∩T=∅

C(aS ⊔ aT , bS‘
T ).

The (S, T )-components of the two maps in the equalizer are the two ways around

∏
UC(aU , bU)

projS×projT //

projS
‘

T

��

C(aS, bS)× C(aT , bT )
⊔ // C(aS ⊔ aT , bS ⊔ bT )

(βS,T )∗
��

C(aS ‘
T , bS

‘
T )

(αS,T )∗
// C(aS ⊔ aT , bS ‘

T ).
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3.1.4 Categories with sum

The simplest example of symmetric monoidal ΓS∗-categories comes from categories with
sum (i.e., C is pointed and has a coproduct ∨). If C is a category with sum we consider it
as a ΓS∗-category via the enrichment

C∨(c, d)(k+) = C(c,
k∨
d)

(see 1.6.3).
The sum structure survives to give C∨ the structure of a symmetric ΓS∗-monoidal cat-

egory:

(C∨ × C∨)((c1, c2), (d1, d2))(k+) = C(c1,
k∨
d1)× C(c2,

k∨
d2)

∨
→ C(c1 ∨ c2,

(
k∨
d1

)
∨

(
k∨
d2

)
) ∼= C(c1 ∨ c2,

k∨
(d1 ∨ d2)) = C∨(c1 ∨ c2, d1 ∨ d2)(k+).

Categories with sum also have a particular transparent K-theory. The data for a sym-
metric monoidal category above simplifies in this case to H̄C(k+) having as objects functors
from the pointed category of subsets and inclusions of k+ = {0, 1, . . . , k}, sending 0+ to 0
and pushout squares to pushout squares, see also section III.2.1.1.

3.2 Quite special Γ-objects

Let C be a Γ-ΓS∗-category, i.e., a functor C : Γo → ΓS∗-categories. We say that C is special
if for each pair of finite pointed sets X and Y the canonical ΓS∗-functor C(X ∨ Y ) →
C(X) × C(Y ) is a ΓS∗-equivalence of ΓS∗-categories. So, for instance, if C is a symmetric
monoidal category, then H̄C is special. We need a slightly weaker notion.

Definition 3.2.1 Let D be a Γ-ΓS∗-category. We say that D is quite special if for each
pair of finite pointed sets X, Y ∈ obΓo the canonical map D(X ∨ Y )→ D(X)×D(Y ) is a
stable equivalence of ΓS∗-categories (see 2.4.1 for definition).

Likewise, a functor D : Γo → S-categories is quite special if D(X ∨Y )→ D(X)×D(Y )
is a weak equivalence of S-categories 2.4.1.

Typically, theorems about special D remain valid for quite special D.

Lemma 3.2.2 Let D : Γo → S-categories be quite special. Then BD is special.

Proof: This follows since the nerve functor obN preserves products and by [75] takes weak
equivalences of S-categories to weak equivalences of simplicial sets.

Recall the fibrant replacement functor T0 of 2.2.2. The same proof as in Lemma 2.2.5
gives that if we use T0 on all the morphism objects in a ΓS∗-category we get a new category
where the morphism objects are stably fibrant.
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Lemma 3.2.3 Let D : Γo → ΓS∗-categories be quite special. Then T0D is quite special.

Proof: This follows since T0 preserves stable equivalences, and since

T0(M ×N)
∼ // T0M × T0N

is a stable equivalence for any M,N ∈ obΓS∗. Both these facts follow from the definition
of T0 and Bökstedt’s approximation Lemma 2.2.3.

3.3 A uniform choice of weak equivalences

When considering a discrete ring A, the algebraic K-theory can be recovered from knowing
only the isomorphisms of finitely generated projective A-modules. We will show in III.2.1
that the algebraic K-theory of A, as defined through Waldhausen’s S-construction in chap-
ter I, is equivalent to what you get if you apply Segal’s construction H̄ to the groupoid
iPA of finitely generated A-modules and isomorphisms between them. So, non-invertible
homomorphisms are not seen by algebraic K-theory.

This is not special for the algebraic K-theory of discrete rings. Most situations where
you would be interested in applying Segal’s H̄ to an (ordinary) symmetric monoidal cate-
gory, it turns out that only the isomorphisms matter.

This changes when one’s attention turns to symmetric monoidal categories where the
morphisms form Γ-spaces. Then one focuses on “weak equivalences” within the category
rather than on isomorphisms. Luckily, the “universal choice” of weak equivalences, is the
most useful one. This choice is good enough for our applications, but has to be modified
in more complex situations where we must be free to choose our weak equivalences. For a
trivial example of this, see note 3.3.3 below.

Consider the path components functor π0 as a functor from S-categories (or ΓS∗-
categories) to categories by letting ob(π0C) = obC, and (π0C)(c, d) = π0 (C(c, d)). This
works by the monoidality of π0. Likewise, the evaluation at 1+ (see 1.2.1.3), R : ΓS∗ → S
induces a functor R from ΓS∗-categories to S-categories. Note that π0C ∼= π0RT0C.

Define the functor

ω : ΓS∗-categories→ S-categories

by means of the (categorical) pullback

ωC
wC−−−→ RT0Cy

y
iπ0C −−−→ π0C

where iπ0C is the subcategory of isomorphisms in π0C.

Lemma 3.3.1 Let C be a quite special Γ-ΓS∗-category. Then ωC is a quite special Γ-S-
category.
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Proof: That C is quite special implies that RT0C is quite special, since stable equivalences
of stably fibrant Γ-spaces are pointwise equivalences, and hence taken to weak equivalences
by R. The map RT0C → π0RT0C ∼= π0C is a (pointwise) fibration since R takes fibrant
Γ-spaces to fibrant spaces.

Furthermore, π0C is special since π0 takes stable equivalences of ΓS∗-spaces to isomor-
phisms. The subcategory of isomorphisms in a special Γ-category is always special (since
the isomorphism category in a product category is the product of the isomorphism cate-
gories), so iπ0C is special too.

We have to know that the pullback behaves nicely with respect to this structure. The
map RT0C(X ∨ Y ) → RT0C(X) × RT0C(Y ) is a weak equivalence. Hence it is enough to
show that if A → B is a weak equivalence of S-categories with fibrant morphism spaces,
then iπ0A×π0AA → iπ0B×π0BB is a weak equivalence. Notice that obA ∼= ob(iπ0A×π0AA)
and that two objects in A are isomorphic if and only if they are isomorphic as objects of
iπ0A ×π0A A (and likewise for B). Hence we only have to show that the map induces a
weak equivalence on morphism spaces, which is clear since pullbacks along fibrations are
equivalent to homotopy pullbacks.

Lemma 3.3.2 Let E be an Ab-category with subcategory iE of isomorphisms, and let Ẽ
be the associated ΓS∗-category (see 1.6.2.2). Then the natural map iE → ωẼ is a stable
equivalence.

Proof: Since Ẽ has stably fibrant morphism objects T0Ẽ Ẽ
∼oo and by construction RẼ =

E (considered as an S-category). This means also that π0Ẽ ∼= E , and the result follows.

Note 3.3.3 So, for Ab-categories our uniform choice of weak equivalences essentially just
picks out the isomorphisms, which is fine since that is what we usually want. For modules
over S-algebras they also give a choice which is suitable for K-theory (more about this
later).

However, occasionally this construction will not pick out the weak equivalences you
had in mind. As an example, consider the category Γo itself with its monoidal structure
coming from the sum. It turns out that the category of isomorphisms iΓo =

∐
n≥0 Σn is an

extremely interesting category: its algebraic K-theory is equivalent to the sphere spectrum
by the Barratt–Priddy–Quillen theorem (see e.g., [257, proposition 3.5]).

However, since Γo is a category with sum, by 3.1.4 it comes with a natural enrichment
(Γo)∨. We get that (Γo)∨(m+, n+)(k+) ∼= Γo(m+, k+∧n+). But in the language of example
1.4.4.6, this is nothing but the n by m matrices over the sphere spectrum. Hence (Γo)∨

is isomorphic to the ΓS∗-category whose objects are the natural numbers, and where the
Γ-space of morphisms from n to m is Matn,mS =

∏
m ∨nS. The associated uniform choice

of weak equivalences are exactly the “homotopy invertible matrices” ĜLn(S) of III.2.3.1,
and the associated algebraic K-theory is the algebraic K-theory of S - also known as
Waldhausen’s algebraic K-theory of a point A(∗), see III.2.3.
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That S and A(∗) are different can for instance be seen from the fact that the stable
homotopy groups of spheres are finite in positive dimension, whereas A(∗) is rationally
equivalent to the K-theory of the integers, which is infinite cyclic in degree 5. For a further
discussion, giving partial calculations, see section VII.3.



Chapter III

Reductions

In this chapter we will perform two important reductions. We will also clean up some of
the mess caused by our use of varying definitions for algebraic K-theory along the way.

The first reduction takes place in Section 1 and tells one that our handling of simplicial
rings in I.3.4.1 is not in conflict with the usual conventions of algebraic K-theory, and
in particular the one we obtain from Section II.3.3. This is of importance even if one is
only interested in ordinary rings: there are certain points (in chapter V) where even the
statements for ordinary rings relies on functoriality of algebraic K-theory for the category
of simplicial rings.

Armed with Section 1 and with Section 2, which tells us that all the various definitions
of K-theory agree, those only interested in applications to discrete rings are free to pass on
to chapter IV.

The second reduction, which you will find in Section 3, is the fact that for most practical
purposes, theorems that are true for simplicial rings are true in general for S-algebras. One
may think of this as a sort of denseness property, coupled with the fact that the requirement
that a functor is “continuous” is rather weak.

1 Degreewise K-theory

Algebraic K-theory is on one hand a group-completion device, which is apparent from the
definition of K0. When looking at K1 we can also view it as an “abelianization” device.
You kill off the commutator of the general linear group to get K1. To get K2 you “kill off”
yet another piece where some homology group vanishes. The procedure of killing off stuff
to which homology is blind ends in group-theory at this point, but if you are willing to
go into spaces, you may continue, and that is just what Quillen’s plus-construction is all
about.

When studying stable K-theory in I.3, we had to introduce simplicial rings into the
picture, and it turned out that we could be really naïve about it: we just applied our
constructions in every dimension. That this works is quite surprising. When one wants
to study K-theory of simplicial rings, the degreewise application of the K-functor only

109
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rarely gives anything interesting. One way to get an interesting K-theory would be to take
the S-construction of some suitable category of modules, but instead of isomorphisms use
weak equivalences. Another, and simpler way, is to use Quillen’s plus construction on a
nice space similar to the classifying space of the general linear group. This is what we will
do in this section, but it will not be proven until the next section that the two approaches
are equivalent (by means of a yet another approach to K-theory due to Segal, see II.3).
The plus construction has the advantage that the comparison between the “correct” and
degreewise definitions is particularly simple.

1.1 The plus construction

In this section we collect the facts we need about Quillen’s plus construction made into a
functorial construction, using Bousfield and Kan’s integral completion functor [40]. For a
long time, the best sources on the plus construction were the papers by Loday [179] and
Hausmann and Husemoller [122] and Berrick’s textbook [16], but Quillen’s original account
which had circulated for a very long time finally made it into the appendix of [87].

1.1.1 Acyclic maps

Recall from I.1.6.2 that a map of pointed connected spaces is called acyclic if the reduced
integral homology of the homotopy fiber vanishes. We need some facts about acyclic maps.

If Y is a connected space, we may form its universal cover Ỹ as follows. From sin |Y |,
form the space B by identifying two simplices u, v ∈ sin |Y |q whenever, considered as maps
∆[q]→ sin |Y |, they agree on the one-skeleton of ∆[q]. Then sin |Y |։ B is a fibration of
fibrant spaces [201, 8.2], and Ỹ is defined by the pullback diagram

Ỹ −−−→ B∆[1]

y
y

Y −−−→ B.

Note that Ỹ → Y is a fibration with fibers equivalent to the discrete set π1Y .

Lemma 1.1.2 Let f : X → Y be a map of connected spaces, and Ỹ the universal cover of
Y . Then f is acyclic if and only if

H∗(X ×Y Ỹ )→ H∗(Ỹ )

is an isomorphism.

Proof: We may assume that X → Y is a fibration of pointed spaces with fiber F . Then
the projection X×Y Ỹ → Ỹ is also a fibration with fiber F , and the Serre spectral sequence
[99, IV.5.1]

Hp(Ỹ ;Hq(F ))⇒ Hp+q(X ×Y Ỹ )
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gives that if H̃∗(F ) = 0, then the edge homomorphism (which is induced by X×Y Ỹ → Ỹ )
is an isomorphism as claimed.

Conversely, assume H∗(X ×Y Ỹ )→ H∗(Ỹ ) is an isomorphism. Then it is easy to check
directly that H̃q(F ) = 0 for q ≤ 1. Assume we have shown that H̃q(F ) = 0 for q < k for a
k ≥ 2. Then the spectral sequence gives an exact sequence

Hk+1(X ×Y Ỹ )
∼=
−→ Hk+1(Ỹ ) −→ Hk(F ) −→ Hk(X ×Y Ỹ )

∼=
−→ Hk(Ỹ ) −→ 0

which implies that Hk(F ) = 0 as well.
The lemma can be reformulated using homology with local coefficients: H∗(Ỹ ) =

H∗(Y ;Z[π1Y ]) and H∗(X ×Y Ỹ ) ∼= H∗(Z[X̃ ] ⊗Z[π1X] Z[π1Y ]) = H∗(X; f ∗Z[π1Y ]), so f
is acyclic if and only if it induces an isomorphism

H∗(X; f ∗Z[π1Y ]) ∼= H∗(Y ;Z[π1Y ]).

This can be stated in more general coefficients:

Corollary 1.1.3 A map f : X → Y of connected spaces is acyclic if and only if for any
local coefficient system G on Y , f induces an isomorphism

H∗(X; f ∗G) ∼= H∗(Y ;G).

Proof: By the lemma we only need to verify one implication. If i : F → Y is the fiber of
f , then the Serre spectral sequence gives

Hp(Y ;Hq(F ; i∗f ∗G))⇒ Hp+q(X; f ∗G).

However, i∗f ∗G is a trivial coefficient system, so if H̃∗(F ) = 0, the edge homomorphism
must be an isomorphism.

This reformulation of acyclicity is useful, for instance when proving the following lemma.

Lemma 1.1.4 Let
X

f
−−−→ Y

g

y g′

y

Z
f ′

−−−→ S

be a pushout square of connected spaces with f acyclic, and either f or g a cofibration.
Then f ′ is acyclic.

Proof: Let G be a local coefficient system on S. Using the characterization 1.1.3 of acyclic
maps as maps inducing isomorphism in homology with arbitrary coefficients, we get by
excision that

H∗(S, Z;G) ∼= H∗(Y,X; (g′)∗G) = 0

implying that f ′ is acyclic.
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Lemma 1.1.5 Let f : X → Y be a map of connected spaces. Then f is a weak equivalence
if and only if it is acyclic and induces an isomorphism of the fundamental groups.

Proof: Let F be the homotopy fiber of f . If f induces an isomorphism π1X ∼= π1Y on
fundamental groups, then π1F is abelian. If f is acyclic, then π1F is perfect. Only the
trivial group is both abelian and perfect, so π1F = 0. As H̃∗F = 0 the Whitehead theorem
tells us that F is contractible.

1.1.6 The functorial construction

We now give a functorial construction of the plus construction, following the approach of
Bousfield and Kan [40, p. 218].

If X is any set, we may consider the free abelian group generated by X, and call it
Z[X]. If X is pointed we let Z̃[X] = Z[X]/Z[∗]. This defines a functor Ens∗ → Ab

which is adjoint to the forgetful functor U : Ab → Ens∗, and extends degreewise to all
spaces. The transformation given by the inclusion of the generators X → Z̃[X] (where
we symptomatically have forgotten to write the forgetful functor) induces the Hurewicz
homomorphism π∗(X)→ π∗(Z̃[X]) = H̃∗(X).

As explained in Appendix A.0.12, the fact that Z̃ is a left adjoint implies that it gives
rise to a cosimplicial space Z

e
via

Z
e
[X] = {[n] 7→ Z̃n+1[X]},

where the superscript n+ 1 means that we have used the functor Z̃ n+ 1 times. The total
space (see Section A.1.8) of this cosimplicial space is called the integral completion of X
and is denoted Z∞X.

Bousfield and Kan define the integral completion in a slightly different, but isomorphic,
manner, which has the advantage of removing the seeming dependence on a base point. Let
eX : Z[X]→ Z be the homomorphism that sends

∑
nixi to

∑
ni. Instead of considering the

abelian group Z̃[X], Bousfield and Kan consider the set e−1
X (1). The composite e−1

X (1) ⊆
Z[X] ։ Z̃[X] is a bijection, and one may define the integral completion for non-based
spaces using X 7→ e−1

X (1) instead.
If f : X → Y is a function of sets, then we define the space Ż[X] and the map Ż[X]→ Y

by

Ż[X] = e−1
X (1) ∩

∐
y∈Y

Z[f−1(y)] = {
∑
nixi|f(x1) = · · · = f(xn),

∑
ni = 1}

P
nixi 7→f(x1)

−−−−−−−−→ Y .

Note that if Y is a one-point space, then Ż[X] = e−1
X (1), but usually Ż[X] will not be an

abelian group. This construction is natural in f , and we may extend it to spaces, giving a
cosimplicial subspace of Z

e
[X], whose total is called the fiberwise integral completion of X

(or rather, of f).
If X is a space, there is a natural fibration sin |X| → sin |X|/P given by “killing, in each

component, πi(X) for i > 1 and the maximal perfect subgroup Pπ1(X) ⊆ π1(X)”. More
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precisely, let sin |X|/P be the space obtained from sin |X| by identifying two simplices
u, v ∈ sin |X|q whenever, for every injective map φ ∈ ∆([1], [q]), we have diφ

∗u = diφ
∗v for

i = 0, 1, and
[φ∗u]−1 ∗ [φ∗v] = 0 ∈ π1(X, d0φ

∗u)/Pπ1(X, d0φ
∗u)

The projection sin |X| → sin |X|/P is a fibration.

Definition 1.1.7 The plus construction X 7→ X+ is the functor given by the fiberwise
integral completion of sin |X| → sin |X|/P (called the partial integral completion in I.1.6.1),
and qX : X → X+ is the natural transformation coming from the inclusion X ⊆ Ż[sin |X|].

That this is the desired definition follows from [40, p. 219], where they use the alter-
native description of Corollary 1.1.3 for an acyclic map:

Proposition 1.1.8 If X is a pointed connected space, then

qX : X → X+

is an acyclic map killing the maximal perfect subgroup of the fundamental group. .. '!&"%#$����

We note that qX is always a cofibration (=inclusion).

1.1.9 Uniqueness of the plus construction

Proposition 1.1.8 characterizes the plus construction X+ up to homotopy under X:

Theorem 1.1.10 Consider the (solid) diagram of connected spaces

X
f //

qX
��

Y

X+

h
=={

{
{

{

If Y is fibrant and Pπ1X ⊆ ker{π1X → π1Y }, then there exists a dotted map h : X+ → Y
making the resulting diagram commutative. Furthermore, the map is unique up to homo-
topy, and is a weak equivalence if f is acyclic.

Proof: Let S = X+
∐

X Y and consider the solid diagram

X
f //

��
qX

��

Y

g

��

Y

����

X+
f ′ // S

H
??�

�
�

�

// ∗

By Lemma 1.1.4, we know that g is acyclic. The van Kampen theorem [99, III.1.4] tells us
that π1S is the “free product” π1X

+ ∗π1X π1Y , and the hypotheses imply that π1Y → π1S
must be an isomorphism.
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By Lemma 1.1.5, this means that g is a weak equivalence. Furthermore, as qX is a
cofibration, so is g. Thus, as Y is fibrant, there exists a dotted H making the diagram
commutative, and we may choose h = Hf ′. By the universal property of S, any h must
factor through f ′, and the uniqueness follows by the uniqueness of H .

If f is acyclic, then both f = hqX and qX are acyclic, and so h must be acyclic.
Furthermore, as f is acyclic ker{π1X → π1Y } must be perfect, but as Pπ1X ⊆ ker{π1X →
π1Y } we must have Pπ1X = ker{π1X → π1Y }. So, h is acyclic and induces an isomorphism
on the fundamental group, and by 1.1.5 h is an equivalence.

Lemma 1.1.11 Let X → Y be a k-connected map of connected spaces. Then X+ → Y +

is also k-connected.

Proof: Either one uses the characterization of acyclic maps by homology with local
coefficients, and checks by hand that the lemma is right in low dimensions, or one can use
our choice of construction and refer it away: [40, p. 113 and p. 42].

1.1.12 The plus construction on simplicial spaces

The plus construction on the diagonal of a simplicial space (bisimplicial set) may be per-
formed degreewise in the following sense. Remember, I.1.2.1, that a quasi-perfect group
is a group G in which the maximal perfect subgroup is the commutator: PG = [G,G].
The diagonal diag∗X of a simplicial space X = {[s] 7→ Xs} is the space obtained by
precomposing with the diagonal functor diag : ∆o → ∆o ×∆o, so that (diag∗X)s = (Xs)s.

Lemma 1.1.13 Let {[s] 7→ Xs} be a simplicial space such that Xs is connected for every
s ≥ 0. Let X+ = {[s] 7→ X+

s } be the “degreewise plus-construction”. Consider the diagram

diag∗X −−−→ diag∗(X+)y
y

(diag∗X)+ −−−→ (diag∗(X+))+

,

where the upper horizontal map is induced by the plus construction qXs : Xs → X+
s , and

the lower horizontal map is plus of the upper horizontal map.
The lower horizontal map is always an equivalence, and the right vertical map is an

equivalence if and only if π1diag∗(X+) has no nontrivial perfect subgroup. This is true if,
for instance, π1(X

+
0 ) is abelian, which follows if π1(X0) is quasi-perfect.

Proof: Let A(Xs) be the homotopy fiber of qXs : Xs → X+
s , and consider the sequence

A(X) = {[s] 7→ A(Xs)} −−−→ X
qX−−−→ X+

of simplicial spaces. As Xs and X+
s are connected, Theorem A.5.0.4 gives that

diag∗A(X) −−−→ diag∗X
diag∗qX−−−−→ diag∗(X+)
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is a fiber sequence. But as each A(Xs) is acyclic, the spectral sequence A.5.0.6 cal-
culating the homology of a bisimplicial set gives that H̃∗(diag∗A(X)) = 0, and so the
map diag∗qX : diag∗X → diag∗(X+) is acyclic. The lower horizontal map (diag∗X)+ →
(diag∗(X+))+ in the displayed square is thus the plus of an acyclic map, and hence acyclic
itself. However, Pπ1((diag∗X)+) is trivial, so this map must be an equivalence.

The right vertical map is the plus construction applied to diag∗(X+), and so is an
equivalence if and only if it induces an equivalence on π1, i.e., if Pπ1(diag∗(X+)) = ∗. If
π1(X0) is quasi-perfect, then π1(X

+
0 ) = π1(X0)/Pπ1(X0) = H1(X0) is abelian, and so the

quotient π1diag∗(X+) is also abelian, and hence has no perfect (nontrivial) subgroups.

Remark 1.1.14 Note that some condition is needed to ensure that π1diag∗(X+) is without
nontrivial perfect subgroups, for let Xq = BFq where F

∼ //P is a free resolution of a
perfect group P . Then diag∗(X+) ≃ BP 6≃ BP+.

1.1.15 Nilpotent fibrations and the plus construction

Let π and G be groups, and let π act on G (through group homomorphisms). The action
is nilpotent if there exists a finite filtration

∗ = Gn+1 ⊆ Gn ⊆ · · · ⊆ G2 ⊆ G1 = G

respected by the action, such that each Gi+1 ⊂ Gi is a normal subgroup and such that the
quotients Gi/Gi+1 are abelian with induced trivial action.

A group G is said to be nilpotent if the self-action via inner automorphisms is nilpotent.

Definition 1.1.16 If f : E → B is a fibration of connected spaces with connected fiber F ,
then π1(E) acts on each πi(F ) (see A.4.1), and we say that f is nilpotent if these actions
are nilpotent. Generally, we will say that a map of connected spaces X → Y is nilpotent
if the associated fibration is.

Lemma 1.1.17 If F → E → B is any fiber sequence of connected spaces where π1E acts
trivially on π∗F , then E → B is nilpotent.

Proof: Since πqF is abelian for q > 1, a trivial action is by definition nilpotent, and
the only thing we have to show is that the action of π1E on π1F is nilpotent. Let A′ =
ker{π1F → π1E} and A′′ = ker{π1E → π1B}. Since π1E acts trivially on A′ and A′′, and
both are abelian (the former as it is the cokernel of π2E → π2B, and the latter as it is in
the center of π1E), π1E acts nilpotently on π1F .

Lemma 1.1.18 Let f : X → Y be a map of connected spaces. If either

1. f fits in a fiber sequence X
f //Y //Z where Z is connected and Pπ1(Z) is trivial,

or
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2. f is nilpotent,

then
X

f
−−−→ Y

qX

y qY

y

X+ f+

−−−→ Y +

is (homotopy) cartesian.

Proof: Part 1. Consider the map of fiber sequences

X
f

−−−→ Y −−−→ Zy qY

y qZ

y
F −−−→ Y + −−−→ Z+

in the homotopy category. Since Pπ1Z is trivial, qZ : Z → Z+ is an equivalence, and so the
homotopy fibers of X → F and qY are equivalent. Hence the map X → F is acyclic. To see
that X → F is equivalent to qX , Theorem 1.1.10 gives that we must show that π1X → π1F
is surjective and that π1F is without nontrivial perfect subgroups. Surjectivity follows by
chasing the map of long exact sequences of fibrations. That a perfect subgroup P ⊆ π1F
must be trivial follows since π1Y

+ is without nontrivial perfect subgroups, and so P must
be a subgroup of the abelian subgroup ker{π1F → π1Y

+} ∼= coker{π2Y
+ → π2Z

+}.
Part 2. That f is nilpotent is equivalent, up to homotopy, to the statement that f

factors as a tower of fibrations

Y = Y0
f1
←−−− Y1

f2
←−−− . . .

fk←−−− Yk = X

where each fi fits in a fiber sequence

Yi
fi
−−−→ Yi−1 −−−→ K(Gi, ni)

with ni > 1 (see e.g., [40, page 61]). But statement 1 tells us that this implies that

Yi −−−→ Y +
iy
y

Yi−1 −−−→ Y +
i−1

is cartesian, and by induction on k, the statement follows.

1.2 K-theory of simplicial rings

A simplicial monoid M is called group-like if π0M is a group. This has the nice consequence
that we may form a good classifying space. That is, if BM is (the diagonal of) the space
you get by taking the classifying space degreewise, then ΩBM ≃ M (see Corollary A.5.1.3).
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If A is a simplicial (associative and unital) ring, Waldhausen [298] defined ĜLn(A) as
the pullback of the diagram

ĜLn(A) −−−→ Mn(A)y
y

GLn(π0A) −−−→ Mn(π0A)

(since the rightmost vertical map is a surjection of simplicial abelian groups, it is a fibration,
c.f. A.3.1.3, which means that the square is also a homotopy pullback in the sense of A.7).

Just as in the discrete case, ĜLn(A) sits inside ĜLn+1(A) via m 7→ m ⊕ 1, and we let

ĜL(A) be the union of the ĜLn(A). As π0ĜLn(A) = GLn(π0(A)) we get that ĜLn(A),

and hence also ĜL(A), is group-like.
In analogy with the definition of the algebraic K-theory space I.1.6.6 of a ring, Wald-

hausen suggested the following definition.

Definition 1.2.1 If A is a simplicial ring, then the algebraic K-theory space of A is

K(A) = BĜL(A)+.

We note that

π1K(A) = π1BĜL(A)/P (π1BĜL(A)) = GL(π0A)/P (GL(π0A)) = K1(π0A)

(where P ( ) denotes the maximal perfect subgroup, I.1.2.1). This pattern does not continue,
the homotopy fiber of the canonical map K(A)→ K(π0A) has in general highly nontrivial
homotopy groups. Waldhausen proves in [298, proposition 1.2] that if k is the first positive
number for which πkA is nonzero, the first nonvanishing homotopy group of the homotopy
fiber of the map K(A)→ K(π0A) sits in dimension k + 1 and is isomorphic to the zeroth
Hochschild homology group HH 0(π0A, πkA) = πkA/[π0A, πkA]. We shall not prove this
now, but settle for the weaker

Lemma 1.2.2 If B → A is a k > 0-connected map of simplicial rings, then the induced
map K(B)→ K(A) is (k + 1)-connected.

Proof: Obviously MnA → MnB is k-connected. As k > 0, we have π0B ∼= π0A,
and so ĜLn(B) → ĜLn(A) is also k-connected. Hence, the map of classifying spaces

BĜL(B) → BĜL(A) is (k + 1)-connected, and we are done as the plus construction pre-
serves connectivity of maps (1.1.11).

1.2.3 Spaces under BA5

Let An be the alternating group on n letters. For n ≥ 5 this is a perfect group with no
nontrivial normal subgroups. We give a description of Quillen’s plus for BA5 by adding
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cells. Since A5 is perfect, it is enough, by Theorem 1.1.10, to display a map BA5 → Y
inducing an isomorphism in integral homology, where Y is simply connected.

Let α be a nontrivial element inA5. This can be thought of as a map S1 = ∆[1]/∂∆[1]→
BA5 (consider α as an element in B1A5; since B0A5 = ∗ this is a loop). Form the pushout

S1 −−−→ D2

α

y
y

BA5 −−−→ X1.

Since A5 has no nontrivial normal subgroups, the van Kampen theorem [99, III.1.4] tells
us that X1 is simply connected. The homology sequence of the pushout splits up into

0→ H2(A5)→ H2(X1)→ H1(S
1)→ 0, and Hq(A5) ∼= Hq(X1), for q 6= 1.

Since H1(S
1) ∼= Z, we may choose a splitting Z→ H2(X1) ∼= π2(X1), and we let β : S2 →

sin |X1| represent the image of a generator of Z. Form the pushout

S2 −−−→ D3

β

y
y

sin |X1| −−−→ X2.

We get isomorphisms Hq(X1) ∼= Hq(X2) for q 6= 2, 3, and an exact diagram

H2(A5)

��
0 // H3(X1) // H3(X2) // H2(S

2) // H2(X1)

��

// H2(X2) // 0.

H1(S
1)

However, by the definition of β, the composite H2(S
2)→ H2(X1)→ H1(S

1) is an isomor-
phism. Hence H3(X1) ∼= H3(X2) and H2(A5) ∼= H2(X2). Collecting these observations, we
get that the map BA5 → X2 is an isomorphism in homology and π1X2 = 0, and

BA5 → “BA+
5 ” = X2

is a model for the plus construction.

Proposition 1.2.4 Let C be the category of spaces under BA5 with the property that if
BA5 → Y ∈ obC then the image of A5 normally generates Pπ1Y . Then the bottom arrow
in the pushout diagram

BA5 −−−→ “BA+
5 ”y

y
Y −−−→ “Y +”

is a functorial model for the plus construction in C.
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Proof: As it is clearly functorial, we only have to check the homotopy properties of
Y → “Y +” as given in Theorem 1.1.10. By Lemma 1.1.4, it is acyclic, and by van Kampen
[99, III.1.4] π1(“Y

+”) = π1Y ∗A5 {1}. Using that the image of A5 normally generates Pπ1Y
we get that π1(“Y

+”) = π1Y/Pπ1Y , and we are done.

Example 1.2.5 If R is some ring, then we get a map

A5 ⊆ Σ5 ⊆ Σ∞ ⊆ GL(Z)→ GL(R).

We will show that E(R) is normally generated by

α =
[

0 1 0
0 0 1
1 0 0

]
∈ A3 ⊆ A5.

The relation e141 = [[α, e−1
43 ], e−1

21 ] reduces the problem to showing that e141 normally generates
E(R), which follows from the Steinberg relations I.1.5: if r ∈ R, then eri1 = [eri4, e

1
41] if

1 6= i 6= 4, er41 = [er4i, e
1
i1] if i 6= 1, er4j = [e141, e

r
1j ] if 1 6= j 6= 4 and finally erij = [eri1, e

1
1j ] if

1 6= j 6= i 6= 4. Hence, all spaces under BA5, satisfying the requirement that the map on
fundamental groups is the inclusion A5 ⊆ GL(R) lie in C. In particular, if A is an S-algebra

we get thatBĜL(A), as defined in 2.3.1 below, is in this class, since π1BĜL(A) ∼= GL(π0A),

and the algebraic K-theory of S-algebras could be defined as “BĜL(A)+”.

1.3 Degreewise K-theory

Let A be a simplicial ring (unital and associative as always). Waldhausen’s construction

BĜL(A)+ is very different from what we get if we apply Quillen’s definition to A degreewise,
i.e.,

Kdeg(A) = diag∗{[q] 7→ K(Aq)}.

This is also a useful definition. For instance, we know by [97] that if A is a regular and
right Noetherian ring, then K(A) agrees with the Karoubi–Villamayor K-theory of A,
which may be defined to be the degreewise K-theory of a simplicial ring ∆A = {[q] 7→
A[t0, . . . , tq]/

∑
ti = 1} with

ditj =





tj if j < i

0 if i = j

tj−1 if j > i

That is, for regular right Noetherian rings the canonical map K(A) → Kdeg(∆A) is a
weak equivalence, and interestingly, it is Kdeg(∆A) which is the central actor in important
theories like motivic homotopy theory, not K(A). On the other hand, since t1 ∈ ∆1A is a
path between 0 and 1, and any connected unital simplicial ring is contractible (“multipli-
cation by a path from 0 to 1” gives a contraction), we get by Lemma 1.2.2 that K(∆A) is
contractible, and so, in this case Waldhausen’s functor gives very little information.

For ease of notation, let GL(A) be the simplicial group {[t] 7→ GL(At)} obtained by
applying GL to every degree of A and let BGL(A) be the diagonal of the bisimplicial set
{[s], [t] 7→ BsGL(At)}.
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Lemma 1.3.1 Let A be a simplicial ring. There is a natural chain of weak equivalences

Kdeg(A)
∼
−−−→ Kdeg(A)+ ∼

←−−− BGL(A)+.

Proof: The Whitehead Lemma I.1.2.2 states that K1(A0) is abelian, and so Lemma 1.1.13
with X = BGL(A) gives the desired equivalences.

The inclusion GL(A) ⊂ ĜL(A) induces a map

BGL(A)+ → BĜL(A)+ = K(A)

By Lemma 1.3.1, the first space is equivalent to Kdeg(A), and it is of interest to know what
information is preserved by this map.

Example 1.3.2 The following example is rather degenerate, but still of great importance.
For instance, it was the example we considered when talking about stable algebraic K-
theory in Section I.3.5.

Let A be a discrete ring, and let P be a reduced A-bimodule (in the sense that it is a
simplicial bimodule, and P0 = 0). Consider the square zero extension A ⋉ P as in I.3.1
(that is, A⋉P is isomorphic to A⊕P as a simplicial abelian group, and the multiplication
is given by (a1, p1)·(a2, p2) = (a1a2, a1p2+p1a2)). Then one sees that GL(A⋉P ) is actually

equal to ĜL(A⋉P ): as P is reduced and A discrete GL(π0(A⋉P )) ∼= GL(π0A) = GL(A)
and as P is square zero ker{GL(A ⋉ P ) → GL(A)} = (1 +M(P ))× ∼= M(P ). Hence, all

“homotopy invertible” matrices are actually invertible: GL(A⋉ P ) = ĜL(A⋉ P ).
If you count the number of occurrences of the comparison of degreewise and ordinary K-

theory in what is to come, it is this trivial example that will pop up most often. However, we
have essential need of the more general cases too. We are content with only an equivalence,
and even more so, only an equivalence in relative K-theory. In order to extend this example
to cases where A might not be discrete and P not reduced, we have to do some preliminary
work.

1.3.3 Degreewise vs. ordinary K-theory of simplicial rings

Recall the definition of the subgroup of elementary matrices E ⊆ GL. For this section,
we reserve the symbol K1(A) for the quotient of simplicial groups {[q] 7→ K1(Aq)} =

GL(A)/E(A), which must not be confused with π1K(A) ∼= K1(π0A). Let Ê(A) ⊂ ĜL(A)

consist of the components of Waldhausen’s grouplike monoid ĜL(A) (see Subsection 1.2)
belonging to the subgroup E(π0A) ⊆ GL(π0A) of elementary matrices. Much of the
material in this section is adapted from the paper [64].

Theorem 1.3.4 Let A be a simplicial ring. Then

BGL(A) −−−→ BGL(A)+

y
y

BĜL(A) −−−→ BĜL(A)+
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is (homotopy) cartesian.

Proof: Note that both horizontal maps in the left square of

BE(A) −−−→ BGL(A) −−−→ BK1(A)y
y

y

BÊ(A) −−−→ BĜL(A) −−−→ BK1(π0A)

satisfy the conditions in Lemma 1.1.18.1, since both rows are fiber sequences with base
spaces simplicial abelian groups.

So we are left with proving that

BE(A) −−−→ BE(A)+

y
y

BÊ(A) −−−→ BÊ(A)+

is cartesian, but by Lemma 1.1.18.2 this follows from the lemma below.

Lemma 1.3.5 (c.f. [83] or [276]) The map BE(A)→ BÊ(A) is nilpotent.

Proof: For 1 ≤ k ≤ ∞ let jk : Ek(A) → Êk(A) be the inclusions and let Fk be the

homotopy fiber of Bjk : BEk(A) → BÊk(A). For convenience we abbreviate our notation

for the colimits under stabilization Êk(A)→ Êk+1(A), given by block sum g 7→ g ⊕ 1, and

write j = j∞ : E(A) ⊆ Ê(A) and F = F∞.
Instead of showing that the action of π0E(A) ∼= π1BE(A) on π∗(F ) is nilpotent, we show

that π0E(A)→ π0Map∗(F, F )→ End(π∗(F )) is trivial. In view of 1.1.17 this is sufficient,
and it is in fact an equivalent statement since π0E(A) is perfect (being a quotient of E(A0))
and any nilpotent action of a perfect group is trivial.

We have an isomorphism

Map∗(F, F ) ∼= lim
←−n

Map∗(Fn, F )

and, since homotopy groups commute with filtered colimits,

End(π∗(F )) ∼= lim
←−n

Hom(π∗(Fn), π∗(F )).

Hence it is enough to show that for each k the composite

E(A0) ։ π0E(A)→ lim
←−n
π0Map∗(Fn, F )→ π0Map∗(Fk, F )→ Hom(π∗(Fk), π∗(F ))

is trivial.
Now we fix a k > 2. To show that the homomorphism is trivial, it is enough to

show that a set of normal generators is in the kernel. In example 1.2.5 above, we saw
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that e14,1 is a normal generator for E(A0), and by just the same argument e1k+1,1 will
also normally generate E(A0), so it is enough to show that e1k+1,1 is killed by E(A0) →
Hom(π∗(Fk), π∗(F )).

Consider the simplicial category jk/1 with objects Êk(A) and where a morphism in
degree q from m to n is a g ∈ Ek(Aq) such that m = n · g. The classifying space B(jk/1)

is isomorphic to the bar construction B(Êk(A), Ek(A), ∗) = {[q] 7→ Êk(A) × Ek(A)×q}.
The forgetful functor jk/1→ Ek(A) (where Ek(A) is considered to be a simplicial category
with one object in each degree) induces an equivalence B(jk/1)

∼
−−−→ Fk (see e.g., A.5.1.4)

compatible with stabilization t : Ek(A)→ Ek+1(A). By A.4.2.1, the action on the fiber

B(jk/1)×Ek(A)
∼
−−−→ B(jk/1)× ΩBEk(A)→ B(jk/1)

is induced by the simplicial functor

jk/1× Ek(A)
(m,g)7→ig(m)
−−−−−−−→ jk/1

(where Ek(A) now is considered as a simplicial discrete category with one object for every
element in Ek(A) and only identity morphisms) sending (m, g) to ig(m) = gmg−1.

In order to prove that e1k+1,1 is killed, we consider the factorization

E(A0)→ π0Map∗(B(jk/1), B(j/1))→ Hom(π∗(Fk), π∗(F ))

and show that e1k+1,1 is killed already in π0Map∗(B(jk/1), B(j/1)).
As natural transformations give rise to homotopies (c.f. A.1.4.2), we are done if we

display a natural simplicial isomorphism between t and ie1k+1,1
◦ t in the category of pointed

functors [jk/1, j/1]∗, where t(m) = m ⊕ I and ie1k+1,1
(m) = e1k+1,1me

−1
k+1,1. If m = (mij) ∈

Mk(A) is any matrix, we have that ie1k+1,1
(t(m)) = t(m) · τ(m) where

τ(m) = e−1
k+1,1 ·

∏

1≤j≤k

e
m1j

k+1,j.

It is easy to check that τ(m) is simplicial (ψ∗τ(m) = τ(ψ∗m) for ψ ∈ ∆) and natural in
m ∈ jk/1. Thus, m 7→ τ(m) is the desired natural isomorphism between ie1k+1,1

t and t in

[jk/1, j/1]∗.
The outcome is that we are free to choose our model for the homotopy fiber of the plus

construction applied to BĜL(A) among the known models for the homotopy fiber of the
plus construction applied to BGL(A):

Corollary 1.3.6 If X is any functor from discrete rings to spaces with a natural trans-
formation X(−)→ BGL(−) such that

X(A)→ BGL(A)→ BGL(A)+

is a fiber sequence for any ring A, then X extends degreewise to a functor of simplicial
rings with a natural transformation X → BGL→ BĜL such that

X(A)→ BĜL(A)→ BĜL(A)+

is a fiber sequence for any simplicial ring A.
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Proof: By Theorem 1.3.4 is enough to show that [q] 7→ X(Aq) is equivalent to the
homotopy fiber of BGL(A) → BGL(A)+, but this will follow if {[q] 7→ BGL(Aq)}

+ →
{[q] 7→ BGL(Aq)

+} is an equivalence. By Lemma 1.1.13 this is true since GL(A0) is quasi-
perfect, which is part of the Whitehead Lemma I.1.2.2.

1.4 K-theory of simplicial radical extensions may be defined de-

greewise

If f : B → A is a map of simplicial (associative and unital) rings, we will let K(f) denote
the homotopy fiber of the induced map K(B)→ K(A).

If f is surjective and Iq = ker{fq : Bq → Aq} is inside the Jacobson radical rad(Bq) ⊆ Bq

(that is, 1+x is invertible in Bq if x ∈ Iq) for every q ≥ 0 we say that f is a radical extension.
This situation has been treated previously also in I.1.2 and I.2.5.

We recall some basic properties of radical extensions. Notice that the Jacobson radical
is a two-sided ideal, and that any nil-ideal (i.e., an ideal consisting of nilpotent elements)
is contained in the Jacobson radical.

Recall following the slightly extended version of Nakayama’s lemma from Bass [13, p.
85-86].

Lemma 1.4.1 Let f : B → A be a radical extension of discrete rings with kernel I. Then

1. (Nakayama’s lemma) If M is a finitely generated B-module such that MI = M , then
M = 0.

2. For every n, the two-sided ideal Mn(I) is contained in the Jacobson radical of the
matrix ring Mn(B).

3. For every n, the induced group homomorphism GLn(B) → GLn(A) is a surjection
with kernel (1 + Mn(I))

×, the subgroup of GLn(B) of matrices of the form 1 + m
where m ∈Mn(I).

.. '!&"%#$����

We studied radical extensions of discrete rings in Section I.2.5, and by the following
proposition, this gives information about the simplicial case as well:

Proposition 1.4.2 Let f : B ։ A be a radical extension of simplicial rings. Then the
relative K-theory K(f) is equivalent to diag∗{[q] 7→ K(fq)}.

Proof: The proof follows closely the one given in [102] for the nilpotent case. Let I =
ker{f : B → A}. Since all spaces are connected we may just as well consider

[q] 7→ hofib{BGL(Bq)
+ → BGL(Aq)

+}.
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As π1(BGL(−)+) has values in abelian groups, we see by Lemma 1.1.13. that diag∗{[q] 7→
BGL(−)+} is equivalent to the plus of the diagonal BGL(A)+. Hence to prove the propo-
sition it is enough to prove that

BGL(B)+ −−−→ BĜL(B)+

y
y

BGL(A)+ −−−→ BĜL(A)+

is homotopy cartesian.
Note that GLn(Bq) → GLn(Aq) is a group epimorphism with kernel (1 + Mn(Iq))

×,
the multiplicative group of all n× n matrices of the form 1 +m where m has entries in I.
Hence B(1 +M(I))× is the (homotopy) fiber of BGL(B)→ BGL(A).

Furthermore, (1 +Mn(I))
× is also the fiber of the epimorphism of group-like simplicial

monoids ĜLn(B) → ĜLn(A). This follows as J = ker{π0(B) → π0(A)} is a radical ideal
in π0(B) (for any x ∈ J , the sum 1 + x is invertible in π0B since there is a y ∈ I0 mapping
to x such that 1 + y is invertible in B0), which implies that

(1 +Mn(J))× =ker{GLn(π0(B))→ GLn(π0(A))}

=ker{Mn(π0(B))→Mn(π0(A))}.

Consequently B(1 +M(I))× is also the (homotopy) fiber of BĜL(B)→ BĜL(A), and so

BGL(B) −−−→ BGL(A)y
y

BĜL(B) −−−→ BĜL(A)

is homotopy cartesian. By Theorem 1.3.4 all vertical squares in the cube

BGL(B) //

��

xxqqqqqqqqqq
BGL(B)+

��

wwooooooooooo

BGL(A) //

��

BGL(A)+

��

BĜL(B) //

yyrrrrrrrrrr
BĜL(B)+

xxqqqqqqqqqqq

BĜL(A) // BĜL(A)+

of reduced spaces and 1-connected maps, except possibly

BGL(B)+ −−−→ BĜL(B)+

y
y

BGL(A)+ −−−→ BĜL(A)+
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are homotopy cartesian, and so this square is also homotopy cartesian.

Example 1.4.3 The resolving complex and Stein relativization. When we have
an extension where the kernel is not in the radical, the difference between degreewise and
ordinary K-theory is significant. However, there is a historical precedence for studying
relative situations by means of degreewise K-theory. We have already seen in I.1.4.1 that
the most naïve kind of excision fails for algebraic K-theory. Related to this is the classical
method of describing relative K-theory. In Bass’ [13] and Milnor’s [213] books on K-theory,
the Stein relativization is used to describe relative K-theory. As is admitted in Milnor’s
book [213, p. 56], this is not a satisfactory description, and we will give the reason why
it works in low dimensions, but fails higher up. See [281] to get further examples of the
failure. The reader might also want to consult [180] and [166].

Let f : A → B be a surjection of associative rings with unit, and define the Stein
relativization as the cokernel

KStein
i (f) = coker{Ki(A)→ Ki(A×B A)}

of the map induced by the diagonal A→ A×B A. The question is: when do we have exact
sequences

· · · → Ki+1(A)→ Ki+1(B)→ KStein
i (f)→ Ki(A)→ Ki(B)→ . . . ,

or more precisely, how far is

K(A×B A)
pr1
−−−→ K(A)

pr2

y f

y

K(A)
f

−−−→ K(B)

from being cartesian?
The failure turns up for i = 2, but this oughtn’t be considered as bad as was fashion-

able at the time: The Stein relativization can be viewed as a first approximation to the
homotopy fiber as follows. Let S be the “resolving complex”, i.e., the simplicial ring given
in dimension q as the q + 1 fold product of A over f with the various projections and
diagonals as face and degeneracies

. . . A×B A×B A
// //// A×B A

//// A.

This gives a factorization A → S → B where the former map is inclusion of the zero
skeleton, and the latter is a weak equivalence (since A→ B was assumed to be a surjection).
Now, as one may check directly, GL(−) respects products, and

GL(Sq) ∼= GL(A)×GL(B) · · · ×GL(B) GL(A)

(q + 1 GL(A) factors). Just as for the simplicial ring S, this simplicial group is concen-
trated in degree zero, but as GL does not respect surjections we see that π0(GL(S)) ∼=
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im{GL(A)→ GL(B)} may be different from GL(B). But this is fine, for as E(−) respects
surjections we get that GL(B)/im{GL(A) → GL(B)} ∼= K̄1(B) = K1(B)/im{K1(A) →
K1(B)}, and we get a fiber sequence

BGL(S)→ BĜL(S)→ BK̄1(B)

where the middle space is equivalent to BGL(B). Applying Theorem 1.3.4 (overkill as

K̄1(B) is abelian) to BGL(S)→ BĜL(S) we get that there is a fiber sequence

Kdeg(S)→ K(B)→ BK̄1(B)

which means that φ(f) = hofib{K(A)→ Kdeg(S)} is the connected cover of the homotopy
fiber of K(A)→ K(B).

We may regard φ(f) as a simplicial space [q] 7→ φq(f) = hofib{K(A)→ K(Sq)}. Then
φ0(f) = 0 and πi(φ1(f)) = KStein

i+1 (f). An analysis shows that d0 − d1 + d2 : π0(φ2(f)) →
π0(φ1(f)) is zero, whereas d0− d1 + d2− d3 : π0(φ3(f))→ π0(φ2(f)) is surjective, so the E2

term of the spectral sequence associated to the simplicial space looks like

0 KStein
3 (f)/? . . .

0 KStein
2 (f)/? ? . . .

0 KStein
1 (f) 0 ? . . .

This gives that KStein
1 (f) is correct, whereas KStein

2 (f) surjects onto π2 of relative K-theory.

2 Agreement of the various K-theories.

This section aims at removing any uncertainty due to the many definitions of algebraic
K-theory that we have used. In 2.1 we show that the approaches of Waldhausen and
Segal agree, at least for additive categories. In section 2.2 we show that Segal’s machine
is an infinite delooping of the plus-construction, and show how this is related to group-
completion. In 2.3 we give the definition of the algebraic K-theory space of an S-algebra.
For spherical group rings as in II.1.4.4.2, i.e., S-algebras of the form S[G] for G a simplicial
group, we show that the algebraic K-theory space of S[G] is the same as Waldhausen’s
algebraic K-theory of the classifying space BG. Lastly, we show that the definition of the
algebraic K-theory of an S-algebra as defined in chapter II is the infinite delooping of the
plus-construction.

2.1 The agreement of Waldhausen’s and Segal’s approaches

We give a quick proof of the fact that the S-construction of chapter I and the H̄-construction
of chapter II coincide when applied to additive categories. This fact is much more general,
and applies to a large class of categories with cofibrations and weak equivalences where the
cofibrations are “splittable up to weak equivalences”, see Waldhausen’s [301, section 1.8].
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2.1.1 Segal’s construction applied to categories with cofibrations

Let C be a category with cofibrations. By forgetting structure we may consider it as a cate-
gory with sum and apply Segal’s Γ-space machine II.3 to it, or we may apply Waldhausen’s
S-construction I.2.2.1.

Note that Segal’s Γ-space machine could be reinterpreted as the functor H̄C from the
category Γo of finite pointed sets to the category of categories with sum, whose value at
k+ = {0, . . . , k} is the category H̄C(k+) described as follows. Its objects are functors to C

from the pointed category of subsets and inclusions of k+ = {0, 1, . . . , k}, sending 0+ = {0}
to the zero object 0 ∈ C and pushout squares to pushout squares in C. The morphisms are
simply natural transformations of such diagrams. For instance, H̄C(1+) is isomorphic to
C, whereas H̄C(2+) consists of pushout diagrams

0 −−−→ c{0,1}y
y

c{0,2} −−−→ c{0,1,2}

.

We see that H̄C(k+) is equivalent as a category to C×k via the map sending a functor
c ∈ obH̄C(k+) to c{0,1}, . . . , c{0,k}. However, C×k is not necessarily functorial in k, making
H̄C the preferred model for the bar construction of C.

Also, this formulation of H̄C is naturally isomorphic to the one we gave in II.3, but the
advantage is that it is easier to compare with Waldhausen’s construction.

Any functor from Γo is naturally a simplicial object by precomposing with the circle
S1 : ∆o → Γo (after all, the circle is a simplicial finite pointed set). We could of course
precompose with any other simplicial finite pointed set, and part of the point about Γ-
spaces was that if M was a functor from Γo to sets, then {m 7→M(Sm)} is a spectrum.

2.1.2 The relative H̄-construction.

In order to compare Segal’s and Waldhausen’s constructions it will be convenient to have
a concrete model for the homotopy fiber of H̄ applied to an exact functor C → D of cate-
gories with sum (or more generally, a symmetric monoidal functor of symmetric monoidal
categories). To this end we define the simplicial Γ-category CC→D by the (categorical)
pullback

CC→D(X) −−−→ H̄D(PS1∧X)y
y

H̄C(S1∧X) −−−→ H̄D(S1∧X)

(as always, for this to be a functor we need to have made choices of pullbacks in the
category of sets). Here PS1 is the “path space” on S1 as defined in Appendix A.1.7:
(PS1)q = S1

q+1 where the ith face map is the i+ 1st face map in S1, and where the zeroth
face map of S1 induces a weak equivalence PS1 → S1

0 = ∗. The point of this construction
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is Lemma 2.1.5 which displays it as a relative version of the H̄-construction, much like the
usual construction involving the path space in topological spaces.

Usually categorical pullbacks are of little value, but in this case it turns out that the
categorical pullback is equivalent to the fiber product.

Definition 2.1.3 Let C1
f1 //C0 C2

f2oo be a diagram of categories. The fiber product∏
(f1, f2) is the category whose objects are tuples (c1, c2, α) where ci ∈ obCi for i = 1, 2

and α is an isomorphism in C0 from f1c1 to f2c2; and where a morphism from (c1, c2, α) to
(d1, d2, β) is a pair of morphisms gi : ci → di for i = 1, 2 such that

f1c1
α

−−−→ f2c2

f1g1

y f2g2

y

f1d1
β

−−−→ f2d2

commutes.

Fiber products (like homotopy pullbacks) are good because of their invariance: if you have
a diagram

C1
f1 //

≃
��

C0

≃
��

C2
f2oo

≃
��

C′1
f ′1 // C′0 C′2

f ′2oo

where the vertical maps are equivalences, you get an equivalence
∏

(f1, f2) →
∏

(f ′1, f
′
2).

Note also the natural map F : C1 ×C0 C2 →
∏

(f1, f2) sending (c1, c2) to (c1, c2, 1f1c1).
This map is occasionally an equivalence, as is exemplified in the following lemma. If C

is a category, then Iso C is the class of isomorphisms, and if f is a morphism, let sf be its
source and tf be its target.

Lemma 2.1.4 Let C1
f1 //C0 C2

f2oo be a diagram of categories, and assume that the map
of classes

Iso C1
g 7→(f1g,sg)
−−−−−−→ Iso C0 ×obC0 obC1

has a section (the pullback is taken along source and f1). Then the natural map

F : C1 ×C0 C2 →
∏

(f1, f2)

is an equivalence.

Proof: Let σ : Iso C0×obC0 obC1 → Iso C1 be a section, and define G :
∏

(f1, f2)→ C1×C0 C2
by G(c1, c2, α) = (tσ(α, c1), c2) and G(g1, g2) = (σ(d1, β)g1σ(c1, α)−1, g2). Checking the
diagrams proves that F and G are inverses up to natural isomorphisms built out of σ.
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One should think about the condition in Lemma 2.1.4 as a categorical equivalent of the
Kan-condition in simplicial sets. This being one of the very few places you can find an error
(even tiny and in the end totally irrelevant) in Waldhausen’s papers, it is cherished by his
fans, since in [301] he seems to claim that the pullback is equivalent to the fiber products
if f1 has a section (which is false). At this point there is even a small error in [118, page
257], where it seems that they claim that the map in Lemma 2.1.4 factors through f1.

Now, Iso H̄D(PS1∧X) → Iso H̄D(S1∧X) ×obH̄D(S1∧X) obH̄D(PS1∧X) has a section
given by pushouts in the relevant diagrams. Hence CC→D(X) is equivalent to the fiber
product category, and as such is invariant under equivalences. Consequently the natural
map

CC→D(k+)q −−−→ C
×qk ×D×qk D×(q+1)k ∼= C×qk ×D×k

is an equivalence. If we consider categories with sum and weak equivalences, we get a
structure of sum and weak equivalence on CC→D as well, with

wCC→D(X) = wH̄C(S1∧X)×wH̄D(S1∧X) wH̄D(PS1∧X).

Notice also that the construction is natural: if you have a commuting diagram

C −−−→ Dy
y

C′ −−−→ D′

you get an induced map CC→D → CC′→D′ by using the universal properties of pullbacks, and
the same properties ensure that the construction behaves nicely with respect to composi-
tion. Furthermore C∗→D(1+) is isomorphic to D, so we get a map D ∼= C∗→D(1+)→ CC→D,
and if we have maps C → D → E whose composite is trivial, we get a map CC→D(1+)→ E .

Recall that, if C is a category with sum (i.e., with finite coproducts and with a “zero
object” which is both final and initial), then an exact functor to another category with
sums D is a functor C → D preserving finite coproducts and the zero objects.

In the following lemma we use the fact that the classifying space construction embeds
the category of small categories as a full subcategory of the category of spaces; and in this
way we apply the language of spaces to categories, c.f. A.1.4.2. For example, that the
sequence of functors “is a stable fiber sequence” means that this is true for the sequence of
Γ-spaces you get by applying B to the sequence of functors.

Lemma 2.1.5 Let C → D be an exact functor of small categories with sum and weak
equivalences. Then there is a stable fiber sequence

wH̄C → wH̄D → wH̄(CC→D(1+)).

Proof: It is enough to show that

wH̄D(S1)→ wH̄(CC→D(1+))(S1)→ wH̄(H̄(C)(S1))(S1)
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is a fiber sequence, and by Theorem A.5.0.4 this follows since in each degree n

wH̄D(S1)→ wH̄(CC→D(1+)n)(S
1)→ wH̄(H̄(C)(S1)n)(S

1)

is equivalent to the product fiber sequence

wH̄D(S1)→ wH̄(D × C×n)(S1)→ wH̄(C×n)(S1)

and all spaces involved are connected.
We have a canonical map

H̄C(S1)→ SC

which in dimension q is induced by sending the sum diagram C ∈ obH̄C(q+) to c ∈ obSqC
with cij = C{0,i+1,i+2,...,j−1,j} where ci,j−1 → ci,j is induced by the inclusion {0, i, . . . , j−1} ⊂
{0, i, . . . , j− 1, j} and ci,j → ci+1,j is the canonical map C{0,i,...,j} → C{0,i+1,...,j} induced by
the canonical map C{0,i} → ∗ and the identity on C{0,i+1,...,j}. For instance, the object

∗ //

��

C{0,1}

��
C{0,2} // C{0,1,2}

in H̄C(2+) is sent to

C{0,1} // C{0,1,2}

��
C{0,2}

in S2C, where C{0,1,2} → C{0,2} is induced by C{0,1} → ∗.

Scholium 2.1.6 The additivity theorem for Waldhausen’s S-construction says that induced
map iS(SkC) → iS(C×k) is a weak equivalence. We have not used this so far, but in
the special case of additive categories it is an immediate consequence of Theorem 2.1.7
below. The additivity theorem for Segal’s model, saying that iH̄(SkC)→ iH̄(C×k) is a weak
equivalence, is at the core of the proof of the theorem, and constitutes the second half of
the proof.

Theorem 2.1.7 Let C be an additive category. Then the map

iH̄C(S1)→ iSC

described above is a weak equivalence.

Proof: Since both BiH̄C and BiSC are connected, the vertical maps in

BiH̄C(S1) −−−→ BiSC

≃

y ≃

y
Ω
(
BiH̄(H̄C(S1))(S1)

)
−−−→ Ω

(
BiH̄(SC)(S1)

)
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are equivalences by A.5.1.2, and so it is enough to prove that

BiH̄(H̄C(S1))→ BiH̄(SC)

is an equivalence, which again follows if we can show that for every q

BiH̄(H̄C(q+))→ BiH̄(SqC)

is an equivalence.
Essentially this is the old “triangular matrices vs. diagonal matrices” question, and can

presumably be proven directly by showing that iSqC → iC×q induces an isomorphism in
homology after inverting π0(iSqC) ∼= π0(iC

×q).
Assume we have proven that the projection iH̄(SkC)→ iH̄(C×k) is an equivalence for

k < q (this is trivial for k = 0 or k = 1). We must show that it is also an equivalence for
k = q. Consider the inclusion by degeneracies C → SqC (sending c to 0 ֌ 0 ֌ . . . ֌

0 ֌ c), and the last face map SqC→ Sq−1C. We want to show that we have a map of fiber
sequences

iH̄(C) −−−→ iH̄(SqC) −−−→ iH̄(Sq−1C)∥∥∥
y

y
iH̄(C) −−−→ iH̄(C×q) −−−→ iH̄(C×q−1)

.

We do have maps of fiber sequences

iH̄(C) −−−→ iH̄(SqC) −−−→ iH̄(CC→SqC(1+))∥∥∥
y

y
iH̄(C) −−−→ iH̄(C×q) −−−→ iH̄(CC→C×q(1+))

and the only trouble lies in identifying the base spaces of the fibrations. We have a
commuting square

iH̄(CC→SqC(1+)) −−−→ iH̄(Sq−1C)y ≃

y
iH̄(CC→C×q(1+))

∼
−−−→ iH̄(C×q−1)

the bottom map obviously an equivalence (and the right vertical map an equivalence by
the induction hypothesis). We have to show that the top map is an equivalence, and for
this purpose it is enough to show that

iCC→SqC(1+)
p

−−−→ iSq−1C

is an equivalence. For every c ∈ obSq−1C the over category p/c is a simplicial category.
If we can show that p/c is contractible for all c we are done by Quillen’s theorem A
[232]. In dimension n, the objects of the category p/c consists of certain sum diagrams
of dimension n + 1 of objects in SqC together with some extra data. Call the vertices
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of cardinality one c0, . . . , cn. Part of the data is an isomorphism dqc0 ∼= c, and c1, . . . , cn
only have nonzero elements in the last column (i.e., (ck)(i ≤ j) = 0 if 0 < k and j < q).
Hence (p/c)n is equivalent to the category iCC→Cx(n+) where x = c0,q−1 and Cx is the
category of split inclusions x ֌ y ∈ C (which is a category with sum by taking pushout
over the structure maps from x). The equivalence is induced by sending c0, . . . cn to x ֌

(c0)0,q, (c1)0,q, . . . , (cn)0,q (considered as objects in Cx × C×n). The equivalence is natural
in n, and so induces an equivalence p/c → iCC→Cx(S

1), and we show that the latter is
contractible.

This is the group completion part: it does not matter what x we put in Cx. First
we show that π0(iCC→Cx(S

1)) = 0 (which implies that iCC→Cx(S
1) ≃ ΩiH̄CC→Cx(S

1)) and
then that iH̄C→ iH̄Cx is an equivalence.

The vertices of iCC→Cx(S
1) are split inclusions x ֌ c; the 1-simplices in the nerve

direction are isomorphisms under x, whereas the 1-simplices in the H̄-construction are
pushout diagrams

x −−−→ c

inx

y
y

x ∨ c′′ −−−→ c ∨ c′′

Hence, in π0(iCC→Cx(S
1)) the class of x ֌ c is equal the class of x

inx
֌ x ∨ c/x (since the

inclusion was splittable), which is equal to the class of the basepoint x = x.
Finally, consider the map iH̄C → iH̄Cx. It is induced by j : C → C sending c to

inx : x ֌ x ∨ c, and it has a section q : Cx → C given by sending x ֌ c to c/x (there is
no danger in choosing quotients). We have to show that jq induces a self map on iH̄Cx
homotopic to the identity. Note that there is a natural isomorphism c

∐
x c → c ∨ c/x ∼=

c× c/x under x given by sending the first summand by the identity to the first factor, and
the second summand to the identity on the first factor and the projection on the second
factor. Hence, 2 (twice the identity) is naturally isomorphic to 1 + jq in iH̄Cx, and since
this is a connected H-space we have homotopy inverses, giving that jq is homotopic to the
identity.

2.2 Segal’s machine and the plus construction

We give a brief review of Segal’s results on group completion, focusing on the examples
that are important to our applications. There are many excellent accounts related to this
issue (see e.g., [5], [99], [148], [209], [108], [87] and [217]), but we more or less follow the
approach of [257].

Let C be a symmetric monoidal category with weak equivalences, and consider the
simplicial Γ-category H ′C defined by the pullback

H ′C(X)q −−−→ H̄C(PS1
q∧X)y
y

H̄C(PS1
q∧X) −−−→ H̄C(S1

q∧X)

,
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By the same considerations as in Corollary 2.1.5 (i.e., by reversal of priorities with respect
to simplicial directions) we get a fiber sequence

wH̄C(S1) −−−→ wH ′C(S1) −−−→ wH̄C(PS1∧S1),

but the last simplicial category is contractible, and so wH̄C(S1)→ wH ′C(S1) is an equiv-
alence.

Furthermore, the Γ-category wH ′C is not only special, but very special: it has a homo-
topy inverse obtained by flipping the defining square around the diagonal.

Recall that a cofinal submonoid M ′ in a symmetric monoid M is a submonoid such
that for all a ∈ M there is a b ∈ M such that a · b ∈ M ′. If M is a multiplicatively closed
subset of a commutative ring A, then it is immediate that localizing A with respect to M ′

or M give isomorphic results.

Lemma 2.2.1 Let C be a symmetric monoidal category with weak equivalences. Then the
map

wH̄C → wH ′C

is a stable equivalence and wH ′C is very special. Furthermore, if µ ⊆ wC is a symmetric
monoidal subcategory such that the image of π0µ in π0wC is cofinal and wTC,µ is defined
as the pullback

wTC,µ −−−→ H̄C(PS1)y
y

H̄µ(PS1) −−−→ H̄C(S1)

,

then the natural map wTC,µ → wH ′C(S1) is an acyclic map.
Consequently there is a chain of natural equivalences

(BwTC,µ)
+ ∼
−−−→ (BwH ′C(S1))+ ∼

←−−− BwH ′C(S1)
∼
←−−− BwH̄C(S1).

Proof: Only the part about wTC,µ → wH ′C(S1) being an acyclic map needs explanation.
Since wH ′C(S1) is an H-space, this is equivalent to claiming that the map induces an
isomorphism in integral homology.

By coherence theory (see e.g., [198, 4.2] or [161]), we may assume that wC is “permu-
tative” (the associativity and unitality isomorphisms are identities, while the symmetric
structure is still free to wiggle). Hence we are reduced to the following proposition: given
a simplicial monoid M (the simplicial set given by the nerve of wC) which is commutative
up to all higher homotopies and a submonoid µ ⊆M whose image in π0M is cofinal, then
the map Y → X given by the pullback squares

Y −−−→ X −−−→ EMy
y

y
Eµ −−−→ EM −−−→ BM
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induces an isomorphism in homology. Analyzing the structures, we see that Y → X is
nothing but the map of one-sided bar-constructions (c.f. A.4.2) B(M × µ, µ, ∗) ⊆ B(M ×
M,M, ∗) (with the diagonal action). Segal gives an argument why this is an isomorphism in
homology in [257, page 305-306] by an explicit calculation with arbitrary field coefficients.

The argument is briefly as follows: let k be a field and let H = H∗(M ; k); which is a
graded ring since M is a monoid, and a Hopf algebra due to the diagonal map:

H = H∗(M ; k)
H∗(diagonal)
−−−−−−−→ H∗(M ×M ; k)

Künneth
←−−−−−
∼=

H ⊗k H.

The E1-term of the spectral sequence for computingH∗(B(M×M,M, ∗); k) (in dimension q
it is (H⊗kH)⊗H⊗kq⊗kk) is exactly the standard complex for calculating TorH∗ (H⊗kH, k)
(where the H-module structure on H ⊗k H is induced by the coproduct H → H ⊗k H).

The map H → (H ⊗k H) ⊗H k given by h 7→ h ⊗ 1 ⊗ 1 inverts elements in π0M ⊆
k[π0M ] ∼= H0(M ; k): If p ∈ π0M then (p⊗1⊗1)·(1⊗p⊗1) = p⊗p⊗1 = ∆p⊗1 = 1⊗1⊗1.
Induction on the degree and the fact that if n > 0 and h ∈ Hn then ∆h = 1⊗ h+ h⊗ 1 +∑n−1

i=1 h
′
i⊗h

′′
n−i for h′i, h

′′
i ∈ Hi gives that the induced map H [π−1]→ (H⊗kH)⊗H k (where

π = π0M) is an isomorphism. Furthermore, using that localization in the commutative
case is flat we get that TorHs (H ⊗k H, k) = 0 for s > 0.

In consequence, we get that H∗B(M ×M,M, ∗); k) ∼= H [π−1]. A similar calculation
gives H∗B(M × µ, µ, ∗); k) ∼= H [π0(µ)−1], and the induced map is an isomorphism since
the image of π0(µ) in π0(M) is cofinal.

2.2.2 Application to the K-theory of discrete rings

As an example we may consider the category of finitely generated free modules over a
discrete ring A. For this purpose we use the model FA of I.2.1.4 whose objects are natural
numbers and the morphisms are matrices of appropriate sizes with entries in A. Assume
for simplicity that A has the invariance of basis number property (IBN, see I.1.3.2.4).
Then BiFA is the simplicial monoid

∐
n∈NBGLn(A) under Whitney sum (block sum). If

µ = obFA = N then BiTFA,N = B(BiFA ×N,N, ∗) is a model for the homotopy colimit
over the maps

∐
n∈NBGLn(A) →

∐
n∈NBGLn(A) given by Whitney sum (with identity

matrices of varying sizes). The homotopy colimit is in turn equivalent to the homotopy
colimit over the natural numbers over the maps

∐
n∈NBGLn(A)→

∐
n∈NBGLn(A) given

by Whitney sum with the rank one identity matrix. This homotopy colimit is equivalent to
the corresponding categorical colimit, which simply is Z × BGL(A). Hence Lemma 2.2.1
says that there is a chain of weak equivalences between Z × BGL(A)+ and ΩBiH̄FA.
Hence, for the category of finitely generated free modules over a ring A with the invariance
of basis number property, the approaches through S, H̄ and + are all equivalent:

Z× BGL(A)+ ≃ ΩBiH̄FA(S1)
≃
−−−→ ΩBiSFA.

If we instead consider the category PA of finitely generated projective modules over a
ring A, and µ = obFA ⊆ PA, then TiPA,µ ≃ K0(A)× BGL(A) (since FA ⊆ PA is cofinal),
and we get
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Theorem 2.2.3 Let A be a discrete ring. Then there is a chain of equivalences

K0(A)× BGL(A)+ ≃ ΩBiH̄PA(S1)
≃
−−−→ ΩBiSPA.

.. '!&"%#$����

As to naturality, the best we can say is that Lemma 2.2.1 gives a natural equivalence
between the connective cover of ΩBiSPA and BGL(A)+.

Notice that comparing the results for FA and PA gives one proof of cofinality in the sense
used in e.g., [108]: the connected cover of K-theory does not see the difference between
free and projective modules.

Note 2.2.4 One should notice that the homotopy equivalence ΩBiSPA ≃ K0(A)×BGL(A)+

is not functorial in A. As an example, consider the ring C(X) of continuous maps from a
compact topological space X to the complex numbers. There is a functorial (in X) chain
of maps

Ω∞BiH̄PC(X) → Ω∞BiH̄P topC(X)

≃
←−−− BiP topC(X),

where the superscript top means that we shall remember the topology and and consider
PC(X) as a topological category. By a theorem of Swan, the homotopy groups of the
rightmost space give the connective cover of Atiyah-Hirzebruch (complex) topological K-
theory of X (see I.2.5) and is represented by the spectrum ku = BiH̄P topC(∗). The map from

the algebraic K-theory of C(X) to the topological K-theory of X is an isomorphism on
path component and a surjection on the fundamental group (see [213, page 61] or [13]).
Consider the map C(B(Z/2)) → C(B(Z)) induced by the projection Z → Z/2 and let C
be the mapping cone of BZ → BZ/2. Let F be the homotopy fiber of K(C(B(Z/2))) →
K(C(B(Z))). By naturality this induces a map of long exact sequences

K1(C(B(Z))) −−−→ π0F −−−→ K0(C(B(Z/2))) −−−→ K0(C(B(Z)))y
y ∼=

y ∼=

y
K1(B(Z)) −−−→ K0(C) −−−→ K0(B(Z/2)) −−−→ K0(B(Z))

∼=

y ∼=

y ∼=

y ∼=

y

Z
2

−−−→ Z −−−→ Z/2⊕ Z
0+id
−−−→ Z

(since the map K1(B(Z))→ K1(B(Z)) ∼= K̃0(C) is induced by multiplication by 2). This
means that π0F → K̃0C(B(Z/2)) = Z/2 is a non-split surjection, in contrast with what
you get if you consider the homotopy fiber of

K0(C(B(Z/2)))× BGL(C(B(Z/2)))+ → K0(C(B(Z)))×BGL(C(B(Z)))+.

We are grateful to Dan Grayson and John Rognes for assistance with this argument.
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2.3 The algebraic K-theory space of S-algebras

The definition of K-theory space for S-algebras follows the idea for simplicial rings 1.2.1.
We will later give the spectrum level definitions which agree with this simple definition.

2.3.1 The general linear group-like monoid ĜL(A)

What is to play the rôle of the general linear group for an S-algebra? We could of course
let it be the group of automorphisms of A×n (mimicking degreewise K-theory), but this will
be much too restrictive for our applications. Instead, we must somehow capture all self-
equivalences. The readers who have read II.3.3 will recognize the ĜLn(A) defined below
as the outcome of the functor ω applied to the ΓS∗-category of endomorphisms of A∨n.

Note that we are to perform some unfriendly operations on the monoid of self-equivalences,
so we had better ensure that our input is fibrant. Note also that if A is an S-algebra, then
the multiplication in A gives rise to a simplicial monoid structure on T0A(1+) where T0

is the fibrant replacement functor of II.2.2.2. This would not be true if we had used the
other fibrant replacement QA of II.2.1.11.

Consider the simplicial monoid

M̂nA = T0MatnA(1+) = holim
−−→
x∈I

Ωx(Matn(A)(Sx)),

where MatnA is the S-algebra X 7→ MatnA(X) = S∗(n+, n+∧A(X)) ∼=
∏

n

∨
nA(X)

of “matrices with only one element in each column” defined in II.1.4.4.6. Its monoid of
components is π0(M̂n(A)) = Mn(π0A), and we let ĜLn(A) be the grouplike simplicial
monoid of homotopy units:

ĜLn(A) −−−→ M̂n(A)y
y

GLn(π0A) −−−→ Mn(π0A)

This is a (homotopy) pullback diagram (the maps may not be fibrations, but even so, the
pullback is a homotopy pullback: picking out components is a homotopy functor).

If R is a simplicial ring with associated Eilenberg–Mac Lane S-algebra HR II.1.6.2.2,
the inclusion of ∨ into ⊕ induces a stable equivalence Matn(HR)→ HMnR of S-algebras,
and hence chains of weak equivalences T0Matn(HR)(1+)

∼
→ T0HMnR(1+)

∼
← MnR and

ĜL(HR) ≃ ĜL(R).
This stabilizes correctly, in the sense that

S0 = S(1+)→ A(1+) = Mat1(A)(1+)→ ΩnMat1(A)(Sn)

and

MatnA×Mat1A
∨

−−−→ Matn+1A
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induce maps

M̂n(A) holim
−−→
x∈I

Ωx(Matn(A)(Sx))

y
holim
−−→
x∈I

Ωx (Matn(A)(Sx)×Mat1(A)(Sx))

y∨

M̂n+1(A) holim
−−→
x∈I

Ωx(Matn+1(A)(Sx))

which in turn induce the usual Whitehead sum

Mn(π0A)
m7→m⊕1
−−−−−→ Mn+1(π0A).

We let ĜL(A) denote the colimit of the resulting directed system of ĜLn(A)’s.
We can now form the classifying space in the usual way and define the algebraic K-

theory space just as we did for simplicial rings in 1.2.1:

Definition 2.3.2 Let A be an S-algebra. Then the algebraic K-theory space of A is the
space

K(A) = BĜL(A)+.

From the construction we get

Lemma 2.3.3 Let R be a simplicial ring. Then the chain of weak equivalences MnHR ≃
M̂nHR induces a chain of natural weak equivalence K(HR) ≃ K(R), where K(R) is the
algebraic K-theory space of R as defined in 1.2.1. .. '!&"%#$����

2.3.4 Comparison with Waldhausen’s algebraic K-theory of a connected space

A particularly important example is the K-theory of spherical group rings, that is, of an
S-algebras of the form S[G] where G is a simplicial group, see II.1.4.4.2. Then Waldhausen
essentially shows that K(S[G]) is equivalent to A(BG), the “algebraic K-theory of the
connected space BG”.

Thus, the homotopy theoretic invariant K(S[G]) carries deep geometric information.
For instance, Waldhausen proves that Z×K(S[G]) is equivalent to

Ω∞(S∧BG+)×WhDiff(BG).

It is the last factor, the (smooth) Whitehead space that is of geometric significance; its
loop space is equivalent to the so-called stable smooth h-cobordism space, which among
other things carries information about diffeomorphisms of high-dimensional manifolds. See
Jahren, Rognes and Waldhausen’s [296].
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There is a slight difference between the end product in [301, theorem 2.2.1] and the
present definition and we must cover this gap (see also the discussion at the bottom of
page 385 in [301]). For our purposes, we may consider Waldhausen’s definition of (the
connected cover of) algebraic K-theory of the connected space BG, A(BG) to be

lim
−−→
k,m

BHk
m(G)+

where Hk
m(G) is the simplicial monoid of pointed |G|-equivariant weak self-equivalences of

|m+∧S
k∧G+|. More precisely, consider the space of |G|-self maps of |m+∧S

k∧G+|

Mk
m = sin Map |G|(|m+∧S

k∧G+|, |m+∧S
k∧G+|).

This is a simplicial monoid under composition of maps (f, g) 7→ f ◦ g, and Hk
m(G) is the

grouplike submonoid of invertible components. As a simplicial set Mk
m is isomorphic to

ΩkMatmS[G](Sk). By Bökstedt’s approximation Lemma II.2.2.3 we have a chain of weak
equivalences

lim
−→
k

BHk
m(G)

≃
←−−− holim

−→m
BHk

m(G)
≃
−−−→ holim

−−→
x∈I

BHx
m(G)

and we want to compare this with BĜLm(S[G]).
We define a map (for convenience, we use the non-pointed homotopy colimit to get an

isomorphism below; these are homotopy equivalent to their pointed counterparts since I
is contractible, see A.6.4.1)

(holim
−−→
x∈I

ΩxMatm(S[G](Sx)))×q ∼= holim
−−−→
x∈Iq

q∏

i=1

Mxi
m → holim

−−−→
x∈Iq

(M∨xm )×q → holim
−−→
x∈I

(Mx
m)×q.

The first map is induced by the ith inclusion xi ⊆ ∨x = x1 ∨ · · · ∨ xq in the ith factor, and
the last map is induced by the wedge Iq → I. When restricted to homotopy units, this
gives by Bökstedt’s approximation Lemma II.2.2.3 the desired equivalence

BqĜLm(S[G])→ holim
−−→
x∈I

BqH
x
m(G).

We must just show that it is a simplicial map.
Note that the diagram

Mx
m∧M

y
m

S-algebra multiplication
−−−−−−−−−−−−−→ Mx∨y

my
∥∥∥

Mx∨y
m ∧Mx∨y

m

composition
−−−−−−→ Mx∨y

m

is commutative, where the left vertical map is induced by the first and second inclusion
x ⊆ x ∨ y and y ⊆ x ∨ y. Thus we see that if 0 < i < q, then the ith face map in
holim−−−→

x∈Iq

∏q
i=1M

xi
m using the S-algebra multiplication, corresponds to the ith face map in

holim−−→
x∈I

(Mx
m)×q, since we have used the ith inclusion in the ith factor, and the (i + 1)st

inclusion in the (i + 1)st factor. The face maps d0, dq just drop the first respectively the
last factor in both cases, and the degeneracies include the common unit in the appropriate
factor.
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2.4 Agreement of the K-theory of S-algebras through Segal’s ma-

chine and the definition through the plus construction

Let A be an S-algebra. Recall from I.1.3.2.2 the Grothendieck group Kf
0 (π0A) of the

category of finitely generated free π0A-modules. If π0A has the invariance of basis number
property (i.e., (π0A)×k is isomorphic to (π0A)×l if and only if l = k, which is true for
most reasonable rings, and always true for commutative rings), then Kf

0 (π0A) ∼= Z, and
otherwise it is finite cyclic.

The following is the immediate generalization of the category of finitely generated free
modules as in I.2.1.4 to S-algebras.

Definition 2.4.1 Let A be an S-algebra. Then the category FA of finitely generated
free A-modules is the ΓS∗-category whose objects are the natural numbers, and where
FA(m,n) = Matn,mA ∼=

∏
m

∨
nA.

Note that Segal’s definition of the algebraic K-theory spectrum of A (with the uniform
choice of weak equivalences II.3.3) is then

K(A) = BωH̄FA.

Theorem 2.4.2 There is a chain of weak equivalences

Ω∞K(A) ≃ Kf
0 (π0A)× BĜL(A)+.

Proof: First, note that since K(A) = BωH̄FA is special, i.e., for each n+ ∈ Γo we have
that the natural map BωH̄FA(n+) → (BωFA)×n induced by the projections is a weak
equivalence, we have a weak equivalence

Ω∞K(A) ≃ ΩBωH̄FA(S1).

For each k ≥ 0, let wFk be the full subcategory of ωFA whose only object is k+∧A.

Note that by definition, this is nothing but ĜLk(A) considered as a simplicial category
with only one object. Hence we are done, for by Lemma 2.2.1 and the discussion prior to
Theorem 2.2.3 there is a chain of weak equivalences

ΩBωH̄FA(S1) ≃ Kf
0 (π0A)×

(
lim
−→
k

BwFk
)+

= Kf
0 (π0A)× BĜL(A)+.

If A is a discrete ring, we have a chain of weak equivalences

BiH̄FA
∼
−−−→ BωH̄F̃A

∼
←−−− BωH̄FHA

where F̃A is the construction of 1.6.2.2 making an Ab-category into a ΓS∗-category through
the Eilenberg–Mac Lane construction. The first weak equivalence follows by Lemma II.3.3.2,
whereas the second follows from the fact that the natural map MatnHA → H(MnA) is a
stable equivalence (finite wedges are products are stably equivalent).
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3 Simplicial rings are dense in S-algebras.

The unit S→ HZ from the sphere spectrum to the integral Eilenberg–Mac Lane spectrum
may either be thought of as the projection onto π0 or as the Hurewicz map. Either way, we
get that it is 1-connected. This implies that there is a very controlled difference between
their module categories. The argument which we are going to give for this could equally
well be considered in any setting where you have a 1-connected map A→ B of S-algebras.
In fact, it is perhaps easiest to see that the result is true in this setting. Assume everything
is cofibrant and that f : A → B is a cofibration of S-algebras too (with cofiber B/A), so
as to avoid technicalities. Consider the (Quillen) adjoint pair

MA

B∧A−

⇄
f∗
MB

where f ∗ is restriction of scalars, which we will drop from the notation. Let M be any
A-module, and consider the unit of adjunction

ηM : M ∼= A∧AM
f∧1
−−−→ B∧AM.

This map has cofiber (B/A)∧AM , and since A → B is 1-connected this gives that M →
B∧AM is 1-connected, and so B∧AM is a B-module giving a rather coarse approximation
to M .

We can continue doing this: applying B∧A− to M → B∧AM gives a square

M
ηM−−−→ B∧AM

ηM

y ηB∧AM

y

B∧AM
1B∧AηM−−−−−→ B∧AB∧AM

and a quick analysis gives that this has iterated cofiber (B/A)∧A(B/A)∧AM , and so is “2-
cartesian”, meaning that M is approximated by the pullback of the rest of square, at least
up to dimension two. This continues, and gives that any A-module may be approximated
to any degree of accuracy by means of B-modules. However, not all the maps connecting
the B-modules in these cubes are B-module maps. This is often not dangerous. Because
of the rapid convergence, functors satisfying rather weak “continuity” properties and that
vanish on B-modules must also vanish on all A-modules.

We will be pursuing this idea, but we will be working non-stably, and our resolutions
will in fact be resolutions of S-algebras (in the setup as sketched above, that would require
commutativity conditions).

3.1 A resolution of S-algebras by means of simplicial rings

Recall the adjoint functor pairs of II.1.3.1 (briefly, H̄ is the Eilenberg–Mac Lane construc-
tion, R is evaluation at 1+, Z̃ is the free-abelian functor and U the forgetful functor)

sAb = A
H̄

⇄
R

ΓA
Z̃

⇆
U

ΓS∗
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(the left adjoints are on the top). All are symmetric monoidal (all but U are even strong
symmetric monoidal), and so all take monoids to monoids. Furthermore, the construction
T0 of II.2.2.2 could equally well be performed in ΓA, where it is called R0 to remind us
that the coproducts involved are now sums and not wedges. In particular, the approx-
imation Lemma II.2.2.3 works equally well in this setting. If A is an H̄Z-algebra, then
R0A is a special H̄Z-algebra (i.e., its underlying Γ-space is special, II.1.2.2), and so by
Lemma II.1.3.3 the rightmost map in

A
∼
−−−→ R0A

∼
←−−− H̄R(R0A)

is a pointwise equivalence. Hence: any H̄Z-algebra is canonically stably equivalent to H̄ of
a simplicial ring (this has already been noted in II.2.2.7). This also works for (bi)modules:
if P is an A-bimodule, then R0P is an R0A-bimodule, stably equivalent to P (as an A-
bimodule); H̄(RR0P ) is an H̄(RR0A)-bimodule and pointwise equivalent to R0P (as an
H̄(RR0A)-bimodule).

In particular, remembering that H = UH̄ :

Lemma 3.1.1 If A is any S-algebra and P an A-bimodule, then (UZ̃A,UZ̃P ) is canon-
ically stably equivalent to a pair (HR,HQ) where R is a simplicial ring and Q an R-
bimodule:

(UZ̃A,UZ̃P )
∼
−−−→ (UR0Z̃A,UR0Z̃P )

∼
←−−− (H(RR0Z̃A), H(RR0Z̃P )).

.. '!&"%#$����

The adjoint pair connecting ΓA and ΓS∗ defines an adjoint pair

H̄Z-algebras
Z̃

⇆
U

S-algebras

(that is, UZ̃ is a “triple” in S-algebras) and so we have the canonical resolution of A.0.12
(to be precise and concise, it is the augmented cobar resolution of the monoid UZ̃ in the
category of endofunctors of S-algebras).

