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Abstract. We show that the map π∗MString → π∗tmf induced by the Ando-Hopkins-Rezk ori-

entation is surjective. This proves an unpublished claim of Hopkins and Mahowald. We do so by

constructing an E1-ring B and a map B → MString such that the composite B → MString → tmf is
surjective on homotopy. Applications to differential topology, and in particular to Hirzebruch’s prize

question, are discussed.

1. Introduction

The goal of this paper is to show the following result.

Theorem 1.1. The map π∗MString → π∗tmf induced by the Ando-Hopkins-Rezk orientation is sur-
jective.

This integral result was originally stated as [Hop02, Theorem 6.25], but, to the best of our knowledge,
no proof has appeared in the literature. In [HM02], Hopkins and Mahowald give a proof sketch of
Theorem 1.1 for elements of π∗tmf of Adams-Novikov filtration 0.

To prove Theorem 1.1, we construct an E1-ring B with an E1-map B → MString. The Ando-
Hopkins-Rezk orientation [AHR10] MString → tmf is an E∞-map, and so the composite B →
MString→ tmf is an E1-map. We then prove the following stronger statement:

Theorem 1.2. The map π∗B → π∗tmf is surjective.

The map B → tmf factors through MString, so Theorem 1.1 follows. In Section 3, we prove Theorem
1.2 after localizing at 3 (as Theorem 3.1). In Section 4, we prove Theorem 1.2 after localizing at 2
(as Theorem 4.1); together, these yield Theorem 1.1 by Corollary 2.6. Finally, in Section 5, we study
some applications of Theorem 1.1. In particular, we discuss Hirzebruch’s prize question [HBJ92, Page
86] along the lines of [Hop02, Corollary 6.26].

The analogue of Theorem 1.1 for bo (namely, the statement that the map π∗MSpin→ π∗bo induced
by the Atiyah-Bott-Shapiro orientation is surjective) is classical [Mil63]. This surjectivity result for
spin cobordism was considerably strengthened by Anderson, Brown, and Peterson in [ABP67]: they
showed that the Atiyah-Bott-Shapiro orientation MSpin→ bo in fact admits a spectrum-level splitting.
It is a folklore conjecture that the same is true of the Ando-Hopkins-Rezk orientation MString→ tmf,
and there have been multiple investigations in this direction (see, for instance, [Lau04, LS19]). In
forthcoming work [Dev19], we will show that an old conjecture in unstable homotopy theory related
to the Cohen-Moore-Neisendorfer theorem, coupled with a conjecture about the centrality of a certain
element of π13(B), implies that the Ando-Hopkins-Rezk orientation admits a spectrum level splitting.
This provides another proof of Theorem 1.1, assuming the truth of these conjectures.

Acknowledgements. I’m extremely grateful to Mark Behrens and Peter May for agreeing to work
with me this summer and for being fantastic advisors, as well as for arranging my stay at UChicago.
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Thanks also to Peter May, Haynes Miller, Zhouli Xu, and in particular Jeremy Hahn for providing
many helpful comments, and to Andrew Senger for pointing out the reference [HM02] after this paper
was written.

1

ar
X

iv
:1

91
1.

10
53

4v
1 

 [
m

at
h.

A
T

] 
 2

4 
N

ov
 2

01
9



2. Defining B

In this section, we will define the E1-ring B mentioned in the introduction and study some of its
elementary properties. It is a Thom spectrum, with mod 2 homology given by F2[ζ8

1 , ζ
4
2 ]. The spectrum

B appeared under the name X in [HM02, Section 10]. We will work integrally (i.e., without inverting
any primes) unless explicitly mentioned otherwise.

Construction 2.1. There is a fiber sequence

S9 = O(10)/O(9)→ BO(9)→ BO(10).

There is an element f ∈ π12O(10) ∼= Z/12, which is sent to 2ν ∈ π12(S9) ∼= Z/24 under the boundary
homomorphism in the long exact sequence on homotopy. Define a space BN as the homotopy pullback

S9 // BN //

��

S13

f

��
S9 // BO(9) // BO(10).

Let N be the loop space ΩBN . There is a map N → BString given by the map of fiber sequences

N //

��

ΩS13 //

��

S9

��
BString // ∗ // B2String,

whose Thom spectrum we will denote by B.

Note that B is defined integrally, and that it admits an E1-map B → MString obtained by Thomi-
fying the map N → BString.