Lemma 3.1.2 If A is an S-algebra, then the adjoint pair above gives an augmented cosim-
plicial object A→ {[q] 7→ (UZ̃)q+1A}, which is equivalent to H of a simplicial ring in each
non-negative degree. .. '!&"%#$����

It is fairly straightforward to see that

A→ holim
←−−−
[q]∈∆

(UZ̃)q+1A

is an equivalence, but we will not show that now, since we eventually will use the somewhat
stronger Hurewicz Theorem A.7.3.4 which tells us that this limit converges fast enough,
so that the homotopy limit passes through constructions like K-theory. This has the
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consequence that these constructions only depend on their value on simplicial rings, and
on S-algebra maps between simplicial rings. Generally this is bothersome: we would have
liked the diagram we are taking the limit of to be contained wholly in the category of
simplicial rings. This is of course not possible, since it would imply that all S-algebras
were stably equivalent to simplicial rings. For instance, S itself is not stably equivalent to
a simplicial ring, but it is the homotopy limit of a diagram

HZ
//
// UZ̃HZ

//
//// UZ̃UZ̃HZ . . . .

Remark 3.1.3 The categories sAb = A, ΓA and HZ-mod, are all naturally model cate-
gories, and the functors

A
H̄
−−−→ ΓA

U
−−−→ HZ-mod

induce equivalences between their homotopy categories. This uses the functor L : ΓA → A
of II.1.3.4 to construct an adjoint functor pair (see [253]).

3.1.4 Review on cubical diagrams

We need some language in order to calculate the resolution of Lemma 3.1.2 effectively. For
a more thorough discussion we refer the reader to Appendix A.7.

Let P be the category of finite subsets of the natural numbers {1, 2, . . .}, and inclusions.
We let Pn be the subcategory allowing only subsets of {1, . . . , n}.

Definition 3.1.5 An n-cube is a functor X from the category Pn. A cubical diagram is
a functor from P.

If we adjoin the empty set [−1] = ∅ as an initial object to ∆, we get (a skeleton of)
Ord, the category of finite ordered sets. A functor from Ord is what is usually called an
augmented cosimplicial object. There is a functor P → Ord sending a set S of cardinality
n to [n− 1]. Hence any augmented cosimplicial object gives rise to a cubical diagram. In
most cases there is no loss of information in considering augmented cosimplicial objects as
cubical diagrams (see A.7.1.1 for further details).

Definition 3.1.6 Let X be an n-cube with values in any of the categories where ho-
motopy (co)limits and connectivity are defined (e.g., the categories considered in A.6.4:
pointed/unpointed spaces, simplicial abelian groups, Γ-spaces or spectra). We say that X
is k-cartesian if

X∅ → holim
←−−
S 6=∅

XS

is k-connected, and k-cocartesian if

holim
−−−−−−−−→
S 6={1,...,n}

XS → X{1,...,n}

is k-connected. It is homotopy cartesian if it is k-cartesian for all k, and homotopy cocarte-
sian if it is k-cocartesian for all k.
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When there is no possibility of confusing with the categorical notions, we write just carte-
sian and cocartesian. Homotopy (co)cartesian cubes are also called homotopy pullback
cubes (resp. homotopy pushout cubes), and the initial (resp. final) vertex is then called the
homotopy pullback (resp. homotopy pushout).

As a convention we shall say that a 0-cube is k-cartesian (resp. k-cocartesian) if X∅ is
(k − 1)-connected (resp. k-connected).

So, a 0-cube is an object X∅, a 1-cube is a map X∅ → X{1}, and a 1-cube is k-
(co)cartesian if it is k-connected as a map. A 2-cube is a square

X∅ −−−→ X{1}y
y

X{2} −−−→ X{1,2}

and so on. We will regard a natural transformation of n-cubes X → Y as an (n+ 1)-cube.
In particular, if F → G is some natural transformation of functors of simplicial sets, and
X is an n cube of simplicial sets, then we get an (n + 1)-cube FX → GX .

The following definition is useful for book-keeping, and is discussed further in Ap-
pendix A.7.

Definition 3.1.7 If f : N→ N is some function, we say that an S-cube X is f -cartesian
if each d-dimensional subcube of X is f(d)-cartesian. Likewise for f -cocartesian.

For instance, if f(d) = d + 1, the cube is (id + 1)-cartesian. Some prefer to call this
“(dim + 1)-cartesian”.

We will need the generalized Hurewicz theorem which we cite from Appendix A.7.3.4:

Theorem 3.1.8 Let k > 1. If X is an (id + k)-cartesian cube of simplicial sets, then so
is X → Z̃X . .. '!&"%#$����

Definition 3.1.9 Let A be an S-algebra and n > 0. Define the n-cube of S-algebras

(A)n = {S 7→ (A)nS}

by applying the unit of adjunction h : id → UZ̃ n times to A (so that (A)nS = (UZ̃)|S|A).
Carrying this on indefinitely, we get a functor

P
S 7→(A)S
−−−−−→ S-algebras

such that the restriction of {S 7→ (A)S} to Pn ⊆ P is (A)n = {S 7→ (A)nS}.

More concretely (A)2 is the 2-cube

A
hA−−−→ UZ̃A

hA

y hUZ̃A

y

UZ̃A
UZ̃hA−−−→ (UZ̃)2A

.
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Corollary 3.1.10 Let n ≥ 0. The n-cube of spectra (A)n is id-cartesian.

Proof: For each k > 1, the space A(Sk) is (k−1)-connected by II.2.1.5.2 (and so (id+k)-
cartesian as a 0-cube). Hence the Hurewicz Theorem 3.1.8 says that S 7→ (A)nS(S

k) is
(id+ k)-cartesian, which is stronger than S 7→ (A)nS being id-cartesian as a spectrum.

The very reason for the interest in this construction stems from the following observation
which follows immediately from Lemma 3.1.1.

Proposition 3.1.11 Let A be an S-algebra. Then (A)S is canonically equivalent to H of
a simplicial ring for all S 6= ∅. .. '!&"%#$����

3.2 K-theory is determined by its values on simplicial rings

First note that K-theory behaves nicely with respect to id-cartesian squares (note that
a square being merely highly cartesian is not treated nicely by K-theory, you need good
behavior on all subcubes).

Theorem 3.2.1 Let A be an id-cartesian n-cube of S-algebras, n > 0. Then K(A) is
(n+ 1)-cartesian.

Proof: Let M = MatmA be the cube given by the m × m matrices in A. This is id-
cartesian, and so T0M = holim−−→

x∈I
Ωx(MatmA)(Sx) is an id-cartesian cube of grouplike

simplicial monoids. As all maps in A are 1-connected, they induce isomorphisms on π0.
Hence we get G = ĜLm(A) as a pullback

GT −−−→ T0MTy
y

GLm(π0A{1,...,n}) −−−→ Mm(π0A{1,...,n})

for all T ⊂ n. Consequently, ĜLm(A) is id-cartesian, and so BĜLm(A) is (id+1)-cartesian.
Using Lemma A.7.3.6 we get that also

K(A) = BĜL(A)+ ∼=

(
lim
−→m
BĜLm(A)

)+

is (id+ 1)-cartesian.
Note that with non-connected definitions of algebraic K-theory we still get that the

algebraic K-theory ofA is (n+1)-cartesian (it is not (id+1)-cartesian, but only id-cartesian,
because the spaces are not 0-connected). This is so since all the maps of S-algebras involved
are 1-connected, and so K0(π0A) is the constant cube K0(π0A∅).

Theorem 3.2.2 Let A be an S-algebra. Then

K(A)→ holim
←−−−−−
S∈P−∅

K((A)S)

is an equivalence.
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Proof: We know there is high connectivity to any of the finite cubes: Theorem 3.2.1 tells
us that K(A)→ holim←−−−−−−

S∈Pn−∅
K((A)nS) is (n+ 1)-connected, so we just have to know that

this assembles correctly. Now, by Lemma A.6.2.4 the map

holim
←−−−−−−−−
S∈Pn+1−∅

K((A)n+1
S )→ holim

←−−−−−−
S∈Pn−∅

K((A)nS)

induced by restriction along Pn ⊆ Pn + 1 is a fibration. By writing out explicitly the
cosimplicial replacement formula of A.6.3 for the homotopy limit, you get that

holim
←−
J

F ∼= lim
←−−−
n∈N

holim
←−
Jn

F |Jn.

Hence, by Lemma A.6.3.2 and Theorem A.6.4.6, you get that holim←−−−−−−
S∈Pn−∅

K((A)nS) ap-

proximates holim←−−−−−
S∈P−∅

K((A)S).
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Chapter IV

Topological Hochschild homology

As K-theory is hard to calculate, it is important to know theories that are related to K-
theory, but that are easier to calculate. Thus, if somebody comes up with a nontrivial
map between K-theory and something one thinks one can compute, it is considered a good
thing. For instance, in 1965 Hattori [121] and Stallings [272] defined for a ring A a map
trA : K0(A) → A/[A,A] – the Hattori-Stallings trace map – by sending the class of the
projective module defined by an idempotent p ∈ Mn(A) to the trace of p. The recent
preprint of Berrick and Hesselholt [15] where they use that the Hattori-Stallings trace
map factors through topological cyclic homology to discover classes of groups where the
so-called Bass trace conjecture is true is an interesting application relevant for our setting.

In 1976, R. Keith Dennis observed that there exists a map from the higher K-groups
of a ring A to the so-called Hochschild homology HH (A). This map has since been called
the Dennis trace, and is intimately connected with Hattori-Stalling’s trace map, see e.g.,
Loday [181, 8]. When applied e.g., to number rings, the Dennis trace map is generally a
poor invariant rationally, but retains some information when working with finite coefficients
[156].

Waldhausen noticed in [299] that there is a connection between the sphere spectrum,
stable K-theory (previously discussed in Section I.3) and Hochschild homology. Although
the proof appeared only much later ([302]), he also knew before 1980 that stable A-theory
coincided with stable homotopy. Motivated by his machine “calculus of functors” and his
study of stable pseudo isotopy theory, T. Goodwillie conjectured that there existed a theory
sitting between K-theory and Hochschild homology, agreeing integrally with stable K-
theory for all “rings up to homotopy”, but with a Hochschild-style definition. He called the
theory topological Hochschild homology (THH ), and the only difference between THH and
HH should be that whereas the ground ring in HH is the the ring of integers, the ground
ring of THH should be the sphere spectrum S, considered as a “ring up to homotopy”. This
would also be in agreement with his proof that stable K-theory and Hochschild homology
agreed rationally, as the higher homotopy groups of the sphere spectrum S are all torsion.
He also made some conjectural calculations of THH (Z) and THH (Z/pZ).

The next step was taken in the mid eighties by M. Bökstedt, who was able to give
a definition of THH , satisfying all of Goodwillie’s conjectural properties, except possibly

147
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the equivalence with stable K-theory. To model rings up to homotopy, he defined functors
with smash products which are closely related to the S-algebras defined in chapter II.

Theorem 0.0.1 (Bökstedt)

πkTHH (Z) ∼=





Z if k = 0

Z/iZ if k = 2i− 1

0 if k = 2i > 0

πkTHH (Z/pZ) ∼=

{
Z/pZ if k is even

0 if k is odd
.

Properly interpreted, work of Breen [41] actually calculated THH (Z/pZ) already in
1976. The outcome of the two papers of Jibladze, Pirashvili and Waldhausen [150], [225]
was that THH (A) could be thought of as the homology of the category PA of finitely
generated A-modules in the sense of I.3, or alternatively as “Mac Lane homology”, [190].
This was subsequently used by Franjou, Lannes and Schwartz and Pirashvili to give purely
algebraic proofs of Bökstedt’s calculations, [84] and [85].

For (flat) rings A, there is a (3-connected) map THH (A) → HH(A) which should be
thought of as being induced by the change of base ring S→ HZ.

After it became clear that the connection between K-theory and THH is as good as
could be hoped, many other calculations of THH have appeared – topological Hochschild
homology possesses localization, in the same sense as Hochschild homology does, THH of
group rings can be described, and so on. Many calculations have been done in this setting
or in the dual Mac Lane cohomology. For instance by Pirashvili in [223], [224] and [222].
For further calculations see Larsen and Lindenstrauss’ papers [169], [176] and [168]. For
A a ring of integers in a number field, Lindenstrauss and Madsen obtained in [177] the
non-canonical isomorphism

πiTHH (A) ∼=





A if i = 0

A/nDA if i = 2n− 1

0 otherwise

where DA is the different ideal. In [131] Hesselholt and Madsen give a canonical description
of the mod p homotopy groups, which we will return to later. A functorial description of
the integral homotopy groups is to our knowledge still beyond reach.

For concrete calculations the spectral sequence of Pirashvili and Waldhausen in [225]
(see 1.3.8) is very useful. This is especially so since in many cases it degenerates, a phe-
nomenon which is partially explained in [249].

As we have already noted, the first example showing that stable K-theory and THH

are equivalent is due to Waldhausen, and predates the definition of THH . He showed
this in the examples arising from his K-theory of spaces; in particular, he showed the so-
called “vanishing of the mystery homology”: stable K-theory of the sphere spectrum S is
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equivalent to S, i.e., KS(S) ≃ THH (S) ≃ S. Based upon this, [250] announced that one
could prove KS ≃ THH in general, but the full proof has not yet appeared.

The second example appeared in [69], and took care of the case of rings, using the
interpretation of THH (A) as the homology of PA. In [63] it was shown how this implies
KS ≃ THH for all S-algebras.

When A is a commutative S-algebra we get by an appropriate choice of model that
THH (A) is also a commutative S-algebra (however, you need to change the foundations:
Γ-spaces are not good enough, see VII.3.1.1), and the homotopy groups become a graded
commutative ring. For instance, the calculation of π∗THH (Z/pZ) could be summed up
more elegantly by saying that it is the graded polynomial ring in Z/pZ in one generator
in degree 2, see Corollary VII.3.1.4. This is already present in Bökstedt’s original cal-
culations, along with the important identification of a preferred polynomial generator for
π∗THH (Z/pZ) coming from the cyclic action (which is a central ingredient when we start
talking about topological cyclic homology).

0.0.2 Organization

In the first section we will give a definition of topological Hochschild homology for S-
algebras, and prove some basic results with a special view to the ring case. In the second
section, we will extend our definition to include ΓS∗-categories in general as input. This is
very similar, and not much more involved; but we have chosen to present the theory for
S-algebras first so that people not interested in anything but rings can have the definition
without getting confused by too much generality. However, this generality is very conve-
nient when one wants to construct the trace map from K-theory, and also when one wants
to compare with the homology of additive categories. This is particularly clear when one
wants good definitions for the “trace” map from algebraic K-theory, which we present in
chapter V.

0.1 Where to read

The literature on THH is not as well developed as for K-theory; and there is a significant
overlap between these notes and most of the other sources. The original paper [30] is good
reading, but has unfortunately not yet appeared. The article [129] develops the ideas in
[27] further, and is well worth studying to get an equivariant point of view on the matter.
For the THH spectrum for exact categories, [70] is slightly more general than these notes.

For a general overview, the survey article of Madsen, [192], is recommended.

1 Topological Hochschild homology of S-algebras.

As topological Hochschild homology is supposed to be a modelled on the idea of Hochschild
homology, we recall the standard complex calculating HH (A).
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1.1 Hochschild homology of k-algebras

Recall the definition of Hochschild homology (see I.3.2): Let k be a commutative ring, let
A be a flat k-algebra, and let P be an A-bimodule (i.e., an Ao ⊗k A-module). Then we
define the Hochschild homology (over k) of A with coefficients in P to be the simplicial
k-module

HH k(A,P ) = {[q] 7→ HH k(A,P )q = P ⊗k A
⊗kq}

with face and degeneracies given by

di(m⊗ a1 ⊗ · · · ⊗ aq) =





ma1 ⊗ a2 · · · ⊗ aq if i = 0

m⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ aq if 0 < i < q

aqm⊗ a1 ⊗ · · · ⊗ aq−1 if i = q

si(m⊗ a1 ⊗ · · · ⊗ aq) = m⊗ a1 ⊗ · · · ⊗ ai ⊗ 1⊗ ai+1 ⊗ · · · ⊗ aq.

Just the same definition may be applied to simplicial k-algebras, and this definition of
HH k will preserve weak equivalences. Again we either assume that our ring is flat, or
else we substitute it with one that is, and so we are really defining what some call Shukla
homology after [263]. To make this functorial in (A,P ) we really should choose a functorial
flat resolution of rings once and for all, but since our main applications are to rings that
are already flat, we choose to suppress this.

1.1.1 Cyclic structure

In the case P = A something interesting happens. Then HH k(A) = HH k(A,A) is not only
a simplicial object, but also a cyclic object (see VI.1.1 for a more detailed discussion of
cyclic objects, and Section 1.2.10 below for the structure on THH ). Recall that a cyclic
object is a functor from Connes’ category Λo, where Λ is the category containing ∆, but
with an additional endomorphism for each object, satisfying certain relations. In terms
of generators, this means that in addition to all maps coming from ∆ for each [q] there
is a map t = tq : [q] → [q]. In our case t is sent to the map A⊗k(q+1) → A⊗k(q+1) sending
a0 ⊗ · · · ⊗ aq to aq ⊗ a0 ⊗ · · · ⊗ aq−1.

To be precise:

Definition 1.1.2 Connes’ category Λ is the category with the same objects as the simpli-
cial category ∆, but with morphism sets

Λ([n], [q]) = ∆([n], [q])× Cn+1,

where Cn+1 is the cyclic group with generator t = tn and with tn+1
n = 1[n]. Here a pair

(σ, ta) is considered as a composite

[n]
ta
−−−→ [n]

σ
−−−→ [q]



1. TOPOLOGICAL HOCHSCHILD HOMOLOGY OF S-ALGEBRAS. 151

(where t = tn is the generator of Cn+1, so that tn+1
n = 1[n]). Composition is subject to the

extra relations

tnd
i = di−1tn−1 1 ≤ i ≤ n

tnd
0 = dn

tns
i = si−1tn+1 1 ≤ i ≤ n

tns
0 = snt2n+1

A cyclic object in some category C is a functor Λo → C, and a cyclic map is a natural
transformation between cyclic objects.

Notice that any map in Λ can be written as a composite φta where φ ∈ ∆. Furthermore,
this factorization is unique.

Due to the inclusion j : ∆ ⊂ Λ, any cyclic object X gives rise to a simplicial object
j∗X.

Hochschild homology is just an instance of a general gadget giving cyclic objects: let M
be a monoid in a symmetric monoidal category (C,�, e). Then the cyclic bar construction
is the cyclic object Bcy(M) = {[q] 7→M�(q+1)}. Hochschild homology is then the example
coming from (k-mod,⊗k, k). The most basic example is the cyclic bar construction of
ordinary monoids: in the symmetric monoidal category of sets with cartesian product,
a monoid is just an ordinary monoid, and Bcy

q (M) = M×(q+1). Slightly more fancy are
the cases (Cat,×, ∗): monoids are strict monoidal categories, or (S,×, ∗): monoids are
simplicial monoids. We have already seen an example of the former: the object {[q] 7→
Iq+1} which appeared in II.2.2.1 was simply BcyI.

1.2 Topological Hochschild homology of S-algebras

In analogy with the above definition of HH k, Bökstedt defined topological Hochschild
homology. Of course, S is initial in the category of S-algebras (as defined in Section II.1.4),
just as (for any commutative ring k) k is initial among k-algebras, and the idea is that we
should try to replace the symmetric monoidal category (k-mod,⊗k, k) with (S-mod,∧,S).
In other words, instead of taking the tensor product over k, we should take the “tensor
product over S”, that is, the smash product of Γ-spaces. So we could consider

HP∧HA∧ . . .∧HA

(or even smashed over some other commutative S-algebra if desirable), and there is nothing
wrong with this, except that

1. as it stands it is prone to all the nuisances of the classical case: unless we replace
HA with something fairly free in ΓS∗ first, this will not preserve equivalences; and

2. without some amendment this will not have enough structure to define the goal of
the next chapter: topological cyclic homology.



152 CHAPTER IV. TOPOLOGICAL HOCHSCHILD HOMOLOGY

Inspired by spectra rather than Γ-spaces, Bökstedt defined a compact definition which
takes care of both these problems. But before we give Bökstedt’s definition, we note that
we have already twice encountered one of the obstructions to a too naïve generalization.
Let A be a ring. The associated S-algebra HA sending X to HA(X) = A ⊗ Z̃[X] has a
multiplication; but if we want to loop this down we have a problem: the multiplication
gives a map from

lim
−−−−→
k,l∈N2

Ωk+l((A⊗ Z̃[Sk])∧(A⊗ Z̃[Sl]))

to
lim
−−−−→
k,l∈N2

Ωk+l(A⊗ Z̃[Sk+l])

which sure enough is isomorphic to lim−−−→
k∈N

Ωk(A⊗ Z̃[Sk]), but not equal. The problem gets
nasty when we consider associativity: we can’t get the two maps from the “triple smash”
to be equal. For Hochschild homology we want a simplicial space which in degree 0 is
equivalent to lim−−−→

k∈N
Ωk(A⊗ Z̃[Sk]), in degree 1 is equivalent to

lim
−−−−→
k,l∈N2

Ωk+l((A⊗ Z̃[Sk])∧(A⊗ Z̃[Sl]))

and so on, and one of the simplicial relations (d2
1 = d1d2) will exactly reflect associativity

and it is not clear how to do this, c.f. Note 1.2.9.
In [30], Bökstedt shows how one can get around this problem by using the category

I (the subcategory of Γo with all objects and just injections, see II.2.2.1) instead of the
natural numbers. To ensure that the resulting colimit has the right homotopy properties,
we must use the homotopy colimit, see the approximation Lemma II.2.2.3.

Recall that, if x = k+ = {0, . . . , k} ∈ obI, then an expression like Sx = Sk will mean
S1 smashed with itself k times, and Ωx = Ωk will mean Map∗(S

k,−) = S∗(S
k, sin | − |).

Furthermore, if x = (x0, . . . , xq) is an object in Iq+1, then ∨x = x0 ∨ · · · ∨ xq. If α : m+ →
n+ ∈ I, let Sn+−α(m+) =

∧n
j=1 S(α, j) where

S(α, j) =

{
S0 if j is in the image of α

S1 otherwise,

and let Sn+−α(m+)∧Sm+ ∼= Sn+ be the shuffle isomorphism: it keeps the order of the S1’s in
Sn+−α(m+), and inserts the ith smash factor S1 of Sm in the α(i)-factor. Quite concretely,
the isomorphism sends a non-basepoint ((a1∧ . . .∧an)∧(b1∧ . . .∧bm)) to (c1∧ . . .∧cn) where
cj = aj if j is not in the image of α and cj = bi if j = α(i) (remember that α is an injection).

Definition 1.2.1 Let A be an S-algebra, P an A-bimodule (i.e., an Ao∧A-module) and
X a space, and define for every q ≥ 0 the assignment V (A,P ) : obIq+1 → obS∗ by

(x0, . . . , xq) 7→ V (A,P )(x0, . . . , xq) = P (Sx0)∧
∧

1≤i≤q

A(Sxi)
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This gives rise to a functor Gq = G(A,P,X)q : I
q+1 → S∗ given by

x 7→ Gq(x) = Ω∨x(X∧ V (A,P )(x))

and if φ : x→ y ∈ Iq+1 the map Gq(φ) : Gq(x)→ Gq(y) is defined as follows:

Gq(x) =Map∗(

q∧

i=0

Sxi, X∧P (Sx0)∧

q∧

i=1

A(Sxi))

−→Map∗(

q∧

i=0

Syi−φ(xi)∧

q∧

i=0

Sxi,

q∧

i=0

Syi−φ(xi)∧X∧P (Sx0)∧

q∧

i=1

A(Sxi))

∼=
−→Map∗(

q∧

i=0

(
Syi−φ(xi)∧Sxi

)
, X∧Sy0−φ(x0)∧P (Sx0)∧

q∧

i=1

(
Syi−φ(xi)∧A(Sxi)

)
)

−→Map∗(

q∧

i=0

(
Syi−φ(xi)∧Sxi

)
, X∧P (Sy0−φ(x0)∧Sx0)∧

q∧

i=1

A(Syi−φ(xi)∧Sxi))

∼=
−→Map∗(

q∧

i=0

Syi, X∧P (Sy0)∧

q∧

i=1

A(Syi)) = Gq(y),

where the first arrow is induced by smashing with
∧q
i=0 S

yi−φ(xi), the second shuffles smash
factors, the third is induced by the structure maps of P and A, and the fourth is the shuffle
associated with φ described just before the start of the definition. For each q we define

THH (A,P ,X)q = holim
−−−−−→
x∈Iq+1

Gq(x).

The claim that Gq is actually a functor follows by observing that Gq takes the identity to
the identity and considering a ψ : y → z ∈ Iq+1 and filling in the squares and triangles in
the diagram shown schematically below

Gq(x)
suspension //

suspension
''PPPPPPPPPPPP

shuffle factors
∼=

//

suspension

��

structure //

suspension

��

shuffle //

suspension

��

Gq(y)

suspension

��shuffle factors
∼=

//

shuffle factors ''OOOOOOOOOOOOO
structure //

shuffle factors

��

shuffle //

shuffle factors

��
shuffle factors

��structure //

shuffle ''OOOOOOOOOOOOO
shuffle //

shuffle

��
shuffle

��shuffle //

shuffle ''PPPPPPPPPPPP

shuffle
��

Gq(z).
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1.2.2 The homotopy type

We have to know that this has the right homotopy properties, i.e., we want to know that
THH (A,P ;X)q is equivalent to

lim
−−−−−−−−−−−−→
(n0,...nq)∈Nq+1

Ω
P
ni(X∧P (Sn0)∧

∧

1≤i≤q

A(Sni)).

By the approximation Lemma II.2.2.3 for I, this will be the case if we can show that
a map x ⊆ y ∈ Iq+1 will induce a map Gq(x) → Gq(y) which gets higher and higher
connected with the cardinality of x. Maps in Iq+1 can be written as compositions of an
isomorphism together with a standard inclusion. The isomorphisms pose no problem, so
we are left with considering the standard inclusions which again can be decomposed into
successions of standard inclusions involving only one coordinate. Since the argument is
rather symmetric, we may assume that we are looking at the standard inclusion

x = (k+, x1, . . . , xq) ⊆ ((k + 1)+, x1, . . . , xq).

Since P is a Γ-space, Lemma II.2.1.5.3 says that S1∧P (Sk) → P (Sk+1) is roughly 2k-
connected, and so (by the same Lemma II.2.1.5.2) the map

S1∧P (Sk)∧
∧

A(Sxi)→ P (Sk+1)∧
∧

A(Sxi)

is roughly 2k + ∨xi connected. The Freudenthal suspension Theorem A.7.2.3 then gives
the result.

1.2.3 Functoriality

We note that, when varying X in Γo, THH (A,P ,X)q becomes a very special Γ-space which
we simply call THH (A,P )q (so that sin |THH (A,P )q) is “stably fibrant” in the terminology
of chapter II, see Corollary II.2.1.10), and so defines an Ω-spectrum. We also see that it is
a functor in the maps of pairs (A,P ) → (B,Q) where f : A → B is a map of S-algebras,
and P → f ∗Q is a map of A-bimodules – that is, a map of ΓS∗-natural bimodules in the
sense of appendix A.9.4.2.

1.2.4 Simplicial structure

So far, we have not used the multiplicative structure of our S-algebra, but just as for
ordinary Hochschild homology this enters when we want to make [q] 7→ THH (A,P ,X)q
into a functor, that is, a simplicial space. The compact way of describing the face and
degeneracy maps is to say that they are “just as for ordinary Hochschild homology”. This
is true and will suffice for all future considerations, and the pragmatic reader can stop here.
However, we have seen that it is difficult to make this precise, and the setup of Bökstedt
is carefully designed to make this rough definition work.

In detail: Consider the functor Gq = G(A,P,X)q : I
q+1 → S∗ of the definition 1.2.1

of THH (A,P ,X)q. Homotopy colimits are functors of “S∗-natural modules”, in this case
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restricted to pairs (I, F ) where I is a small category and F : I → S∗ is a functor. A
map (I, F ) → (J,G) is a functor f : I → J together with a natural transformation F →
G ◦ f . So to show that [q] 7→ THH (A,P ,X)q is a functor, we must show that [q] 7→
(Iq+1, Gq) is a functor from ∆o to S∗-natural modules. Let φ ∈ Λ([n], [q]). The maps
φ∗ : Iq+1 → In+1 come from the fact that I is symmetric monoidal with respect to the
pointed sum m+ ∨ n+ = (m + n)+, and the unitality and associativity isomorphisms are
actually identities (see II.2.2.1 for details). Hence Iq+1 is just a disguise for the q-simplices
of the cyclic bar construction BcyI of 1.1.1, and the φ∗ are just the structure maps for
the cyclic bar construction. The maps Gφ(x) : Gq(x) → Gn(φ

∗x) are defined as follows.
The loop coordinates are mixed by the obvious isomorphisms Sφ

∗x ∼= Sx, and the maps
V (A,P )(x)→ V (A,P )(φ∗x) are given by the following setup:

for φ ∈ Λ([q], ?) define V (A,P )(x)→ V (A,P )(φ∗x) by means of. . .

d0 P (Sx0)∧A(Sx1)→ P (Sx0∨x1)
di for 0 < i < q A(Sxi)∧A(Sxi+1)→ A(Sxi∨xi+1)
dq A(Sxq)∧P (Sx0)→ P (Sxq∨x0)
si for 0 ≤ i ≤ q S0 = S(S0)→ A(S0) in the i+ 1st slot
t (only when A = P ) cyclic permutation of smash factors

Lemma 1.2.5 Let φ : [q]→ [n] and ψ : [n]→ [m] be morphisms in Λ. Then the construc-
tion above defines a natural transformation Gφ : Gn ⇒ Gq ◦ φ

∗ of functors In+1 → S∗ with
Gid = id and Gψφ = (Gφψ

∗)Gψ.

The last point in the lemma can be depicted as two equal 2-cells

Im+1

ψ∗ ⇓Gψ
��

Gm

""E
EEE

EEE
E

In+1
Gn //

φ∗ ⇓Gφ
��

S∗

Iq+1

Gq

<<yyyyyyyy

is equal to Im+1

ψ∗

��

Gm

""E
EE

EEE
EE

In+1

φ∗

��

⇓Gψφ S∗

Iq+1,

Gq

<<zzzzzzzz

and we will write simply Gψφ = GφGψ.
Now, this is exactly what is needed: if φ : [q]→ [n] ∈ Λ, we get a map

holim
−−−→
In+1

Gn

Gφ
−−−→ holim

−−−→
In+1

Gqφ
∗ (φ∗)∗
−−−→ holim

−−−→
Iq+1

Gq

(sending t ∈ Gn(xs) in the x0 ← · · · ← xs-summand to Gφ(t) ∈ Gq(φ
∗xs) in the φ∗x0 ←

· · · ← φ∗xs-summand), and the equalities Gid = id and Gψφ = GφGψ enter at the crucial
moment to prove:
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Proposition 1.2.6 Let A be an S-algebra, P an A-bimodule and X a space. With the
definitions above, the assignment [q] 7→ holim−−−→

Iq+1 Gq = THH (A,P ,X)q defines a functor
from Λo if P = A and from ∆o if P 6= A.

Definition 1.2.7 Let A be an S-algebra, P an A-bimodule and X a space. Then the
topological Hochschild homology is defined as

THH (A,P ,X) = diag∗{[q] 7→ THH (A,P ,X)q}

This gives rise to the very special Γ-space

THH (A,P ) = {Y ∈ obΓo 7→ THH (A,P ,Y )}

and the Ω-spectrum

T (A,P ,X) = {m 7→ sin |THH (A,P ,Sm∧X)|}

The sin | − | in the definition of T will not be of any importance to us now, but will be
convenient when discussing the cyclic structure in chapter VI. We also write THH (A,P ) =
THH (A,P ,S0) and THH (A) = THH (A,S0) and so on, where confusion is unlikely.

By just the same formula THH (A,P ) should be thought of as a functor from spaces to
spaces. Note that by Lemma 1.3.1 below,

THH (A,P ,X) ≃ diag∗{[q] 7→ THH (A,P ,Xq)} = THH (A,P )(X)

for all spaces X.

Lemma 1.2.8 THH (A,P ,X) is functorial in (A,P ) and X, and takes (stable) equiva-
lences to pointwise equivalences. Likewise for THH and T .

Proof: This follows from the corresponding properties for THH (A,P ,X)q since maps of
simplicial spaces inducing weak equivalences in every degree induce weak equivalences on
diagonals, A.5.0.2.

Note 1.2.9 When checking the details of Lemma 1.2.5, the reader will discover the impor-
tance of using I, and not just the natural numbers. For Gφ to be a natural transformation
we need the flexibility of “allowing to suspend in more than one coordinate”.

For instance, consider any α : (1+, 1+)→ (x0, x1) in I2 (or N2) with x0 ∨ x1
∼= 3+, and

f : S1∧S1 → sin |S1∧S1| (a zero simplex in G1(S,S, S
0)(1+, 1+)). Then Gd0(1+, 1+)(f)

also equals f . If we allowed only one map 2+ → 3+ in our index category, then d0α would
have to be independent of α, prohibiting Gd0(x0, x1)G1(α)(f) (which definitely depends on
α – the difference is whether the suspension happens after the first or second S1) to be
equal to G0(d0α)Gd0(1+, 1+)(f).
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1.2.10 The cyclic structure

In the case where P = A we have that THH (A,X) = THH (A,A,X) is a cyclic space. Fur-
thermore, THH (A) = THH (A,A) is a cyclic Γ-space and T (A,X) = T (A,A,X) becomes
a spectrum with an S1-action (where S1 = sin |S1| and S1 = ∆[1]/∂∆[1]). This last point
needs some explanation, and will become extremely important in the next chapter.

If Z is a cyclic space, then the realization |Z| of the corresponding simplicial space
has a natural |S1| = T-action (see VI.1.1 for further details), and so sin |Z| has a natural
S1 = sin |S1|-action. Of course, there is no such thing as an “S1-space”, since S1 is only an
innocent space - not a group - before geometric realization (remember that in “space” is a
synonym for “(pointed) simplicial set”).

In the case where Z = THH (A,X) (considered as a simplicial cyclic set) the actual
S1-fixed points are not very exciting: as we will show in more details in chapter VI,

sin |THH (A,X)|S
1 ∼= sin |X|.

An important fact in this connection is that, considered as a ΓS∗-category, A has only
one object. In the next section we will consider more general situations, and get more
interesting results.

In chapter VI we shall see that, although the S1-fixed points are not very well behaved,
the fixed points of the actions by the finite cyclic subgroups give rise to a very interesting
theory.

1.2.11 Hochschild homology over other commutative S-algebras

Bökstedt’s definition of topological Hochschild homology is very convenient, and accessible
for hands-on manipulations. On the other hand, it is conceptually more rewarding to view
topological Hochschild homology as Hochschild homology over S. Let k be a commutative
S-algebra. Then (k-mod,∧k, k) is a symmetric monoidal category, and we may form the
cyclic bar construction, see 1.1.1, in this category: if A is a k-algebra which is cofibrant as
a k-module and P is an A-bimodule, then HH k(A,P ) is the simplicial k-module

HH k(A,P ) = {[q]→ P∧kA∧k . . .∧kA}

By the results of the previous chapter, we see that HH S and THH have stably equivalent
values (the smash product has the right homotopy type when applied to cofibrant Γ-spaces,
and so HH S(A,P ) and THH (A,P ) are equivalent in every degree). Many of the results
we prove in the following section have more natural interpretations in this setting.

If we wish to consider Hochschild homology of k-algebras that are not cofibrant as k-
modules, we should apply a functorial cofibrant replacement before using the construction
of HH k above.

Example 1.2.12 (THH of spherical group rings) Let G be a simplicial group, and
consider the spherical group ring S[G] of II.1.4.4.2 given by sending a finite pointed set
X to S[G](X) = X∧G+. Then THH (S[G])q has the homotopy type of S[G] smashed
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with itself q + 1 times (S[G] is a cofibrant Γ-space, so one does not have to worry about
cofibrant replacements), with face and degeneracy maps as in Hochschild homology. Hence
THH (S[G]) is equivalent to S[Bcy(G)], whose associated infinite loop space calculates the
stable homotopy of the cyclic bar construction of G.

A particularly nice interpretation is obtained if we set X = |BG|, because there is a
natural weak equivalence |BcyG|

∼
→ ΛX between the cyclic nerve of the loop group and

the free loop space (see e.g., [100, proof of V.1.1]), and so we get a weak equivalence

|THH (S[G])(1+)|
∼
→ Ω∞Σ∞ΛX+

of pointed topological spaces.

1.3 First properties of topological Hochschild homology

An important example is the topological Hochschild homology of an S-algebra coming
from a (simplicial) ring. We consider THH as a functor of rings and bimodules, and
when there is no danger of confusion, we write THH (A,P ,X), even though we actually
mean THH (HA,HP ,X) and so on. Whether the ring is discrete or truly simplicial is of
less importance in view of the following lemma, which holds for simplicial S-algebras in
general.

Lemma 1.3.1 Let A be a simplicial S-algebra, P an A-bimodule and X a space. Then
there is a chain of natural pointwise equivalences

diag∗{[q] 7→ THH (Aq, Pq,Xq)} ≃ THH (diag∗A, diag∗P ,X).

Proof: Let x ∈ In+1. Using that the smash product is formed degreewise, we get that

diag∗(X∧V (A,P )(x)) = X∧V (diag∗A, diag∗P )(x).

Since A and P preserve connectivity of their input, the loops in the THH -construction
may be performed degreewise up to a natural chain of weak equivalences

diag∗Ω∨x(X∧V (A,P ))(x)) ≃ Ω∨x(X∧V (diag∗A, diag∗P )(x))

(see A.5.0.5 and the discussion immediately after, where the chain is described explicitly:
the map going “backwards” is simply getting rid of a redundant sin | − |). Since homotopy
colimits commute with taking the diagonal, we are done.

1.3.2 Relation to Hochschild homology (over the integers)

Since, à priori, Hochschild homology is a simplicial abelian group, whereas topological
Hochschild homology is a Γ-space, we could consider HH to be a Γ-space by the Eilenberg–
Mac Lane construction H : A = sAb → ΓS∗ in order to have maps between them.

We make a slight twist to make the comparison even more straight-forward. Recall
the definitions of H̄ : A = sAb → ΓA II.1, and the forgetful functor U : A → S∗ which is
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adjoint to the free functor Z̃ : S∗ → A of II.1.3.1. By definition H = UH̄ . An H̄Z-algebra
A is a monoid in (ΓA,⊗, H̄Z) (see II.1.4.3), and is always equivalent to H̄ of a simplicial
ring (II.2.2.7). As noted in the proof of Corollary II.2.2.7 the loops and homotopy colimit
used to stabilize could be exchanged for their counterpart in simplicial abelian groups if the
input has values in simplicial abelian groups. This makes possible the following definition
(the loop space of a simplicial abelian group is a simplicial abelian group, and the homotopy
colimit is performed in simplicial abelian groups with direct sums instead of wedges, see
A.6.4.3):

Definition 1.3.3 Let A be an H̄Z-algebra, P an A-bimodule, and X ∈ obΓo. Define the
simplicial abelian group

HH Z(A,P ,X)q = holim
−−−−−→
x∈Iq+1

Ω∨x

(
Z̃[X]⊗ P (Sx0)⊗

⊗

1≤i≤q

A(Sxi)]

)

with simplicial structure maps as for Hochschild homology. Varying X and q, this defines
HH Z(A,P ) ∈ obΓA.

Remark 1.3.4 Again (sigh), should the H̄Z-algebra A not take flat values, we replace it
functorially by one that does (for instance by replacing it to H̄ of a simplicial ring which
may be assumed to be free in every degree). One instance where this is not necessary is when
A = Z̃B for some S-algebra B. Note that a Z̃B-module is a special case of a B-module
via the forgetful map U : ΓA → ΓS∗ (it is a B-module “with values in A”).

If A is a simplicial ring and P an A-bimodule, HH Z(H̄A, H̄P ) is clearly (pointwise)
equivalent to

H̄(HH (A,P )) = {X 7→ HH (A,P ,X) = HH (A,P )⊗ Z[X]}.

Definition 1.3.5 For A an H̄Z-algebra and P an A-bimodule, there is an natural map

THH (UA,UP )(X)→ UHH Z(A,P )(X),

called the linearization map, given by the Hurewicz map X → Z̃[X] and by sending the
smash of simplicial abelian groups to tensor product.

In the particular case of a simplicial ring R and R-bimodule Q, the term linearization
map refers to the map

THH (HR,HR)→ UHH Z(H̄R, H̄Q)
∼
← H(HH (R,R)).

Again, if A, P , R or Q should happen to be non-flat, we should take a functorial flat
resolution, and in this case the “map” is really the one described preceded by a homotopy
equivalence pointing in the wrong direction (i.e., the linearization map is then what is
called a weak map).

The linearization map is generally far from being an equivalence (it is for general reasons
always two-connected). If P = A it is a cyclic map.

However, we may factor THH (UA,UP )→ UHH Z(A,P ) through a useful equivalence:
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Lemma 1.3.6 Let A be an S-algebra, P a Z̃A-bimodule and X ∈ obΓo. The inclusion

X∧P (Sx0)∧
∧

1≤i≤q

A(Sxi)→ Z̃[X]⊗ P (Sx0)⊗
⊗

1≤i≤q

Z̃[A(Sxi)]

induces an equivalence

THH (A,UP )
∼
−−−→ UHH Z(Z̃A,P ).

Proof: It is enough to prove it degreewise. If M ∈ sAb is m-connected, and Y ∈ S∗ is
y-connected, then M∧Y → M ⊗ Z̃[Y ] is 2m+ y + 2 connected (by induction on the cells
of Y : assume Y = Sy+1, and consider M → Ωy+1(M∧Sy+1) → Ωy+1M ⊗ Z̃[Sy+1]. The
composite is an equivalence, and the first map is 2m + 1 connected by the Freudenthal
suspension Theorem A.7.2.3). Setting M = P (Sx0) and Y = X∧

∧
1≤i≤q A(Sxi) we get

that the map is 2x0 − 2 +
∑q

i=1(xi − 1) + conn(X) + 2 connected, and so, after looping
down the appropriate number of times, x0− q+conn(X) connected, which goes to infinity
with x0.

In the following we may not always be as pedantic as all this. We will often suppress

forgetful functors, and write this as THH(A,P )
∼ //HHZ(Z̃A,P ) .

If A is an H̄Z-algebra and P an A-bimodule, this gives a factorization

THH (UA,UP )
∼
−−−→ UHH Z(Z̃UA, P )→ UHH Z(A,P ).

Remark 1.3.7 Some words of caution:

1. Note, that even if P = A, HH Z(Z̃A,P ) is not a cyclic object.

2. Note that if A is a simplicial ring, then Z̃HA is not equal to HZ̃A. We will discover
an interesting twist to this when we apply these lines of thought to additive categories
instead of rings (see section 2.4).

3. In view of the equivalence HZ∧A ≃ Z̃A, Lemma 1.3.6 should be interpreted as a
change of ground ring equivalence

HH S(A,UP ) ≃ UHHHZ(HZ∧A,P ).

More generally, if k → K is a map of S-algebras, A a cofibrant k-algebra and P a
K∧kA-bimodule, then

HH k(A, f ∗P ) ≃ f ∗HHK(K∧kA,P )

where f : A ∼= k∧kA→ K∧kA is the map induced by k → K.

For comparison purposes the following lemmas are important (see [225, 4.2])

Lemma 1.3.8 If A is a ring and P an A-bimodule, then there is a spectral sequence

E2
p,q = HH p(A, πqTHH (Z, P ,X),Y )⇒ πp+qTHH (A,P ,X∧Y ).
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Proof: For a proof, see Pirashvili and Waldhausen [225].
On a higher level, it is just the change of ground ring spectral sequence: let k → K be

a map of commutative S-algebras, A a K-algebra and P a K∧kA-bimodule, and assume
A and K cofibrant as k-modules, then

HH k(A,P ) ≃ HHK(K∧kA,P ) ≃ HHK(A,HH k(K,P ))

where by abuse of notation P is regarded as a bimodule over the various algebras in question
through the obvious maps.

In view of Lemma 1.3.8 we will need to know the values of π∗(THH (Z, P )) for ar-
bitrary abelian groups P . These values follow from Bökstedt’s calculations in view of
the isomorphism HH Z(Z̃[Z], P ) ∼= HH Z(Z̃[Z],Z)⊗ P (or the equivalence THH (HZ, P ) ≃
THH (Z)∧HZHP ) and the universal coefficient theorem:

πkTHH (Z, P ) ∼=





P k = 0

P/iP k = 2i− 1

TorZ1 (Z/iZ, P ) k = 2i > 0.

Lemma 1.3.9 If A is a ring and P an is A-bimodule, then the linearization map

THH (A,P )→ HH Z(A,P )

(and all the other variants) is a pointwise equivalence after rationalization, and also after
profinite completion followed by rationalization.

Proof: In the proof of the spectral sequence of Lemma 1.3.8, we see that the edge homo-
morphism is induced by the linearization map π∗THH (A,P ) → π∗HH (A,P ). From the
calculation of π∗THH (Z, P ) above we get that all terms in the spectral sequence above the
base line are torsion groups of bounded order. Thus, πjTHH (A,P ) and πjHH Z(A,P ) =
πjHH (A,P ) differ at most by groups of this sort, and so the homotopy groups of the profi-
nite completions THH (A,P )b and HH Z(A,P )b will also differ by torsion groups of bounded
order, and hence we have an equivalence THH (A,P )b(0) → HH Z(A,P )b(0).

If the reader prefers not to use the calculation of THH (Z), one can give a direct proof
of the fact that the homotopy fiber of THH (A,P ) → HH (A,P ) has homotopy groups of
bounded order directly from the definition.

Sketch:

1. It is enough to prove the result it in each simplicial dimension.

2. As A and P are flat as abelian groups we may resolve each by free abelian groups
(multiplication plays no role), and so it is enough to prove it for free abelian groups.

3. We must show that Z̃[X]∧Z̃[Y ]∧Z → Z̃[X∧Y ]∧Z has homotopy fiber whose homo-
topy is torsion of bounded order in a range depending on the connectivity of X, Y
and Z. This follows as the homology groups of the integral Eilenberg–Mac Lane
spaces are finite in a range.
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1.4 THH is determined by its values on simplicial rings

In Theorem III.3.2.2, we showed that algebraic K-theory is determined by its values on
simplicial rings. In this section we prove the analogous statement of theorem for topological
Hochschild homology.

Let A be an S-algebra. Recall the definition of the functorial cube A = {S 7→ (A)S}
of S-algebras from III.3.1.9 whose nodes (A)S were all equivalent to simplicial rings by
Proposition III.3.1.11. In particular, the S’th node was obtained by applying the free-
forgetful pair (Z̃, U) as many times as there are elements in S. The functor S 7→ (−)nS
can clearly be applied to A-bimodules as well, and S 7→ (P )nS will be a cube of S 7→ (A)nS-
bimodules.

We will need the following result about the smashing of cubes. For the definition of
f -cartesian cubes, see III.3.1.7.

Lemma 1.4.1 Let X i be (id + xi)-cartesian cubes of pointed spaces or spectra for i =
1, . . . , n. Then

X = {S 7→
∧

1≤i≤n

X i
S}

is id+
∑

i xi cartesian.

Proof: Note that each d-subcube of X can be subdivided into d-cubes, each of whose maps
are the identity on all the smash factors but one. Each of these d-cubes are by induction
2 · id+

∑
i xi− 1-cocartesian, and so the d-subcube we started with was 2 · id+

∑
i xi − 1-

cocartesian.

Proposition 1.4.2 Let A be an id-cartesian cube of S-algebras, and P an id-cartesian
cube of A-bimodules (i.e., each S → T induces a map of natural bimodules (AS,PS) →
(AT ,PT )) and X a k-connected space. Then THH (A,P,X) is id + k + 1 cartesian.

Proof: By applying the monoidal fibrant replacement functor T0 of II.2.2.2, we may assume
that for each S, AS and PS are stably fibrant, so that the id-cartesian conditions actually
hold pointwise: for each finite pointed set Y , the cubes of spaces A(Y ) and P(Y ) are
id-cartesian.

Since realization commutes with homotopy colimits, the claim will follow if we can
prove that for each q ≥ 0, S 7→ THH (AS,PS,X)q is 2 · id+ k cocartesian.

For any q ≥ 0 the lemma above tells us that

S 7→ X∧PS(S
x0)∧

∧

1≤i≤q

AS(S
xi)

is id + k + 1 +
∑q

i=0 xi cartesian. Looping down the appropriate number of times, this is
id+ k + 1 cartesian, and so

S 7→ THH (AS,PS,X)q

is id+ conn(X) + 1 cartesian.
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Theorem 1.4.3 (THH ) Let A be an S-algebra and P an A-bimodule. Then the natural
map

THH (A,P )→ holim
←−−−−−
S∈P−∅

THH ((A)S, (P )S)

is an equivalence.

Proof: This is a direct consequence of the above proposition applied to

A = {S 7→ (A)S} and P = {S 7→ (P )S}

since the hypotheses are satisfied by Theorem III.3.1.10, using the same method as we used
in Theorem III.3.2.2 to pass from finite to infinite cubes.

This means that we can reduce many questions about THH of S-algebras to questions
about THH of (simplicial) rings, which again may often be reduced to questions about
integral Hochschild homology by means of the spectral sequence of Lemma 1.3.8.

As an example of this technique consider the following proposition.

Proposition 1.4.4 Let A be an S-algebra and P an A-bimodule, then Morita invariance
holds for THH , i.e., there is a natural chain of equivalences

THH (A,P ) ≃ THH (MatnA,MatnP ).

If B is another S-algebra and Q a B-bimodule, then THH preserves products, i.e., the
natural map

THH (A× B,P ×Q)
∼
−−−→ THH (A,P )× THH (B,Q)

is a pointwise equivalence.

Proof: Since all the unmarked arrows in the following composites

Z̃[MatnA(X)] ∼= Z̃[
∏

n

∨
nA(X)] ←− Z̃[

∨
n

∨
nA(X)] ∼= ⊕n ⊕n Z̃[A(X)] ←− MatnZ̃A(X)

and

Z̃[A(X)× B(Y )] ←− Z̃[A(X) ∨ B(Y )] ∼= Z̃[A(X)]⊕ Z̃[B(Y )] ←− Z̃[A(X)] ∨ Z̃[B(X)]

are induced by injecting finite wedges into products (and so stable equivalences), it is, in
view of Theorem 1.4.3 and Lemma 1.3.1, enough to prove the corresponding statements
for rings (this is not strictly true: for Morita invariance one needs to know that the chain
of equivalences in question actually is natural in (A,P ). With our presentation, this is not
really explained before Section 2.5.14 below. See the note following immediately after the
proof). Appealing to the spectral sequence of Lemma 1.3.8 together with the easy facts
that

πqTHH (Z,MnP ) ∼= Mn(πqTHH (Z, P ))

and
πqTHH (Z, P ⊕Q) ∼= πqTHH (Z, P )⊕ πqTHH (Z, Q)

it follows from the corresponding statements in Hochschild homology, see e.g. [181, page
17] (use that matrices (resp. products) of flat resolutions are flat resolutions of matrices
(resp. products)).
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Note 1.4.5 There are of course direct proofs of these statements, and they are essentially
the same as in [181, page 17], except that one has to remember that finite sums are just
equivalent to finite products (not isomorphic), see e.g. [70]. The presence of the “chain of
natural equivalences” in the statement of Morita invariance is annoying and stems from the
fact that the obvious maps connecting THH (A,P ) and THH (MatnA,MatnP ) as presented
e.g., in [70] do not respect the degeneracy maps in the simplicial direction of topological
Hochschild homology. In [70] this was handled by adding degeneracies artificially as in
Segal’s fat realization [257]. Another solution using the Barratt-Eccles construction is
given in [246]. In Section 2.5.14 below we see that if we replace the n × n-matrices by
the ΓS∗-category FnA of free A-modules of rank less than or equal to n we get a natural
representation THH (A,P )

∼
→ THH (FnA, P )

∼
← THH (MatnA,MatnP ), where the leftward

pointing equivalence is of a simpler sort relating to cofinality.

1.5 An aside: A definition of the trace from the K-theory space
to topological Hochschild homology for S-algebras

In chapter V we will give a natural construction of the (Bökstedt–Dennis) trace on the
categorical level. However, for those not interested in this construction we give an outline
of the trace map construction as it appeared in the unpublished MSRI notes [105], and
later in [26]. Some of the elements showing up in the general definitions make an early
appearance in the one we are going to give below.

This is only a weak transformation, in the sense that we will encounter weak equiva-
lences going the wrong way, but this will cause no trouble in our context. Indeed, such
arrows pointing the wrong way can always be rectified by changing our models slightly.
Furthermore, as we present it here, this only gives rise to a map of spaces, and not of
spectra. We give a quick outline at the end, of how this can be extended to a map of
spectra.

For any S-algebra A we will construct a weak map (i.e., a chain of maps where the arrows

pointing the wrong way are weak equivalences) from BA∗ = BĜL1(A), the classifying space
of the monoid of homotopy units of A, to THH (A)(S0). Applying this to the S-algebras

MatnA, we get weak maps from BĜLn(A) to THH (MatnA)(S0)
∼
← THH (A)(S0). The

map produced will respect stabilization, in the sense that

BĜLn(A) −−−→ THH (MatnA)(S0)y
y

BĜLn(A)×BĜL1(A) −−−→ THH (MatnA)(S0)× THH (Mat1A)(S0)

≃

x ≃

x
B((MatnA×Mat1A)∗) −−−→ THH (MatnA×Mat1A)(S0)y

y

BĜLn+1(A) −−−→ THH (Matn+1A)(S0)
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commutes, where the upper vertical maps are induced by the identity on the first factor,
and the inclusion of 1 ∈ M̂1(A) = THH 0(Mat1A) into the second factor. (Note that the
horizontal maps are just weak maps, and that some of the intermediate stages may not
have the property that the upwards pointing map is an equivalence, but this does not affect
the argument.) Stabilizing this with respect to n and take the plus construction on both

sides to get a weak transformation from BĜL(A)+ to limn→∞THH (MnA)+ ≃ THH (A).

1.5.1 Construction

If M is a monoid, we may use the free forgetful adjoint pair to form a functorial free

simplicial resolution F (M)
∼
։ M . This extends to a functorial free resolution of any

simplicial monoid, and in particular of A∗ = ĜL1(A). The forgetful functor from groups
to monoids has a left adjoint M 7→ M−1M = lim←G where the limit is over the category
of groups under M . In the case where M is free, this is obtained by just adjoining formal
inverses to all generators, and the adjunction M → M−1M induces a weak equivalence
BM → B(M−1M) (|BM | is just a wedge of circles, and the “inverses” are already included
as going the opposite way around any circle. Alternatively, consider the “fiber” of M ⊂
M−1M , that is, the category C with objects elements in M−1M , and a single morphism
m : g · m → g for every m ∈ M and g ∈ M−1M . Now, C is obviously connected, and
between any two objects there is at most one morphism, and so C is contractible.)

In the case of the simplicial monoids F (M) we get a transformation F (M)→ G(M) =
F (M)−1F (M). If M is a group-like, then Corollary A.5.1.3 tells us that the natural map
M → ΩBM is a weak equivalence. Furthermore, if M is group-like, then so is F (M), and
the diagram

F (M) −−−→ G(M)

≃

y ≃

y
ΩBF (M)

≃
−−−→ ΩBG(M)

tells us that F (M)→ G(M) is an equivalence.
Now, for any category C, the nerve NC may be considered as a simplicial category

whose objects in NqC are the q-simples in the classifying space obNqC = BqC = {c0 ←
c1 ← · · · ← cq} (see A.1.4), and morphisms simply diagrams (in C) like

c0 ←−−− c1 ←−−− . . . ←−−− cqy
y

y
d0 ←−−− d1 ←−−− . . . ←−−− dq

.

If all morphisms in C are isomorphisms (i.e., C is a groupoid), then the face and degeneracies
are all equivalences of categories. Hence, for any functorX from categories to simplicial sets
sending equivalences to weak equivalences, the natural map X(C) = X(N0C)

∼ //X(NC)
is an equivalence for groupoids C.

Also, just as we extended Hochschild homology from rings to (small) Ab-categories in
I.3.2, the cyclic bar construction can be extended from monoids to categories: If C is a
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category and P is a C-bimodule we define the cyclic nerve Bcy(C, P ) to be the space whose
q-simplices are given as

Bcy
q (C, P ) =

∐

c0,c1,...,cq∈obC

P (c0, cq)×

q∏

i=1

C(ci, ci−1).

In particular, if G is a (simplicial) group regarded as a one point category in the ordinary

sense, then we have a chain BG = obNG //BcyNG BcyG∼oo where the first map sends
x ∈ BG to x = x = · · · = x ∈ Bcy

q NG and the last map is the weak equivalence induced
by the equivalences G→ NqG.

Assembling this information, we have a diagram

BM
∼
←−−− BFM BcyFM

∼
−−−→ BcyM

≃

y ≃

y
BGM −−−→ BcyNGM

∼
←−−− BcyGM

,

where the marked arrows are weak equivalences if M is group-like, giving a weak map
BM → BcyM .

Recall the constructions T0 and R from chapter II (T0 is like THH 0 used as a “fibrant
replacement” for S-algebras, and R takes a Γ-space and evaluates at 1+ = S0). For any
S-algebra A, we have a map BcyRT0A→ THH (A)(S0) given by

Bcy
q RT0(A) =

∏

0≤i≤q

holim
−−→
xi∈I

ΩxiA(Sxi)→ holim
−−−−−→
x∈Iq+1

Ω∨x
∧

0≤i≤q

A(Sxi)

where the map simply smashes functions together.
Composing the weak map BA∗ → BcyA∗ from the diagram above with the cyclic nerve

of the monoid map A∗ = ĜL1(A)→ M̂1A(S0) = RT0(A) and BcyRT0(A)→ THH (A)(S0)
we have the desired “trace map” BA∗ → THH (A)(S0).

If we insist upon having a transformation on the spectrum level, we may choose a Γ
space approach as in [27]. The action on the morphisms is far from obvious, and we refer
the reader to [27] for the details.

2 Topological Hochschild homology of ΓS∗-categories.

Recall the definition of ΓS∗-categories. They were just like categories except that instead
of morphism sets C(c, d) we have morphism Γ-spaces C(c, d), the unit is a map S→ C(c, c)
and the composition is a map

C(c, d)∧C(b, c)→ C(b, d)

of Γ-spaces subject to the usual unitality and associativity conditions. See appendix A.9.2
for details, and A.9.4 for the natural extension of bimodules to this setting.
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Rings are Ab-categories with one object, and S-algebras are ΓS∗-categories with one
object, so just like the extension in I.3.2 of Hochschild homology to cover the case of
Ab-categories, we define topological Hochschild homology of general ΓS∗-categories.

Definition 2.0.2 Let C be a ΓS∗-category, and P a C-bimodule. For each tuple x =
(x0, . . . , xq) ∈ obΓ

q+1 let

V (C, P )(x) =
∨

c0,...,cq∈obC

P (c0, cq)(S
x0)∧

∧

1≤i≤q

C(ci, ci−1)(S
xi).

For each X ∈ obΓ and q ≥ 0, this gives rise to a functor Gq = G(C, P,X)q : I
q+1 → S∗

with Gq(x) = Ω∨x(X∧V (C, P )(x)). Let

THH (C, P ,X)q = holim
−−−−−→
x∈Iq+1

Ω∨x(X∧V (C, P )(x)).

This is a simplicial space (checking thatGq is a functor and that THH (C, P ,X)q is functorial
in q proceeds exactly as before). It is functorial in X, and we write THH (C, P ) for the
corresponding Γ-object, and T (C, P ,X) for the corresponding Ω-spectrum.

2.1 Functoriality

If F : C → D is a map of ΓS∗-categories, P a C-bimodule, Q aD-bimodule andG : P → F ∗Q
a ΓS∗-natural transformation, we get a map THH (C, P )→ THH (D, Q) of Γ-spaces. As a
matter of fact, THH (−,−) (as well any of the other versions) is a functor of ΓS∗-natural
bimodules (C, P ) A.9.4.2.

Example 2.1.1 The example (C∨, P ∨) of II.1.6.3 in the case where C an additive category
is a slight generalization of the case considered in [70, part 2]. Here C∨(c, d) = H(C(c, d)),
but P ∨(c, d) = H(P (c, d)) only if P is “bilinear”. The restriction that P has to be additive
(i.e., send sums in the first variable to products) is sometimes annoying.

Note 2.1.2 Since ΓS∗-categories are examples of what was called ring functors in [70], it
is worth noting that our current definition of THH agrees with the old one. In fact, a
ΓS∗-category is simply a ring functor restricted to Γo considered as the category of discrete
finite pointed simplicial sets. The distinction between ΓS∗-categories and ring functors is
inessential in that topological Hochschild homology does not see the difference, and so all
the general statements in [70, part 1] carry over to the new setting.

2.1.3 Cyclic structure and fixed points under the circle action

Let C be a ΓS∗-category and X a space. Then, as before, THH (C,X) = THH (C, C,X) is a
cyclic space.
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We promised in Subsection 1.2.10 that we would take a closer look at the S1-fixed
points. Recall that S1 = ∆[1]/∂∆[1] and S1 = sin |S1|. We consider THH (C,X) as a
simplicial cyclic set, and so if we apply sin | − | in the cyclic direction we get a simplicial
S1-space which we write sin |THH (C,X)|. As explained in VI.1.1.4, if Z is a cyclic set,
then the space of S1-fixed points of sin |Z| is nothing but lim←−

Λo
Z, or more concretely, the

set of zero-simplices z ∈ Z0 such that ts0z = s0z ∈ Z1. So, we consider the simplices in
the space

THH (C,X)0 = holim
−−→
x∈I

Ωx(X∧
∨

c∈obC

C(c, c)(Sx))

whose degeneracy is invariant under the cyclic action. In dimension q,

holim
−−→
x∈I

Ωx(X∧
∨

c∈obC

C(c, c)(Sx))q =
∨

x0←···←xq∈I

S∗(S
xq∧∆[q]+, sin |(X∧

∨

c∈obC

C(c, c)(Sxq)|)0.

The degeneracy sends (x0 ← · · · ← xq, f : Sxq∧∆[q]+ → sin |X∧
∨
c∈obC C(c, c)(S

xq)|) to

(
x0 ← · · · ← xq
0+ = · · · = 0+

, Sxq∧S0∧∆[q]+ → sin |(X∧
∨

c0,c1∈obC

C(c0, c1)(S
xq)∧C(c1, c0)(S

0))|

)

where the map is determined by f and the unit map S0 = S(S0) → C(c, c)(S0). For this
to be invariant under the cyclic action, we first see that we must have x0 = · · · = xq = 0+.
Assume f is a q-simplex in sin |X∧

∨
c∈obC C(c, c)(S

0)| ∼= sin(|X|∧
∨
c∈obC |C(c, c)(S

0)|) such
that

|∆[q]|+
f

−−−→ |X|∧
∨
c∈obC |C(c, c)(S

0)| −−−→ |X|∧
∨
c∈obC |C(c, c)(S

0)|∧|C(c, c)(S0)|

is invariant under permutation, where the last map is induced by the unit map C(c, c)(S0) ∼=
C(c, c)(S0)∧S0 → C(c, c)(S0)∧C(c, c)(S0). Hence f only takes the value of the unit and
factors through |∆[q]| →

∨
c∈obC |X|

∼= sin |X|∧(obC)+, i.e.,

lim
←−
Λo

THH (C,X) ∼= sin |THH (C,X)|S
1 ∼=

∨

c∈obC

sin |X|

We may be tempted to say that
∨
c∈obCX is the “S1-fixed point space” of THH (C,X)

because this is so after applying sin | − | to everything.

If G is a topological group and X a G-space, then sin(XG) ∼= (sinX)sinG. Explicitly, a
q-simplex in the latter space is a continuous function f : ∆q → X with the property that
for any continuous g : ∆q → G and any σ ∈ ∆q we have that g(σ)f(σ) = f(σ). Since
g may be constant, this means that f factors over XG ⊆ X, and so can be considered
as a q-simplex in sin(XG). This gives a bijection which is clearly simplicial. Likewise for
homotopy fixed points (up to homotopy).
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2.2 The trace

There is a map, the “Dennis trace map”

obC −−−→ THH (C)(S0)0
degeneracies
−−−−−−−→ THH (C)(S0)

sending d ∈ obC to the image of the identity idd ∈ C(d, d)(S
0) via the obvious map

C(d, d)(S0) ⊆
∨

c∈obC

C(c, c)(S0)→ holim
−−−−→
x∈obI

Ωx
∨

c∈obC

C(c, c)(Sx) = THH (C)(S0)0.

In other words, in view of the discussion in 2.1.3 the trace is (almost: just misses the
base point) the inclusion of the S1-fixed points.

This type of definition of the Dennis trace map first appeared in the context of (or-
dinary) Hochschild homology in [204]. Its main advantage over the other definitions is
that it is far easier to transport structure across the categorical definition, and it is also
much easier to prove compatibility with the “epicyclic structure” on the fixed points of
topological Hochschild homology (see VII.1.3.1).

2.3 Comparisons with the Ab-cases

The statements which were made for H̄Z-algebras in Section 1.3.2. have their analogues
for ΓA-categories:

Definition 2.3.1 Let C be a ΓA-category, P a C-bimodule and X a finite pointed set.
Consider the simplicial abelian group

HH Z(C, P ,X)q = holim
−−−−−→
x∈Iq+1

Ω∨x
⊕

c0,...,cq∈obC

(
Z̃[X]⊗ P (c0, cq)(S

x0)⊗
⊗

1≤i≤q

C(ci, ci−1)(S
xi)

)
,

where loop and homotopy colimit is performed in simplicial abelian groups and with face
and degeneracies as in Hochschild homology. Varying q and X, this defines HH Z(C, P ) ∈
obΓA.

This is natural in ΓA-natural pairs (C, P ) (and is prone to all the irritating nonsense about
non-flat values).

Example 2.3.2 The prime examples come from ordinary Ab-categories: by using the
Eilenberg–Mac Lane construction on every morphism group, an Ab-category E can be
promoted to a ΓA-category Ẽ (see II.1.6.2.2, the morphisms Γ-spaces are of the form X 7→
E(c, d)⊗ Z̃[X]). Similarly, we promote an E-bimodule P to an Ẽ-bimodule P̃ .

Since this construction is so frequent (and often in typographically challenging situa-
tions) we commit the small sin of writing THH (E , P ) when we really ought to have written
THH (Ẽ , P̃ ). This conforms with writing THH (Z) instead of THH (HZ).
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Also, as in 1.3.4, it is clear that if C is an Ab-category and P a C-bimodule, then
HH Z(C, P ) is pointwise equivalent to H̄ (HH (C, P )).

The proofs of the following statements are the same as the proofs for Lemma 1.3.6 and
Lemma 1.3.8

Lemma 2.3.3 Let C be a ΓS∗-category, P a Z̃C-bimodule and X ∈ obΓo. The map
THH (C, UP )→ UHH Z(Z̃C, P ) is an equivalence. .. '!&"%#$����

Lemma 2.3.4 Let C be an Ab-category and P a C-bimodule. Then there is a first quadrant
spectral sequence

E2
p,q = HH Z

p (C, πqTHH (HZ, HP ,X),Y )⇒ πp+qTHH (HC, HP ,X∧Y ). .. '!&"%#$����

2.4 Topological Hochschild homology calculates the homology of
additive categories

There is another fact where the HH Z(Z̃−,−)-construction is handy, but which has no
analogy for S-algebras.

Let C be an Ab-category, and let P be a C-bimodule (i.e., an Ab-functor Co⊗C → Ab).
Then, by the results of Section 2.3 you have that

THH (HC, HP ) ≃ U HH Z(Z̃H̄C, H̄P ), and HH Z(H̄Z̃C, H̄P ) ≃ H̄ HH (Z̃C, P ),

but HH Z(Z̃H̄C, H̄P ) is vastly different from HH Z(H̄Z̃C, H̄P ). As an example, one may
note that THH (Z,Z) is not equivalent to HH (Z̃Z,Z) = HH (Z[t, t−1],Z).

However, for additive categories (Ab-categories with sum) something interesting hap-
pens. Let C be an additive category, and consider it as a ΓA-category through the construc-

tion II.1.6.3: C⊕(c, d)(k+) = C(c,
k
⊕d). Since C is additive we see that there is a canonical

isomorphism C̃ ∼= C⊕, but this may not be so with the bimodules: if M is a Z̃C-bimodule
(which by adjointness is the same as a UC-bimodule), we define the C⊕-bimodule M⊕ by

the formula M⊕(c, d)(k+) = M(c,
k
⊕d). If M is “linear” in either factor (i.e., M is actually

a Co ⊗ Z̃C- or Z̃Co ⊗ C-module) the canonical map M̃ → M⊕ is an isomorphism, but for
the more general cases it will not even be a weak equivalence.

Theorem 2.4.1 Let C be an additive category and let M be a Co⊗ Z̃C-module. Then there
is a canonical equivalence

THH (UC⊕, UM⊕) ≃ H (HH (Z̃C,M)).

Proof: In this proof we will use the model HH Z(Z̃(C⊕),M⊕) instead of THH (UC⊕, UM⊕)
(see Lemma 2.3.3), and since both expressions are very special it is enough to prove that
the stabilization map HH ((Z̃C,M))→ HH Z(Z̃(C⊕),M⊕)(1+) is an equivalence. Since the
functors in the statement are homotopy functors in M , it is enough to prove the theorem
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for projective M . But all projectives are retracts of sums of projectives of the standard
type

Px,y(−,−) = C(−, y)⊗ Z̃C(x,−),

and hence it is enough to show that the higher homotopy groups vanish, and the map
induces an isomorphism on π0 for these projectives. For HH Z(Z̃(C⊕),M⊕) and HH (Z̃C,M)
this vanishing comes from the “extra degeneracy” defined by means of

Px,y(c, d)(k+) C(c, x)⊗ Z̃C(y,
k
⊕d)

f⊗|
P
gi|7→f⊗|1y|⊗|

P
gi|

y

Px,y(c, y)(1+)⊗ Z̃C⊕(y,⊕d)(k+) C(c, x)⊗ Z̃C(y, y)⊗ Z̃C(y,
k
⊕d)

(the vertical lines are supposed to remind the reader that whatever is inside these are
considered as generators in a free abelian group). This defines a contracting homotopy

sq+1 : HH (Z̃C, Px,y)q → HH (Z̃C, Px,y)q+1,

and likewise for HH Z(Z̃C⊕, P⊕x,y).
On π0 we proceed as follows. Notice that

π0(HH Z(Z̃C⊕, P⊕x,y)0) ∼=
⊕

c∈obC

C(c, y)⊗ C(x, c)

(essentially the Hurewicz theorem: if M is an abelian group π0 lim−→
k

ΩkZ̃(M⊗Z̃[Sk]) ∼= M)

and π0(HH Z(Z̃C⊕, P⊕x,y)1) ∼=
⊕

c,d∈obC C(c, y)⊗C(x, d)⊗C(d, c). Hence the map π0HH (Z̃C, Px,y)→

π0HH Z(Z̃C⊕, Px,y) is the map induced by the map of coequalizers

⊕
cC(c, y)⊗ Z̃C(x, c)

��

⊕
c,dC(c, y)⊗ Z̃C(x, d)⊗ Z̃C(d, c)oooo

��⊕
cC(c, y)⊗ C(x, c)

⊕
c,dC(c, y)⊗ C(x, d)⊗ C(d, c)oooo

.

However, both these coequalizers are isomorphic to C(x, y), as can be seen by the unit
map C(x, y) → C(x, y) ⊗ Z̃C(y, y) and the composition C(c, y) ⊗ C(x, c) → C(x, y) (here
the linearity in the first factor is crucial: the class of f ⊗ |g| ∈ C(c, y) ⊗ Z̃C(x, c) equals
the class of fg ⊗ |1x| ∈ C(x, y)⊗ Z̃C(x, x)), and the map comparing the coequalizers is an
isomorphism.

Remark 2.4.2 The proof of this theorem is somewhat delicate in that it steers a middle
course between variants. We used the non-linearity in the second factor of M to reduce to
the projectives Px,y where this non-linearity gave us the contracting homotopy. We then
used the linearity in the first factor to identify the π0 parts. A more general statement is
that THH (UC⊕, UM⊕) is HH (Z̃C, LM) where L is linearization in the second factor. This
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first/second factor asymmetry is quite unnecessary and due to the fact that we stabilize in
the second factor only. We could dualize and stabilize in the first factor only (the opposite
of an additive category is an additive category), or we could do both at once. We leave the
details to the interested reader.

Corollary 2.4.3 (Pirashvili-Waldhausen [225]) Let A be a discrete ring and M a bi-
module. Then there is a natural chain of weak equivalences connecting THH (HA,HM)
and (the Eilenberg–Mac Lane spectrum associated to) HH (Z̃PA,M), where PA is the cat-
egory of finitely generated projective modules, and M is considered as a PA-bimodule by
setting M(c, d) = PA(c, d)⊗M .

Proof: Theorem 2.5.21 below gives that the inclusion of the rank 1 bimodule gives an
equivalence between the topological Hochschild homology of A and of PA, and Theo-
rem 2.4.1 gives the weak equivalence with the homology of the category.

2.5 General results

Many results are most easily proven directly for ΓS∗-categories, and not by referring to a
reduction to special cases. We collect a few which will be of importance.

2.5.1 THH respects equivalences

This is the first thing that we should check, so that we need not worry too much about
choosing this or that model for our categories.

Lemma 2.5.2 Let F0, F1 : (C, P ) → (D, Q) be maps of ΓS∗-natural bimodules, and X a
space. If there is a natural isomorphism η : F0 → F1, then the two maps

F0, F1 : THH (C, P )(X)→ THH (D, Q)(X)

are homotopic.

Proof: We construct a homotopyH : THH (C, P )(X)∧∆[1]+ → THH (D, Q)(X) as follows.
If φ ∈ ∆([q], [1]) and x ∈ Iq+1 we define the map Hφ,x : V (C, P )(x) → V (D, Q)(x) by
sending the c0, . . . , cq ∈ C

q+1 summand into the Fφ(0)(c0), . . . , Fφ(q)(cq) ∈ obD summand
via the maps

C(c, d)
F0−−−→ D(F0(c), F0(d))

D(η−ic ,ηjd)−−−−−→ D(Fi(c), Fj(d))

for i, j ∈ {0, 1} (and P (c, d) //Q(F0(c), F0(d))
Q(η−ic ,ηjd) //Q(Fi(c), Fj(d)) ).

Clearly, the induced map Ω∨x(X∧Hφ,x) : Ω∨x(X∧V (C, P )(x))→ Ω∨x(X∧V (D, Q)(x))
is functorial in x ∈ Iq+1, and so defines a map Hφ : THH (C, P )(X)q → THH (D, Q)(X)q.
From the construction, we see that if ψ : [p]→ [q] ∈ ∆ then ψ∗Hφ = Hφψψ

∗ (do it separately
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for ψ’s representing face and degeneracies. For the interior face maps (i.e., for 0 < i < q),
use that the diagram

C(ci, ci−1)∧C(ci+1, ci) −→ C(ci+1, ci−1)yF0∧F0

yF0

D(F0(ci), F0(ci−1))∧D(F0(ci+1), F0(ci)) −→ D(F0(ci+1), F0(ci−1))yD(η
−φ(i)
ci

,η
φ(i−1)
ci−1

)∧D(η
−φ(i+1)
ci+1

,η
φ(i)
ci

)

yD(η
−φ(i+1)
ci+1

,η
φ(i−1)
ci−1

)

D(Fφ(i)(ci), Fφ(i−1)(ci−1))∧D(Fφ(i+1)(ci+1), Fφ(i)(ci)) −→ D(Fφ(i+1)(ci+1), Fφ(i−1)(ci−1))

commutes, where the horizontal maps are composition. The extreme face maps are similar,
using the bimodules P and Q).

Corollary 2.5.3 (THH respects ΓS∗-equivalences) Let C F //D be ΓS∗-equivalence of
ΓS∗-categories, P a D-bimodule and X a space. Then

THH (C, F ∗P )(X)
≃
−−−→ THH (D, P )(X).

Proof: Let G be an inverse, and η : 1C
∼= //GF and ǫ : 1D

∼= //FG the natural isomor-

phisms. Consider the (non commutative) diagram

THH (C, F ∗P )(X)
η //

F
��

THH (C, (FGF )∗P )(X)

F
��

THH (D, P )(X) ǫ // THH (D, (FG)∗P )(X)

G
jjUUUUUUUUUUUUUUUUU

Lemma 2.5.2 then states that we get a map homotopic to the identity if we start with one
of the horizontal isomorphism and go around a triangle.

Recall the notion of stable equivalences of ΓS∗-categories II.2.4.1.

Lemma 2.5.4 (THH respects stable equivalences of ΓS∗-categories) Consider a map
F : (C, P )→ (D, Q) of ΓS∗-natural bimodules, and assume F is a stable equivalence of ΓS∗-
categories inducing stable equivalences

P (c, c′)→ Q(F (c), F (c′))

for every c, c′ ∈ obC. Then F induces a pointwise equivalence

THH (C, P )→ THH (D, Q).

Proof: According to Lemma II.2.4.2 we may assume that F is either a ΓS∗-equivalence,
or a stable equivalence inducing an identity on the objects. If F is a ΓS∗-equivalence we
are done by Corollary 2.5.3 once we notice that the conditions on P and Q imply that
THH (C, P )→ THH (C, F ∗Q) is a pointwise equivalence.
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If F is a stable equivalence inducing the identity on objects, then clearly F induces a
pointwise equivalence

THH (C, P )q → THH (C, F ∗Q)q → THH (D, Q)q

in every simplicial degree q.

2.5.5 A collection of other results

The approximation in Section 1.4 of THH (A) for an arbitrary S-algebra by means of
the topological Hochschild homology of simplicial rings also works, mutatis mutandis, for
ΓS∗-categories to give an approximation of any ΓS∗-category in terms of sAb-categories.

The proof of the following lemma is just as for S-algebras (Lemma 1.3.1)

Lemma 2.5.6 Let C be a simplicial ΓS∗-category and M a C-bimodule (or in other words,
{[q] 7→ (Cq,Mq)} is a natural bimodule). Then there is a natural pointwise equivalence

THH (diag∗C, diag∗M) ≃ diag∗{[q] 7→ THH (Cq,Mq)}. .. '!&"%#$����

Definition 2.5.7 Let A and B be ΓS∗-categories and M an Ao − B-bimodule. Then the
upper triangular matrix ΓS∗-category

[A M
B ]

is the ΓS∗-category with objects obA× obB and with morphism object from (a, b) to (a′, b′)
given by the matrix

[
A(a, a′) M(a, b′)

B(b, b′)

]
= A(a, a′)× [M(a, b′) ∨ B(b, b′)]

and with obvious matrix composition as in II.1.4.4.6.

The projections from
[
A(a,a′) M(a,b′)

B(b,b′)

]
to A(a, a′) and B(b, b′) induce S-algebra maps from

[A M
B ] to A and B.

Lemma 2.5.8 With the notation as in the definition, the natural projection

THH ([A M
B ])→ THH (A)× THH (B)

is a pointwise equivalence.

Proof: Exchange some products with wedges and do an explicit homotopy as in [70,
1.6.20].

For concreteness and simplicity, let’s do the analogous statement for Hochschild homol-
ogy of k-algebras instead, where k is a commutative ring: let A11 and A22 be k-algebras,
and let A12 be an Ao11 ⊗k A22-module. The group of q-simplices in HH

([
A11 A12

A22

])
can be

written as
⊕ q⊗

i=0

Ari,si
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where the sum is over the set of all functions (r, s) : {0, 1 . . . , q} → {(11), (12), (22)}. The
projection to HH (A11) ⊕ HH (A22) is split by the inclusion onto the summands where
r0 = . . . rq = s0 = · · · = sq. We make a simplicial homotopy showing that the non-
identity composite is indeed homotopic to the identity. Let φ ∈ ∆([q], [1]) and y in the
(r, s) summand of the Hochschild homology of the upper triangular matrices. With the
convention that sq+1 = r0 we set

H(φ, y) = y, if rk = sk+1 for all k ∈ φ−1(0)

and zero otherwise. We check that for j ∈ [q] we have equality djH(φ, y) = H(φdj, djy),
and so we have a simplicial homotopy. Note that H(1,−) is the identity and H(0,−) is
the projection (r0 = s1, . . . rq−1 = sq, rq = s0 implies that all indices are the same due to
the upper triangularity).

The general result is proven by just the same method, exchanging products with wedges
to use the distributivity of smash over wedge, and keeping track of the objects (this has the
awkward effect that you have to talk about non-unital issues. If you want to avoid this you
can obtain the general case from the Ab-case by approximating as in 1.4). Alternatively
you can steal the result from I.3.6 via the equivalences

THH (C) ≃ H HH (Z̃C,C) ≃ H HH (ZC,C) = F (C,C)

to get an only slightly weaker result.

SettingM in Lemma 2.5.8 to be the trivial module you get that THH preserves products
(or again, you may construct an explicit homotopy as in [70, 1.6.15] (replacing products
with wedges). There are no added difficulties with the bimodule statement.

Corollary 2.5.9 Let C and D be ΓS∗-categories, P a C-bimodule, Q a D-bimodule. Then
the canonical map is a pointwise equivalence

THH (C × D, P ×Q)→ THH (C, P ,X)× THH (D, Q,X). .. '!&"%#$����

Recall from III.2.1.1 the canonical map H̄C(S1)→ SC, which in dimension q is induced
by sending the sum diagram C ∈ obH̄(C)(q+) to c ∈ obSqC with cij = C{0,i+1,i+2,...,j−1,j} and
obvious maps. This map factors through the (degreewise) equivalence of categories TC→
SC discussed in I.2.2.5, where TC is the simplicial category of upper triangular matrices.
Since H̄(C) is equivalent to C×q, we get by induction (setting A = M = C and B = Tq−1C

in Lemma 2.5.8) that, for each q and X, the map THH (H̄(C)(q+),X)→ THH (SqC,X) is a
weak equivalence. Letting q vary and using that THH can be calculated degreewise (just
as in Lemma 1.3.1), we get the following corollary:

Corollary 2.5.10 Let C be an additive category and X a space. Then the map H̄C(S1)→
SC induces a weak equivalence THH (H̄C(S1),X)→ THH (SC,X). .. '!&"%#$����
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2.5.11 Cofinality

Another feature which is important is the fact that topological Hochschild homology is
insensitive to cofinal inclusions (see below). Note that this is very different from the K-
theory case where there is a significant difference between the K-theories of the finitely
generated free and projective modules: Kf

0 (A)→ K0(A) is not always an equivalence.

Definition 2.5.12 Let C ⊆ D be a ΓS∗-full inclusion of ΓS∗-categories. We say that C is
cofinal in D if for every d ∈ obD there exist maps

d
ηd−−−→ c(d)

πd−−−→ d

such that c(d) ∈ obC and πdηd = 1d.

Lemma 2.5.13 Let j : C ⊂ D be an inclusion of a cofinal ΓS∗-subcategory. Let P be a
D-bimodule. Then the induced map

THH (C, P )→ THH (D, P )

is a pointwise equivalence.

Proof: For simplicity we prove it for P = D. For each d ∈ obD choose

d
ηd−−−→ c(d)

πd−−−→ d,

such that ηc is the identity for all c ∈ obC. Then for every x ∈ Iq+1 we have a map
V (D)(x) → V (C)(x) sending the d0, . . . , dq ∈ UDq+1 summand to the c(d0), . . . , c(dq) ∈
UCq+1 summand via

D(πd0 , ηdq)(S
x0)∧ . . .∧D(πdq , ηdq−1)(S

xq).

This map is compatible with the cyclic operations and hence defines a map

D(π, η) : THH (D)→ THH (C)

Obviously D(π, η) ◦ THH (j) is the identity on THH (C) and we will show that the other
composite is homotopic to the identity. The desired homotopy can be expressed as follows.
Let φ ∈ ∆([q], [1]) and let

d
ηid−−−→ ci(d)

πid−−−→ d be

{
d

ηd−−−→ c(d)
πd−−−→ d if i = 1

d = d = d if i = 0

The homotopy THH (D)∧∆[1]+ → THH (D) is given by Hφ,x : V (D)(x)→ V (D)(x) send-
ing the d0, . . . , dq ∈ obUD

q+1 summand to the cφ(0)(d0), . . . , c
φ(q)(dq) ∈ obUD

q+1 summand
via

D(π
φ(0)
d0

, η
φ(q)
dq

)(Sx0)∧ . . .∧D(π
φ(q)
dq

, η
φ(q−1)
dq−1

)(Sxq).
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2.5.14 Morita invariance

If A is an S-algebra, let FA be the ΓS∗ category whose objects are the natural numbers,
with n thought of as the free A-module of rank n, and FA(m,n) = S∗(m+, n+∧A), the
n ×m matrices with coefficients in A as in II.1.4.4.6. Let FkA be the full subcategory of
objects of rank less than or equal to the natural number k.

This should be compared with the situation when R is a discrete ring. Then FkR is the
Ab-category with objects the natural numbers less than or equal to k and a morphism from
m to n is an n ×m-matrix (in the usual sense) with entries in R. By sending wedges to

products, we see that the ΓS∗-category F̃kR associated with FkR (by taking the Eilenberg-
Mac Lane construction on all morphism spaces, c.f. II.1.6.2.2) is stably equivalent to FkHR,

and so THH (FkHR)
∼
→ THH (F̃kR).

Thinking of the S-algebra MatkA as the full subcategory of FA whose only object
is k, we get a cofinal inclusion MatkA ⊆ F

k
A: for n ∈ obFkA, the maps ηn and πn of

Definition 2.5.12 ensuring cofinality are given by the matrices representing inclusion into
and projection onto the first n coordinates. Hence we get that

Lemma 2.5.15 Let A be an S-algebra and P an A-bimodule. Then the inclusion MatkA→
FkA induces a pointwise equivalence THH (MatkA,MatkP )

∼
→ THH (FkA, P ). .. '!&"%#$����

Here we have written P also for the FkA-bimodule given by P (m,n) = S∗(m+, n+∧P ) with
matrix multiplication from left and right by matrices with entries in A.

The inclusion of the rank one A-module, A ⊆ FkA, is not cofinal, unless k = 1, but still
induces an equivalence:

Lemma 2.5.16 Let A be an S-algebra and P an A-bimodule. Then the inclusion A ⊆ FkA
induces a pointwise equivalence

THH (A,P )
∼
→ THH (FkA, P ).

Proof: By 1.4, 1.3.1 and 1.3.8 it is enough to prove the lemma for Hochschild homology of
discrete rings (alternatively, you must work with homotopies not respecting degeneracies
as in [70]).

For the rest of the proof A will be a discrete ring and P an A-bimodule. It is helpful
to write out HH (FkA, P )q by means of distributivity as

⊕

(n,r,s)

P ⊗A⊗q

where the sum is over the tuples n = (n0, . . . , nq), r = (r0, . . . , rq) and s = (s0, . . . , sq) of
natural numbers where ri, si ≤ ni ≤ k for i = 0, . . . q. The isomorphism to HH (FkA, P )q is
given by sending p⊗a1⊗· · ·⊗aq in the (n, r, s)-summand to (p prsqinr0)⊗

⊗q
i=1(ai prsi−1

inri)
in the n ∈ (obFkA)×q+1 summand. Here ini and pri represent the ith injection and projection
matrices.
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There is a map tr : HH (Fk, P ) → HH (A,P ) sending a = p ⊗ a1 ⊗ · · · ⊗ aq in the
(n, r, s)-summand to

tr(a(n,r,s)) =

{
a if rk = sk for all k ∈ [q]

0 otherwise.

Clearly, the composite HH (A,P ) → HH (FkA, P ) → HH (A,P ) is the identity, and we
are done if we can construct a concrete simplicial homotopy H : HH (FkA, P )⊗ Z̃[∆[1]] →
HH (FkA, P ) between the other composite and the identity.

If φ : [q]→ [1] ∈ ∆, and (n, r, s) is a tuple as above, let (nφ, rφ, sφ) be the tuple where
the ith factor in each of the three entries is unchanged if φ(i) = 1 and set to 1 if φ(i) = 0.
Then we define

H(a(n,r,s) ⊗ φ) =

{
a(nφ,rφ,sφ) if rk = sk for all k ∈ φ−1(0).

0 otherwise.

A direct check reveals that this defines the desired simplicial homotopy.

Remark 2.5.17 We noted earlier that in our presentation there was an unfortunate lack
of a map THH (A)→ THH (Matk(A)) realizing Morita invariance. The natural substitute
is THH (A)

∼
→ THH (FkA)

∼
← THH (Matk(A)).

Since topological Hochschild homology commutes with filtered colimits (loops respect
filtered colimits (A.1.5.5) and V (FA, P )(x) = limk→∞ V (FkA, P )(x) for all x ∈ Iq+1) we get
the following corollary:

Corollary 2.5.18 Let A be an S-algebra and P an A-bimodule. Then the inclusion of A as
the rank one module in FA induces a pointwise equivalence THH (A,P )→ THH (FA, P ). .. '!&"%#$����

2.5.19 Application to the case of discrete rings

As an easy application, we will show how these theorems can be used to analyze the
topological Hochschild homology of a discrete ring.

For a discrete ring A recall the category PA of finitely generated projective modules
(I.2.1.3) and the category FA of finitely generated free modules (I.2.1.4). Again, if P is
an A-bimodule, we also write P for the PA-bimodule HomA(−,− ⊗A P ) ∼= PA(−,−) ⊗A
P : PA × P

o
A → Ab.

By sending wedges to products, we see that the ΓS∗-category associated with FA (by
taking the Eilenberg-Mac Lane construction on all morphism spaces to achieve what would
be recorded as F̃A) is stably equivalent to the ΓS∗-category FHA of finitely generated free
HA-modules, and so the results for the latter found in the previous section give exactly
the same results for the former. In particular, THH (A,P )→ THH (FA, P ) is a pointwise
equivalence. Here we have again used the shorthand of writing THH (A,P ) when we really
mean THH (HA,HP ), and likewise for THH (FA, P ).

Since FA ⊆ PA is a cofinal inclusion we get by Lemma 2.5.13 that
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Lemma 2.5.20 Let A be a discrete ring, and let P be an A-bimodule. Then the inclusion
FA ⊆ PA induces a pointwise equivalence

THH (FA, P )
∼
−−−→ THH (PA, P ). .. '!&"%#$����

Collecting the results, we get

Theorem 2.5.21 The (full and faithful) inclusion of A in PA as the rank 1 free module
induces a pointwise equivalence

THH (A,P )
∼
−−−→ THH (PA, P ). .. '!&"%#$����
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Chapter V

The trace K → THH

In this chapter we explain how the Dennis trace map IV.2.2 can be lifted to a trace map
from algebraic K-theory to topological Hochschild homology. We first concentrate on the
Ab-case since this is somewhat easier. This case is, however, sufficient to define the trace
for discrete rings, and carries all the information we need in order to complete our proofs.
The general construction is more complex, but this needs not really concern us: the only
thing we actually use it for is that it exists and is as functorial as anybody can wish.

The general construction occupies the second section, and tries to reconcile this con-
struction with the others we have seen. In the third section we have another look at stable
K-theory and verify that it agrees with topological Hochschild homology for S-algebras in
general. In the last section we give an outline of another construction of the trace which
has several advantages. For instance, with this formulation it is easier to prove that the
trace preserves operad actions, and in particular that it is multiplicative when evaluated
at commutative ring spectra.

Common to all these approaches is that they contain nothing resembling a “trace” in
the usual sense. The only vestige of a trace can be found in the very last step: for a given
ring, the inclusion of the rank 1 module into the category of free finitely generated modules
induces an equivalence in topological Hochschild homology. For Hochschild homology this
equivalence has a concrete homotopy inverse given by a trace construction, and this feature
was much more prominent in the early developments of Hattori, Stallings and Dennis.

1 THH and K-theory: the linear case

In this section we define the trace map from algebraic K-theory to the topological Hochschild
homology of an additive or exact category, much as was done in [70].

Before we do so, we have to prepare the ground a bit, and since these results will be
used later we work in a wider generality for a short while.

Algebraic K-theory is preoccupied with the weak equivalences, topological Hochschild
homology with the enrichment. The Dennis trace map 2.2 should seek to unite these points
of view.

181
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Let C be a symmetric monoidal ΓS∗-category, and recall from Section II.3.1.3 the adap-
tion H̄C of Segal’s construction. This is a functor from Γo to symmetric monoidal ΓS∗-
categories such that for each k+ ∈ obΓ

o the canonical map

H̄C(k+)→ C×k

is a ΓS∗-equivalence. Hence
THH (H̄C)

is a functor from Γo to ΓS∗ or more symmetrically: a functor Γo×Γo → S∗. For such functors
we have again a notion of stable equivalences: if X and Y are functors Γo × Γo → S∗, a
map X → Y is a stable equivalence if

lim
−→
k,l

Ωk+lX(Sk, Sl)→ lim
−→
k,l

Ωk+lY (Sk, Sl)

is a weak equivalence.
If X is a Γ-space, we will write Σ∞X for the functor Γo × Γo → S∗ sending (k+, l+) to

k+∧X(l+). Notice that, by Lemma II.2.1.5.3, the maps k+∧X(l+) → X(k+∧l+) give rise
to a stable equivalence Σ∞X

∼
→ X ◦ ∧, and Σ∞X should be thought of as a bispectrum

representing the same spectrum as X.
For each k+ ∈ obΓ

o there is a map k+∧THH (C) → THH (H̄C(k+)) (induced by the k
functors C → H̄C(k+) given by the injections 1+ → k+). Varying k+, these maps assemble
to a natural map Σ∞THH (C)→ THH (H̄C) of functors Γo → ΓS∗.

Proposition 1.0.1 Let C be a symmetric monoidal ΓS∗-category. Then for each l+ ∈ Γo

the Γ-space
k+ 7→ THH (H̄C(k+))(l+)

is special, and the natural map

Σ∞THH (C)→ THH (H̄C)

is a stable equivalence.

Proof: For each k+, l+ ∈ obΓ
o the map

THH (H̄C(k+))(l+)→ THH (C×k)(l+)

is a weak equivalence (since H̄C is special and THH sends ΓS∗-equivalences to pointwise
equivalences IV.2.5.4), and so is

THH (C×k)(l+)→ THH (C)(l+)×k

(since THH respects products 2.5.9), and so the first part of the proposition is shown:
THH (H̄C)(l+) is special. For each k+, the composite

k+∧THH (C) −−−→ THH (H̄C(k+)) −−−→ THH (C)×k
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is a stable equivalence, and the last map is a pointwise equivalence, hence the first map is
a stable equivalence, assembling to the stated result.

This is a special case of a more general statement below which is proved similarly.
A functor (C, P ) from Γo to ΓS∗-natural bimodules is nothing but a functor C : Γo →
ΓS∗-categories and for each X ∈ obΓo a C(X)-bimodule P (X), such that for every f : X →
Y ∈ Γo there is a map of C(X)-bimodules f̄ : P (X) → f ∗P (Y ) such that gf = f ∗(ḡ) ◦ f̄ .
(i.e., if in addition g : Y → Z, then the diagram

P (X)
f̄ //

gf ))SSSSSSSSSSSSSSS f ∗P (Y )

f∗(ḡ)
��

(gf)∗P (Z) = f ∗(g∗P (Z))

commutes). In particular, (C, C) will serve as an easy example.

Proposition 1.0.2 Let (C, P ) be a functor from Γo to ΓS∗-natural bimodules. Assume that
C is quite special (see II.3.2.1) and that for all X, Y ∈ obΓo the map

P (X ∨ Y )
(pX ,pY )
−−−−→ p∗XP (X)× p∗Y P (Y )

(induced by the projections pX : X ∨ Y → X and pY : X ∨ Y → Y ) is a stable equivalence
of C(X ∨ Y )-bimodules. Then

THH (C, P )
∼
←−−− Σ∞THH (C(1+), P (1+))

is a stable equivalence. .. '!&"%#$����

Preparing the way for the trace from the algebraic K-theory of exact categories, we
make the following preliminary nerve construction (a more worked-out version will be
needed later, see Section 2.1.4 or 4 below, but this will do for now). Note the connections
to the nerve construction used in the proof of Corollary I.2.3.2.

Definition 1.0.3 Let C be a category. The nerve of C with respect to the isomorphisms is
the simplicial category N(C, i) whose simplicial set of object is the classifying space BiC of
the subcategory of isomorphisms, and whose set of morphisms between c0 ← c1 ← · · · ← cq
and c′0 ← c′1 ← · · · ← c′q is the set of all commuting diagrams

c0
≃
←−−− c1

≃
←−−− . . .

≃
←−−− cqy

y
y

c′0
≃
←−−− c′1

≃
←−−− . . .

≃
←−−− c′q

in C.

Note that the vertical maps need not be isomorphisms. Furthermore we have that
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Lemma 1.0.4 For all q the map s : C = N0(C, i)→ Nq(C, i) induced by the unique [q]→
[0] in ∆ (sending c to c = c = · · · = c) is an equivalence of categories.

Proof: Let d : Nq(C, i)→ C be the functor induced by the function [0]→ [q] sending 0 to
0 (so that c0 ← · · · ← cq is sent to c0). We see that the composite ds is the identity functor
C = C, whereas we have a natural transformation from the identity on NqC to sd by

c0
α0←−−− c1

α2←−−− . . .
αq
←−−− cq∥∥∥ α1

y α1◦···◦αq

y
c0 c0 . . . c0

,

which is a natural isomorphism since all the αs are assumed to be isomorphisms.
Lastly, if C is an Ab-category, N(C, i) will be a simplicial Ab-category.
If C is an Ab-category we will abuse notation by writing THH (C) when we really should

have written THH (C̃) (where the functor C 7→ C̃ from Ab-categories to ΓS∗-categories of
Example II.1.6.2.2 allows us to consider all Ab-categories as ΓS∗-categories).

A consequence of Lemma 1.0.4 is that if C is an Ab-category the map

THH (C)→ THH (N(C, i))

induced by the degeneracies becomes a pointwise equivalence (since the functor C 7→ C̃
sends Ab-equivalences to ΓS∗-equivalences and THH sends ΓS∗-equivalences to pointwise
equivalences).

This paves the way for our first definition of the trace from algebraic K-theory to
topological Hochschild homology:

Definition 1.0.5 (The trace for additive categories) Let E be an additive category.
The trace map for E in the Segal formalism is the following chain of natural transformations
where the leftward pointing arrows are all stable equivalences

Σ∞BiH̄E = Σ∞obN(H̄E , i) −→ THH (N(H̄E , i))
∼
←− THH (H̄E)

∼
←− Σ∞THH (E)

where the first map is the Dennis trace of IV.2.2, the second is the equivalence coming
from the equivalences of categories E → Nq(E , i) and the third from from Lemma 1.0.1.

1.1 The Dennis trace with the S-construction

We may also use the S-construction of Waldhausen (see Definition I.2.2.1). This has sim-
plicial exact categories as output, and we may apply THH degreewise to these categories.

Let C be an exact category and X a space. We saw in Section I.2.4 that if Y is a
simplicial set with Y0 = ∗, there is a canonical map S1∧Y1 → Y , and so the fact that
S0C = ∗ gives rise to a map S1∧obC → SC. Ultimately this gives that {m 7→ obS(m)C}
forms a spectrum obSC. For exactly the same reason (THH (S0C,X) is trivial) we get a map
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S1∧THH (S(k)C,X) → THH (S(k+1)C,X), and so THH (SC,X) = {k 7→ THH (S(k)C,X)}
defines a spectrum. It is proven in [70] that the adjoint

THH (S(k)C,X)→ ΩTHH (S(k+1)C,X)

of the structure map is an equivalence for k > 0. Furthermore if C is split exact, that is,
all short exact sequences split, then it is an equivalence also for k = 0. Note that any
additive category can be viewed as a split exact category by choosing exactly the split
exact sequences as the admissible exact sequences. In fact, if we apply the S-construction
to an additive category with no mention of exact sequences, this is what we mean.

1.1.1 Split exact categories

Let C be an additive category. We defined the n × n upper triangular matrices, TnC, in
I.2.2.4, to be the category with objects obC×n, and morphisms

TnC((c1, . . . , cn), (d1, . . . , dn)) =
⊕

1≤j≤i≤n

C(ci, dj)

with composition given by matrix multiplication. Since C is additive, so is TnC. Consider
the two functors

C×n → TnC→ C×n.

The first is the inclusion of C×n as the diagonal subcategory of TnC, the second forgets
about off-diagonal entries, and the composite is the identity.

Proposition 1.1.2 Let C be an additive category. Then the inclusion of the diagonal
C×n → TnC induces a pointwise equivalence

THH (C×n)→ THH (TnC).

Proof: Using the stable equivalence of products and wedges, we see that the map of ΓS∗-
categories [

C⊕ (C×n−1)⊕

(Tn−1C)⊕

]
→ (TnC)⊕,

(where the left hand category is defined in IV.2.5.7), is a stable equivalence. Hence the
statement follows by induction on n from Lemma IV.2.5.4 and Lemma IV.2.5.8.

Alternatively you can steal the result from I.3.6 via the equivalences of Section IV.2.3

THH (C) ≃ U HH Z(Z̃C, C) ≃ H
(
HH (Z̃C,C)

)
≃ H (HH (ZC,C)) = F (C,C).

Considering the additive category C as a split exact category, the forgetful map TnC→
C×n factors through SnC

TnC→ SnC→ C×n.

The first map is given by sending (c1, . . . , cn) to i ≤ j 7→ ci+1 ⊕ · · · ⊕ cj , and the second
projects i ≤ j 7→ cij onto i 7→ ci−1,i.
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Corollary 1.1.3 Let C be a additive category. Then

THH (C×n)→ THH (SnC)

is a pointwise equivalence, and so for every X ∈ Γo the natural map

THH (C,X)→ ΩTHH (SC,X)

is a weak equivalence.

Proof: This follows by Proposition 1.1.2 since by I.2.2.5 TnC is equivalent to SnC, and
THH sends equivalences to pointwise equivalences.

Corollary 1.1.4 Let C be an additive category. Then for every k ≥ 0 the natural map
H̄C(Sk)→ S(k)C induces a pointwise equivalence

THH (H̄C(Sk))
∼
−−−→ THH (S(k)C).

Substituting C with S(k)C in Corollary 1.1.3 we get

Corollary 1.1.5 Let C be an additive category. Then the natural map

THH (S(k)C)→ ΩTHH (S(k+1)C)

is a pointwise equivalence for all k ≥ 0. .. '!&"%#$����

Exactly the same proof gives the

Corollary 1.1.6 Let C be an additive category, and M a bilinear C-bimodule. Then the
natural map

THH (SkC, SkM)→ ΩTHH (Sk+1C, Sk+1M)

is a pointwise equivalence for all k ≥ 0. .. '!&"%#$����

These results allow us to define the trace used in [70], competing with the one we gave in
1.0.5. Just as we converted Γ-spaces M to spectra M = {n 7→M(Sn)} in II.2.1.13, we can
view a functor X : Γo × Γo → S∗ as a bispectrum with (n,m)-space X(Sn, Sm). If E is a
spectrum, we have a bispectrum Σ∞E with (n,m)-space Sn∧Em. If M is a Γ-space, the
bispectrum corresponding to Σ∞M will be exactly Σ∞M .

Definition 1.1.7 (The nerveless trace for split exact categories) Let E be an ad-
ditive category. The trace map for E in the Waldhausen formalism is the following chain
of natural transformations (of functors from additive categories to Γ-spectra)

Σ∞obSE −−−→ THH (SE)
∼
←−−− Σ∞THH (E)

where the first map is the Dennis trace of IV.2.2 and the leftwards pointing map is the
stable equivalence coming from Corollary 1.1.3.

As before, we have used the notation SE for {m 7→ S(m)E}.
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1.1.8 Comparison of traces for the Waldhausen and Segal approaches

As a last step, we want to know that the two definitions of the trace for additive categories
agree. This information is collected in the following commutative diagram of bispectra
(the Γ-spaces are tacitly evaluated on spheres)

Σ∞obSE

∼I.2.3.2
�� ((

Σ∞BiSE // T (N(SE , i)) T (SE)∼

IV.2.5.3
oo

Σ∞BiH̄E //

∼III.2.1.7

OO

T (N(H̄E , i))

∼

OO

T (H̄E)
IV.2.5.3
∼oo

∼

OO

Σ∞T (E),∼

1.0.1
oo

∼
1.1.3

eeLLLLLLLLLL

where each number refer to the result showing that the corresponding arrow is a weak
equivalence, and the arrows leaving the left hand column are instances of the Dennis trace
IV.2.2.

1.2 Comparison with the homology of an additive category and

the S-construction

One thing that needs clarification is the relationship with the homology F (C,M) of a
category which we used in I.3, and which we showed is equivalent to stable K-theory when
applied to an additive category. We used the S-construction there, and we use it here,
and in both places the outcomes are Ω-spectra, and these coincide. As a comparison tool
we use the model for topological Hochschild homology by means of the simplicial abelian
groups HH Z(Z̃C,M) of Lemma IV.2.3.3 .

Remark 1.2.1 If C is an additive category, and M an additive bimodule, then we have
levelwise equivalences of spectra (indexed by m)

F (S(m)C, S(m)M)
∼
−−−→ HH Z(Z̃S(m)C, S(m)M)

∼
←−−− THH (S(m)C, S(m)M).

We have two independent proofs that these spectra are Ω-spectra (the first was given in
Proposition I.3.6.5). Furthermore, the maps

F0(S
(m)C, S(m)M)

∼
−−−→ HH Z(Z̃S(m)C, S(m)M)0

∼
←−−− THH (S(m)C, S(m)M)0

are also levelwise equivalences, and so all maps in

F0(S
(m)C, S(m)M)

∼
−−−→ HH Z(Z̃S(m)C, S(m)M)0

∼
←−−− THH (S(m)C, S(m)M)0

≃

y ≃

y ≃

y
F (S(m)C, S(m)M)

∼
−−−→ HH Z(Z̃S(m)C, S(m)M)

∼
←−−− THH (S(m)C, S(m)M)

are (stable) equivalences of spectra (the leftmost vertical stable equivalence is that of Corol-
lary I.3.3.2).
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In general we have the following definition.

Definition 1.2.2 If C is an additive category,M a C-bimodule andX a space, let T(C,M,X)
be the Ω-spectrum

{k 7→ THH (S(k)C, S(k)M,X).}

1.3 More on the trace map K → THH for rings

For comparison with earlier constructions, it is often fruitful to give a slightly different view
of the trace map, where the cyclic nerve plays a more prominent rôle. Furthermore, the
comparison with the map defining the equivalence between stable K-theory and topological
Hochschild homology has not yet been seen to relate to the trace. This will be discussed
further in the next section.

If A is a ring and P an A-bimodule, we let T(A,P ,X) be the Ω-spectrum

T(PA, P ,X) = {k 7→ THH (S(k)PA, S
(k)MA(−,−⊗A P ),X).

We use the obvious abbreviations T(A,X) = T(A,A,X) and T(A) = T(A,S0).
Consider

obSPA
c 7→c=c
−−−−→ holim−−→

x∈I
Ωx
∨
c∈obSPA

SPA(c, c)⊗Z Z̃[Sx]∥∥∥

T(A)
inclusion of the zero skeleton
←−−−−−−−−−−−−−−−− T0(A)

This map agrees with the trace map given in the previous section, and displays the map as
the composite K(A) ∼= T(A)S

1

⊂ T(A) by IV.2.1.3, and so tells you that the circle action
on THH is important. You do not expect to be able to calculate fixed point sets in general
(it is not even a homotopy invariant notion), and so any approximation to the fixed points
which are calculable should be explored.

If one want maps from BiSPA instead of from obSPA, one can either do as we did in
Section 1.1.8, or one may rewrite this slightly. As for groups, there is a map BiC→ BcyiC
for any category C, where Bcy is the cyclic nerve construction introduced in 1.5.1, given

by sending c0 c1
α1oo . . .

α2oo cq ∈ BqiC
αqoo to

cq c0
(
Q
αi)

−1

oo c1
α1oo . . .α2oo cq ∈ B

cy
q iC

αqoo .

This splits the natural map BcyiC → BiC given by forgetting (which is there regardless
of maps being isomorphisms). If C is a linear category we have a map BcyiC → BcyC →
THH (C), where the first one is given by the inclusion of the isomorphism into all of C, and
the second is stabilization. The diagram

BiC ←−−− B0iC = obCy
y

BcyiC −−−→ THH (C,S0)
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commutes, where the rightmost map is defined as above. Setting C = S(m)PA and letting
m vary, we obtain the commutative diagram

BiSPA ←−−− obSPAy tr

y
BcyiSPA −−−→ THH (A,S0)

.

Note that the fact that

BiSPA −−−→ THH (N(SPA, i),S
0)y

x∼

BcyiSPA −−−→ THH (A,S0)

does not commute does not give rise to a contradiction.

1.4 The trace and the K-theory of endomorphisms

Let C be an exact category and let End(C) be the category of endomorphisms in C. That
is, it is the exact category with objects pairs (c, f), with f : c → c a morphism in C, and
where a morphism (c, f)→ (d, g) is a commuting diagram

c −−−→ d

f

y g

y
c −−−→ d

A sequence (c′, f ′) → (c, f) → (c′′, f ′′) in End(C) is exact if the underlying sequence
c′ → c→ c′′ in C is exact. We note that

obS End(C) ∼=
∐

c∈obSC

End(c)

(by which we mean the simplicial object with q-simplices
∐

c∈obSqC
End(c).) There are two

functors C → End(C) given by c 7→ {c
0
→ c} and c 7→ {c = c} splitting the forgetful

projection End(C)→ C given by (c, f) 7→ c. We let

End(C) =
∨

c∈obSC

End(c) ≃ hofib{obSEnd(C)→ obSC}

(again, there is a simplicial direction hidden in the summation over c ∈ obSC). The End(c)s
are pointed at the zero maps.

Note that the first step in the trace, obSC → T(C)0 factors through obSC → End(C)
via the map c 7→ c = c.

If C ⊆ D is cofinal then End(C) ⊆ End(D) is also cofinal, and a quick calculation
tells us that K0(End(D))/K0(End(C)) ∼= K0(D)/K0(C), and hence by [271] we get that
End(C) → End(D) is an equivalence. This tells us that the “strong” cofinality of THH

IV.2.5.13 appears at a very early stage in the trace; indeed before we have started to
stabilize.
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2 The general construction of the trace

In order to state the trace in the full generality we need, it is necessary to remove the
dependence on the enrichment in abelian groups we have used so far. This is replaced
by an enrichment in Γ-spaces, which is always present for categories with sum by II.1.6.3.
The second thing we have to relax is our previous preoccupation with isomorphisms. In
general this involves a choice of weak equivalences, but in order to retain full functoriality
of our trace construction we choose to restrict to the case where the weak equivalences
come as a natural consequence of the ΓS∗-category structure. This is sufficient for all
current applications of the trace, and the modifications one would want in other (typically
geometric) applications are readily custom built from this.

2.1 Localizing at the weak equivalences

The weak equivalences are typically independent of the enrichment of our categories, in
the sense that they only form an S-category; much like the units in a ring only form
a group, disregarding the additive structure. When one wants to localize a ring A, one
considers “multiplicatively closed subsets”, or in other words, submonoids of A considered
as a monoid under multiplications. In order to compare ΓS∗-categories and S-categories
we use the functor R from ΓS∗-categories to S-categories, sending a ΓS∗-category C to the
S-category RC with the same objects, but with morphism spaces RC(c, c′) = C(c, c′)(1+).
In the analogy with rings, R is like the forgetful functor from rings to monoids (under
multiplication).

We will need to talk about various categories of pairs (C, w), where C is a ΓS∗-category
and w : W → RC is a S-functor specifying the “weak equivalences” (hence the choice of the
letter w) we want to invert. Note that it is not required that w : W → RC is an inclusion
of a subcategory; w is free to vary over S-functors with target RC.

Definition 2.1.1 The category of free pairs Pfree is the category whose objects are pairs
(C, w) where C is a small ΓS∗-category and w : W → RC an S-functor of small S-categories.

A morphism (C, w)→ (C′, w′) in Pfree is a pair (F : C → C′, G : W →W ′), where F is
a ΓS∗-functor and G is an S-functor such that the diagram

W
w
−−−→ RC

G

y RF

y

W ′
w′

−−−→ RC′

commutes. The morphism (F,G) is a weak equivalence of free pairs if F is a stable equiv-
alence of ΓS∗-categories and G is a weak equivalence of S-categories.

Definition 2.1.2 The category of pairs (without qualifications) is in our context the full
subcategory P ⊆ Pfree whose objects are the pairs (C, w) that have the property that
w : W → RC is the identity on objects.
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The subcategory of fixed pairs Pfix ⊆ P contains all objects, but a morphism of fixed
pairs is a morphism of pairs (F,G) : (C, w) → (C′, w′) where F (and hence also G) is the
identity on objects.

A morphism of pairs or of fixed pairs is a weak equivalence if it is so when considered
as a morphism of free pairs.

If (C, w : W → RC) is a free pair, we let the set of objects, ob(C, w), be the set of objects
of the small S-category W.

2.1.3 Making a free pair a pair

The inclusion P ⊆ Pfree has a right adjoint (it is “coreflective”) φ : Pfree → P, “forcing the
set of objects of the S-categories on the ΓS∗-category”. That is to say, if (C, w : W → RC)
is a free pair, then φ(C, w) is the pair (φwC, φw) defined as follows: The set of objects
in φwC is obW and given two objects c and d the Γ-space of morphism is defined by
φwC(c, d) = C(wc, wd), and finally φw is given by

W(c, d)
w
−−−→ RC(wc, wd) = RφwC(c, d).

Note that the composite

P ⊆ Pfree φ
−−−→ P

is the identity. Considered as an endofunctor of free pairs, φ is idempotent (φ2 = φ) and
there is a natural transformation φ → idPfree given by the ΓS∗-functor φwC → C which is
w on objects and the identity on morphisms.

2.1.4 The nerve of a pair

For each non-negative integer q, let [q] = {0 < 1 < · · · < q}, and consider it as the category
{0← 1← · · · ← q}.

If W is an S-category, we get a bisimplicial category NW which in bidegree p, q is the
category (NqW)p = [[q],Wp] of functors [q]→Wp. Here Wp is the category with the same
objects as W, and with morphisms the set of p-simplices of morphisms in W, or in other
words, Wp is the category of p-simplices of W considered as a simplicial category.

Note that NW is not a simplicial S-category since the set of objects may vary in
both the p and q direction. However, it is convenient to consider NW as a bisimplicial
S-category with discrete morphism spaces. Likewise, if C is a ΓS∗-category, NC is the
bisimplicial ΓS∗-category [p], [q] 7→ [[q], Cp].

Definition 2.1.5 The free nerve Nfree : Pfree → [∆o×∆o,Pfree] is the functor which sends
(C, w : W → RC) to the bisimplicial pair which in bidegree q, p is given by

Nfree
q (C, w)p = (NqCp,NqWp

Nqw
−−−→ NqRCp = RNqCp).

The nerve NP→ [∆o ×∆o,P] is the composite

P ⊆ Pfree Nfree

−−−→ [∆o ×∆o,Pfree]
φ

−−−→ [∆o ×∆o,P].
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When we need to have names for the individual components of the bisimplicial ΓS∗-category
N(C, w) we will write (NwC,Nw) instead.

Note that obN(C, w) is (the simplicial set of objects of) the degreewise nerve ofW, that
is obN(C, w) = BW.

If B is an S-category we let π0B be the category with the same objects as B, but with
morphism sets from a to b the path components π0B(a, b). Recall that a category is a
groupoid is all its morphisms are isomorphisms.

Definition 2.1.6 We say that an S-category B is a groupoid if for every q the category
Bq is a groupoid. We say that B is groupoid-like if π0B is a groupoid. A pair (C, w : W →
RC) ∈ P is called a groupoid pair (resp. a groupoid-like pair) if W is a groupoid (resp.
groupoid-like). We say that a functor

(C, w : W → RC) : Γo −−−→ P

is groupoid-like if W(X) is groupoid-like for all X ∈ Γo.

2.1.7 Localization of pairs

Given a pair (C, w) we think of the map w : W → RC as an inclusion of a subcategory of
“weak equivalences” (hence the choice of letters like w). The purpose of the localization
functor is to “invert the weak equivalences”. We list the properties we will need, see [66]
for further details:

Theorem 2.1.8 There are two functors L,Φ: P → P connected by natural transforma-
tions

(C, w) ←−−− Φ(C, w) −−−→ L(C, w)

consisting of maps of fixed pairs, satisfying the following properties

lo1 Given a pair (C, w) the map Φ(C, w)→ (C, w) is a weak equivalence.

lo2 Given a pair (C, w) the localization L(C, w) is a groupoid pair.

lo3 If (C, w) → (C′, w′) is a weak equivalence of fixed pairs, then L(C, w) → L(C′, w′) is
a weak equivalence.

lo4 If (C, w) is a groupoid-like pair, then Φ(C, w)→ L(C, w) is a weak equivalence.

lo5 On the subcategory of Pfix of groupoid pairs (C, w) there is a natural weak equivalence
L(C, w)

∼
→ (C, w) such that

L(C, w)

%%KKKKKKKKKK
Φ(C, w)oo

��
(C, w)

commutes.
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We call L(C, w) the localization of (C, w).
Note that in the triangular diagram of the last property, all the arrows are equivalences.

2.1.9 A definition giving the K-theory of a symmetric monoidal ΓS∗-category
using the uniform choice of weak equivalences

We are ready for yet another definition of algebraic K-theory to be used in this book.
This formulation uses the uniform choice of weak equivalences we made in Section II.3.3,
which to a ΓS∗-category C associates a map of S-categories wC : ωC → RT0C by pulling
back along the inclusion of the isomorphisms in π0C. Here T0 is the monoidal fibrant
replacement discussed in II.2.2.2.

Definition 2.1.10 Let W : ΓS∗ − categories→ P be the functor with W (C) = (T0C, wC).
Let

k : symmetric monoidal ΓS∗-categories −−−→ [Γo,P]∗

(the ∗ subscript means that the functors are pointed) be the composite

symmetric monoidal ΓS∗-categories
H̄
−−−→ [Γo,ΓS∗-categories]∗

W
−−−→ [Γo,P]∗.

This is the first part of our model K of algebraic K-theory: If D is a symmetric monoidal
ΓS∗-category, then we call K(D) = NLkD the algebraic K-theory category of D, where the
functors N and L were defined in 2.1.4 and 2.1.8.

The set of objects obK(D) is referred to as the algebraic K-theory spectrum of D.

2.2 Comparison with other definitions of algebraic K-theory

The morphism objects in K(D) are there for the purpose of the trace, but if one is only
interested in the objects, i.e., in the algebraic K-theory spectrum, much of the structure is
superfluous.

Lemma 2.2.1 Let (C, w) be a groupoid-like pair. Then the natural maps

obN(C, w) ←−−− obNΦ(C, w) −−−→ obNL(C, w)

are weak equivalences.

Proof: This follows from the properties 2.1.8 of the localization since, by [75, 9.5], the
nerve preserves weak equivalences of S-categories (with fixed sets of objects).

Together with Lemma II.3.3.2 this gives the following theorem, justifying our claim
that K measures algebraic K-theory. Recall that BiH̄C (the nerve of the isomorphisms of
the Segal construction which we call H̄) is one of the formulae for the algebraic K-theory,
which we in III.2 compared with Waldhausen’s construction and in III.3 compared with
the plus construction.
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Theorem 2.2.2 Let D be a symmetric monoidal ΓS∗-category. Then obK(D) is connected
to obNk(D) = Bω(H̄D) by a chain of natural weak equivalences, where ω is the uniform
choice of weak equivalences of Section II.3.3. If D has discrete morphism spaces it is
naturally isomorphic to BiH̄D.

2.3 The trace

We define topological Hochschild homology on the level of pairs (C, w) ∈ P by

THH (C, w) = {[q] 7→ THH (Cq)}.

Notice that THH (C, w) is independent of w. By an argument just like the proof of
Lemma IV.1.3.1 regarding THH of simplicial S-algebras, we get that there is a chain
of natural stable equivalences between (the diagonal of) THH (C, w) and THH (C).

Consider the transformation

THH (N(C, w)) ←−−− THH (N0(C, w)) THH (C, w)

induced by the degeneracies.

Lemma 2.3.1 If (C, w : W → RC) ∈ P is a groupoid pair, then the natural map

THH (C, w) −−−→ THH (N(C, w))

is an equivalence.

Proof: Fix a simplicial dimension p. Note that since all maps in Wp are isomorphisms,
the map induced by the degeneracy maps

(C, w)p = N0(C, w)p → Nq(C, w)p

gives an equivalence Cp = Nw
0 Cp → Nw

q Cp of (Γ-set)-categories for each q ≥ 0. The
statement follows immediately.
Because of naturality, we immediately get the result also if (C, w) : Γo → P is a Γ-groupoid
pair.

2.3.2 The Dennis trace for ΓS∗-categories

Recall the Dennis trace map of 2.2. For a pair (C, w) ∈ P it takes the form

obC −−−→ THH (C0, w)(S0)0
degeneracies
−−−−−−−→ THH (C, w)(S0).

Here the first map is defined by sending d ∈ obC to the image of the non-base point under
the unit map

S0 = 1+ = S(1+) −−−→ C0(d, d)(1+)
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composed with the obvious map

C0(d, d)(S
0) ⊆

∨
c∈obC C0(c, c)(S

0) −→

(
holim
−−−−→
x∈obI

Ωx
∨
c∈obC C0(c, c)(S

x)

)

0

= THH (C0, w)(S0)0.

If C has an initial object, then the Dennis trace is a pointed map, and we get a map of
Γ-spaces Σ∞obC → THH (C, w) given by the “assembly”

X∧obC −−−→ X∧THH (C, w)(S0) −−−→ THH (C, w)(X).

Note that since the morphism spaces in C are pointed by a map we may call 0, being an
initial object in C is the same as being final. It simply means that the identity morphism
of the object equals the 0-map.

Definition 2.3.3 The Dennis trace of symmetric monoidal ΓS∗-categories is the natural
transformation of Γo×Γo-spaces which to a symmetric monoidal ΓS∗-category D gives the
map

Σ∞obK(D) −−−→ THH (K(D))

induced by the Dennis trace.

We think of, and may occasionally refer to, these Γo×Γo-spaces as “bispectra”. This def-
inition is relevant in view of a natural equivalence between THH (K(D)) and Σ∞THH (D)
which we will establish below as Theorem 2.3.7. The proof of Theorem 2.3.7 contains
ingredients that are important in their own right and we will need to refer to later. Let

(C, w) : Γo −−−→ P

be a Γ-pair and consider the commutative diagram of Γo × Γo-spaces

Σ∞obN(C, w) −−−→ THH (N(C, w)) ←−−− THH (C, w)

≃

x
x ≃

x
Σ∞obN(Φ(C, w)) −−−→ THH (N(Φ(C, w))) ←−−− THH (Φ(C, w))

iK

y
y iTHH

y
Σ∞obN(L(C, w)) −−−→ THH (N(L(C, w)))

≃
←−−− THH (L(C, w))

, (2.3.4)

where the vertical arrows are induced by the natural transformations id ⇐ Φ ⇒ L, the
left horizontal maps are instances of the Dennis trace and the right horizontal arrows are
induced by inclusion of zero simplices in the nerve.

Lemma 2.3.5 The arrows marked with ≃ in diagram (2.3.4) are stable equivalences.
If (C, w) is groupoid-like (Definition 2.1.6), then also the arrows marked iK and iTHH

in diagram (2.3.4) are stable equivalences.
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Proof: First consider the two maps induced by Φ(C, w) → (C, w) ∈ Pfix. By 2.1.8
Φ(C, w) → (C, w) is a weak equivalence, giving the result since both Σ∞obN and THH

send weak equivalences to stable equivalences.
The lower right hand map

THH (N(L(C, w)))
∼
←−−− THH (L(C, w))

is a stable equivalence by 2.3.1 since L(C, w) is a groupoid pair.
Assume that (C, w) is groupoid-like. That iK is a stable equivalence follows from

Lemma 2.2.1. That iTHH is a stable equivalence follows from 2.1.8 since THH preserves
stable equivalences by Lemma IV.2.5.4.

Lemma 2.3.6 Consider a Γ-pair (C, w) : Γo → P. If C is quite special, then there is a
chain of natural stable equivalences between THH (C, w) and Σ∞THH (C(1+)).

Proof: If C is quite special we obtain a chain of stable equivalences since THH preserves
products and stable equivalences, following the idea of the proof of Proposition 1.0.1 and
lastly using the chain of equivalences between THH (C, w) and THH (C) (c.f. the beginning
of 2.3.

If D is a symmetric monoidal ΓS∗-category and (C, w) = k(D) as in 2.1.9, diagram (2.3.4)
takes the form

Σ∞obNkD −−−→ THH (NkD) ←−−− THH (kD)

≃

x
x ≃

x
Σ∞obN(Φ(kD)) −−−→ THH (N(Φ(kD))) ←−−− THH (Φ(kD))

iK

y
y iTHH

y
Σ∞obK(D) −−−→ THH (K(D))

≃
←−−− THH (L(kD))

,

and the lower left hand horizontal map in the diagram is exactly the trace Σ∞obK(D) →
THH (KD) of 2.3.3.

Theorem 2.3.7 Let D be a symmetric monoidal ΓS∗-category. Then THH (K(D)) is nat-
urally equivalent to Σ∞THH (D).

Proof: This is essentially Lemma 2.3.5 and 2.3.6 applied to the group-like and quite
special case (C, w) = k(D), since C(1+) = T0D. In essence, if D is a symmetric monoidal
ΓS∗-category, then diagram (2.3.4) gives a natural chain of stable equivalences

THH ((kD) ≃ Σ∞THH (T0D)
∼
←−−− Σ∞THH (D)

≃

x
THH (Φ(kD))

≃

yiTHH

THH (K(D))
∼
←−−− THH (L(kD))
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2.4 The weak trace

The price we have to pay for having a single map representing our trace is that the models
of either side are more involved than their classical counterparts. At the cost of having to
talk about weak transformations (a zig-zag of natural transformations where the transfor-
mations pointing in the “wrong” direction are weak equivalences) this can be remedied by
just exchanging the complicated models with their simpler, but equivalent, cousins.

Definition 2.4.1 If

A0 −−−→ B0
∼
←−−− C0 −−−→ . . .

∼
←−−− Y0 −−−→ Z0∥∥∥ ≃

y ≃

y ≃

y
∥∥∥

A1 −−−→ B1
∼
←−−− C1 −−−→ . . .

∼
←−−− Y1 −−−→ Z1

is a diagram of natural transformations of functors to a category with a notion of weak
equivalences, we say that the weak transformations A0 → Z0 given at the top and at the
bottom agree up to homotopy. More generally, we use the term agree up to homotopy for
the equivalence relation this generates.

This is useful when we want to compare our definition to previous definitions of traces
which were all examples of quite special groupoid-like pairs (c.f. the definitions II.3.2.1
and 2.1.6).

Definition 2.4.2 1. Let

(C, w) : Γo → P

be a quite special and groupoid-like Γ-pair. Then the weak trace is the functorial
weak composite

Σ∞obN(C, w)→ THH (C, w) ≃ Σ∞THH (C(1+)).

Along the lower outer edge of diagram (2.3.4).

2. If D is a symmetric monoidal ΓS∗-category, then the weak trace of D is the composite
weak map

Σ∞obNk(D) −−−→ Σ∞THH (k(D)(1+)) = Σ∞THH (T0D)
∼
←−−− Σ∞THH (D)

where the leftmost weak map is the weak trace of k(D) (which is quite special and
groupoid-like) and the rightmost map is induced by the stable equivalence T0D ← D.

Note that the only map in the weak trace of D that is not a weak equivalence is the trace
Σ∞obK(D)→ THH (K(D)) of Definition 2.3.3 (recall that by definition K(D) = NLk(D)).
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2.4.3 The quite special groupoid case

If (C, w) ∈ P is a groupoid pair, then Lemma 2.3.1 says that

THH (N(C, w)) ←−−− THH (C, w)

is an equivalence, and we are free to consider the weak map

Σ∞obN(C, w) −−−→ THH (N(C, w))
∼
←−−− THH (C, w)

from the upper line of the main diagram (2.3.4). This gives rise to the simpler definition of
the trace which was used in the Ab-case in Section 1 using either Segal’s or Waldhausen’s
constructions. In our context we have to keep the nerves in place, and in view of the
commutativity of

obSE −−−→ THH (SẼ)(S0)

≃

y ≃

y
BiSE −−−→ THH (N(SẼ , iSE ⊆ SE))(S0)

≃

x ≃

x
obBiH̄E −−−→ THH (N(H̄Ẽ , iH̄E ⊆ H̄E))(S0)

the relevant translation is the following:

Definition 2.4.4 Let E be a symmetric monoidal Ab-category. The weak trace of E is the
weak map

Σ∞BiH̄E −−−→ THH (N(H̄Ẽ , iH̄E ⊆ H̄E))
∼
←−−− THH (H̄ Ẽ)

∼
←−−− Σ∞THH (Ẽ)

obtained from the top row of the main diagram (2.3.4) with (C, w) = (H̄ Ẽ , iH̄E ⊆ H̄E).

Proposition 2.4.5 Let E be a symmetric monoidal Ab-category. Then the weak trace of
Ẽ precomposed with the map Σ∞BiH̄E

∼
→ Σ∞obNkẼ agrees up to homotopy with the weak

trace of E .

Proof: If we let (C, w) = (H̄ Ẽ , iH̄E ⊆ H̄E)), in the main diagram (2.3.4), we have by
property lo5 of Theorem 2.1.8 that there are natural vertical equivalences from the bottom
to the top rows making everything commute

Σ∞obN(C, w) −−−→ THH (N(C, w))
∼
←−−− THH (C, w) ≃ Σ∞THH (C(1+))

≃

x
x ≃

x

Σ∞obN(L(C, w)) −−−→ THH (N(L(C, w)))
≃
←−−− THH (L(C, w)).

The top row is the weak trace of E whereas going around the lower edge agrees up to
homotopy with the weak trace of (C, w). But all nodes of the weak trace are homotopy
invariants, and so the weak equivalence (C, w) → kẼ shows that the weak trace of (C, w)
agrees up to homotopy with the weak trace of Ẽ precomposed with the map Σ∞BiH̄E

∼
→

Σ∞obNkẼ .
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2.5 The category of finitely generated free A-modules

Recall the definition of the category of “finitely generated free” A-modules III.2.4.1 for an
S-algebra A. Consider the ΓS∗-full subcategory of the category of A-modules with objects
k+∧A for k ≥ 0. More precisely, we could equally well describe it as the ΓS∗-category whose
objects are the natural numbers (including zero), and where the morphisms are given by

FA(k, l) =MA(k+∧A, l+∧A) ∼=
∏

k

∨

l

A.

This forms a symmetric monoidal ΓS∗-category via the sum. Let

k(FA) = (CA, wA) : Γo → P

be the functor produced by the H̄-construction followed by the uniform choice of weak
equivalences of Section II.3.3: CA = T0H̄FA and wA : WA → RCA the pullback of iπ0CA →
π0CA ← RCA.

Considering A as a ΓS∗-category with a single object 1, we get an inclusion of ΓS∗-
categories, naturally referred to as the inclusion of the rank one module. By Morita
invariance IV.1.4.4, the induced map THH (FA)← THH (A) is a stable equivalence.

Definition 2.5.1 The algebraic K-theory of an S-algebra A is the Γ-space

K(A) = obNk(FA)

and the trace for S-algebras is the weak natural transformation

Σ∞K(A) −−−→ Σ∞THH (A)

given by the weak trace for FA followed by the equivalence induced by the inclusion of the
rank one module

THH (FA)
∼
←−−− THH (A).

This definition of K-theory agrees with the one given by the plus construction, and this
definition of the trace agrees with the one already defined for discrete rings:

Theorem 2.5.2 Let A be an S-algebra There is a natural chain of weak equivalences

Ω∞obK(FA) ≃ Ω∞K(A) ≃ Kf
0 (π0A)× BĜL(A)+,

where ĜLk(A) was defined in III.2.3.1.

Proof: The first weak equivalence follows from Lemma 2.2.1 (and is itself a chain of
weak equivalences, and not a direct map). To simplify notation, let W = ωH̄FA. Recall
from Theorem 2.2.2 the chain of natural equivalences K(A) ≃ BW . Since the associated
spectrum is special

Ω∞K(A) ≃ ΩBW (S1),
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and for each n+ ∈ Γo we have that BW (n+) ≃ (BW (1+))×n. For each k ≥ 0, let W k be
the full subcategory of W (1+) whose only object is k+∧A. Note that by definition, this is

nothing but ĜLk(A) considered as a simplicial category with only one object. Hence we
are done, for by Segal [257] there is a chain of weak equivalences

ΩBW (S1) ≃ Kf
0 (π0A)× lim

−→
k

(BW k)+ = Kf
0 (π0A)× BĜL(A)+.

Theorem 2.5.3 Let A be a discrete ring. The definition of the weak trace 2.4.2 of the
ΓS∗-category FHA agrees up to homotopy with the one given in 1.1.8 with E the category
of free finitely generated A-modules.

Proof: There are two steps to this. The first is to note that if A is a discrete ring, then
the definition we have given of the category FHA of finitely generated free HA-modules,
agrees with the more down-to-earth definition of the category FA of finitely generated free
A-modules. We choose the usual skeleton for FA: the objects are the natural numbers
(including zero), and a morphism from m to n is an n × m-matrix with entries in A.
Let F⊕A be the ΓS∗-category obtained through the procedure described in II.1.6.3. We see
that there is a ΓS∗-weak equivalence FA → F

⊕
A given by sending ∨ to ⊕, and so also an

equivalence

RT0FA
∼
−−−→ RT0F

⊕
A

∼
←−−− FA.

Hence the K-theory and THH as given here are naturally equivalent to the usual ones
in the discrete case when we choose the weak equivalences to be the isomorphisms, since
ĜLk(HA) ≃ GLk(A).

The second thing we have to see is that the two definitions of the trace agree, but this
follows from Proposition 2.4.5.

3 Stable K-theory and topological Hochschild homol-

ogy.

In this section we are going to give a proof of Waldhausen and Goodwillie’s conjecture
KS ≃ THH for S-algebras. For rings, this is almost clear from the results of Section 3 and
Section 2, but for S-algebras we need to know that some of the maps used in the ring case
have their analog in the S-algebra world. These considerations run parallel with a need
which will be apparent in chapter VII, namely: we need to know what consequences the
equivalence KS ≃ THH has for the trace map.

3.1 Stable K-theory

Let A be a simplicial ring and P an A-bimodule. Recall the discussion of stable K-theory in
Section I.3.5, and in particular the equivalence between KS(A,P ) and the first differential
of the functor CA defined in I.3.4.4, and the homology F(A,P ) of I.3.3.
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As before T(A,P ) is the Ω-spectrum {k 7→ THH (S(k)PA, S
(k)MA(−,−⊗AP ))}. Notice

that there is a map

D1CA(P ) ={n 7→ lim
−→
k

Ωk
∨

c∈obS(n)PA

S(n)HomA(c, c⊗A B
kP )}

→{n 7→ holim
−−→
x∈I

Ωx
∨

c∈obS(n)PA

S(n)HomA(c, c⊗A P ⊗ Z̃[Sx])} = T(A,P )0

which is an equivalence by Bökstedt’s approximation Lemma II.2.2.3.

Theorem 3.1.1 Let A be a simplicial ring and P a simplicial A bimodule. Then we have
an equivalence

KS(A,P ) ≃ T(A,P )

induced by
KS(A,P ) ≃ D1CA(P )

≃
−−−→ T(A,P )0

≃
−−−→ T(A,P ).

This equivalence is compatible with the equivalence to the F-construction of Theorem I.3.5.2.

Proof: As both K-theory (of radical extensions) and THH may be computed degreewise
we may assume that A and P are discrete. Then the only thing which needs verification
is the compatibility. Recall that the equivalence KS(A,P ) ≃ F(A,P ) of Theorem I.3.5.2
was given by a chain

D1CA(−)
≃
−−−→ D1F0(A,−)

≃
←−−− F0(A,−)

≃
−−−→ F(A,−)

of equivalences. Consider the diagram

D1CA(P )
≃ //

≃

��

T(A,P )0
≃ //

≃
��

T(A,P )

≃
��

D1F0(A,−)(P ) // HHZ(A,P )0
≃ // HHZ(A,P )

F0(A,P )

≃

hhRRRRRRRRRRRRR
≃

OO

≃ // F(A,P )

≃

OO

,

where HHZ(A,P ) represents the spectrum HH Z(ZSPA,SMA(−,− ⊗A P )) and HH Z is
the abelian group version of THH as in IV.2.3.1. The right side of the diagram is simply
the diagram of Remark 1.2.1 (rotated), and the map from F0 to HH Z

0 is stabilization and
so factors through the map to the differential.

3.2 THH of split square zero extensions

Let A be an S-algebra and P an A-bimodule. Let A∨P be given the S-algebra structure we
get by declaring that the multiplication P∧P → P is trivial. We want to study THH (A∨P )
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closer. If R is a simplicial ring and Q an R-bimodule, we get that the inclusion of wedge
into product, HR ∨HQ→ H(R⋉Q), is a stable equivalence of S-algebras, and so A ∨ P
will cover all the considerations for split square zero extensions of rings.

The first thing one notices, is that the natural distributivity of smash and wedge give
us a decomposition of THH (A∨ P ,X), or more precisely a decomposition of V (A∨ P )(x)
for every x ∈ Iq+1, as follows. Let

V (j)(A,P )(x) =
∨

φ∈∆m([j−1],[q])

∧

0≤i≤q

Fi,φ(xi),

where ∆m([j − 1], [q]) is the set of order preserving injections [j − 1]→ [q] and

Fi,φ(x) =

{
A(Sx) if i is not in the image of φ

P (Sx) if i is in the image of φ.

Then distributivity induces an isomorphism

V (A ∨ P )(x) ∼=
∨

j≥0

V (j)(A,P )(x)

(note that V (j)(A,P )(x) = ∗ for j > q + 1). Set

THH (j)(A,P ,X)q = holim
−−−−−→
x∈Iq+1

Ω∨x(X∧V (j)(A,P )(x))

and

T (j)(A,P ,X) = {k 7→ THH (j)(A,P ,Sk∧X)}.

We see that this defines cyclic objects (the transformations used to define THH respect the
number of occurrences of the bimodule), when varying q. The inclusions and projections

V (j)(A,P )(x) ⊆ V (A ∨ P )(x)→ V (i)(A,P )(x)

define cyclic maps

∨

j≥0

THH (j)(A,P ,X)→ THH (A ∨ P ,X)→
∏

j≥0

THH (j)(A,P ,X)

The approximation Lemma II.2.2.3 assures us that

holim
−−−−−→
x∈Iq+1

∏

j≥0

Ω∨x(X∧V (j)(A,P )(x))→
∏

j≥0

THH (j)(A,P ,X)q

is an equivalence. In effect, we have shown the first statement in the proposition below,
and the second statement follows since THH (j)(A,P ,X) is (j − 1)-reduced.



3. STABLE K-THEORY AND TOPOLOGICAL HOCHSCHILD HOMOLOGY. 203

Proposition 3.2.1 Let A be a connected S-algebra and P an A-bimodule. Then the cyclic
map

THH (A ∨ P ,X)
∼
−−−→

∏
0≤j THH (j)(A,P ,X)

is a weak equivalence.
If P is (k − 1)-connected and X is (m − 1)-connected, then THH (j)(A,P ,X) is (jk +

m− 1)-connected, and so

THH (A ∨ P ,X)→ THH (A,X)× THH (1)(A,P ,X)

is (2k +m)-connected. .. '!&"%#$����

This means that the space THH (1)(A,P ,X) merits special attention as a first approxima-
tion to the difference between THH (A ∨ P ,X) and THH (A,X).

Also, since THH (j)(A,P ,X) is (j − 1)-reduced, the product is equivalent to the weak
product, and we obtain

Corollary 3.2.2 Both maps in
∨

j≥0

T (j)(A,P ,X)→ T (A ∨ P ,X)→
∏

j≥0

T (j)(A,P ,X)

are equivalences. .. '!&"%#$����

See also VII.1.2 for the effect on fixed points.

3.3 Free cyclic objects

In this section we review the little we need at this stage about free cyclic objects. See
Section VI.1.1 for a more thorough treatment. Recall that Λ is Connes’ cyclic category.
Let C be a category with finite coproducts. The forgetful functor from cyclic C objects to
simplicial C objects has a left adjoint, the free cyclic functor j∗ defined as follows.

If φ ∈ Λ we can write τ−sφτ s = ψτ r in a unique fashion with ψ ∈ ∆. If X is a simplicial
object, j∗X is given in dimension q by

∐
Cq+1

Xq, and with φ∗ sending x in the s ∈ Cq+1

summand to ψ∗x in the (r + s)th summand.

Example 3.3.1 If X is a pointed set, then j∗(X) ∼= S1
+∧X. If A is a commutative ring,

then j∗(A) ∼= HH (A).

Lemma 3.3.2 The map
j∗T (A,P ,X)→ T (1)(A,P ,X)

adjoint to the inclusion T (A,P ,X) ⊆ T (1)(A,P ,X) is an equivalence. More precisely, if P
is (k − 1)-connected and X is (m− 1)-connected, then

j∗THH (A,P ,X)→ THH (1)(A,P ,X)

is a 2(k +m)-connected cyclic map.
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Proof: Note that V (A,P )(x) ⊆ V (1)(A,P )(x) defines the summand in which the P
appears in the zeroth place. There are q other possibilities for placing P , and we may
encode this by defining the map

Cq+1+∧THH (A,P ,X)q → THH (1)(A,P ,X)q

taking ti ∈ Cq+1, x ∈ Iq+1 and f : S∨x → X∧V (A,P )(x) and sending it to

tix,

S∨t
ix X∧V (1)(A,P )(tix)

∼=

x
x

S∨x
f

−−−→ X∧V (A,P )(x)
⊆
−−−→ X∧V (1)(A,P )(x)

Varying q, this is the cyclic map

j∗THH (A,P ,X)→ THH (1)(A,P ,X).

Let V (1,i)(A,P )(x) ⊂ V (1)(A,P )(x) be the summand with the P at the ith place. The
map may be factored as

∨
ti∈Cq+1

holim
−−−−−→
x∈Iq+1

Ω∨x(X∧V (A,P )(x))
∼=
−−−→ holim

−−−−−→
x∈Iq+1

∨
ti∈Cq+1

Ω∨x(X∧V (1,i)(A,P )(x))

y
holim
−−−−−→
x∈Iq+1

Ω∨x(X∧V (1)(A,P )(x))

where the first map is given by the same formula with V (1,i) instead of V (1), and where the
latter is induced by the inclusions

V (1,j)(A,P )(x) ⊆
∨

ti∈Cq+1

V (1,i)(A,P )(x) ∼= V (1)(A,P )(x).

We may exchange the wedges by products

holim
−−−−−→
x∈Iq+1

∨
ti∈Cq+1

Ω∨x(X∧V (1,i)(A,P )(x)) −→ holim
−−−−−→
x∈Iq+1

Ω∨x(X∧V (1)(A,P )(x))

y ≃

y

holim
−−−−−→
x∈Iq+1

∏
ti∈Cq+1

Ω∨x(X∧V (1,i)(A,P )(x))
∼=
−→ holim

−−−−−→
x∈Iq+1

Ω∨x(X∧
∏

ti∈Cq+1
V (1,i)(A,P )(x))

and the left vertical arrow is 2(k +m)-connected and the right vertical arrow is an equiv-
alence by the Blakers–Massey theorem A.7.2.1.

When A is a discrete ring and P an A-bimodule (not necessarily discrete), these consid-
erations carry over to the T(A⋉P ) spectra. Recall the notation from I.2.5 where we defined
a category DAP with objects obSPA, and where DAP (c, d) ∼= SPA(c, d)⊕SMA(c, d⊗A P )
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(where we have suppressed the index n running in the spectrum direction, and identified
the morphism objects via the Lemma I.2.5.1 and I.2.5.2).

We saw in I.2.5.5 that D
(m)
A P ⊆ S(m)PA⋉P is a degreewise equivalence of categories,

so THH (DAP )
∼ //T(A⋉ P ) . Furthermore, recall that the objects of DAP were obSPA,

and DAP (c, d) = SPA(c, d)⊕SMA(c, d⊗A P ). Substituting X 7→ DAP (c, d)⊗Z Z̃[X] with
the stably equivalent X 7→ SPA(c, d)⊗Z Z̃[X] ∨ SMA(c, d ⊗A P )⊗Z Z̃[X] we may define
T(j)(A,P ) as we did in 3.2, and we get that the cyclic map

∨

j≥0

T(j)(A,P ,X)→ THH (DAP )→ T(A⋉ P )

is an equivalence. If P is (k − 1)-connected then

T(A,X) ∨T(1)(A,P ,X)→ T(A⋉ P ,X)

is (2k− 1)-connected. Furthermore, as j∗ preserves equivalences (see Lemma VI.1.1.3), we
have that the composite

S1
+∧T0(A,P ,X) ∼= j∗(T0(A,P ,X))→ j∗T(A,P ,X)→ T(1)(A⋉ P )

is an equivalence, and so the weak natural transformation j∗T(A,P ,X)→ S1
+∧T(A,P ,X)

is an equivalence.

3.4 Relations to the trace K̃(A⋉ P )→ T̃(A⋉ P )

Let A be a discrete ring and let P be a simplicial A-bimodule. Our definition of the

(“nerveless”) trace K̃(A⋉ P )→ T̃HH (A⋉ P ) in 1.1.7 is the map

K̃(A⋉ P ) = õbSPA⋉P
tr
−−−→ T̃HH (SPA⋉P ) = T̃(A⋉ P ).

Recall that, by I.3.4.3 K̃(A⋉P ) ≃ CA(BP ), so another definition of this map could be via

CA(BP ) −−−→ CA(BcyP ) ∼= B̃cytDAP −−−→ T̃HH (DAP )
≃
−−−→ T̃HH (SPA⋉P ).

The two are related by the diagram

CA(BP )
∼
−−−→ ÑtSPA⋉P

∼
←−−− õbSPA⋉Py

y
y

CA(BcyP )
∼
−−−→ B̃cytSPA⋉P −−−→ T̃HH (SPA⋉P )

(3.4.0)

Lemma 3.4.1 If P is (k − 1)-connected, and X a finite pointed simplicial set, then

X∧CA(P )→ CA(P ⊗Z Z̃[X])

is 2k-connected.
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Proof: It is enough to prove it for a finite set X. The smash moves past the wedges in
the definition of CA, and the map is simply

∨
c∈obS

(m)
q PA

of the inclusion

X∧S
(m)
q M(c, c⊗A P )

∼=
−−−→

∨
X−∗ S

(m)
q M(c, c⊗A P )

⊆

y

Z̃[X]⊗Z S
(m)
q M(c, c⊗A P )

∼=
←−−−

∏
X−∗ S

(m)
q M(c, c⊗A P )

which is 2k-connected by Blakers–Massey. The usual considerations about m-reducedness
in the q direction(s), give the lemma.

Lemma 3.4.2 If P is (k − 1)-connected, then the middle map in

CA(BP ) −−−→ CA(BcyP ) ←−−− S1
+∧CA(P ) −−−→ S1∧CA(P )

is 2k-connected, and in degrees less than 2k the induced composite on homotopy groups is
an isomorphism.

Proof: This follows from Lemma 3.4.1, and the commuting diagram

CA(BP ) //

MMMMMMMMMMM

MMMMMMMMMMM
CA(BcyP )

��

S1
+∧CA(P )

��

oo

CA(BP ) S1∧CA(P )oo

.

Consider the diagram (of bispectra)

T̃(A⋉ P )
∼
−−−→ T̃(A⋉ P )

∼
←−−− T̃ (A⋉ P )x

x
x

j∗T(A,P )
∼
−−−→ j∗T(A,P )

∼
←−−− j∗T (A,P )

≃

x
x

x
S1

+∧T(A,P )0
∼
−−−→ S1

+∧T(A,P )0 ←−−− S1
+∧T (A,P )0

≃

y
y

y
S1

+∧T(A,P )
∼
−−−→ S1

+∧T(A,P )
∼
←−−− S1

+∧T (A,P )y
y

y
S1∧T(A,P )

∼
−−−→ S1∧T(A,P )

∼
←−−− S1∧T (A,P )

The upwards pointing arrows are induced by the inclusion V (A,P )(x) ⊆ V (A ⋉ P )(x)
(likewise with V (SPA, P ) instead of V (A,P )). The rightmost upper vertical map is 2k-
connected by the considerations in 3.2, and so all up-going arrows are 2k-connected. Note
that the middle layer of 0-simplices could have been skipped if we performed geometric
realization all over the place, using the equivalence |j∗X| ≃ |S

1
+∧X| of Lemma VI.1.1.3.
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Proposition 3.4.3 If A is a discrete ring and P an (k − 1)-connected A-bimodule, then
the undecorated leftward pointing arrows in

K̃(A⋉ P ) −−−→ T̃(A⋉ P ) ←−−− S1
+∧T(A,P )0 −−−→ S1∧T(A,P )

and

K̃(A⋉ P ) −→ T̃(A⋉ P ) ←− S1
+∧T(A,P )0 −→ S1∧T(A,P )

∼
←− S1∧T (A,P )

are 2k-connected, and in degrees less than 2k, the induced composites on homotopy groups
are isomorphisms.

Proof: The second statement follows from the first. As CA(P )→ (D1CA)(P ) ≃ T(A,P )0

is 2k-connected (I.3.5.2), Lemma 3.4.2 gives that all the induced composites on homotopy
groups in degree less than 2k from top left to bottom right in

CA(BP ) −−−→ CA(BcyP ) ←−−− S1
+∧CA(P ) −−−→ S1∧CA(P )y
y

y
T̃(A⋉ P ) ←−−− S1

+∧T(A,P )0 −−−→ S1∧T(A,P )0

≃

y ≃

y
S1

+∧T(A,P ) −−−→ S1∧T(A,P )

are isomorphisms.

3.5 Stable K-theory and THH for S-algebras

The functor S 7→ AnS from Section III.3.1.9, can clearly be applied to A-bimodules as
well, and S 7→ P n

S will be a cube of S 7→ AnS-bimodules, which ultimately gives us a cube
S 7→ AnS ∨P

n
S of S-algebras. If P is an A-bimodule, so is X 7→ ΣmP (X) = P (Sm∧X). We

defined
KS(A,P ) = holim

−→
k

Ωkhofib{K(A ∨ Σk−1P )→ K(A)}.

The trace map induces a map to

holim
−→
k

Ωkhofib{THH (A ∨ Σk−1P )→ THH (A)}

and we may compose with the weak map to

holim
−→
k

Ωk(S1∧THH (A,Σk−1P ))

given by the discussion of the previous section. From the previous section we know that
this is an equivalence when A is (the Eilenberg-Mac Lane spectrum associated with) a
discrete ring and P a simplicial A-bimodule.
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Theorem 3.5.1 Let A be an S-algebra and P an A-bimodule. Then the trace induces an
equivalence KS(A,P ) ≃ THH (A,P ).

Proof: If A is discrete and P a simplicial A-bimodule this has already been covered. If
A is a simplicial ring P a simplicial A-bimodule this follows by considering each degree at
a time, using that K-theory of simplicial radical extensions may be calculated degreewise,
I.1.4.2. In the general case we reduce to the simplicial case as follows. There is a stable
equivalence AnS ∨ P

n
S → (A ∨ P )nS, consisting of repeated applications of the 2k-connected

map Z̃[A(Sk)] ∨ Z̃[P (Sk)] → Z̃[A(Sk)] ⊕ Z̃[P (Sk)] ∼= Z̃[A(Sk) ∨ P (Sk)]. The non-initial
nodes in these cubes are all equivalent to a simplicial ring case, and is hence taken care of
by Theorem 3.1.1 (or rather Proposition 3.4.3 since the identification of the equivalence in
Theorem 3.1.1 with the trace map is crucial in order to have functoriality for S-algebras),
and all we need to know is that

K(A ∨ P )→ holim
←−−
S 6=∅

K(AnS ∨ P
n
S )

in (n+ 1)-connected, and that

THH (A ∨ P )→ holim
←−−
S 6=∅

THH (AnS ∨ P
n
S )

and
THH (A,P )→ holim

←−−
S 6=∅

THH (AnS, P
n
S )

are n-connected. These follow from the theorems III.3.2.2 and IV.1.4.3.

4 The normal trace

In this section we give a more direct construction of the trace than the one given in 2.3.3
making the roundabout with localizations in the weak trace of 2.4.2 redundant. It depends
on a refined definition of the nerve, called the homotopy nerve 4.2.13 hõN(C, w) of a pair
(C, w : W → RC).

There are several advantages to this construction apart from it being simpler. Most
importantly, it puts weak equivalences on the same footing as isomorphisms in the fol-
lowing sense. In Lemma 1.0.4 we saw that if C is a category then there is an equivalence
of categories between C and the category Nn(C, i) of n-simplexes along the isomorphisms.
In Lemma 4.2.14 below we will see that under certain conditions on a ΓS∗-category C
with a choice of weak equivalences there is a stable equivalence of ΓS∗-categories (Defini-
tion II.2.4.1) between C and hõNn(C, w). Hence the schism between the discrete and the
ΓS∗-enriched case is all but eradicated. Another advantage is that it is straightforward to
see that the improved trace is multiplicative (it preserves operad actions in general, but in
any case you have to replace Γ-spaces with a more suitable monoidal model for spectra such
as symmetric spectra). The reason this construction is not our official trace map is that it
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only occurred to us very late, and only after Andrew Blumberg dropped the hint that he
and Mike Mandell were considering a “Moore type nerve”, and we set out to see whether
Moore paths could simplify our life as well (actually, it was used to simplify an argument
that the cyclotomic trace preserves operad actions). After the appearance of Blumberg
and Mandell’s very recommendable preprint [24] it is clear that they have precedence for
the construction (which they trace back to McClure and Smith) we offer below and we are
indebted to them. Indeed, several of the constructions in this book could have benefited
from improvements offered in [24]. A further reason for not rewriting the presentation
is that with results as the one suggested in the preprint [21] of Blumberg, Gepner and
Tabuada, concrete constructions may be needed only for technical considerations.

We should point out that the homotopy nerve construction below is different, but have
some similarities with the simplicial nerve construction of [186, 1.1.5].

4.0.1 The normal trace

We postpone the construction of the homotopy nerve a bit to give the consequences. Recall
the notion of a pair (C, w : W → RC) 2.1.2; C is a ΓS∗-category, W a S-category and
w : W → RC a S-functor which is the identity on objects.

As always, the functor w should be viewed as an inclusion of the weak equivalences,
which should make the following situation seem not too unnatural.

Definition 4.0.2 A normal pair is a pair (C, w : W → RC) such that

1. every isomorphism (in any degree) in RC is the image under w of an isomorphism in
W and

2. if x → y is an isomorphism in the underlying category of W and z an object in W,
then the induced maps C(y, z) → C(x, z) and C(z, x) → C(z, y) are stable equiva-
lences.

We will eventually use that w is surjective on objects to ensure that we may identify
the zero simplices of the nerve hõN(C, w) 4.2.13 of a normal pair (C, w) with C. The reason
this is extended to a surjectivity condition on isomorphisms in general is to render the
notion invariant under the K-theory construction in Lemma 4.0.4 below.

We note that the category of finitely generated free modules over an S-algebra gives
rise to an example:

Example 4.0.3 Let A be an S-algebra, C = FA the ΓS∗-category of finitely generated free
A modules defined in III.2.4.1 with wA : W = wFA → RFA the uniform choice of weak
equivalences of II.3.3 (pullback along iπ0FA → π0FA), giving exactly the A-module maps
α : k+∧A

∼
→ k+∧A that are stable equivalence. Then (FA, wA) is a normal pair (remember

that FA(k+∧A, k+∧A) ∼=
∏

k

∨
k A ≃

∏
k

∏
k A
∼= FA(k+∧A,

∏
k A)).

Recall the K-theory construction H̄ of Definition II.3.1.1 for symmetric monoidal ΓS∗-
categories.
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Lemma 4.0.4 If C is a symmetric monoidal ΓS∗-category and w : W → RC is a symmetric
monoidal S-functor such that (C, w) is a normal pair, then for each k+ ∈ obΓo the pair
(H̄C(k+), H̄w(k+)) is normal.

Proof: Checking the definition II.3.1.1 it is immediate that if w is surjective when re-
stricting to the isomorphisms, so is H̄w. Since the property of being normal is preserved
under products and the H̄-construction has special values, the condition on the morphism
objects follows.

In Definition 4.2.13 below we define the homotopy nerve as a bisimplicial ΓS∗-category
hõN(C, w). The topological Hochschild homology of a (bi)simplicial ΓS∗-category is the
diagonal of the topological Hochschild homology applied in every degree.

The following important result tells us that the homotopy nerve does its job for normal
pairs.

Proposition 4.0.5 Let (C, w) be a normal pair. Then the inclusion of zero simplices
C = hõN0(C, w)→ hõN(C, w) defines a pointwise equivalence

THH(hõN(C, w))← THH(C).

Proof: By Lemma 4.2.14 below, for each n all face maps hõNn(C, w) → hõN0,0(C, w)
are stable equivalences of ΓS∗-categories. Hence, by Lemma IV.2.5.4 they induce point-
wise equivalences THH(hõNn(C, w))

∼
→ THH(hõN0,0(C, w)), inverse to the inclusion by

degeneracies. However, by Lemma 4.2.14 again, we have a canonical stable equivalence of
ΓS∗-categories C → hõN0,0(C, w), and we are done.

Definition 4.0.6 If C is a symmetric monoidal ΓS∗-category and w : W → RC is a sym-
metric monoidal S-functor such that (C, w) is a normal pair, then the normal trace is the
weak map

Σ∞BH̄W = Σ∞ob hõN(H̄C, H̄w)→ THH(hõN(H̄C, H̄w))
∼
← THH(H̄C)

∼
← Σ∞THH(C),

where the first map is the Dennis trace map IV.2.2 the second map is induced by the
inclusion of the zero skeleton in the homotopy nerve (and is a pointwise equivalence by
Lemma 4.0.4 and Lemma 4.0.5) the and the third is the pointwise equivalence of V.1.0.1.

If A is an S-algebra we compose with Morita invariance IV.2.5.18 to get the normal
trace

Σ∞BH̄wAFA → THH(hõN(H̄FA, H̄wA))
∼
← Σ∞THH(FA)

∼
← Σ∞THH(A)

from a model for the (free) algebraic K-theory of A to topological Hochschild homology of
A.

Remark 4.0.7 When we get as far as defining topological cyclic homology, TC, in chapter
VI, it will become apparent that Proposition 4.0.5 holds equally well for TC to give a normal
cyclotomic trace

Σ∞BH̄W → TC(hõN(H̄C, H̄w))
∼
← TC(H̄C)

∼
← Σ∞TC(C)
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from a model of algebraic K-theory to TC, and for S-algebras

Σ∞BH̄wAFA → TC(hõN(H̄FA, H̄wA))
∼
← TC(H̄FA)

∼
← Σ∞TC(FA)

∼
← Σ∞TC(A).

4.1 Moore singular simplices

4.1.1 Arrow categories

Recall that the twisted arrow category AI of a category I is the category whose objects
are the arrows (morphisms) of I and where a morphism from φ : c1 → c0 ∈ obAI to
ψ : d1 → d0 ∈ obAI is a commutative square

c0 c1

γ

��

φoo

d0

δ

OO

d0.
ψoo

We are going to use the opposite so frequently that we allow ourselves to introduce
special notation: let AI = (AI)

o. The obvious definition of AF : AI → AJ for a functor
F : I → J (apply F to the diagrams in AI , so that for instance the object f : i→ i′ is sent
to F (f) : F (i) → F (i′)) displays I 7→ AI as an endofunctor on the category of categories.
Notice that there is a functor

forgetI : AI → I × Io

(natural in I) sending c← d to (c, d), and a canonical isomorphism of categories

DI : A(Io) ∼= AI

given by turning all arrows around.
We need to iterate this construction, and define AIk = AA

I
k−1 for k > 0, with AI0 = I.

If 0 ≤ k < l ≤ 3 with k even and l odd, consider the functors pkl : A
I
2 → A

I sending
the object (i0 ← i1 ← i2 ← i3) in AI2 to pkl(i0 ← i1 ← i2 ← i3) = (ik ← il). Similarly, with
k = 1 and l = 2 the same formula gives a functor p12 : AI2 → (AI)o = AI . Also, observe
that the functor (p01, p23) : AI2 → A

I ×AI equals the composite functor

AI2 = AA
I AforgetI

−−−−→ AI×I
o ∼= AI ×AI

o ∼= AI ×AI ,

where the isomorphisms are the canonical isomorphisms AI×J ∼= AI×AJ sending (i0, j0)←
(i1, j1) to ((i0 ← i1), (j0 ← j1)) and DI : A(Io) ∼= AI .

We use the shorthand Ank = A
[n]
k . Explicitly, an object in Ank is a sequence i = {0 ≤

i0 ≤ i1 ≤ . . . i2k−1 ≤ n} and there is a unique map from i to j provided ik ≥ jk when k is
even and ik ≤ jk when k is odd.

Example 4.1.2 For the examples that are to follow, the following construction of a functor
On : An → Cat is illustrating. For integers 0 ≤ i ≤ j ≤ n let On(i ≤ j) be the ordered set
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of all integers t with i ≤ t ≤ j (so that On(0 ≤ n) = [n]), considered as a category. That
you have a morphism (i ≤ j)→ (i′ ≤ j′) in An means exactly that i′ ≤ i ≤ j ≤ j′, and we
let On((i ≤ j)→ (i′ ≤ j′)) be the inclusion On(i ≤ j) ⊆ On(i′ ≤ j′). If φ : [m]→ [n], then
the function Om(i ≤ j) → On(φ(i) ≤ φ(j)) = OnAφ(i ≤ j) with t 7→ φ(t) gives rise to a
natural transformation Oφ : Om → OnAφ. Note that Oid = id, and if φ′ : [m′] → [m] ∈ ∆
then Oφ

′φ = Oφ
′
Oφ.

4.1.3 Monoidal structure in [AI , T ]

Let T = (T,⊗, e) be a monoidal category containing all finite colimits, and let I be a
small category. Then the category [AI , T ] of functors AI → T is monoidal: the unit is the
constant functor with value e, and if X, Y ∈ [AI , T ] we define X⊗Y ∈ [AI , T ] by declaring
that

(X ⊗ Y )(i← l) = lim
−−−−−−−→
i←j←k←l

X(k ← l)⊗ Y (i← j)

where the colimit runs over the subcategory p−1
03 (i← l) of AI2. The unitality and associa-

tivity follows from the universal property of the colimit and the monoidality of T .
Notice that since [AI , T ] ∼= [AI , T o]o this is equivalent to the statement that if T =

(T,⊗, e) is a monoidal category containing all finite limits, and I is a small category, then
the functor category [AI , T ] is monoidal with product

(X ⊗ Y )(i← l) = lim
←−−−−−−−
i←j←k←l

X(k ← l)⊗ Y (i← j).

We need both variants, but in the following we spell out the details for just one of the
cases.

If f : I → J is a functor of small categories, the canonical map (XAf) ⊗ (YAf) →
(X ⊗ Y )Af (induced by the subfunctor p−1

03 (i← l) → p−1
03 (f(i) ← f(l)) of Af2 : AI2 → A

J
2 )

displays (Af)∗ : [AJ , T ]→ [AI , T ] as lax monoidal.
If P is a monoidal category, we consider the strong monoidal functors Bn : P → [An, T ]

that come equipped with monoidal natural transformations Bφ : Bm → (Aφ)∗Bn for every
φ : [m]→ [n] ∈ ∆, such that if φ′ : [m′]→ [m] then Bφ′φ = Bφ′Bφ and Bid = id

P
Bn //
⇒
Bφ

Bm ""F
FFFF

FFFF
[An, T ]

(Aφ)∗

��
[Am, T ]

(this gives that B is a right lax natural transformation from the functor [n] 7→ P ×An to
the constant functor T ). We write Bn

r for Bn(r), and the structure map Bn
r ⊗B

n
s → Bn

r+s

is denoted Bn
r,s.

For r, s in P, the natural transformation Bn
r,s : B

n
r ⊗ Bn

s → Bn
r+s consists of natural

transformations Bn
r,s : B

n
r p23 × B

n
s p01 → Bn

r+sp03 of functors An2 → T . Spelling out, this
implies for instance that we have morphisms Bn

r,s(i0 ≤ i1 ≤ i2 ≤ i3) : Bn
r (i2 ≤ i3)×B

n
s (i0 ≤
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i1) → Bn
r+s(i0 ≤ i3), natural in (i0 ≤ i1 ≤ i2 ≤ i3) ∈ A

n
2 . The monoidality of Bn implies

that if r, s, t ∈ P, then the diagram

(Bn
r (i4 ≤ i5)×B

n
s (i2 ≤ i3))×B

n
t (i0 ≤ i1)

assoc

��

Bnr,s(i2≤i3≤i4≤i5)×1
// Bn

r+s(i2 ≤ i5)×B
n
t (i0 ≤ i1)

Bnr+s,t(i0≤i1≤i2≤i5)

��
Bn
r+s+t(i0 ≤ i5)

Bn
r (i4 ≤ i5)× (Bn

s (i2 ≤ i3)×B
n
t (i0 ≤ i1))

1×Bns,t(i0≤i1≤i2≤i3) // Bn
r (i4 ≤ i5)× B

n
s+t(i0 ≤ i3)

Bnr,s+t(i0≤i3≤i4≤i5)

OO

commutes. That Bn is strong monoidal implies that for each pair of natural numbers
i0 ≤ i3 the induced morphism

Bn
r,s(i0 ≤ i3) : (Bn

r ⊗B
n
s )(i0 ≤ i3) = lim

−−−−−−−−−→
i0≤i1≤i2≤i3

Bn
r (i2 ≤ i3)×B

n
s (i0 ≤ i1)→ Bn

r+s(i0 ≤ i3)

to be an isomorphism, where the colimit runs over the subcategory p−1
03 (i0 ≤ i3) of An2 .

Example 4.1.4 Our prime example is directly related to McClure and Smith’s prismatic
subdivision which they used in their proof of Deligne’s Hochschild cohomology conjec-
ture [208], but which has appeared in diverse situations. Let P be the monoid of non-
negative real numbers under addition, and consider the standard topological n-simplex
∆n = {(x0, . . . , xn) ∈ Rn+1|

∑n
k=0 xk = 1, all xk ≥ 0} ⊆ Rn+1. For r a non-negative real

number, consider the scaled n-simplex ∆n
r = {ru | u ∈ ∆n}. If r ∈ P, consider the subspace

of ∆n
r given by

△n
r (i ≤ j) = {(x0, . . . xn) ∈ ∆n

r |

j∑

k=i

xk = r}.

That is, claiming that (x0, . . . , xn) ∈ ∆n
r is in△n

r (i ≤ j) means that xk 6= 0 only if i ≤ k ≤ j.
This is clearly functorial in i ≤ j ∈ An: if i′ ≤ i ≤ j ≤ j′, then △n

r (i ≤ j) ⊆ △n
r (i
′ ≤ j′).

Note that△n
r (i ≤ j) does not depend on n (upon identifying Rn with its image in R∞),

and we may occasionally drop the n from the notation.
Consider the embeddings △n

r,s(i0 ≤ i1 ≤ i2 ≤ i3) : △n
r (i2 ≤ i3)×△

n
s (i0 ≤ i1)→ △

n(i0 ≤
i3) induced by addition in Rn+1, sending

((0, . . . , 0, yi2, . . . , yi3, 0, . . . , 0), (0, . . . , 0, xi0, . . . , xi1 , 0, . . . , 0))

to

(0, . . . , 0, xi0, . . . , xi1 , 0, . . . , 0) + (0, . . . , 0, yi2, . . . , yi3, 0, . . . , 0).

In particular, the extreme case △n
r,s(0 ≤ i = i ≤ n) sends the point

((0, . . . , 0, yi, . . . , yn), (x0, . . . , xi, 0, . . . , 0))
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to (x0, . . . , xi−1, xi + yi, yi+1, . . . , yn). The associativity criterion

△n
r,s+t(1×△

n
s,t) = △n

r+s,t(△
n
r,s × 1)

follows directly from the formula.
Also, we recognize this as part of the (weighted) second edgewise subdivision and get

that these embeddings glue together to give us coherent homeomorphisms

△n
r,s(i0 ≤ i3) : (△n

r ×△
n
s )(i0 ≤ i3) = lim

−−−−−−−−−→
i0≤i1≤i2≤i3

△n
r (i2 ≤ i3)×△

n
s (i0 ≤ i1) ∼= △

n
r+s(i0 ≤ i3),

endowing △n with the structure of a strong monoidal functor.

4.1.5 Moore singular simplices

In the following we are working in the category CG of compactly generated spaces (see e.g.,
[139, 2.4], following the convention that compactly generated spaces are weak Hausdorff
Kelley spaces), and all limits and function spaces are taken in this category. Recall that
geometric realization takes values in compactly generated spaces, and it is with respect to
this category that geometric realization preserves finite limits [139, 3.2.4].

We will now introduce a generalization of the Moore path space. For r ∈ P, let
Hr : Rn × I → Rn be the function given by sending (x, t) to

(1− t)x+ t (max(0,min(r, x1, . . . , xn)),max(0,min(r, x2, . . . , xn)), . . . ,max(0,min(r, xn))).

This defines a retraction pnr of Rn onto the subspace Simpnr of points (x1, . . . , xn) with
0 ≤ x1 ≤ · · · ≤ xn ≤ r. Varying n we get a cosimplicial space [n] 7→ Simpnr with
structure maps given by repeating or deleting coordinates. The map ∆n

r → Simpnr given
by sending (x0, . . . , xn) to (x0, x0 +x1, . . . , x0 + · · ·+xn−1) gives a natural homeomorphism
of cosimplicial spaces.

For r ∈ P and 0 ≤ i ≤ j ≤ n, let Simpnr (i ≤ j) be the subspace of Rn of points
(x1, . . . , xn) such that 0 ≤ x1 ≤ · · · ≤ xn ≤ r and such that xk = 0 for k ≤ i and xk = r for
k > j. Recall the scaled simplices △n

r of 4.1.4. The homeomorphism △n
r (0 ≤ n) = ∆n

r →
Simpnr restricts to a natural homeomorphism hi≤jr : △n

i (i ≤ j) ∼= Simpnr (i ≤ j).
Consider the embedding ei≤jr : Simpnr (i ≤ j) → Rj−i sending (x1 ≤ · · · ≤ xn) 7→

(xi+1, . . . , xj) with section pi≤jr (xi+1, . . . , xj) = (0 = · · · = 0 ≤ xi+1 ≤ · · · ≤ xj ≤ r = · · · =
r).

Definition 4.1.6 If Y is a compactly generated space, and 0 ≤ i ≤ j ≤ n we let the space
of Moore singular (i ≤ j)-simplices, P i≤j

n Y , be the set
∐

r∈P Y
△nr (i≤j) topologized so that

the injective function P i≤j
n Y → P ×Y Rj−i

sending f : △n
r (i ≤ j)→ Y in the rth summand

to
(
r, f

(
hi≤jr

)−1
pi≤jr

)
is an embedding where Y Rj−i

is given the compact-open topology.

If in addition 0 ≤ k ≤ l ≤ n we let the space P
i≤j
k≤l
n Y as the set

∐
(r,s)∈Rr Y △

n
r (i≤j)×△nr (k≤l)

endowed with the topology given by declaring that the injection into R2×Y Rj−i×Rl−k
given

by the above retractions is an embedding.
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To take care of the extreme cases, notice that the maps P i=i
n Y → P× Y sending (r, f)

to (r, f(0)) and P i≤j
n (∗)→ P sending (r, f) to r are homeomorphisms and that P i≤j

n ∅ = ∅.
If 0 ≤ i ≤ j ≤ k ≤ l ≤ n then the inclusions △n

r (j ≤ k) ⊆ △n
r (i ≤ l) for varying r

induce a projection P i≤l
n Y → P j≤k

n Y which is continuous since it extends via the embed-
dings defining the topology to the continuous function R × Y Ri≤l

→ R × Y Rj≤k
sending

(r, f) to (r, f incr), where incr : Rk−j → Rl−i is the embedding sending (xj+1, . . . , xk) to
(0, . . . , 0, xj+1, . . . , xk, r, . . . , r).

In this way, i ≤ j 7→ P i≤j
n Y becomes a functor PnY from the category A[n] = (An)o.

Likewise, P
i≤j
k≤l
n Y defines a functor from A[n] ×A[n].

For φ : [m]→ [n] ∈ ∆, the natural transformation △φ : △nAφ ⇒△m induces a natural
transformation

Pφ : PnYAφ ⇒ PmY

of functors from A[m] such that if ψ : [l]→ [m] ∈ ∆, then we have an equality PψPφ = Pφψ
of natural transformations of functors from A[l].