Proposition 2.2. The BP∗-algebra BP∗(B) is isomorphic to a polynomial algebra BP∗[b4, y6], where
|b4| = 8 and |y6| = 12. There is a map B(p) → BP. On BP-homology, the elements b4 and y6 map to

t41 and t22 mod decomposables at p = 2, and y6 maps to t31 mod decomposables at p = 3.

Proof. There is a fiber sequence

(1) ΩS9 → N → ΩS13.

The J-homomorphism BString → BGL1(S) gives a map N → BString → BGL1(S). The composite
with the map ΩS9 → N gives a map ΩS9 → BGL1(S). This is the extension of the map S8 → BGL1(S)
detecting σ ∈ π7(S) along S8 → ΩS9. By one of the main theorems of [AB19], we find that the Thom
spectrum of the map ΩS9 → BGL1(S) is the E1-quotient S//σ of the sphere spectrum by σ.

The fiber sequence (1) exhibits B as the Thom spectrum of a map ΩS13 → BGL1(S//σ). The
induced map S12 → BGL1(S//σ) detects an element ν̃ ∈ π11(S//σ). This element may be described
as follows. The relation σν = 0 in π∗S defines a lift of ν ∈ π3(S) to π11 of the 15-skeleton Cσ of
S//σ; this is the element ν̃. Since BP is concentrated in even degrees, the element σ vanishes in π∗BP.
Consequently, ν̃ is well-defined, and it, too vanishes in π∗BP. The universal property of Thom spectra
from [AB19] then supplies an E1-map B → BP.

In particular, the Thom isomorphism says that the BP-homology of B is abstractly isomorphic
as an algebra to the BP-homology of N . This may in turn be computed by the Atiyah-Hirzebruch
spectral sequence. However, the fiber sequence (1) implies that the homology of N is concentrated in
even degrees. Since π∗BP is also concentrated in even degrees, this implies that the Atiyah-Hirzebruch
spectral sequence calculating BP∗(B) collapses, and we find that BP∗(B) ∼= BP∗[b4, y6], as desired.

The map B → BP induces a map BP∗(B) → BP∗(BP) ∼= BP∗[t1, t2, · · · ]. The element ν̃ is
detected by [t22] in the 2-local Adams-Novikov spectral sequence for S//σ, and by [t31] in the 3-local
Adams-Novikov spectral sequence for S//σ. The element σ ∈ π7(S) is detected by [t41] in the 2-local
Adams-Novikov spectral sequence for the sphere. This yields the final sentence of the proposition. �
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Remark 2.3. Proposition 2.2 implies that the mod 2 homology of B is isomorphic to F2[ζ8
1 , ζ

4
2 ].

Remark 2.4. The composite B → MString → tmf is an E1-ring map (since the first map is an
E1-ring map by construction, and the second is an E∞-ring map by [AHR10]), and it is an equivalence
in dimensions ≤ 12. This follows from Proposition 2.2.

Proposition 2.5. The map B → tmf induces a surjection on homotopy after inverting 6.

Proof. By [Bau08, Proposition 4.4], π∗tmf[1/6] is a polynomial generator on two generators c4 and
c6, in degrees 8 and 12, respectively. Since the map B[1/6] → tmf[1/6] is an E1-map, the map
π∗B[1/6] → π∗tmf[1/6] is a ring map. It therefore suffices to lift the elements c4 and c6 to π∗B[1/6].
This follows from Remark 2.4. �

As an immediate consequence, we have:

Corollary 2.6. If the maps π∗B(3) → π∗tmf(3) and π∗B(2) → π∗tmf(2) are surjective, then Theorem
1.2 is true.

Remark 2.7. In [Dev19], we show that B is in many ways analogous to tmf. For instance, it satisfies
an analogue of the 2-local Wood equivalence tmf(2) ∧DA1 ' tmf1(3)(2) from [Mat16], where DA1 is a
certain 8-cell complex: the spectrum B(2) ∧DA1 is a summand of Ravenel’s Thom spectrum X(4)(2).
(More precisely, it is the summand T (2) of X(4)(2) obtained from the Quillen idempotent, as studied
in [Rav86, Chapter 6.5].)

3. Theorem 1.2 after localizing at 3

In Corollary 2.6, we reduced Theorem 1.2 to showing that the maps π∗B(3) → π∗tmf(3) and π∗B(2) →
π∗tmf(2) are surjective. Our goal in this section is to study the 3-local case. We shall prove:

Theorem 3.1. The map π∗B(3) → π∗tmf(3) is surjective on homotopy.

Convention 3.2. We shall localize at the prime 3 for the remainder of this section.

3.1. The Adams-Novikov spectral sequence for tmf. In this section, we review the Adams-
Novikov spectral sequence for tmf at p = 3; as mentioned in Convention 3.2, we shall 3-localize
everywhere. The following result is well-known, and is proved in [Bau08]:

Theorem 3.3. The E2-page of the descent spectral sequence (isomorphic to the Adams-Novikov spectral
sequence) for tmf is

H∗(Mell;ω
⊗2∗) ∼= Z3[α, β, c4, c6,∆

±1]/I,

where I is the ideal generated by the relations

3α = 3β = 0, α2 = 0, αc4 = βc4 = αc6 = βc6 = 0, c34 − c36 = 1728∆.

Moreover, α and β are in the image of the map of spectral sequences from the Adams-Novikov spectral
sequence of the sphere to that of tmf, with preimages α1 and β1.

The differentials are all deduced from Toda’s relation α1β
3
1 = 0 in π∗S. There is a d5-differential

d5(β3/3) = α1β
3
1 (the “Toda differential”), where β3/3 lives in bidegree (t − s, s) = (34, 2); see, e.g.,

[Rav86, Theorem 4.4.22]. Under the E∞-ring map S→ tmf, this pushes forward to the same differential
in the Adams-Novikov spectral sequence for tmf. Then:

Lemma 3.4. There is a relation β3/3 = ∆β in the E2-page of the Adams-Novikov spectral sequence
for tmf.

Proof. We explain how to deduce this from the literature. Multiplication by α is an isomorphism in
the Adams-Novikov spectral sequence for both the sphere and tmf in stem 34, so it suffices to check
that αβ3/3 = ∆αβ. The class α1β3/3 (resp. ∆αβ) is a permanent cycle in the Adams-Novikov spectral
sequence of the sphere (resp. tmf) by the discussion on [Rav86, Page 137]. It is known (see [DFHH14,
Chapter 13, page 12]) that ∆αβ detects α1β3/3 in homotopy. To conclude that they are the same on
the E2-page of the Adams-Novikov spectral sequence for tmf, it suffices to note that α1β3/3 maps to
(a unit multiple of) ∆αβ, as desired. �

3



It follows by naturality that there is a d5-differential d5(∆β) = αβ3, which gives (by β-linearity):

Proposition 3.5. In the Adams-Novikov spectral sequence for tmf, there is a d5-differential d5(∆) =
αβ2.

Since 3α = 0 in the Adams-Novikov spectral sequence of tmf, we must have d5(3∆) = 3αβ2 = 0.
There are no other possibilities for differentials on 3∆, so it is a permanent cycle. Proposition 3.5
shows that there is a Toda bracket 3∆ ∈ 〈3, α, β2〉 in π∗tmf. This can be expressed by the claim that
3∆ can be expressed a composite

S24 → Σ20Cα1
β2

−→ tmf,

where the first map is of degree 3 on the top cell.
Let X3 = S0 ∪α1

e4 ∪2α1
e8. This is the 8-skeleton of the free E1-ring S//α1 with a nullhomotopy of

α1. Using the filtered E1-structure on S//α1, we obtain a factorization

β4 : Σ40Cα1 ∧ Cα1 → Σ40X3 → tmf.

By ∆-linearity, there is also a d5-differential d5(∆2) = αβ2∆, so 3∆2 lives in the E6-page. There are no
further possibilities for differentials, so 3∆2 lives in π∗tmf. Again, this shows that 3∆2 ∈ 〈3,∆α, β2〉.
Finally, we turn to ∆3. We have d5(∆3) = 3∆2αβ2, so we find that ∆3 ∈ 〈3,∆2α, β2〉. We collect our
conclusions in the following:

Corollary 3.6. The following is true in π∗tmf:

• 3∆ ∈ 〈3, α, β2〉;
• 3∆2 ∈ 〈3,∆α, β2〉
• ∆3 ∈ 〈3,∆2α, β2〉.

Remark 3.7. The indeterminacy of the above Toda brackets in π∗tmf(3) are 3Z(3){3∆}, 3Z(3){3∆2},
and 3Z(3){∆3}, respectively.