Lemma 4.1.7 Let Y0 ⊆ Y1 ⊆ Y2 ⊆ . . . be injections of compactly generated spaces and 0 ≤
i ≤ j ≤ n. Then the canonical map lim−→

k
P i≤j
n Yk → P i≤j

n (lim−→
k
Yk) is a homeomorphism.

Proof: The claim follows since the (i ≤ j)-simplices are compact and unions of inclusion
of compactly generated spaces are compactly generated.

By the usual arguments for the Moore path space (see e.g., Whitehead [313, III.2.15])
we get

Lemma 4.1.8 Let Y be a compactly generated space. Then the projections

P i≤j
n Y → P

sending (r, f) to r and
P i≤j
n Y → P i≤a

n Y ×P P
a+1≤j
n Y

induced by the functoriality are Hurewicz fibrations.

4.1.9 The hoN-construction

Now, let Y be a functor An → CG. Consider the functor PnY : An2 → CG given by

PnY = P p12
n (Y p03) =

{
i ≤ j ≤ k ≤ l 7→ P j≤k

n Y (i ≤ l)
}

and its limit hoNnY = lim←−
An2
PnY . Given φ : [m]→ [n] ∈ ∆ we get a map

hoNφY : hoNnY = lim
←−
An2

PnY
φ∗

−−−→ lim
←−−
Am2

(PnY )Aφ2
Pφ
−−−→ lim

←−−
Am2

Pm(YAφ) = hoNm(YAφ),

where the first map is given by the functoriality of limits and the second is given by the
naturality of the Moore singular simplex functor. Notice that if ψ : [l] → [m] ∈ ∆, then
hoNφψY = hoNψY ◦ hoNφY as maps from hoNnY to hoNl(YA

φψ).
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Example 4.1.10 A model for the homotopy pullback. The category A1 can be depicted
as (0 = 0)→ (0 < 1)← (1 = 1), and so a functor X : A1 → CG is the same as a diagram
X00 → X01 ← X11. We see that

hoN1X = lim
←−
{P 0=0

1 X00 → P 0=0
1 X01 ← P 0≤1

1 X01 → P 1=1
1 X01 ← P 1=1

1 X11}

is homeomorphic to the pullback of

P 0≤1
1 X01 ։ P 0=0

1 X01 ×P P
1=1
1 X01 ← P 0=0

1 X00 ×P P
1=1
1 X11

(which is a homotopy pullback since the leftmost arrow is a fibration by Lemma 4.1.8),
which is the space of tuples (x00, x11, r, γ) where (x00, x11) ∈ X00 × X11, r ∈ P and
γ : [0, r]→ X01 is a path with pair of endpoints (γ(0), γ(r)) the image of (x00, x11).

Example 4.1.11 The category A0 is the trivial one-point category, so a functor X : A0 →
CG is nothing but a compactly generated space X and hoN0X = P×X.

Lemma 4.1.12 Let Y → Y ′ be a natural transformation of functors An → CG consisting
of weak equivalences. Then the induced map hoNnY → hoNnY

′ is a weak equivalence. In
particular, if Y is a functor An → CG sending morphisms in An to weak equivalences,
then the canonical map

hoNnY → P 0≤n
n Y (0 ≤ n)→ Y (0 ≤ n)

is a weak equivalence.

Proof: Rewrite the limit so that it appears as an iterated cube and use Lemma 4.1.8.

As usual, we extend to simplicial sets X by declaring that P i≤jX = sinP i≤j|X| and
likewise for functors An → S.

4.1.13 Monoidality

Let Y be a compactly generated space. Recall the spaces P
i≤j
k≤l
n Y from Definition 4.1.6.

Given i0 ≤ i3 ∈ A[n], the monoidality of △n followed by addition in P yields a map

Gi0≤i3 : lim
←−−−−−−−−
p−1
03 (i0≤i3)

P
p23
p01
n Y → P i0≤i3Y

which is natural in Y and i0 ≤ i3. Explicitly, an element in lim←−−−−−−−−
p−1
03 (i0≤i3)

P
p23
p01
n Y is represented

by a pair (r, s) ∈ P2 and a compatible collection of maps

(fi0≤i1≤i2≤i3 : △n
r (i2 ≤ i3)×△

n
s (i0 ≤ i1)→ Y )i0≤i1≤i2≤i3 .
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The image of this element in P i0≤i3Y is given by the sum r + s and the amalgamation

△n
r+s(i0 ≤ i3) ∼= lim

−→
△n
r (i2 ≤ i3)×△

n
s (i0 ≤ i1)→ Y

of the fi0≤i1≤i2≤i3 (the only part of this assignment that is not bijective is (r, s) 7→ r + s).
Let Y1 and Y2 be compactly generated spaces. The product map P i2≤i3Y1×P

i0≤i1Y2 →

P
i2≤i3
i0≤i1 (Y1 × Y2) followed by Gi0≤i3 defines a pairing

µY1,Y2 : (PY1 × PY2)(i0 ≤ i3) = lim
←−−−−−−−−
p−1
03 (i0≤i3)

(P p23
n Y1)× (P p01

n Y2)→ P i0≤i3
n (Y1 × Y2)

which is natural in Y1, Y2 and i0 ≤ i3 ∈ A[n].
The map Y → P i≤j

n Y sending y ∈ Y to (0, cy) where cy : △
n
0 (i ≤ j) = ∗ → Y has the

single value y defines a natural transformation from the identity to Pn, and in particular,
when Y is the one point space ∗ defines a unit map ∗ → Pn(∗).

Lemma 4.1.14 The functor Pn : CG → [A[n], CG] together with the pairing and the unit
is a monoidal functor. In particular, given Y1, Y2, Y3 ∈ CG, the diagram

(PnY1 × PnY2)× PnY3

µY1,Y2×1
−−−−−→ Pn(Y1 × Y2)× PnY3

µY1×Y2,Y3−−−−−−→ Pn((Y1 × Y2)× Y3)

assoc.

y∼= assoc.

y∼=

PnY1 × (PnY2 × PnY3)
1×µY2,Y3−−−−−→ PnY1 × Pn(Y2 × Y3)

µY1,Y2×Y3−−−−−−→ Pn(Y1 × (Y2 × Y3))

commutes.

Now, assume Y1, Y2, Y3 are functors An → CG and m : Y1p01 × Y2p23 → Y3p03 is a
natural transformation of functors An2 → CG. The considerations above give a pairing

m : hoNnY1 × hoNnY2 → hoNnY3.

Explicitly, (p0123, p4567) : An3 → A
n
2 ×A

n
2 and the product map defines a map

hoNnY1 × hoNnY2 = lim
←−
An2

PY1 × lim
←−
An2

PY2
∼= lim
←−−−−−
An2×A

n
2

(PY1 × PY2)→ lim
←−
An3

P
p12
p56 (Y1p03 × Y2p47) ,

which is followed by the pairing m and the above defined natural transformation G to give
a map to lim←− PY3 = hoNnY3. To check commutative diagrams we write this map out
on individual elements. Notice that an element of lim←−

An2
PYk may be given by giving an

r ∈ P an a compatible collection of maps fi0≤i1≤i2≤i3 : △n
r (i1 ≤ i2) → Yk(i0 ≤ i3). Given

an element ((r, {fi0≤i1≤i2≤i3}), (s, {gi0≤i1≤i2≤i3})) in lim←−
An2
PY1 × lim←−

An2
PY2, restricting our

attention to the case j3 ≤ i0 we get maps

△n
r (j1 ≤ j2)×△

n
s (i1 ≤ i2)

f×g
−−−→ Y1(j0 ≤ j3)× Y2(i0 ≤ i3)

m
−−−→ Y3(j0 ≤ i3)

and the compatibilities guarantee that these glue together to give a map △n
r+s(j1 ≤ i2)→

Y3(j0 ≤ i3).
Using this point-set description we see that the monoidality of △n imply the following

associativity property for hoNn.
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Lemma 4.1.15 For ∅ 6= S ⊆ {1, 2, 3} let YS be functors An → CG, together with pairings
such that the diagram

Y1 × (Y2 × Y3)
m12×1 //

assoc.

��

Y1,2 × Y3

m12,3

��
Y1,2,3

(Y1 × Y2)× Y3
1×m23 // Y1 × Y2,3

m1,23

OO

commutes. Then the induced diagram

hoNnY1 × (hoNnY2 × hoNnY3)
m12×1 //

assoc.

��

hoNnY1,2 × hoNnY3

m12,3

��
hoNnY1,2,3

(hoNnY1 × hoNnY2)× hoNnY3
1×m23 // hoNnY1 × hoNnY2,3

m1,23

OO

commutes too.

4.1.16 The simplicial case

In view of our intended applications (and to avoid technicalities like degenerate base points)
we now shift solely attention to the simplicial cases and fetch the constructions above to
this setting via the geometric realization/singular complex adjoint pair.

In particular, if X is a space (simplicial set), the space of singular (i ≤ j)-simplices
P i≤j
n X is defined as sin(P i≤j

n |X|). If X : An → S is a functor to spaces, then we define
hoNnX = lim←−

Ans
PX and note that there is a natural isomorphism to sin hoNn|X|. The

conclusions of Lemma 4.1.12 and Lemma 4.1.14 still hold in the simplicial case (add a
sin | − | to the last space in Lemma 4.1.12).

4.1.17 The pointed case

Let X : An → S∗ be a functor to pointed spaces. We define the pointed version of hoN by
setting

hõNnX = hoNnX/hoNn∗,

where the inclusion hoNn∗ → hoNnX is induced by the inclusion of the base point in
X. Note that hoNn∗ ∼= sinP is contractible. The conclusions of Lemma 4.1.12 and
Lemma 4.1.14 still hold in the pointed case for hõNn with the obvious modifications.

Note that if X is a pointed simplicial set, then hõN0X ∼= sin P+∧ sin |X| and we have
a natural weak equivalence X

∼
→ hõN0X induced by the sin/| − |-adjointness and 0 ∈ P.
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4.2 The homotopy nerve

4.2.1 The homotopy nerve of S∗-categories

We first deal with the unpointed situation.

Definition 4.2.2 LetW be a small S-category with underlying category UW. The homo-
topy nerve hoNW = {[n] 7→ hoNnW} is the simplicial S-category with space of objects the
classifying space of W (i.e., an n-simplex in the space of objects is a functor [n] → UW),
if a, b : [n]→ UW are two objects, then we define the space of morphisms as hoNnW(a, b),
where hoNn is the construction introduced in 4.1.9 and W(a, b) = {i ≤ j 7→ W(aj , bi)}
considered as a functor An → S. The unit and composition in hoNnW are defined by
applying the pairings constructed in 4.1.13 to the composition in W.

The simplicial structure is given by sending φ : [m]→ [n] ∈ ∆ to the S-functor

φ∗ = hoNφW : hoNnW → hoNmW

defined as follows. If a : [n] → UW is an object, φ∗a is the composition aφ : [m] →
[n] → UW, and the map of morphism spaces hoNnW(a, b) → hoNmW(φ∗a, φ∗b) is the
hoNφW(a, b) of 4.1.9.

From Lemma 4.1.12 we get that the homotopy nerve only depends on the homotopy
type of the morphism spaces in the following sense.

Lemma 4.2.3 Let F : W1 → W2 be an S-functor inducing the identity on the underly-
ing category and weak equivalences on morphism spaces, then so is hoNnF : hoNnW1 →
hoNnW2.

The considerations above also works for S∗-categories C to give a simplicial S∗-category
hõNC by declaring that the morphisms spaces in degree n are of the form hõNnC(a, b) =
hoNnC(a, b)/hoNn∗.

4.2.4 The homotopy nerve of ΓS∗-categories

We now define the homotopy nerve of a ΓS∗-category. The reason we do it for ΓS∗-categories
is that this is what is needed for our application, but if you for instance wanted to prove
that the cyclotomic trace is multiplicative you should exchange this for a more suitable
model of spectra, e.g., symmetric spectra.

Definition 4.2.5 Let C be a small ΓS∗-category with underlying category UC. The (point-
wise) homotopy nerve hõNC is the simplicial ΓS∗-category with space of objects the clas-
sifying space of UC, and with morphism objects defined as follows. If a, b : [n] → UC are
two objects in simplicial dimension n, then hõNnC(a, b) is the Γ-space which evaluated on
the finite pointed set T is given by

(hõNnC(a, b)) (T ) = hõNn (C(a, b)(T )) ,
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where C(a, b)(T ) is the functor

An
forget[n]

−−−−→ [n]o × [n]
a×b
−−−→ UoC × UC

C(−,−)(T )
−−−−−−→ S∗.

Composition, unitality and simplicial structure is defined as for the simplicial case 4.2.2
using Lemma 4.1.9 and the pairings of 4.1.13.

Lemma 4.2.6 Given a ΓS∗-category C and two n-simplices a, b : [n] → UC so that for all
0 ≤ i ≤ j ≤ n the induced maps C(aj , bj) → C(aj , bi) ← C(ai, bi) are stable equivalences
for all 0 ≤ i ≤ j ≤ n. Then the canonical map hõNnC(a, b) → sin |C(an, b0)| is a stable
equivalence.

Proof: In the special case where the induced maps C(aj , bj) → C(aj , bi) ← C(ai, bi) are
pointwise equivalences this follows from Lemma 4.1.12, and even gives that for every finite
pointed set T the map hõNnC(a, b)(T )→ sin |C(an, b0)(T )| is a pointwise equivalence.

For any pointed compactly generated space Y we point P i≤j
n Y in (0, ∗) and note that

the canonical inclusion P i≤j
n ΩkY ⊆ ΩkP i≤j

n Y (the difference is that in ΩkP i≤j
n Y the scaling

factor of the singular simplex is allowed to vary over Sk) is a weak equivalence, and the
maps that are fibrations in view of Lemma 4.1.8 remain fibrations if we replace P i≤j

n Y by
either P i≤j

n ΩkY or ΩkP i≤j
n Y .

For simplicity of notation, let Xk = C(a, b)(Sk∧T ) : An → S∗ for some fixed finite
pointed set T and k ≥ 0 and consider the diagram

lim
−→
k

Ωklim
←−
An2

PXk ∼
−→ lim

−→
k

lim
←−
An2

sin ΩkP |Xk|
∼
←− lim

−→
k

lim
←−
An2

sinPΩk|Xk|
∼
←− lim

−→
k

lim
←−
An2

PΩkXk

y
y

y
y

lim
−→
k

Ωk sin |Xk|
∼
−→ lim

−→
k

ΩkXk lim
−→
k

ΩkXk ∼
←− lim

−→
k

sin |ΩkXk|,

where the left hand horizontal arrows unravel the use of singular complex and geometric
realizations in our definitions of Ωk and P of in the simplicial setting and that loops
commute with finite limits, the middle top horizontal map is the comparison of ΩkP with
PΩk, and the right hand horizontal maps sort out the definitions of Ωk and P for spaces
and topological spaces.

Notice up to canonical isomorphisms, the right hand vertical map is the map

lim
←−
An2

P lim
−→
k

ΩkXk → sin |lim
−→
k

ΩkXk|,

which by Lemma 4.1.12 is a weak equivalence, and so the left vertical map is a weak
equivalence too. However, since the left vertical map factors as the canonical projection
QhoNnX

k ∼→ QhõNnX
k = Q (hõNnC(a, b)) (T ) followed by the map Q (hõNnC(a, b)) (T )→

Q sin |C(a, b)|(T ) which we sought to show was a weak equivalence, we are done.
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4.2.7 The relative case

We are really interested in the homotopy nerve mainly in the relative case.
If (C, w : W → UC) is a “discrete” pair (so thatW is an ordinary category, w an ordinary

functor and C a ΓS∗-category) we define the homotopy nerve as follows.

Definition 4.2.8 The homotopy nerve hõN(C, w) of a discrete pair (C, w : W → UC) is
the simplicial ΓS∗-category whose space of objects is the classifying space BW and whose
morphism objects are given by

hõNn(C, w)(a, b) = hõNnC(wa,wb)

for a, b : [n]→W two objects in simplicial dimension n.

Notice that (apart from the contractible noise introduced to the morphism objects by
the application of the (0 = 0)-singular simplex functor) hõN0(C, w) is nothing but the
ΓS∗-full subcategory of C generated by the image of w.

Recall the monoidal stabilization functor T0 : ΓS∗ → ΓS∗ from II.2.2.2. If C is a ΓS∗-
category T0C is the ΓS∗-category obtained by letting obT0C = obC, but employing T0 on
all the morphism objects. Essentially the same reasoning as employed in the proof of
Lemma 4.2.6 gives the following lemmas

Lemma 4.2.9 Given a discrete pair (C, w : W → UC). Then the natural transformation
η : 1 → T0 induces a simplicial ΓS∗-functor hõN(C, w) → hõN(T0C, (Rη)w) which is the
identity on objects and stable equivalences on all morphism objects.

So, for all practical purposes, we can always assume that our ΓS∗-categories have stably
fibrant morphism objects.

Lemma 4.2.10 Let (C, w : W → UC) be a discrete pair such that for all morphisms
α : x→ y and objects z in W the induced maps C(wy, wz)→ C(wx,wz) and C(wz, wx)→
C(wz, wy) are stable equivalences. Then the face maps hõNn(C, w) → hõN0(C, w) are all
stable equivalences of ΓS∗-categories.

Proof: Follows from Lemma 4.2.6 since the face maps are surjective on objects.

4.2.11 The simplicial case

Let W be an S-category. We define the simplicial category {[n] 7→ W[n]} by declaring
that the objects of W[n] are the objects of W and if a and b are objects in W, the set
of morphisms in W[n] from a to b is the set of n-simplices in the function space W(a, b).
Assuming that W is tensored over S this implies that W[n](a, b) =W(a⊗∆[n], b).

Recall that if X is a Γ-space, we defined the space RX = X(1+). It is really a pointed
space, but we will make no notational distinction and consider R as a functor ΓS∗ → S.
The functor is monoidal, so that a ΓS∗-category C gives rise to a S-category RC.
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We define a simplicial pair {[n] 7→ (C[n], w[n] : W[n] → UC[n])}, where W[n] was
defined above and C[n] is the ΓS∗-category with objects the same as C, but with morphism
objects given by C[n](a, b) = S∗(∆[n]+, C(a, b)) (this is different from picking out the Γ-set
of n-simplices. In particular, the standard contraction of ∆[n] gives a simplicial homotopy
equivalence C[n](a, c) ≃ C(a, b)). Notice that UC[n] is nothing but the category of n-
simplexes in RC, and so w induces a functor w[n] : W[n]→ UC[n].

Lemma 4.2.12 If (C, w) is a normal pair, then so is (C[n], w[n]) for each n ≥ 0.

Proof: We must show that if α ∈ W[n](x, y), then α∗ : C[n](z, x) → C[n](z, y) and
α∗ : C[n](y, z) → C[n](x, z) are stable equivalences for every object z in W. If φ : ∆[0] →
∆[n] is the inclusion of the initial vertex, consider the induced map of pairs

φ∗ : (C[n], w[n])→ (C[0], w[0]).

On morphism objects we get a homotopy equivalence

C[n](z, x) = C(z, x)∆[n] (φ∗)∗

−→ C(z, x)∆[0] = C(z, x)

and the diagram
C(z, x)∆[n] α∗−−−→ C(z, y)∆[n]

(φ∗)∗
y≃ (φ∗)∗

y≃

C(z, x)
(φ∗α)∗
−−−−→ C(z, y)

commutes. Since, by assumption, (φ∗α)∗ is a stable equivalence we get that α∗ is a stable
equivalence. Likewise for α∗.

Definition 4.2.13 If (C, w : W → RC) is a pair, we define its homotopy nerve to be the
bisimplicial ΓS∗-category hõN(C, w) = {([m], [n]) 7→ hõNm,n(C, w) = hõNm(C[n], w[n])}.

Lemma 4.2.14 Let (C, w : W → NC) be a normal pair. Then the face maps hõNm,n(C, w)→
hõN0(C, w) are all stable equivalences of ΓS∗-categories.

Furthermore hõN0(C, w) = hõN0C, and there is a stable (even pointwise) ΓS∗-equivalence
C → hõN0C.

Proof: The conclusion does not use all of normality: the behavior on isomorphisms can
be weakened to demanding that w is onto on objects, which is enough for getting the
equality hõN0(C, w) = hõN0C. The last claim then follows from the pointwise equivalences
C(a, b)

∼
→ hõN0C(a, b) of 4.1.17.

Lemma 4.2.10 gives that the face maps hõNm(C[n], w[n]) → hõN0(C[n], w[n]) are all
ΓS∗-equivalences. Furthermore, since ∆[n] is contractible, we get that the face maps
hõN0(C[n], w[n]) → hõN0(C[0], w[0]) are ΓS∗-equivalences (inducing the identity on ob-
jects).



Chapter VI

Topological Cyclic homology

A motivation for the definitions to come can be found by looking at the example of a
ΓS∗-category C. Consider the trace map

obC → THH (C)(S0)

Topological Hochschild homology is a cyclic space, obC is merely a set. However, the trace
IV.2.2 is universal in the sense that obC ∼= lim←−

Λo
THH (C)(S0). A more usual way of putting

this, is to say that obC → |THH (C)(S0)| is the inclusion of the T = |S1|-fixed points,
which also makes sense since the realization of a cyclic space is a topological space with a
circle action (see 1.1 below).

In particular, the trace from K-theory has this property. The same is true for the other
definition of the trace (IV.1.5), but this follows more by construction than by fate. In
fact, any reasonable definition of the trace map should factor through the T-fixed point
space, and so, if one wants to approximate K-theory one should try to mimic the T-fixed
point space by any reasonable means. The awkward thing is that forming the T-fixed point
space as such is really not a reasonable thing to do, in the sense that it does not preserve
weak equivalences. Homotopy fixed point spaces are nice approximations which are well
behaved, and strangely enough it turns out that so are the actual fixed point spaces with
respect to finite subgroups of the circle. The aim is now to assemble as much information
from these nice constructions as possible.

0.1 Connes’ Cyclic homology

The first time the circle came into action for trace maps, was when Alain Connes defined
his cyclic cohomology [56]. We are mostly concerned with homology theories, and in one of
its many guises, cyclic homology is just the T-homotopy orbits of the Hochschild homology
spectrum. This is relevant to K-theory for several reasons, and one of the more striking
reasons is the fact discovered by Loday and Quillen [182] and Tsygan [290]: just as the K-
groups are rationally the primitive part of the group homology of GL(A), cyclic homology
is rationally the primitive part of the Lie-algebra homology of gl(A).

223
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However, in the result above there is a revealing dimension shift, and, for the purposes of
comparison with K-theory via trace maps, it is not the homotopy orbits, but the homotopy
fixed points which play the central rôle. The homotopy fixed points of Hochschild homology
give rise to Goodwillie and J. D. S. Jones’ negative cyclic homology HC−(A). In [102]
Goodwillie proves that if A → B is a map of simplicial Q-algebras inducing a surjection
π0(A)→ π0(B) with nilpotent kernel, then the relative K-theory K(A→ B) is equivalent
to the relative negative cyclic homology HC−(A→ B).

All told, the cyclic theories associated with Hochschild homology seem to be right
rationally, but just as for the comparison with stable K-theory, we must replace Hochschild
homology by topological Hochschild homology to obtain integral results.

0.2 Bökstedt, Hsiang, Madsen and TC p̂

Topological cyclic homology, also known as TC, appears for the first time in Bökstedt,
Hsiang and Madsen’s proof on the algebraic K-theory analog of the Novikov conjecture
[27], and is something of a surprise. The obvious generalization of negative cyclic homology
would be the homotopy fixed point space of the circle action on topological Hochschild
homology, but this turns out not to have all the desired properties. Instead, they consider
actual fixed points under the actions of the finite subgroups of T.

After completing at a prime, looking only at the action of the finite subgroups is not an
unreasonable thing to do, since you can calculate the homotopy fixed points of the entire
circle action by looking at a tower of homotopy fixed points with respect to cyclic groups of
prime power order (see example A.6.6.4). The equivariant nature of Bökstedt’s formulation
of THH is such that the actual fixed point spaces under the finite groups are nicely behaved
1.4.7, and in one respect they are highly superior to the homotopy fixed point spaces: The
fixed point spaces with respect to the finite subgroups of T are connected by more maps
than you would think of by considering the homotopy fixed points or the linear analogs (in
particular, the “restriction maps” of Section 1.3), and the interplay between these maps can
be summarized in topological cyclic homology to give an amazingly good approximation
of K-theory.

Topological cyclic homology, as we define it, is a non-connective spectrum, but its
completions TC(−)̂p are all−2-connected. As opposed to topological Hochschild homology,
the topological cyclic homology of a discrete or simplicial ring is generally not an Eilenberg–
Mac Lane spectrum.

In [27] the problem at hand is reduced to studying topological cyclic homology and
trace maps of S-algebras of the form S[G], where S is the sphere spectrum and G is some
simplicial group (see example II.1.4.4), i.e., the S-algebras associated to Waldhausen’s A
theory of spaces (see section III.2.3.4). In this case, TC is particularly easy to describe:
for each prime p, there is a cartesian square

TC(S[G])̂p −−−→ (ΣT (S[G])hS1 )̂py
y

T (S[G])̂p −−−→ T (S[G])̂p
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(in the homotopy category) where the right vertical map is the “circle transfer”, and the
lower horizontal map is analogous to something like the difference between the identity
and a pth power map. The nature of the top horizontal map in the diagram is not well
understood.

0.3 TC of the integers

Topological cyclic homology is much harder to calculate than topological Hochschild ho-
mology, but – and this is the main point of this book – it exhibits the same “local” behavior
as algebraic K-theory, and so is well worth the extra effort. The first calculation to appear
is in fact one of the hardest ones produced to date, but also the most prestigious: in [28]
Bökstedt and Madsen set forth to calculate TC(Z)̂p for p > 2, and found that they could
describe TC(Z)̂p in terms of objects known to homotopy theorists:

TC(Z)̂p ≃ imJ p̂ × BimJ p̂ × SU p̂,

where imJ is the image of J , c.f. [3], and SU is the infinite special unitary group – provided
a certain spectral sequence behaved as they suspected it did. In his thesis “The equivariant
structure of topological Hochschild homology and the topological cyclic homology of the
integers”, [Ph.D. Thesis, Brown Univ., Providence, RI, 1994] Stavros Tsalidis proved that
the spectral sequence was as Bökstedt and Madsen had supposed, by adapting an argument
in G. Carlsson’s proof of the Segal conjecture [52] to suit the present situation. Using this
Bökstedt and Madsen calculated in [29] TC(A)̂p for A the Witt vectors of finite fields of
odd characteristic, and in particular got the above formula for TC(Z)̂p ≃ TC(Zp̂)̂p. See
also Tsalidis’ papers [288] and [289]. Soon after Rognes showed in [240] that an analogous
formula holds for p = 2 (you do not have the splitting, and the image of J should be
substituted with the complex image of J).

A bit more on the story behind this calculation, and also the others briefly presented
in this introduction, can be found in section VII.3.

0.4 Other calculations of TC

All but the last of the calculations below are due to the impressive effort of Hesselholt
and Madsen. As the calculations below were made after the p-complete version of Theo-
rem VII.0.0.2 on the correspondence between K-theory and TC was known for rings, they
were stated for K-theory whenever possible, even though they were actually calculations
of TC.

For a ring A, let W (A) be the p-typical Witt vectors, see [259] or more briefly sec-
tion 3.2.9 for the commutative case and [124], [125] for the general case. Let W (A)F be
the coinvariants under the Frobenius action, i.e., the cokernel of 1 − F : W (A) → W (A).
Note that W (Fp) = W (Fp)F = Zp̂.

1. Hesselholt [124] Let A be a discrete ring. Then there is an isomorphism π−1TC (A)̂p ∼=
W (A)F .
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2. Hesselholt and Madsen (cf. [128] and [192]) Let k be a perfect field of characteris-
tic p > 0. Then TC(A) is an Eilenberg–Mac Lane spectrum for any k-algebra A.
Furthermore, we have isomorphisms

πiTC (k)̂p ∼=





W (k)F if i = −1

Zp̂ if i = 0

0 otherwise

and

πiTC (k[t]/(tn))̂p ∼=





πiTC (k)̂p if i = −1 or i = 0

Wnm−1(k)/VnWm−1(k) if i = 2m− 1 > 0

0 otherwise,

where Wj(k) = (1 + tk[[t]])×/(1 + tj+1k[[t]])× is the ring of truncated big Witt
vectors, and Vn : Wm−1(k) → Wnm−1(k) is the Verschiebung map sending f(t) =
1 + t

∑∞
i=1 ait

i to f(tn).

3. Hesselholt ([124]). Let A be a free associative Fp-algebra. Then

πiTC (A)̂p ∼=





W (A)F if i = −1

Zp̂ if i = 0

0 otherwise.

On the other hand, the topological cyclic homology groups of the free commutative
Fp-algebras are generally not concentrated in non-positive degrees:

πiTC (Fp[t1, . . . tn])̂p ∼=

{
(
⊕

g∈Gm
Zp̂)̂p for −1 ≤ i ≤ n− 2

0 otherwise,

where Gm is some explicit (non-empty) set (see [124, page 140])

4. Hesselholt and Madsen [131]. Let K be a complete discrete valuation field of char-
acteristic zero with perfect residue field k of characteristic p > 2. Let A be the
valuation ring of K. Hesselholt and Madsen analyze TC(A)̂p, and in particular they
give very interesting algebraic interpretations of the relative term of the transfer map
TC(k)̂p → TC(A)̂p (obtained by inclusion of the category of k-vector spaces into the
category of torsion modules of A). See VI.3.3.3 for some further details.

5. Ausoni and Rognes [10], [11]. In order to calculate the algebraic K-theory K(ku) of
connective complex K-theory Ausoni calculated the topological cyclic homology of
ku. Previously, Ausoni and Rognes calculated the topological cyclic homology of the
Adams summand ℓp. See section VI.3.1 where the Adams summand is one of the
examples.
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0.5 Where to read

The literature on TC is naturally even more limited than on THH . Bökstedt, Hsiang and
Madsen’s original paper [27] is still very readable. The first chapters of Hesselholt and
Madsen’s [129] can serve as a streamlined introduction for those familiar with equivariant
G-spectra. For more naïve readers, the unpublished lecture notes [105] can be of help.
Again, the survey article of Madsen [192] is recommendable.

1 The fixed point spectra of THH .

We will define TC by means of a homotopy cartesian square of the type (i.e., it will be the
homotopy limit of the rest of the diagram)

TC(−) −−−→ THH (−)hS
1

y
y

∏
p prime TC(−; p)̂p −−−→ (

∏
p prime THH (−)̂p)

hS1

(as it stands, this strictly does not make sense: there are some technical adjustments
we shall return to). The S1-homotopy fixed points are formed with respect to the cyclic
structure.

In this section we will mainly be occupied with preparing the ground for the lower left
hand corner of this diagram. Let Cn ⊆ S1 be the subgroup consisting of the nth roots of
unity. We do a consistent choice of generators tn−1 of the cyclic groups Cn such that tmmn−1 =
tn−1 under the inclusion Cn ⊆ Cmn. For each prime number p, the functor TC(−; p) is
defined as the homotopy limit of a diagram of fixed point spaces |THH (−)|Cpn . The maps
in the diagrams are, partially, inclusion of fixed points |THH (−)|Cpn+1 ⊆ |THH (−)|Cpn ,
and partially, some more exotic maps – the “restriction maps” – which we will describe
in Section 1.3 below. The contents of this section is mostly fetched from the unpublished
MSRI notes [105]. If desired, the reader can consult appendix A.8 for some facts on group
actions.

1.1 Cyclic spaces and the edgewise subdivision

Recall Connes’ category Λ (see e.g., IV.1.1.2). Due to the inclusion j : ∆ ⊂ Λ, any cyclic
object X gives rise to a simplicial object j∗X.

As noted by Connes [55], cyclic objects are intimately related to objects with a circle
action (see also [151], [74], [27], [19] and [268]). In analogy with the standard n-simplices
∆[n] = {[q] 7→ ∆([q], [n])}, we define the cyclic sets

Λ[n] = Λ(−, [n]) : Λo → Ens .
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We identify the circle group T = |S1| and R/Z under the isomorphism induced by the
inclusion ∆1 ∼= [0, 1] ⊆ R (the first homeomorphism is projection onto the first coordinate
from the 1-simplex ∆1 = {(x, y) ∈ R2|x+ y = 1, x ≥ 0, y ≥ 0}).

The starting point for the connection to T-spaces (topological spaces with a circle
action) is the following lemma, whose proof may be found, for instance, in [74, 2.7].

Lemma 1.1.1 For all n, |j∗Λ[n]| is a T-space naturally (in [n] ∈ obΛo) homeomorphic to
T× |∆[n]|. .. '!&"%#$����

This gives us the building blocks for a realization/singular functor pair connecting the
category T-Top∗ of (pointed) T-spaces with (pointed) cyclic sets:

T-Top∗

|−|Λ
⇆
sinΛ

Ens∗
Λo

given by sending a cyclic set X to

|X|Λ =

∫ [q]∈Λo

|j∗Λ[q]|+∧Xq
∼=
∨

[q]∈Λo

|j∗Λ[q]|+∧Xq/ ∼

(where σ∧φ∗x ∼ φ∗σ∧x for φ ∈ Λ([p], [q]), σ ∈ |j∗Λ[p]| and x ∈ Xq) considered as a pointed
T-space through Lemma 1.1.1, and by sending a pointed T-space Z to

sinΛ Z = {[q] 7→ (T-Top∗)(|j
∗Λ[q]|+, Z)}.

An equivalent way of stating this is to say that the realization is the left Kan extension in

Λ
q 7→|j∗Λ[q]|+//

y

��

T-Top∗

Ens∗
Λo

99

.

Letting U be the forgetful functor from T-spaces to pointed topological spaces (right
adjoint to T+∧−) we get

Lemma 1.1.2 There are natural isomorphisms

j∗ sinΛ Z ∼= sin(UZ) and U |X|Λ ∼= |j
∗X|

where X is a pointed cyclic set and Z a pointed T-space.

Proof: The first follows by the isomorphism |Λ[q]|Λ ∼= T × |∆[n]|, and the adjointness of
U with T+∧−; and the second is formal and follows by writing out the definitions.
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If one is familiar with coends a formal writeup of the second isomorphism reads quite
compactly

U |X|Λ =

∫ [q]∈Λo

|j∗Λ[q]|+∧Xq
∼=

∫ [s]∈∆o

|∆[s]|+∧

∫ [q]∈Λo

|Λ(j[s], [q])|+∧Xq

∼=

∫ [s]∈∆o

|∆[s]|+∧j
∗Xs = |j∗X|,

where we have used that |j∗Λ[q]| =
∫ [s]∈∆o

|∆[s]| × Λ(j[s], [q]) and “Fubini’s theorem”
(saying that coends commute) in the first isomorphism and the “dual Yoneda lemma” in
the second isomorphism.

These isomorphisms will mean that we won’t be fanatical about remembering to put
the subscript Λ on sin and | − |.

The functor j∗ from cyclic to simplicial sets given by precomposition with j : ∆o ⊆ Λo

has a left adjoint j∗ (it also has a right adjoint, but that is not important to us right now).
We have already encountered j∗ in section V.3.3.

If C is a category with finite coproducts we get an adjoint pair

CΛo
j∗
⇆
j∗
C∆o

where j∗ is the cyclic bar construction (with respect to the coproduct ∨) j∗ = Bcy
∨ given in

degree q by (j∗X)q =
∨
Cq+1

Xq, but with a twist in the simplicial structure. To be precise,
consider the bijection

Λ([m], [n])
f 7→ψ(f)=(ψ∆(f),ψC(f))
−−−−−−−−−−−−−−→ ∆([m], [n])× Cm+1

∼= (j∗∆[n])m,

where the components are given by the unique factorization of maps in Λ. The inverse of
ψ is given by composition: ψ−1(σ, ta) = σta. Hence we can identify Λ[n] with j∗∆[n] where
the latter has the cyclic structure φ∗ ((σ, ta)) = ψ(σtaφ). In general, for y ∈ (j∗X)m in the
ta-summand this reads φ∗ (y) = φ∆(taφ)∗y in the ψC(taφ)-summand.

The adjoint of the first isomorphism in Lemma 1.1.2 then reads

Lemma 1.1.3 There is a natural isomorphism

|j∗Y |Λ ∼= T+∧ |Y |

where Y is a simplicial set.

Lemma 1.1.4 Let X be a pointed cyclic set. Then

lim
←−
Λo
X ∼= {x ∈ X0|s0x = ts0x} ∼= |X|

T

Λ
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Proof: The first equation is a direct calculation, and the second equation follows from the
adjunction isomorphism |X|TΛ = (T-Top∗)(S

0, |X|Λ) ∼= EnsΛo

∗ (S0, X) = lim←−
Λo
X.

Note in particular that if we consider a cyclic space as a simplicial cyclic set, then the
formula always holds true if applied degreewise. For those who worry about the difference
between spaces (simplicial sets) and topological spaces, we note that if G is a finite discrete
group and X a simplicial G-set, then the two fixed-point constructions |XG| and |X|G are
naturally homeomorphic (realization commutes with finite limits, A.1.1.1), and if K is a
topological group and Y is a K-space, then sin

(
Y K
)

and (sinY )sinK are equal as subspaces
of sin Y : a simplex y : |∆[n]| → Y factors through Y K if and only if for all k : |∆[n]| → K
and t ∈ |∆[n]| we have k(t) · y(t) = y(t).

1.2 The edgewise subdivision

If S and T are finite ordered sets, then their concatenation S ⊔ T is the disjoint union of
S and T with the ordering given by declaring that the canonical inclusions S and T into
S ⊔T are order preserving, and that any element in the image of S is considered to be less
than any element in the image of T .

Let a be a natural number. The edgewise subdivision functor sda : ∆ → ∆ is the
composite of the diagonal ∆→ ∆×a with the functor ∆×a → ∆ which sends (S1, . . . Sa) to
the concatenation S1 ⊔ · · · ⊔ Sa. Note that sda[k − 1] = [ka− 1].

If X is a simplicial object, then sdaX is the simplicial object obtained by precomposing
with sda. As an example, let X be the one-simplex ∆[1]. Then sda∆[1] has a+ 1 vertices
(namely the elements of ∆([a − 1], [1])), it has a non-degenerate 1-simplices (namely the
elements in ∆([2a − 1], [1]) that take the value 0 an odd number of times) and no non-
degenerate k-simplices for k > 1. Explicitly, sda∆[1] is the result of gluing a copies of ∆[1]
end-to-end.

The edgewise subdivision is a subdivision in the following sense. Recall the topological
standard n-simplex ∆n = {(x0, . . . , xn) ∈ Rn+1|xi ≥ 0 for all i = 0, . . . , n,

∑n
i=0 xi = 1}.

Consider the map da : ∆n−1 → ∆an−1 sending x to the diagonal 1
a
(x, . . . , x) ∈ (Rn)a = Ran.

Lemma 1.2.1 Let X be a simplicial set. The map of geometric realizations Da : |sdaX| →
|X| induced by 1× da : Xan−1 ×∆n−1 → Xan−1 ×∆an−1 is a homeomorphism.

Proof: One first check directly that Da is well defined, and then that it induces a home-
omorphism when X is the one-simplex ∆[1]. Then one uses that ∆[n] is a retract of the
n-fold product ∆[1]n to establish the lemma in the case when X = ∆[n]. Now, since any
simplicial set is built out of simplices and the map Da is natural in X, the general result
follows.

This construction extends to the cyclic world as follows. Let Λa be the category defined
exactly as Λ, except that whereas AutΛ([n−1]) = Cn (with generator tn−1), AutΛa([n−1]) =
AutΛ([an− 1]) = Can, see [27, Section 1]. In more detail, Λa and ∆ have the same objects
and Λa([n], [q]) = ∆([n], [q]) × Ca(n+1) where Ca(n+1) is the cyclic group with generator
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t = t(a,n) and with t
a(n+1)
(a,n) = 1[n]. Here a pair (σ, tk) is considered as a composite

[n]
tk
−−−→ [n]

σ
−−−→ [q].

Composition is subject to the extra relations

t(a,n)d
i = di−1t(a,n−1) 1 ≤ i ≤ n

t(a,n)d
0 = dn

t(a,n)s
i = si−1t(a,n+1) 1 ≤ i ≤ n

t(a,n)s
0 = snt2(a,n+1).

Notice that Λ1 is nothing but Connes’ category Λ, and that the displayed equations above
are common for all a (which justifies that we occasionally will write tn instead of t(a,n)). As
before, j = ja : ∆ ⊆ Λa is the inclusion, and if X is a functor from Λo

a to some category, the
simplicial object obtained by precomposing with j is denoted j∗X. In particular, if Λa[q] is
the functor [n] 7→ Λa([n], [q]), the simplicial set j∗Λa[q] has a(q+1) nondegenerate (q+1)-

simplices, namely sq−it
k(q+2)+i+1
(a,q+1) ∈ Λa([q+1], [q]) for i = 0, . . . , q and k = 0, . . . , a−1. From

the relations above, we see that tn+1
(a,n) commutes with the face and degeneracy maps, and

so if φ ∈ ∆([m], [n]), then we get that φtm+1
(a,m) = tn+1

(a,n)φ. Hence Λa contains a subcategory
which we may identify with ∆ × Ca, and any functor from Λo

a comes naturally with a
Ca-action when viewed as a simplicial object. For instance, j∗Λa[q] has the structure of
a simplicial Ca-set. To look at examples we can visualize, j∗Λ2[0] has two nondegenerate
1-simplices s0t1 and s0t31 joined at the vertices 1 = t20 and t0 to form a circle, and we may
picture the simplicial C2-set j

∗Λ2[1] as follows:

d1t20 d0t20
t41oo

d1t0

d1s0t31

OO

t31

<<zzzzzzzz
d0t0

d0s0t31

OO

t21

oo

d1

d1s0t1

OO

t1

<<yyyyyyyy

d0

d0s0t1

OO

1
oo

(where the unmarked 2-simplices are
s0t52 s

1t42
s0t22 s

1t2
and where the top 1-simplex t41 : [1] → [1]

is identified with the bottom 1-simplex), which we recognize as a model for the cylinder
R/2Z×∆1. For a > 2 the picture is just the same: take the bottom square and precompose

its j-simplices with t
k(j+1)
j for k = 0, . . . , a− 1 and stack the squares on top of each other

to see that we have a homeomorphism of realizations |j∗Λa[1]| ∼= R/aZ×∆1.
The subdivision functor extends as

∆
sda−−−→ ∆

jab

y jb

y

Λab
sd

Λab
a−−−→ Λb
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by declaring that sdΛab
a is the identity on the automorphisms AutΛab([n−1]) = AutΛb([an−

1]) = Cabn.
All together, we get the following lemma (see also [27, Section 1]):

Lemma 1.2.2 There is a homeomorphism |j∗Λb[q]| ∼= R/bZ×∆q of Cb-spaces (under the
isomorphism Z/bZ ∼= Cb taking 1 to tb). If X is a Λb-set, this homeomorphism induces
an R/bZ-action on the realization |j∗X| which agrees with the simplicial Cb-action. Fur-
thermore, the homeomorphism Da : |sdaj

∗X| → |j∗X| of Lemma 1.2.1 is equivariant in the
sense that Da(s+ abZ) · x) = ( s

a
+ bZ) ·Da(x).

Exactly the same considerations hold in the pointed case.

1.3 The restriction map

Let A be an S-algebra and X a space. We will now define an important cyclic map

R : sdqTHH (A,X)Cq → THH (A,X),

called the restriction map. This map is modeled on the fact that if C is a group and
f : Z → Y is a C-map, then f sends the C-fixed points to C-fixed points; and hence we
get a map

Map∗(Z, Y )C → Map∗(Z
C , Y C)

by restricting to fixed points. Notice that the (j−1)-simplices of sdaTHH (A,X) are given
by

THH (A,X)aj−1 = holim
−−−−−−−−−−−−−−−−→
xk,l∈I,1≤k≤a,1≤l≤j

Map∗(
∧

k,l

Sxk,l, X∧V (A)(xk,l)),

where we, as before, use the notation V (A)(xk,l) =
∧
k,lA(Sxk,l) and where an a× j-tuple

{xk,l} of elements in I represents the element in Iaj whose (jk + l)-th coordinate is xk,j.
The Ca-fixed points under the action on Iaj are exactly the image of the diagonal Ij → Iaj

sending x to xa = (x, . . . ,x), and the Ca-fixed points are given by

THH (A,X)Caaj−1
∼= holim
−−−−−−−−−→
(x1,...,xj)∈I

j

Map∗

(
(
∧

1≤i≤j

Sxi)∧a, X∧V (A)((x1, . . . , xj)
a)

)Ca

.

Note the Ca-equivariant isomorphism

V (A)((x1, . . . , xj)
a) ∼= V (A)(x1, . . . , xj)

∧a ∼= (
∧

1≤i≤j

A(Sxi))∧a.

In the mapping space, both the domain and target are a-fold smash products with Ca-
action given by permutation (except for the Ca-fixed space X which just stays on for the
ride) and so we get a restriction map to the mapping space of the fixed points:

Map∗(
∧

1≤i≤j

Sxi, X∧V (A)(x1, . . . , xj)).
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Taking the homotopy colimit we get a map sdaTHH (A,X)Caj−1 → THH (A,X)j−1 which
assembles to a cyclic map

R : sdaTHH (A,X)Ca → THH (A,X)

giving the pair (THH (A,X), R) the structure of an epicyclic space in the following sense:

Definition 1.3.1 An epicyclic space (Y, φ) is a pointed cyclic space Y equipped with
pointed simplicial maps

φq : (sdqY )Cq → Y

for all q ≥ 1 satisfying

1. φqt = tφq (which implies that φq(Y
Caq
qaj−1) ⊆ Y Ca

aj−1),

2. φaφq = φaq : Y
Caq
aqj−1 → Yj−1 and

3. φ1 = 1.

Note that φq can be regarded as a cyclic map (sdqY )Cq → Y , and also as a Ca-
equivariant simplicial map (sdaqY )Cq = sda((sdqY )Cq) → sdaY for any a. For a ≥ 1,
consider the T-space

Y 〈a〉 = |(sdaY )Ca |.

In addition to the map φq : Y 〈aq〉 → Y 〈a〉 we have a map – the “inclusion of fixed points”
– given as iq : Y 〈aq〉 ∼= |Y |

Cqa ⊆ |Y |Ca ∼= Y 〈a〉. By the definition of an epicyclic space we
get that these maps obey the following relations

φqφr = φqr, φ1 = i1 = id,
iqir = iqr, iqφr = φriq.

In other words, a 7→ Y 〈a〉 is a functor to topological spaces from the category RF :

Definition 1.3.2 Let RF be the category whose objects are the positive integers, and
where there is a morphism fr,s : a→ b whenever a = rbs for positive integers r and s, with
composition fr,s ◦ fp,q = frp,qs. An epicyclic space (Y, φ) gives rise to a functor from RF
to spaces by sending a to Y 〈a〉, fq,1 to φq and f1,q to iq. Sloppily, we write R = Rr = fr,1
and F = F r = f1,r for any unspecified r (and range), hence the name of the category. For
any given prime p, the full subcategory of RF containing only the powers of p is denoted
RFp.

Example 1.3.3 We have seen that topological Hochschild homology defines an epicyclic
space, and a map of S-algebras gives rise to a map respecting the epicyclic structure.

Another example is the cyclic nerve. Let C be any (small simplicial) category, and
consider the cyclic nerve BcyC discussed in section IV1.5.1. This is a straight-forward
generalization of the cyclic bar construction of a monoid:

Bcy
q C = {cq ← c0 ← c1 ← · · · ← cq−1 ← cq ∈ C}
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with face and degeneracies given by composition and insertion of identities, and with cyclic
structure given by cyclic permutation. This is a cyclic set, and |BcyC|T ∼= lim←−

Λo
BcyC = obC

where an object is identified with its identity morphism in Bcy
0 C. The fixed point sets under

the finite subgroups of the circle are more interesting as (sdrB
cyC)Cr ∼= BcyC. In fact, an

element x ∈ (sdrB
cyC)q−1 = Bcy

rq−1C which is fixed by the Cr-action must be of the form

cq
f1
←− c1

f2
←− . . .

fq
←− cq

f1
←− c1

f2
←− . . .

fq
←− cq

f1
←− c1

f2
←− . . .

fq
←− cq

and we get an isomorphism φr : (sdrB
cyC)Cr ∼= BcyC by forgetting the repetitions. This

equips the cyclic nerve with an epicyclic structure, and a functor of categories gives rise to
a map of cyclic nerves respecting the epicyclic structure.

An interesting example is the case where A is an S-algebra and C is the simplicial
monoid M = THH 0(A) = holim−−→

x∈I
ΩxA(Sx). We have a map BcyM → THH (A) given by

smashing together functions

∏

0≤i≤q

holim
−−−→
xi∈I

ΩxiA(Sxi)→ holim
−−−−−→
x∈Iq+1

Ω∨x
∧

0≤i≤q

A(Sxi).

This map preserves the epicyclic structure.

Remark 1.3.4 Our notion of an epicyclic space is not the same as the one proposed in
[103], and which later was used by Burghelea, Fiedorowicz, and Gajda in [48] to com-
pare Adams operators. This older definition generalized the so-called power maps Pq =
φ−1
q : BcyC → (sdqB

cyC)Cq instead. Cyclic nerves are epicyclic spaces under either defini-
tion, but topological Hochschild homology only gives rise to an epicyclic structure under the
current definition.

Remark 1.3.5 An epicyclic space (Y, φ) is more than a functor from RF to spaces. In
fact, as each (sdaY )Ca is again a cyclic space, each Y 〈a〉 = |(sdaY )Ca | comes equipped with
a T-action. However, Y 〈a〉 is not a functor to T-spaces: the inclusion of fixed point spaces
under the finite subgroups of T is not T-equivariant, but speeds up the action. We may
encode this as a continuous functor sending θ ∈ R/Z = T to ρθ : Y 〈a〉 → Y 〈a〉 with the
additional relations

φqρθ = ρθφq, iqρθ = ρqθiq, ρθρτ = ρθ+τ .

This can again be encoded in a topological category SRF with objects the natural numbers
and morphisms SRF(a, b) = T×RF(a, b). Composition is given by

(θ, fr,s)(τ, fp,q) = (θ + sτ, frp,qs).

Sending θ to ρθ we see that any epicyclic space give rise to a continuous functor a 7→ Y 〈a〉
from SRF to topological spaces. In the MSRI notes [105] Goodwillie defines

TC(A,X) = {k 7→ holim
←−−−−−
a∈SRF

|sdaTHH (A, Sk∧X)Ca |}
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(the homotopy limit remembers the topology in T), and gives a proof that this elegant defi-
nition agrees with the one we are going to give. The only reasons we have chosen to refrain
from giving this as our definition is that our definition is custom built for our application
(and for computations), and the proof that they agree would lengthen the discussion further.

1.4 Properties of the fixed point spaces

We now make a closer study of the Cq-fixed point spaces of THH . The most important
result is Proposition 1.4.2, often referred to as “the fundamental cofibration sequence”
which guarantees that the actual (and not just the homotopy) fixed point spaces will have
good homotopical properties.

Definition 1.4.1 Let
T 〈 〉(A,X) : RF → S∗

with T 〈a〉(A,X) = sin |sdaTHH (A,X)Ca |, be the functor associated with the epicyclic
space (THH (A,X), R). We set R = Rr = T 〈fr,1〉 (for “Restriction”, which it is) and
F = F r = T 〈f1,r〉 (for “Frobenius”, see section 3.2.9), which here is the inclusion of fixed
points

T 〈rq〉(A,X) ∼= sin |THH (A,X)|Crq ⊆ sin |THH (A,X)|Cq ∼= T 〈q〉(A,X)).

Since this is a simplicial functor in X we have an associated spectrum

T 〈a〉(A,X) = {k 7→ T 〈a〉(A, Sk∧X)}.

Variants of T 〈a〉(A,X) are denoted TRa(A,X) by some authors.
Remember that each T 〈a〉 can be considered as functors to cyclic spaces (but they do

not assemble when varying a). We will not distinguish notationally whether we think of
T 〈a〉(A,X) as a simplicial or cyclic space, and we offer the same ambiguity to T (A,X) =
T 〈1〉(A,X).

The spectra T 〈a〉(A,X) are Ω-spectra for all positive integers a and are homotopy
functors in A. This important fact can be seen by analyzing the restriction maps as in
Proposition 1.4.2 below, establishing the “fundamental cofiber sequence” (“cofiber” since
the result is most often used in the spectrum version where cofiber and fiber sequences
agree). A variant of this proposition was proven by Madsen in a letter to Hsiang around
1988. It does play a role in [27], but only in the form of the Segal–tom Dieck splitting of
the fixed point set of an equivariant suspension spectrum, c.f [256] and [286]/[287].

The fundamental cofibration sequence is vital for all calculations of TC, and appears as
Theorem 1.10 in Bökstedt and Madsen’s first paper [28] on the topological cyclic homology
of the integers. In [105] it is used to simplify many of the arguments in [27]. This is how
we will use it. For instance, the mentioned properties of the T 〈a〉(A,X)-spectra follows as
corollaries, noting that homotopy orbits preserve equivalences.
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Proposition 1.4.2 Let p be a prime. Then there is a chain of natural equivalences from
the homotopy fiber of

T 〈pn〉(A,X)
R
−−−→ T 〈pn−1〉(A,X)

to sdpnT (A,X)hCpn . Indeed, for each j, the homotopy fiber of

(sdpnTHH (A,X)Cpn )j−1
R
−−−→ (sdpn−1THH (A,X)Cpn−1 )j−1

is naturally weakly equivalent to holim−→
k

Ωk((sdpnTHH (A, Sk∧X)j−1)hCpn ).
More generally, if q is a positive integer, consider the category D(q) whose objects are

positive integers dividing q, and where there is a unique map r → s if s divides r. The
homotopy fiber of the map

T 〈q〉(A)→ holim
←−−−−−−−
16=r∈D(q)

T 〈q/r〉(A)

induced by the restriction maps is connected to T (A)hCq by a natural chain of levelwise
equivalences.

Proof: Since maps of simplicial spaces that induce weak equivalences in every degree induce
weak equivalences on diagonals (Theorem A.5.0.2) the first statement follows from the
second. Let q = pn, G = Cq and H = Cp. For x ∈ Ij , let

Z(x) =

(
∧

1≤i≤j

Sxi

)∧q
, and W (x) = X∧

(
∧

1≤i≤j

A(Sxi)

)∧q
.

By the approximation Lemma II.2.2.3, the (homotopy) fiber of the restriction map R is
naturally equivalent to

holim
−−−→
x∈Ij

hofib{Map∗(Z(x),W (x))G → Map∗(Z(x)H ,W (x)H)G/H}

which, by the canonical isomorphism

Map∗(Z(x)H ,W (x)H)G/H ∼= Map∗(Z(x)H ,W (x))G

is isomorphic to
holim
−−−→
x∈Ij

Map∗(U(x),W (x))G

where U(x) = Z(x)/(Z(x)H). As U(x) is a free finite based G-complex, Corollary 2.2.7
below tells us that there is a natural chain of maps

Map∗(U(x),W (x))G −−−→ Map∗(U(x), lim
−→
k

Ωk(Sk∧W (x)))G

∼
←−−− lim

−→
k

(ΩkMap∗(U(x), Sk∧W (x))hG),
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and that the first map is
∑

x− 1 connected. Furthermore, the cofiber sequence Z(x)H ⊆
Z(x)→ U(x) = Z(x)/(Z(x)H) induces a fiber sequence

Map∗(U(x), Sk∧W (x)) −−−→ Map∗(Z(x), Sk∧W (x)) −−−→ Map∗(Z(x)H , Sk∧W (x)).

Since Z(x)H is xq/p-dimensional and Sk∧W (x) is xq + k − 1-connected, the first map in
the fiber sequence is x(q − q/p) + k − 1-connected, and since, by Lemma A.6.3.1, taking
homotopy orbits preserves connectivity we get that the map

Ωk(Map∗(U(x), Sk∧W (x))hG)→ Ωk(Map∗(Z(x), Sk∧W (x))hG)

is x(q−q/p)−1-connected. Taking the homotopy colimit over Ij , this gives the statement
for fixed j and prime p.

The proof of the statement for composite q is obtained quite similarly, letting G = Cq,
Z(x) andW (x) be as before, but forgetting that q was a prime power. Assume by induction
that the statement has been proven for all groups of cardinality less than G, and so that
all for these groups the fixed point spectra of THH are homotopy functors and Bökstedt’s
approximation lemma applies.

This means that the canonical map

holim
−−−→
x∈Ij

holim
←−−−−−
06=H⊂G

Map∗(Z(x)H ,W (x)H)G/H −−−→ holim
←−−−−−
06=H⊂G

holim
−−−→
x∈Ij

Map∗(Z(x)H ,W (x)H)G/H

is an equivalence. The right hand side is isomorphic to

holim
←−−−−−
06=H⊂G

(
holim
−−−−−−−−→
x∈Ij·|G/H|

Map∗(Z(x)H ,W (x)H)

)G/H

= holim
←−−−−−
06=H⊂G

sd|G/H|THH (A,X)G/H ,

and the left hand side is isomorphic to

holim
−−−→
x∈Ij

holim
←−−−−−
06=H⊂G

Map∗(Z(x)H ,W (x))G

which is equivalent to
holim
−−−→
x∈Ij

Map∗(∪06=H⊂GZ(x)H ,W (x))G

(the union can be replaced by the corresponding homotopy colimit). Via this equivalence,
the homotopy fiber of

sd|G|THH (A,X)Gj−1 −−−→ holim
←−−−−−
06=H⊂G

sd|G/H|THH (A,X)
G/H
j−1

is equivalent to
holim
−−−→
x∈Ij

Map∗(U(x),W (x))G,

where U(x) = Z(x)/∪06=H⊂G Z(x)H . Then the same argument leads us to our conclusion,
using that U(x) is a free finite based G-space.
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Corollary 1.4.3 Let q be a positive integer, A → B a map of S-algebras inducing an
equivalence THH (A) → THH (B) and X a space (in particular, A → B may be a stable
equivalence). Then

1. the induced map T 〈q〉(A,X)→ T 〈q〉(B,X) is an equivalence,

2. T 〈q〉(A,X) is a connective Ω-spectrum,

3. T 〈q〉(−, X) is Morita invariant and

4. T 〈q〉(−, X) preserves products up to levelwise equivalence.

Proof: This follows by Proposition 1.4.2 and the corresponding properties of THH , plus the
fact that homotopy orbits preserve loops and products of spectra up to stable equivalence.

1.4.4 ΓS∗-categories

Essentially just the same construction can be applied to the case of ΓS∗-categories.
If C is a ΓS∗-category, THH (C, X) also has its restriction map R, and (THH (C, X), R)

is an epicyclic space: If x ∈ Iq, then we have a restriction map

(Ω∨x
a

(X∧V (C)(xa)))Ca → Ω∨x(X∧V (C)((xa))Ca)

as before, and note the canonical isomorphism V (C)(xa)Ca ∼= V (C)(x). Proceeding just as
for S-algebras we see that

a 7→ T 〈a〉(C, X) = sin |sdaTHH (C, X)Ca |

defines a functor from the category RF of definition 1.3.2 (or better: a continuous functor
from the topological category SRF of Remark 1.3.5) to spaces.

Lemma 1.4.5 Let C be a ΓS∗-category and X a space. If p is a prime, the restriction map
R fits into a fiber sequence

T (C, X)hCpn −−−→ T 〈pn〉(C, X)
R
−−−→ T 〈pn−1〉(C, X).

More generally, if a is a positive integer we have a fiber sequence

T (C, X)hCa → T 〈a〉(C, X)→ holim
←−−−
16=r|q

T 〈q/r〉(C, X)

induced by the restriction map and where the homotopy limit is over the positive integers
r dividing q.

Proof: Exactly the same proof as for the S-algebra case proves that this is indeed true in
every simplicial degree.

As before, this gives a series of corollaries.
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Corollary 1.4.6 Let a be a positive integer and X a space. Any ΓS∗-functor F : C → D
inducing an equivalence THH (C)→ THH (D) induces an equivalence

T 〈a〉(C, X)→ T 〈a〉(D, X). .. '!&"%#$����

Corollary 1.4.7 Let C be a ΓS∗-category, a a positive integer and X a space. Then

1. T 〈a〉(C, X) is a connective Ω-spectrum,

2. the functor T 〈pn〉(−, X) takes ΓS∗-equivalences of categories to equivalences,

3. If A is a ring, then the inclusion A ⊆ PA as a rank one module induces an equivalence
T 〈a〉(A,X)

∼
→ T 〈a〉(PA, X) and

4. T 〈a〉(−, X) preserves products up to equivalence. .. '!&"%#$����

Corollary 1.4.8 Let a be a positive integer and X a space. If C is a symmetric monoidal
ΓS∗-category, then T 〈a〉(H̄C, X) = {k 7→ T 〈a〉(H̄C(Sk), X)} is an Ω-spectrum, equivalent
to T 〈a〉(C, X).

Proof: That T 〈a〉(H̄C, X) is an Ω-spectrum follows for instance from 1.4.7.2 and 1.4.7.4
since H̄C(k+) is ΓS∗-equivalent to C×k. That the two Ω-spectra are equivalent follows by
comparing both to the bispectrum T 〈a〉(H̄C, X).

Corollary 1.4.9 If C is an additive category, then

T 〈a〉(H̄C, X)→ {k 7→ T 〈pn〉(S(k)C, X)}

is an equivalence of Ω-spectra.

Proof: Follows by Corollary 1.4.6 since THH (H̄C(Sk), X)→ THH (S(k)C, X) is an equiv-
alence by IV.2.5.10.

1.5 Spherical group rings

In the special case of spherical group rings II.1.4.4.2 the restriction maps split, making it
possible to give explicit models for the Cpn-fixed point spectra of topological Hochschild
homology.

Lemma 1.5.1 The restriction maps split canonically for spherical group rings.

Proof: Let G be a simplicial group. We will prove that, for each space X and positive
integers a and b, the restriction map sdabTHH (S[G], X)Cab → sdaTHH (S[G], X)Ca splits.
We fix an object x ∈ Ij , and consider the restriction map

Map∗

((∧j
i=1 S

xi

)∧ab
, X∧

(∧j
i=1(S

xi∧G+)
)∧ab)Cab

y

Map∗

((∧j
i=1 S

xi

)∧a
, X∧

(∧j
i=1(S

xi∧G+)
)∧a)Ca

.
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Let S =
(∧j

i=1 S
xi

)∧a
and n = a · | ∨ x|, and consider the isomorphism

|S∧b| ∼= |S|∧S⊥

coming from the one-point compactification of

Rn ⊗Rb ∼= Rn ⊗ (diag⊕ diag⊥) ∼= Rn ⊕ (Rn ⊗ diag⊥)

where diag ⊆ Rb is the diagonal line. The desired splitting

Map∗(S,X∧S∧G
×ja
+ )Ca → Map∗(S

∧b, X∧S∧b∧G×jab+ )Cab

is determined by sending f : |S| → |X∧S∧G×ja+ | to

|S∧b| ∼= |S|∧S⊥
f∧id
−→ |X∧S∧G×ja+ |∧S

⊥ ∼= |X|∧|S|∧S⊥∧|G
×ja
+ |

∼= |X∧S∧b∧G
×ja
+ |

id∧diag
−→ |X∧S∧b∧G×jab+ |,

where the isomorphisms beside the above chosen splitting of |S∧b| are induced by permuting
smash factors and using that smash commutes with realization.

Example 1.5.2 To see how the isomorphism |S|∧b ∼= |S|∧S⊥ of the above proof works,
consider the following example.

Let S = S1 and identify |S| with the one-point compactification of R, let b = 2. Then
|S∧2| ∼= |S|∧S⊥ is obtained by one-point compactification of

R2 ∼= R⊕R, [ ab ] 7→ ((a + b)/2, (a− b)/2)

and the Z/2-action is trivial in the first factor and mult by −1 in the other. Notice that if
f : |S| → |X∧S∧G+| sends a to xa∧sa∧ga, then the composite

|S2| ∼= |S|∧S⊥
f∧id
−−−→ |X∧S∧G+|∧S

⊥ ∼= |X∧S2∧G+| → |X∧S
2∧G×2

+ |

sends [ ab ] to
x(a+b)/2∧s(a+b)/2∧g(a+b)/2∧(a− b)/2

in |X∧S∧G+|∧S
⊥ to

x(a+b)/2∧
[
s(a+b)/2+(a−b)/2

s(a+b)/2−(a−b)/2

]
∧g(a+b)/2

in |X∧S2∧G+|, and finally to

x(a+b)/2∧
[
s(a+b)/2+(a−b)/2

s(a+b)/2−(a−b)/2

]
∧g(a+b)/2∧g(a+b)/2

in |X∧S2∧G×2
+ |.

Exchanging a and b in this formula transforms it to

x(a+b)/2∧
[
s(a+b)/2−(a−b)/2

s(a+b)/2+(a−b)/2

]
∧g(a+b)/2∧g(a+b)/2.
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From the splitting of Lemma 1.5.1 and from the fundamental cofibration sequence 1.4.2
we get the following “Segal–tom Dieck” calculation of the fixed points:

Corollary 1.5.3 Let a be a positive integer. The splitting of the restriction map induces
a natural equivalence ∨

r|a

|THH (S[G])|hCr → |THH (S[G])|Ca ,

where the sum ranges over the positive integers r dividing a. Under this equivalence, the
restriction map corresponds to the projection. .. '!&"%#$����

Coupled with the equivalence THH (S[G]) ≃ S[Bcy(G)] of example IV.1.2.12, this gives
an effective calculation of the fixed points of topological Hochschild homology of spherical
group rings. The inclusion of fixed points maps F and their relation to this splitting are
discussed in 3.2.10 below.

2 (Naïve) G-spectra

Let G be a simplicial monoid. The category of G-spectra, GSpt is the category of simplicial
functors from G to the category of spectra. A map of G-spectra is called a levelwise (resp.
stable) equivalence if the underlying map of spectra is.

For a compact Lie group G, this notion of G-spectra is much less rigid than what most
people call G-spectra (see e.g., [173]), and they would prefer to call these spectra something
like “naïve pre-G-spectra”. To make it quite clear: in our setup, a G-spectrum X is just
a normal spectrum with an action by G: a sequence of G-spaces together with structure
maps S1∧Xn → Xn+1 that are G-maps. A map of G-spectra X → Y is simply a collection
of G-maps Xn → Y n commuting with the structure maps.

Again, G-spectra form a simplicial category, with function spaces given by

GSpt0(X, Y ) = {[q] 7→ GSpt(X∧∆[q]+, Y )}.

Even better, it has function spectra

GSpt(X, Y ) = {k 7→ GSpt0(X, Y k+?)},

where Y k+? is the shifted spectrum {n 7→ Y k+n}.
If X is a G-spectrum we could define the homotopy orbit and fixed point spectra

levelwise, i.e., XhG would be {k 7→ (Xk)hG)} and “XhG” would be {k 7→ (Xk)hG}. These
construction obviously preserve levelwise equivalences, but just as the homotopy limit
naïvely defined (without the sin |−|, see Appendix A.6) may not preserve weak equivalences,
some care is needed in the stable case.

Levelwise homotopy orbits always preserve stable equivalences (they preserve level-
wise equivalences by Lemma A.8.2.2 stable equivalences by the method of the proof of
Lemma A.6.4.9). On the other hand, without some adjustments levelwise homotopy
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fixed points may not. However, if the spectrum X is an Ω-spectrum, stable and level-
wise equivalences coincide, and this may always be assured by applying the construction
QX = {k 7→ QkX = lim−→n ΩnXk+n} of appendix A.2.2.3 (if we were operating with “gen-
uine G-spectra” the colimit would not have been over the natural numbers, but rather over
G-representations). This is encoded in the real definition.

Definition 2.0.4 Let G be a simplicial monoid and X a G-spectrum. Then the homotopy
orbit spectrum is given by

XhG = {k 7→ (Xk)hG)}

whereas the homotopy fixed point spectrum is given by

XhG = {k 7→ (QkX)hG}.

Since Q transforms stable equivalences to levelwise equivalences and homotopy fixed points
preserve weak equivalences of G-spaces we get.

Lemma 2.0.5 Let G be a simplicial monoid and f : X → Y a map of G-spectra. If f
is a stable equivalence of spectra, then fhG : XhG → YhG and fhG : XhG → Y hG are stable
equivalences. .. '!&"%#$����

If G is a simplicial group, we let EG be the free contractible G-space obtained by the
one sided bar construction, as Definition A.8.2.1 (since here G is a group and not a monoid,
we can choose either of the two sides of the bar construction), and recall that the homotopy
orbits and fixed point spaces are given by EG+∧GX

k and Map∗(EG+, X
k)G. The skeleton

filtration of EG gives rise to spectral sequences:

Lemma 2.0.6 Let G be a simplicial group and X a G-spectrum. The skeleton filtration
of EG gives rise to spectral sequences

E2
s,t = Hs(BG; πtX)⇒ πs+t(XhG)

and
E2
s,t = H−s(BG; πtX)⇒ πs+t(X

hG).

The homotopy orbit spectral sequence is a first quadrant spectral sequence and is strongly
convergent, whereas the homotopy fixed point spectral sequence is a second quadrant spectral
sequence and is conditionally convergent. The indexing is so that the differentials are of
the form dr : Er

s,t → Er
s−r,t+r−1.

.. '!&"%#$����

2.1 Circle and finite cyclic actions

If X is an S1-spectrum, we can also consider the homotopy fixed points under the finite
subgroups C ⊂ S1. For any simplicial group G, let EG be the free contractible G-space
obtained by applying the one-sided bar construction to G. Notice that ES1 is also a free
contractible C-space, and by Corollary A.8.2.4 Map∗(ES1

+, X)C → Map∗(EC+, X)C is an
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equivalence we can calculate XhC equally well as Map∗(ES1
+, X)C. Thus, if C ′ ⊆ C is a

subgroup, we can think ofXhC → XhC′
most conveniently as the inclusion Map∗(ES1

+, X)C ⊆
Map∗(ES1

+, X)C
′
.

Lemma 2.1.1 If X is an S1-spectrum and p some prime, then the natural map

XhS1

→ holim
←−r

XhCpr

is an equivalence after p-completion.

Proof: This is just a reformulation of A.6.6.4.

2.2 The norm map

The theory for finite groups has a nice continuation to a theory for compact Lie groups.
We will only need one case beyond finite groups: G = S1 = sin |S1|, and in an effort
to be concrete, we cover that case in some detail. In these cases the theory simplifies
considerably, so although some of the considerations to follow have more general analogs
(see e.g., [195], [173] or [116]) we shall restrict our statements to these cases, and we use
ideas close to [311]. We have to define the norm map ΣAd(G)XhG → XhG (where “Ad(G)”
is a place holder for the “adjoint representation”, which is of dimension 0 for finite groups
and is trivial and of dimension 1 for the circle group).

Lemma 2.2.1 Let G be a finite discrete group. Then the inclusion

S∧G+ →
∏

G

S ∼= S∗(G+,S)

of the finite wedge into the finite product is a stable equivalence and a G × G-map where
G×G acts on G to the left via (a, b) · g = a · g · b−1, and permutes the factors to the right
accordingly.

Proof: This is a special case of Corollary A.7.2.4.

Lemma 2.2.2 Let Y be a spectrum, and let the functorial (in Y ) S1 × S1-map of spectra

f ′ : S1
+∧Y −−−→ Map∗(S

1
+, S

1∧Y )

be the adjoint of the composite

S1
+∧S

1
+∧Y

µ∧1
−−−→ S1

+∧Y
pr∧1
−−−→ S1∧Y −−−→ sin |S1∧Y |

(where the last map is the adjoint of the map Y → S∗(sin |S1|, sin |S1∧Y |) induced by the
functor sin |S1∧ − |). Then f ′ is an equivalence of spectra.
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Proof: The diagram

Y l −−−→ S1
+∧Y

l pr
−−−→ S1∧Y l

y
y

y≃

Map∗(S
1, S1∧Y l)

pr∗

−−−→ Map∗(S
1
+, S

1∧Y l) −−−→ sin |S1∧Y l|

commutes, and both horizontal sequences are (stable) fiber sequences of spectra (when
varying l). The outer vertical maps are both stable equivalences, and the so the middle
map (which is the map in question) must also be a stable equivalence.

Corollary 2.2.3 If Y is a spectrum, then there are natural chains of stable equivalences
(S1

+∧Y )hS
1

≃ S1∧Y and (G+∧Y )hG ≃ Y , for G a finite group.

Proof: Lemma 2.2.2 gives us that

(S1
+∧Y )hS

1 ∼
→Map∗(S

1
+,S

1∧Y )hS
1

≃ Map∗(ES1
+∧S

1
+, Q(S1∧Y ))S

1

∼=Map∗(ES1
+, Q(S1∧Y )) ≃ Q(S1∧Y ) ≃ S1∧Y.

Likewise for the discrete case.
Let G be a simplicial group and assume given a functorial (in the spectrum Y ) G×G-

map
G+∧Y → Map∗(G+,Σ

aY )

which is a stable equivalence when Y is the sphere spectrum. When G is finite we use the
map from Lemma 2.2.1 and a = 0, and when G is the circle group we use the map from
Lemma 2.2.2 with a = 1.

The construction QnX = lim−→
k

ΩkXk+n of appendix A.2.2.3 sends this stable equiva-

lence to a weak equivalence Q0(S∧G+)
∼
→ Map∗(G+, Q

0(ΣaY )).
Since homotopy fixed points preserve equivalences we get an equivalence

S∗(S
a, Q0(G+∧S))h(G×G) ∼

−−−→ Map∗(G+∧S
a, Q0(ΣaS))h(G×G)

We have a preferred point ∆ in the latter space, namely the one defined by

E(G×G)+∧G+∧S
a → Sa → ΩkSk+a

where the first map is the (ath suspension of the) projection and the second map is the
adjoint to the identity. Note that, when G is finite, the homotopy class of ∆ represents
the “norm” in the usual sense:

[∆] ∼=
∑

g∈G

g ∈ Z[G] = π0Ω
l
∏

G

Sl.

Now, pick the G×G-map

f : E(G×G)+∧S
a → Q0(G+∧S)
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in S∗(E(G × G)+∧S
a, Q0(S∧G+))G×G of your choice in the component represented by ∆

(in the preliminary draft there was a lousy joke at this point).
Consider the composite φX

E(G×G)+∧S
a∧Xk f∧1

−−−→ Q0(G+∧S)∧Xk −−−→ Qk(G+∧X)
µ

−−−→ QkX,

where the middle map is induced by Ωn(Sn)∧Xk → Ωn(Sn∧Xk) → ΩnXn+k and the last
by the G-action on X. This is a G×G-map if we let the action on the source be given by
(g1, g2) · ((e1, e2)∧s∧x) = (g1e, g2e2)∧s∧g2x and on the target by (g1, g2) · x = g1x.

However, these actions are complementary and we get a factorization through the orbit
and fixed point spaces:

EG+∧S
a∧Xk −−−→ S∗(EG+, Q

kX)y
x

(XhG)k (EG+∧S
a∧Xk)/G

νX−−−→ S∗(EG+, Q
kX)G (XhG)k.

Proposition 2.2.4 Let G be a simplicial group, and assume given a choice of a map f as
above. Then the norm map

νX : Sa∧XhG → XhG

given above is natural in the G-spectrum X. In the homotopy category, the norm map is
independent of the choice of f , up to isomorphism.

Proof: The functoriality follows since all choices involved in producing this map was done
before we introduced X on the scene. The independence between two choices of f follows
by choosing a G×G-homotopy and tracing it through the construction.

Proposition 2.2.5 If G is a finite and discrete group and X a G-spectrum, then the
composite

X // //XhG
νX //XhG � � //QX

induces the endomorphism of π∗X given by multiplication with the norm element [∆] =∑
g∈G g ∈ π0(G+∧S). If X = G+∧Y with trivial G-action on Y , then the norm map is an

equivalence.

Proof: By the choice of f , we see that if G is finite, the map induces multiplication by
[∆] =

∑
g∈G g on the homotopy groups π∗X, in the sense that

π∗+k(E(G×G)+∧S
0∧Xk)

f∗∧1 //

��

π∗+kQ
0(G+∧S)∧Xk // π∗+kQ

k(G+∧X)
µ //

∼=
��

π∗+kQ
kX

π∗+kQ
kX

diagonal // Z[G]⊗ π∗+kQ
kX

multiplication

66mmmmmmmmmmmm

commutes, and the left vertical map stabilizes to an isomorphism. Since EG is a con-
tractible space, the same holds for the adjoint used in the definition of the norm.
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The last statement may be proven as follows. If X = G+∧Y then consider the commu-
tative diagram

π∗(G+∧Y ) −−−→ π∗(G+∧Y )hG −−−→ π∗(G+∧Y )hG −−−→ π∗(G+∧Y )

∼=

y ∼=

y ∼=

y ∼=

y
⊕

G π∗Y
∇
−−−→ π∗Y π∗Y

∆
−−−→

⊕
G π∗Y

where ∇(g 7→ yg) =
∑

g yg, and ∆(y) = {g 7→ y}. The “missing” arrow can of course be
filled in as the vertical maps are isomorphisms, but there is only one map π∗Y → π∗Y
making the bottom composite the norm, namely the identity.

We list two corollaries that we will need in the finite case.

Corollary 2.2.6 Let G be a finite discrete group, let U be a finite free pointed G-space
and Y a G-spectrum. Then the norm maps

(U∧Y )hG → (U∧Y )hG

and
S∗(U, Y )hG → S∗(U, Y )hG

are both equivalences.

Proof: Recall that a finite free pointed G-space is the result of adjoining finitely many
G-cells, c.f. A.8, so by induction on the number of G-cells it is enough to consider the
case U = Sn+∧G+. Use a shear map as in the proof Lemma A.8.2.3 to remove action from
Sn+∧Y and S∗(S

n
+, Y ) in the resulting expressions. Note the stable product to sum shift in

the last case. Finally, use Proposition 2.2.5.
We have one very important application of this corollary:

Corollary 2.2.7 Let G be a finite discrete group, let U be a finite free pointed G-space,
and X any pointed G-space. Then there is a chain of natural equivalences

lim
−→
k

Ωk(Map∗(U, S
k∧X)hG) ≃ Map∗(U, lim−→

k

Ωk(Sk∧X))hG.

If U is d-dimensional and X n-connected, then

Map∗(U,X)G → Map∗(U, lim−→
k

Ωk(Sk∧X))hG

is 2n− d+ 1 connected.

Proof: Recall that Map∗(−,−) = S∗(−, sin | − |). Corollary 2.2.6 tells us that the norm
map

lim
−→
k

Ωk(Map∗(U, S
k∧X)hG)

∼
−−−→ lim

−→
k

Ωk(lim
−→
l

ΩlMap∗(U, S
l∧Sk∧X))hG

is an equivalence, and the latter space is equivalent to Map∗(U, lim−→k ΩkSk∧X)hG by
Lemma A.1.5.3 since U and EG+ (and G) are finite. The last statement is just a re-
formulation of Lemma A.8.2.3 since X → lim−→

k
Ωk(Sk∧X) is 2n + 1 connected by the

Freudenthal suspension Theorem A.7.2.3.
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3 Topological cyclic homology.

In this section we will finally give a definition of topological cyclic homology. We first will
fix a prime p and define the pieces TC(−; p) which are relevant to the p-complete part
of TC, and later merge this information with the rational information coming from the
homotopy fixed points of the whole circle action.

3.1 The definition and properties of TC(−; p)

As an intermediate stage, we define the functors TC(−; p) which captures the information
of topological cyclic homology when we complete at the prime p. We continue to list the
case of an S-algebra separately, in case the reader feels uncomfortable with ΓS∗-categories.

Recall from 1.3.2 that RFp ⊂ RF is the full subcategory of powers of p.

Definition 3.1.1 Let p be a prime, A an S-algebra and X a space. We define

TC(A,X; p) = holim
←−−−−−−
pn∈RFp

T 〈pn〉(A,X)

This gives rise to the spectrum

TC(A,X; p) = holim
←−−−−−−
pn∈RFp

T 〈pn〉(A,X) = {k 7→ TC(A, Sk∧X; p)}.

If C is a ΓS∗-category we define

TC(C, X; p) = holim
←−−−−−−
pn∈RFp

T 〈pn〉(C, X)

with associated spectrum

TC(C, X; p) = holim
←−−−−−−
pn∈RFp

T 〈pn〉(C, X) = {k 7→ TC(C;Sk∧X; p)}.

If C is a symmetric monoidal ΓS∗-category we have a spectrum

TC(H̄C, X; p) = {k 7→ TC(H̄C(Sk), X; p)}

We get the analogs of the results in the previous chapter directly:

Lemma 3.1.2 Let C be a ΓS∗-category, X a pointed space and p a prime. Then

1. the spectrum TC (C, X; p) is an Ω-spectrum,

2. the functor TC (−, X; p) takes ΓS∗-equivalences of categories to equivalences,

3. if A is a ring, then the inclusion A ⊆ PA as a rank one module induces an equivalence
TC (A,X; p)

∼
→ TC (PA, X; p),
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4. the functor TC (−, X; p) preserves products up to levelwise equivalence,

5. if C → D is a ΓS∗-functor inducing an equivalence THH (C) → THH (D), then it
induces an equivalence

TC (C, X; p)→ TC (D, X; p),

6. if C is a symmetric monoidal ΓS∗-category, then TC(H̄C, X; p) is an Ω-spectrum
equivalent to TC (C, X; p).

Proof: This follows from the corresponding properties for T 〈pn〉 from section 1.4, c.f.
in particular Corollary 1.4.6, Corollary 1.4.7 and Corollary 1.4.8, and the properties of
homotopy limits.

Here we see that it made a difference that we considered T 〈a〉(H̄C, X) as the spectrum
{n 7→ T 〈a〉(H̄C(Sn), X)}, and not as a Γ-space {k+ 7→ T 〈a〉(H̄C(k+), X)}: the spectrum
associated to the (pointwise) homotopy limit of a Γ-space is not the same as the (levelwise)
homotopy limit of the spectrum, since the homotopy limits can destroy connectivity. We
will shortly see that this is not a real problem, since it turns out that TC (C, X; p) is
always −2-connected, and so TC(H̄C, X; p) and the spectrum associated with {k+ 7→
TC(H̄C(k+), X; p)} will be equivalent once X is connected. In any case, it may be that
the correct way of thinking of this is to view TC of symmetric monoidal ΓS∗-categories as
Γ-spectra:

{k+ 7→ TC (H̄C(k+), X; p)}.

This point will become even more acute when we consider the homotopy fixed point spectra
for the entire circle actions since these are not even bounded below.

If C is exact we have an equivalent Ω-spectrum

TC(C, X; p) = holim
←−−−−−−
pn∈RFp

T 〈pn〉(SC, X) = {k 7→ TC(S(k)C, X; p)}

If A is a ring we let

TC(A,X; p) = TC(PA, X; p)}

and we see that TC(A,X; p) is equivalent to TC(A,X; p).

3.2 Some structural properties of TC(−; p)

A priori, the categoryRFp can seem slightly too big for comfort, but it turns out to be quite
friendly, especially if we consider the F and R maps separately. This separation gives us
good control over the homotopy limit defining TC(−; p). For instance, we shall see that it
implies that TC (−; p) is −2-connected, can be computed degreewise and almost preserves
id-cartesian cubes (see III.3.1.7 and more thoroughly, section A.7 for terminology), and
hence is “determined” by its value on discrete rings.
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3.2.1 Calculating homotopy limits over RFp

Consider the two subcategories Fp and Rp of the category RFp of Definition 1.3.2, namely

the ones with only the F pk = f1,pk (Frobenius = inclusion of fixed points) maps or only
the Rpk = fpk,1 (restriction) maps. We will typically let

TR(A,X; p) = holim
←−−−−
pn∈Rp

T 〈pn〉(A,X) and TF (A,X; p) = holim
←−−−−
pn∈Fp

T 〈pn〉(A,X)

and similarly for the spectra and the related functors of ΓS∗-categories.
Let 〈x, y, . . . 〉 be the free symmetric monoid generated by the letters x, y, . . . . If 〈x〉

acts on a space Y , we write holim←−
〈x〉
Y as Y hx, in analogy with the group case, and it may

be calculated as the homotopy pullback

Y hx ≃ holim
←−




Map∗(I+, Y )

f 7→(f(0),f(1))

y

Y
y 7→(y,xy)
−−−−−→ Y × Y




Let L be any functor from RFp to spaces, and suppose it has fibrant values so that we
may suppress some fibrant replacements below. We see that 〈R,F 〉 acts on

∏
pn∈RFp

L(pn),
and writing out the cosimplicial replacement carefully, we get that

holim
←−−
RFp

L ∼=Tot


q 7→

∏

Nq〈F,R〉


 ∏

pn∈RFp

L(pn)






∼= holim
←−−−
〈R,F 〉


 ∏

pn∈RFp

L(pn)


 ∼= holim

←−−−−−−
〈R〉×〈F 〉


 ∏

pn∈RFp

L(pn)


 .

We may take the homotopy limit over the product 〈R〉× 〈F 〉 in the order we choose. If we
take the R map first we get

Lemma 3.2.2 Let L be a functor from RFp to spaces. Then

holim
←−−
RFp

L ∼= holim
←−
〈F 〉


holim

←−
〈R〉


 ∏

pn∈RFp

L(pn)






∼= holim
←−
〈F 〉

holim
←−−−−
pn∈Rp

L(pn) =

(
holim
←−−−−
pn∈Rp

L(pn)

)hF

.. '!&"%#$����

Similarly we may take the F map first and get the same result with R and F inter-
changed.

For our applications we note that

TC(A,X; p) ∼= TR(A,X; p)hF ∼= TF (A,X; p)hR.
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Lemma 3.2.3 The spectrum TC(−; p) is −2 connected.

Proof: Consider the short exact sequence

0→ lim
←−−−−
pn∈Rp

(1)πk+1T 〈p
n〉(C, X)→ πkTR(C, X; p)→ lim

←−−−−
pn∈Rp

πkT 〈p
n〉(C, X)→ 0

of the tower defining TR. Since π0T 〈p
n〉(C, X) → π0T 〈p

n−1〉(C, X) is always surjective
(its cokernel is π−1sdpnT 〈p

n〉(C, X)hCpn = 0), the lim←−
R

(1)πk+1-term vanishes for k < 0,
and TR is always −1-connected (alternatively, look at the spectral sequence of the R
tower, and note that all the homotopy fibers are −1-connected). Hence the pullback
TC (C; p) ≃ TR(C; p)hF is at least −2-connected.

An S-algebra has a simplicial direction (as all Γ-spaces do), and if A is a simplicial S-
algebra, diag∗A is the S-algebra you get by precomposing A with the diagonal diag : ∆o →
∆o ×∆o.

Lemma 3.2.4 If A is a simplicial S-algebra, then TC (A,X; p), may be calculated degree-
wise in the sense that

diag∗{[q] 7→ TC (Aq, X; p)} ≃ TC (diag∗A,X; p).

Proof: This is true for THH (Lemma IV.1.3.1), and so, by the fundamental cofibration
sequence 1.4.2 it is true for all sdpnTHH (A,X)Cpn . By Corollary A.7.2.7, homotopy limits
of towers of connective simplicial spectra may always be computed degreewise, so

TR(A; p) = holim
←−
R

sdpnT (A)Cpn

is naturally equivalent to diag∗{[q] 7→ TR(Aq; p)}. Now, TC(A; p) ≃ TR(A; p)hF , a homo-
topy pullback construction which may be calculated degreewise.

Lemma 3.2.5 Let f : A → B be a k-connected map of S-algebras and X an l-connected
space. Then

TC (A,X; p)→ TC (B,X; p)

is k + l − 1-connected.

Proof: Since THH (−, X), and hence the homotopy orbits of THH (−, X), rise connectivity
by l, we get by the tower defining TR that TR(−, X; p) also rises connectivity by l. We
may loose one when taking the fixed points under the F -action to get TC (−, X; p).

When restricted to simplicial rings, there is a cute alternative to this proof using the fact
that any functor from simplicial rings to n-connected spectra which preserves equivalences
and may be computed degreewise, sends k ≥ 0-connected maps to n + k + 1-connected
maps.

Lemma 3.2.6 Assume A is a cube of S-algebras such that T (A, X) is id-cartesian. Then
TR(A, X; p) is also id-cartesian.
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Proof: Choose a big k such that THH (A, Sk∧X) is id + k cartesian Let X be any m
subcube and X l = sdplX

C
pl . We are done if we can show that holim←−

R
X l is (m + k)-

cartesian. Let Z l be the iterated homotopy fiber of X l (i.e., the homotopy fiber of X l
∅ →

holim←−−
S 6=∅
X l
S). Then Z = holim←−

R
Z l is the iterated homotopy fiber of holim←−

R
X l, and we

must show that Z is m+k−1 connected. Since homotopy orbits preserve connectivity and
homotopy colimits, THH (A, Sk∧X)hC

pl
must be id + k cartesian, and so the homotopy

fiber of R : X l → X l−1 is id+k cartesian. Hence πqZ
l → πqZ

l−1 is surjective for q = m+k
and an isomorphism for q < m+k, and so πqZ ∼= lim

←−
R

(1)πq+1Z
l×lim

←−
R

πqZ
l = 0 for q < m+k.

Proposition 3.2.7 Assume A is a cube of S-algebras such that T (A, X) is id-cartesian.
Then TC (A, X; p) is id− 1 cartesian.

Proof: This follows from the lemma, plus the interpretation of TC (−; p) ≃ TR(−; p)hF

as a homotopy pullback.
When applying this to the canonical resolution of S-algebras byHZ-algebras of III.3.1.9,

we get the result saying essentially that TC is determined by its value on simplicial rings:

Theorem 3.2.8 Let A be an S-algebra and X a space. Let S 7→ (A)S be the cubical
diagram of III.3.1.9. Then

TC (A,X; p)
∼
−−−→ holim←−−

S 6=∅
TC (AS, X; p) .. '!&"%#$����

3.2.9 The Frobenius maps

The reason the map F , given by the inclusion of fixed points, is now often called the
Frobenius map, is that Hesselholt and Madsen [129] have shown that if A is a commutative
ring, then π0TR(A; p) is canonically isomorphic to the p-typical Witt vectors W (A) =
W (A; p), and that the F -map corresponds to the Frobenius map.

Even better, they prove that for n ≥ 0 there is an isomorphism

π0THH (A)Cpn ∼= Wn+1(A),

where Wn(A), is the ring of truncated p-typical Witt vectors, i.e., it is An as set, but with
addition and multiplication defined by requiring that the “ghost map”

w : Wn(A)→ An, (a0, . . . , an−1) 7→ (w0, . . . , wn−1)

where
wi = ap

i

0 + pap
i−1

1 + · · ·+ piai

is naturally a ring map. If A has no p-torsion the ghost map is injective.
The map

R : Wn+1(A)→Wn(A) (a0, . . . , an) 7→ (a0, . . . , an−1),
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is called the restriction and the isomorphisms

π0THH (A)Cpn ∼= Wn(A)

respect the restriction maps.
On the Witt vectors the Frobenius and Verschiebung are given by

F, V : W (A)→ W (A)

F (w0, w1, . . . ) = (w1, w2, . . . )

V (a0, a1, . . . ) = (0, a0, a1, . . . )

(the Frobenius map F is given in ghost coordinates, and it must be verified that this
determines F uniquely) satisfying the relations

x · V (y) = V (F (x) · y), FV = p, V F = multiplication by V (1).

If A is an Fp-algebra, then V (1) = p.

3.2.10 TC(−; p) of spherical group rings

Let G be a simplicial group. We briefly sketch the argument of [27] giving TC(S[G]; p)
(see also [192] and [243]). Recall from Corollary 1.5.3 that

|THH (S[G])|Cpn
∼
→

n∏

j=0

|THH (S[G])|hC
pj
,

and that the restriction map corresponds to the projection

n∏

j=0

|THH (S[G])|hC
pj
→

n−1∏

j=0

|THH (S[G])|hC
pj
.

What is the inclusion of fixed point map |THH (S[G])|Cpn ⊆ |THH (S[G])|Cpn−1 in this
factorization? Write T as shorthand for |THH (S[G])|, and consider the diagram

ThCp ∨ T

��

proj

##G
GG

GG
GG

GG
G

ThCp //

trf
%%K

KKKKKKKKK
TCp

R //

F

��

T
S

oo

T

where S is the section of R defined in the proof of Lemma 1.5.1.
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The trf in the diagram above is the composite

ThCp −−−→ TCp
F
−−−→ T

(where the first map is the homotopy fiber of the restriction map) and is called the transfer.
Generally we will let the transfer be any (natural) map in the stable homotopy category
making

ThCpn −−−→ TCpn

trf

y F

y
ThCpn−1

−−−→ TCpn−1

commute.
Hence, the inclusion of fixed points F : TCpn+1 → TCpn acts as FS : T → T on the

zeroth factor, and as trf : ThCpn → ThCpn−1
on the others:

T

FS

��

× ThCp

trf

wwooooooooooooooo
× ThCp2

trf
vvnnnnnnnnnnnnnn

T

FS

��

× ThCp

trf
wwnnnnnnnnnnnnnn

T

Using this, we see that

TC(S[G]; p) = holim
←−−
RFp

T 〈pn〉(S[G]) ≃

(
holim
←−
R

T 〈pn〉(S[G])

)hF

is equivalent to the homotopy equalizer of the map

T

FS

��

× ThCp

trf

wwppppppppppppppp
× ThCp2

trf
vvnnnnnnnnnnnnnn

× . . .

trf
wwooooooooooooooo

T × ThCp × ThCp2 × . . .

and the identity; or equivalently, the “diagram”

TC(S[G]; p) −−−→ holim
←−
trf

|THH (S[G])|hCpn
y

y

|THH (S[G])|
FS−1
−−−→ |THH (S[G])|

is homotopy cartesian (in order to make sense of this, one has to have chosen models for
all the maps, see e.g., [243]).

We will identify these terms more closely in VII.3
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3.3 The definition and properties of TC

Note that the topological Hochschild spectrum T is stably fibrant (in the sense of A.6: it is
an Ω-spectrum and each of the spaces constituting the spectrum are Kan complexes), and
so the fibrant replacements (Q and sin |−|) in definition 2.0.4 of homotopy fixed points are
redundant. In the interest of having lean models, we write T hG for the spectrum without
these extra fibrant replacements (so that we actually get an honest map T hG → T , and
not to some blown-up version of T ).

Definition 3.3.1 Define TC as the functor from S-algebras, or more generally ΓS∗-categories,
to spectra obtained as the homotopy limit of

T (−)hS
1

y
∏

p prime TC(−; p)̂p −−−→
∏

p prime holim
←−−−−
pr∈Fp

T (−)hCpr p̂

where the lower map is given by the projection onto Fp ⊆ RFp

TC (−; p) = holim
←−−−−−
pr∈RFp

T 〈pr〉(−)→ holim
←−−−−
pr∈Fp

T 〈pr〉(−)

followed by the map from the fixed points to the homotopy fixed points

T 〈pr〉(−) ∼= T (−)Cpr → T (−)hCpr .

Likewise, the functor TC from discrete rings or more generally additive categories to
bispectra is defined by the same square with T as in V.1.2.2 instead of T .

In this definition we have used that the map from fixed points to homotopy fixed points is
compatible with inclusion of fixed points.

More useful than the definition is the characterization given by the following lemma,
where X̂ = Spt(Σ−1MQ/Z, X) ≃

∏
p primeX p̂ signifies the profinite completion of Sec-

tion A.6.6 of the spectrum X.

Lemma 3.3.2 All the squares in

TC(−) −−−→ T (−)hS
1

−−−→ (T (−)(0))
hS1

y
y

y

TC(−)̂ −−−→ (T (−)̂ )hS
1

−−−→
(
(T (−)̂ )(0)

)hS1

are homotopy cartesian, where the upper left horizontal maps are given by the definition
of TC, the lower is its profinite completion composed with the isomorphism (T (−)hS

1

)̂ ∼=
(T (−)̂ )hS

1

and the right horizontal arrows are induced by rationalization.
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Proof: The rightmost square is cartesian as it is an arithmetic square A.6.6.1 to which −hS
1

is applied. The leftmost square is cartesian since (after commuting profinite completion
and homotopy fixed points) it is the top square in

TC −−−→ T (−)hS
1

y
y

TĈ −−−→
(
T (−)hS

1

)
̂

y ≃

y2.1.1
∏

p prime TC(−; p)̂p −−−→
∏

p prime holim
←−−−−
pr∈Fp

T (−)hCpr p̂

where the outer and lower squares are cartesian by the definition of TC and the marked
map is an equivalence by Lemma 2.1.1.

Corollary 3.3.3 Let A be a simplicial ring. Then

TC(A,X) −−−→ (HH (A,X)(0))
hS1

y
y

TC(A,X )̂ −−−→ (HH (A,X )̂ (0))
hS1

is homotopy cartesian.

Proof: This follows from Lemma 3.3.2 by extending the square to the right with the S1-
homotopy fixed point spectra of the square

T (−)(0)
≃
−−−→ HH (−)(0)y

y
T (−)̂ (0)

≃
−−−→ HH (−)̂ (0)

which is cartesian by Lemma IV.1.3.9 which says that the horizontal maps are equivalences.

Theorem 3.3.4 Let A be an S-algebra and X a space. Let A be the cubical diagram of
III.3.1.9. Then

TC (A,X)
∼
−−−→ holim←−−

S 6=∅
TC (AS, X).

Proof: By Theorem 3.2.8 this is true for TC(−, X )̂ (products and completions of spectra
commute with homotopy limits). Since T (A, X) is id-cartesian, so are T (A, X)(0) and
T (A, X )̂ (0), and hence

T (A,X)(0)
∼
−−−→ holim

←−−
S 6=∅

(T (AS, X)(0))
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and
T (A,X )̂ (0)

∼
−−−→ holim

←−−
S 6=∅

(T (AS, X )̂ (0))

Since homotopy fixed points commute with homotopy limits we are done since we have
proved the theorem for all the theories but TC in the outer homotopy cartesian square of
Lemma 3.3.2.

4 The connection to cyclic homology of simplicial rings

Theorem 3.3.4 tells us that we can obtain much information about TC from our knowledge
of simplicial rings. We have seen (Corollary 3.3.3) that, when applied to a simplicial ring
A, TC fits into the cartesian square

TC(A,X) −−−→ (HH (A,X)(0))
hS1

y
y

TC(A,X )̂ −−−→ (HH (A,X )̂ (0))
hS1

We can say something more about the right hand column, especially in some relative cases.
As a matter of fact, it is calculated by negative cyclic homology, a theory which we will
recall the basics about shortly.

To make the comparison to negative cyclic homology easier we first give some gen-
eral results about (naïve) S1-spectra, and then describe spectral sequences computing the
homotopy groups of the homotopy fixed and orbit spectra.

4.1 On the spectral sequences for the T-homotopy fixed point and

orbit spectra

If V is an inner product space, let S(V ) = {v ∈ V | |v| = 1} be the unit sphere in V ,
D(V ) = {v ∈ V | |v| ≤ 1} the unit disc, SV the one point compactification of V (with
base point at infinity) and D∞(V ) = {v ∈ SV | |v| ≥ 1}. We consider S(V )+, D(V )+ and
D∞(V ) as pointed subspaces of SV . We recognize S(C) as the circle, but we will continue
to write T when we consider the circle as a group, and make the convention that when we
write S(Cn) it is only a space (which may or may not be considered as a T-space through
the diagonal action).

Recall that the stable homotopy group π0(Σ
∞S0) ∼= Z, generated by the identity Sn =

Sn, whereas π1(Σ
∞S0) ∼= Z/2Z, generated by the suspensions of the Hopf map from the

3-sphere to the 2-sphere:

S(C2)→ SC, (z0, z1) 7→ z0/z1

The collapse maps S1
+ → S1 and S1

+ → S0 give an isomorphism

π∗(Σ
∞S1

+) ∼= π∗(Σ
∞S1)⊕ π∗(Σ

∞S0)
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(this isomorphism is realized after a single suspension in view of the fact that collapsing
contractible arcs give homotopy equivalences between the reduced and unreduced suspen-
sions of |S1|+ and from the unreduced suspension to |S1| ∨ SC1

), and let σ be the element
in π1(Σ

∞S1
+) projecting down to the identity class in π1(Σ

∞S1) ∼= π0(Σ
∞S0) and η be the

element in π1(Σ
∞S1

+) projecting down to the stable Hopf map in π1(Σ
∞S0).

The spectral sequences of Lemma 2.0.6 for the circle group are of particular importance
to us, and so we must analyze the skeleton filtration in this particular case. The one sided
bar construction ET for the circle group T = S(C) may be identified with S(C∞), and the
skeleton filtration of E(T)+ consists of the inclusions

S(C)+ ⊆ S(C2)+ ⊆ . . .

induced by the standard inclusions Cn ⊆ Cn+1 onto the first factors. The T-action is the
diagonal one: z · (z1, . . . , zn) = (zz1, . . . , zzn). The T-attaching maps are given by the
pushout

T× S(Cn) −−−→ T×D(Cn)y
y

S(Cn) −−−→ S(Cn+1),

where the horizontal maps are the inclusions, the T-action on the top row is on the first
factor only, the left vertical map is the action map (which, with the given structure is
a T-map) and the right vertical map sends (z, w) = (z, (w1, . . . , wn)) ∈ T × D(Cn) to
(zw1, . . . , zwn, z

√
1− |w|2) ∈ S(Cn+1). The cofiber of the inclusion S(Cn)+ ⊆ S(Cn+1)+

is thus T+∧D(Cn)/S(Cn). Since there are only cells in even degrees, the spectral sequences
have terms only in the even columns, and the d2 differentials are induced by the composite

T+∧D(Cn)/S(Cn) −−−→ Σ(T× S(Cn))+yaction

ΣS(Cn)+ −−−→ Σ(T+∧D(Cn−1)/S(Cn−1)),

where the first map is the boundary map associated with the cofibration (T× S(Cn))+ ⊆
(T×D(Cn))+ and the last map the projection onto the cofiber.

A geometric analysis of this map as in [123, 1.4.2] makes it possible to identify the
differential

Lemma 4.1.1 (Hesselholt) Let S1 = sin T be the circle group and let X be an S1-
spectrum. The E2-sheet of the spectral sequences for XhS1 and XhS1

of Lemma 2.0.6 are
concentrated in the even columns with E2

2s,t
∼= πtX, and the differential

d2 : E2
2s,t → E2

2s−2,t+1

is induced by the map σ + s · η : πtX → πt+1(S
1
+∧X) composed with πt+1 of the S1-action

S1
+∧X → X. .. '!&"%#$����
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Note that for rational S1-spectra – like the ones we are talking about in connection
with TC – or more generally, Eilenberg–Mac Lane S1-spectra, the Hopf map η is trivial,
and so the differentials are simply given by the S1-action:

Corollary 4.1.2 Let X be an S1-spectrum such that η : π∗X → π∗−1X is trivial, then the
differential

d2 : E2
2s,t → E2

2s−2,t+1

is the composite

πtX
σ

−−−→ πt+1(S
1
+∧X)

action
−−−→ πt+1X.

.. '!&"%#$����

The homotopy orbits and fixed point spectra fit together to form the so-called Tate
spectrum X tS1

= [ẼS1∧Map∗(ES1
+, X)]S

1

of [116] where ẼS1 is the homotopy cofiber of

the nontrivial map ES1
+ → S0. From the cofiber sequence ES1

+ → S0 → ẼS1 (which
may be modelled concretely by S(C∞)+ ⊆ D(C∞)+ → SC∞

) we get a cofiber sequence
[116]

ΣXhS1 → XhS1

→ X tS1

.

There is a corresponding “Greenlees filtration” of ẼS1 which is positive degrees corre-
spond to the filtration for the homotopy orbit spectral sequence and in negative degrees to
the filtration for the homotopy fixed point spectral sequence (see e.g., [28, Lemma 2.12]).
The resulting Tate spectral sequence

Ê2
s,t = E2

s,t(X
tS1

) = Ĥ−s(S1, πtX)⇒ πs+tX
tS1

,

(where Ĥ is the so-called Tate cohomology) is an upper half plane spectral sequence with
vanishing odd columns and with even columns given by Ê2

2s,t = πtX. Of course, this
construction is not particular to the circle group, and the reader may want to compare
the current discussion with the concrete examples relating to finite subgroups reviewed in
Subsection VII.3.1.6.

The cofibration sequence relating the orbit, fixed point and Tate spectra is reflected in
a short exact sequence of E2-terms:

0→ E2
s,t(X

hT)→ E2
s,t(X

tS1

)→ E2
s−1,t(XhT)→ 0.

The norm map S1∧XhS1 → XhS1

induces the edge homomorphism. This has the following
consequence:

Lemma 4.1.3 Let X be an S1-spectrum. If the Tate spectral sequence converges strongly
to zero, then the norm map

S1∧XhS1 → XhS1

is a stable equivalence. .. '!&"%#$����
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4.2 Cyclic homology and its relatives

Let Z be a cyclic module, i.e., a functor from Λo to simplicial abelian groups. Let B : Zq →
Zq+1 be Connes’ operator

Zq
N=

P
(−1)qj tj

−−−−−−−−→ Zq
(−1)qsq
−−−−→ Zq+1

(1+(−1)qt)
−−−−−−→ Zq+1

satisfying B ◦ B = 0 and B ◦ b + b ◦ B = 0 where b =
∑

(−1)jdj. Due to these relations,
the B-operator defines a complex

(π∗Z,B) = (π0Z
B
−−−→ π1Z

B
−−−→ . . .

B
−−−→ πqZ

B
−−−→ . . . )

whose homology HdR
∗ (Z) = H∗(π∗Z,B) we call the de Rham cohomology of Z.

Using the b and the B, and their relations one can form bicomplexes (called (b, B)-
bicomplexes, see e.g., [181, 5.1.7] for more detail) with (s, t)-entry Zt−s connected by the bs
vertically and the Bs horizontally (the relations guarantee that this becomes a bicomplex).

...
...

b

y b

y

. . .
B
←−−− Z2

B
←−−− Z1

B
←−−− . . .

b

y b

y

. . .
B
←−−− Z1

B
←−−− Z0

b

y

. . .
B
←−−− Z0

If you allow all t ≥ s you get the so-called periodic (b, B)-bicomplex Bper(Z) (called BZper

in [181]), if you allow t ≥ s ≥ 0 you get the positive (b, B)-bicomplex B+(Z) and if you
allow t ≥ s ≤ 0 you get the negative (b, B)-complex B−(Z).

If −∞ ≤ m ≤ n ≤ ∞ we let Tm,nZ be the total complex of the part of the normalized
(b, B)–bicomplex which is between the mth and nth column: Tm,nq Z =

∏n
k=mC

norm
k,q−k(Z)

(where Cnorm denotes the normalized chains defined in A.2.1.4). The associated homologies
H∗(T

−∞,0Z), H∗(T
−∞,∞Z) and H∗(T

0,∞Z) are called periodic, negative and (simply) cyclic
homology, and often denoted HP∗(Z), HC−(Z) and HC(Z). The associated short exact
sequence of complexes

0→ T−∞,0Z → T−∞,∞Z → T 1,∞Z → 0

together with the isomorphism T 1,∞
q Z ∼= T 0,∞

q−2Z gives rise to the well-known long exact
sequence

. . . −−−→ HCq−1(Z) −−−→ HC−q (Z) −−−→ HPq(Z) −−−→ HCq−2(Z) −−−→ . . .,
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and similarly one obtains the sequence

. . . −−−→ HCq−1(Z)
B
−−−→ HH q(Z)

I
−−−→ HCq(Z)

S
−−−→ HCq−2(Z) −−−→ . . .

(the given names of the maps are the traditional ones, and we will have occasion to discuss
the S-map a bit further).

Notice that T−∞,nZ = lim←−m T
m,nZ, and so if . . . ։ Zk+1 ։ Zk ։ . . . is a sequence of

surjections of cyclic modules with Z = lim←−
k
Zk, then T−∞,nZ ∼= lim←−

k
T−∞,nZk, and you

have lim←−
(1)-lim←− exact sequences, e.g.,

0→ lim
←−
k

(1)HC−q+1(Z
k)→ HC−q (Z)→ lim

←−
k

HC−q (Zk)→ 0.

Also, from the description in terms of bicomplexes we see that we have a short exact
sequence

0→ lim
←−
k

(1)HCq+1+2k(Z)→ HPq(Z)→ lim
←−
k

HCq+2k(Z)→ 0

describing the periodic homology of a cyclic complex Z in terms of the cyclic homology
and the S-maps connecting them.

We see that filtering Bper(Z) by columns we get a spectral sequence for HP∗(Z) with
E2-term given by HdR

∗ (Z).

4.2.1 The upper half plane bicomplex

There is another representation of these theories, which Loday and Quillen [182] attribute
to Tsygan, by means of an upper half plane bicomplex, and which is closer to the spectral
sequences associated to spectra with S1-actions we have discussed (the difference essentially
boiling down to an indexation issue in the skeletal filtrations). If Z is a cyclic module, we let
CC(Z) = {CCs,t(Z)} be the bicomplex with CCs,t(Z) = Zt and with vertical differentials
given the alternating sum b =

∑t
i=0(−1)idi : Zt → Zt−1 of all the face maps in the even

columns and the alternating sum b′ of all but the last face map in the odd columns. The
horizontal differentials leaving odd columns are given by 1 − (−1)tj : Zj → Zj and those
leaving even columns by N =

∑j+1
i=1 ((−1)jt)i : Zj → Zj.

The odd columns are contractible, with u = (−1)jsj : Zj → Zj+1 as a contraction
(b′u+ub′ = 1). This contraction makes the odd columns inessential, and the (b, B) is exactly
what you get by systematically erasing them, see [182] or [100]. Thus the total complex of
CC(Z) is quasi isomorphic to T−∞,∞, and similarly, if you restrict to non-negative (resp.
non-positive) horizontal degrees, you get a complex which is quasi isomorphic to T 0,∞

(resp. T−∞,0).
Notice that the presence of degeneracies is crucial for the contractibility of the odd

columns, which is a pivotal point when extending Hochschild homology to rings without
unit elements: you may still define the bicomplex, but the odd columns may no longer
be contractible. In this situation, the homology of the odd columns are of particular
importance, giving obstructions for excision, see e.g., [279].
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Filtering CC(Z) by columns, you get a spectral sequence with E1
s,t = E2

s,t being πtZ if
s is even and 0 otherwise. This may remind the reader of the Tate spectral sequence, and
that this is no coincidence is the contents of the next section.

4.2.2 Geometrical interpretation

These cyclic homology theories have clear geometrical meaning in terms of orbit and fixed
point spectra as is apparent from Theorem 4.2.3 below.

By a spectrum M of simplicial abelian groups, we mean a sequence {n 7→ Mn} of
simplicial abelian groups together with homomorphisms Z̃[S1] ⊗Mn → Mn+1 (according
to the notion of spectra in any simplicial model category). A map f : M → N between
spectra is, as usual, a sequence of homomorphisms fn : Mn → Nn respecting the structure
maps.

In view of the identity Cnorm
∗ (Z̃[S1]) = Z[−1], the normalized chain complex transforms

spectra of simplicial abelian groups to spectra of chain complexes (concentrated in non-
negative dimensions):

Cnorm
∗ (Mn)[−1] = Cnorm

∗ (Z̃[S1])⊗ Cnorm
∗ (Mn)→ Cnorm

∗ (Z̃[S1]⊗Mn)→ Cnorm
∗ (Mn+1),

where the first map is the Eilenberg-Zilber (shuffle) map and the last is induced by the
structure map on M . In turn, a spectrum C = {Cn[−1]→ Cn+1} of chain complexes gives
rise to a single (unbounded) chain complex lim−→n C

n[n], and we get a functor

M 7→ Cspt
∗ M = lim

−→n
Cnorm
∗ (Mn)[n]

from spectra of simplicial abelian groups to chain complexes, sending stable equivalences
to quasi isomorphisms (i.e., maps of chain complexes inducing isomorphism in homology).
A more refined approach gives rise to (suitably monoidal) Quillen equivalences between
HZ-modules, spectra of simplicial abelian groups and chain complexes, see Schwede and
Shipley [254].

Theorem 4.2.3 Let M : Λo → sAb be a cyclic simplicial abelian group. There are natural
chains of quasi isomorphisms

Cspt
∗ sin |HM |hS1 ≃ T 0,∞M

Cspt
∗ sin |HM |hS

1

≃ T−∞,0M,

Cspt
∗ sin |HM |tS

1

≃ T−∞,∞M.

Proof: The first statement follows e.g., from the corresponding statement in Loday’s
book [181] which shows that there is a natural chain of quasi isomorphisms between
Cnorm sin |M |hS1 and T 0,∞M and the fact that sin |HM |hS1 is a connected Ω-spectrum.
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All the statements can be proved hands on by the standard filtration, giving chains of
quasi isomorphisms in some range T s,t and then extending by (co)limits. We do the case
T−∞,0. Choose the colimit S(C∞) of

S(C) ⊆ S(C2) ⊆ · · · ⊆ S(Cn) ⊆ . . .

as your model for the contractible free T-space ET. Then we have a natural equivalence

sin |HM |hS
1

(X)
∼
←−−− lim

←−n
(T-Top∗)(S(Cn)+, |M ⊗ Z̃[X]|)

(this is only a natural equivalence and not an isomorphism since the definition of the
homotopy fixed points of a topological spectrum involves a fibrant replacement, which is
unnecessary since HM is an Ω-spectrum).

Hence we are done once we have shown that there is a natural (in n and M) chain of
maps connecting

PM(S(Cn+1)+) = Cnorm
∗ (T-Top∗)(S(Cn+1)+, |M |), and T−n,0M

inducing an isomorphism in homology in positive dimensions.
This is done by induction on n. For n = 0 this is obvious since PM(S(C)+) ∼=

Cnorm
∗ sin |M | whereas T−0,0M = Cnorm

∗ M . Let n > 0 and consider the two pullback
diagrams

T+∧S(Cn)
id×inclusion
−−−−−−−→ T+∧D(Cn)x

x

T+∧S(Cn)+
id×inclusion
−−−−−−−→ T+∧D(Cn)+

action

y
y

S(Cn)+ −−−→ S(Cn+1)+

where the upwards pointing arrows are the natural projections, while the lower square is
the T-cell attachment. Applying PM = Cnorm

∗ (T-Top∗)(−, |M |) to this diagram we get that
PM(S(Cn+1)+)[1] can be described by means of the mapping cylinder of the composite Jn

PM(S(Cn)+)
PM (action)
−−−−−−→ PM(T+∧S(Cn)+)

∼=
−−−→ Cnorm

∗ sin Top∗(S(Cn)+, |M |)

proj.

y

Cnorm
∗ sin |M |[2n− 1]

∼=
−−−→ Cnorm

∗ sin Top∗(S(Cn), |M |),

where the first isomorphism is the adjunction isomorphism of the free/forgetful pair be-
tween pointed T-spaces and pointed spaces, proj. is induced by the section to the inclusion
of the pointed maps into the free maps given by sending a function to the function mi-
nus its value value at the basepoint (when considered as a based space, S(Cn) is based
at (1, 0, . . . , 0)), and the last isomorphism is given by the singular/realization adjunction,
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the identification |S2n−1| = S(Cn) and the correspondence between shift and loop. For
simplicity, we have assumed that M is highly connected, so that we don’t have to worry
about boundary effects and have suppressed truncations.

The commutativity of

T+∧S(Cn)+ −−−→ T+∧T+∧D(Cn−1)/S(Cn−1)

action

y action∧id

y
S(Cn)+ −−−→ T+∧D(Cn−1)/S(Cn−1),

where the horizontal maps are the cofibers of the T-filtration, shows that on the top cell,
Jn is nothing but a shifted copy of J1, and since we are evaluating at Eilenberg-Mac Lane
spaces there is no further attachment.

Hence, by induction PM(S(Cn+1)+) is represented by a bicomplex of exactly the same
shape as T−n,0, the only question is the identification of the attaching maps.

Hence, we need to identify J1 : PM(T+) → Cnorm sin |M |[1]. The action PM(T+) →
PM(T+∧T+) can be factored as Cnorm sin applied to the composite

(T-Top∗)(T+, |M |)
T+∧−
−−−→ (T-Top∗)(T+∧T+,T+∧|M |)

action
−−−→ (T-Top∗)(T+∧T+, |M |).

Recall that the T-action on |M | is obtained through a certain isomorphism T+∧|M | ∼=
|j∗j

∗UM |, where j∗j
∗UM is what you get if you let UM be the underlying cyclic pointed

set on M and use the free/forgetful pair (j∗, j
∗) between simplicial and cyclic pointed sets

(recall that j : ∆o ⊆ Λo is the inclusion: S1
+∧UM and j∗j

∗UM give different triangulariza-
tions of T+∧|M |). We could equally well have used the free/forgetful pair (jAb

∗ , j∗
Ab

) between
simplicial and cyclic abelian groups, and we get a canonical map j∗j

∗UM → UjAb

∗ j∗
Ab
M

(induced by inclusion of wedges into sums, and so is a stable equivalence). The T-action
can then be factored

T+∧|M | ∼= |j∗j
∗UM | → |jAb

∗ j∗
Ab
M | → |M |,

where the last map is the unit of adjunction.
Using the T-Top∗/Top∗ adjunction, we get that J1 is given by Cnorm sin applied to

|M | −−−→ Top∗(T, |j
Ab

∗ j∗
Ab
M |) −−−→ Top∗(T, |M |),

where the first map is given by T+∧− and projecting to the pointed maps followed by
postcomposing with the map T+∧|M | ∼= |j∗j

∗UM | → |jAb

∗ j∗
Ab
M |, and the last map is

induced by the unit of adjunction. Hence, up to shift, the attaching map is given by the
map

Cnorm
∗ (Z̃[S1])⊗ Cnorm

∗ (M)→ Cnorm
∗ (jAb

∗ j∗AbM)→ Cnorm
∗ (M)

analyzed in [151, p. 415] and [123, p. 15], showing that the attaching map is the
map (Connes’ B-map) needed to express T−1,0 as the mapping cone of B : Cnorm

∗ M [1] →
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Cnorm
∗ M [2] (recall that the sign of the differentials in a chain complex are changed by shifts,

so that B is indeed a chain map).

An important distinction for our purposes between homotopy orbits and fixed points is
that homotopy orbits may be calculated degreewise. This is false for the homotopy fixed
points.

Lemma 4.2.4 Let X be a simplicial S1-spectrum. Then diag∗(XhS1) is naturally equiva-
lent to (diag∗X)hS1. In particular, if A is a simplicial ring, then HC(A) can be calculated
degreewise.

Proof: True since homotopy colimits commute, and the diagonal may be calculated as
holim−−−→

[q]∈∆
Xq.

Notice that if we filter by columns, the proof of Theorem 4.2.3 says that the resulting
spectral sequences for periodic, cyclic and negative cyclic agree with the Tate, orbit and
fixed point spectrum spectral sequences of Lemma 4.1.1 (with shape depending on the
indexation of the filtration: either with vanishing odd columns and concentrated in the
upper half plane, or as the for the (b, B)-bicomplex with no columns vanishing).

4.2.5 Derivations

The following is lifted from [100] (see also [181, 4.1]), and we skip the gory calculations. Let
A be a simplicial ring. A derivation is a simplicial map D : A → A satisfying the Leibniz
relation D(ab) = D(a)b + aD(b). A derivation D : A → A induces an endomorphism of
cyclic modules LD : HH (A)→ HH (A) by sending a = a0 ⊗ . . . aq ∈ A

⊗q+1
p to

LD(a) =

q∑

i=0

a0 ⊗ . . . ai−1 ⊗D(ai)⊗ ai+1 ⊗ . . . aq

If A is a simplicial ring, let (C∗(A), b) be the chain (normalized) complex associated to
the bisimplicial abelian group HH (A).

One then constructs maps

eD : Cq(A)→ Cq−1(A), and ED : Cq(A)→ C̄q+1(A)

satisfying

Lemma 4.2.6 Let D : A→ A be a derivation. Then

eDb+ beD = 0,

eDB +BeD + EDb+ bED = LD

and
EDB +BED

is degenerate. .. '!&"%#$����
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To be explicit, the maps are given by sending a = a0 ⊗ · · · ⊗ aq ∈ A
⊗q+1
p to

eD(a) = (−1)q+1D(aq)a0 ⊗ a1 ⊗ · · · ⊗ aq−1

and

ED(a) =
∑

1≤i≤j≤q

(−1)iq+1 ⊗ ai ⊗ ai+1 ⊗ · · · ⊗ aj−1 ⊗D(aj)⊗ aj+1 ⊗ · · · ⊗ aq ⊗ a0 ⊗ ai−1

The first equation of Lemma 4.2.6 is then a straightforward calculation, but the second is
more intricate (see [100] or [181]).

Corollary 4.2.7 ([100]) Let D be a derivation on a flat ring A. Then

LDS : HC∗A→ HC∗−2A

is the zero map.

Proof: Collecting the relations in Lemma 4.2.6 we get that (ED+eD)(B+b)+(B+b)(ED+
eD) = LD on the periodic complex. However, this does not respect the truncation to the
positive part of the complex. Hence we shift once and get the formula ((ED + eD)(B+ b)+
(B + b)(ED + eD))S = LDS which gives the desired result.

Corollary 4.2.8 Let f : A→ B be a map of simplicial rings inducing a surjection π0A→
π0B with nilpotent kernel. Let X be the homotopy fiber (in the category of cyclic abelian
groups) of HH (A)→ HH (B). Then HP∗(X(0)) = HP∗(X̂(0)) = 0.

Proof: By considering the square

A −−−→ By
y

π0A −−−→ π0B

we see that it is enough to prove the case where f is a surjection with nilpotent kernel and
f is a surjection with connected kernel separately.

Let P be completion followed by rationalization or just rationalization. The important
thing is that P is an exact functor with rational values.

The basic part of the proof, which is given in [100, II.5], is the same for the connected
and the nilpotent cases. In both situations we end up by proving that the shift map S is
nilpotent on the relative part, or more precisely: for every q and every k > q the map

Sk : HCq+2kY → HCqY

is zero, where Y is the homotopy fiber of P (HH (A)) → P (HH (B)) (actually in this
formulation we have assumed that the kernel was square zero in the nilpotent case, but
we will see that this suffices for giving the proof). From this, and from the fact that
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periodic homology sits in a lim←−
S

(1)-lim←−
S

short exact sequence, we conclude the vanishing
of periodic homology.

The main difference between our situation and the rational situation of [100] is that we
can not assume that our rings are flat. That means that HH is not necessarily calculated
by the Hochschild complex.

In the connected case, this is not a big problem, since the property of being connected
is a homotopy notion, and so we can replace everything in sight by degreewise free rings
and we are in business as explained in [100, IV.2.1]. Being nilpotent is not a homotopy
notion, and so must be handled with a bit more care. First, by considering

A→ · · · → A/In → A/In−1 → · · · → A/I2 → A/I = B

we see that it is enough to do the square zero case. Let X
∼
։ B be a free resolution of B

and consider the pullback
Q −−−→ Xy

y
A −−−→ B

.

Since the vertical maps are equivalences (using “properness” of simplicial rings: pullbacks
of maps that are fibrations and weak equivalences – on underlying simplicial sets – are
fibrations and weak equivalences), we have reduced to the case where A→ B is a surjection
of simplicial rings with discrete square zero kernel I and where B is free in every degree. But
since cyclic homology can be calculated degreewise by Lemma 4.2.4, it is enough to prove
this in every degree, but since B is free in every degree it is enough to prove it when A→ B
is a split surjection of discrete rings with square zero kernel I. Choosing a splitting we can

write A ∼= B ⋉ I, where I is a B-bimodule with square zero multiplication. Let J
∼
։ I

be a free resolution of I as B-bimodules. Then we have an equivalence B ⋉ J
∼
→ B ⋉ I,

and again since cyclic homology can be calculated degreewise we have reduced to the case
B ⋉ I → B where B is free and I is a free B-bimodule.

Hence we are in the flat case with A = B⋉I → B with I2 = 0, and can prove our result
in this setting. Then the distributive law provides a decomposition of A⊗q+1 ∼= (B⊕I)⊗q+1,
and if we let F k

q consist of the summands with k or more I-factors we get a filtration

0 = F∞ =
⋂

n

F n ⊂ · · · ⊂ F 2 ⊂ F 1 ⊂ F 0 = HH (A)

(it is of finite length in each degree, in fact F n
k = 0 for all n− 1 > k). Note that we have

isomorphisms of cyclic modules HH (B) = F 0/F 1, HH (A) = F 0 ∼= ⊕k≥0F
k/F k+1.

We must show that for every q and every k > q the map

Sk : HCq+2k(P (F 1))→ HCq(P (F 1))

is zero. Since F n
k = 0 for all n − 1 > k we have that HCq(P (F n)) = 0 for all q < n − 1.

Hence it is enough to show that for every q

Sk : HCq+2k(P (F 1/F k+1))→ HCq(P (F 1/F k+1))
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is zero.
Since I is square zero, the projection followed by inclusion D : B ⋉ I → I ⊆ B ⋉ I is a

derivation (D((b, i) ·(b′, i′)) = D((bb′, bi′+ ib′)) = (0, bi′+ ib′) = (b, i) ·(0, i′)+(0, i) ·(b′, i′) =
(b, i) ·D(b′, i′)+D(b, i) · (b′, i′)), and it acts as multiplication by m on Fm/Fm+1. Therefore
we have by Corollary 4.2.7 (whose proof is not affected by the insertion of P ) that

m · S = LDS = 0

on HC∗(P (Fm/Fm+1)).
Since m ≥ 0 is invertible in Q, we get that S = 0 on HC∗(P (Fm/Fm+1)), and by

induction Sk = 0 on HC∗(P (F 1/F k+1)).
The proof of the connected case is similar: first assume that I is reduced (has just one

zero-simplex: this is obtained by the Lemma 4.2.9 we have cited below). Use the “same”
filtration as above (it no longer splits), and the fact that F k is zero in degrees less than k
since I is reduced.

Filter A by the powers of I:

· · · ⊆ Im ⊆ · · · ⊆ I1 ⊆ I0 = A

This gives rise to a filtration of the Hochschild homology

0 = F∞ =
⋂

n

F n ⊂ · · · ⊂ F 2 ⊂ F 1 ⊂ F 0 = HH (A)

by defining

F k
q = im




⊕

P
ki=k

q⊗

i=0

Iki → HH (A)q



 .

Consider the associated graded ring gr(A) with grkA = Ik/Ik+1. Note that we have isomor-
phisms of cyclic modules HH (B) = F 0/F 1, HH (A) = F 0 and HH (grA) ∼= ⊕k≥0F

k/F k+1.
We define a derivation D on grA by letting it be multiplication by k in degree k. Note

that LD respects the filtration and acts like k on F k/F k+1. The proof then proceeds as in
the nilpotent case.

In the above proof we used the following result of Goodwillie [102, I.1.7]:

Lemma 4.2.9 Let f : A ։ B be a k-connected surjection of simplicial rings. Then there
is a diagram

R
∼
−−−→ A

g

y f

y
S

∼
−−−→ B

of simplicial rings such that the horizontal maps are equivalences, the vertical maps sur-
jections, and the kernel of g is k-reduced (i.e., its (k − 1)-skeleton is a point). If A and B
are flat in every degree, then we may choose R and S flat too. .. '!&"%#$����
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Proposition 4.2.10 Let f : A → B be a map of simplicial rings inducing a surjection
π0A→ π0B with nilpotent kernel, then the diagrams induced by the norm map

S1∧(THH (A)(0))hS1 −−−→ (THH (A)(0))
hS1

y
y

S1∧(THH (B)(0))hS1 −−−→ (THH (B)(0))
hS1

and
S1∧(THH (A)̂ (0))hS1 −−−→ (THH (A)̂ (0))

hS1

y
y

S1∧(THH (B)̂ (0))hS1 −−−→ (THH (B)̂ (0))
hS1

are homotopy cartesian.

Proof: Recall that by Lemma IV.1.3.9 THH is equivalent to HH after rationalization, or
profinite completion followed by rationalization, and so can be regarded as the Eilenberg–
Mac Lane spectrum associated with a cyclic module.

By Theorem 4.2.3 and Lemma A.4.1.3 we are done if the corresponding periodic cyclic
homology groups vanish, and this is exactly the contents of Corollary 4.2.8.

Remark 4.2.11 A priori (T (0))
hS1

should not preserve connectivity, and does not do so

(look e.g., at the zero-connected map Z ։ Z/pZ: (T (Z)(0))
hS1

is not connective (its homo-
topy groups are the same as rational negative cyclic homology of the integers and so have
a Q in in every even non-positive dimension), but (T (Z/pZ)(0))

hS1

vanishes.
However, since homotopy colimits preserve connectivity Proposition 4.2.10 gives that

we do have the following result.

Corollary 4.2.12 Let A→ B be a k > 0-connected map of simplicial rings, and let X be
either THH (0)

hS1

or THH (̂0)
hS1

considered as a functor from simplicial rings to spectra.
Then X(A)→ X(B) is k + 1 connected. If A→ B induces a surjection π0A→ π0B with
nilpotent kernel, then X(A)→ X(B) is −1-connected. .. '!&"%#$����

4.3 Structural properties for integral TC

As remarked earlier, the importance of the results about the S1-homotopy fixed point
spectra in section 4.2.2 above comes from the homotopy cartesian square of Lemma 3.3.2

TC(−) −−−→ (T (−)(0))
hS1

y
y

TC(−)̂ −−−→ (T (−)̂ (0))
hS1

.

So combining these facts with the properties of TC(−; p) exposed in section 3 we get several
results on TC quite for free.
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Proposition 4.3.1 If A → B is k > 0-connected map of S-algebras, then TC(A) →
TC(B) is (k − 1)-connected. If A → B induces a surjection π0A → π0B with nilpotent
kernel, then TC(A)→ TC(B) is −1-connected.

Proof: Consider the cubical approximation in III.3.1.9. In this construction the conditions
on the maps of S-algebras are converted to conditions on homomorphisms of simplicial
rings (that the maps in the cubes are not themselves homomorphisms does not affect the
argument). Hence by Theorem 3.3.4 the result follows from the homotopy cartesian square,
Corollary 4.2.12 and Lemma 3.2.5.

In fact, for the same reason this applies equally well to higher dimensional cubes:

Proposition 4.3.2 Let A be cubical diagram (of positive dimension) of S-algebras, and
assume that all maps are k-connected and induce surjections with nilpotent kernel on π0.
Assume that we have shown that T (A) is id − k cartesian. Then TC(A) is id − k − 1
cartesian.

Proof: Again we do the proof for each of the vertices in the cartesian square giving TC.
For TC(−)̂ ≃

∏
p prime TC(−; p)̂p this is Proposition 3.2.7. For the two other vertices we

again appeal to Theorem 3.3.4 which allow us to prove it only for simplicial rings, and then
to Proposition 4.2.10 which tells us that the cubes involving (T (0))

hS1

and (T p̂(0))
hS1

are

as (co)cartesian as the corresponding cubes, Σ(HH (A)(0))hS1 and Σ(HH (A)̂ (0))hS1 . Thus
we are done since homotopy colimits preserve cocartesianness.

Notice that this is slightly stronger than what we used in Theorem 3.3.4 to establish
the approximation property for TC: There we went all the way in the limit, obtaining
stable equivalences before taking the homotopy fixed point construction. Here we actually
establish that the connectivity grows as expected in the tower, not just that it converges.

Proposition 4.3.3 Topological cyclic homology of simplicial rings can locally be calculated
degreewise. That is, given a map of simplicial connective S-algebras A → B inducing a
surjection with nilpotent kernel on π0 in every degree, let TC δ(A) = diag∗{[q] 7→ TC (Aq)}
and TC (A) = TC (diag∗A). Then there is a natural equivalence between the homotopy
fibers of TC δ(A)→ TC δ(B) and TC (A)→ TC (B).

Proof: Consider the homotopy cartesian square of Lemma 3.3.2

TC(−) −−−→ (T (−)(0))
hS1

y
y

TC(−)̂ −−−→ (T (−)̂ (0))
hS1

.

If we can show that each of the three other vertices can be calculated degreewise, so
can TC (homotopy pullbacks of simplicial spectra can be performed degreewise). That
TC(−)̂ has this property follows since profinite completion of simplicial spectra can be
performed degreewise, since TC ≃ TC(−; p) after p-completion and since Lemma 3.2.4
gave us that TC(−; p) could be calculated degreewise. Hence the statement that TC can
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be calculated degreewise is equivalent to the statement that the last two vertices can be
calculated degreewise locally.

Now, by inspection we see that diag∗A → diag∗B itself induces a surjection with
nilpotent kernel on π0. Let X be either T (0) or T (̂0), and apply X to diag∗A → diag∗B.

By Lemma 4.2.10 the homotopy fiber of X(diag∗A)hS
1

→ X(diag∗B)hS
1

is equivalent to
the homotopy fiber of S1∧X(diag∗A)hS1 → S1∧X(diag∗B)hS1 which can be calculated
degreewise (homotopy colimits can be calculated degreewise) and since the condition on
A→ B was satisfied in every degree we can translate back to the homotopy S1-fixed points
in each degree.

4.3.4 Summary of results

In addition to the above results depending on the careful analysis of the homotopy fixed
points of topological Hochschild homology we have the following more trivial results fol-
lowing from our previous analyses of TC(−; p) and the general properties of homotopy
fixed points:

• TC is an Ω-spectrum.

• TC can be calculated degreewise in certain relative situations

• TC preserves ΓS∗-equivalences

• TC is Morita-equivariant

• TC preserves finite products

• TC of triangular matrices give the same result as products.

• TC satisfies strict cofinality

• TC of S-algebras “depends only” on its values on simplicial rings.



Chapter VII

The comparison of K-theory and TC

At long last we come to the comparison between algebraic K-theory and topological cyclic
homology. In 1.1.2 below we define the cyclotomic trace as a factorization of the Dennis
trace for symmetric monoidal ΓS∗-categories of V.2.3.3, and with the simplified notation
introduced immediately below 1.1.2 the statement reads as follows:

Theorem 0.0.1 Let A be an S-algebra. Then the Dennis trace map K(A) → THH (A)
factors naturally as

K(A)
trc
−−−→ TC(A) −−−→ THH (A).

This theorem is proved in Section 1.1 and presupposes using proper models for all the
functors, as made precise in the statement and proof of Lemma 1.1.1 and permanently
frozen by the definition of the cyclotomic trace 1.1.2 below when applied to the ΓS∗-
category of finite free A-modules FA of definition III.2.4.1. In the interest of readability
we have used undecorated symbols for these precise models.

The Dennis trace map was originally a map from algebraic K-theory to Hochschild
homology. When Connes used cyclic homology to produce an analogue of de Rham coho-
mology for non-commutative rings, he also indicated how the classical Chern character from
algebraic K-theory to de Rham cohomology for commutative rings could, at least rationally,
be obtained by a factorization of the Dennis trace map through cyclic homology. Several
others, perhaps most notably Jones and Goodwillie, gave an integral factorization of the
Dennis trace map through negative cyclic homology, which rationally recovered Connes
earlier constructions. In an influential letter [103] to Waldhausen, Goodwillie showed how
one could recover the Jones-Goodwillie Chern character to negative cyclic homology us-
ing a cyclic bar construction in conjunction with the S-construction I.2.2 which factored
though actual fixed points for every finite subgroup of the natural circle action. Using
methods of Illusie in [145], Bökstedt constructed the conjectured topological Hochschild
homology and the factorization of the Dennis trace map through the linearization map
IV.1.3.5 THH → HH . Using edgewise subdivision, Bökstedt, Hsiang and Madsen fac-
tored the Dennis trace in [27] compatibly though the fixed points of topological Hochschild
homology. In his ICM lecture [104], Goodwillie further indicated how to map algebraic K-
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theory to TC, essentially unifying the various character and trace constructions obtained
previously as factorizations of the original Dennis trace map.

The reader should be aware, that even though we propose topological cyclic homology
as an approximation to algebraic K-theory, there are marked differences between the two
functors. This is exposed by a number of different formal properties, as well as the fact
that in most cases they give radically different output.

However, the local structure is the same. We immediately get that this is the case if we
use the myopic view of stabilizing (see Corollary 1.2.7, which is stated for simplicial rings
only, but obviously extends to all S-algebras by denseness), but we will see that algebraic
K-theory and topological cyclic homology have the same local structure even with the eyes
of deformation theory.

More precisely, we prove

Theorem 0.0.2 Let B → A be a map of S-algebras inducing a surjection π0B → π0A
with nilpotent kernel, then the square induced by the naturality of the cyclotomic trace

K(B)
trc
−−−→ TC(B)y

y

K(B)
trc
−−−→ TC(A)

is homotopy cartesian.

The version where the map B → A is 1-connected was proposed as a conjecture by
Goodwillie at the ICM in Kyoto 1990, [104].

The study of algebraic K-theory of nilpotent extensions has a long history. Already
in [17] Bloch studies the “tangent space” of algebraic K-theory and compares it with the
Kähler differentials. In the 1980’s there were several rational results. Soulé calculated the
rational K-groups of the dual numbers of a ring of algebraic integers in [266], and Dwyer,
Hsiang and Staffeldt calculated the rational homotopy groups of the homotopy fiber of
K(S[G]) → K(S[π0G]) in [72], [73] when G is a simplicial group. In the following years,
many papers focused on finding the rational K-groups of S[G] for connected groups G,
see for instance [143], [142], [49], [50], [47], and finally, in [102] the rational version of
Theorem 0.0.2 appears.

A variant of Theorem 0.0.2 can be found in Bökstedt, Carlsson, Cohen, Goodwillie,
Hsiang and Madsen’s paper [26], for the case S[G] → S when G is a connected simplicial
group. See also the forerunner [51]. In [104] the conjecture was made for 1-connected maps
of ring spectra, since there was some concern about commuting a homotopy colimit with
a homotopy inverse limit for the more general case of Theorem 0.0.2 as this case is at the
boundary of the radius of analyticity for the constructions in terms of their calculus as
functors.

The profinite statement was proved by McCarthy in 1993 for simplicial rings in [205],
and extended to connective S-algebras by Dundas in 1995 in [63]. The full statement is
somewhat more than the sum of the rational and the profinite statements, mostly concerned
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with technicalities as to when homotopy limits and colimits commute. Most of the fine
points have already been covered in chapter VI. The proof for the full statement was found
in 1996, but depended on quite a lot that was known to the experts, but not documented
elsewhere in the literature. We apologize for the long delay in the publication.

We prove Theorem 0.0.2 in two steps. In Section 2.1 we prove the result for the case
where B → A is a split surjection of simplicial rings with square zero kernel. This case
is possible to attack by means of a concrete cosimplicial resolution calculating the loops
of the classifying space of the kernel of B → A. Some connectedness bookkeeping then
gives the result. In Section 2.2 we get rid of the square zero condition and the condition
that B → A is split. This last point requires some delicate handling made possible by the
fact that we know that in the relative situations both K-theory and TC can be calculated
degreewise. Using the “denseness” of simplicial rings in S-algebras, and the “continuity” of
K and TC we are finished.

In the last section we give an overview of instances where the cyclotomic trace map
has been used to prove theorems about algebraic K-theory. Apart from the original ap-
plication of Bökstedt, Hsiang and Madsen to the algebraic K-theory Novikov conjecture
in Section 3.6, we give a brief overview in Section 3.1 of Bökstedt and Madsen’s setup for
calculating topological cyclic homology, made concrete by three central examples. We also
make some inadequate comments about the connection to the Lichtenbaum-Quillen con-
jecture and the redshift conjecture in Section 3.2. One of the striking structures emerging
from Hesselholt and Madsen’s work is the de Rham–Witt complex discussed in Section 3.4,
which has been crucial in many situations, but most prominently appears in their calcula-
tion of the K-theory of local number fields, cited as Theorem 3.3.3 below.

Several other applications are discussed, giving a picture of the rich collection of calcu-
lations of algebraic K-theory that has become available through trace methods. The reader
will find them most easily by consulting the index under “K-theory of”. The section ends
by giving an insultingly weak presentation of the interplay with algebraic geometry. It
is the nature of the choices made in the previous chapters that issues about commutative
algebra have been downplayed. This is deplorable for several reasons, not the least because
motivic cohomology has provided some of the most striking tools and interesting avenues
for algebraic K-theory, but also because of the recent interest in the arithmetical properties
of commutative ring spectra.

1 Lifting the trace and square zero extensions

The purpose of this section is twofold. First and foremost, we lift the Dennis trace map
to a map to cyclic homology, and so proving Theorem 0.0.1. The use of categorical input
makes the checking that our construction of the cyclotomic trace is well defined fairly
straightforward at the price of having ridiculously complicated models for the source and
target.

Secondly, we investigate the special case where the input is a split zero extension of
S-algebras. This is a special case of Theorem 0.0.2 and is used in its proof.
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1.1 The cyclotomic trace

Lemma 1.1.1 Let C be a ΓS∗-category. Then the Dennis trace map

obC → THH (C, S0)→ sin |THH (C, S0)| = T (C)0

of Section IV.2.2 factors through the projection TC (C)0 → T (C)0.

Proof: Remember that the first map in the Dennis trace map was defined as the composite

obC →
∨

c∈obC

C(c, c)(S0)→ THH (C;S0)0 → THH (C, S0)

where the first map assigns to every object its identity map, and the last map is the
inclusion by degeneracies. This map lands in the fixed points of the cyclic action in
the following sense. Recall from Lemma VI.1.1.4 that if X is a pointed cyclic set, then
lim←−

Λo
X ∼= {x ∈ X0|s0x = ts0x} ∼= |X|

T

Λ. The Dennis trace factors over the cyclic nerve

{[q] 7→
∨

c0,...,cq

C(c0, cq)(S
0)∧

q∧

i=1

C(ci, ci−1)(S
0)},

and in the cyclic nerve both s0 and ts0 send the zero simplex given by the identity on
c ∈ obC to (c = c = c) in

∨
c0,c1
C(c0, c1)∧C(c1, c0) (and conversely, the equalizer of s0 and

ts0 is exactly obC). Hence the Dennis trace map factors over the circle fixed points of
|THH (C, S0)| (as a matter of fact, obC is mapped isomorphically onto the fixed points in
our particular model), and also, when varying r we get compatible factorizations

obC → sdrTHH (C, S0)Cr ⊆ sdrTHH (C, S0).

To see that it commutes with the restriction maps, one chases an object c ∈ obC through

obC → sdrsTHH (C, S0)Crs
R
−−−→ sdrTHH (C, S0)Cr ,

and sees that it coincides with its image under obC → sdrTHH (C, S0)Cr .
By naturality this applies equally well if we take as input any of our K-theory machines

producing diagrams of ΓS∗-categories. In particular, if C is a symmetric monoidal ΓS∗-
category we may apply the cyclotomic trace to the K(C)-construction of V.2.1.9. The letter
combination TC (K(C)) is supposed to signify the bispectrumm,n 7→ TC (K(C, w)(Sn), Sm).
In order to have the following definition well defined, we consider K-theory as a bispectrum
in the trivial way: Σ∞obK(C) = {(m,n) 7→ obK(C)(Sn)∧Sm}.

Definition 1.1.2 Let C be a symmetric monoidal ΓS∗-category. Then the cyclotomic trace
is the lifting of the Dennis trace for symmetric monoidal ΓS∗-categories (definition V.2.3.3)

Σ∞obK(C)→ TC (K(C))→ T (K(C))

considered as a map of bispectra.
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With this we have established Theorem 0.0.1 which uses the simplified notation

K(A) = Σ∞obK(FA)→ TC (K(FA)) = TC(A),

where FA is the category of finitely generated free A-modules of III.2.4.1 (its objects were
natural numbers and its morphisms were matrices).

That the source and target actually model algebraic K-theory and topological cyclic ho-
mology follows: for the K-theory side this is Theorem V.2.2.2, and for the TC-side the proof
of Theorem V.2.3.7 establishes that T (K(C)) is naturally equivalent to Σ∞T (C) through a
chain of equivalences that immediately lifts by Lemma VI.3.1.2 and the definition VI.3.3.1
of TC to a chain of equivalences between TC (K(C)) and Σ∞TC (C). Lastly, Morita equiv-
alence VI.3.1.2 gives that the map TC (FA)← TC (A) induced by the inclusion of the rank
one module is an equivalence.

1.2 Split square zero extensions and the trace

Let A be an S-algebra and P an A-bimodule. We define A∨P as in V.3.2, and recall that,
for every x ∈ Iq+1, we have a decomposition V (A ∨ P )(x) ∼=

∨
j≥0 V

(j)(A,P )(x), with

V (j)(A,P )(x) =
∨

φ∈∆m([j−1],[q])

∧

0≤i≤q

Fi,φ(xi)

where

Fi,φ(x) =

{
A(Sx) if i /∈ imφ,

P (Sx) if i ∈ imφ.

This gives an equivalence THH (A∨P ;X)
∼
→
∏

j≥0 THH (j)(A,P ;X) of cyclic spaces, where

THH (j)(A,P ;X)q = holim
−−−−−→
x∈Iq+1

Ω⊔x(X∧V (j)(A,P )(x)).

In order to get a description of TC(A∨P ) we investigate the effect of the restriction maps
on this decomposition.

Lemma 1.2.1 For every positive integer a the canonical map

sdaTHH (A ∨ P ;X)Ca
∼
−−−→

∏
j≥0 sdaTHH (j)(A,P ;X)Ca

is an equivalence.
The restriction maps respects this decomposition, sending sdaTHH (j)(A,P ;X)Ca to

sda/pTHH (j/p)(A,P ;X)Ca/p (which is defined to be trivial if p does not divide j).

Proof: This follows by analysis of the proof of the fundamental cofiber sequence VI.1.4.2.
Note that X∧V (A∨P )(xa) ∼=

∨
j≥0(X∧V

(j)(A,P )(xa)) is a Ca-isomorphism, and further-
more that

V (j)(A,P )(xa)Ca ∼=

{
V (j/a)(A,P )(x) if j ≡ 0 mod a

∗ otherwise
.
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We have maps of fibrations (we have deleted “(A,P )” from the V ’s to fit the line width)

Map∗(S
⊔xa , X∧

∨
j≥0 V

(j)(xa))Ca −→ Map∗(
⋃

16=b|a(S
⊔xa)Cb, X∧

∨
j≥0 V

(j)(xa))Cay
y

∏
j≥0 Map∗(S

⊔xa , X∧V (j)(xa))Ca −→
∏

j≥0 Map∗((
⋃

16=b|a(S
⊔xa)Cb , X∧V (j)(xa))Ca

whose map of homotopy homotopy fibers is, by the proof of Proposition VI.1.4.2, after
stabilization given by

holim
−→
k

ΩkMap∗(S
⊔xa, Sk∧X∧

∨
j≥0 V

(j)(A,P )(xa))hCa
y

∏
j≥0 holim

−→
k

ΩkMap∗(S
⊔xa , Sk∧X∧V (j)(A,P )(xap))hCa

.

The map of homotopy fibers factors through

holim
−→
k

Ωk(
∏

j≥0

Map∗(S
⊔xa , Sk∧X∧V (j)(A,P )(xa)))hCa .

By Blakers–Massey, the map into this space is an equivalence, and also the map out of this
space (virtually exchange the product for a wedge to tunnel it through the orbits, which
is possible as the connectivity goes to infinity with j).

Hence

sdaTHH (A ∨ P ;X)Ca
R
−−−→ holim←−−−

16=b|a
sda/bTHH (A ∨ P ;X)Ca/b

y
y

∏
j≥0 sdaTHH (j)(A ∨ P ;X)Ca

R
−−−→ holim←−−−

16=b|a

∏
j≥0 sda/bTHH (j/b)(A ∨ P ;X)Ca/b

is homotopy cartesian. Since the map in question is an equivalence when a = 1, this
homotopy cartesian square gives the proposition by induction over a.

Proposition 1.2.2 Let A be an S-algebra, P an n−1 connected A-bimodule, X an m−1
connected space and p a prime. Then the projection to the terminal pieces of the R-towers

TR(A ∨ P ;X; p)→ TR(A,X; p)×
∏

r≥0

holim
←−−−−
pt∈Rp

sdpt+rTHH (pt)(A,P ;X)Cpt+r

→ TR(A,X; p)×
∏

r≥0

sdprTHH (1)(A,P ;X)Cpr

is 2n+m-connected.



1. LIFTING THE TRACE AND SQUARE ZERO EXTENSIONS 277

Proof: Consider the restriction map

sdapTHH (jp)(A,P ;X)Cap
R
−−−→ sdaTHH (j)(A,P ;X)Ca,

where a is a power of p. The homotopy fiber is

holim
−→
k

(ΩksdapTHH (jp)(A,P, Sk∧X)hCap)

and is by assumption jpn+m−1 connected. If p does not divide j, we get an equivalence

sdaTHH (j)(A,P ;X)Ca ≃ holim
−→
k

(ΩksdaTHH (j)(A,P, Sk∧X)hCa) (1.2.3)

(since the target of the restriction map is contractible), and since homotopy orbits preserve
connectivity, this is jn+m− 1 connected. So, consider

sdprTHH (lps)(A,P ;X)Cpr

where p does not divide l. If s ≥ r the R maps will compose to an lps−r+1n + m con-
nected map to THH (lps−r)(A,P ;X), which is lps−rn + m − 1 connected. If r ≥ s the
R-maps will compose to an lpn + m connected map to sdpr−sTHH (l)(A,P ;X)Cpr−s ≃

holim−→
k

Ωk(sdpr−sTHH (l)(A,P, Sk∧X))hCpr−s , which is ln +m− 1 connected.
Hence

holim
←−−−−
pt∈Rp

sdpr+tTHH (lps+t)(A,P ;X)Cpr+t

will be max(ln + m − 1, lps−rn + m − 1) connected. This means that there is a 2n + m
connected map (first discarding all terms with l ≥ 2, then projecting down to the terminal
term in each tower)

TR(A ∨ P ;X; p)→ TR(A,X; p)×
∏

r≥0

holim
←−−−−
pt∈Rp

sdpt+rTHH (pt)(A,P ;X)Cpt+r

→ TR(A,X; p)×
∏

r≥0

sdprTHH (1)(A,P ;X)Cpr

(the last map is pn+m ≥ 2n+m connected as all maps in the homotopy limit on the first
line are pn+m connected).

Lemma 1.2.4 Let A, P , X and a be as before. Then the map of fixed points into homotopy
fixed points

|THH (1)(A,P ;X)|Ca −−−→ |THH (1)(A,P ;X)|hCa

is an equivalence.

Proof: Recall from Lemma V.3.3.2 that j∗T (A,P ;X)→ T (1)(A,P ;X) is a map of cyclic
spectra and an equivalence, where j∗ is the left adjoint to the forgetful functor from
cyclic to simplicial sets. From Lemma VI.1.1.3 we have a T-equivariant homeomorphism
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|j∗T (A,P ;X)| ∼= T+ ∧ |T (A,P ;X)|. Let G be a finite subgroup of the circle group and
consider the commuting diagram (in the homotopy category)

|T (1)(A,P,X)|hG
≃ // |T (1)(A,P,X)|G // |T (1)(A,P,X)hG

|j∗T (A,P ;X)|hG

≃

OO

norm

≃
// |j∗T (A,P ;X)|hG

≃

OO

where the first upper horizontal map is the map from the homotopy fiber of the restriction
map as in the proof of Proposition 1.2.2 and the second is the map from the fixed point
to the homotopy fixed point spectra. The top composite is then homotopic to the norm of
Section VI.2.2. Once we have shown that the marked arrows are weak equivalences we are
done.

By Proposition VI.2.2.5, the G-norm map for the G-free spectrum |j∗T (A,P ;X)|
is an equivalence, so the bottom arrow is an equivalence. Since homotopy orbits and
homotopy fixed points preserve naïve G-equivalences, the two vertical maps in the di-
agram are equivalences as well. The map |T (1)(A,P,X)|hG → |T (1)(A,P,X)|G is an
equivalence as shown in 1.2.3 in the proof of Proposition 1.2.2. Hence the second map
|T (1)(A,P,X)|G → |T (1)(A,P,X)hG is an equivalence, as claimed.

Collecting the information so far, and recalling from Lemma V.3.3.2 that T (1)(A,P ;X)←
j∗T (A,P ;X) → S1

+∧T (A,P ;X) are equivalences, where j∗ is the free cyclic functor, we
get

Lemma 1.2.5 There is a (2n+m)-connected map

TC(A ∨ P ;X; p) −−−→ TC(A,X; p)× holim
←−−−−
pr∈Fp

|T (1)(A,P ;X)|hCpr

x≃

TC(A,X; p)× holim
←−−−−
pr∈Fp

|j∗T (A,P ;X)|hCpr .

Proof: Take −h〈F 〉 of the TR expression, and insert Lemma 1.2.4 to get the desired con-
nectivity of the horizontal map.

Theorem 1.2.6 (Hesselholt) Let A, P , X and p be as above. The “composite”

T̃C(A ∨ P ;X; p) −−−→ T̃ (A ∨ P ;X) ←−−− j∗T (A,P ;X)
∼
−−−→ S1

+∧T (A,P ;X)y
S1∧T (A,P ;X)

is 2n+m− 1 connected after p completion.
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Proof: In a 2n+m− 1 range, the “composite” looks like

holim
←−−−−
pr∈Fp

(j∗T (A,P ;X))hCpr −→ Qj∗T (A,P ;X)
∼
←− j∗T (A,P ;X)

∼
−→ S1

+∧T (A,P ;X)

y
S1∧T (A,P ;X)

but the diagram

holim
←−−−−
pr∈Fp

(j∗T (A,P ;X))hCpr
∼
−→ holim

←−−−−
pr∈Fp

(S1
+∧T (A,P ;X))hCpr ←− (S1

+∧T (A,P ;X))hS
1

y
y ≃

y
Qj∗T (A,P ;X)

∼
−→ Q(S1

+∧T (A,P ;X)) −→ Q(S1∧T (A,P ;X))

gives the result as the left hand maps are the equivalence from Lemma VI.1.1.2 and the
upper right hand map is an equivalence after p-completion by Lemma 2.1.1. The right
hand vertical map is an equivalence by Corollary VI.2.2.3.

Corollary 1.2.7 Let A be a simplicial ring and P a simplicial A-bimodule. The trace
induces an equivalence

D1K(A⋉−)(P )→ D1TC(A⋉−)(P ).

Proof: Comparing Proposition V.3.4.3 and Theorem 1.2.6, we see that the map of differ-
entials D1K(A⋉−)(P )→ D1TC(A⋉−; p)(P ) is an equivalence after p-completion, and
so by the definition of topological cyclic homology, the cyclotomic trace induces an equiv-
alence on differentials after profinite completion. Hence we must study what happens for
the other corners in the definition of TC. But here we may replace the S1 homotopy fixed
points by the negative cyclic homology, and as we are talking about square zero extensions,
even by shifted cyclic homology. But as cyclic homology respects connectivity we see that
the horizontal maps in

(j∗T (A,P ;X)(0))
hS1
−−−→ (T̃ (A⋉ P ;X)(0))

hS1

y
y

(j∗T (A,P ;X )̂ (0))
hS1
−−−→ (T̃ (A⋉ P ;X )̂ (0))

hS1

are both 2k +m connected if P is k − 1 connected and X is m− 1 connected.
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Summing up: both maps going right to left in

K̃(A⋉ P ) −−−→ T̃C(A⋉ P ) ←−−− (j∗T(A,P ))hS
1 ∼
−−−→ (S1

+∧T(A,P ))hS
1

y
y

y
T̃(A⋉ P ) ←−−− Qj∗T(A,P )

∼
−−−→ Q(S1

+∧T(A,P ))

≃

x ≃

x
j∗T(A,P )

∼
−−−→ S1

+∧T(A,P )y
S1∧T(A,P )

are 2k-connected, and all composites from the top row to the bottom are 2k-connected.

2 The difference between K-theory and TC is locally

constant

2.1 The split algebraic case

In this subsection we prove Theorem 0.0.2 in the special case where of a split square zero
extension of simplicial rings. The original proof in [205] used calculus of functors. Here we
offer a more elementary approach by disassembling the cobar construction. We start by
reviewing the few facts we will need.

2.1.1 The cobar construction

Let A be a simplicial ring and X a connected A-bimodule. Model the loops ΩX by means
of the cosimplicial object

ω(0, X, 0) = {[q] 7→ S∗(S
1
q , X) ∼= X×q}.

More precisely, the weak equivalence holim−−−−→
[q]∈∆o S

1
q
∼
→ S1 of A.6.1.2 induces a weak equiv-

alence

ΩX = S∗(S
1, sin |X|)

∼
→ S∗(holim

−−−−→
[q]∈∆o

S1
q , sin |X|)

∼= holim
←−−−
[q]∈∆

S∗(S
1
q , X) = holim

←−
∆

ω(0, X, 0).

This is a special case of the cobar construction of coalgebras and cobimodules, dual to
Hochschild homology. We don’t need the full generality of this construction and write out
the slight extension we need explicitly. Let p : E ։ X be a surjection of A-bimodules. Then
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ω(0, X,E) is the cosimplicial simplicial A-bimodule which in codegree q is ω(0, X,E)q =
X×q ×E, with coface maps

di(x1, . . . , xq, e) =





(0, x1, . . . , xq, e) if i = 0,

(x1, . . . , xi−1, xi, xi, xi+1, . . . , xq, e) if 0 < i ≤ q,

(x1, . . . , xq, pe, e) if i = q + 1,

and codegeneracy maps by removing appropriate factors. Another way of casting ω(0, X,E)
making the cosimplicial structure clear is to observe that ω(0, X,E)q can be identified with
the set of diagrams of the sort

∆[0]q
d1 //

��

∆[1]q

��

∆[0]q
d0oo

��
∗ // X E.

poo

We notice that if E is contractible then the map ω(0, X, 0)→ ω(0, X,E) is a pointwise
equivalence of cosimplicial objects, and so induces an equivalence of homotopy limits:

holim
←−−−
[q]∈∆

ω(0, X, 0)
∼
→ holim

←−−−
[q]∈∆

ω(0, X,E).

The latter model for ΩX has the benefit of coming with the coaugmentation P = ω(0, 0, P ) ⊆
ω(0, X,E) where P is the kernel of E ։ X, modelling the equivalence P

∼
→ ΩX.

2.1.2 Split square zero extensions

Recall that if A is a ring and P is an A-bimodule we write A ⋉ P for the ring whose
underlying abelian group is A⊕P and whose multiplication is defined by (a1, p1) ·(a2, p2) =
(a1a2, a1p2 + p1a2). Then the projection A ⋉ P → A is a surjection of rings whose kernel
is a the square zero ideal which we identify with P .

Definition 2.1.3 For A a simplicial ring and P an A-bimodule, let FAP be the iterated
homotopy fiber (A.7.0.3) of

K(A⋉ P ) −−−→ TC (A⋉ P )y
y

K(A) −−−→ TC (A)

regarded as a functor from A-bimodules to spectra.

Theorem 2.1.4 Let A be a simplicial ring and P an A-bimodule. Then FAP is con-
tractible. That is, the diagram in Definition 2.1.3 is homotopy cartesian.
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The proof of this theorem will occupy the rest of this section. In the next, we will show
how the theorem extends to S-algebras to prove Theorem 0.0.2.
Proof: In view of Propositions III.1.4.2 and VI.4.3.3, we may, without loss of generality,
assume that A is discrete. We know by Corollary 1.2.7 (or more precisely, by the diagram
that ends the proof of Corollary 1.2.7) that if P is k-connected, then FAP is 2k-connected;
so for general P it is natural to study ΩkFA(BkP ) (whose connectivity goes to infinity
with k), or more precisely, the map

FAP
ηkP−−−→ ΩkFA(BkP ).

The map η : FAP → ΩFABP appears naturally as the map of homotopy fibers of FA

applied to the homotopy cartesian square

P −−−→ 0y
y

0 −−−→ BP

.

Since FA does not a priori preserve homotopy cartesian diagrams, we don’t know that ηP
is an equivalence, but we will show that ηP is as connected as FA(BP ) is. This means that
FAP is as connected as ΩFA(BP ), and by induction FAP must be arbitrarily connected,
and we are done.

Recall the cobar construction ω(0, BP,EP ) discussed in 2.1.1 at the beginning of the
section and the augmentation P = ω(0, 0, P )

∼
→ ω(0, BP,EP ), thought of as a functor

from the category ∆ ∪ ∅. Here EP = P ⊗ Z̃[∆[1]], and we identify the cokernel EP/P by
the zero skeleton with BP = B ⊗ Z̃[S1].

By a choice of equivalence of categories between ∆∪∅ and the category Ord of ordered
finite sets, we think of ω(0, BP,EP ) as a functor from Ord to A-bimodules.

Let P ⊆ Ord be the category of finite sets of positive integers and inclusions (inclusions
are order preserving). Fix, for the moment, n ≥ 0, and let Pn ⊆ P be the full subcategory
of subsets of n = {1, . . . , n}. Let S 7→ PnS be the composite

Pn
⊂
−−−→ Ord

ω(0,B,E)∪P
−−−−−−−→ simplicial A-bimodules.

Notice that this becomes a strongly cocartesian n-cube (in the sense that all subsquares
are homotopy pushouts of simplicial abelian groups, c.f. A.7.2).

For any n-cube X and 1 ≤ j ≤ n, consider the subcube you get by restricting X to
Pj ⊆ Pn. For instance X |P∅ is the object X∅, X |P1 is the map X{1} → X∅, and X |P2 is
the square

X{1} −−−→ X∅y
y

X{2} −−−→ X{1,2}

.

Let Fj be the iterated homotopy fiber of X |Pj, and consider the resulting sequence

Fn → Fn−1 → · · · → F1 → F0 = X∅.
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This is nothing more than a specific choice of path for computing the iterated homotopy
fiber (A.7.0.3).

Let Pj = {S ∈ Pj|j ∈ S} ⊆ Pn (the set of all subsets of {1, . . . , j} that actually
contain j; for instance P2 = {{2} ⊆ {1, 2}}), and notice that X |Pj can be viewed as a
map

X |P(j− 1)→ X|Pj

of j−1-cubes. Hence, if we define Φ1 = X{1} and Φj for 1 < j ≤ n as the iterated homotopy

fiber of X |Pj, we get fiber sequences

Fj → Fj−1 → Φj

for all 1 ≤ j ≤ n.
In the case X = FAP

n we get F1
∼
→ F0 = FAP and Φ2 ≃ hofib{∗ ≃ FA(E) →

FA(B)} ≃ ΩFABP . Theorem 2.1.4 follows from the claim that F2 is as connected as
ΩFABP is. This will again follow if we know this to be true for the Φis and for Fn+1.

We first consider the question for the Φjs. Note that the maps in Pj always preserve
j. Translated to ∆, for all 0 < l < j, it has all the inclusions di : [l] → [l + 1] but the
one omitting l + 1. This leaves some room for a change of base isomorphism of j-cubes
Pn|Pj ∼= Qj given by sending di to δi which omits the (i + 1)st coordinate, and is the
identity on the vertices of cardinality ≤ 1. Here we have used that the cubes are strongly
(co)cartesian. The important outcome is that Qj can be constructed iteratively by taking
products with BP (no diagonals).

Thus Φj is the iterated homotopy fiber of FAQ
j , which can be analyzed as follows. Let

P0, . . . Pn be A-bimodules, and define

FA(P0;P1 . . . , Pj)

inductively by letting FA(P0) be as before, and setting

FA(P0;P1, . . . , Pj) = hofib{FA(P0;P1, . . . , Pj−1) −−−→ FA(P0 × Pj;P1, . . . , Pj−1)}

We see that
FA(∗;BP, . . . , BP ) ≃ FA(EP ;BP, . . . , BP ) ≃ Φj .

Now, assume that we know that FA(∗;BP ) ≃ ΩFABP is m-connected for all A and P .
We will show that Φj ≃ FA(∗;BP, . . . , BP ) is also m-connected. This will follow from

the more general statement, that if all the Pi are 1-reduced (their zero-skeleta are trivial),
then FA(−;P1, . . . , Pj) is m-connected. For j = 1 this is immediate as

FA(P0;P1) = hofib{FA(P0)→ FA(P0 × P1)} ≃ ΩFA⋉P0(P1)}

is m-connected by assumption. So assume inductively that FA(−;P1, . . . , Pj−1) is m-
connected. In particular FA(P0;P1, . . . , Pj−1) and FA(P0 × (Pj)q;P1, . . . , Pj−1) are m-
connected, and using that FA(−) may be calculated degreewise we see that

FA(P0;P1, . . . , (Pj)q) is

{
0 if q = 0

m− 1-connected if q > 0
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and hence the conclusion follows.
We are left with showing that the iterated homotopy fiber (“Fn+1”) of FAP

n is as highly
connected as we need. In fact, we will show that FAP

n is (n−3)-cartesian, and so choosing
n large enough we are done. In order to prove this – and so to prove the triviality of FAP
– it is enough to prove the lemmas 2.1.5 and 2.1.6 below.

Lemma 2.1.5 The n-cube K(A⋉ Pn) is n-cartesian.

Proof: This follows from Lemma I.2.5.8 with k = 0.

Lemma 2.1.6 The n-cube TC(A⋉ Pn) is n− 3 cartesian.

Proof: By Proposition VII.4.3.2 with k = −2, this follows from the corresponding state-
ment about topological Hochschild homology. This is proved in Lemma 2.1.9 below.

For each 0 ≤ i ≤ n, let Pi be an A-bimodule, and let T (A;P0, . . . , Pn) = {k 7→
T (A;P0, . . . , Pn, S

k)} be the n-reduced simplicial spectrum given by

[q] 7→ holim
−−−−−→
x∈Iq+1

Ω⊔x(Sk∧
∨

φ∈∆m([n],[q])

∧

0≤i≤q

F j ⊗ Z̃Sxi)

for q ≥ n, where ∆m([n], [q]) ⊆ ∆([n], [q]) is the set of injective and order preserving
functions φ : [n] → [q], and where F j = A if j 6∈ imφ and F j = Pφ−1(j) otherwise. The
simplicial operations are the ordinary Hochschild ones, where the P s multiply trivially.
This is a functor from simplicial A-bimodules to spectra, and restricted to each factor
it preserves homotopy cartesian diagrams. We let T (n+1)(A,P ) = T (A;P, . . . , P ) be the
composite with the diagonal. We see that this agrees with our earlier definition.

Lemma 2.1.7 Let M be a strongly (co)cartesian S-cube of simplicial A-bimodules. Then
T (n)(A,M) is cartesian if |S| > n.

Proof: We define a new S-cube Z as follows. If T ⊆ S, let ST ⊆ PS be the full subcategory
with objects U containing T and with |S − U | ≤ 1, let

ZT = holim
←−−−−
U1∈ST

. . .holim
←−−−−−
Un∈ST

T (A, {MUi}).

As M is strongly cartesian M|ST is cartesian, and so the map T (n)(A,MT ) → ZT is an
equivalence for each T . The homotopy limits may be collected to be over S×nT which may
be written as ∩s∈TAs where As is the full subcategory of A = S×n∅ such that s is in every
factor. As |S| > n the As cover A as in the hypothesis of [106, lemma 1.9], and so Z is
cartesian.

Lemma 2.1.8 If P is (k − 1)-connected, then

T (A⋉ P )
∼
←−−−

∨
0≤j<∞ T

(j)(A,P ) −−−→
∨

0≤j<n T
(j)(A,P )

is (n(k + 1)− 1)-connected.
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Proof: In view of the equivalence HA ∨HP
∼
→ H(A⋉ P ) Corollary VI.3.2.2 gives that

T (A⋉ P )
∼
←−−−

∨
0≤j<∞ T

(j)(A,P ).

Since P is (k − 1)-connected and each simplicial dimension contains a smash product of j
copies of P , we get that

T (j)(A,P )q is

{
0 if q < j − 1

kj − 1 connected if q ≥ j − 1

and so T (j)(A,P ) is j − 1 + kj − 1 = (k + 1)j − 2 connected.

Lemma 2.1.9 T (A⋉ Pn) is id− 2 cartesian.

Proof: Consider

T (A⋉ P )
a

−−−→
∏

0≤j<n T
(j)(A,P )

d

y b

y
holim
←−−
S 6=∅

T (A⋉ PnS )
c

−−−→ holim
←−−
S 6=∅

∏
0≤j<n T

(j)(A,PnS ).

By Lemma 2.1.8, the map a is (n− 1)-connected. By Lemma 2.1.7 T (j)(A,−) is n-excisive
for j < n, and so

∨
0≤j<n T

(j)(A,P )
∼
−−−→

∨
0≤j<n holim←−−

S 6=∅
T (j)(A,PnS ).

Since the map from finite wedges to products of spectra is a stable equivalence, this implies
that b is an equivalence.

Again, by Lemma 2.1.8

T (A⋉ PnS )
a

−−−→
∨

0≤j<n T
(j)(A,PnS )

is (2n − 1)-connected for S 6= ∅, with homotopy fiber, say FS, (2n − 2)-connected. The
fiber of c equals holim←−−

S 6=∅
FS, and must then be 2n−2−n+1 = n−1 connected (an n-cube

consisting of l-connected spaces must have (l− n)-connected iterated fiber: by induction).
Hence c is n-connected.

This means that d must be (n − 2)-connected. Likewise for all subcubes (some are
id-cartesian).

2.2 The general case

In this section we will finally prove Theorem 0.0.2:
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Theorem 2.2.1 Let B → A be a map of connective S-algebras inducing a surjection
π0B → π0A with nilpotent kernel, then the square induced by the naturality of the cyclo-
tomic trace

K(B) −−−→ TC(B)y
y

K(A) −−−→ TC(A)

is homotopy cartesian.

Following the procedure of [102] we first prove the theorem in the case where B → A
is a map of simplicial ring, and then use the density argument to extend it to (connective)
S-algebras.

We start up with some consequences of the split square zero case.

Lemma 2.2.2 Let f : B → A be a simplicial ring map such that each fq is an epimorphism
with nilpotent kernel. Then

K(B) −−−→ TC(B)y
y

K(A) −−−→ TC(A)

is homotopy cartesian.

Proof: Let I = ker(f). As we may calculate the relative K-theory and topological cyclic
homology of a simplicial radical extension degreewise (III.1.4.2 and VII4.3.3), the statement
will follow if for each q we can prove it for the map fq : Bq → Aq. That is, we may assume
that B and A are discrete, and that I = ker(f) satisfies In = 0. Note that each of the
maps

B = B/In → B/In−1 → . . . B/I2 → B/I = A

are square zero extensions, so it will be enough to show the lemma when I2 = 0.

Let F
∼
։ A be a free resolution of A; in particular F is a degreewise free simplicial ring,

F ։ A is a surjective homomorphism and a weak equivalence. Consider the pullback

P −−−→ F

≃

y ≃

y

B
f

−−−→ A

of simplicial rings. Using, again, that we may calculate the K-theory and TC of a simplicial
radical extension degreewise, the result will follow for P → F (and hence for f) if we can
prove the statement for Pq → Fq for each q. Since the ring Fq is free, the surjection Pq → Fq
must be a split square zero extension, for which the theorem is guaranteed by 2.1.4.
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Lemma 2.2.3 Let f : B → A be a 1-connected epimorphism of simplicial rings, then

K(B) −−−→ TC(B)y
y

K(A) −−−→ TC(A)

is homotopy cartesian.

Proof: Note that if R→ S is a k-connected map of simplicial rings, then K(R)→ K(S)
and TC(R) → TC(S) will be (at least) (k − 1)-connected. We will clearly be done if we
can show that any k ≥ 1 connected map f : B → A has a diagram of the following sort

B

f

��

B′

��

g

  A
AA

AA
AA

≃
oo

C

h~~}}
}}

}}
}

A A′≃
oo

where g is a (k+1)-connected epimorphism and h is a square zero extension. The horizontal
maps are simply the replacement of I by a k-reduced ideal I ′ ⊆ B′ described in [102, I.1.7].
We set g to be the projection B′ → B′/(I ′)2 = C. We have a short exact sequence of
simplicial abelian groups

0 −−−→ ker(m) −−−→ I ′ ⊗Z I
′ m
−−−→ (I ′)2 −−−→ 0.

As I ′ is k-reduced, so is ker(m), and I ′ ⊗Z I ′ is (2k − 1)-connected, and accordingly
ker(g) = (I ′)2 must be at least k-connected.

Proposition 2.2.4 Let f : B → A be a map of simplicial rings inducing a surjection
π0B → π0A with nilpotent kernel, then

K(B) −−−→ TC(B)y
y

K(A) −−−→ TC(A)

is homotopy cartesian.

Proof: Consider the diagram

B
f

−−−→ Ay
y

π0B
π0f
−−−→ π0A
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The proposition holds for f if it is true for the three other maps. This follows for the
vertical maps by Lemma 2.2.3, and for π0f by Lemma 2.2.2.

Proof of Theorem 2.2.1: As in the preceding proof, it is enough to consider the maps
A → Hπ0A. Consider the resolution S 7→ AS of III.3.1.9. We know that for every
S ∈ obP, the commutative diagram

K(AS) −−−→ TC(AS)y
y

K(π0A) −−−→ TC(π0A)

induced by the naturality of the cyclotomic trace is cartesian, and furthermore, by Theo-
rem III.3.2.2 and Theorem VI.3.3.4, that

K(A)
∼
→ holim
←−−−−−
S∈P−∅

K(AS)

and
TC(A)

∼
→ holim
←−−−−−
S∈P−∅

TC(AS),

and the result follows.

3 Some hard calculations and applications

In this section we give a short presentation of the many calculations and structural results
about topological cyclic homology. The calculations are the result of the Herculean efforts
of first and foremost Ib Madsen, Marcel Bökstedt, Lars Hesselholt, John Rognes and
Christian Ausoni, but many more have played an active and important rôle.

We refer away most details to the original sources, which in most cases are very carefully
written, but explain enough so that the general idea behind the strategies might be possible
to grasp. Also, we will freely use the most convenient technology, deviating sharply from
our general aim of being fairly self contained. We hope the reader will follow up the
references for notions and theories that are not covered elsewhere in these notes.

3.1 General framework for calculating TC(A; p)

In their tour de force [28], Bökstedt and Madsen give a general procedure for calculating
topological cyclic homology, which has been followed in next to all calculations to date.
We give a very brief account of the procedure, exposing the results at the various stages
for the prime field Fp, for the integers Z and for the p-complete Adams summand ℓp of
complex K-theory with homotopy groups π∗(ℓp) = Zp[v1] with v1 in degree 2p − 2. The
Adams summand can most conveniently be realized as an S-algebra by setting ℓp = K(k)p
[230], where k = ∪n>0Fgn ⊂ F̄p where g is a topological generator of the p-adic units (or
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equivalently, g is an integer generating the units in Z/p2). These three examples (Fp, Z

and ℓp) together give rise to a tantalizing picture which we hope will whet the reader’s
interest in the underlying sources for these calculations.

For simplicity, we will fix an odd prime p. We leave the case of the “macho prime” 2 to
the reader/the references, with a few exceptions.

We use the notation
P (x1, x2, . . . ) = Fp[x1, x2, . . . ]

for the polynomial algebra and

E(x1, x2, . . . ) = Fp[x1, x2, . . . ]/(x
2
i )

for the exterior algebra on a set of generators x1, x2, . . . , and we write |x| for the degree
of an element x.

If X is a spectrum, we write H∗(X) = π∗(HFp∧X) for the mod p spectrum homology.
Let A∗ = H∗(HFp) = π∗(HFp∧HFp) be the dual Steenrod algebra. Using that

π∗(HFp∧HFp∧HFp) ∼= π∗((HFp∧HFp)∧HFp(HFp∧HFp))
∼= π∗(HFp∧HFp)⊗Fp π∗(HFp∧HFp)

we get that A∗ is a graded commutative Hopf algebra: the algebra structure is inherited
by the fact that HFp∧HFp is an HFp-algebra, the comultiplication A∗ → A∗ ⊗Fp A∗ is
given by the unit S → HFp via (the homomorphism of homotopy groups induced by the
map)

HFp∧HFp
∼= HFp∧S∧HFp → HFp∧HFp∧HFp,

the counit A∗ → Fp by multiplication HFp∧HFp → HFp, and conjugation χ : A∗ → A∗
given by reversing the order of the HFp-factors.

For p > 2 Milnor [211] shows that as an algebra

A∗ = π∗(HFp∧HFp) = P (ξk|k > 0)⊗E(τk|k ≥ 0), |ξk| = 2pk − 2, |τk| = 2pk − 1.

With the convention ξ0 = 1, the coproduct ψ : A∗ → A∗ ⊗A∗ is given by

∆(ξk) =
∑

i+j=k

ξp
j

i ⊗ ξj,

∆(τk) = τk ⊗ 1 +
∑

i+j=k

ξp
j

i ⊗ τj,

the unit and counit are isomorphisms in degree 0 and the conjugation is given recursively
by

χ(ξ0) = 1
∑

i+j=k

ξp
j

i χ(ξj) = 0 for n > 0

τk +
∑

i+j=k

ξp
j

i χ(τj) = 0.
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Many formulas are easier to formulate using the conjugate of Milnor’s generators, and we
write ξ̄i = χ(ξi) and τ̄i = χ(τi).

If X is a spectrum, then the spectrum homology H∗(X) = π∗(HFp∧X) is a comodule
over the dual Steenrod algebra with coaction ∆: H∗(X)→ A∗ ⊗Fp H∗(X) induced by the
map HFp∧X ∼= HFp∧S∧X → HFp∧HFp∧X ∼= (HFp∧HFp)∧HFp(HFp∧X). Recall that
an element x in an A∗-comodule M is A∗-comodule primitive if ∆(x) = 1⊗ x. Note that
if M = A∗ ⊗Fp V for some Fp-vector space V , then the primitive elements are all of the
form 1⊗ v with v ∈ V .

Let V (0) = S/p be the cofiber of the map p : S→ S given by multiplication by p. The
mod p homotopy group of a spectrum X is the graded group V (0)∗(X) = π∗(V (0)∧X),
and is often (confusingly) denoted π∗(X;Fp). Note that we get a long exact sequence

. . . −−−→ π∗X
p

−−−→ π∗X −−−→ V (0)∗(X) −−−→ π∗−1(X) −−−→ . . ..

We identify H∗V (0) = V (0)∗HFp = E(τ0) as an A∗-comodule subalgebra of A∗.

3.1.1 Commutative S-algebras vs. Γ-spaces

It is an unfortunate fact that the category of Γ-spaces, although modelling all connective
spectra and connective ring spectra, does not support a good theory for E∞-ring spectra
(see Lawson [170]). This means that in order to exploit the extra structure on topological
Hochschild homology in the commutative case, one must base the theory on alternative
frameworks, such as symmetric spectra [141] where the E∞-ring spectra are modelled
by the strictly commutative S-algebras (see [196] for a comparison between the different
alternatives). This poses no real difficulty if we restrict ourselves to the connective case
(and allowing some fibrant replacements that were conveniently unnecessary in the Γ-space
case, see also [261] and [262] for the non-connective situation), since all the constructions
are based on the associated simplicial functors evaluate on spheres. In the following we
will hence tacitly refer to this framework when we talk about commutative S-algebras.

Recall that if A is a E∞-ring spectrum, its homology supports the so-called Dyer-Lashof
operations, see [46, III.1.1]

Qk : H∗(A)→ H∗+2k(p−1)(A)

coming from certain classes in H∗(S
tp
hΣp

). Explicitly, represent a class in Ht(A) by a map

f : St → HFp∧A (or really a fibrant replacement thereof), consider the composite

(St∧ . . .∧St)hΣp → ((HFp∧A)∧HFp . . .∧HFp(HFp∧A))hΣp → HFp∧A,

giving a map H∗((S
t∧ . . .∧St)hΣp)→ H∗(A). These operations satisfy the Cartan formulas,

Adem relations and Nishida relations [46]. For p > 2, and x ∈ Ht(A), then Qk(x) = 0 for
k < 2t and Q2t(x) = xp. For A = HFp, we have the Dyer-Lashof operations on A∗, with

Qpk(ξ̄k) = ξ̄k+1 and Qpk(τ̄k) = τ̄k+1.
That the cyclotomic trace is multiplicative for discrete rings is shown in the appendix

of [92]. The more general situation follows by the methods of [65] or [248], and a proper
reference will hopefully soon appear.
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3.1.2 The Bökstedt spectral sequence

Given an S-algebra A, HFp∧T (A) ≃ HH Fp(F̃p[A]). This can be realized as a bisimplicial
Fp-vector space. The resulting spectral sequence is called the Bökstedt spectral sequence,
and takes the form

E2
∗∗ = HH ∗(H∗(A))⇒ H∗(T (A)).

This is an A∗-comodule spectral sequence. If A is commutative, this has more structure:
Angeltveit and Rognes [7, 4.2] prove that it is an augmented commutative A∗-comodule
H∗(A)-algebra spectral sequence.

The suspension map σ : S1∧A → S1
+∧A → T (A) (where the first map is induced by

the stable splitting of S0 → S1
+ → S1 VII.4.1) corresponds to the usual suspension in

Hochschild homology in the sense that if x ∈ H∗A, then the class σx ∈ H∗(T (A)) is
represented by 1⊗ x in the normalized chain complex calculating HH Fp

∗ (H∗(A)).
There are important extensions in the Bökstedt spectral sequence. Most notably, in

the case where A is commutative we have extensions given by the Dyer-Lashof operations

Qk(σx) = σ(Qkx),

see [30, 2.9] or [7, 5.9].
The calculations below are due to Bökstedt (unpublished) and to McClure and Staffeldt

[207].

Theorem 3.1.3 There are isomorphisms of A∗-algebras

1. H∗(T (HFp)) ∼= A∗ ⊗ P (στ̄0),

2. H∗(T (Z)) ∼= H∗(HZ)⊗ E(σξ̄1)⊗ P (στ̄1),

3. H∗(T (ℓp)) ∼= H∗(ℓp)⊗ E(σξ̄1, σξ̄2)⊗ P (στ̄2).

Here H∗(HZ) (resp. H∗(ℓp)) is the A∗-comodule subalgebra of A∗ generated by all the
ξ̄i and all the τ̄j but τ̄0 (resp. all but τ̄0 and τ̄1). In fact, the second isomorphism in the
theorem above is as H∗(HZ) algebras, and the third as H∗(ℓp)-algebras.

McClure and Staffeldt [207] also calculate H∗(T (A)) when A is complex cobordism
spectrum MU and the Brown-Peterson spectrum BP .

For the first two cases, the mod-p-homotopy now follows by taking the A∗-comodule
primitives, but in the third case McClure and Staffeldt needed to enlist the help of the
entire Adams spectral sequence and the answer gets rather complicated. For the sake of
exposition, we therefore follow Ausoni and Rognes by giving its V (1)-homotopy, where V (1)
is the Smith-Toda spectrum given as the cofiber of a periodic self map v1 : Σ2p−2V (0) →
V (0) (note that V (1)∗(ℓp) = V (0)∗(HZ) = Fp, and we identify H∗(V (1)) = E(τ0, τ1) as
an A∗-comodule subalgebra of A∗). By [219], V (1) is a commutative ring spectrum (in
the weakest sense) when our fixed odd prime p is greater than 3, and in the following we
restrict ourselves to these primes when discussing results involving V (1).
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Corollary 3.1.4 There are algebra isomorphisms

1. π∗(T (HFp)) ∼= P (µ0),

2. V (0)∗(T (HZ)) ∼= E(λ1)⊗ P (µ1)

3. V (1)∗(T (ℓp)) ∼= E(λ1, λ2)⊗ P (µ2).

with |µi| = 2i and |λi| = 2i − 1.

Here µi corresponds to 1⊗ στ̄i + τ0 ⊗ σξ̄i ∈ H∗(V (i))⊗H∗(T (B)) ∼= H∗(V (i)∧T (B)) and
λi to 1⊗ σξ̄i.

3.1.5 Calculating the homotopy fixed points

In order to calculate the fixed point spectra of topological Hochschild homology, one com-
pares the fundamental cofibration sequence VII.1.4.2 with a similar sequence involving the
homotopy fixed point and the Tate spectrum. We now give a brief sketch the procedure.

Let G be a finite group, and consider the homotopy cofiber sequence

EG+ → S0 → ẼG.

Thus, ẼG is a contractible space with G-action, and its fixed points satisfy ẼG
H
≃ S0 for

all nontrivial subgroups H ⊆ G. When G is a subgroup of the circle, we can choose explicit
representatives, with EG = S(C∞) the unit circle in C∞ = lim−→Cn and EG+ → S0

modelled by the inclusion S(C∞)+ ⊆ D(C∞)+ into the unit disc, whose quotient ẼG
is equal to SC∞

, the one-point compactification of C∞. When H is a nontrivial finite
subgroup of the circle, we see that the only H-fixed points in SC∞

are 0 and ∞.
In what follows we take the notion of “G-spectra” not in the naïve sense used in the

main body of the text, but rather as “genuine G-spectra” indexed on a complete universe
of G-representations, see e.g., [197], [195], [173] or [80]. The homotopy category of G-
spectra in this sense has a very rich structure. In particular, one should note the presence
of transfers XH → XG for inclusions H ⊆ G of finite groups making H 7→ π∗X

H a
so-called Mackey functor (the inclusion of fixed points making up the other half of the
structure). For our applications to topological Hochschild homology, these transfers provide
the Verschiebung maps considered in connection with the de Rham–Witt complex in 3.4
and which is apparent in the Witt-vector descriptions of the homotopy groups of TC and
algebraic K-theory (see e.g., VI.0.4, 3.7.2 and VI.3.2.9). The intimacy between the actual
fixed points used in the definition of TC(−; p) and the homotopy-notions discussed here
comes through the fact that topological Hochschild homology is a cyclotomic spectrum,
see 3.1.9 below.

If X is a G-spectrum let the homotopy orbit spectrum be defined as XhG = EG+∧GX,
the homotopy fixed point spectrum as XhG = Map∗(EG+, X)G and the Tate spectrum as

X tG = [ẼG∧Map∗(EG+, X)]G. Consider the cofibration sequence of spectra [116]

XhG → XhG → X tG
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obtained by applying [−∧Map∗(EG+, X)]G to the cofiber sequence EG+ → S0 → ẼG
under the equivalence [EG+∧Map∗(EG+, X)]G ≃ XhG. The map XhG → XhG may be
identified with the norm map of VI.2.2.4.

Tate cohomology of a discrete group G is defined as follows: consider Z[G]-projective
resolutions of Z

· · · ← P−2 ← P−1 ← Z← 0 and 0← Z← P0 ← P1 ← . . . ,

splice these together to form the “complete” resolution

· · · ← P−2 ← P−1 ← P0 ← P1 ← . . . ,

and apply HomZ[G](−,M) for some Z[G]-module M . Tate cohomology Ĥ∗(G;M) of G
with coefficients in M is then the homology of the resulting chain complex.

The skeleton filtration for EG gives spectral sequences for the homotopy orbit and fixed
point spectra, and splicing these together to the Greenlees filtration [115] for ẼG gives a
spectral sequence for the Tate spectrum. For details the reader may consult [131, section
4], which treats the comparison with the classical case and the multiplicative structure.
The filtration leads to a conditionally convergent upper half plane spectral sequence

Ê2
s,t(X

tG) = Ĥ−s(G; πtX)⇒ πs+t(X
tG).

The inclusion of the non-positive columns gives a map of spectral sequences (which is a
surjection E2

s,t ։ Ê2
s,t for s ≤ 0) from the spectral sequence

E2
s,t(X

hG) = H−s(G; πtX)⇒ πs+t(X
hG)

calculating the homotopy of the homotopy fixed point spectrum. On the abutment this
map is induced by the map XhG → X tG.

Likewise, associated to the boundary map X tG → ΣXhG, we have a map of spectral
sequences Ê2

s+1,t(X
tG) → E2

s,t(XhG) = Hs(G; πtX). This map is injective for s ≥ 0 and
r ≥ 2.

The interrelationship between these spectral sequences is described in close detail in [28,
Section 2], and in particular they give the highly useful description of elements in the kernel
of E∞−s,t(X

hG)→ Ê∞−s,t(X
tG): if α is in this kernel (for s ≥ 0), then there exists an r > s such

that α is hit by the rth differential of an element β ∈ Êr
r−s,t+r−1(X

tG) ⊆ Er
r−s−1,t−r−1(XhG),

with β surviving to E∞r−s−1,t−r−1(XhG), and such that the image of β is sent to α under the
norm map XhG → XhG.

If X is a ring spectrum, then Er(XhG) → Êr(X tG) is a map of algebra spectral se-
quences (in particular, the differentials are derivations).

3.1.6 The Cp-Tate spectral sequence for THH

Consider the cyclic group C = Cm. We identify Z[C] with Z[t]/tm − 1 and see that

Z[C]
1−t
←−−− Z[C]

1+t+···+tm−1

←−−−−−−−− Z[C]
1−t
←−−− . . .
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is a free Z[C]-resolution of Z. If M is a trivial C-module, this becomes, after applying
HomZ[C](−,M),

M
0

−−−→ M
m
−−−→ M

0
−−−→

m
−−−→ . . .,

and so the cohomology Hk(C,M) is M if k = 0, mM = ker{m : M → M} if k is odd and
M/mM if k is even and positive. In particular, if multiplication by m is trivial, then the
cohomology is M in all degrees.

If m is a power of p and R is a graded commutative Fp-algebra (considered as a C-
module with trivial C-action), then the Tate homology is

Ĥ−∗(C;R) = E(u)⊗ P (t, t−1)⊗ R

with u in dimension −1 and t in dimension −2.
Hence, we may identify the E2-terms of the spectral sequences for calculating the

appropriate groups of the Tate spectra from Corollary 3.1.4 (recall that the C-action on
the homotopy groups are trivial since the C action is a restriction of the T-action):

Corollary 3.1.7 Let C = Cpn. There are strongly convergent upper half plane spectral
sequences

1. Ê2(T (HFp)) = E(u)⊗ P (t, t−1)⊗ P (µ0)⇒ π∗(T (HFp)
tC),

2. Ê2(V (0)∧T (HZ)) = E(u)⊗ P (t, t−1)⊗E(λ1)⊗ P (µ1)⇒ V (0)∗(T (HZ)tC),

3. Ê2(V (1)∧T (ℓp)) = E(u)⊗ P (t, t−1)⊗ E(λ1, λ2)⊗ P (µ1)⇒ V (1)∗(T (ℓp)
tC),

where the bidegree of u is (−1, 0), of t is (−2, 0) of µi is 2pi and of λi is 2pi − 1.

The structure of the differentials in these spectral sequences are increasingly complicated,
however in all three cases they are completely determined by the differentials on the base
line, i.e., on u and on the powers of t. The spectral sequences are conditionally convergent
by construction, and since they are finite in each bidegree, Boardman’s first conditional
convergence theorem [25, 7.1] implies strong convergence.

In the C = Cp and HFp-case, everything is killed off by d3(u) = t2µ0. This is an
interesting differential in that its origin gives a first example of what seems to be a general
phenomenon. In the mod p spectral sequence

Ĥ−∗(Cp, V (0)∗(T (HFp))) = E(u)⊗ P (t, t−1)⊗ E(ǫ0)⊗ P (σǫ0)⇒ V (0)∗(T (HFp)
tCp)

there is a d2-differential d2(ǫ0) = tσǫ0 coming from the calculation of T (HFp). For di-
mension reasons, there can be no d2-differentials in the integral spectral sequence, so tµ0

represents a class in total degree 0 in the homotopy fixed point spectral sequence which
is killed mod p. Ultimately this gives rise to the said d3-differential which expresses that
the class of tµ0 in π0(T (HFp)

hCp) comes from π0(T (HFp)hCp)
∼= Z/p in the fundamental

cofiber sequence
T (HFp)hCp → T (HFp)

Cp → T (HFp),
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reflecting that π0(T (HFp)
hCp) ∼= Z/p2.

The analysis of the HFp-case is carried through by Hesselholt and Madsen in [129], the
Z-case by Bökstedt and Madsen in [28] and [29] with input from [288], and for p = 2 by
Rognes in [240], and finally the ℓp-case by Ausoni and Rognes in [11].

The outcome is particularly striking when C = Cp:

Proposition 3.1.8 The spectral sequences i = 1, 2, 3 in Corollary 3.1.7 degenerate at the
2pi + 2nd page, leaving no room for extensions:

1. π∗(T (HFp)
tCp) ∼= Ê∞(T (HFp)) = P (t, t−1)

2. V (0)∗(T (Z)tCp) ∼= Ê∞(V (0)∧T (HZ)) = E(λ1)⊗ P (tp, t−p)

3. V (1)∗(T (ℓp)
tCp) ∼= Ê∞(V (1)∧T (ℓp)) = E(λ1, λ2)⊗ P (tp

2
, t−p

2
)

The reader may note that in non-negative degrees (but for the class λ1λ2t
p2 in degree

2p−2) these groups are abstractly isomorphic to the corresponding topological Hochschild
homology groups. Whether this is a coincidence or not depends on your point of view.

3.1.9 Comparison of fixed point and homotopy fixed points

Recall the fundamental cofibration sequence VII.1.4.2. The map ECpn → ∗ is a Cpn-map,
and induces a map Γn from fixed point spectra to homotopy spectra such that we get a
map of cofiber sequences

T (A)hCpn −−−→ T (A)Cpn −−−→ T (A)Cpn−1

∥∥∥ Γn

y Γ̂n

y
T (A)hCpn −−−→ T (A)hCpn −−−→ T (A)tCpn

,

where the leftmost square commutes up to homotopy, as one sees from the constructions,
forcing the existence of the slightly more mysterious map Γ̂n. In the fully equivariant world
we are adopting, this map can be seen quite geometrically. In that framework, the upper
sequence should be replaced by a sequence which exists for general (appropriately fibrant
and cofibrant) G-spectra X formed by taking fixed points of the sequence one gets by

smashing the cofibration sequence EG+ → S0 → ẼG with X (just as the lower sequence
is obtained by taking the fixed point of the smash of this sequence with Map∗(EG+, X)).

The spectrum [ẼG∧X]G is the so-called spectrum of geometric fixed points ΦGX and
enjoys numerable good properties (for instance the geometric fixed points of the suspension
spectrum of a G-space is the suspension spectrum of the G-fixed point space, see e.g., [195]
for an exposition of some basic facts), and the vertical maps in the diagram are induced by
the projection EG→ S0. The connection to the diagram as it appears above when G = Cp
comes through the fact that topological Hochschild homology is a cyclotomic spectrum: its
Cp-geometric fixed point spectrum is equivalent to THH itself. The theory of cyclotomic
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spectra was introduced in[28], and expanded upon in [129], and is an important tool both
for calculations and foundations.

Adapting ideas from Carlsson’s proof of the Segal conjecture [52], Tsalidis proved [289]
the following theorem starting an induction procedure for calculating the fixed point spectra
of topological Hochschild homology.

Theorem 3.1.10 (Tsalidis) If Γ1 induces a p-adic equivalence after smashing with a fi-
nite CW-spectrum on some connected cover, then so does Γn for all n ≥ 1.

Using knowledge about certain classes with origin in K-theory, Hesselholt, Madsen,
Bökstedt, Ausoni and Rognes consequently prove

Theorem 3.1.11 The map Γ̂1 is a V -equivalence on k-connective covers for A = HFp

(V = S, k = −1), HZ (V = V (0), k = −1) and ℓp (V = V (1), k = 2p− 2), sending λi to
λi and µi to t−p

i
(up to multiplication by units in Fp).

Not only does this show that the Cpn-fixed point spectra can be calculated from the ho-
motopy fixed point spectral sequence, it also gives important feedback to these spectral
sequences.

Except for the case A = HFp, where π∗(T (HFp)
Cpn ) ∼= Z/pn+1(µ0(n)) with µ0(0) = µ0,

R(µ0(n)) = pµ0(n− 1) and F (µ0(n)) = µ0(n− 1), the explicit groups for the fixed points
are rather messy, and we will not list them here. However, when taking the homotopy limit
over the restriction and Frobenius maps things shape up a bit. In particular, given the
formula for the restriction map R above, all higher groups vanish in the homotopy limit
over R, leaving

holim
←−
R

T (HFp)
Cpn ≃ HZp,

and
TC(HFp; p) ≃ HZp ∨ Σ−1HZp.

The most remarkable feature is perhaps that by taking fixed points we have gone from
a situation where p = 0 to a case where p acts injectively. A similar thing happens for the
two other cases:

Theorem 3.1.12 There are algebra isomorphism

1. π∗TC(HFp; p) ∼= Zp[∂]/∂
2,

2. V (0)∗TC(Z; p) ∼= (E(∂, λ1)⊗ Fp{λ1t
i|0 < i < p})⊗ P (v1),

3. V (1)∗TC(ℓp; p) ∼= M ⊗ P (v2), where

M = E(∂, λ1, λ2)⊕E(λ2)⊗ Fp{λ1t
i||0 < i < p} ⊕E(λ1)⊗ Fp{λ2t

ip||0 < i < p}.

with |∂| = −1, |λi| = 2pi − 1, |t| = −2, |vi| = 2pi − 2.

The classes vi has appeared above as tµi, and are named thus since they are mapped
all the way from the periodic maps in Σ2pi−1−2V (i− 1)→ V (i− 1) of the same name.
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3.1.13 Algebraic K-theory

The cyclotomic trace gives that these results have direct bearings on the algebraic K-theory.
The comparison goes by a sort of induction, with the start of the induction being the case
A = HFp. Before stating the theorem it is perhaps appropriate to remind the reader that
we look only at odd primes p and when discussing V (1)-homotopy we assume that p > 3.

Theorem 3.1.14 Let A be an S-algebra with a surjective ring map Zp ։ π0A. Then the
cyclotomic trace fits in a cofiber sequence

K(A)p
trc
−−−→ TC(A)p −−−→ Σ−1HZp.

In particular,

1. π∗K(HFp)p ∼= Zp

2. V (0)∗K(Zp)p ∼= (E(λ1)⊗ Fp{λ1t
i|0 < i < p})⊗ P (v1)

3. V (1)∗K(ℓp)p ∼= Fp{a} ⊕N ⊗ P (v2), where

N = E(λ1, λ2)⊕ e(λ2)⊗ Fp{λ1t
i||0 < i < p} ⊕E(λ1)⊗ Fp{λ2t

ip||0 < i < p}.

The class a ∈ V (1)2p−3K(ℓp)p arises as the V (1)-Bockstein of 1 ∈ π0HZp.

Proof: By [230] the higher homotopy groups of K(HFp) are all finite torsion, but there
is no p-torsion, so K(HFp)p

∼
→ HZp. By the appendix of [92] the cyclotomic trace map is

multiplicative, and so trc : K(HFp)p → TC(HFp)p must induce the identity on π0 (since
both source and target are copies of Zp), and the cofiber sequence is established in the case
A = HFp. If π0A is finite, it must be a nilpotent extension of Fp, and so

K(A)p −−−→ TC(A)py
y

K(HFp)p −−−→ TC(HFp)p

is homotopy cartesian, and we get the stated cofiber sequence. If π0A = Zp we are done by
using that K(Zp)p

∼
→ holim←−n K(Z/pn)p [221] and TC(Zp)p

∼
→ holim←−n TC(Z/pn)p [129].

Remark 3.1.15 Note that the comparison between algebraic K-theory and topological cyclic
homology goes from being a relative statement, as in the main body of the book, to an abso-
lute statement after p-completion, thanks to the fact that the higher K-groups of HFp are
finite torsion away from p.

This means that trace methods are particularly well suited to understanding K-theory at
the characteristic, which should be thought of as the harder part - analyzing K-theory away
from the characteristic is open to attack by a wider array of methods like comparison with
étale K-theory and motivic cohomology. Another important line of reductions away from
the characteristic arise through Gabber’s rigidity theorem [88] which states that if (A, I) is
a Hensel pair I.5 with 1/p ∈ A, then K(A)p ≃ K(A/I)p.
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The good behavior of both algebraic K-theory and topological cyclic homology implies
that the above statements extend to a wide array of situations. For instance, generalizing
a result in [129] slightly, one gets

Theorem 3.1.16 Let k be a perfect field of characteristic p > 0 (so, taking the pth power
is an automorphism) and A a connective S-algebra such that π0A is a W (k)-algebra which
is finitely generated as a W (k)-module. Then the cyclotomic trace fits in a cofiber sequence

K(A)p → TC(A)p → Σ−1H(coker{1− F})

where F : W (π0A)→ W (π0A) is the Frobenius endomorphism.

3.1.17 Space level descriptions and the case p = 2

Since TC(HFp; p) is the Eilenberg-Mac Lane spectrum HZp ∨ Σ−1HZp, we get that
TC(A; p) is an Eilenberg-Mac Lane spectrum whenever A is an Fp-algebra, and so is
determined completely by its homotopy groups.

For other rings this is definitely not true. For instance, Bökstedt and Madsen prove in
[29] that

Theorem 3.1.18 (Bökstedt and Madsen) Let p be an odd prime, let g be a topological
generator of the units in Zp and let (the image of) J be the homotopy fiber of 1−Ψg : Z×
BU → BU , where Ψg is the gth Adams operation. Then the algebraic K-theory space of
W (Fps) for s ≥ 1 is equivalent after p-completion to

J × BJ × SU × U×(s−1).

In particular K(Zp)p ≃ Jp × BJp × SUp.

This result is stated in terms of infinite loop spaces, and B signifies the associated bar-
construction, shifting homotopy groups by one. We note that neither J nor the infinite
unitary group U = ∪n>0U(n) are Eilenberg-Mac Lane spaces. Due to Bott periodicity, the
special unitary group SU could alternatively be given as BBU .

For the homotopy groups, one notices that apart from the group π0(Jp) = Zp, the
nonzero homotopy groups of Jp and U are π2k(p−1)−1(Jp) = Z/pνp(k)+1 and π2k−1(U) = Z

for k > 0, where νp is the p-adic valuation: νp(np
m) = m if gcd(n, p) = 1. In order to get to

this space level description, one of course has to reach beyond the mod p homotopy groups
we have listed. In the case of the Eilenberg-Mac Lane spectrum HZp, Bökstedt and Madsen
[28] compare directly to the more computable topological cyclic homology of Sp, and uses
that the spectra involved are in a sense very rigid. In particular, there are canonical maps
from Jp and BJp to K(W (Fps))p, but the identification of the factors involving the unitary
groups relies on structure theorems in the K-local category, and so is highly non-canonical.
As far as the authors know, the multiplicative structure on K(W (Fps))p is unknown.

The case p = 2 is in many ways quite different. For one thing the algebraic properties
(or lack thereof) of the mod p Moore spectra S/p = V (0) are bad for small primes p. In
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particular, S/2 is not a homotopy commutative ring spectrum, even in a weak sense. In
a series of papers culminating in [240], Rognes resolves this by carefully comparing with
mod 4 homotopy, and also replacing Bökstedt and Madsen’s comparison with K(Sp) with
a comparison through a “Galois reduction map” K(Z2) → K(F3). Here K(F3) plays the
rôle as the (complex!) image of J-space, but the splitting results of the odd primary case
fails, giving

Theorem 3.1.19 (Rognes) After 2-completion, there are (non-split) fiber sequences

B(KF3) −−−→ Kred(Z2) −−−→ BBUy
K(Z2)y
K(F3)

3.2 The Lichtenbaum-Quillen conjecture, the Milnor conjecture
and the Redshift conjecture

Since we are mainly concerned with phenomena in algebraic K-theory which can be under-
stood from trace methods, we will do the Lichtenbaum-Quillen conjecture grave injustice.
This conjecture and its relatives have led to vast amounts of deep mathematics, and the
final solution in the original cases of interest comes through motivic cohomology (although
trace methods played an interesting part in the early identification). For a nice exposi-
tion, containing a chronological overview of this and related results and conjecture, see the
papers of B. Kahn [153], Weibel [309] or Gajda [90].

Quillen proved that for extensions of finite fields k1 ⊆ k2, the map

K(k1)→ K(k2)
hGal(k2/k1)

is an equivalence. Here the Galois group Gal(k2/k1) acts on the category of finite dimen-
sional k2-vector spaces and hence on K(k2). In most models of algebraic K-theory we may
identify K(k1) with the actual fixed point spectrum K(k2)

Gal(k2/k1).
So, for a group G of ring-automorphisms of a given ring A, one may ask about the

relationship between the algebraic K-theory K(AG) of the fixed ring AG and the homotopy
fixed point spectrum K(A)hG.

Lichtenbaum conjectured [175] a relationship between the values of the Dedekind zeta
function for a number field and the order of the (higher) K-groups of the ring of inte-
gers and Quillen conjectured [233] that there should exist a sort of analog of the Atiyah-
Hirzebruch spectral sequence for algebraic K-theory built out of étale cohomology. These
two conjectures are closely related and have been refined over the years in various direc-
tions. Dwyer and Friedlander [77] refined Soulé’s work [267], and defined a surjective map
from algebraic K-theory to something called étale K-theory which is the abutment of the
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Atiyah-Hirzebruch spectral sequence mentioned above, so that the Lichtenbaum-Quillen
conjecture amounted to the claim that the map was injective. The step towards stable ho-
motopy theory was taken when it was realized that under favourable circumstances étale
K-theory essentially was what you got when you “invert the Bott element” in algebraic
K-theory [76], [283].

More precisely, in Waldhausen’s description [300] of Snaith’s setup [265], let V (0) = S/p
be the homotopy cofiber of a degree p self-map S→ S. There is a self-map v1 : Σ2p−2V (0)→
V (0), and the Bott inverted algebraic K-theory K(A;Z/p)[β−1] is equivalent to the homo-
topy colimit of

K(A)∧V (0)
v1−−−→ K(A)∧Σ−2p+2V (0)

v1−−−→ K(A)∧Σ−24+4V (0)
v1−−−→ . . . ,

which on the other hand (by formal properties of Bousfield’s L1-localization with respect
to Morava K-theory K(1), see also the discussion about the redshift conjecture below) is
the same as L1K(A)∧S/p. Eventually, the Lichtenbaum-Quillen conjecture then can be
formulated to say that for suitable discrete rings A the localization map

K(A)(p) → L1K(A)(p)

is an equivalence in sufficiently high degrees.
In this formulation, one sees that the calculations of Bökstedt, Madsen and Rognes

confirm the Lichtenbaum-Quillen conjectures in the cases they cover: the answers they
provide are clearly equal to their L1-localizations in high degrees: v1 acts injectively. Also
the calculations of Hesselholt and Madsen on finite extensions of local number fields (see
3.3.3 below) is phrased so that this becomes apparent.

For algebraically closed fields, Suslin proved the Lichtenbaum-Quillen conjecture, in
that he proved that if F ⊆ E is an extension of algebraically closed fields, then K(F ) →
K(E) is an equivalence after profinite completion, and both spectra have the value pre-
dicted by étale K-theory. In particular, if F is an algebraically closed field of characteristic
0, then there is an equivalence

K(F )p ≃ kup,

and the values for the positive characteristic case is given by Quillen’s calculation of the
K-theory of the algebraic closure of finite fields I.1.7. Suslin’s result could be stated as
saying that the proposed spectral sequence in the Quillen part of the conjecture states that
the algebraic K-theory of a field k is, in fact, the homotopy fixed set of the absolute Galois
group action on the K-theory of its algebraic closure.

The ultimate goal of calculating the algebraic K-theory of the integers is beyond the
scope of trace methods, since topological cyclic homology is notoriously bad at distinguish-
ing between a ring and its completions: TC(Z; p)p

∼
→ TC(Zp; p)p, whereas K-theory sees a

huge difference.
Voevodsky’s proof of the Milnor conjecture [293] made it possible for Rognes and Weibel

[239] to complete the 2-primary piece of the Lichtenbaum-Quillen Conjecture (see also the
paper by Weibel [308] and the influential preprint [152] by Kahn where the authors obtain
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the result upon relying on a multiplicative structure of the Bloch-Lichtenbaum spectral
sequence). The result is most elegantly summarized by stating that a certain 2-completed
homotopy commutative square proposed by Bökstedt

K(Z)2 −−−→ BO2y
y

K(F3)2 −−−→ BU2

is homotopy cartesian. For a fuller discussion see Hodkin and Østvær [137]. See also the
table in Section I.3 which is lifted from Weibel [308].

The situation for odd primes was much more painful, in that the odd companion of
the Milnor conjecture, called the Bloch-Kato conjecture, turned out to be hard to prove
(a statement which in no way is meant to belittle the monumental achievements leading
to the results for p = 2). Eventually this is now a theorem, the norm residue isomorphism
theorem, due to Rost and Voevodsky, see [303], [294]. The link between the Bloch-Kato
conjecture and the Beilinson-Lichtenbaum conjectures was proved by Suslin and Voevodsky
assuming resolution of singularities (this condition is removed by Geisser and Levine in
[95]). The relevant spectral sequence was first constructed by Grayson [114] with the last
pieces being laid by Suslin [274]. Voevodsky and Levine also have constructions of the
spectral sequence. See also [149]. We are indebted to Weibel and a careful referee for
making the status of various conjectures clearer to us.

3.2.1 Redshift

In another direction, there is ongoing work trying to understand algebraic K-theory of
S-algebras intermediate between the Eilenberg-Mac Lane of rings and the sphere spectrum
itself. Much of this activity draws its motivation from Waldhausen’s paper [300] in which
he extends beyond the Lichtenbaum-Quillen conjecture to speculate about the homotopy
theoretic significance of a filtration of the linearization map K(S) → K(Z) through the
K-theory of intermediate rings ideally extracting the “arithmetic properties” of ring spectra.

Given that we now understand the linearization map, to some degree, through a blend
of motivic and trace method information (see section 3.8.1 below), this idea is especially
tantalizing.

Slightly reinterpreted, let Ln = LE(n) be Bousfield localization with respect to the nth
Johnson-Wilson spectra E(n) with π∗E(n) = Zp[v1, . . . , vn][v

−1
n ] and consider the tower

X → · · · → LnX → · · · → L1X → L0X ≃ HQp∧X

approximating the finite p-local CW-spectrum X in the sense of chromatic convergence:
X
∼
→ holim←−n LnX. See Ravenel’s orange book [237] for background. In [300], Waldhausen

considered a somewhat different localization functor Lfn, characterized by its behavior on
finite spectra, which turned out to be different due to the failure of the so-called telescope
conjecture (it fails for n = 2, but is true for n = 1, so L1 = Lf1), see [238] and [206].
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McClure and Staffeldt [206] prove that one has chromatic convergence for algebraic K-
theory, in the sense that K(Sp) ≃ holim←−n K(LnSp), but it is unknown whether this holds
for the Lf -version. Given the close connection between algebraic K-theory and topological
cyclic homology, one is tempted to believe that this should be possible to establish through
trace methods.

As touched upon above, Thomason [283] reinterpreted the Lichtenbaum-Quillen con-
jecture to say that under favourable circumstances you had something resembling Bott
periodicity. This was again reinterpreted by Waldhausen [300] and further developed by
Mitchell [216] to say that the localization map K(A) → L1K(A) was an equivalence in
high dimensions. As a matter of fact, Mitchell proved that for any discrete ring A, the
map LnK(A)→ L1K(A) is an equivalence, and hence [238], so is LfnK(A)→ L1K(A).

This interpretation puts the discoveries of Bökstedt and Madsen in an interesting con-
text, and already in their first papers they emphasize that their trace calculations give
exactly this sort of behavior. In [28, section 9] and [29, section 5] they show that alge-
braic K-theory of unramified number rings is v1-periodic in the sense that it agrees with
its L1-localization in high degrees, cf. the formula for V (0)∗K(Zp) in Theorem 3.1.14 for
a typical example. Later, in [131] more general local number fields are included into the
picture (see 3.3.3 below).

The “redshift conjecture” of Rognes is an offspring of this line of ideas, generalizing this
behavior to higher chromatic filtration. As presented in [2], Ausoni and Rognes connect
this up with speculations on the interplay between algebraic K-theory and Galois theory
for commutative S-algebras, much as for the Lichtenbaum-Quillen conjecture.

Redshift is clearly also present in their calculation of the algebraic K-theory of the
Adams summand ℓp above 3.1.14, lending credibility to the speculation that this may be
a more general phenomenon.

Also Ausoni’s calculation of the K-theory of all of kup for p > 3, [10, theorem 8.1],
supports the idea:

V (1)∗K(kup) ∼= P (b)⊗M ⊕ Fs{s}

where M is some finite Fp-vector space (given explicitly by Ausoni, see also 3.3.4 below),
b satisfies bp−1 = −v2 and the degree of s is 2p− 3.

A conceptual explanation for why one would expect red shift for algebraic K-theory
is still missing, but there is hope that the cyclotomic trace may shed some light on the
phenomenon, through the rich algebraic structure on the fixed point spectra of topological
Hochschild homology.

For instance, one notices that for the commutative ring spectra A = S and A = MU ,
one has a sort of Segal conjecture in the narrowest sense, in that T (S)Cn → T (S)hCn

and T (MU)Cn → T (MU)hCn are both equivalences [52], [185]. In some way this reflects
that both S and MU have “infinite chromatic height”, in contrast to the more algebraic
rings A where T (A)Cn → T (A)hCn may be an equivalence in high dimension, but where
the homotopy fixed point spectrum exhibits periodic phenomena in negative dimensions,
starting in dimensions that somehow correspond to the chromatic height of the input. For
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instance, we note that in the spectral sequence VI.4.1 for the homotopy Cp-fixed points for
HFp, HZ and ℓp, we have infinite cycles t, tp and tp

2
, where t is a generator in H2(BS1).

This should be contrasted with the case where one looks at the fixed point spectra of
topological Hochschild homology for one degree at a time: according to Lunøe-Nilsen and
Rognes [184]

THH jp−1(A)Cp → THH jp−1(A)hCp

is an equivalence if for each i the ith spectrum homology group πi(HFp∧A) is finite (recall
that THH jp−1(A) is just a particular model for the jp-fold smash power of A. As a matter
of fact, the result is not dependent on the multiplicative structure of A and is valid for any
spectrum A which is bounded below and satisfies the said finiteness condition). Hence the
phenomenon that fixed points and homotopy fixed points differ for topological Hochschild
homology is a consequence of the fact that homotopy fixed points do not commute with
realization.

It seems likely that the fixed point spectra of topological Hochschild homology might
shed more light on the algebraic side of redshift. The very first step, moving from a
situation where the prime v0 = p is zero to where it acts injectively is encoded in the
Witt vectors, which we recognize as the path components of TR: π0TR(A) ≃ W (π0A)
for a commutative S-algebra A, and for the next step much information is encoded in
the de Rham–Witt complex 3.4. In [44] it is shown that for commutative S-algebras,
one can extend the definition of topological Hochschild homology to a functor X 7→ ΛXA
such that THH (A) ≃ ΛS1A, and such that one retains full control over the equivariant
structure, and in [53] this is used to study the interplay between the various fixed points of
iterated topological Hochschild homology. This gives us access to classes that conjecturally
detect higher chromatic phenomena, but we are still very far from understanding the
interrelationship between the commutativity of the S-algebra and the chromatic structure
of the spectrum underlying the fixed point spectra.

3.3 Topological cyclic homology of local number fields

Algebraic K-theory has a localization sequence, making the connection between examples
like the algebraic K-theory of a number field and its ring of integers quite transparent. For
instance, there is a fiber sequence

K(Fp)→ K(Zp)→ K(Qp),

so that the p-torsion in the K-groups of Zp and of Qp agree. The “transfer” K(Fp)→ K(Zp)
is induced from the inclusion of the torsion Zp-modules in the category of finitely generated
Zp-modules. By the resolution theorem I.2.7.6, the K-theory of the former category is
equivalent to K(Fp) and the K-theory of the latter is equivalent to K(Zp).

For topological cyclic homology the situation is quite different. Since p is invertible
in Qp, the Cpn-fixed points of topological cyclic homology becomes quite uninteresting:
HQp ≃ T (Qp) ≃ T (Qp)hCpn , so T (Qp)

Cpn ≃ Qp × · · · ×Qp and TR(Qp; p) ≃ HWQp, an
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infinite product of copies of HQp. The Frobenius action cuts this down to size so that
TC(Qp; p) ≃ HQp.

Hesselholt and Madsen handle this problem in [131] by forcing localization on topolog-
ical cyclic homology and get a map of fiber sequences

K(k) −−−→ K(A) −−−→ K(K)y
y

y
TC(k; p) −−−→ TC(A; p) −−−→ TC(A|K; p)

(3.3.1)

where K is a complete discrete valuation field of characteristic zero with valuation ring A
and perfect residue field k of characteristic p > 2.

Explicitly, they introduce three categories with cofibrations and weak equivalences,
which all are full subcategories of the category Cb(PA) of bounded complexes of finitely
generated projective A-modules

1. Cb
z(PA): all objects and the weak equivalences are the homology isomorphisms,

2. Cb
q(PA): all objects and the weak equivalences are the rational homology isomor-

phisms, and

3. Cb
z(PA)q: the objects are the complexes whose homology is torsion and the weak

equivalences are the homology isomorphisms.

We have maps of categories with cofibrations and weak equivalences

Cb
z(PA)q

⊆
−−−→ Cb

z(PA) −−−→ Cb
q(PA),

and localization I.2.7.4 implies that this gives a fibration sequence in K-theory, and Hes-
selholt and Madsen use that one has a corresponding fiber sequence for topological cyclic
homology, resulting in a map of fiber sequences

K(Cb
z(PA)q) −−−→ K(Cb

z(PA)) −−−→ K(Cb
q(PA))y

y
y

TC(Cb
z(PA)q; p) −−−→ TC(Cb

z(PA); p) −−−→ TC(Cb
q(PA); p).

(3.3.2)

Hesselholt and Madsen now define TC(A|K; p) = TC(Cb
q(PA); p), and variations on the

approximation theorem I.2.7.3 can be used to identify diagram 3.3.2 with diagram 3.3.1.
Combined with the technology they develop for the de Rham–Witt complex with log

poles, briefly discussed in section 3.4 below, Hesselholt and Madsen then prove in [131]
that

Theorem 3.3.3 Let K be a finite extension of Qp where p is an odd prime. For an integer
r let FΨr be the homotopy fiber of 1 − Ψr : Z × BU → BU , where Ψr is the rth Adams
operation. Then the algebraic K-theory space is equivalent after p-completion to

FΨgp
a−1d

× BFΨgp
a−1d

× U |K:Qp|,
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where d = (p− 1)/|K(µp) : K|, a = max{v|µpv ⊆ K(µp)} and g is a topological generator
of the units in Zp (or equivalently, an integer which generate the units in Z/p2).

3.3.4 Quotient fields in a more general framework

It should be noted that the localization idea have been extended in some cases beyond
discrete rings. In particular, in [22] Blumberg and Mandell show that there is a fiber
sequence

K(HZ)→ K(ku)→ K(KU)

where the first map is a transfer-type homomorphism similar to the inclusion of the category
of finite abelian groups into the category of finitely generated abelian groups, and where
the last map is induced by the map from connective complex K-theory, ku, to (periodic)
complex K-theory, KU , given by inverting the Bott class. Similar sequences hold for the
Adams summand, and Hesselholt has observed that the calculations of Ausoni and Rognes
could be efficiently codified if one extends the techniques from the local field case, see e.g.,
the discussion in [10, remark 8.4], and according to Ausoni would give the calculation [10,
theorem 8.3]

V (1)∗K(KUp)
?
∼=P (b)⊗E(λ1, d)⊕ P (b)⊗ Fp{∂λ1, ∂b, ∂a1, ∂λ1d}

⊕P (b)⊗E(d)⊗ Fp{t
kλ1 | 0 < k < p}

⊕P (b)⊗E(λ1)⊗ Fp{σn, λ2t
p2−p | 0 < n < p− 1}

where b satisfies bp−1 = −v2, and the degrees of the other generators are |∂| = −1, |λ1| =
2p− 1, |λ2| = 2p2 − 1, |a1| = 2p+ 3, |σn| = 2n+ 1 and |t| = −2.

This has been taken further by Ausoni and Rognes into a speculation on the rôle of
quotient fields for more general S-algebras, and interpretations in the vein of the redshift
conjecture.

3.4 The de Rham–Witt complex

In [18] Spencer Bloch outlined a connection between algebraic K-theory and the crystalline
cohomology of Berthelot–Grothendieck. In [123] Hesselholt used trace methods to confirm
Bloch’s ideas for any smooth algebra A over a perfect field k of positive characteristic (see
also section 3.5.2 below). Hesselholt’s result was accomplished by showing that for any
such ring A, the homotopy data in TR(A; p) assembles into a pro-complex isomorphic to
the de Rham–Witt complex of Bloch–Deligne–Illusie. This observation has lead Hesselholt
and his collaborators (most notably Madsen and Geisser) towards a sequence of remarkable
calculations of algebraic K-theory as well as new purely algebraic generalizations of the Witt
vectors [124] and the de Rham–Witt complex itself (see [127] for a very readable, purely
algebraic construction of these).

Two important base computations suggest the connection of TR(A; p) with the de Rham–
Witt complex. The first is that for A a commutative ring, π0TRn(A; p) ∼= Wn(A) where
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Wn(A) is the ring of p-typical Witt vectors of length n in A (the p is assumed, see sec-
tion 3.2.9 for a brief outline of the algebraic structure). Moreover, this isomorphism can
be chosen (naturally in A) so that π0 of the restriction, Frobenius and Verschiebung maps
for the fixed points of T (A) correspond to the classical restriction, Frobenius and Ver-
schiebung maps of the Witt rings (note that, since we are working with fully equivariant
spectra, we have transfers, and in particular in the homotopy category we have the Ver-
schiebung T (A)Crs → T (A)Cs on the fixed points of topological Hochschild homology).

The second observation is that by the Hochschild–Kostant–Rosenberg theorem [136],
for A a smooth k-algebra, the de Rham complex (Ω∗A/k, d) is isomorphic to (HH ∗(A/k), B)

where B is Connes B-operator (see Section VI.4.2) and HH (A/k) = π∗HH k(A) is the
Hochschild homology of the k-algebra A. If we let δ be the map from πnT (A) to πn+1T (A)
induced by the T-action (c.f. VI.4.1.2), then δ ◦ δ = 0 and the linearization map T (A)→
HH (A/k) takes δ to B. We obtain a limit system of differential graded algebras

...

R
��

...

R
��

...

R
��

π0T (A)Cp2

R
��

δ // π1T (A)Cp2

R
��

δ // π2T (A)Cp2

R
��

δ // . . .

π0T (A)Cp

R
��

δ // π1T (A)Cp

R
��

δ // π2T (A)Cp

R
��

δ // . . .

π0T (A)
δ // π1T (A)

δ // π2T (A)
δ // . . .

(3.4.1)

The first column is the limit system of the p-typical Witt ring of A, and after linearization
to HH ∗(A/k) the bottom row is the de Rham cohomology of A (c.f. VI.4.2) when A
is smooth as a k-algebra. Now, since π1T (A) ∼= HH 1(A/k) is isomorphic to the first
Kähler differentials Ω1

A/k, and π∗T (A) is a graded commutative algebra, one obtains a map

of differential graded algebras from Ω∗A/k to π∗TH(A). After checking additional relations
about how the restriction, Frobenius, and Verschiebung behave on higher homotopy groups,
this implies by the universal properties of the de Rham–Witt complex shown by Illusie in
[146] that one has a map of pro-complexes from the de Rham–Witt complex

...

R
��

...

R
��

...

R
��

W3Ω
0
A

R
��

δ //W3Ω
1
A

R
��

δ //W3Ω
2
A

R
��

δ // . . .

W2Ω
0
A

R
��

δ //W2Ω
1
A

R
��

δ //W2Ω
2
A

R
��

δ // . . .

W1Ω
0
A

δ //W1Ω
1
A

δ //W1Ω
2
A

δ // . . .
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to the limit system 3.4.1. The map of limit systems of differential graded algebras is an
isomorphism when A is smooth over a perfect field k. Hesselholt obtains these results by
showing that the isomorphism first holds for polynomial algebras k[x1, . . . , xn], and then
uses that both complexes behave well for étale maps (see [123, 2.4.3]. A referee points out
that by van der Kallen’s Theorem [291, Theorem 2.4] the requirement that we are over Fp

may be removed):

Proposition 3.4.2 If f : A→ B is an étale map of Fp-algebras then the canonical map

Wr(B)⊗Wr(A) π∗T (A)Cpr−1 → π∗T (B)Cpr−1

is an isomorphism.

In fact, a sharper result is obtained, namely

Theorem 3.4.3 Suppose that A is a smooth k-algebra. Then there is an isomorphism

WnΩ
∗
A ⊗Wn(k) SWn{σn} → π∗T (A)Cpn−1, deg σn = 2

Moreover, F (σn) = σn−1, V (σn) = pσn+1 and R(σn) = pλnσn−1, where λn is a unit of
Wn(Fp).

One of our referees points out that the conclusion of Theorem 3.4.3 holds more generally
for every regular Noetherian Fp-algebra A, since by generalized Néron desingularization
[226] A is isomorphic to a filtered colimit of smooth Fp-algebras.

Let V be a complete discrete valuation ring of mixed characteristic (0, p) with quotient
field K and perfect residue field k. For A a smooth V -algebra one has a localization
sequence in K-theory

· · · → πqK(A⊗V k)→ πqK(A)→ πqK(A⊗V K)→ · · ·

In [131], a corresponding sequence related by trace maps is constructed

· · · → πqTR(A⊗V k)→ πqTR(A)→ πqTR(A|AK ; p)→ · · · ,

c.f. the discussion in section 3.3. The term πqTR(A|AK ; p) is calculated in [132] when p is
odd and µpv ⊂ K, by an isomorphism of pro-abelian groups

W
·
Ω∗(A,MA) ⊗Z SZ/pv(µpv)→ π∗TR

·(A|AK ; p,Z/pv).

Here π∗TR
·(A|AK ; p,Z/pv) denotes the graded pro-group with coefficients in Z/pv coming

from the system of the restriction maps (not just the homotopy limit) and W
·
Ω∗(A,MA) is a

universal Witt complex over the log-ring (A,MA) with the map

dlogn : MA → TRn
1 (A|AK ; p)
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given by the composite

MA = A ∩ (A⊗V K)× −−−→ (A⊗V K)× −−−→ K1(A⊗V K)
tr
−−−→ TRn

1 (A|AK ; p).

In order to describe Ω∗(A,MA) we recall that a pre-log structure on a ring R is a map of
monoids α from a symmetric monoid M to R considered a monoid via multiplication. A
log ring (R,M) is a ring with a pre-log structure and a derivation to an R-module E is a
pair of maps (D,Dlog) with D : R→ E a derivation and Dlog : M → E a map of monoids
such that α(a)Dlog a = Dα(a). There is a universal derivation of a log ring (R,M) given
by

Ω1
(R,M) = (Ω1

R ⊕ (R⊗Z M
gp))/〈dα(a)− α(a)⊗ a|a ∈M〉

where Mgp is the group completion of M and 〈· · · 〉 is the R-submodule generated by the
given set. One defines Ω∗(R,M) to be the usual differential graded ring Λ∗R(Ω1

(R,M)) generated
by

d : R→ Ω1
(R,M), da = da⊕ 0,

dlog : M → Ω1
(R,M), dloga = 0⊕ (1⊗ a).

In [131], the relation between algebraic K-theory and the de Rham–Witt complex with
log poles in this situation (p is odd) is nicely expressed as a sequence

· · · −→ π∗K(K,Z/pv) −→ WΩ∗(A,M) ⊗ SZ/pv(µpv)
1−F
−−→ WΩ∗(A,M) ⊗ SZ/pv(µpv)

∂
−→ . . .

which is exact in degrees ≥ 1

3.5 Curves and Nil terms

If A is a ring, there is a close connection between finitely generated modules over A and
over the polynomial ring A[t]. For instance, Serre’s problem asks whether finitely generated
projective k[t0, . . . , tn]-modules are free when k is a field (that the answer is “yes” is the
Quillen–Suslin theorem, [234], [275]). Consequently, there is a close connection between
K(A) and K(A[t]), and the map K(A)→ K(A[t]) is an equivalence if A is regular (finitely
generated free modules have finite projective dimension) and A[s, t] is coherent (every
finitely generated module is finitely presented), see e.g., [97] or [297] which cover a wide
range of related situations.

3.5.1 The algebraic K-theory of the polynomial algebra

In the general case, K(A) → K(A[t]) is not an equivalence, and one can ask questions
about the cofiber NK(A). By extending from the commutative case, we might think of
A[t] as the affine line on A, and so NK(A) measures to what extent algebraic K-theory
fails to be “homotopy invariant” over A. In the regular Noetherian case we have that
NK = 0, which is essential for the comparison with the motivic literature which is based
on homotopy invariant definitions, as those of Karoubi–Villamayor [157], [158] or Weibel
[307].
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The situation for topological Hochschild and cyclic homology is worse, in that TC(A)→
TC(A[t]) and THH (A)→ THH (A[t]) are rarely equivalences, regardless of good regularity
conditions on A (THH (A[t]) is accessible through the methods of section 3.7 below). That
said, we still can get information about the K-theory nil-term NK(A). Let NilA be the
category of nilpotent endomorphisms of finitely generated projective A-modules. That is,
an object of NilA is a pair (P, f) where P is a finitely generated module and f : P → P is
an A-module homomorphism for which there exist an n such that the nth iterate is trivial,
fn = 0. The zero endomorphisms split off, giving an equivalence K(NilA) ≃ K(A)∨Nil(A).
By [108, p. 236] there is a natural equivalence NK(A)

∼
→ ΣNil(A), and it is the latter

spectrum which is accessible through trace methods.
In particular, if A is a regular Noetherian Fp-algebra, Hesselholt and Madsen [130] give

a description of Nil(A[t]/tn) in terms of the big de Rham-Witt complex of 3.4.

3.5.2 Curves on K-theory

In [18] Bloch defined a notion of p-typical curves built on the algebraic K-theory of trun-
cated polynomial rings k[t]/tn as n varied, and established a connection to crystalline
cohomology. With the connection between K-theory and topological cyclic homology of
nilpotent extensions, this allows for a reinterpretation in terms of topological cyclic homol-
ogy. Hesselholt redefines in [123] the curves C(A) on K(A) of a commutative ring A to be
the homotopy fiber of the canonical map

holim
←−n

Σ−1K(A[t]/tn)→ Σ−1K(A).

When A is a Z(p)-algebra, there is a splitting

C(A) ≃
∏

gcd(k,p)=1

C(A; p)

of C(A) into copies of a spectrum C(A; p), the p-typical curves on K(A).

Theorem 3.5.3 (Hesselholt) If A is a commutative Z/pj-algebra, then there is a natural
equivalence

C(A; p) ≃ TR(A; p).

If k is a perfect field of characteristic p and A is a smooth A-algebra, then the p-typical
curves split as an Eilenberg–Mac Lane spectrum with homotopy groups

π∗C(A; p) ∼= WΩ∗A

where WΩ∗A is the de Rham–Witt complex of 3.4.

Theorem 3.5.3 completes Bloch’s program and puts it in a new and more structured context.
For the same reason as was noted after Theorem 3.4.3, the Theorem 3.5.3 holds for regular
Noetherian Fp-algebras A.
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3.6 The algebraic K-theory Novikov conjecture

As mentioned before, topological cyclic homology was developed by Bökstedt, Hsiang and
Madsen [27] in order to prove the the analog in algebraic K-theory of the Novikov conjecture
on the invariance of higher signatures. Novikov’s original conjecture was reformulated by
Quinn in his thesis from 1970 into a question of whether a certain map

L(Z)∧BG+ → L(Z[G]),

called the L-theory assembly map, was rationally injective. Here L is a certain functor,
called L-theory which plays a central rôle in surgery theory, and G is a group such that
BG has the homotopy type of a compact manifold. See for instance the survey [82] for an
overview of the Novikov conjecture.

The K-theoretic analog of the Novikov conjecture was originally proposed by Hsiang in
1983 [144], and in [27] the following is proved:

Theorem 3.6.1 (Bökstedt, Hsiang and Madsen) Let G be a discrete group G whose
homology is finitely generated in every degree. Then the “K-theory assembly map”

K(Z)∧BG+ → K(Z[G])

is injective on rational homotopy groups.

From this they deduce that the there is an inclusion

Hi(G;Q)⊕
⊕

k≥1

Hi−4k−1(G;Q) ⊆ Ki(Z[G])⊗Q.

The K-theory assembly map can be described in many ways, but in essence boils down
to the obvious map

Map∗(m+, m+∧A(Sn))∧G+ → Map∗(m+, m+∧A(Sn)∧G+) = Map∗(m+, m+∧A[G](Sn)),

“assembling” the A-matrix M = (mij) and the group element g to the A[G]-matrix Mg =
(mijg).

Bökstedt, Hsiang and Madsen’s original argument is simplified in [192, 4.5], to a state-
ment of Soulé’s [267] comparing the K-theory of the integers and the p-adic integers and
the rational equivalence K(Sp)→ K(Zp) combined with the following lemma:

Lemma 3.6.2 For any discrete group G the p-completion of the assembly map

K(Sp)∧BG+ → K(Sp[G])

is split injective in the homotopy category.
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This last fact in turn follows, since by Theorem 3.1.16 the cyclotomic trace K(Sp)p →
TC(Sp; p)p is an equivalence in non-negative dimensions, and from a direct analysis of the
TC-assembly map TC(Sp; p)∧BG+ → TC(Sp[G]) which shows that it is split injective
after p-completion. We refer to Madsen’s survey [192, 4.5] for details.

A further simplification of Bökstedt, Hsiang and Madsen’s result has been given by
Holger Reich (unpublished) who considers the commutative diagram

K(Z)∧BG+

��

// K(Z[G])

��
K(Z)p∧BG+

��

// (K(Z)∧BG+)p //

��

K(Z[G])p

��
K(Zp)p∧BG+

��

// (K(Zp)∧BG+)p //

��

K(Zp[G])p

��
TC(Zp)p∧BG+

// (TC(Zp)∧BG+)p // TC(Zp[G])p,

where the horizontal maps are either p-completion or assembly maps, the upper and middle
vertical maps are induced by p-completion and the lower vertical maps by the cyclotomic
trace. All the maps along the left hand side and the bottom are rational injections for
the following reasons (in order from top to bottom): the K-groups of the integers are
finitely generated [231]; the above mentioned theorem of Soulé [267]; Theorem 3.1.16; by
the assumption that the homology groups are finitely generated in every dimension; the
direct splitting alluded to above.

One should mention that the Novikov conjecture is a very sharp version of much more
general conjectures that purport to give the K-theory of group rings of wider classes of
groups. The isomorphism conjecture of Farrell and Jones, allows for deeper knowledge
about the subgroup lattice than what you get by simply smashing the K-theory of the ring
with the classifying space of the group. These set-ups have analogs in topological cyclic
homology and a joint effort by Lück, Reich, Rognes and Varisco will hopefully give new
insight. See also [183].

3.7 Pointed monoids and truncated polynomial rings

Definition 3.7.1 A pointed monoid is a monoid in (S∗,∧, S
0), or in other words, a pointed

space M , a “unit map” S0 → M and a “multiplication” M∧M → M satisfying unitality
and associativity.

If A is an S-algebra, the pointed monoid ring A[M ] is given by X 7→ A[M ](X) =
A(X)∧M , with unit and multiplication given by the obvious mapsX = X∧S0 → A(X)∧M
and

A[M ](X)∧A[M ](Y ) = (A(X)∧M)∧(A(Y )∧M) ∼= (A(X)∧A(Y ))∧(M∧M)

→ A(X∧Y )∧M = A[M ](X∧Y ).
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If G is a simplicial group, we may consider G+ as a pointed monoid, but we write A[G]
instead of A[G+].

We define the cyclic bar construction of a pointed monoid M as before: Bcy(M) =
{[q] 7→M∧(q+1)} with multiplication defining the face maps and the unit giving the degen-
eracy maps. This is a cyclic space, and we note the natural isomorphisms

sdnB
cy(M)Cn ∼= Bcy(M)

given by skipping the repetitions that necessarily have to be present in the fixed points,
cf. VII.1.3.3. Under these isomorphisms the cyclic bar construction for pointed monoid
becomes an epicyclic object, VII.1.3.1. Now, writing out the definition of THH , we see
that we have an isomorphism of cyclic spectra

THH (A[M ], X) ∼= THH (A,BcyM∧X),

(the latter should be thought of as the diagonal of a bicyclic object) and under this iso-
morphism the restriction map sdnTHH (A[M ], X)Cn → THH (A[M ], X) corresponds to the
composite

sdnTHH (A, sdnB
cyM∧X)Cn → THH (A, sdnB

cyMCn∧X) ∼= THH (A,BcyM∧X),

where the first map is the obvious variant of the restriction map when there is an action on
the coefficient space (in this case, the cyclic action on sdnB

cyM∧X). As a matter of fact,
in the equivariant framework in which much of the literature on the subject is written, the
coefficients do come equipped with an action. This is a convenient framework, simplifying
much notation, for instance, we obviously get a map of cyclic spectra

T (A)∧Bcy(M)→ T (A[M ])

which is an stable equivalence of underlying spectra, but in order for this to be an equiva-
lence of fixed points one should take care to work in an equivariant setting so that deloop-
ings with respect to non-trivial representations is implicit.

The equivalence T (A)∧Bcy(M) → T (A[M ]) makes it easy to calculate π∗T (A[M ])
when A is a simplicial ring, for then T (A) is an Eilenberg-Mac Lane spectrum and T (A) ≃∨∞
n=0 ΣnH(πnT (A)), so that

T (A[M ]) ≃
∞∨

n=0

ΣnH(πnT (A))∧BcyM,

and so π∗T (A[M ]) ∼=
⊕∞

n=0H∗−n(B
cyM ; πnT (A)).

If R is a commutative ring, then π∗(HR∧B
cyM) ∼= H∗(B

cyM ;R) ∼= HHR
∗ (R[M ])

(rewrite R[M ×M ] as R[M ] ⊗R R[M ]), and so for A = HFp or A = HZ where we have
Bökstedt’s explicit calculations of T (A) we can rewrite the above in terms of Hochschild
homology:

π∗T (HZ[M ]) ∼= HH ∗(Z[M ]) ⊕
∞⊕

n=1

HH ∗−2n+1(Z/i[M ])
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and

π∗T (HFp[M ]) ∼=

∞⊕

n=0

HH ∗−2n(Fp[M ]).

In order to calculate the topological cyclic homology of the truncated polynomial al-
gebras k[t]/tn+1 over a perfect field k of characteristic p, Hesselholt and Madsen do a
thorough investigation of the equivariant structure on T (Hk[Πn]) and N cy(Πn), where
Πn = {0, 1, t, t2, . . . , tn} with tn+1 = 0, so that k[t]/tn+1 ∼= k[Πn], see [129, section 8 and 9]
and [128], and obtain

Theorem 3.7.2 (Hesselholt and Madsen) There is an isomorphism

TC (k[t]/(tn))̂p ∼= Σ−1HW (k)F ∨HZp ∨
∨

m>0

Σ2m−1H(Wnm−1(k)/VnWm−1(k))

where Wj(k) = (1 + tk[[t]])×/(1 + tj+1k[[t]])× is the group of truncated big Witt vectors,
and Vn : Wm−1(k)→Wnm−1(k) is the Verschiebung map sending f(t) = 1 + t

∑∞
i=1 ait

i to
f(tn).

The result is extended to smooth (or better, regular Noetherian) Fp-algebras in [130].

3.7.3 K-theory of Z/pn

Non-split nilpotent extensions can not in any good way be encoded by means of pointed
monoids, and are also less well understood than, say, truncated polynomial algebras. Iron-
ically enough, we know the profinitely completed K-theory of the p-adic integers and of
the prime field, but we have only partial knowledge about the K-groups of the interme-
diate rings Z/pn. Using that the first p-torsion in topological Hochschild homology of
the integers appears in dimension 2p − 1 (the class λ1 appearing in Corollary 3.1.4) and
a comparison to Hochschild homology through a spectral sequence like Lemma IV.1.3.8,
Brun [43, Theorem 6.1] overcomes part of the problem with the extension being non-split
through filtration techniques.

Theorem 3.7.4 (Brun) Let A be a simplicial ring with an ideal I satisfying Im = 0 and
with both A and A/I flat. Then the square

K(A) −−−→ HH (A)hT

y
y

K(A/I) −−−→ HH (A/I))hT

is p/(m− 1)− 1-cartesian after p-completion. Here HH (A)hT is the homotopy circle fixed
point spectrum of the Eilenberg–Mac Lane spectrum associated with Hochschild homology.

Brun states this in terms of (shifted) cyclic homology groups, and concludes after a calcu-
lation of cyclic homology groups that
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Corollary 3.7.5 For 0 < i < p − 2 the K-groups of Z/pn are zero in even dimensions,
and the odd groups are given by Ki(Z/p

n) ∼= Z/pj(n−1)(pj − 1) when i = 2j − 1.

In a recent preprint, V. Angeltveit [6] goes significantly further (also by filtration meth-
ods):

Theorem 3.7.6 (Angeltveit) Let n > 0. The K-groups of Z/pn are finite in positive
dimensions. Furthermore the order of the groups satisfy

|K2i−1(Z/p
n)|

|K2i−2(Z/pn)|
= p(n−1)i(pi − 1)

for all i ≥ 2.

Angeltveit also determines the groups Kq(Z/p
n) for q ≤ 2p− 2.

3.8 Spherical group rings and Thom spectra

Recall the identification of the topological cyclic homology of spherical group rings from
section VII.3.2.10. There we saw that if G is a simplicial group, then the restriction map
T (S[G])Cpn → T (S[G])Cpn−1 had a splitting S, and eventually that there was a homotopy
cartesian square

TC(S[G]; p) −−−→ holim
←−
trf

T (S[G])hCpn
y

y

T (S[G])
FS−1
−−−→ T (S[G])

in the homotopy category, where the homotopy limit is over the transfer maps. Just
as for A.6.6.4, we get that BCp∞ ≃p BS

1 implies that we may (after p-completion) ex-
change the upper right corner with the S1-homotopy orbit spectrum S1∧T (S[G])hS1 ≃
(Σ∞S1∧ΛBG+)hS1, and that we get a homotopy cartesian diagram

TC(S[G]; p) −−−→ (Σ∞S1∧ΛBG+)hS1y
y

Σ∞ΛBG+
∆p−1
−−−→ Σ∞ΛBG+

(3.8.0)

after p-completion, where ∆p : ΛBG→ ΛBG is precomposition with the p-th power S1 →
S1 (an argument is presented in [192, 4.4.9 and 4.4.11]. See also [242, 1.12]).

3.8.1 The Whitehead spectrum of a point

Given that the topological cyclic homology of both S and Z has been calculated, one knows
the “difference” between the K-theory of S and Z if one understands the linearization map
TC(S)→ TC(Z) and the cyclotomic trace K(Z)→ TC(Z).
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Let G be a simplicial group and let X = BG. By Waldhausen [302], there is a splitting
K(S[G]) ≃WhDiff(X)∨Σ∞X+ (the map to the Σ∞X+-piece is related to the trace to topo-
logical Hochschild homology), where the so-called smooth Whitehead spectrum WhDiff(X)
is strongly related to smooth pseudo-isotopies of manifolds.

If one likewise splits off S from TC(S), so that TC(S) ≃ T̃C(S) ∨ S, one obtains a
homotopy cartesian diagram

WhDiff(∗) −−−→ K(S)y
ytrc

T̃C(S) −−−→ TC(S)

.

Letting CP∞k−1 be the truncated complex projective space with one cell in each even di-
mension greater than 2k, we get a stable equivalence Σ∞CP∞k ≃ Th(kγ1) to the Thom
spectrum of k times the canonical line bundle over CP∞. The right hand side makes sense
for negative k as well, and it is customary to write CP∞k even for negative k. Knapp iden-
tifies ΣCP∞−1 with the homotopy fiber of the “S1-transfer” (the right vertical map in the
homotopy cartesian diagram 3.8.0 giving TC(S; p) above), and so there is an equivalence

ΣCP∞−1 ≃p T̃C(S)

after p-completion.

Rognes analyzes the cohomology of the Whitehead spectrum in two papers, [242] which
gives the 2-primary information and [243] which gives the information at odd regular
primes. For simplicity (and for a change) we focus on the 2-primary results.

In [242] trace information is combined with information about the K-theory of the
integers from the Milnor conjecture, giving

Theorem 3.8.2 (Rognes) Let hofib(trc) be the homotopy fiber of the cyclotomic trace
map K(S)2 → TC(S)2 completed at 2. In positive dimensions it has homotopy groups
given by the table

j 0 1 2 3 4 5 6 7

π8k+j(hofib(trc)) 0 0 Z2 Z/16 Z/2 Z/2 Z2 Z/2v2(k+1)+4

The only other nonzero homotopy groups are in dimension −2 and 0, where there is a copy
of Z2. After 2-completion there is a cofiber sequence

CP∞−1 → hofib(trc)→WhDiff(∗).
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Hence, calculating WhDiff(∗) is dependent upon understanding CP∞−1. The homotopy
groups are hard to calculate, but Rognes does obtain the 2-primary part of the homotopy
groups of the smooth Whitehead spectrum in dimensions up to 20. Instead, he calculates
the mod 2 spectrum cohomology

Theorem 3.8.3 (Rognes) The mod 2 cohomology of the smooth Whitehead spectrum fits
in an extension of left modules over the Steenrod algebra A

Σ−2C/A(Sq1, Sq3) −−−→ H∗(WhDiff(∗)) −−−→ Σ3A/A(Sq1, Sq2),

where C ⊆ A is the annihilator ideal of the generator for H∗(CP∞−1). There exists just two
extensions of A-modules of this sort, and H∗(WhDiff(∗)) fits in the nontrivial extension.

3.8.4 Thom spectra

Another line of development generalizing the case of spherical group rings is the investi-
gation by Blumberg, Cohen and Schlichtkrull [20] of topological Hochschild homology of
Thom spectra. This has many refinements, but the case simplest to state is the following
[20, Corollary 1.1]:

Theorem 3.8.5 (Blumberg, Cohen and Schlichtkrull) Let G be either of the infinite
dimensional Lie groups O, SO, Spin, U or Sp. Then there is a stable equivalence

T (MG) ≃MG∧BBG+.

These equivalences arise as chains of natural equivalences respecting the E∞-structure (see
references to preprints in [20]). The multiplicative structure of topological Hochschild
homology needed for the more refined versions of the theorem above, rely on the fact [45]
that if A is an S-algebra with a so-called En-structure (that is, the multiplication comes
from an action by an operad equivalent to the little n-cubes operad; roughly saying that A
is homotopy commutative with homotopy coherency down to the nth level), then THH (A)
has an En−1-structure.

Unfortunately, a priori Theorem 3.8.5 does not tell us much about topological cyclic
homology (we do not known of a circle action on MG∧BBG+ making the equivalence
of Theorem 3.8.5 equivariant), and more work is needed in this direction. However, the
results are strong enough to give information about homotopy fixed point spectra, and
in many applications this is enough. In particular, in the preprint [185] the following is
proved:

Theorem 3.8.6 (Lunøe-Nilsen and Rognes) The canonical map

THH (MU)Cpn → THH (MU)hCpn

is a stable equivalence after p-completion.
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3.9 Topological cyclic homology of schemes and excision

In [92], Geisser and Hesselholt extend the definition of topological cyclic homology to
schemes by applying Thomason’s extension of the Godement construction. This definition
is not the same as what you get by applying topological cyclic homology to (Waldhausen’s
S-construction on) the category of vector bundles on X, however a preprint [23] of Blum-
berg and Mandell show that Geisser and Hesselholt’ definition agrees with the topological
cyclic homology of a certain category of perfect complexes over X enriched in symmetric
spectra.

Geisser and Hesselholt prove that if A→ B is an étale map of commutative rings, then
the induced map

HB∧HAT (A)→ T (B)

is an equivalence, from which it follows that their construction agrees with the original
definition in the affine case:

TC(A; p)
∼
→ TC((Spec)ét; p).

In many cases, the topology is not really important: if X is quasi-compact and quasi
separated, then [92, corollary 3.3.4] states that TC(Xét; p) is equivalent to TC(Xτ ; p) for
any topology τ coarser than the étale topology.

The cyclotomic trace extends to Thomason’s definition [284] of the algebraic K-theory

K(X)→ TC(X; p).

From the construction, one obtains a descent spectral sequence, which is the basis for a
comparison to the étale K-theory mentioned above. Knowledge about the topological cyclic
homology for fields of finite characteristic yields [94, theorem A]:

Theorem 3.9.1 (Geisser and Hesselholt) Let X be a smooth and proper scheme over
a Henselian discrete valuation ring of mixed characteristic. If the residue characteristic is
p, then for all integers q and v ≥ 1, the cyclotomic trace induces an isomorphism

Két(X,Z/pv)
∼
→ TC(X; p,Z/pv).

These results are stated with “finite coefficients”, i.e., after smashing with the Moore spec-
trum S/pv.

If the schemes in question are not required to be smooth, the situation is very dif-
ferent, unless one focuses on situation where one is working with coefficients that avoid
troublesome primes, like in [305] and [304]. General excision for closed embeddings is cov-
ered rationally by Cortiñas in [57]. The line of argument is interesting in the context of
these notes, in that Cortiñas approximates by means of nilpotent extensions, using ideas
of among others Cuntz and Quillen [58] and thereby getting a comparison with cyclic ho-
mology. To tackle the difference between the nilpotent approximations and the problem
at hand, Cortiñas adapts the technique of Suslin and Wodzicki [279]. See also [278].
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The result was shown to hold also after p-completion by Geisser and Hesselholt [93].
The results extend to S-algebras by techniques very similar to those discussed in the main
body of the text, and this extension was undertaken in [67] and [68] resulting in

Theorem 3.9.2 Let

A =





A0 −−−→ A1

y
yf1

A2 −−−→
f2

A12





be a homotopy cartesian square of connective S-algebras and 0-connected maps. Then the
resulting cube

trcA : K(A)→ TC(A)

is homotopy cartesian.

Notice that there are no commutativity requirements. The geometric counterpart of the
requirement that the maps are 0-connected is that this is excision for closed embeddings,
and in all but the full integral statement it is known that it suffices that just one of the
maps are 0-connected.

As an example of how this closed excision property is useful for concrete calculations,
Hesselholt [126] uses the excision result to calculate the K-theory of the coordinate axes in
the following sense

Theorem 3.9.3 (Hesselholt) Let k be a regular Fp-algebra. Then there is a canoni-
cal isomorphism between Kq(k[x, y]/(xy)) and the group Kq(k)⊕

⊕
m>1 WmΩq−2m

k , where

WmΩj
k is the group of big de Rham-Witt j-forms of k.



Appendix A

Homotopical foundations

Part of the reason for the existence of this book is that, when writing down the proof
of the local correspondence between algebraic K-theory and topological cyclic homology
(Theorem VII.0.0.2), we found that we needed quite a number of results that were either
not in the literature (but still probably well known), or else appearing in a context that
was just similar to the one we needed. Though not adding mathematical content, the effort
to fit all these pieces together turned out to be more formidable than we had anticipated.

Much of this effort has made it into the preceding chapters, but certain topics – i.e.,
those included in this appendix – were needed at places where the flow of ideas would be
severely disrupted if one were to digress into them, and yet others are used at several places
that are logically independent of each other.

We collect these results in this appendix, along with as much background as is conve-
nient for readability and for setting the notation. Most standard results are referred away
(but stated for reference in the form we need them), and we only provide proofs when no
convenient reference was available, or when the proofs have some independent interest.

For a general background on simplicial techniques the reader may consult the books
of May [201], Gabriel and Zisman [89], Bousfield and Kan [40] or Goerss and Jardine
[99]. For model categories, the books of Quillen [235], Hovey [139], Hirschhorn [135] and
Dwyer, Hirschhorn and Kan [78] are all warmly recommended. For questions pertaining
to algebraic topology, one may consult Spanier [269], Hatcher [120] or May [199] (the two
latter available online). Finally, the basics of category theory are nicely summed up by
Mac Lane [191] and Borceux [31, 32, 33]

0.10 The category ∆

Let ∆ be the category consisting of the finite ordered sets [n] = {0 < 1 < 2 < · · · < n}
for every non-negative integer n, and monotone (non-decreasing) maps. In particular, for

319
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0 ≤ i ≤ n we have the maps

di : [n− 1]→ [n], di(j) =

{
j j < i

j + 1 i ≤ j
“skips i”

si : [n+ 1]→ [n], si(j) =

{
j j ≤ i

j − 1 i < j
“hits i twice”.

Every map in ∆ has a factorization in terms of these maps. Given φ ∈ ∆([n], [m]), let
{i1 < i2 < · · · < ik} = [m]− im(φ), and {j1 < j2 < · · · < jl} = {j ∈ [n]|φ(j) = φ(j + 1)}.
Then

φ(j) = dikdik−1 · · · di1sj1sj2 · · · sjl(j).

This factorization is unique, and hence we could describe ∆ as being generated by the
maps di and si subject to the “cosimplicial identities” :

djdi = didj−1 for i < j,

sjsi = si−1sj for i > j

and

sjdi =





disj−1 for i < j,

id for i = j, j + 1,

di−1sj for i > j + 1.

0.11 Simplicial and cosimplicial objects

If C is a category, the opposite category, Co, is the category you get by letting obCo = obC,
but where you have reversed the direction of all arrows: Co(c, c′) = C(c′, c) (with the obvious
units and compositions). A functor from Co is sometimes called a contravariant functor.

If C is any category, a simplicial C-object (or simplicial object in C) is a functor ∆o → C,
and a cosimplicial C-object is a functor ∆→ C.

If X is a simplicial object, we let Xn be the image of [n], and for a map φ ∈ ∆ we
will often write φ∗ for X(φ). For the particular maps di and si, we write simply di and
si for X(di) and X(si), and call them face and degeneracy maps. Note that the face and
degeneracy maps satisfy the “simplicial identities” which are the duals of the cosimplicial
identities. Hence a simplicial object is often defined in the literature to be a sequence of
objects Xn and maps di and si in C satisfying these identities.

Dually, for a cosimplicial object X, we let Xn = X([n]), φ∗ = X(φ), and the coface
and codegeneracy maps are written di and si.

A map between two (co)simplicial C-objects is a natural transformation. Generally, we
let sC and cC be the categories of simplicial and co-simplicial C-objects.

Functor categories like sC and cC inherit limits and colimits from C (and in particular
sums and products), when these exist. We say that (co)limits are formed degreewise.
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Example 0.11.1 (the topological standard simplices)
There is an important cosimplicial topologi-
cal space [n] 7→ ∆n, where ∆n is the standard
topological n-simplex

∆n = {(x0, . . . , xn) ∈ Rn+1|
∑

xi = 1, xi ≥ 0}

with

di(x0, . . . , xn−1) =(x0, . . . , xi, 0, xi+1, . . . , xn−1),

si(x0, . . . , xn+1) =(x0, . . . , xi−1, xi + xi+1, xi+2, . . . , xn+1).

0

1

–0.4

0.2
0.4

0.6
0.8

1
1.2

1.4

y–0.4
–0.2

0.4
0.6

0.8
1
1.2

1.4

x

The standard topological

2-simplex ∆2 ∈ R.

0.12 Resolutions from adjoint functors

Adjunctions are an important source of (co)simplicial objects. Recall that an adjunction
is a pair of functors

D
F

⇄
U
C

together with a natural bijection of morphism sets

C(F (d), c) ∼= D(d, U(c))

(the bijection is part of the data, but when there is little chance for confusion we often
refer to an adjunction as an adjoint pair and list only the functors). The bijection can
alternatively be given by declaring the unit σd : d → UF (d) (corresponding to idF (d) ∈
C(F (d), F (d))) and counit δc : FU(c)→ c (corresponding to idU(c) ∈ D(U(c), U(c))).

Let

D
F

⇄
U
C

be a pair of adjoint functors. Then the assignment

[q] 7→ (FU)q+1(c)

underlies a simplicial C-object with structure maps defined by

di = (FU)iδ(FU)q−i+1 : (FU)q+2(c)→ (FU)q+1(c)

and

si = (FU)iFσU(FU)q−i : (FU)q(c)→ (FU)q+1(c).

Dually, [q] 7→ (UF )q+1(d) defines a cosimplicial D-object. These (co)simplicial objects are
called the (co)simplicial resolutions associated with the adjoint pair.
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The composite T = UF (together with the associated natural transformations 1 → T
and TT → T ) is occasionally referred to as a triple or monad (probably short for “monoid
in the monoidal category of endofunctors and composition”), and likewise FU a cotriple
or comonad, but never mind: the important thing to us are the associated (co)simplicial
resolutions.

1 Simplicial sets

Let Ens be the category of sets (when we say “sets” they are supposed to be small in
some fixed universe, see e.g., [162, 2.6 and 3.11] for some comments on enlargements of
universes). Let S = sEns the category of simplicial sets. Since all (co)limits exist in Ens ,
all (co)limits exist in S. The category of simplicial sets has close connections with the
category Top of topological spaces. In particular, the realization and singular functors (see
1.1) induce equivalences between their respective “homotopy categories” (see 3.3 below).

In view of this equivalence, we let a “space” mean a simplicial set (unless explicitly
called a topological space). We also have a pointed version. A pointed set is a set with
a preferred element, called the base point, and a pointed map is a map respecting base
points. The category of pointed spaces (= pointed simplicial sets = simplicial pointed
sets) is denoted S∗. Being a category of functors to sets, the category S∗ has (co)limits. In
particular the coproduct is the wedge

X ∨ Y = X
∐

∗

Y

and we define the smash by

X∧Y = X × Y/X ∨ Y.

If X ∈ S we can add a disjoint basepoint and get the pointed simplicial set

X+ = X
∐
∗.

Clearly, the assignment X 7→ X+ underlies a functor S → S∗ left adjoint to the forgetful
functor S∗ → S.

1.1 Simplicial sets vs. topological spaces

There are adjoint functors

Top
|−|

⇆
sin
S

defined as follows. For Y ∈ Top, the singular functor is defined as

sinY = {[n] 7→ Top(∆n, Y )}



1. SIMPLICIAL SETS 323

(the set of unbased continuous functions from the topological standard simplex to Y ). As
[n] 7→ ∆n is a cosimplicial space, this becomes a simplicial set. For X ∈ S, the realization
functor is defined as

|X| =

(
∐

n

Xn ×∆n

)
/(φ∗x, u) ∼ (x, φ∗u)

(for φ ∈ ∆([m], [n]), u ∈ ∆m and x ∈ Xn). The realization functor is left adjoint to the
singular functor via the bijection

Top(|X|, Y ) ∼= S(X, sin Y )

induced by the maps

X −→ sin |X|

x ∈ Xn 7→
(
∆n u 7→(x,u)

−→ Xn ×∆n → |X|
)
∈ sin |X|n

and

| sinY | −→Y

(y, u) ∈ sin(Y )n ×∆n 7→ y(u) ∈ Y.

From the adjointness we see that the singular functor preserves all limits and the
realization functor preserves all colimits.

What is not formal, but very useful, is the following result. See e.g., [139, 3.1.8], or
alternatively see [61] and its references, where the geometric realization is written as a
filtered colimit of metric spaces.

Proposition 1.1.1 The geometric realization of a simplicial set is compactly generated
and Hausdorff. As a functor to the category of compactly generated (weak Hausdorff)
spaces, the geometric realization preserves finite limits. .. '!&"%#$����

The singular and realization functors also define adjoint functors between the category
of simplicial pointed sets, S∗ and the category of pointed topological spaces, Top∗.

Definition 1.1.2 If x ∈ X ∈ S, we define the homotopy groups to be those of the
realization:

π∗(X, x) = π∗(|X|, x).

In the based situation we simply write π∗(X).

Definition 1.1.3 A space X is 0-connected (or simply connected) if π0X is a point, and
if it is connected it is k-connected for a k > 0 if for all vertices x ∈ X0 we have that
πq(X, x) = 0 for 0 ≤ q ≤ k. A space is −1-connected by definition if it is nonempty. A
space X is k-reduced if Xj = ∗ for all j < k. A space is reduced if it is 1-reduced.

A map X → Y is k-connected if its homotopy fiber (defined in Section 4 below) over
each 0-simplex is (k − 1)-connected.

So a k-reduced space is (k − 1)-connected.
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1.2 The standard simplices, and homotopies

We define a cosimplicial space (cosimplicial simplicial set)

[n] 7→ ∆[n] = {[q] 7→ ∆([q], [n])}.

The spaces ∆[n] are referred to as the standard simplices. Note that the realization |∆[n]|
of the standard simplex may be identified with ∆n, the topological standard simplex. The
standard simplices are in a precise way the building blocks (representing objects) for all
simplicial sets: if X is a simplicial set, then there is a functorial isomorphism (an instance
of the Yoneda lemma)

S(∆[n], X) ∼= Xn, f 7→ f([n] = [n]).

We let S1 = ∆[1]/∂∆[1], where ∂∆[1] is the discrete subspace {0, 1} of the vertices of
∆[1] (the “endpoints of the (simplicial) interval”). To us, the q-sphere is the q-fold smash
Sq = S1∧ . . .∧S1. This is not equal to the competing model ∆[q]/∂∆[q] used in other
texts, but their geometric realizations are homeomorphic.

A (simplicial) homotopy between two maps f0, f1 : X → Y ∈ S is a map H : X×∆[1]→
Y such that the composites

X ∼= X ×∆[0]
id×di
−−−→ X ×∆[1]

H
−−−→ Y, i = 0, 1

are f0 and f1. Since |X ×∆[1]| ∼= |X| × |∆[1]|, we see that the realization of a homotopy
gives a homotopy in Top. The pointed version of a homotopy is a map

H : X∧∆[1]+ → Y

(the subscript + means a disjoint basepoint added).
We say that f0 and f1 are strictly (or simplicially) homotopic if there is a homotopy

between them, and homotopic if there is a finite chain of homotopies which connect f0 and
f1. In this way, “homotopic” forms an equivalence relation.

Another way to say this is that two maps f0, f1 : X → Y are homotopic if there is a
map

H : X × I → Y, or in the pointed case H : X∧I+ → Y

which is equal to f0 and f1 at the “ends” of I, where I is a finite number of ∆[1]s glued
together at the endpoints, i.e., for some sequence of numbers ij ∈ {0, 1}, 1 ≤ j ≤ n, I is
the colimit of

∆[1] ∆[1] . . . ∆[1]

∆[0]
d1

bbEEEEEEEE di1

<<yyyyyyyy
∆[0]

d1−i1

bbEEEEEEEE di2

??���������
∆[0]

d1−in

__????????? d0

<<yyyyyyyy

We still denote the two end inclusions d0, d1 : ∗ = ∆[0]→ I.
We note that elements in π1(X) can be represented by maps α : I → X such that

αd0 = αd1 = 0.
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1.3 Function spaces

We define the simplicial function space of maps from X to Y to be the simplicial set

S(X, Y ) = {[q] 7→ S(X ×∆[q], Y )} ,

where the cosimplicial structure of the standard simplices [q] → ∆[q] makes this into a
simplicial set. In the pointed case we set

S∗(X, Y ) = {[q] 7→ S∗(X∧∆[q]+, Y )} .

We reserve the symbol Y X for the pointed case: Y X = S∗(X, Y ), and so Y X+ = S(X, Y ).
Unfortunately, these definitions are not homotopy invariant; for instance, the weak equiva-
lence BN→ sin |BN| does not induce an equivalence S∗(S

1, BN)→ S∗(S
1, sin |BN|) (on

π0 it is the inclusion N ⊂ Z). To remedy this we define

Map(X, Y ) = S(X, sin |Y |)

and
Map∗(X, Y ) = S∗(X, sin |Y |).

In fact, using the adjointness of the singular and realization functors we see that

Map(X, Y ) ∼= {[q] 7→ Top(|X| × |∆[q]|, |Y |} ∼= {[q] 7→ Top(∆q,Top(|X|, |Y |)}

= sin(Top(|X|, |Y |))

and likewise in the pointed case. These function spaces still have some sort of adjointness
properties, in that

Map(X × Y, Z) ∼= S(X,Map(Y, Z))
∼
→ Map(X,Map(Y, Z))

and
Map∗(X∧Y, Z) ∼= S∗(X,Map∗(Y, Z))

∼
→ Map∗(X,Map∗(Y, Z))

where the equivalences have canonical left inverses.

1.4 The nerve of a category

For every n ≥ 0, regard [n] = {0 < 1 < · · · < n} as a category (if a ≤ b there is a unique
map a ← b: beware that many authors let the arrow point in the other direction. The
choice of convention does not matter to the theory). Furthermore, we identify the maps in
∆ with the corresponding functors, so that ∆ sits as a full subcategory of the category of
(small) categories.

Definition 1.4.1 The nerve NC of the small category C is the simplicial category

[q] 7→ NqC = {category of functors [q]→ C}.
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The nerve is a functor from the category of small categories to simplicial categories.
We see that the set of objects BqC = obNqC, is the set of all chains c0 ← c1 ← · · · ← cq

in C, and in particular B0C = obC. Frequently, the underlying simplicial set BC = obNC
is also referred to as the nerve or classifying space of C. Note that there is a unique
isomorphism B[q] ∼= ∆[q].

The classifying space functor B, as a functor from small categories to spaces, has a left
adjoint given by sending a simplicial set X to the category CX defined as follows. The set
of objects is X0. The set of morphisms is generated by X1, where y ∈ X1 is regarded as
an arrow y : d0y → d1y, subject to the relations that s0x = 1x for every x ∈ X0, and for
every z ∈ X2

d0d0z
d0z //

d1z

$$I
IIII

II
II

d1d0z

d2zzzuu
uu

uu
uuu

d1d1z

commutes. The obvious functor CBC → C is an isomorphism, and the induced function

from S(X,BC) to the set of functors CX → C (sending f to CX
Cf
→ CBC ∼= C) is an

isomorphism too, giving the adjunction. Notice the similarity between the classifying
space BqC = Cat([q], C) and the singular functor sin(Y )q = Top(∆q, Y ). Their left adjoints
can both be expressed as left Kan extensions along the Yoneda embedding [q] 7→ ∆[q]:

∆
[q] 7→∆q

//

[q] 7→∆[q]

��

Top

S
X 7→|X|

77 , ∆
[q] 7→[q] //

[q] 7→∆[q]
��

Cat

S.
C

77

The classifying space B is a full and faithful functor (recall that a functor F : C → D
is full (resp. faithful) if it induces a surjection (resp. injection) C(c, c′) → D(F (c), F (c′))
of morphism sets for c, c′ ∈ obC). The reader should be warned that the functor C 7→ |BC|
to topological spaces is not full.

1.4.2 Natural transformations and homotopies

The classifying space takes natural transformations to homotopies: if η : F1 → F0 is a
natural transformation of functors C → D, regard it as a functor η : C × [1] → D with

η(c, k) = Fk(c) for c ∈ obC and k ∈ {0, 1}, sending the morphism (c
f
← c′, 0 < 1) to the

composites around

F1(c)

ηc

��

F1(c
′)

F1(f)oo

ηc′

��
F0(c) F0(c

′)
F0(f)oo

.

Thus we have defined a homotopy between F0 and F1:

BC ×∆[1] ∼= BC ×B[1] ∼= B(C × [1])→ BD,
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where the isomorphisms are the canonical ones.

In view of this, and of the isomorphisms between the category of small categories and
its image in S (resulting from the fact that the classifying space is full and faithful and
injective on objects), it is customary to use language that normally refers to spaces to
categories. For instance, a functor may be said to be a weak equivalence if the induced
map of classifying spaces is.

1.4.3 Over and under categories

If C is a category and c an object in C, the category over c, written C/c, is the category
whose objects are maps f : d→ c ∈ C, and a morphism from f to g is a factorization f = gα
in C. More generally, if F : C → D is a functor and d is an object of D, the over category
F/d is the category whose objects are pairs (c, f), where c ∈ obC and f : F (c)→ d ∈ D. A
morphism from (c, f) to (c′, f ′) is a morphism α : c → c′ ∈ C such that f = f ′F (α). The
under categories c/C and d/F are defined dually. Over and under categories are frequently
referred to as comma categories in the literature.

The over category can be used to define simplicial homotopies for simplicial objects in an
arbitrary category C as follows. A homotopy between two maps in S is a mapX×∆[1]→ Y .
In dimension q, this is simply a function

∐
φ∈∆([q],[1])Xq

∼= Xq×∆[1]q → Yq, or in other word

a collection of functions ηφ : Xq → Yq indexed over φ ∈ ∆([q], [1]), satisfying compatibility
conditions. This can be summarized and generalized as follows:

Definition 1.4.4 Let X and Y be simplicial objects in a category C, and consider two
maps F0, F1 : X → Y . Let S : ∆/[1]→ ∆ be the forgetful functor, sending φ : [q]→ [1] to
[q]. A simplicial homotopy from F0 to F1 is a natural transformation H : X◦S → Y ◦S such
that for i = 0 and i = 1, Fi = H(φi), where φi[q] → [1] is the constant order preserving
function with value i.

This makes it clear that

Lemma 1.4.5 Any functor C → D, when applied degreewise to simplicial objects, takes
simplicial homotopies to simplicial homotopies. .. '!&"%#$����

1.5 Filtered colimits in S∗

1.5.1 Subdivisions and Kan’s Ex∞

Consider the subcategory ∆m ⊂ ∆ with all objects, but just monomorphisms. For any n ≥
0 we consider the (barycentric) subdivision of the standard n-simplex ∆[n]. To be precise,
it is B(∆m/[n]), the classifying space of the category of order preserving monomorphisms
into [n]. For every φ : [n] → [m] ∈ ∆ we get a functor φ∗ : ∆m/[n] → ∆m/[m] sending
a monomorphism α ∈ ∆m([q], [n]) to the unique monomorphism φ∗(α) such that φα =
φ∗(α)ψ where ψ is an epimorphism (see section 0.10). This means that B(∆m/−) is a



328 APPENDIX A. HOMOTOPICAL FOUNDATIONS

cosimplicial space, and the functor ∆m/[n]→ [n] sending α : [p]→ [n] to α(p) ∈ [n] defines
a cosimplicial map to the standard simplices {[n] 7→ ∆[n] = B[n]}.

For any simplicial set X, Kan then defines

Ex(X) = {[q] 7→ S(B(∆m/[q]), X)}.

This is a simplicial set, and B(∆m/[q])→ ∆[q], defines an inclusion X ⊆ Ex(X). Set

Ex∞X = lim
−→
k

Ex(k)(X).

The inclusion X ⊆ Ex∞X is a weak equivalence, and Ex∞X is always a Kan complex, that
is a fibrant object in the sense of section 3. These constructions restrict to give a fibrant
replacement also in the pointed case, and give the possibility of defining the homotopy
groups without reference to topological spaces via

πqX = S∗(S
q, Ex∞X)/homotopy.

1.5.2 Filtered colimits in S∗

Recall that a filtered category J is a nonempty category such that for any j, j′ ∈ obJ there
are morphisms j → k, j′ → k in J to a common object, and such that given two morphisms
f, g : j → j′ in J there is a morphism h : j′ → k in J such that hf = hg.

A filtered colimit is a colimit over a filtered category (see [191, p. 207]). Filtered colimits
of sets are especially nice because they commute with finite limits (see [191, p. 211]). It
immediately follows that filtered colimits commute with finite limits also for simplicial
sets, and this is one of the many places we should be happy for not considering general
topological spaces.

Given a space Y , its N-skeleton is the subspace skNY ⊆ Y generated by simplices in
dimension less than or equal to N .

A space Y is finite if it has only finitely many non degenerate simplices. Alternatively
finiteness can be spelled out as, Y = skNY for some N , Y0 is finite, and its q-skeleton for
q ≤ N is formed by iterated pushouts over finite sets Dq

∨
Dq
∂∆[q]+ −−−→

∨
Dq

∆[q]+y
y

skq−1Y −−−→ skqY

(in view of the applications below we have displayed the pointed case. For the unpointed
case, remove the extra base points and substitute disjoint unions for the wedges).

Lemma 1.5.3 Let J be a filtered category, X : J → S∗ a functor and Y a finite space.
Then the canonical map

lim
−→
J

S∗(Y,X)→ S∗(Y, lim−→
J

X)

is an isomorphism
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Proof: Since S∗(Y,−)q = S∗(Y ∧∆[q]+,−) and Y ∧∆[q]+ is finite, it is clearly enough to
prove that

lim
−→
J

S∗(Y,X) ∼= S∗(Y, lim−→
J

X).

Remember that filtered colimits commute with finite limits. Since Y is a finite colimit of
diagrams made out of ∆[q]’s, this means that it is enough to prove the lemma for Y = ∆[q],
which is trivial since S∗(∆[q], X) = Xq and colimits are formed degreewise.

Lemma 1.5.4 If J is a filtered category, then the canonical map

lim
−→
J

Ex∞X → Ex∞ lim
−→
J

X

is an isomorphism.

Proof: Since colimits commute with colimits, it is enough to prove that Ex commutes with
filtered colimits, but this is clear since Ex(X)n = S∗(B(∆m/[n]), X) and B(∆m/[n]) is a
simplicial finite set equal to its n-skeleton.

Proposition 1.5.5 Homotopy groups commute with filtered colimits.

Proof: Let X ∈ obS∗ and J be a filtered category. First note that π0, being a colimit itself,
commutes with arbitrary colimits. For q ≥ 0 we have isomorphisms

πq lim
−→
J

X ∼=π0S∗(S
q, Ex∞ lim

−→
J

X) ∼= π0S∗(S
q, lim
−→
J

Ex∞X)

∼= lim
−→
J

π0S∗(S
q, Ex∞X) ∼= lim

−→
J

πqX.

1.6 The classifying space of a group

Let G be a (discrete) group, and regard it as a one point category whose morphisms are
the group elements. Then the classifying space 1.4 takes the simple form BqG = G×q,
and BG is called the classifying space of the group G (which makes a lot of sense, since
homotopy classes of maps into BG are in bijective correspondence with isomorphism classes
of principal G-bundles). The homotopy groups of BG are given by

πi(BG) =

{
G if i = 1

0 otherwise,

a fact that characterizes the space BG up to weak equivalence.
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1.6.1 The W -construction

If G is a simplicial group there is an alternative construction for the homotopy type of
diag∗BG, called WG, which is most easily described as follows: We have a functor ⊔ : ∆×
∆ → ∆ sending two ordered sets S and T to the naturally ordered disjoint union S ⊔ T
(elements in S are smaller than elements in T ). For any simplicial set X we may consider
the bisimplicial set sd2X obtained by precomposing X with ⊔ (so that the (sd2X)p,q =
Xp+q+1: the diagonal of this construction was called the (second) edgewise subdivision in
section VI.1.2). We define WG to be space with q-simplices

W qG = {bisimplicial maps sd2∆[q]→ BG} ,

where the simplicial structure is induced by the cosimplicial structure of [q] 7→ ∆[q]. This
description is isomorphic to the one given in [201] (with reversed orientation).

1.6.2 Kan’s loop group

The classifying space BG of a group G is a reduced space (i.e., it only has one zero simplex).
On the category of reduced spaces X there is a particularly nice model GX for the loop
functor due to Kan [155], see [201, p. 118] or [99]. If q ≥ 0 we have that GqX is the
free group generated by Xq+1 modulo contracting the image of s0 to the base point. The
degeneracy and face maps are induced fromX except the extreme face map (which extreme
depends on your choice of orientation, see [201, definition 26.3] for one choice). The Kan
loop group is adjoint to the W -construction described above. As a matter of fact, the
adjoint pair ((G,W ) defines something called a Quillen equivalence, which among other
things implies that the homotopy category of reduced spaces is equivalent to the homotopy
category of simplicial groups.

1.7 Path objects

Let Y be a simplicial object in a category C. There is a convenient combinatorial model
mimicking the path space Y I . Let ⊔ : ∆×∆→ ∆ be the ordered disjoint union.

Definition 1.7.1 Let Y be a simplicial object in a category C. Then the path object is
the simplicial object PY given by precomposing Y with [0]⊔?: ∆ −−−→ ∆.

Hence PqY = Yq+1. The map PY → Y corresponding to evaluation is given by the natural

transformation d0 : id→ [0] ⊔ id (concretely: it is PqY = Yq+1
d0 //Yq ).

Lemma 1.7.2 The maps Y0 → PY → Y0 induced by the natural maps [0]→ [0]⊔ [q]→ [0]
are simplicial homotopy equivalences.

Proof: That PY → Y0 → PY is simplicially homotopic to the identity follows, using the
formulation in 1.4.4, by considering the natural transformation of functors (∆/[1])o → ∆o
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sending φ : [q]→ [1] to φ∗ : [0] ⊔ [q]→ [0] ⊔ [q] with φ∗(0) = 0 and

φ∗(j + 1) =

{
0 if φ(j) = 0,

j + 1 if φ(j) = 1.

The connection to the path-space is the following: considering ∆ as a subcategory of
the category of small categories in the usual way, there is a projection [1]× [q]→ [0] ⊔ [q]
sending (0, j) to 0 ∈ [0]⊔ [q] and (1, j) to 1 + j ∈ [1 + q] = [0]⊔ [q]. If X is a simplicial set,
the usual path space is

S(∆[1], X) = {[q] 7→ S(∆[1]×∆[q], X) = S(N([1]× [q]), X)}

whereas PX = {[q] 7→ S(N([0] ⊔ [q]), X)}, and the injection PX ⊆ S(∆[1], X) is induced
by the above projection.

1.8 Cosimplicial spaces.

Recall that a cosimplicial space is a functor X : ∆ → S. The category of cosimplicial
spaces is a “simplicial category”. If Z is a space and X is a cosimplicial space, then Z ×X
is the cosimplicial space whose value on [q] ∈ ∆ is Z ×Xq. The function space

cS(X, Y ) ∈ S

of maps from the cosimplicial space X to the cosimplicial space Y has q-simplices the set
of maps (natural transformation of functors from ∆o ×∆ to sets)

∆[q]×X → Y.

The total space of a cosimplicial space X is the space

TotX = cS(∆[−], X)

(where ∆[−] is the cosimplicial space whose value on [q] ∈ ∆ is ∆[q] = ∆(−, [q])). The
q-simplices are cosimplicial maps ∆[q]×∆[−]→ X.

1.8.1 The pointed case

In the pointed case we make the usual modifications: A pointed cosimplicial space is
a functor X : ∆ → S∗, the function space cS∗(X, Y ) has q-simplices the set of maps
∆[q]+∧X → Y , and the total space TotX = cS∗(∆[−]+, X) is isomorphic (as an unbased
space) to what you get if you forget the basepoint before taking Tot.
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2 Spectra and simplicial abelian groups

2.1 Simplicial abelian groups

Let Ab be the category of abelian groups. Consider the free/forgetful adjoint pair

Ab
Z[−]

⇆
U

Ens

where Z[X] is the free abelian group on the set X (i.e., the coproduct of Z with itself
indexed over the set X). We extend this to an adjoint pair between the category A = sAb

of simplicial abelian groups and the category S of spaces. If M is a simplicial abelian
group, then its homotopy groups are defined as π∗(M) = π∗(UM, 0). The homology
of a simplicial set X defined to be H∗(X) = π∗(Z[X]), and this definition is naturally
isomorphic to the singular homology of the realization.

In the pointed case, the adjoint pair

Ab
Z̃[−]

⇆
U

Ens∗,

where Ens∗ is the category of pointed sets and Z̃[X] = Z[X]/Z[∗], gives rise to an adjoint
pair between A and S∗, and Z̃[X] represent the reduced homology: H̃∗(X) = π∗(Z̃[X]).
The unit of adjunction X = 1 ·X ⊆ UZ̃[X] induces the Hurewicz map π∗(X)→ H̃∗(X) on
homotopy groups.

2.1.1 Closed structure

The category of simplicial abelian groups has the structure of a closed category in the sense
of definition 9.1.1. That is, we have a tensor product

M ⊗N = {[q] 7→Mq ⊗Nq},

and morphism objects

A(M,N) = {[q] 7→ A(M ⊗ Z[∆[q]], N)}

with natural isomorphisms A(M ⊗N,P ) ∼= A(MA(N,P )) satisfying the necessary condi-
tions (see 9.1.1).

2.1.2 Eilenberg – Mac Lane spaces

If G is a (discrete) abelian group, then the classifying space BG of section 1.6 becomes
a simplicial abelian group. Hence we may apply the construction again in every degree,
and get a bisimplicial abelian group B2G = BBG, and so on. Taking the diagonal, we get
a sequence G, BG, diag∗BBG, . . . . The nth term, diag∗BnG, is naturally isomorphic to
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Z̃[Sn] ⊗ G, and is often written H(G, n), and is characterized up to homotopy by having
only one nonzero homotopy group πn = G, and such spaces are called Eilenberg-Mac Lane
spaces. We call any space (weakly) equivalent to a simplicial abelian group, an Eilenberg–
Mac Lane space (some call these spaces generalized Eilenberg-Mac Lane spaces, reserving
the term Eilenberg-Mac Lane space to spaces with only one nontrivial homotopy group).

Note that there is a map S1∧H(G, n) → Z̃[S1] ⊗ H(G, n) ∼= H(G, n + 1) (given by
the inclusion ∨ ⊆ ⊕), and so the Eilenberg-Mac Lane spaces give examples of spectra (see
Section 2.2 below).

2.1.3 Chain complexes

A chain complex is a sequence of abelian groups

C∗ = {. . .
d
← Cq−1

d
← Cq

d
← Cq+1

d
← . . . }

such that any composite is zero. A map of chain complexes f∗ : C∗ → D∗ is a collection of
maps fq : Cq → Dq such that the diagrams

Cq
fq
−−−→ Dq

d

y d

y

Cq−1
fq−1
−−−→ Dq−1

commute. We let Ch be the category of chain complexes, and Ch≥0 be the full subcategory
of chain complexes C∗ such that Cq = 0 if q < 0.

If C∗ is a chain complex, we let ZqC = ker{Cq → Cq−1} (cycles), BqC = im{Cq+1 → Cq}
(boundaries) and HqC∗ = ZqC/BqC (homology).

2.1.4 The normalized chain complex

The isomorphism between simplicial abelian groups and chain complexes concentrated in
non-negative degrees is given by the normalized chain complex: If M is a simplicial abelian
group, then Cnorm

∗ (M) (which is usually called N∗M , an option unpalatable to us since this
notation is already occupied by the nerve) is the chain complex given by

Cnorm
q (M) =

q−1⋂

i=0

ker{di : Mq →Mq−1}

and boundary map Cnorm
q M → Cnorm

q−1 M given by the remaining face map dq. As commented
earlier, this defines an isomorphism of categories between A and Ch≥0, see [201, 22.4].
This isomorphism sends homotopies to chain homotopies (and conversely) and interacts
well with tensor products and shifts. Note that Cnorm

∗ (Z̃[S1]) is isomorphic to the chain
complex Z[−1] = {· · · = 0 = 0→ Z→ 0} (the “−1” signifies – confusingly – that the copy
of the integers is in degree 1).
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Also, using a combinatorial description of the homotopy groups as in [201] (valid for
“Kan complexes”) one gets that, for a simplicial abelian group M , there is a natural iden-
tification π∗M ∼= H∗C

norm(M) between the homotopy groups of the underlying simplicial
set of M and the homology groups of the normalized chain complex.

2.1.5 The Moore complex

Associated to a simplicial abelian group M there is another chain complex, the Moore
complex C∗M , defined by CqM = Mq with boundary map given by the alternating sum
δ =

∑q
j=0(−1)jdj : Mq → Mq−1. The inclusion of the normalized complex into the Moore

complex Cnorm
∗ (M) ⊆ C∗(M) is a homotopy equivalence (see e.g., [201, 22.1]), and so one

has a chain of natural isomorphisms

π∗M ∼= H∗C
norm(M) ∼= HC∗(M).

It should also be mentioned that the Moore complex is the direct sum of the normalized
complex and the subcomplex generated by the images of the degeneracy maps. Hence you
will often see the normalized complex defined as the quotient of the Moore complex by the
degenerate chains.

2.2 Spectra

There are many different models for spectra, each having their own merits (but all have
equivalent homotopy categories with respect to the stable equivalences – the stable cate-
gory). We will only need the very simplest version.

A spectrum is a sequence of spaces X = {X0, X1, X2, . . . } together with (structure)
maps S1∧Xk → Xk+1 for k ≥ 0. A map of spectra f : X → Y is a sequence of maps
fk : Xk → Y k compatible with the structure maps: the diagrams

S1∧Xk −−−→ Xk+1

y1S1∧fk
yfk+1

S1∧Y k −−−→ Y k+1

commute.
We let Spt be the resulting category of spectra. This category is enriched in S∗, and also

tensored and cotensored in the sense of 9.2.2. If X is a spectrum and K is a pointed space,
then X∧K = {n 7→ Xn∧K} and the space of maps from K to X is {n 7→ S∗(K,X

n)}.
The morphism spaces are given by

Spt0(X, Y ) = {[q] 7→ Spt(X∧∆[q]+, Y )}.

In fact, this is the zero space of a function spectrum

Spt(X, Y ) = {k 7→ Spt0(X, Y (k+?))}.
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There is a specially important spectrum, namely the sphere spectrum

S = {k 7→ Sk = S1∧ . . .∧S1}

whose structure maps are the identity. Note that there is a natural isomorphism between
the function spectrum Spt(S, X) and X.

The Eilenberg–Mac Lane spaces of section 2.1.2 give a rich supply of important spectra
– the Eilenberg–Mac Lane spectra: if M is a simplicial abelian group, then HM = {n 7→
M ⊗ Z̃[Sn]} is the Eilenberg–Mac Lane spectrum associated with M (c.f. the Γ-space
version in II.1).

Recall that the loop space of a pointed space Y is defined by ΩY = S∗(S
1, sin |Y |).

Definition 2.2.1 Let X be a spectrum and q an integer. The qth homotopy group of X
is defined to be the group

πqX = lim
−→
k

πq+kX
k

where the colimit is over the maps πq+kX
k → πq+kΩX

k+1 ∼= πq+k+1X
k+1 induced by

the map Xk → S∗(S
1, Xn+1) → S∗(S

1, sin |Xn+1|) = ΩXn+1 given by the adjoint of the
structure maps.

We note that πq defines a functor from the category of spectra to abelian groups.

Definition 2.2.2 A map of spectra f : X → Y is a levelwise equivalence if for each integer
n the map fn : Xn → Y n is a weak equivalence of spaces, and f is a stable equivalence if it
induces an isomorphism π∗f : π∗X → π∗Y on homotopy groups.

2.2.3 Ω-spectra

We say that a spectrum X is an Ω-spectrum if for all n the map Xn → S∗(S
1, Xn+1) →

S∗(S
1, sin |Xn+1|) = ΩXn+1 induced by the adjoint of the structure map is a weak equiva-

lence.

For a spectrum X, we define its levelwise fibrant replacement fX by declaring that
(fX)n = sin |Xn| with structure maps

S1∧(fX)n = S1∧ sin |Xn| → sin |S1|∧ sin |Xn| → sin |S1∧Xn| → sin |Xn+1| = (fX)n+1

induced by the structure maps of X (and the singular/realization adjoint pair). The map
X → fX is a levelwise equivalence. We see that X is an Ω-spectrum if and only if for all
n the adjoint of the structure maps (fX)n → S∗(S

1, (fX)n+1) are weak equivalences.

If X is a spectrum, define the spectrum ωX by setting (ωX)n = S∗(S
1, Xn+1) with

structure maps adjoint to the maps

(ωX)n = S∗(S
1, Xn+1)→ S∗(S

1,S∗(S
1, Xn+2)) = S∗(S

1, (ωX)n+1)
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induced by the adjoints σ̃ : Xn+1 → S∗(S
1, Xn+2) of the structure maps of X. The adjoints

of the structure maps induce a map σ̃ : X → ωX of spectra and we define the spectrum

ω∞X = lim
−→

{
X

σ̃
−→ ωX

ωσ̃
−→ ωωX

ωωσ̃
−→ . . .

}
.

We define the spectra ΩX = ω(fX) and QX = ω∞(fX). Note that QX is an Ω-
spectrum and the canonical map X → fX → QX is a levelwise equivalence (even better:
QX → ωQX is an isomorphism and ωQX → ΩQX is a levelwise equivalence). For further
discussions on stabilizations of this kind, the reader may consult [39], [252], [140] or [71].

Note that a map of spectra X → Y is a stable equivalence if and only if the induced
map QX → QY is a levelwise equivalence.

2.3 Cofibrant spectra

We say that a spectrum X is cofibrant if all the structure maps S1∧Xk → Xk+1 are
cofibrations (i.e., inclusions). We say that a spectrum X is n-connected if πqX = 0 for
q ≤ n and connective if it is −1-connected. A spectrum is bounded below if it is n-connected
for some integer n.

We then get the trivial, but important, observation that any spectrum is the direct
colimit of bounded below spectra

Lemma 2.3.1 Let X be a spectrum. Then there is a canonical levelwise equivalence
C(X)

∼
→ X where C(X) is a cofibrant spectrum, and a natural filtration

C0(X) ⊆ C1(X) ⊆ · · · ⊆ lim
−→n
Cn(X) = C(X)

such that Cn(X) is a cofibrant −(n+ 1)-connected spectrum.

Proof: Let C(X)0 = X0, and define C(X)1 to be the mapping cone of S1∧X0 → X1.
Assuming C(X)n

∼
→ Xn has been constructed, let C(X)n+1 be the mapping cone of the

composite S1∧C(X)n
∼
→ S1∧Xn → Xn+1. This gives us a levelwise equivalence C(X)

∼
→

X, and by construction C(X) is cofibrant. Let Cn(X) be the spectrum with kth level

Cn(X)k =

{
C(X)k for k < n,

Sk−n∧C(X)n for k ≥ n,

with the obvious structure maps, and we see that C(X) = lim−→n Cn(X).

Example 2.3.2 Given an abelian group G and integer n > 0, the nth Moore space is a
(choice of a) space M(G, n) such that H̃k(M(G, n)) = 0 if k 6= n and H̃n(M(G, n)) = G
(e.g., build it from some representation of G in terms of generators and relations). Note
that we may choose M(G⊕H, n) = M(G, n) ∨M(H, n). The Moore spectrum MG is the
associated suspension spectrum n 7→ Σn−1M(G, 1) (interpreted as a point if n = 0).
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3 Homotopical algebra

In 1967, Quillen [235] provided a setup that summarized much of the formal structure
seen in homotopy theory, with a view to applying it to situations that were not captured
classically by homological algebra, in particular to the category of simplicial rings (the
homomorphisms from one ring to another only form a set, not an abelian group). This
theory has proved to be useful in a wide variety of situations, although considered to be
rather on the abstract side until the techniques saw a dramatic renaissance in the 1990’s.
We summarize the little of the theory of (simplicial closed) model categories that is needed
for our purposes. For fuller accounts, see any one of [235], [139], [135] or [99].

In homotopy theory there are three important concepts: fibrations, cofibrations and
weak equivalences. The important thing is to know how these concepts relate to each
other: Consider the (solid) commuting diagram

A //

��

i
��

E

f
����

X

s
>>~

~
~

~

// B

where i is a cofibration and f is a fibration. If either i or f is a weak equivalence, then
there exists a (dotted) map s : X → E making the resulting diagram commutative. The
map s will in general only be unique up to homotopy (there is a general rule in this game
which says that “existence implies uniqueness”, meaning that the existence property also
can be used to prove that there is a homotopy between different liftings).

Note that there may be many meaningful choices of weak equivalences, fibrations and
cofibrations on a given category.

3.1 Examples

1. Spaces. In S the weak equivalences are the maps f : X → Y which induce isomor-
phisms on path components and on all homotopy groups π∗(X, x)→ π∗(Y, f(x)) for
all x ∈ X0. The cofibrations are simply the injective maps, and the fibrations are all
maps which have the lifting property described above with respect to the cofibrations
which are weak equivalences. These are classically called Kan fibrations.

These notions also pass over to the subcategory S∗ of pointed simplicial sets. The
inclusion of the basepoint is always a cofibration (i.e., all spaces are cofibrant), but
the projection onto a one point space is not necessarily a fibration (i.e., not all spaces
are fibrant). The fibrant spaces are also called Kan spaces (or Kan complexes).

2. Topological spaces. In Top and Top∗, a weak equivalences is still a map f : X → Y
which induces a bijection π0(X) → π0(Y ) of path components and for every x ∈ X
and positive n induces an isomorphism πn(X, x) → π(Y, f(x)) of homotopy groups.
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The fibrations are the Serre fibrations, and the cofibrations are those which satisfy the
lifting property with respect to the Serre fibrations which are weak equivalences. All
topological spaces are fibrant, but not all are cofibrant. CW-complexes are cofibrant.
Both the realization functor and the singular functor preserve weak equivalences,
fibrations and cofibrations. The fact that the realization of a Kan fibration is a Serre
fibration is a cornerstone in the theory, due to Gabriel–Zisman and Quillen, see e.g.,
[99, I.10.10].

3. Simplicial groups, rings, monoids, abelian groups. In sG, the category
of simplicial groups, a map is a weak equivalence or a fibration if it is in S∗, and
the cofibrations are the maps which have the lifting property with respect to the
fibrations which are weak equivalences. Note that this is much more restrictive than
just requiring it to be a cofibration (inclusion) in S∗ (the lifting is measured in
different categories). However, if X → Y ∈ S∗ is a cofibration, then F (X) → F (Y )
is also a cofibration, where F : Ens∗ → G is the free functor, which sends a pointed
set X to the free group on X modulo the basepoint.

Likewise in A, the category of simplicial abelian groups, and sRing, the category of
simplicial rings.

In these categories fibrations are easily recognized: a map G→ H of simplicial groups
is a fibration if and only if the induced map G→ H ×π0H π0G is a surjection, where
π0G is considered as a constant simplicial group. In particular, all simplicial groups
are fibrant.

4. Functor categories. Let I be any small category, and let [I,S∗] be the category of
functors from I to S∗. This is a closed simplicial model category in the “pointwise”
structure: a map X → Y (natural transformation) is a weak equivalence (resp.
fibration) if X(i) → Y (i) is a weak equivalence (resp. fibration) of simplicial sets,
and it is a cofibration if it has the left lifting property with respect to all maps that
are both weak equivalences and fibrations. Important examples are the pointwise
structure on Γ-spaces (see Chapter II.2.1.6) and G-spaces (see below).

Generally, it is the pointwise structure which is used for the construction of homotopy
(co)limits (see section 6 below).

5. The levelwise structure on spectra. A map X → Y of spectra is a levelwise
equivalence (resp. levelwise fibration) if for every k the map Xk → Y k is a weak
equivalence (resp. fibration) of pointed simplicial sets. A map is a cofibration if
it has the lifting property with respect to maps that are both levelwise fibrations
and levelwise equivalences. A spectrum X is cofibrant if all the structure maps
S1∧Xk → Xk+1 are cofibrations (i.e., inclusions).

6. The stable structure on spectra. A map X → Y of spectra is a stable equiv-
alence if it induces an isomorphism on homotopy groups (see 2.2.1), and a (stable)
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cofibration if it is a cofibration in the levelwise structure. The map is a stable fibra-
tion if it has the lifting property with respect to maps that are both cofibrations and
stable equivalences. So, in particular, a spectrum is stably fibrant if it is a levelwise
fibrant Ω-spectrum.

7. G-spaces and G-spectra. Let G be a simplicial monoid. The category of G-spaces
(see A.8) is a closed simplicial model category with the following structure: a map is
a G-equivalence (resp. G-fibration) if it is an equivalence (resp. fibration) of spaces,
and a cofibration if it has the left lifting property with respect to all maps that are
both G-equivalences and G-fibrations. Also, the category of G-spectra (see A.2) has
a levelwise and a stable structure giving closed simplicial model categories. Levelwise
fibrations and levelwise equivalences (resp. stable fibrations and stable equivalences)
are given by forgetting down to spectra, and levelwise (resp. stable) cofibrations are
given by the left lifting property.

Many authors refer to G-spectra in this stable structure as naïve G-spectra or spectra
with G-action to distinguish them from versions, often called genuine G-spectra or the
equivariant structure, where representations of the group are built into the structure
maps and where a weak equivalence is a G-map that induces a stable equivalence on
fixed point spectra of all subgroups of G. Note that the more sophisticated theory is
used in the calculations in section VII.3.

The examples 3.1.1–3.1.3 can be summarized as follows: Consider the diagram

Top∗

|−|

⇆
sin
S∗

F

⇄
U
sG

H1(−)

⇄
U

A
TZ(−)

⇄
U

sRing

where the U are forgetful functors, TZ(A) the tensor ring on an abelian group A, and
H1(−) = −/[−,−] : G → Ab the first homology (applied degreewise). We know what weak
equivalences in Top∗ are, and we define them everywhere else to be the maps which are
sent to weak equivalences in Top∗. We know what cofibrations are in S∗, and use the axiom
to define the fibrations. We then define fibrations everywhere else to be the maps that are
sent to fibrations in S∗, and use the axioms to define the cofibrations.

These adjunctions also provide “morphism spaces”. For instance, for simplicial groups G
and G′ we may define the space of group homomorphisms from G to G′ to be sG(G,G′) =
{[q] 7→ sG(G ∗ F (∆[q]+), G′)}, where ∗ is the coproduct in the category of groups (for
obscure reasons sometimes referred to as the free product). For a more general view on
morphism spaces in categories of simplicial objects, see example 9.2.4.4.

The proof that 3.1.1–3.1.4 define closed simplicial model categories is contained in
[235, II4], and the proof 3.1.5 and 3.1.6 is in [39]. None of these proofs state explicitly the
functoriality of the factorizations of the axiom CM5 below, but for each of the cases it may
be easily reconstructed from a small object kind of argument [139, theorem 2.1.14]. For a
discrete group G, the case of G-spaces is a special case of 3.1.4 but a direct proof in the
general case is fairly straight-forward, and the same proof works the levelwise structure on
G-spectra. The proof for the stable structure then follows from the levelwise structure by
the same proof as in [39] for the case G = ∗.
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3.2 The axioms

For convenience we list the axioms for a closed simplicial model category C. It is a category
enriched in S, and it is tensored and cotensored (see A.9.2.2). We call the function spaces
C(−,−). Furthermore C has three classes of maps called fibrations, cofibrations and weak
equivalences satisfying the following axioms

CM1 C has all (small) limits and colimits.

CM2 (Two-out-of-three) For two composable morphisms

b
f

−−−→ c
g

−−−→ d ∈ C,

if any two of f , g and gf are weak equivalences, then so is the third.

CM3 (Closed under retracts) If a map f is a retract of g (in the arrow category), and g is
a weak equivalence, a fibration or a cofibration, then so is f .

CM4 Given a solid diagram

A //

��

i
��

E

����

X

s
>>~

~
~

~

// B

where i is a cofibration and f is a fibration. If either i or f are weak equivalences, then
there exists a (dotted) map s : X → E making the resulting diagram commutative.

CM5 (Functorial factorization axiom) Any map f may be functorially factored as f = pi =
qj where i is a cofibration, p a fibration and a weak equivalence, j a cofibration and
a weak equivalence, and q a fibration.

SM7 If i : A ֌ B is a cofibration and p : X → Y is a fibration, then the canonical map

C(B,X)
(i∗,p∗)
−−−→ C(A,X)×C(A,Y ) C(B, Y )

is a fibration of simplicial sets. If either i or p are weak equivalences, then (i∗, p∗) is
also a weak equivalence.

An object X is a retract of Y if there are maps X → Y → X whose composite is idX .
Note that the demand that the factorizations in CM5 should be functorial is not a part
of Quillen’s original setup, but is true in all examples we will encounter, and is sometimes
extremely useful (Quillen also only demanded the existence of finite limits and colimits).

With the exception of S and Top, all our categories will be S∗-categories, that is the
function spaces have preferred basepoints.
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3.3 The homotopy category

It makes sense to talk about the homotopy category Ho(C) of a closed simplicial model
category C. These are the categories where the weak equivalences are formally inverted
(see e.g., [235]).

The realization and singular functor induce equivalences of categories

Ho(S∗) ≃ Ho(Top∗).

This has the consequence that for all practical purposes we can choose whether we rather
want to work with simplicial sets or topological spaces. Both categories have their draw-
backs, and it is useful to know that all theorems which are proven for either homotopy
category holds for the other.

4 Fibrations in S∗ and actions on the fiber

Let f : E → B ∈ S∗ be a fibration. We call F = ∗ ×B E the fiber of f . Recall [99, I.3.7]
that we get a long exact sequence

· · · → πq+1E → πq+1B → πqF → πqE → πqB → · · · → π0B

in the sense that kernel equals image everywhere. The πis are groups for i > 0 and abelian
groups for i > 1, π2E maps into the center of π1F , all maps to the left of π1B are group
homomorphisms and two elements in π0F are mapped to the same element in π0E if and
only if they are in the same orbit under the action of π1B on π0F (see Section 4.1 below
for details on the action on the fiber).

More generally, if f : E → B ∈ S∗ is any map we may define the homotopy fiber by the
pullback diagram

hofib(f) //

��

S∗(∆[1], sin |B|)

��
E

f // B
∼ // sin |B|,

where the right vertical map is induced by d1 : ∆[0]→ ∆[1] and the right lower horizontal
map is the unit of adjunction. That this definition does what it is supposed to follows
since sin |B| is fibrant, ∆[0]→ ∆[1] is a cofibration, SM7 and since S∗ is right proper: weak
equivalences are preserved by pulling them back along fibrations, see e.g., [135, 13.1.13].

Note that there is a preferred map ΩB = S∗(S
1, sin |B|) → hofib(f). If a sequence

of spaces ΩB → F → X → B is connected by a chain of weak equivalences to ΩB →
hofib(f)→ E → B we say that it is a (homotopy) fiber sequence.

An alternative functorial choice for the definition of the homotopy fiber is to factor
E → B through a weak equivalence and cofibration followed by a fibration as in CM5 and
let the homotopy fiber be the fiber of the fibration.
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4.1 Actions on the fiber

If π and G are groups and π → Aut(G) is a group homomorphism from π to the group of
automorphisms on G we say that π acts on G. If H ⊂ G is a normal subgroup we have an
action G → Aut(H) via g 7→ {h 7→ g−1hg}. In particular, any group acts on itself in this
fashion, and these automorphisms are called the inner automorphisms.

Let f : E ։ B be a fibration and assume B is fibrant. Let i : F = E ×B ∗ ⊆ E be the
inclusion of the fiber. Then there are group actions

π1E → Aut(π∗F )

and
π1B → Aut(H∗F )

and the actions are compatible in the sense that the obvious diagram

π∗F × π1E −−−→ π∗Fy
y

H∗F × π1B −−−→ H∗F

commutes. For reference, we review the construction.
The spaces F , E, and B are fibrant, so function spaces into these spaces are homotopy

invariant. For instance, BS1
= S∗(S

1, B) is a model for the loops on B. We write XI for
the free path space S∗(∆[1]+, X).

Consider the map p : X → F ×BS1
defined by

X lim←− {F
i

−−−→ E
d0←−−− EI d1−−−→ E

i
←−−− F }

p

y
∥∥∥ f

y fI

y f

y
y

F × BS1
lim←− {F

∗
−−−→ B

d0←−−− BI d1−−−→ B ←−−− ∗},

where the upper “equality” is a definition, and the lower is the canonical isomorphism. We
see that p is both a fibration and a weak equivalence.

Hence there exists splittings F×BS1
→ X, unique up to homotopy, which by adjointness

give rise to an unbased homotopy class of maps BS1
→ S(F,X). Via the projection onto

the last factor

X = F ×E E
I ×E F

pr3
−−−→ F ,

this gives rise to a homotopy class of maps BS1
→ S(F, F ). For every such we have a

commuting diagram

BS1
−−−→ S(F, F )y

y
π0B

S1
= π1B −−−→ π0S(F, F ) −−−→ End(H∗(F )),
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and the lower map does not depend on the choice of the upper map. As F is fibrant,
π0S(F, F ) is the monoid of homotopy classes of unbased self maps. Any homotopy class
of unbased self maps of F defines an element in End(H∗(F )), and the map from π1B is a
monoid map, and giving rise to the desired group action π1B → Aut(H∗(F )).

For the pointed situation, consider the (solid) diagram

F ∨ES1 in1+j //

��

��

X

p
����

pr3 // F

F × ES1

99s
s

s
s

s
s

// F × BS1

(4.1.0)

where in1 : F → X = F ×E E
I ×E F is inclusion of the first factor, and j is the inclusion

ES1
= ∗ ×E E

I ×E ∗ ⊆ F ×E E
I ×E F = X. Again there is a homotopy class of liftings,

and since the top row in the diagram is trivial, the composites

F ×ES1
→ X

pr3
−−−→ F

all factor through F∧ES1
. So, this time the adjoints are pointed: ES1

→ S∗(F, F ), giving
rise to a unique

π1E = π0E
S1

→ π0(S∗(F, F ))→ End(π∗(F )).

Again the map is a map of monoids, and so factors through the automorphisms, and we
get the desired group action π1E → Aut(π∗(F )), compatible with the homology operation.

4.2 Actions for maps of grouplike simplicial monoids

If j : G ⊆ M is the inclusion of a subgroup in a monoid, then j/1 is the over category 1.4.3
of j considered as a functor of categories. Explicitly, it has the elements of M as objects,
and a map from m to m′ is a g ∈ G such that m′g = m.

We have an isomorphism

M ×G×q
∼=
−−−→ Bq(j/1)

given by

(m, g1, . . . , gq) 7→ (m
g1
←−−− mg1

g2
←−−− . . .

gq
←−−− mg1g2 · · · gq)

and B(M,G, ∗) = {[q] 7→ M × G×q} with the induced simplicial structure, is called the
one-sided bar construction. The projection M × G×q → G×q away from M gives a map
B(j/1)→ BG.

Theorem 4.2.1 Let M be a group-like simplicial monoid, and j : G ⊆ M a (simplicial)
subgroup. Then

B(j/1)→ BG→ BM
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is a fiber sequence, and the action

ΩBG×B(j/1)→ B(j/1) ∈ Ho(S∗)

may be identified with the conjugation action

G×B(j/1) −→B(j/1)

(g, (m, g1, . . . , gq)) ∈ Gq × Bq(j/1) 7→ (gmg−1, gg1g
−1, . . . ggqg

−1).

Proof: That the sequence is a fiber sequence follows from Corollary 5.1.4. As to the
action, replace the fiber sequence with the equivalent fiber sequence

F
i

−−−→ E
f

−−−→ B

defined by B = sin |BM |, and the pullback diagrams

E −−−→ BGy
y

BI d0−−−→ B

and

F −−−→
i

E
y f

y
∗ −−−→ B

where f is the composite

E = BG×B B
I pr2
−−−→ BI d1−−−→ B.

To describe the action, consider the diagram (the maps will be described below)

F ∨G // ∼ //

��

��

F ∨ (BG)S
1 // ∼ //

��

��

F ∨ES1 in1+j //

��

��

X

p≃
����

F ×G // ∼ // F × (BG)S
1 // ∼ // F × ES1 // BS1

× F.

The rightmost square is the same as the lifting square in 4.1.0. The leftmost horizontal
weak equivalences are induced by the weak equivalence G

∼
→ (BG)S

1
= S∗(S

1, BG) adjoint
to the canonical inclusion S1∧G ⊆ BG, and the middle horizontal weak equivalences in the
diagram are induced by the weak equivalence BG→ E = BG×BB

I given by x 7→ (x, f(x))
(the constant map at f(x)). By the uniqueness of liftings (also homotopies lift in our
diagram), any lifting F × G → X is homotopic to F × G

∼
→ F × ES1

composed with a
lifting F × ES1

→ X. Hence we may equally well consider liftings F × G → X. We will
now proceed to construct such a lifting by hand, and then show that the constructed lifting
corresponds to the conjugation action.

We define a map BG × G ×∆[1] → (BG) by sending (x, g, φ) = (g, (x1, . . . , xq), φ) ∈
Gq × BqG×∆([q], [1]) to

Hg(x)(φ) = (gφ(0)x1g
−φ(1), gφ(1)x2g

−φ(2), . . . , gφ(q−1)xqg
−φ(q))
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(where g0 = 1 and g1 = g). Note that, if 1 is the constant map [q]→ [1] sending everything
to 1, then Hg(x)(1) = (gx1g

−1, . . . , gxqg
−1). We let H : BG × G → BGI be the adjoint,

and by the same formula we have a diagram

BG×G
H
−−−→ (BG)Iy

y

BM ×G
H̄
−−−→ (BM)Iy

y

B ×G
H̄
−−−→ BI .

This extends to a map E×G→ EI by sending (x, α) ∈ BG×BB
I = E to g 7→ Hg(x, α) =

(Hg(x), H̄g(α)). Since

G ⊂ B ×G
H̄
−−−→ BI di−−−→ B

is trivial for i = 0, 1 (and so, if (x, α) ∈ F , we have Hg(x, α)(i) = (Hg(x)(i), H̄g(α)(i)) ∈ F
for i = 0, 1), we get that, upon restricting to F ×G this gives a lifting

F ×G→ F ×E E
I ×E F = X.

Composing with

X = F ×E E
I ×E F

pr3
−−−→ F

we have the conjugation action

F ×G→ F, (g, (x, α)) 7→ cg(x, α) = Hg(x, α)(1) = (Hg(x)(1), H̄g(α)(1))

is equivalent to the action of G on the fiber in the fiber sequence of the statement of the
theorem.

Let C = sin |B(M/1)| ×B B
I and F̃ = C ×B E. Since C is contractible, F

∼
→ F̃ is

an equivalence. We define a conjugation action on C using the same formulas, such that
C → B is a G-map, and this defines an action on F̃ such that

F ×G −−−→ Fy
y

F̃ ×G −−−→ F̃x
x

B(j/1)×G −−−→ B(j/1)

commutes, where the lower map is the action in the theorem. As the vertical maps are
equivalences by the first part of the theorem, this proves the result.
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5 Bisimplicial sets

A bisimplicial set is a simplicial object in S, that is, a simplicial space. From the diagonal
and projection functors

∆
diag // ∆×∆

pr2
//

pr1 //
∆

we get functors

S sS
diag∗oo S

pr∗1oo
pr∗2

oo

where the leftmost is called the diagonal and sends X to diag∗(X) = {[q] 7→ Xq,q}, and
the two maps to the right reinterpret a simplicial space X as a bisimplicial set by letting
it be constant in one direction (e.g., pr∗1(X) = {([p], [q]) 7→ Xp}).

There are important criteria for when information about each Xp may be sufficient to
conclude something about diag∗X. We cite some useful facts. Proofs may be found either
in the appendix of [39] or in [99, chapter IV].

Theorem 5.0.2 (see e.g., [99, proposition IV 1.9]) Let X → Y be a map of simpli-
cial spaces inducing a weak equivalence Xq

∼
→ Yq for every q ≥ 0. Then diag∗X → diag∗Y

is a weak equivalence. .. '!&"%#$����

Definition 5.0.3 (The π∗-Kan condition, [39]) Let

X = {[q] 7→ Xq} = {([p], [q]) 7→ Xp,q}

be a simplicial space. For a vertex a in Xq, consider the maps

di : πp(Xq, a)→ πp(Xq−1, dia), 0 ≤ i ≤ q

We say that X satisfies the π∗-Kan condition at a ∈ Xq if for every tuple of elements

(x0, . . . , xk−1, xk+1, . . . xq) ∈
∏

0 ≤ i ≤ m
i 6= k

πp(Xq−1, dia)

such that dixj = dj−1xi for k 6= i < j 6= k, there is an

x ∈ πp(Xq, a)

such that dix = xi for i 6= k.

For an alternative description of the π∗-Kan condition see [99, section IV.4].
Examples of simplicial spaces which satisfies the π∗-Kan condition are bisimplicial

groups and simplicial spaces {[q] 7→ Xq} where each Xq is connected, see [39].
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Recall that a square is homotopy cartesian if it is equivalent to a categorically cartesian
square of fibrations. More precisely, a commutative square

A −−−→ By
y

C −−−→ D

∈ S

is homotopy cartesian if there is a factorization B
∼
→ X ։ D such that the resulting map

A→ C×DX is a weak equivalence. Note that if the condition is true for one factorization,
it is true for all. This definition gives the same result as the more general one given in 7.0.2.

Theorem 5.0.4 (Bousfield – Friedlander’s Theorem B.4 [39]) Let

V −−−→ Xy
y

W −−−→ Y

be a commutative diagram of simplicial spaces, such that

Vp −−−→ Xpy
y

Wp −−−→ Yp

is homotopy cartesian for every p. If X and Y satisfy the π∗-Kan condition and if {[q] 7→
π0(Xq)} → {[q] 7→ π0(Yq)} is a fibration, then

diag∗V −−−→ diag∗Xy
y

diag∗W −−−→ diag∗Y

is homotopy cartesian. .. '!&"%#$����

As an immediate corollary we have the important result that loops can often be cal-
culated degreewise. Recall that if X is a space, then the loop space of Y is ΩX =
S∗(S

1, sin |X|).

Corollary 5.0.5 Let X be a simplicial space such that Xp is connected for every p ≥ 0.
Then there is a natural chain of weak equivalences between Ωdiag∗X and diag∗{[p] 7→ ΩXp}.

Proof: Let Yp = sin |Xp|, and consider the homotopy cartesian square

S∗(S
1, Yp) −−−→ S∗(∆[1], Yp)y

y
∗ −−−→ Yp

.
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Now, since each Yp is connected, this diagram satisfies the conditions of Theorem 5.0.4,
and so

diag∗{[p] 7→ S∗(S
1, Yp)} −−−→ diag∗{[p] 7→ S∗(∆[1], Yp)}y

y
∗ −−−→ diag∗{[p] 7→ Yp}

is homotopy cartesian. The right vertical map factors canonically as

diag∗{[p] 7→ S∗(∆[1], Yp)} −−−→ diag∗{[p] 7→ S∗(∆[1], Yp)}∧∆[1] −−−→ diag∗Y

where the first map is the non-basepoint inclusion and the second map sends f∧φ ∈
S∗(∆[p]+∧∆[1], Yp)∧∆([p], [1]) to fp(id[p]∧φ) ∈ Yp,p. This gives a canonical map diag∗{[p] 7→
S∗(∆[1], Yp)} → S∗(∆[1], diag∗Y ) of contractible spaces over diag∗Y , and ultimately a
canonical equivalence diag∗ΩX = diag∗{[p] 7→ S∗(S

1, Yp)} → S∗(S
1, diag∗Y ) → Ω diag∗Y .

Combining this with the equivalence diag∗Y
∼
← diag∗X, we get the desired canonical chain

of equivalences.

In this proof, the attentive reader will notice the appearance of a useful map

diag∗S∗(A, Y )→ S∗(A, diag∗Y )

(forA a space and Y a simplicial space) which in degree q is given by sending f : A∧∆[q]+ →
Yq to the composite

A∧∆[q]+
f

−−−→ Yq∧∆[q]+ −−−→ diag∗Y,

where the last map is given in degree p by sending y∧φ ∈ Ypq∧∆([p], [q])+ to φ∗y ∈ Ypp.
With Yp = sin |Xp| as above, this gives a weak map

diag∗Map∗(A,X) −→ S∗(A, diag∗Y ) −→ Map∗(A, diag∗Y )
∼
←− Map∗(A, diag∗X),

where weak equivalence pointing the wrong way is induced by diag∗Y
∼
← diag∗X.

By induction we get that if A = Sn+1 and Xp is n-connected for every p ≥ 0, the
corollary says that

diag∗Ωn+1X
∼
→ Map∗(S

n+1, diag∗{[q] 7→ sin |Xq|})
∼
← Ωn+1diag∗X

is a natural chain of weak equivalences.
Bousfield and Friedlander’s setup [39] gives a nice proof of the spectral sequence asso-

ciated to a simplicial space, generalizing that of Artin and Mazur [8] (see also Quillen’s
short proof for the case of a bisimplicial group [227] on which the published account of
Artin and Mazur relies).

Theorem 5.0.6 Let X be a pointed simplicial space satisfying the π∗-Kan condition. Then
there is a first quadrant convergent spectral sequence

E2
pq = πp([n] 7→ πq(Xn))⇒ πp+q(diag∗X). .. '!&"%#$����
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That E2
00 is just a set is not a problem: the spectral sequence at this stage just expresses

the bijection π0([n]→ π0(Xn)) ∼= π0(diag∗X); that E2
10 and E2

01 are not necessarily abelian
means that the convergence of the spectral sequence at this stag expresses that there is an
exact sequence

E2
20 → E2

01 → π1(diag∗X)→ E2
10 → 1

of groups. Above total degree 1 all groups are abelian, and the spectral sequence has the
usual meaning.

As an application we prove three corollaries, which is totally wrong historically, since
the first result was used in [39] to prove Theorem 5.0.6, and the second predates [39].

Corollary 5.0.7 Let G be a simplicial group, and let BG be the diagonal of [n] 7→ BGn.
Then

πqBG ∼= πq−1G.

Proof: Note that BGn is connected for each n, and so BG satisfies the π∗-Kan condition.
Now

E2
pq = πp([n] 7→ πq(BGn)) =

{
0 if q 6= 1

πpG if q = 1

and the result follows.

Corollary 5.0.8 Let X be a simplicial space. Then there is a convergent spectral sequence

E2
pq = Hp([n] 7→ Hq(Xn))⇒ Hp+q(diag∗X)

Proof: Apply the spectral sequence of Theorem 5.0.6 to the bisimplicial abelian group
ZX.

Using the theorem repeatedly and using that the π∗-Kan condition is satisfied for sim-
plicial spaces that are connected in every degree we get

Corollary 5.0.9 Let X : (∆o)×n → Ens∗ be a multi-simplicial set which is ki−1-connected
in the ith direction for i = 1, . . . , n, and at least one of the ki − 1s is positive. Then the
diagonal space is k1 + k2 + · · ·+ kn − 1 connected. .. '!&"%#$����

5.1 Linear simplicial spaces

Definition 5.1.1 A simplicial object X in a model category is linear if the natural maps

Xp → X1 ×X0 X1 ×X0 · · · ×X0 X1

are weak equivalences, where the ith component is induced from [1] ∼= {i− 1, i} ⊆ [p] for
0 < i ≤ p.
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This is inspired by categories, where a space X is the classifying space of a category, exactly
if the said maps are isomorphisms. A slicker way of formulating this is to say that X is
linear if it takes the pushouts of monomorphisms that exist in ∆ to homotopy pullbacks.

Note that if X0 = ∗, this gives a “weak multiplication” on X1:

X1 ×X1
(d0,d2)
←−−−−
∼

X2
d1−−−→ X1.

Saying that this weak multiplication has a homotopy inverse is the same as saying that all
the diagrams

Xp −−−→ X1

dp

y
y

Xp−1 −−−→ ∗

are homotopy cartesian, where the top map is induced by [1] ∼= {0, p} ⊆ [p].
The following proposition is proved in [257, page 296] and is used several times in

the text. The natural map in question is obtained as follows: you always have a map
of simplicial spaces ∆[1] × X1 → X, but if X0 = ∗ you may collapse the endpoints
and get a pointed map S1∧X1 → X. Take the diagonal, and consider the adjoint map
X1 → S∗(S

1, diag∗X), which we map further to ΩX = S∗(S
1, sin |X|), where we have

suppressed mention of the diagonal from the notation.

Proposition 5.1.2 Let X be a linear simplicial space with X0 = ∗. Then the natural map

X1 → ΩX

is a weak equivalence if and only if the induced weak multiplication on X1 has a homotopy
inverse.

Proof: Recall from Section 1.7 the definition of the path space PX = {[q] 7→ PqX =
Xq+1}. Since X is linear, we have that for each q the square

X1 −−−→ PqX
∼
−−−→ Xq ×X0 X1y

y
yproj.

X0 = ∗ −−−→ Xq Xq

is homotopy cartesian. That X1 has a homotopy inverse implies that X and PX satisfy
the π∗-Kan condition, and that {[q] 7→ π0(PqX)} → {[q] 7→ π0(Xq)} is isomorphic to the
classifying fibration E(π0X1) = B(π0X1, π0X1, ∗) ։ B(π0X1) (which is a fibration since
π0X1 is a group). Hence theorem 5.0.4 gives that

X1 −−−→ diag∗PXy
y

∗ −−−→ diag∗X
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is homotopy cartesian, and the result follows by the contractibility of PX.
Applying this proposition to the bar construction of a group-like simplicial monoid, we

get:

Corollary 5.1.3 Let M be a group-like simplicial monoid. Then the natural map M →
ΩBM is a weak equivalence. .. '!&"%#$����

Exactly the same argument as for Proposition 5.1.2, but applied to the diagram

B(∗, N,M) −−−→ EMy
y

BN −−−→ BM

yields

Corollary 5.1.4 Let N ⊆M be an inclusion of simplicial monoids where M is group-like.
Then

B(∗, N,M)→ BN → BM

is a fiber sequence. .. '!&"%#$����

6 Homotopy limits and colimits.

Let I be a small category, and [I,S∗] the category of functors from I to S∗. This is a
simplicial category in the sense that we have function spaces and “tensors” with pointed
simplicial sets satisfying the usual properties (i.e., it is a tensored S-category in the lan-
guage of definition 9.2.1 and 9.2.2). If F,G ∈ [I,S∗] we define the function space to be the
simplicial set IS∗(F,G) whose set of q-simplices is

IS∗(F,G)q = [I,S∗](F∧∆[q]+, G)

i.e., the set of all pointed natural transformations F (i)∧∆[q]+ → G(i), and whose simplicial
structure comes from regarding [q] 7→ ∆[q] as a cosimplicial object. If F ∈ [Io,S∗] and
G ∈ [I,S∗] we define

F ∧G ∈ S∗

to be the colimit of ∨

γ : i→j∈I

F (j)∧G(i) ⇉
∨

i∈I

F (i)∧G(i)

where the upper map sends the γ summand to the j summand via 1∧Gγ, and the lower
map sends the γ summand to the i summand via Fγ∧1 (in other words: it is the coend∫ I
F∧G).
If F ∈ [Io,S∗], G ∈ [I,S∗] and X ∈ S∗, we get that

S∗(F∧G,X) ∼= IoS∗(F,S∗(G,X)) ∼= IS∗(G,S∗(F,X))
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Recall the nerve 1.4 and over category constructions 1.4.3. Let B(I/−)+ ∈ [I,S∗], be
the functor which sends i ∈ obI to B(I/i)+.

Definition 6.0.1 If F ∈ [I,S∗], then the homotopy limit is defined by

holim
←−
I

F = IS∗(B(I/−)+, sin |F |)

and the homotopy colimit is defined by

holim
−→
I

F = B(Io/−)+∧F.

Note that according to the definitions, we get that

S∗(B(Io/−)+∧F,X) ∼= IoS∗(B(Io/−)+,S∗(F,X))

so many statements dualize. Most authors do not include the “sin | − |” construction into
their definition of the homotopy limit. This certainly has categorical advantages (i.e.,
the above duality becomes a duality on the nose between homotopy limits and colimits:
S∗(holim−→

I
F,X) ∼= holim←−

Io
S∗(F,X)), but it has the disadvantage that whenever they

encounter a problem in homotopy theory they have to assume that their functor has “fibrant
values”.

6.1 Connection to categorical notions

We can express the categorical notions in the same language using the constant functor
∗ : I → S∗ with value the one-point space:

lim
←−
I

F = IS∗(∗+, F )

and
lim
−→
I

F = ∗+∧F.

The canonical maps B(I/−) → ∗ and B(Io/−) → ∗ give natural maps (use in addition
F → sin |F | in the first map)

lim
←−
I

F → holim
←−
I

F, and holim
−→
I

F → lim
−→
I

F.

6.1.1 (Co)simplicial spaces

Let X be a cosimplicial space, e.g., a functor X : ∆ → S∗. The map B(∆/−) → ∆[−] of
cosimplicial spaces sending

[j]
σ0←−−− [i0]

σ1←−−− . . .
σq
←−−− [iq] ∈ Bq(∆/[j])
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to the map t 7→ σ0σ1 · · ·σq−t(iq−t) in ∆([q], [j]) defines a map TotX = cS∗(∆[−]+, X) →
cS∗(B(∆/−)+, sin |X|) = holim←−

∆
X. Likewise, if Y is a simplicial space (bisimplicial set),

we get a map holim−→
∆o Y = B(∆/−)+∧Y → ∆[−]+∧Y ∼= diag∗Y . This map is an equiva-

lence:

Lemma 6.1.2 ([40, XII.4.3] or [135, 19.6.7]) If Y is a simplicial space, the induced
map holim−→

∆o Y → diag∗Y is a weak equivalence. .. '!&"%#$����

The map TotX → holim←−
∆
X is also a weak equivalence under the condition that X is a

“Reedy fibrant” cosimplicial space, see e.g., [135, 19.6.4].

6.2 Functoriality

Let

I
f

−−−→ J
F
−−−→ S∗

be functors between small categories. Then there are natural maps

f ∗ : holim
←−
J

F → holim
←−
I

Ff

and

f∗ : holim
−→
I

Ff → holim
−→
J

F.

Under certain conditions these maps are equivalences.

Lemma 6.2.1 (Cofinality lemma, cf. [40, XI.9.2]) Let I and J be small categories
and let

I
f

−−−→ J
F
−−−→ S∗

be functors. Then

holim
−→
I

Ff
f∗
−−−→ holim

−→
J

F

is an equivalence if the under categories j/f are contractible for all j ∈ obJ (f is “right
cofinal”); and dually

holim
←−
J

F
f∗

−−−→ holim
←−
I

Ff

is an equivalence if the over categories f/j are contractible for all j ∈ obJ (f is “left
cofinal”). .. '!&"%#$����

For a sketch of the proof, see the simplicial version, 6.5.4 below.

The corresponding categorical statement to the cofinality lemma only uses the path
components of I, and we list it here for comparison:
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Lemma 6.2.2 (Categorical cofinality lemma, cf. [191, p. 217]) Let I and J be small
categories and let

I
f

−−−→ J
F
−−−→ S∗

be functors. Then

lim
−→
I

Ff
f∗
−−−→ lim

−→
J

F

is an isomorphism if and only if the under categories j/f are connected for all j ∈ obJ ;
and dually

lim
←−
J

F
f∗

−−−→ lim
←−
I

Ff

is an isomorphism if and only if the over categories f/j are connected for all j ∈ obJ . .. '!&"%#$����

Homotopy colimits are functors of “natural modules” (really of S∗-natural modules,
see 9.4.2 for the general situation), that is the category of pairs (I, F ) where I is a small
category and F : I → S∗ is a functor. A morphism (I, F ) → (J,G) is a functor f : I → J
together with a natural transformation F → f ∗G = G ◦ f and induces the map

holim
−→
I

F → holim
−→
I

f ∗G→ holim
−→
J

G.

Homotopy limits should be thought of as a kind of cohomology. It is a functor of “natural
comodules” (I, F ) (really S∗-natural comodules), that is, the category of pairs as above,
but where a map (I, F )→ (J,G) now is a functor f : J → I and a natural transformation
f ∗F → G. Such a morphism induces a map

holim
←−
I

F → holim
←−
J

f ∗F → holim
←−
J

G.

Lemma 6.2.3 (Homotopy lemma, cf. [40, XI.5.6 and XII.4.2]) Let η : F → G ∈
[I,S∗] be a pointwise weak equivalence (i.e., ηi : F (i) → G(i) is a weak equivalence for all
i ∈ obI). Then

holim
←−
I

F
∼
→ holim

←−
I

G

and
holim
−→
I

F
∼
→ holim

−→
I

G

are weak equivalences.

Proof: The first statement follows from the fact that B(I/−) is cofibrant and sin |F | and
sin |G| are fibrant in the closed simplicial model category of [I,S∗] of 3.4, and the second
statement follows from duality.

Lastly we have the following very useful observation. We do not know of any reference,
but the first part is fairly obvious, and the second part follows by some work from the
definition (remember that we take a functorial fibrant replacement when applying the
homotopy limit):
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Lemma 6.2.4 Let f : I ⊆ J be an inclusion of small categories and F : J → S∗. Then the
natural map

f∗ : holim
−→
I

Ff → holim
−→
J

F

is a cofibration (i.e., an injection) and

f ∗ : holim
←−
J

F → holim
←−
I

Ff

is a fibration. .. '!&"%#$����

6.3 (Co)simplicial replacements

There is another way of writing out the definition of the homotopy (co)limit of a functor
F : I → S∗. Note that

IS∗(Bq(I/−), F ) =
∏

i0←···←iq∈Bq(I)

F (i0).

Using the simplicial structure of Bq(I/−) this defines a cosimplicial space. This gives a
functor

[I,S∗]
Q

∗

−−−→ [∆,S∗],

the so-called cosimplicial replacement, and the homotopy limit is exactly the composite

[I,S∗]
sin | |
−−−−→ [I,S∗]

Q
∗

−−−→ [∆,S∗]
Tot
−−−→ S∗,

where Tot refers to the total complex of 1.8.
Likewise, we note that

Bq(I
o/−)+∧F =

∨

i0←···←iq∈Bq(I)

F (iq)

defining a functor
∨
∗ : [I,S∗] → [∆o,S∗], the so-called simplicial replacement, and the

homotopy colimit is the composite

[I,S∗]
W

∗
−−−→ [∆o,S∗]

diag∗

−−−→ S∗.

There is a strengthening of the homotopy lemma for colimits which does not dualize:

Lemma 6.3.1 Let η : F → G ∈ [I,S∗] be a natural transformation such that

ηi : F (i)→ G(i)

is n-connected for all i ∈ obI. Then

holim
−→
I

F → holim
−→
I

G

is n-connected.
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Proof: Notice that, by the description above, the map Bq(I
o/−)+∧F → Bq(I

o/−)+∧G is
n-connected for each q. The result then follows upon taking the diagonal.

Lemma 6.3.2 Let . . . ։ Xn ։ Xn−1 ։ . . . ։ X0 ։ ∗ be a tower of fibrations. Then the
canonical map

lim
←−n
Xn → holim

←−n
Xn

is an equivalence. Dually, if Y0 → Y0 → Y2 → . . . is a sequence of maps in S∗, then the
canonical map

holim
−→n

Yn → lim
−→n
Yn

is an equivalence.

Proof: The limit part is covered by [40], and the colimit is easier, but we provide a
pedestrian proof since many readers seem to believe that one has to assume that the maps
Yi → Yi+1 are inclusions. By Theorem 5.0.2 and the simplicial replacement of the homotopy
colimit it is enough to prove the claim when all the Yk are discrete. Given [x] ∈ lim−→n Yn,
there is a smallest number n such that [x] is in the image of Yn. call this number n[x] and
choose an element z[x] ∈ Yn[x]

mapped to [x]. This induces a map lim−→n Yn → holim−→n Yn,
sending [x] to the vertex z[x] in the n[x]-summand. The composite lim−→n Yn → lim−→n Yn is
the identity, whereas the other sends the q-simplex x ∈ Ynq in the n0 ≥ n1 ≥ · · · ≥ nq-
summand to z[x] in the n[x] = · · · = n[x]-summand. The relation nq ≥ n[x] induces a
homotopy from this composite to the identity.

6.4 Homotopy (co)limits in other categories

Note that, when defining the homotopy (co)limit we only used the simplicial structure of
[I,S∗], plus the possibility of functorially replacing any object by an equivalent (co)fibrant
object. If C is any category with all (co)products (at least all those indexed by the various
Bq(I/i)s etc.), we can define the (co)simplicial replacement functors for any F ∈ [I, C]:

∏
∗F = {[q] 7→

∏

i0←···←iq∈Bq(I)

F (i0)}

and ∐
∗F = {[q] 7→

∐

i0←···←iq∈Bq(I)

F (iq)}

In the special case of a closed simplicial model category, we can always precompose
∏
∗

(resp.
∐
∗) with a functor assuring that F (i) is (co)fibrant to get the right homotopy

properties.
As an easy example, we could consider unbased spaces. For F ∈ [I,S] we let holim←−

I
F =

Tot(
∏
∗ sin |F |) and holim−→

I
F = diag∗

∐
∗F . Recall the adjoint functor pair

S
X 7→X+

⇄
U
S∗
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We get that if F ∈ [I,S] and G ∈ [I,S∗], then
∏
∗UG = U

∏
∗G, and (

∐
∗F )+ =

∨
∗(F+),

so
U holim

←−
I

G ∼= holim
←−
I

UG, and (holim
−→
I

F )+
∼= holim

−→
I

(F+).

On the other hand, note that U holim−→
I
G ∼= holim−→

I
UG/BI, so that

Lemma 6.4.1 Let G : I → S∗ and U : S∗ → S be the forgetful functor to unbased spaces.
If BI is contractible, then the projection holim−→

I
UG→ U holim−→

I
G is a weak equivalence.

Furthermore, the simplicial replacement of the homotopy colimit makes the following
version of Quillen’s theorem B accessible. The proof below is modelled on [99, IV 5.7].

Proposition 6.4.2 Let I be a small category, let λ be a natural number and let X : I → S
be such that for any f : i → j ∈ I the induced map X(f) : X(i) → X(j) is λ-connected.
Let holim−→

I
X → holim−→

I
∗ ∼= BI be induced by the natural transformation X(i)→ ∗.

Given any object i in I, the map from X(i) to the homotopy fiber of holim−→
I
X → BI

over the vertex i ∈ B0I is λ-connected.

Proof: Consider the map ∗ → BI sending the single point to i ∈ B0I. Quillen’s small

object argument gives a factorization ∗ = Z0

∼
֌ Z1

∼
֌ Z2

∼
֌ . . .

∼
֌ lim−→n Zn = Z ։

BI through a fibration Z ։ BI where Z is contractible as follows: if Zn−1 has been
constructed, let Dn be the set of all diagrams

K // //

��

∆[q]

��
Zn−1

// BI

where K ⊆ ∆[q] is any contractible subspace (it is enough to consider the “horns”, but that
only clutters up the notation and adds no clarity). Then we define Zn as the pushout

∐
Dn
K // //

��

∐
Dn

∆[q]

��
Zn−1

// Zn.

Clearly the inclusion Zn−1 → Zn is a weak equivalence, and since the K’s are “small” (i.e.,
the unbased version of Lemma 1.5.3 is true with Y = K), the very construction shows that
Z → BI is a fibration.

We must show that the induced map X(i) = ∗ ×BI holim−→
I
X → Z ×BI holim−→

I
X is

λ-connected, which follows if we can show that Zn−1×BIholim−→
I
X → Zn×BIholim−→

I
X is λ-

connected for each n, which ultimately follows if we can show that each K×BI holim−→
I
X →

∆[q]×BI holim−→
I
X is λ-connected. In level r the bisimplicial replacement of this map can

be identified with the inclusion
∐

s0≤···≤sr∈Kr

Xσ(sr) ⊆
∐

s0≤···≤sr∈Br [q]

Xσ(sr),
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where we have written elements in ∆[q]r = Br[q] as sequences 0 ≤ s0 ≤ · · · ≤ sr ≤ q. Now,
q is an initial object in [q], giving the vertical maps in

∐
s0≤···≤sr∈Kr

Xσ(q) //

��

∐
s0≤···≤sr∈B[q]

Xσ(q)

��∐
s0≤···≤sr∈Kr

Xσ(sr) //
∐

s0≤···≤sr∈B[q]

Xσ(sr)

,

which by assumption are λ-connected. However, letting r vary, the diagonal of the top

horizontal map is the weak equivalence K∧Xσ(q)
∼
֌ ∆[q]∧Xσ(q).

6.4.3 Simplicial abelian groups

In abelian groups, the product is the product of the underlying sets, whereas the coproduct
is the direct sum. All simplicial abelian groups are fibrant, and we choose a functorial

factorization 0 ֌ C(M)
∼
։ M , for instance the one coming from the free/forgetful adjoint

functor pair to sets. Note that the diagonal (total) of a (co)simplicial simplicial abelian
group is a simplicial abelian group, and we define

holim
←−
I

F = Tot
∏

∗F

and
holim
−→
I

F = diag∗
∐

∗F

Note that this last definition is “wrong” in that we have not replaced F (i) by a cofibrant
object, but this does not matter since

Lemma 6.4.4 Let F : I → A be a functor, and let C : A → A be a functorial cofibrant
replacement. Then the map

holim
−→
I

F
≃
←−−− holim

−→
I

CF

is a weak equivalence.

Proof: This follows by forgetting down to simplicial spaces, using that homotopy groups
commute with filtered colimits 1.5.5 and finite products 1.1.1, and finally that a degreewise
equivalence of bisimplicial sets induces an equivalence on the diagonal 5.0.2.

If F is a functor to abelian groups, the (co)homotopy groups of the (co)simplicial
replacement functors above are known to algebraists as the derived functors of the (co)limit,
i.e.,

lim
←−
I

(s)F = Hs(I, F ) = πs
∏

∗F , and lim
−→
I

(s)F = Hs(I, F ) = πs
∐

∗F.

Definition 6.4.5 A category J has finite cohomological dimension if there is some n such
that for all functors F : J → Ab and s > n the sth derived limit vanishes, lim←−

J
(s)F = 0.
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For instance, the category N = {· · · → 2 → 1 → 0} of natural numbers has finite
cohomological dimension (n = 1).

Finite cohomological dimension ensures convergence of Bousfield and Kan’s spectral
sequence [40, XI.7, XII.5] for homotopy limits.

Theorem 6.4.6 Let X : J → S∗ be a functor. If the πqX take values in abelian groups
for all q ≥ 0, then there is a spectral sequence with E2 term

E2
s,t = lim

←−
J

(−s)πtX, 0 ≤ −s ≤ t

which under favourable conditions converges (in Bousfield and Kan’s language:, is “closely
related”) to πs+t holim←−

J
X. Especially, if J has finite cohomological dimension, the spectral

sequence converges. If J = N it collapses to the exact sequence

0→ lim
←−
N

(1)πt+1X → πt holim
←−
N

X → lim
←−
N

πtX → 0.

If h is some connected reduced homology theory satisfying the wedge axiom then there is a
convergent spectral sequence

E2
s,t = lim

−→
J

(s)htX → hs+t holim
−→
J

X. .. '!&"%#$����

The homotopy limits in abelian groups coincide with what we get if we forget down to
S∗, but generally the homotopy colimit will differ. However, if F : I → A, and U : Ab →
Ens∗ is the forgetful functor, there is a natural map

holim
−→
I

UF −−−→ Uholim
−→
I

F = Udiag∗{[q] 7→
⊕

i0←i1←···←iq

X(iq)}

given by sending wedges to sums. We leave the proof of the following lemma as an exercises
(use that homotopy groups commute with filtered colimit, 1.5.5 and the Blakers–Massey
theorem 7.2.2)

Lemma 6.4.7 Let F : I → A be a functor such that F (i) is n-connected for all i ∈ obI.
Then

holim
−→
I

UF → U holim
−→
I

F

is (2n+ 1)-connected. .. '!&"%#$����

6.4.8 Spectra

The category of spectra has two useful notions of fibrations and weak equivalences, the
stable 3.1.6 and the levelwise 3.1.5. For the levelwise case there is no difference from
the space case, and so we concentrate on the stable structure. Any spectrum is levelwise
equivalent to a cofibrant spectrum (i.e., one for which all the structure maps S1∧Xk →
Xk+1 are cofibrations, see 2.3.1), so it is no surprise that the levelwise homotopy colimit
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has good properties also with respect to the stable structure. For homotopy limits we
need as usual a bit of preparations. We choose a fibrant replacement functor X 7→ QX as
in 2.2.3. Let X : J → Spt be a functor from a small category to spectra. Then

holim
−→
J

X = {k 7→ diag∗
∐

∗X
k}

which is just holim−→ J applied levelwise, and

holim
←−
J

X = {k 7→ Tot∗
∏

∗QkX}

which is equivalent to k 7→ holim←−
J
QkX (we just have skipped the extra application of

sin | − |).

Lemma 6.4.9 Levelwise homotopy limits and colimits preserve stable equivalences of spec-
tra.

Proof: For the homotopy limit this is immediate from the construction since all stable
equivalences are transformed into levelwise equivalences of levelwise fibrant spectra by Q.
For the homotopy colimit, notice that we just have to prove that for a diagram of spectra
X, the canonical map X → QX induces a stable equivalence of homotopy colimits. By
Lemma 2.3.1 we may assume that all spectra in X are −n connected, and then Freuden-
thal’s suspension theorem 7.2.3 gives that the maps in Xk → QkX are 2k − n connected.
Since homotopy colimits preserve connectivity (Lemma 6.3.1) this means that the map of
levelwise homotopy colimits is a weak equivalence.

6.5 Enriched homotopy (co)limits

There are “enriched” versions of homotopy (co)limits. In fact, Hochschild homology itself
is a close relative of a homotopy colimit with an Ab-enrichment (see remark 6.5.2 below).
We will spell out the details in the case of enrichment in simplicial sets.

Let I be a small S-category, i.e., a category with a set of objects obI and morphism
spaces I(i, i′) satisfying the usual axioms for a category, see section 9.2 for precise definitions
and some background on enriched categories. Let F : I → S∗ be an S-functor, i.e., a
collection of maps I(i, i′)→ S∗(F (i), F (i′)) satisfying the usual axioms.

Then we may define the S-homotopy (co)limit of F as follows. Given i−1 ∈ obI, let

NSq (I/i−1) =
∐

i0,...,iq

∏

0≤k≤q

I(ik, ik−1) ∈ S,

and define the (co)simplicial replacements by

holim
←−
I

S∗F = {[q] 7→

∫

I

S(NSq (I/−), F ) ∼=
∏

i0,...,iq

S(
∏

1≤k≤q

I(ik, ik−1), F (i0))}
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and

holim
−→
I

S∗F = {[q] 7→

∫ I

NSq (Io/−)+∧F ∼=
∨

i0,...,iq

∧

1≤k≤q

I(ik, ik−1)+∧F (iq)}

and finally, let

holim
←−
I

F = Tot holim
←−
I

S∗ sin |F | and holim
−→
I

F = diag∗ holim
−→
I

S∗X.

We see that the homotopy limit is a functor of “S-natural comodules”, and homotopy
colimits are functors of “S-natural modules” (see section 9.4.2 for terminology).

Example 6.5.1 As a particularly important example, let G be a simplicial monoid, and
X a G-space (i.e., an S-functor X : G → S∗), then the homotopy fixed point and orbit
spaces are just XhG = holim←−

G
X and XhG = holim−→

G
X. See section 8 for further details.

Remark 6.5.2 The notion of homotopy (co)limits carries over almost word by word to
other enriched situations but for one small detail. In the definitions above, the top face
map in the nerve NSq (I/i−1) uses the preferred map I(iq, iq−1) → ∗ coming from the fact
that the unit element for the cartesian product is also terminal in the category of spaces. In
other words, the functor I → S∗ sending everything to the one point space is an “I-module”.
This has no analog in general, so we have to plug in explicit modules on both sides of the
construction, or even better, a “bimodule”. That is, if V = (V,⊗, e) is a closed symmetric
monoidal category and C is a cotensored V -category with all coproducts, let M : Io⊗ I → C
be a V -functor. Then one may define

HH(I,M) = {[q] 7→
∐

i0,...,iq

M(i0, iq)⊗

q⊗

j=1

I(ij , ij−1)},

with Hochschild-style face and degeneracy maps.
If there is a sensible projection pr : Io⊗ I → I one may define the homotopy colimit of

a V -functor F : I → C as diag∗HH(I, F pr). Likewise we define a Hochschild cohomology
which may give rise to a homotopy limit.

All the usual results for homotopy (co)limits generalize, for instance

Lemma 6.5.3 (Homotopy lemma) Let I be a small S-category, let X, Y : I → S∗ be
S-functors, and let η : X → Y be an S-natural equivalence (see 9.2.3). Then η induces
weak equivalences holim←−

I
X
∼
→ holim←−

I
Y and holim−→

I
X
∼
→ holim−→

I
Y .

Proof: The homotopy colimit statement is clear since by Lemma 5.0.2 a map of simplicial
spaces which induces an equivalence in each degree induce an equivalence on the diagonal.
For the homotopy limit case, the proof proceeds just as the one sketched in [40, page 303]:
first one shows that

{[q] 7→
∏

i0,...,iq

S∗(
∧

1≤k≤q

I(ik, ik−1)+, sin |X(i0)|)}
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is a fibrant cosimplicial space (this uses the “matching spaces” of [40, page 274], essentially
you fix an i0 and use that the degeneracy map

∑

j

sj :
∨

0≤j≤q

∨

i1,...,iq−1

∧

1≤k≤q−1

I(ik, ik−1)+ →
∨

i1,...,iq

∧

1≤k≤q

I(ik, ik−1)+

is an inclusion). Then one uses that a map of fibrant cosimplicial spaces that is a pointwise
equivalence, induces an equivalence on Tot.

The (co)finality statements carry over from the discrete case. Since we use the following
version in the text we spell it out in all detail

Lemma 6.5.4 (Cofinality lemma) Let f : I → J be an S-functor. Then

holim
←−
J

F
f∗

−−−→ holim
←−
I

Ff

is an equivalence for all S-functors F : J → S∗ if and only if f is “left cofinal” in the sense
that for all j ∈ obJ NS(f/j) is contractible.

Proof: Assume ∗ ≃ NS(f/j), and let X = sin |F |. Consider the bicosimplicial space C
which in bidegree p, q is given by

Cpq =
∏

i0, . . . ip ∈ I
j0, . . . jq ∈ J

S∗(J(f(i0), jq)+∧
∧

1≤k≤p

I(ik, ik−1)+∧
∧

1≤l≤q

J(jl, jl−1)+, X(j0))

Fixing q, we get a cosimplicial space

∏

j0,...jq∈J

S∗

(
∧

1≤l≤q

J(jl, jl−1)+,S∗(N
S(f/jq)+, X(j0))

)

which by hypothesis is equivalent to

∏

j0,...jq∈J

S∗(
∧

1≤l≤q

J(jl, jl−1)+, X(j0))

which, when varying q and taking the total, is holim←−
J
X.

Fixing p we get a cosimplicial space

[q] 7→
∏

i0,...ip∈I

S∗


 ∧

1≤k≤p

I(ik, ik−1)+,
∏

j0,...jq∈J

S∗

(
J(f(i0), jq)+∧

∧

1≤l≤q

J(jl, jl−1)+, X(j0)

)
 .

Note that X(f(i0))→ {[q] 7→
∏

j0,...jq∈J
S∗(J(f(i0), jq)+∧

∧
1≤l≤q J(jl, jl−1)+, X(j0))} is an

equivalence (the right hand side has an extra codegeneracy), and so, when varying p again,
we get holim←−

I
Ff . One also has to show compatibility with the map in the statement.
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In the opposite direction, let F (j) = S∗(J(j, j′), Z) for some j′ ∈ obJ and fibrant space
Z. Writing out the cosimplicial replacements for holim←−

J
F and holim←−

J
Ff we get that the

first is S∗(N(J/j′)+, Z) ≃ Z, whereas the latter is S∗(N(f/j′)+, Z), and so N(f/j′) must
be contractible.

Note that in the proof, for a given F : J → S∗, the crucial point was that for all
j, j′ ∈ obJ , we had an equivalence S∗(N

S(f/j′)+, X(j)) ≃ X(j). This gives the corollary

Corollary 6.5.5 Given S-functors

I
f

−−−→ J
F
−−−→ S∗,

then
holim
←−
J

F
f∗

−−−→ holim
←−
I

Ff

is an equivalence if for all j, j′ ∈ obJ , the projection NS(f/j′)+ → S0 induces an equiva-
lence Map∗(N

S(f/j′)+, F (j)) ≃ F (j). .. '!&"%#$����

6.6 Completions and localizations

We review the basic facts about the completion and localization functors. The authoritative
references are Bousfield and Kan’s book [40], and Bousfield’s papers [37] and [38]. Let R
be either the field Fp with p elements for a prime p or a subring of the rationals Q. The
free/forgetful adjoint pair

sR-mod
R̃

⇆ S∗

gives rise to a cosimplicial functor on spaces which in dimension q takes X ∈ S∗ to the
simplicial R-module R̃q+1(X) considered as a space. In favourable circumstances the to-
tal, or homotopy limit R∞X, of this cosimplicial space has the right properties of an
R-completion. We say that X is good (with respect to R) if X → R∞X induces an isomor-
phism in R-homology, and R∞X → R∞R∞X is an equivalence.

Especially, Bousfield and Kan [40] prove that simply connected spaces and loop spaces
are good, and so R-completion of connective spectra is well behaved (this is a homotopy
limit construction, so we should be prepared to make our spectra Ω-spectra before applying
R∞ to each space).

Explicitly, for a spectrum X, let J be a set of primes, I the set of primes not in J and
p any prime, we let

X(J) = {k 7→ Xk
(J) = (Z[I−1])∞X

k}

and

X p̂ = {k 7→ (QkX )̂p = (Z/pZ)∞(QkX)}.

For many purposes it is advantageous to use Bousfield’s model [38]

X p̂ = Spt(Σ−1MZ/p∞, X)
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for the completion, where MZ/p∞ is the Moore spectrum 2.3.2 associated to the abelian
group Z/p∞ = Z[1/p]/Z. For instance, this way one clearly sees that profinite completion
commutes with homotopy limits. Using that Q/Z ∼=

⊕
p prime Z[1/p]/Z we may choose

MQ/Z =
∨
p primeMZ[1/p]/Z, and the profinite completion X̂may then be written as

X̂= Spt(Σ−1MQ/Z, X).

When J is empty, X(J) is the rationalization of X, which is more customarily denoted
X(0) or XQ. We say that X is rational if X → XQ is an equivalence, which is equivalent
to asserting that π∗X is a graded rational vector space. Generally, X(J) is a localization,
in the sense that X → X(J) induces an equivalence in spectrum homology with coefficients
in Z[I−1], and π∗X(J)

∼= π∗X ⊗ Z[I−1].
Also, X p̂ is a p-completion in the sense thatX → X p̂ induces an equivalence in spectrum

homology with coefficients in Z/pZ, and there is a natural short exact (non-naturally
splittable) sequence

0→ Ext1(Cp∞, π∗X)→ π∗X p̂ → Hom(Cp∞, π∗−1X)→ 0

where Cp∞ = Z[1/p]/Z.
There is an “arithmetic square” [38]:

Theorem 6.6.1 Let X be any spectrum, then

X −−−→ XQy
y

∏
p primeX p̂ −−−→ (

∏
p primeX p̂)Q

is homotopy cartesian. .. '!&"%#$����

Also, from the description of completion and localization in Bousfield we get that p-
completion commutes with arbitrary homotopy limits and J-localization with arbitrary
homotopy colimits.

One says that an abelian group M is Ext-p-complete if M → Ext(Cp∞,M) is an iso-
morphism and Hom(Cp∞,M) = 0. A spectrum X is p-complete (i.e., X → X p̂ is an
equivalence) if and only if π∗X is Ext-p-complete.

Lemma 6.6.2 Any simplicial space satisfying the π∗-Kan condition and which is “good”
in every degree (and in particular, any simplicial spectrum) may be p-completed or localized
degreewise.

Proof: We prove the less obvious completion part. Let Y be the simplicial space {q 7→
(Xq )̂p}. We must show that the map diag∗X → diag∗Y is a p-completion. Use the spectral
sequence of Theorem 5.0.6 for the simplicial space Y , and that Ext-p completeness is closed
under extension to see that diag∗(Y ) is p-complete. Then use the spectral sequence for the
simplicial space FpY to see that H∗(diag∗X,Fp)→ H∗(diag∗Y,Fp) is an isomorphism.

We end this section with two results that are needed in the text.
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Lemma 6.6.3 Given S-functors

I
f

−−−→ J
F
−−−→ S∗

such that F has p-complete values and such that (NS(f/j))̂p is contractible for every j ∈
obJ , then

holim
←−
J

F
f∗

−−−→ holim
←−
I

Ff

is an equivalence.

Proof: This follows from Corollary 6.5.5 of the cofinality lemma and the fact that if A is
a space and B is a p-complete space, then Map(Ap̂, B)

∼
→ Map(A,B).

Corollary 6.6.4 The inclusion Cp∞ = limr→∞Cpr ⊆ S1 = sin |S1| induces a weak equiv-
alence

BCp∞
∼
→ BS1 ≃ K(Z, 2)

after p-completion. Thus we get that for any p-complete space or spectrum X with S1-
action, that the map

XhS1

→ XhCp∞

is an equivalence.

Proof: Given Lemma 6.6.3 we only need to see that BCp∞ p̂
∼
→ BS1

p̂: We have a short
exact sequence Cp∞ ⊆ S1 → lim−→p S1, and so it is enough to show that B(lim−→p S1)̂p ≃ ∗.
But this is clear, since the homotopy groups of B(lim−→p S1) ≃ K(Z[1/p], 2) are uniquely
p-divisible.

6.6.5 Completions and localizations of simplicial abelian groups

If M is a simplicial abelian group, then we can complete or localize the Eilenberg–Mac Lane
spectrum HM . The point here is that this gives new Eilenberg–Mac Lane spectra which
can be described explicitly. The proofs of the statements below follow from the fact that
Eilenberg–Mac Lane spectra, and completion and localization are determined by their
homotopy groups.

Let M ∈ obA = sAb be a simplicial abelian group. Then H(M⊗Z Q) is clearly a model
for HM(0). The map HM → HM(0) is given by M ∼= M ⊗Z Z→ M ⊗Z Q.

Choose a free resolution R
∼
։ Z[1/p]/Z. Then we may define the p-completion as

M p̂ = A(R, Z̃[S1]⊗Z M)

(internal function object in A, see section 2.1.1) which is a simplicial abelian group whose
Eilenberg–Mac Lane spectrum H(M p̂) is equivalent to (HM )̂p (note the similarity with
the up to homotopy definition commonly used for spectra). The homotopy groups are
given by considering the second quadrant spectral sequence (of the bicomplex associated
with the simplicial direction of the morphism spaces and the cosimplicial direction of the
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resolution R – just as explained in section 2.1.4 for simplicial abelian groups, cosimplicial
abelian groups give rise to chain complexes)

E2
s,t = Ext−sZ (Z[1/p]/Z, πt−1M)⇒ πs+tM p̂

whose only nonvanishing columns are in degree 0 and −1. The map M → M p̂ is given as
follows. Let Q = R ×Z[1/p]/Z Z[1/p], and consider the short exact sequence

0→ Z→ Q→ R→ 0

giving rise to the exact sequence

0→ A(R, Z̃[S1]⊗Z M)→ A(Q, Z̃[S1]⊗Z M)→ Z̃[S1]⊗Z M → 0

which gives the desired map M →M p̂.

7 Cubical diagrams

Cubical diagrams are used in many places in the text. We collect some useful facts here
for reference.

Definition 7.0.1 If S is a set, let PS be the category of subsets of S and inclusions. We
introduce the shorthand P = P{1, 2, . . . } and Pn = P{1, . . . , n}. We let P 6=∅S ⊆ PS,
P 6=∅ ⊆ P and P 6=∅n ⊆ Pn be the subcategories of nonempty subsets.

An S-cube is a functor X from the category PS. A cubical diagram is a functor from
P. An n-cube is an S-cube for some S of cardinality |S| = n.

A d-subcube of an S-cube X is a d-cube resulting as the precomposite of X along an
injection F : PT → PS satisfying that if U, V ⊆ T , then F (U ∩ V ) = F (U) ∩ F (V )
and F (U ∪ V ) = F (U) ∪ F (V ). A d-face is a d-subcube induced by an F given by
F (V ) = U ∪ f(V ) where f : {1, . . . , d} → S is an injection and U ⊆ S is disjoint from the
image of f .

So, a 0-cube is an object X∅, a 1-cube is a map X∅ → X{1}, and a 2-cube is a (commuting)
square

X∅ −−−→ X{1}y
y

X{2} −−−→ X{1,2}

and so on. Note that if X is a 47-cube, then

X{3} −−−→ X{1,3,4}y
y

X{2,3} −−−→ X{1,2,3,4}
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is a 2-subcube, but not a 2-face.
We will regard a natural transformation of n-cubes X → Y as an n + 1-cube. In

particular, if X is an n-cube and F → G is a natural transformation of functors from the
target category of X , then we get an n+ 1-cube FX → GX .

Definition 7.0.2 Let X be an S-cube with values in any one of the categories where we
have defined homotopy (co)limits (see section 6). We say that X is k-cartesian if the
canonical map

X∅ → holim
←−−
S 6=∅

XS

is k-connected, and k-cocartesian if the canonical map

holim
−−−−−−−−→
S 6={1,...,n}

XS → X{1,...,n}

is k-connected. It is homotopy cartesian if it is k-cartesian for all k, and homotopy cocarte-
sian if it is k-cocartesian for all k.

A 0-cube is k-cartesian (resp. k-cocartesian) if its single value is (k − 1)-connected
(resp. k-connected). A 1-cube is k-(co)cartesian if it is k-connected as a map.

When there is no possibility of confusion with the categorical notions, we drop the
“homotopy” and write just cartesian and cocartesian. Homotopy (co)cartesian cubes are
also called (homotopy) pullback cubes (resp. (homotopy) pushout cubes), and the initial
(resp. final) vertex is then called the (homotopy) pullback (resp. (homotopy) pushout).

Definition 7.0.3 Let X be an S-cube with values in any one of the categories where we
have defined homotopy (co)limits (see section 6). The iterated fiber (resp. iterated cofiber)
of X is the homotopy fiber (resp. cofiber) of the canonical map

X∅ → holim
←−−
S 6=∅

XS (resp. holim
−−−−−−−−→
S 6={1,...,n}

XS → X{1,...,n}).

The reason for the term “iterated” is that one may obtain these homotopy types by itera-
tively taking homotopy (co)limits in one direction at a time.

7.1 Cubes and (co)simplicial spaces

Simplicial and cosimplicial spaces can be approximated through cubes, by “writing out” all
the (co)simplicial relations. Since we will need the cosimplicial version, we write this out
in some detail, and leave the simplicial statement to the reader.

Lemma 7.1.1 Let Ordn be the category of ordered non-empty sets of cardinality less than
or equal n + 1. The inclusion f : P 6=∅n ⊆ Ordn is left cofinal. Hence, by the cofinality
lemma 6.2.1 the total may be calculated by a pullback: if X is a cosimplicial space (in the
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form of a functor from the category of ordered nonempty finite sets), spectrum or abelian
group, then the map

holim
←−−−−−
S∈Ordn

XS → holim
←−−−−−−
S∈P 6=∅n

XS

is an equivalence.

Proof: We must show that for t ≤ n the over categories f/[t] are all contractible. Since
two objects in f/[t] have maximally one morphism connecting them, it is enough to show
that f/[t] is connected. We will produce a path from an arbitrary object φ : S → [t],
where S ⊆ [n], to the inclusion {0} ⊆ [n]. By restricting, we may assume that S is a
one-point set {s}. If s = φ(s) = 0 we are done. If s 6= 0, consider {s} ⊆ {0, s} ⊇ {0}
and extend φ by sending 0 to 0, and we are again done. If s = 0 and φ(s) 6= 0, consider
{0} ⊆ {0, t} ⊇ {t} ⊆ {0, t} ⊇ {0}, where we extend φ to {0, t} by sending t to t, and on
the second instance of {0, t} the inclusion to [t].

There is a preferred equivalence Ord→ ∆ to the skeletal subcategory, and this lemma
is used to identify homotopy limits over ∆ with homotopy limits over P 6=∅. In particular,
one may apply this to the cosimplicial replacement of homotopy limits: for any functor
X : J → S∗ from a small category J we have a natural equivalence

holim
←−
J

X ≃ holim
←−−−−−
S∈P 6=∅

(
∏

j0←···←j|S|∈B|S|J

X(j0)

)

and dually

holim
−→
J

X ≃ holim
−−−−−−−→
S∈(P 6=∅)o

(
∨

j0←···←j|S|∈B|S|J

X(j|S|)

)
.

This is especially interesting if BJ is a finite space, for then the homotopy limit is a
homotopy pullback of a finite cube, and the homotopy colimit is the homotopy pushout
of a finite cube. Explicitly, if B(J) = skkB(J) (that is, as a functor from ∆o, it factors
through the homotopy equivalent subcategory ∆k of objects [q] for q ≤ k), then holim←−

J
X

is equivalent to the homotopy pullback of the punctured k-cube which sends S ∈ P 6=∅k to∏
j0←···←j|S|∈B|S|J

X(j0), and dually for the homotopy colimit.

7.2 The Blakers–Massey theorem

The discussion above means that statements for homotopy pullbacks and pushouts are
especially worthwhile listening to. The Blakers–Massey theorem 7.2.2 is an instance of
such a statement. It relates homotopy limits and homotopy colimits in a certain range.
The ultimate Blakers–Massey theorem is the following. See [106, 2.5 and 2.6] for a proof.

Theorem 7.2.1 Let S be a finite set with |S| = n ≥ 1, and let k : PS → Z be a monotone
function. Set M(k) to be the minimum of

∑
α k(Tα) over all partitions {Tα} of S by

nonempty sets. Let X be an S-cube.
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1. If X |T is k(T )-cocartesian for each nonempty T ⊆ S, then X is 1 − n + M(k)-
cartesian.

2. If X (−∪ (S − T ))|T is k(T )-cartesian for each nonempty T ⊆ S, then X is n− 1 +
M(k)-cocartesian.

.. '!&"%#$����

The usual Blakers–Massey theorem is a direct corollary of this. We say that a cube is
strongly (co)cartesian if all subcubes of dimension strictly greater than one are homotopy
(co)cartesian (demanding this also for dimension one would be the same as demanding
that all maps were equivalences, and would lead to a rather uninteresting theory!).

Corollary 7.2.2 (Blakers–Massey) Let X be a strongly cocartesian n-cube, and suppose
that X∅ → X{s} is ks-connected for all 1 ≤ s ≤ n. Then X is 1 − n +

∑
s ks-cartesian.

Dually, if X is strongly cartesian, and X{1,...,n}−{s} → X{1,...,n} is ks connected for 1 ≤ s ≤ n,
then X is n− 1 +

∑
s ks-cocartesian. .. '!&"%#$����

By applying the Blakers-Massey theorem to the cocartesian square

X −−−→ ∆[1]∧Xy
y

∗ −−−→ S1∧X

you get

Corollary 7.2.3 (Freudenthal) If X is (n − 1)-connected, then the natural map X →
Ω1(S1∧X) is (2n− 1)-connected. .. '!&"%#$����

For reference we list the following useful corollary which is the unstable forerunner of
the fact that stably products are sums.

Corollary 7.2.4 Let X and Y be pointed spaces where X is m-connected and Y is n-
connected. Then X ∨ Y → X × Y is m+ n-connected.

Proof: This is much easier by using the Whitehead and Künneth theorems, but here goes.
Assume for simplicity that m ≥ n. Consider the cocartesian square

X ∨ Y −−−→ X × Yy
y

∗ −−−→ X∧Y

.

Now, X∧Y is m+ n+ 1-connected (by e.g., considering the spectral sequence 5.0.6 of the
associated bisimplicial set), the left vertical map is n+ 1-connected and the top horizontal
map is – for trivial reasons – n-connected. Using the Blakers-Massey theorem 7.2.1, we
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get that the diagram is 2n-cartesian and so the top horizontal map must be at least 2n-
connected (since m+n ≥ 2n). With this improved connectivity, we can use Blakers-Massey
again. Repeating this procedure until we get cartesianness that exceeds m+n we get that
the top map is m+ n-connected (and finally, the diagram is m+ 2n-cartesian).

The Blakers–Massey theorem has the usual consequence for spectra:

Corollary 7.2.5 Let X be an n-cube of bounded below spectra. Then X is homotopy
cartesian if and only if it is homotopy cocartesian. .. '!&"%#$����

Lemma 7.2.6 Let X : I × J → Spt be a functor where BI is finite. Then the canonical
maps

holim
−→
I

holim
←−
J

X → holim
←−
J

holim
−→
I

X

and
holim
−→
J

holim
←−
I

X → holim
←−
I

holim
−→
J

X

are equivalences.

Proof: The homotopy colimit of X over I is equivalent to the homotopy pushout of a
punctured cube with finite wedges of copies of X(i)’s on each vertex. But in spectra, finite
wedges are equivalent to products, and homotopy pushout cubes are homotopy pullback
cubes, and homotopy pullbacks commute with homotopy limits. This proves the first
equivalence, the other is dual.

Corollary 7.2.7 Let X : ∆o × J → Spt be a functor regarded as a functor from J to
simplicial spectra. Assume J has finite cohomological dimension (c.f. 6.4.5) and diag∗X
is bounded below. Then

diag∗ holim
←−
J

X → holim
←−
J

diag∗X

is an equivalence.

Proof: Assume lim←−
J

(s) ≡ 0 for s > n, and πsdiag∗X = 0 for s < m. Let

skkX = holim
−−−−→
[q]∈∆k

Xq

This maps by a k−m-connected map to holim−→
∆o X ∼= diag∗X, and let F be the homotopy

fiber of this map. Then E2
s,t = lim←−

J
(−s)πtF = 0 if s < −n or t < k−m, so πq holim←−

J
F = 0

for q < k −m− n. All in all, this means that the last map in

skkholim
←−
J

X = holim
−−−−→
[q]∈∆k

holim
←−
J

Xq
∼
−−−→ holim

←−
J

holim
−−−−→
[q]∈∆k

Xq = holim
←−
J

skkX → holim
←−
J

diag∗X.

is k − n−m-connected. Letting k go to infinity we have the desired result.
As we see in the next section even in the unstable case there is a shadow of these nice

properties.
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7.3 Uniformly cartesian cubes

Definition 7.3.1 If f is some integral function, we say that an S-cube X is f -cartesian if
each d-subcube of X is f(d)-cartesian. Likewise for f -cocartesian.

Lemma 7.3.2 Let k > 0. An S-cube of spaces is id + k-cartesian if and only if it is
2 · id+ k − 1-cocartesian. The implication cartesian to cocartesian holds even if k = 0.

Proof: Note that it is trivially true if |S| ≤ 1. Assume it is proven for all d-cubes with
d < n.

To prove one implication, let X be an id+k-cartesian n = |S|-cube. All strict subcubes
are also id + k-cartesian, and so 2 · id + k − 1-cocartesian, and the only thing we need to
show is that X itself is 2n + k − 1-cocartesian. This follows from the second part of the
Blakers-Massey theorem 7.2.1: X is K-cocartesian where

K = n− 1 + min(
∑

α

(|Tα|+ k))

where the minimum is taken over all partitions {Tα} of S by nonempty sets. But this
minimum is clearly attained by the trivial partition, for if we subdivide T into T1 and T2

then |T |+k = |T1|+ |T2|+k ≤ |T1|+k+ |T2|+k, and so K = (n−1)+(n+k) = 2n+k−1.
In the opposite direction, let X be a 2 · id+ k− 1-cocartesian n = |S|-cube. This time,

all strict subcubes are by assumption id+k cartesian, and so we are left with showing that
X is n + k-cartesian. Again this follows from 7.2.1: X is K-cartesian where

K = (1− n) + min(
∑

α

(2|Tα|+ k − 1))

where the minimum is taken over all partitions {Tα} of S by nonempty sets. But this
minimum is clearly attained by the trivial partition, for if we subdivide T into T1 and
T2 then 2|T | + k − 1 = 2|T1| + 2|T2| + k − 1 ≤ 2|T1| + k − 1 + 2|T2| + k − 1, and so
K = (1− n) + (2n+ k − 1) = n+ k.

Notice that this statement is undisturbed if one replaces all instances of “subcube” by
“face” in the definitions.

Homology takes cofiber sequences to long exact sequences. This is a reflection of the
well-known statement

Lemma 7.3.3 If X is a homotopy cocartesian cube of spaces, then Z̃X is homotopy carte-
sian.

Proof: This follows by induction on the dimension d of X . If d ≤ 1 it follows since
homology is a homotopy functor, and if X has dimension d > 1, split X into two d − 1
dimensional cubes X i → X f . Do a functorial replacement so that each map in X i ֌ X f is
a cofibration and take the cofiber X c. As X was cocartesian, so is X c, and by assumption
Z̃X c is cartesian, and Z̃X i → Z̃X f → Z̃X c is a short exact sequence of cubes of simplicial
abelian groups, and so Z̃X must be cartesian.
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We will need a generalization of the Hurewicz theorem. Recall that the Hurewicz
theorem states that if X is k − 1 > 0 connected, then πkX → Hk(X) is an isomorphism
and πk+1X → Hk+1X is a surjection, or in other words that

X
hX−−−→ Z̃X

is k + 1-connected.
Using the transformation h : 1→ Z̃ on hX : X → Z̃X we get a square

X
hX−−−→ Z̃X

hX

y h
Z̃X

y

Z̃X
Z̃hX−−−→ Z̃Z̃X

One may check by brute force that this square is k+2-cartesian if X is k−1 > 0 connected.
We may continue this process to obtain arbitrarily high dimensional cubes by repeatedly
applying h and the generalized Hurewicz theorem states that the result gets linearly closer
to being cartesian with the dimension.

Theorem 7.3.4 (The Hurewicz theorem (generalized form)) Let k > 1. If X is an
id+ k-cartesian cube of spaces, then so is X → Z̃X .

Proof: To fix notation, let X be an n = |S|-cube with iterated fiber F and iterated
cofiber C. Let C be the S-cube which sends S to C, and all strict subsets to ∗. Then the
|S|+ 1-cube X → C is cocartesian.

As X is id+k-cartesian, it is 2 · id+k−1-cocartesian, and in particular C is 2n+k−1
connected. Furthermore, if X |T is some d-subcube of X with T not containing the terminal
set S, then X |T is 2d + k − 1-cocartesian, and so X |T → C|T = ∗ is 2d + k-cocartesian.
Also, if X |T is some strict subcube with T containing the terminal set S, then X |T → C|T
is still 2d + k-cocartesian because C is 2n + k − 1 connected, and d < n. Thus X → C is
2 · id+ k − 2-cocartesian, and cocartesian. Using the Blakers-Massey theorem 7.2.1 again,
we see that X → C is 1 − n + 2(n + 1 + k − 2) = n + 2k − 1-cartesian as the minimal
partition is obtained by partitioning S ∪ {n+ 1} in two.

This implies that the map of iterated fibers F → ΩnC is n + 2k − 1 connected. We
note that n+ 2k − 1 ≥ n+ k + 1 as k > 1.

Furthermore, as C is 2n+ k− 1 connected, ΩnC → ΩnZ̃C is n+ k + 1 connected. But
Lemma 7.3.3 implies that Z̃X → Z̃C is cartesian. Hence the iterated fiber of Z̃X is ΩnZ̃C,
and we have shown that the map from the iterated fiber of X is n+1+k connected. Doing
this also on all subcubes gives the result.

In particular

Corollary 7.3.5 Let X be a k−1 > 0-connected space. Then the cube you get by applying
the Hurewicz map n times to X is id+ k-cartesian. .. '!&"%#$����

Lastly, the equivalence between (id+ k)-cartesian and (2id+ k− 1)-cocartesian implies
good behavior of the plus construction.
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Lemma 7.3.6 If X is an (id+ k)-cartesian n-cube of spaces for k ≥ 1, then so is X+.

Proof: Since all the maps in X are 1 + k ≥ 2-connected, they induce isomorphisms
on fundamental groups. Let π = π1X∅, and let P be the maximal perfect subgroup.
From the comment following immediately after the proof of Lemma III.1.1.2, we have that
for each S ⊆ {1, . . . , n} the map (qXS)∗ : H∗(XS; (qXS)

∗Z[π/P ]) → H∗(X
+
S ;Z[π/P ]) is an

isomorphism. Hence, the spectral sequence of the homotopy colimit 6.4.6 over the proper
subsets S of {1, . . . , n},

lim
−→

(s)Ht(XS; (qXS)
∗Z[π/P ])⇒ Hs+t(holim

−→
XS; (qholim−→ XS)

∗Z[π/P ]),

and the corresponding spectral sequence for X+ are isomorphic. Again by the comment
following Lemma III.1.1.2, this gives that holim−→ XS → holim−→X

+
S is acyclic and kills the

maximal perfect subgroup, and so by the uniqueness of the plus construction, III.1.1.10,
holim−→(X+

S ) is equivalent to (holim−→XS)
+.

Now, since X is (id + k)-cartesian, X is 2id + k − 1-cocartesian, and in particular
holim−→ XS → X{1,...,n} is 2n+k−1-connected, which implies that (holim−→XS)

+ → X+
{1,...,n}

is 2n+ k− 1-connected, where again the homotopy colimit is over the proper subsets S of
{1, . . . , n}. Consequently X+ is 2n+ k − 1-cocartesian.

Repeating this argument for all subcubes of X gives that X+ is (2id+k−1)-cocartesian,
and so (id+ k)-cartesian.

8 G-spaces

In this section we collect some useful facts on G-spaces used in chapter VI. We will
not strive for the maximal generality, and there is nothing here which can not be found
elsewhere in some form.

Let G be a simplicial monoid. A G-space X is a space X together with a pointed
G-action µ : G+∧X → X such that the expected diagrams commute. Differently put: it
is an S-functor (see definition 9.2.3, or alternatively: a map between simplicial categories
with discrete object classes)

G
X
−−−→ S∗

with G considered as an S-category with one object and morphism space G. We let X
denote both the functor and the image of the object in G. That the functor is enriched
over S asserts that the map G → S∗(X,X) is simplicial, and by adjointness it gives rise
to µ (the “plus” in G+∧X → X comes from the fact that G → S∗(X,X) is not basepoint
preserving as it must send the identity to the identity). Then the functoriality encodes the
desired commuting diagrams. Note that a morphism X → Y in GS∗ is a G-equivariant
map of pointed G-spaces.

According to our general convention of writing CS∗ for the category of functors from a
category C to S∗ (blatantly violated in our notation ΓS∗ for functors from Γo to spaces), we
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write GS∗ for the category of G-spaces. The category of G-spaces is a pointed S-category
with function spaces

GS∗(X, Y ) = {[q] 7→ GS∗(X∧∆[q]+, Y )}

where G acts trivially on ∆[q]+.
If X is a G-space and Y is a Go-space (a right G-space), we let their smash product be

the space
Y ∧GX = Y ∧X/(yg∧x ∼ y∧gx)

The forgetful map GS∗ → S∗ has a left adjoint, namely X 7→ G+∧X, the free G-space
on the space X.

If G is a simplicial group we say that a G-space X is free if for all non-base points
x ∈ X the isotropy groups Ix = {g ∈ G | gx = x} are trivial, whereas Ibase point = G (“free
away from the basepoint”). A finite free G-space is a G-space Y with only finitely many
non-degenerate G-cells (you adjoin a “G-cell” of dimension n to Yj by taking a pushout of
maps of G spaces

∂∆[n]+∧G+
incl.∧id
−−−−→ ∆[n]+∧G+y

y
Yj −−−→ Yj+1

where G acts trivially on ∂∆[n] and ∆[n]).

8.1 The orbit and fixed point spaces

Let f : M → G be a map of monoids. Precomposition with f gives a functor

f ∗ : [G,Ens∗]→ [M,Ens∗],

and since all (co)limits exist this functor has both a right and a left adjoint. If f is surjective
and G a group, let H ⊂ M be the submonoid of elements mapping to the identity. Then
the right adjoint of f ∗ is

X 7→ XH = lim
←−
H

X = {x ∈ X|h · x = x for all h ∈ H}

the set of fixed points, and the left adjoint is

X 7→ XH = lim
−→
H

X = X/(h · x ∼ x)

the set of orbits. The same considerations and definitions holds in the simplicial case, and
we even get simplicial adjoints:

MS∗
X 7→XH//

X 7→XH
//

GS∗
f∗oo
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GS∗(XH , Y ) ∼= MS∗(X, f
∗Y ), and GS∗(Y,X

H) ∼= MS∗(f
∗Y,X)

If G is a simplicial group, the homomorphism G→ Go×G sending g to (g−1, g) makes
it possible to describe −∧G− and GS∗(−,−) in terms of orbit and fixed point spaces. If
X, Y ∈ obGS∗ and Z ∈ obGoS∗ then Z∧X and S∗(X, Y ) are naturally Go ×G-spaces, and
since G is a group also G-spaces, and we get that

Z∧GX ∼= (Z∧X)G, and GS∗(X, Y ) ∼= S∗(X, Y )G.

8.2 The homotopy orbit and homotopy fixed point spaces

Let G be a simplicial monoid. When regarded as a simplicial category, with only one
object ∗, we can form the over (resp. under) categories, and the nerve B(G/∗)+ (resp.
B(∗/G)+) is a contractible free G-space (resp. contractible free Go-space), and the G-orbit
space is BG. For G a group, B(G/∗) ∼= B(G,G, ∗) (resp. B(∗/G) ∼= B(∗, G,G)) is the
one sided bar construction 4.2, and we note that in this case the left and right distinction
is inessential.

Recalling the notion of S-homotopy (co)limits from 6.5 (if G is discrete this is nothing
but the usual homotopy (co)limit), we get as in example 6.5.1.

Definition 8.2.1 Let G be a simplicial monoid and X a G-space. Then the homotopy
fixed point space is

XhG = holim
←−
G

X = GS∗(B(G/∗)+, sin |X|)

and the homotopy orbit space is

XhG = holim
−→
G

X = B(∗/G)+∧GX.

A nice thing about homotopy fixed point and orbit spaces is that they preserve weak
equivalences (since homotopy (co)limits do):

Lemma 8.2.2 Let X → Y be a map of G-spaces which is a weak equivalence of underlying
spaces. Then the induced maps XhG → Y hG and XhG → Y hG are weak equivalences

We have maps XG → XhG and XhG → XG, and a central problem in homotopy theory is
to know when they are equivalences.

Lemma 8.2.3 Let U be a free G-space, and X any fibrant G-space (i.e., a G space which
is fibrant as a space). Then

GS∗(U,X)
∼
−−−→ GS∗(U∧B(G/∗)+, X),

and so if G is a group S∗(U,X)G ≃ S∗(U,X)hG. Furthermore, if U is d-dimensional, then
GS∗(U,−) sends n-connected maps of fibrant spaces to (n− d)-connected maps.
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Proof: By induction on the G-cells, it is enough to prove the claim for U = Sk+∧G+. But
then the map is the composite from top left to top right in

GS∗(S
k
+∧G+, X) −−−→ GS∗(S

k
+∧G+∧B(G/∗)+, X)

i∗
−−−→
∼=

GS∗(S
k
+∧G+∧B(G/∗)+, X)

∼=

y ∼=

y
S∗(S

k
+, X)

∼
−−−→ S∗(S

k
+∧B(G/∗)+, X)

where i∗ is the G-isomorphism from Sk+∧G+∧B(G/∗)+ (with trivial action on B(G/∗)+) to
Sk+∧G+∧B(G/∗)+ (with the diagonal action) given by the shear map (s, g, e) 7→ (s, g, ge).
The last statement follows from induction on the skeleta, and the fact thatGS∗(S

k
+∧G+,−) ∼=

S∗(S
k
+,−) sends n-connected maps of fibrant spaces to (n− k)-connected maps.

Corollary 8.2.4 Let G be a simplicial group and E a free contractible G-space. If X is a
G-space there are natural equivalences

XhG ≃ Map∗(E+, X)G, and XhG ≃ (E+∧X)G

(where the G-action is by conjugation and diagonal).

This gives us considerable freedom; in particular, if H ⊆ G is a subgroup and EG is a free
contractible G-space, EG will serve as a free contractible H-space as well. Hence there
may be some ambiguity as to what EG will mean, but the one-sided bar construction gives
a functorial choice.

9 A quick review on enriched categories

To remind the reader, and set notation, we give a short presentation of enriched categories
(see e.g., [62], [162], [107] or [32]), together with some relevant examples. Our guiding
example will be Ab-categories, also known as linear categories. These are categories where
the morphism sets are actually abelian groups, and composition is bilinear. That is: in the
definition of “category”, sets are replaced by abelian groups, Cartesian product by tensor
product and the one point set by the group of integers. Besides Ab-categories, the most
important example will be the ΓS∗-categories, which are used frequently from chapter II
on, and we go out of our way to point out some relevant details for this case. Note however,
that scary things like limits and ends are after all not that scary since limits (and colimits
for that matter) are calculated pointwise.

9.1 Closed categories

Recall the definition of a symmetric monoidal closed category (V,�, e), see e.g., [191]. For
convenience we repeat the definition below, but the important thing to remember is that
it behaves as (Ab,⊗Z,Z).
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Definition 9.1.1 A monoidal category is a tuple (C,�, e, α, λ, ρ) where C is a category, �

is a functor C × C → C, and α, λ and γ are natural (“structure”) isomorphisms

αa,b,c : a� (b� c)
≃
−−−→ (a� b) � c, λa : e� a

≃
−−−→ a, and ρa : a� e

≃
−−−→ a

with λe = ρe : e� e→ e, satisfying the coherence laws given by requiring that the following
diagrams commute:

a( � b� (c� d))

1 �α
��

α // (a� b) � (c� d)

α

��
a� ((b� c) � d)

α

))SSSSSSSSSSSSSS
((a� b) � c) � d

(a� (b� c)) � d

α�1
55kkkkkkkkkkkkkk

, a� (e� c)

α

��

q�λ

&&LLLLLLLLLL

a� c

(a� e) � c

ρ�1
88rrrrrrrrrr

A monoidal category is symmetric when it is equipped with a natural isomorphism

γa,b : a� b
∼=
−−−→ b� a

such that the following diagrams commute

a� b
γ

$$I
II

II
II

II a� b

b� a

γ
::vvvvvvvvv

a� e
ρ //

γ

$$I
IIII

II
II

a

e� a

λ

<<zzzzzzzzz

a� (b� c) α //

1 �γ
��

(a� b) � c

γ

��
a� (c� b)

α

''OOOOOOOOOOO
(c� a) � b

(a� c) � b)

γ�1
77ooooooooooo

A symmetric monoidal closed category (often just called a closed category) is a symmetric
monoidal category such that

−� b : C → C

has a right adjoint C(b,−) : C → C (which is considered to be part of the data).

If C is a closed category, we will refer to C(b, c) as the internal morphism objects.
If there is no ambiguity we typically will omit mentioning α, λ, ρ, γ and C explicitly

when declaring that “(C, � , e) is a closed category” (or variants thereof).
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Example 9.1.2 The prime example of a closed category is the category of sets with the
cartesian product as monoidal pairing. The unit element is the one-point set ∗, and for
sets X, Y and Z, the structure isomorphisms are given by αX,Y,Z(x, (y, z)) = ((x, y), z),
λX(∗, x) = ρX(x, ∗) = x and γX,Y (x, y) = (y, x). Letting Ens(X, Y ) simply be the set
Ens(X, Y ) of functions from X to Y , the structure of a closed category follows from the
one-to-one correspondence between Ens(X × Y, Z) and Ens(Y,Ens(X,Z)) sending f to
y 7→ {x 7→ f(x, y)}. This is an example of a cartesian closed category: a closed category
with monoidal structure arising from a (choice of) products.

In the pointed case, the cartesian product is replaced by the smash product X∧Y =
(X×Y )/(X ∨Y ) where X ∨Y is the coproduct of the pointed sets X and Y over the base
point, and the unit is the two-point set S0. The same formula as above give us a closed
structure: Ens∗(X∧Y, Z) ∼= Ens∗(Y,Ens∗(X,Z)), f 7→ {y 7→ {x 7→ f(x∧y)}}.

To us, the most important example is (S∗,∧, S
0), the closed category of pointed spaces

(simplicial sets). The symmetric monoidal structure is given by taking the smash product in
every degree. The mapping spaces S∗(X, Y ) is given in degree q by the set S∗(X∧∆[q]+, Y )
of pointed simplicial maps from X∧∆[q]+ to Y with structure maps given by the cosimpli-
cial structure on [q] 7→ ∆[q]. The structure isomorphism S∗(X∧Y,X) ∼= S∗(Y,S∗(X,Z))
sends a pointed simplicial map f : X∧Y → Z to Y → S∗(X,Z) via y 7→ {x∧σ 7→
f(x∧σ∗y)} for y ∈ Yq, σ ∈ ∆([p], [q]) and x ∈ Xp.

Definition 9.1.3 Let (C, � , e) and (D,⊠, f) be monoidal categories. A monoidal functor
from C to D consists of a functor F : C → D together with a natural transformation
Fc,c′ : F (c) ⊠ F (c′) → F (c� c′) (of functors C × C → D) and a morphism F1 : f → F (e)
such that for all objects c0, c1, c2 in C the diagrams

(F (c0) ⊠ F (c1)) ⊠ F (c2)
αD //

Fc0,c1⊠1

��

F (c0) ⊠ (F (c1) ⊠ F (c2))

1 ⊠Fc1,c2
��

F (c0 � c1) ⊠ F (c2)

Fc0 � c1,c2
��

F (c0) ⊠ F (c1 � c2)

Fc0,c1 � c2
��

F (c0 � (c1 � c2))
FαC // F ((c0 � c1) � c2),

F (c) ⊠ f
1 ⊠F1 //

ρD
��

F (c) ⊠ F (e)

Fc,e
��

F (c) F (c� e)
FρC

oo

and f ⊠ F (c)
F1⊠1 //

λD
��

F (e) ⊠ F (c)

Fe,c
��

F (c) F (e� c)
FλC

oo

commute. The monoidal functor is strong (resp. strict) if the F1 and Fc0,c1 are isomorphisms
(resp. identities) for all c0, c1 ∈ obC.

If C and D are both symmetric monoidal, a monoidal functor F from C to D is a
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symmetric monoidal functor if for all objects c, c′ in C the square

F (c) ⊠ F (c′)
γD //

Fc,c′

��

F (c′) ⊠ F (c)

Fc′,c
��

F (c� c′)
γC // F (c′� c)

commutes.

Some authors reserve the term “monoidal functor” for what we call a strong monoidal
functor and would use the term “lax monoidal” for the weaker version.

9.1.4 Monoids

Definition 9.1.5 Let (C, � , e) be a monoidal category. A monoid in C is an object M in
C together with two morphisms

η : e→M, and µ : M �M →M

satisfying unitality and associativity, that is the diagrams

M � e
1 �η //

ρM
&&LLLLLLLLLLL M �M

µ

��

e�M

λMxxrrrrrrrrrrr

η�1oo

M

, M � (M �M)

1 �µ

��

α // (M �M) �M

µ�1

��
M �M

µ //M M �M
µoo

commute. If C is a symmetric monoidal category, M is a symmetric monoid if the diagram

M �M
γM,M //

µ
$$I

IIIIIIII M �M
µ

zzuuuuuuuuu

M

commutes.

9.2 Enriched categories

Let (V,�, e) be any closed symmetric monoidal category.

Definition 9.2.1 A V -category C is a class of objects, obC, and for objects c0, c1, c2 ∈ obC
objects in V , C(ci, cj), and a “composition”

C(c1, c0) � C(c2, c1)→ C(c2, c0)

and a “unit”
e→ C(c, c)
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in V subject to the usual unit and associativity axioms: given objects a, b, c, d ∈ obC then
the following diagrams in V commute

C(c, d) � (C(b, c) � C(a, b))
∼= //

��

(C(c, d) � C(b, c)) � C(a, b)

��
C(c, d) � C(a, c)

))SSSSSSSSSSSSSSS
C(b, d) � C(a, b)

uukkkkkkkkkkkkkkk

C(a, d)

C(a, b) � e
∼=
−−−→ C(a, b)

∼=
←−−− e� C(a, b)y =

y
y

C(a, b) � C(a, a) −−−→ C(a, b) ←−−− C(b, b) � C(a, b)

.

We see that C gives rise to an ordinary category (an “Ens-category”) too, which we will
call C also, or U0C if we need to be precise, with the same objects and with morphism sets
U0C(c, d) = V (e, C(c, d)).

We see that C can be viewed as a functor U0C
o×U0C → V : if f ∈ C(c′, c) = V (e, C(c′, c))

and g ∈ C(d, d′) = V (e, C(d, d′)) then f ∗g∗ = g∗f
∗ = C(f, g) : C(c, d) → C(c′, d′) ∈ V is

defined as the composite

C(c, d) ∼= e� C(c, d) � e
g�id�f
−−−−−→ C(d, d′) � C(c, d) � C(c, c′)→ C(c′, d′).

Definition 9.2.2 Let C be a V -category. We say that C is a tensored V -category if it comes
equipped with a functor C × V → C sending (c, v) to c⊗ v and a natural isomorphism

C(c⊗ v, d) ∼= V (v, C(c, d)),

and cotensored if it comes equipped with a functor C × V o → C sending (c, v) to cv and a
natural isomorphism

C(c, dv) ∼= V (v, C(c, d)),

We notice that the closed structure of V makes V into a tensored and cotensored V -
category.

9.2.3 Some further definitions

If C and D are two V -categories, we define their tensor product (or whatever the oper-
ator in V is called) C�D to be the V -category given by ob(C �D) = obC × obD, and
C�D((c, d), (c′, d′)) = C(c, c′) �D(d, d′).

Let C be a V -category where V has finite products. If U0C is a category with sum (i.e.
it has an initial object ∗, and categorical coproducts), then we say that C is a V -category
with sum if the canonical map C(c ∨ c′, d)→ C(c, d)× C(c′, d) is an isomorphism.
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A V -functor F from C to D is an assignment obC → obD together with maps

C(c, c′)→ D(F (c), F (c′))

preserving unit and composition.
A V -functor F : C → D is V -full (resp. V -faithful) if C(c, d) → D(F (c), F (d)) is epic

(resp. monic).
A V -natural transformation between two V -functors F,G : C → D is a map ηc : F (c)→

G(c) ∈ U0D for every c ∈ obC such that all the diagrams

C(c, c′) −−−→ D(F (c), F (c′))y
y(ηc′ )∗

D(G(c), G(c′))
(ηc)∗

−−−→ D(F (c), G(c′))

commute. The V -natural transformation η is a V -natural isomorphism if each ηc is an
isomorphism.

A V -functor F : C → D is a V -natural equivalence if there is a V -functor G : D → C
and V -natural isomorphisms GF ∼= 1 and FG ∼= 1.

If

D
F

⇄
U
C

is a pair of V -functors, we say that F is V -left adjoint to U (and U is V -right adjoint to

F ) if there are V -natural transformations FU
ǫ //1C (the counit) and UF 1D

ηoo (the

unit) such that the following diagrams commute:

U
ηU //

=

""E
EE

EE
EE

EE
UFU

Uǫ
��
U,

F
Fη //

=

""F
FF

FF
FF

FF
FUF

ǫF
��
U.

9.2.4 Examples of enriched categories

1. Any closed symmetric monoidal closed category (V,�, e) is enriched in itself due to
the internal morphism objects.

2. A linear category is nothing but an Ab-category, that is a category enriched in
(Ab,⊗,Z). Note that an additive category is something else (it is a linear cate-
gory with a zero object and all finite sums). “Linear functor” is another name for
Ab-functor.

3. Just as a ring is an Ab-category with one object, or a k-algebra is a (k-mod)-category
with only one object, an S-algebra is a ΓS∗-category with only one object. This is
equivalent to saying that it is a monoid in (ΓS∗,∧,S), which is another way of saying
that an S-algebra is something which satisfies all the axioms of a ring, if you replace
(Ab,⊗,Z) by (ΓS∗,∧,S).
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4. “Function spaces” appear in many applications, mirroring an enrichment in spaces.
In particular, the category sC of simplicial objects in some category C can be given
an enrichment in S as in [235, II.1.7]. The structure is easiest to describe if C has
finite colimits. Then one may define c ⊗ K for any c ∈ sC and K ∈ S to be the
simplicial object [n] 7→

∐
Kn
cn (the coproduct of cn with itself indexed over Kn), and

the function space becomes

sC(c, d) = {[q] 7→ sC(c⊗∆[q], d)},

which is a simplicial set since [q] 7→ ∆[q] is cosimplicial.

5. Let C be a category with sum (and so is “tensored over Γ0” by the formula c� k+ =∨
k c). This defines a (discrete) ΓS∗-category C∨ by setting C∨(c, c′)(X) = C(c, c′�X)

for X ∈ obΓo and c, c′ ∈ obC, and with composition given by

C∨(c, d)(X)∧C∨(b, c)(Y ) C(c, d�X)∧C(b, c�Y )
(−�Y )∧id
−−−−−−→ C(c�Y, (d�X) �Y )∧C(b, c�Y )

−−−−−−→ C(b, (d�X) �Y )

∼= C(b, d� (X �Y )) C∨(b, d)(X∧Y )

.

Slightly more generally, we could have allowed C to be an S∗-category with sum.

9.3 Monoidal V -categories

There is nothing hindering us from adding a second layer of complexity to this. Given
a closed category (V,⊠, ǫ), a (symmetric) monoidal (closed) V -category is a (symmetric)
monoidal (closed) category (C,�, e) in the sense that you use definition 9.1.1, but do it
in the V -enriched world (i.e., C is a V -category, � : C ⊠ C → C a V -functor, the required
natural transformations are V -natural (and C(b,−) is V -right adjoint to −� b)).

9.3.1 Important convention

All categories are considered to be enriched over (S∗,∧, S
0) without further mention. In

particular, (V,�, e) is a closed S∗-category, and any V -category C is also an S∗-category
which is sometimes also called C, with morphism spaces C(b, c) = V (e, C(b, c)) ∈ obS∗.
This fits with the convention of not underlining function spaces. Of course, it also defines
a set-based category U0C too by considering zero-simplices only.

9.4 Modules

A left C-module P is an assignment obC → obV , and a morphism P (c) � C(c, b)→ P (b) in
V such that the obvious diagrams commute; or in other words, a C-module is a V -functor
P : C → V . Right modules and bimodules are defined similarly as V -functors Co → V and
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Co � C → V . If V has finite products and C is a V -category with sum, a Co-module M is
said to be additive if the canonical map M(c∨ c′)→M(c)×M(c′) is an isomorphism, and
a bimodule is additive if P (c ∨ c′, d)→ P (c, d)× P (c′, d) is an isomorphism.

Example 9.4.1 If a ring A is considered to be an Ab-category with just one object, one
sees that a left A-module M in the ordinary sense is nothing but a left A-module in the
sense above: consider the functor A → Ab with M as value, and sending the morphism

a ∈ A to multiplication on M m7→am //M. Similarly for right modules and bimodules.

Likewise, if A is an S-algebra, then an A-module is a ΓS∗ functor A → ΓS∗. Again,
this another way of saying that an A-module is an “−∧A”-algebra, which is to say that it
satisfies all the usual axioms for a module, mutatis mutandem.

9.4.2 V -natural modules

A V -natural bimodule is a pair (C, P ) where C is a V -category and P is a C-bimodule. A
map of V -natural bimodules (C, P ) → (D, Q) is a V -functor F : C → D and a V -natural
transformation P → F ∗Q where F ∗Q is the C-bimodule given by the composite

Co � C
F×F
−−−→ Do �D

Q
−−−→ V .

Similarly one defines V -natural modules as pairs (C, P ) where C is a V -category and P a
C-module. A map of V -natural modules (C, P )→ (D, Q) is a V -functor F : C → D and a
V -natural transformation P → F ∗Q where F ∗Q is the C-bimodule given by the composite

C
F
−−−→ D

Q
−−−→ V .

The V -natural (bi)modules form a 2-category: the maps between two V -natural (bi)modules
(C, P ) and (D, Q) are themselves objects of a category. The morphisms in this category
are (naturally) called natural transformations; a natural transformation η : F → G where
F,G are two maps of V -natural bimodules (C, P )→ (D, Q) is a V -natural transformation
η : F → G of V -functors C → D such that the diagram

P (c, c′) −−−→ Q(F (c), F (c′))y
y(ηc′ )∗

Q(G(c), G(c′))
(ηc)∗

−−−→ Q(F (c), G(c′))

commutes. A natural isomorphism is a natural transformation such that all the ηc are
isomorphisms. Likewise one defines the notion of a natural transformation/isomorphism
for maps of V -natural modules.

For cohomology considerations, the dual notion of V -natural co(bi)modules is useful.
The objects are the same as above, but a morphism f : (C, P ) → (D, Q) is a functor
f : D → C together with a natural transformation f ∗P → Q, and so on.
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Example 9.4.3 Let C be a category with sum, and let P be an additive C-bimodule (i.e.,

P (c ∨ c′, d)
∼= //P (c, d)× P (c′, d) ). Recall from II.1.6.3 the definition of C∨. We define a

C∨-bimodule P ∨ by the formula P ∨(c, d)(X) = P (c, d�X). Note that since P is additive
we have a canonical map P (c, d) → P (c�X, d�X), and the right module action uses
this. Then (C∨, P ∨) is a natural module, and (C∨, P ∨) → ((−�X)∗C∨, (−�X)∗P ∨) is a
map of natural modules.

9.5 Ends and coends

Ends and coends are universal concepts as good as limits and colimits, but in the set-based
world you can always express them in terms of limits and colimits, and hence they are
less often used. The important thing to note is that this is the way we construct natural
transformations: given two (set-based) functors F,G : C → D, a natural transformation
η from F to G is a collection of maps ηc : F (c) → G(c) satisfying the usual condition.
Another way to say the same thing is that the set of natural transformations is a set
DC(F,G) together with a family of functions

DC(F,G)
η 7→pc(η)=ηc
−−−−−−−→ D(F (c), G(c))

such that for every f : c1 → c0

DC(F,G)
pc1−−−→ D(F (c1), G(c1))

pc0

y G(f)∗

y

D(F (c0), G(c0))
F (f)∗

−−−→ D(F (c1), G(c0))

commutes. Furthermore, DC(F,G) is universal among sets with this property: It is “the
end of the functor D(F (−), G(−)) : Co×C → D”. This example is the only important thing
to remember about ends. What follows is just for reference.

Definition 9.5.1 Let C and D be V -categories and T : Co � C → D a V -functor. A V -
natural family is an object d ∈ obD, and for every object c ∈ obC a map fc : d → T (c, c)
such that the diagram

C(c1, c0)
T (c1,−)
−−−−→ D(T (c1, c1), T (c1, c0))

T (−,c0)

y f∗c1

y

D(T (c0, c0), T (c1, c0))
f∗c0−−−→ D(d, T (c1, c0))

commutes.

Definition 9.5.2 Let C be a V -category. The end of a bimodule T : Co � C → V is a
V -natural family ∫

c
T (c, c)

px
−−−→ T (x, x)
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such that for any other V -natural family fx : v → T (x, x), there exists a unique morphism
v →

∫
c
T (c, c) making the following diagram commute:

v //

fx

""D
DD

DD
DD

DD
D

∫
c
T (c, c)

pxyyrrrrrrrrrr

T (x, x)

Definition 9.5.3 Let T : Co � C → D be a V -functor. The end of T is a V -natural family

∫
c
T (c, c)

px
−−−→ T (x, x)

such that for every d ∈ obD

D(d,
∫
c
T (c, c))

px∗−−−→ D(d, T (x, x))

is the end of

Co � C
D(d,T (−,−))
−−−−−−−→ V .

With mild assumptions, this can be expressed as a limit in D (see [62, page 39]). The
dual of the end is the coend. The most basic is the tensor product: considering a ring A as
an Ab-category with one object (called A), a left module M : A→ Ab and a right module

N : Ao → Ab, the tensor product N ⊗AM is nothing but the coend
∫ A

N ⊗M .

9.6 Functor categories

Assume that V has all limits. If I is a small category, we define the V -category
∫
I
C of

“functors from I to C” as follows. The objects are just the functors from I to U0C (the
underlying category of C), but the morphisms

∫
I
C(F,G) is set to be the end

∫
I
C(F,G) =∫

i∈I
C(F (i), G(i)) of

Io × I
(F,G)
−−−→ U0C

o × U0C
C

−−−→ V .

We check that this defines a functor [I, U0C]
o × [I, U0C] → V . The composition is defined

by the map

(∫

I

C(G,H)

)
�

(∫

I

C(F,G)

)
→

∫

I

∫

I

C(G,H) � C(F,G)
diag∗

−→

∫

I

C(G,H) � C(F,G)

→

∫

I

C(F,H)

Note that I is here an ordinary category, and the end here is an end of set-based categories.

In the case where the forgetful map V
N 7→V (e,N) //Ens has a left adjoint, say X 7→ e�X,

then there is a left adjoint functor from categories to V -categories, sending a category I to
a “free” V -category e� I, and the functor category we have defined is the usual V -category
of V -functors from e� I to C (see [62], [162] or [107]).
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Also, a C-bimodule P gives rise to a
∫
I
C-bimodule

∫
I
P with

∫
I
P (F,G) defined as the

end. The bimodule structure is defined as
∫

I

C�

∫

I

P �

∫

I

C →

∫

I×3

C�P � C →

∫

I

C�P � C →

∫

I

P.

As an example, one has the fact that if C is any category and D is an Ab-category, the
free functor from sets to abelian groups Z : Ens∗ → Ab induces an equivalence between the
Ab-category of Ab-functors ZC → D and the Ab-category of functors C → D. See [107] for
a discussion on the effect of change of base-category.

Example 9.6.1 (Modules over an S-algebra) Let A be an S-algebra. The category
MA of A-modules is again a ΓS∗-category . Explicitly, if M and N are A-modules, then

MA(M,N) =

∫

A

ΓS∗(M,N) ∼= lim
←−
{ΓS∗(M,N) ⇉ ΓS∗(A∧M,N)}

with the obvious maps.
We refer to [253] for a more thorough discussion of S-algebras and A-modules and their

homotopy properties. See also chapter II.
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A(∗), the algebraic K-theory of a point, 107
A∗, the dual Steenrod algebra, 289
A∗ = ĜL1(A), 164
A = sAb, the category of simplicial abelian

groups, 332
Ab-category, 45, 49, 59
Ab, the category of abelian groups, 332
A(BG), the algebraic K-theory of BG, 138
A-bimodule, 86
acyclic map, 30, 110
Adams operation, 34, 298
Adams summand ℓp, 288
additive
C-module, 383
category, 21, 45, 88
functor, 59

additivity theorem, 47, 130
adjoint pair, 321
adjunction, 321
A×G B, the twisted product category, 69
agree up to homotopy, 197
AI , opposite twisted arrow category, 211
AI , twisted arrow category, 211
algebraic K-theory

category, 193
of C, 103
space
K(A) = BGL(A)+, 31
of S-algebras, 137
of simplicial rings, 117

spectrum, 193
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alternating group, 117
A-module, 85
An, the alternating group on n letters, 117
Angeltveit, 291, 314
Ao, opposite S-algebra, 84
approximation

lemma, 98
property, 57
theorem, 57

arithmetic square, 364
arrow category ArC, 43
A-theory, 138
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Atiyah, 23, 135
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A ∨ P , 201

“BA+
5 ”, a choice of plus of BA5, 118

Barden, 19
Barratt–Priddy–Quillen theorem, 32, 77, 107
barycentric subdivision, 327
Bass, 27, 29
Bass trace conjecture, 147
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BC, the classifying space of C, 326
Beilinson, 35
Beilinson-Lichtenbaum conjectures, 301
Bernoulli number, 35
Berrick, 147
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big Witt vectors, 313
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over an Ab-category, 60

bisimplicial set, 46
bisimplicial set=simplicial space, 346
bispectrum, 195
Blakers–Massey theorem, 368, 369
Bloch, 272, 305, 309
Bloch-Kato conjecture, 301
Bloch-Lichtenbaum spectral sequence, 301
Blumberg, 209, 305, 316, 317
BnC, the group of boundaries, 333
Boardman, 73, 294
Bökstedt, 3, 7, 83, 97, 147, 152, 224, 225,
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310, 312

spectral sequence, 291
Bökstedt’s

approximation lemma, 98
category I, 96

Borceux, 319
Borel, 26, 35
Bott, 26

periodicity, 23, 28, 33
boundaries in a chain complex, 333
bounded below, 336
Bousfield, 92, 110, 112, 319, 363, 364
Bousfield localization, 300
Bousfield–Friedlander theorem, 347
Breen, 96, 148
Brun, 7, 313
Burghelea, 234

C∗M , the Moore complex, 334
CAP , 65, 200
Carlsson, 8, 225, 272, 296
cartesian

dim-, 143
f -, 143, 371
id-, 143, 371
k-, 142, 367
homotopy, 142

categorical cofinality lemma, 354

category of
finitely generated

free modules, FA, 22, 40
projective modules, PA, 22, 39

fixed pairs, 191
free pairs, 190
pairs, 190

category with
cofibrations, 38

and weak equivalences, 55
sum, 88, 105

C/c, the over category, 327
c/C, the under category, 327
cC, the category of cosimplicial C-objects,

320
CC(M), 66
CC→D, 127
C(c, c′), a morphism set in C, 38
C(c, c′), morphism object, 379
CG, the category of compactly generated spaces,

214
Ch, the category of chain complexes, 333
CH(X), the Chow ring, 26
Ch≥0, the category of chain complexes con-

centrated in non-negative degrees, 333
chain complex, 333
ch : K0(X)→ CH(X)⊗Q, 26
Chow ring, 26
classifying space, 46

of a category, 326
of a group, 329

closed V -category, 382
closed category=closed symmetric monoidal

category, 79, 377
closed excision, 318
C-module, 382
Cspt
∗ (M), 261
Co, the opposite category, 320
cobar construction, 280
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coC, the subcategory of cofibrations, 38
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dim-, 143
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coend, 385
coface map, 320
cofibrant
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space, 337
spectrum, 336

cofibration, 337, 340
in a category with cofibrations, 38
of Γ-spaces, 93
of A-modules, 100
of simplicial

(abelian) groups/monoids/rings, 338
of spaces, 337
of topological spaces, 338
of G-spaces, 339

cofinal, 40
inclusion of ΓS∗-categories, 176
submonoid, 133

cofinality, 135
lemma, 353

categorical, 354
enriched, 362

theorem, 50
Cohen, 8, 272, 316
coherence laws, 377
cohomology of the smooth Whitehead spec-

trum, 316
comma category, 327
commutative

S-algebra, 83, 290
ring spectrum, 74
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complete extension, 25
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conn(X), 95
connected space, 64, 323
connective, 336
connectivity

for simplicial rings and modules, 64
for spaces, 323
for spectra, 336

Connes, 5, 150, 223
Connes’

B-operator, 259
category, 150, 227

contravariant functor, 320
Cortiñas, 317
cosimplicial

identity, 320
object, 320
replacement, for homotopy limits, 355

cotensored V -category, 380
cotriple, 322
counit of adjunction, 321, 381
CP∞−1, 315
C⊕, 170
crystalline cohomology, 305
cubical diagram, 366
Cuntz, 317
curves on K(A), 309
C∨, 88
C(X), ring of continuous functions X → C,

23
CX, the category of a space X, 326
cycles in a chain complex, 333
cyclic

bar construction, 151
bar, of pointed monoid, 312
homology, 223, 259
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module, 259
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nerve of a category, 166
object, 150, 151

cyclotomic spectrum, 295
cyclotomic trace, 271, 274
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D1F , the first differential of F , 67
Day, 80
Dedekind domain, 25
degeneracy map, 320
degreewise K-theory, 64, 119
∆, the simplicial category, 319
∆[n], the standard n-simplex, 324
∆m, 327
∆n, standard topological n-simplex, 321
△n
r (i ≤ j), scaled simplex, 213

Dennis trace, 147, 169, 271, 273, 274
de Rham cohomology, 259, 306
de Rham–Witt complex, 305
derivation, 264
devissage theorem, 58
d-face, 366
di, coface map, 320
di, face map, 320
diagonal

of a simplicial set, 46
diagonal, of simplicial space, 114
Dirichlet, 20, 25
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Dold–Puppe construction, 82
dominate, 25
d-subcube, 366
dual Steenrod algebra, 289
D(V ), 256
D∞(V ), 256
Dwyer, 35, 272, 319
Dyer-Lashof operations, 290

Ẽ , the ΓS∗-category associated with E , 87
E(A): the group of elementary matrices, 18

Ê(A), 120
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2
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ED and eD, 264
edgewise subdivision, 330
ẼG, 292
Eilenberg–Mac Lane
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space, 333

spectrum, 335
Ek(A), 18
Elbaz-Vincent, 35
elementary matrix, 18
Elmendorf, 73
end, 385

of a bimodule, 384
End(C), 189
End(C), 189
enriched category, 379
Ens , the category of sets, 322
Ens∗, the category of pointed sets, 332
epicyclic space, 233
equivalence

of A-modules, 100
of bisimplicial sets, 46

equivariant structure on spectra, 339
étale

descent for THH , 317
K-theory, 299
K-theory and TC, 317

exact category, 21
exact functor, 57

of categories with cofibrations, 38
Ex∞, 327
Ext-p-complete, 364
extension axiom, 57

F , Frobenius map, 235
F = f1,r ∈ RF , 233
F(A,P ), 61
F (C,M), homology of C with coefficients in

M , 60
F(C,M), 61
FA

for a ring A, 22, 40
for an S-algebra A, 139

face, 366
face map, 320
faithful functor, 39, 326
FAP , 281
Farrell, 25
F/d, over category, 327
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fiberwise integral completion, 112, 112
fibration, 337, 340

of A-modules, 100
of simplicial

(abelian) groups/monoids/rings, 338
of spaces, 337, 341
of topological spaces, 338
theorem, 58
of G-spaces, 339

Φ(C, w), 192
Fiedorowicz, 234
filtered

category, 328
colimit, 328

finite
cohomological dimension, 358
free G-space, 374
space, 328

finitely generated module, 22
finiteness obstruction, 25
first differential, 67
fixed pair, 191
fixed point set, 374
flat Ab-category, 60
Fool’s morning song, 57
Fq, the field with q elements, 29
Franjou, 148
free G-space, 374
free away from the base point, 374
free cyclic object, 203, 229
free nerve, 191
free pair, 190
Freudenthal’s suspension theorem, 369
Friedlander, 35, 92
Frobenius

automorphism, 34
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map, 235, 251
on Witt vectors, 252

fr,s ∈ RF , 233

F ∧G ∈ S∗, smash of two functors, 351
FSP, 83
full functor, 39, 326
function Γ-space, 79
function space
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in G-spaces, 374
in functor categories, 351
of G-spectra, 241
in spaces, 325

function spectrum, 335
of G-spectra, 241

functorial factorization, 340
fundamental cofibration sequence, 236

Gq = G(A,P,X)q, 153
Gabber’s rigidity theorem, 297
Gabriel, 319
Gajda, 234
Galois reduction map, 299
Γo, the category of finite pointed sets, 74
ΓA, 76
ΓA(M,N), morphism object in ΓA, 81
ΓC(c, d), 88
Γg, the mapping class group, 32
Γ-object, 76
ΓS∗, 76
Γ-space, 76
ΓS∗(M,N), morphism object, 79
ΓS∗-category, 87
ΓS∗-natural bimodules, 154
ΓX , 77
Gangl, 35
G-cell, 374
Geisser, 305, 317, 318
general linear group, 18
genuine G-spectrum, 292, 339
geometric fixed points, 295
Gepner, 209
Gersten, 36
GL(A): the general linear group, 18

ĜL(A)
for a simplicial ring A, 117
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for an S-algebra A, 136
GLk(A), 18
gluing lemma, 55
Goerss, 319
good space, 363
Goodwillie, 147, 200, 224, 272

conjecture, 272
graded commutative ring, 36
Grayson, 7, 27, 35, 135, 301
Grothendieck, 15, 26

group, K0, 21
group action, 342
group-like simplicial monoid, 116
groupoid
S-category, 192
pair, 192

groupoid-like
S-category, 192
pair, 192

GS∗, the category of G-spaces, 374
GS∗(X, Y ), 374
G-space, 373
G-spectrum, 241
GSpt, the category of G-spectra, 241
GSpt(X, Y ), the function spectrum, 241

GSpt0(X, Y ), the function space, 241
GX, Kan loop group of X, 330

Ĥ∗(G;M), Tate cohomology of G, 293
H(G, n), 333
Hatcher, 319
Hattori, 147
Hattori-Stallings trace map, 147
Hauptvermutung, 16
H̄C, 102
h-cobordism, 17

space, stable, 137
theorem, 19

Hensel pair, 26, 297
Hesselholt, 4, 7, 49, 147, 225, 226, 251, 278,

288, 295, 296, 300, 304, 305, 309,
313, 317, 318

HH k(A) = HH k(A,A), 150

HH k(A,P ), for k a commutative S-algebra,
157

HH k(A,P ), for k a commutative ring, 150
HH Z(A,P ,X), for A a H̄Z-algebra, 159
HH Z(C, P ), for C a ΓA-category, 169
Higman, 15
Hirschhorn, 319
Hirzebruch, 23, 135
Hk
m(G), 138

HM , the Eilenberg-Mac Lane Γ-space, 76
H̄M , HM with group structure, 77
HnC, the nth homology of a chain complex,

333
Hochschild homology

as a cyclic object, 150
of Ab-categories, 60
of H̄Z-algebras, 159
of ΓA-categories, 169
of k-algebras, 150, 157

Hochschild–Kostant–Rosenberg theorem, 306
holim−→

I
F , 352

Hodkin, 301
hofib: a functorial choice representing the

homotopy fiber, 66, 341
holim←−

I
F , 352

homology
of a category, 60
of a chain complex, 333
of a space, 332

homotopic maps, 324
homotopy, 324

cartesian, 142, 347, 367
category, 341
cocartesian, 142, 367
colimit

enriched, 360
in A, 358
in spaces, 352
in spectra, 360

fiber, 341
of the trace, 315
sequence, 341

fixed point
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space, 361, 375
spectrum, 242

inverse, 350
lemma

for enriched homotopy (co)limits, 361
for homotopy (co)limits, 354

limit
enriched, 360
in A, 358
in spaces, 352
in spectra, 360

orbit
space, 361, 375
spectrum, 242

pullback, 143
pushout, 143

homotopy groups
of Γ-spaces, 91
of simplicial abelian groups, 332
of spaces, 323
of spectra, 335

homotopy nerve
of S-categories, 219
of S∗-categories, 219
of a ΓS∗-category, 219
of a discrete pair, 221
of a pair, 222

hoN
in compactly generated spaces, 215
in pointed spaces, 218
in spaces, 218

hõNC, homotopy nerve of a ΓS∗-category, 219
hõN(C, w), homotopy nerve of a discrete pair,

221
hõN(C, w), homotopy nerve of a pair, 222
hoNW, homotopy nerve of an S-category,

219
hõNC, homotopy nerve of an S∗-category,

219
Hovey, 74, 319
Hsiang, 3, 224, 235, 272, 310
Hurewicz

map, 84, 332

theorem, 143, 372
H̄Z-algebra, 84

I, the category of injective maps of finite
sets, 96

IBN, invariance of basis number, 22
iC, the subcategory of C with only isomor-

phisms, 46, 49
ideal class group, 25
Illusie, 96, 97, 306
image of J , 298
inner automorphism, 342
integral completion, 112
internal morphism object, 377
invariance of basis number, 22
IS∗(F,G), 351
[I,S∗], 351
Iso C, the class of isomorphisms in C, 128
isotropy group, 374
iterated (co)fiber, 367

j∗, free cyclic functor, 203, 229
Jacobson radical, rad(−), 20, 25, 50, 123
Jahren, 7, 137
Jardine, 319
j : ∆ ⊂ Λ, the inclusion, 151, 227
Jibladze, 148
Jones, 25, 224

K(C), the K-theory spectrum of C, 49
K(C, w), 56
K(D), algebraic K-theory category, 193
k+ = {0, 1, . . . , k}, 74
K-theory

assembly map, 310
Novikov conjecture, 310
of F̄p, 34
of Z/pn, 314
of algebraically closed fields, 34
of complex K-theory, 305
of connective complex K-theory, 302
of endomorphisms, 189
of finite fields, 33
of free rings, 36
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of local fields, 304
of pullbacks, 318
of the p-adic integers, 297
of the coordinate axes, 318
of the integers, 35, 301
of the prime field, 33, 297
of truncated polynomial rings, 313

K0(C, E), the Grothendieck group, 21
K1, 18
K2, 28
KAB, 52
K̃AB, 54
Kahn, 35, 300
k-algebra, 87
Kan, 32, 110, 112, 319, 327, 328, 363

complex, 328, 337
fibration, 337
loop group, 44, 330
space, 337

Karoubi, 308
Karoubi–Villamayor K-theory, 119
k-(co)cartesian, 142, 367
Kdeg(A), 119
Kf

0 (A) = K0(FA), 22, 139
Kittang, 7
Klein, 7
Kriz, 73
Krull dimension, 22
Kummer, 25
K(X), complex K-theory, 23

L(C, w), localization of a pair, 192
L-theory assembly map, 310
Λ, Connes’ category, 150, 227
Λ[n], 227
”λ ring, 36
Lannes, 148
Lawson, 74, 290
LD, 264
Lee, 35
left A-module, 85
lens space, 17
levelwise

cofibration
of spectra, 338
of G-spectra, 339

equivalence
of spectra, 48
of spectra, 335

fibration
of G-spectra, 339

model structure
on G-spectra, 339

weak equivalence
of G-spectra, 339

fibration
of spectra, 338

model structure
on spectra, 338

weak equivalence
of spectra, 338

Levine, 35
L : ΓA → A, left adjoint to H̄ , 82
Lichtenbaum-Quillen conjecture, 27, 35, 299
lim←−

I
F and lim−→

I
F , 352

Lindenstrauss, 148
linear

category=Ab-category, 45, 59, 381
in either factor, 170
simplicial object, 349

LM , cofibrant replacement in ΓS∗, 91
local ring, 20, 25
localization

of ΓS∗-categories, 192
of simplicial abelian groups, 365
of spaces and spectra, 364
theorem, 57

Loday, 7, 23, 223
Loday-Quillen/Tsygan theorem, 223
long exact sequence of a fibration, 341
ℓp, Adams summand, 288
Lück, 311
Lunøe-Nilsen, 316
Lunøe-Nilsen, 303
Lydakis, 74, 81, 92
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M∧N , smash in ΓS∗, 78
M∧AN , smash over A, 86
M∧X, 77
M ⊗N , tensor in ΓA, 81
MA, the category of A-modules, 38
MA(M,N), 86
macho prime, 289, 298
Mac Lane, 319

cohomology, 148
Madsen, 3, 4, 7, 32, 148, 224–226, 235, 251,

272, 288, 295, 296, 298–300, 302, 304,
305, 309, 310, 313

Mandell, 74, 209, 305, 317
many others, 35, 288
Map(X, Y ) = S(X, sin |Y |), 325
Map∗(X, Y ) = S∗(X, sin |Y |), 325
mapping class group, 32
MatnA, matrix S-algebra, 85
maximal perfect subgroup, 20
May, 73, 319
Mayer–Vietoris sequence, 27
Mazur, 19
McClure, 213, 291
Milnor, 16, 28, 29, 31, 289

conjecture, 300, 315
Mitchell, 35
Mk, the category of k-modules, 87
Mk(A), ring of k×k-matrices with entries in

A, 18
M̂nA, 136
model category structure

on Γ-spaces
pointwise, 93
stable, 93

on G-spaces, 339
on G-spectra

levelwise, 339
stable, 339

on functor categories, 338
on simplicial

abelian groups, 338
groups, 338
monoids, 338

rings, 338
on spaces, 337
on spectra

stable, 338
levelwise, 338

on topological spaces, 337
module

over a V -category, 382, 382
over an S-algebra, 85

moduli space of Riemann surfaces, 32
monad, 322
monoid, 18

in a monoidal category, 83, 379
pointed, 311

monoidal
V -category, 382
category, 377

monoidal functor, 378
strict, 378
strong, 378
symmetric, 379

Moore
complex, 334
space, 336
spectrum, 336

Moore singular simplex, 214
Morava K-theory, 300
Morita invariance, 163
motivic cohomology, 299
µl ∼= Cl, cyclic groups, 17
Mumford conjecture, 32

[n] = {0 < 1 < 2 < · · · < n}, 319
naïve pre-G-spectrum, 241, 339
Nakayama’s lemma, 123
natural module, 383
NC, 165
N(C, i), 183
n-connected

map of spaces, 64, 323
space, 64, 323
spectrum, 336

n-cube, 142, 366
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negative
(b, B)-bicomplex, 259
cyclic homology, 224
homology, 259

nerve, 46
of a category, 325
of a pair, 191
with respect to the isomorphisms, 183

nerveless trace, 186
Nfree, free nerve, 191
nilpotent

action, 115
fibration, 115
group, 115
map, 115

norm map, 245
norm residue isomorphism theorem, 301
normal pair, 209
normal trace, 210
normalized chain complex, 333
Novikov conjecture, 224, 310
n-reduced space, 323
number field, 20

obC, the class of objects in C, 44
obstruction to a too naïve generalization, 152
ω(0, X, 0), 280
ωC, a choice of weak equivalences in C, 106
Ω-spectrum, 335
Ωx, for x ∈ I, 97
one-sided bar construction, 343
opposite

S-algebra, Ao, 84
category Co, 320

orbit set, 374
Ord, the category of finite ordered sets, 142
Ordn, 367
Østvær, 8, 301
over category, 327

P, the non-negative reals, 213
P, the category of pairs, 190
P, 366

P (x1, x2, . . . ) = Fp[x1, x2, . . . ], 289
PA, category of finitely generated projective

modules, 22, 39
partial integral completion, 30, 113
path

category, PD, 71
object, 330

PD, path category, 71
perfect

group, 20
ring, 36

periodic
(b, B)-bicomplex, 259
homology, 259

Pfix, the category of fixed pairs, 191
Pfree, the category of free pairs, 190
PG, maximal perfect subgroup of G, 20, 117
φ : Pfree → P, 191
φwC, 191
π∗E, homotopy groups of the spectrum E,

335
π∗-Kan condition, 346
π∗M , homotopy groups of M ∈ A, 332
π∗M , homotopy groups of the Γ-space M ,

91
π∗X, homotopy groups of the space X, 323
Pic(A), 25
Picard group, 25
P i≤j
n Y , Moore singular simplices in Y , 214

Pirashvili, 148, 161, 172
plus construction, 30, 113

of simplicial space, 114
Pn, 366
pointed

category, 38
homotopy, 324
monoid, 311
monoid ring, 311
set, 322
space, 322

pointwise
cofibration, 93
equivalence of Γ-spaces, 93
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fibration, 93
structure on ΓS∗, 93
cofibration

in a functor categories, 338
fibration

in a functor categories, 338
model structure

on functor categories, 338
weak equivalence

in a functor categories, 338
positive (b, B)-bicomplex, 259
primitive, 290
prismatic subdivision, 213
profinite completion of a spectrum, 364
projective module, 22
proper

model category, 341
morphism, 26

PS, 366
p-typical curves, 309
pullback, 367
pushout, 367

Q-construction, 29
QM , a fibrant replacement functor in ΓS∗,

95
quasi-perfect, 20
quasi-projective variety, 26
Quillen, 4, 29–31, 33, 36, 37, 42, 43, 94, 223,

317, 319
Quillen-Suslin theorem, 308
Quinn, 310
quite special, 105
qX : X → X+, 113

R, restriction map, 235
R = fr,1 ∈ RF , 233
R : ΓS∗ → S∗, evaluation on 1+, 77
R0, stabilization of H̄Z-modules, 100, 141
rad(B), the Jacobson radical, 20
radical extension, 50, 123
rational space or spectrum, 364
RC, the underlying S∗-category, 87

R-completion, 363
realization, 323
redshift conjecture, 301
reduced, 267

bimodule, 120
homology, 332
space, 323, 330

regulator, 27
Reich, 311
relative H̄-construction, 127
resolution

associated with an adjoint pair, 321
theorem, 58

resolving complex, 125
restriction

map, 232, 235
on Witt vectors, 252

RF and RFp, 233
Richter, 7
Riemann–Roch theorem, 16, 26
right A-module, 86
ring functor, 167
ring of integers in a number field, 20, 25
ringoids, 59
rings with many objects, 59
Rognes, 4, 7, 35, 135, 137, 225, 226, 288,

291, 295, 296, 299, 300, 302, 303,
305, 311, 315, 316

Rost, 27, 35, 301

S, the sphere spectrum in ΓS∗, 77
S, the category of simplicial sets, 322
S, the sphere spectrum, 335
S∗(X,M), 77
S(X, Y ), the unpointed function space, 325
S∗, the category of pointed spaces, 322
S∗(X, Y ), the pointed function space, 325
S1 = ∆[1]/∂∆[1], 157
S1 = sin|S1|, 157
S-algebra, 83
saturation axiom, 57
SC, Waldhausen’s S-construction, 43
sC, the category of simplicial C-objects, 320
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scaled simplex, 213
Schlichtkrull, 32, 316
Schwänzl, 81
Schwartz, 148
Schwede, 7, 92, 261
S-cube, 366
sda, 230
Segal, 6, 37, 42, 43, 73, 75, 77, 102, 106, 110,

126, 127, 130, 132, 134, 139
conjecture, 302

Segal–tom Dieck splitting, 235
Serre, 26

fibrations, 338
Serre’s problem, 308
shear map, 376
Shipley, 74, 261
shuffle isomorphism, 152
Shukla homology, 150
si, codegeneracy map, 320
si, degeneracy map, 320
Σ∞

of Γ-spaces, 182
of spectra, 186

Σ∞, the infinite symmetric group, 32
Σn, the symmetric group, 32
simplicial

functor, 91
homotopy, 327
identity, 320
object, 320
replacement, for homotopy colimits, 355
set, 322

simplicial homotopy, 324
simplicially homotopic maps, 324
singular

complex, sinY , 322
sinY , singular complex, 322
skeleton, 328
S[M ], spherical monoid algebra, 84
Smale, 19
small object argument, 339
smash product

of Γ-spaces, 78

of pointed spaces, 322
Smith, 74, 213
smooth Whitehead spectrum, 315
Snaith, 300
SnC, 43
Soulé, 35, 272
space=simplicial set, 322
spaces under BA5, 32
Spanier, 319
special

Γ-category, 105
Γ-space, 78
M ∈ obΓA, 82

Spt, the category of spectra, 95
spectrum, 48, 334

associated to a Γ-space, 91, 95
homology, 290
of simplicial abelian groups, 261
with G-action, 339

sphere spectrum, 77, 335
spherical

group ring, 126
monoid algebra, 84

Split, the category of split radical extensions,
54

split
cofibrations, 38
exact category, 22, 45, 185
radical extension, 50
square zero extension, 275

splittable up to weak equivalences, 126
Spt, the category of spectra, 334
Spt(X, Y ), the function spectrum, 335
SRF , 234
St(A), the Steinberg group, 29
stable

category, 334
cofibration, 93

of G-spectra, 339
of spectra, 338

equivalence
of S-algebras, 99
of Γ-spaces, 93
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of Γ× Γ-spaces, 182
of ΓS∗-categories, 101
of spectra, 48, 335, 338
of G-spectra, 339

fibration, 93
of G-spectra, 339
of spectra, 338

K-theory, 67
model structure

on G-spectra, 339
on spectra, 338

structure on ΓS∗, 93
weak equivalence

of spectra, 338
stably

free module, 22
isomorphic modules, 22

Staffeldt, 272, 291
Stallings, 19, 147
standard n-simplex

topological, 321
simplicial, 324

Stein relativization, 125
Steinberg

group, 29
relations, 29

Steinitz, 16
strictly homotopic maps, 324
strong symmetric monoidal functor, 141
strongly (co)cartesian, 369
strongly cocartesian cube, 54
structure

isomorphism for monoidal categories, 102
isomorphisms, for monoidal categories,

377
maps, for A-modules, 86
maps, for monoidal functors, 81
maps, for spectra, 334

subcube, 366
Suslin, 27, 35, 300, 301, 317
S(V ), 256
SV , 256
Swan, 28, 29, 135

Swan’s theorem, 23
S[X], the S-module generated by X, 77
Sx, for x ∈ I, 97
symmetric group, 32
symmetric monoid, 75

in a symmetric monoidal category, 379
symmetric monoidal

closed category, 377
ΓS∗-category, 104
(closed) V -category, 382
category, 79, 377

symmetric spectra, 290
Szczarba, 35

T = |S1|, the circle group, 157
T0M , monoidal fibrant replacement in ΓS∗,

97
T 〈a〉(A,X), 235
T 〈a〉(A,X), 235
Tabuada, 209
T(A,P ,X), THH of S-construction, 188
T (A,P ,X), the THH spectrum, 156
Tate

cohomology, 293
spectral sequence, 258, 294
spectrum, 258, 292

TC of
finite W (k)-algebras, 226
perfect fields, 226
polynomial algebras, 226
schemes, 317
spherical group rings, 314
the Adams summand, 226, 296
the integers, 225, 296, 298
the prime field, 296, 298
truncated polynomial algebras, 226, 313
discrete valuation fields, 226

TC(−), 254
TC(A,X; p), 247
TC(A,X; p), 247
TC(C,X; p), 247
TC(C,X; p), 248
T(C,M,X), THH of S-construction, 188
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T (C, P ,X), 167
tensor product of enriched categories, 380
tensored V -category, 380
TF (A,X; p), 249
Theorem B, 357
THH of

the Adams summand, 292
the integers, 292
the prime field, 292
Thom spectra, 316

THH of
the integers, 148
the prime field, 148

THH (A,P ), the THH Γ-space, 156
THH (A,P )q, 154
THH (A,P ,X) the THH space, 156
THH (A,P )(X)q, 153
THH (C, P ), 167
THH (C, P ,X), 167
THH (C,X), 167
THH (E , P ) = THH (Ẽ , P̃ ), 169
THH (j)(A,P ;X), 275
THH (j)(A,P ,X), 202
Thomason, 35, 302
Thurston, 32
Tietze, 16
Tillmann, 32
tiny and irrelevant error, 129
T(j)(A,P ), 205
T (j)(A,P ,X), 202
Tm,nq Z, 259
TnC, upper triangular matrices on C, 45, 185
Todd class, 26
Top, the category of topological spaces, 322
topological Hochschild

Γ-space, 156
space, 156
spectrum, 156

topological K-theory, 135
topological space, 322
total space of cosimplicial space, 331
TR(A,X; p), 249
trace

for S-algebras, 199
of symmetric monoidal ΓS∗-categories, 195
normal, 210

triple, 322
truncated complex projective space, 315
Tsalidis, 225
Tsalidis’ theorem, 296
Tsygan, 223
T-Top∗, 228
twisted arrow category, 211
twisted product category, 69
two-out-of-three property, 56, 340

U0C, underlying category, 380
under category, 327
uniform choice of weak equivalences, ωC, 106
unit of adjunction, 321, 381
universal central extension, 29
universal cover, 110
upper triangular

matrices, 45, 185
matrix ΓS∗-category, 174

V (0) = S/p, 290
V (1), the Smith-Toda spectrum , 291
Vandiver’s conjecture, 34
vanishing of the mystery homology, 148
V (A,P ), 152
Varisco, 311
V -category

with sum, 380
V -category of functors, 385
V (C, P ), 167
Vect(X), 23
Verschiebung, 306

on Witt vectors, 252
very special Γ-space, 78
V -faithful, 381
V -full, 381
V -functor, 381
Villamayor, 308
V (j)(A,P ), 275
V (j)(A,P ), 202
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V -left adjoint, 381
V -natural

bimodule, 383
equivalence, 381
family, 384
isomorphism, 381
module, 383
transformation, 381

Voevodsky, 27, 35, 300, 301
Vogt, 81
V -right adjoint, 381

W (A), p-typical Witt ring of A, 225, 251
Waldhausen, 7, 19, 25, 29, 36–38, 42, 43, 51,

55, 106, 117, 119, 126, 129, 137, 138,
147, 148, 161, 172, 187, 200, 300–
302, 315

category, 56
Waldhausen’s

S-construction, 43
algebraic K-theory of spaces, 138

Wall, 25
weak equivalence, 337, 340

of free pairs, 190
of simplicial

(abelian) groups/monoids/rings, 338
of S-categories, 101
of G-spaces, 339

weak map, 66
weak multiplication, 350
weak trace

of a pair, 197
of a symmetric monoidal Ab-category, 198
of a symmetric monoidal ΓS∗-category,

197
weak transformation, 164, 197
wedge, 322
Weibel, 35, 300, 301, 308
Weiss, 32
Weyl, 3
WG, 330
Wh(π), the Whitehead group, 18
WhDiff , smooth Whitehead spectrum, 315

Whitehead, 15
group Wh(π), 18
lemma, 21
space, 137
sum, 85
torsion, 19

Wiles, 35
Wn(A), truncated p-typical Witt ring of A,

251

|X|, the realization of X, 323
|X|Λ, 228
|x|, for x ∈ I, 97
XhG, homotopy fixed point spectrum, 242
XhG, homotopy orbit spectrum, 242
X+, Quillen’s plus of X, 113
X+ = X

∐
∗, 322

X∧Y = X × Y/X ∨ Y , 322
X tG, Tate spectrum, 258, 292
X ∨ Y = X

∐
∗ Y , 322

Y 〈a〉 = |(sdaY )Ca |, 233
Y X = S∗(X, Y ), 325

Z[X], the free abelian group on the set X,
112, 332

Ż[X], fiberwise integral completion, 112
Z̃[X], the free abelian group on the pointed

set X, 112, 332
zeta function, 27, 35, 299
Z∞X=integral completion of X, 112
Zisman, 319
ZnC, the group of cycles, 333
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