3.2. The Adams-Novikov spectral sequence for B. In this section, we analyze the ring map
B → tmf, and show that the generators of π∗tmf(3) lift to π∗B(3). By Corollary 2.6, this implies
Theorem 3.1. We begin by showing:

Proposition 3.8. There is an element in the E2-page of the Adams-Novikov spectral sequence for B
which lifts the element ∆ in the E2-page of the Adams-Novikov spectral sequence for tmf.

Proof. To prove the proposition, we begin by recalling the definition of a representative for the element
∆ in the cobar complex computing the E2-page of the Adams-Novikov spectral sequence for tmf. The
Hopf algebroid (BP∗tmf,BP∗BP⊗BP∗ BP∗tmf) is isomorphic to the elliptic curve Hopf algebroid (A,Γ)
presenting the moduli stack of cubic curves by [Mat16, Corollary 5.3]. Recall from [Bau08, Page 16]
(or [Sil86, Section III.1]) that for an elliptic curve in Weierstrass form

(2) y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

we can define quantities

b2 = a2
1 + 4a2, b4 = 2a4 + a1a3, b6 = a2

3 + 4a6, b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4,

which allows us to define elements

c4 = b22 − 24b4, c6 = −b32 + 36b2b4 − 216b6.

The discriminant is
∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6.

Now, it is known that upon inverting 2, every elliptic curve in Weierstrass form (2) is isomorphic to
one of the form

(3) y2 = x3 + a2x
2 + a4x.

It follows that the elliptic curve Hopf algebroid is isomorphic to a Hopf algebroid of the form (A′,Γ′) =
(Z[1/2][a2, a4], A′[r]/(r3 + a2r

2 + a4r)), where I is some ideal consisting of complicated relations, and
4



Figure 1. Cell structure of the 20-skeleton of B; the bottom cell (in dimension 0) is
on the left; straight lines are α1, and curved lines correspond to α2 and α4, in order
of increasing length.

where the Hopf algebroid structure can be written down explicitly (as in [Bau08, Section 3]). A
straightforward calculation proves that the discriminant is then

(4) ∆ = a2
2b

2
4 − 16b34.

Turning to B, recall that BP∗B ∼= BP∗[b4, y6]. The map (BP∗B,BP∗BP ⊗BP∗ BP∗B) → (A′,Γ′) of
Hopf algebroids induced by the map B → tmf sends b4 to b4 and y6 to a2b4, and tells us that the
discriminant is represented by

∆ = [y2
6 − 16b34] ∈ Ext(BP∗B).

Using Sage to calculate the 3-series of the formal group law of the elliptic curve (3), one finds that v1

is a2 up to a 3-adic unit. We conclude that

c4 = 4v2
1 − 24b4, c6 = −4v3

1 − 144y6.

This completes the proof of Proposition 3.8. �

By Remark 2.4, the elements c4, c6 ∈ π∗tmf lift to π∗B. In terms of Toda brackets, they are given
by 〈3, α2, 1B〉 and 〈3, α1, α2, 1B〉, respectively. The key to lifting the other elements of π∗tmf is the
following:

Theorem 3.9. There is a differential d5(∆) = αβ2 in the Adams-Novikov spectral sequence for B.
Moreover, αβ2 vanishes in π∗B, and 3∆ is a permanent cycle.

Proof. The element αβ2 is detected in filtration 5 in the Adams-Novikov spectral sequence for the
sphere. We first check that there is no class above filtration 5 in stem 23 the Adams-Novikov spectral
sequence for B. In Figure 1, we depict the 20-skeleton of B. Now, αβ2 is the first class in filtration 5 in
the Adams-Novikov spectral sequence for the sphere, so there are no classes above filtration 5 in stem
23 in the algebraic Atiyah-Hirzebruch spectral sequence (converging to the Adams-Novikov spectral
sequence of B). Consequently, there are no classes above filtration 5 in stem 23 of the Adams-Novikov
spectral sequence for B. It follows that αβ2 must be detected in filtration 5 in the Adams-Novikov
spectral sequence for B. Moreover, if the d5-differential on ∆ exists, then it is the longest one (and
hence 3∆ is a permanent cycle).

We now prove the d5-differential. We claim that there is no nonzero target for a dr-differential on
∆ for 2 ≤ r ≤ 4. Indeed, such a class must live in bidegree (t− s, s) = (23, r), so we only need to check
that there are no classes in that bidegree. Such a class can only possibly come from those permanent
cycles in the algebraic Atiyah-Hirzebruch spectral sequence which are supported on stems 23− 8 = 15,
23 − 12 = 11, 23 − 16 = 7, or 23 − 20 = 3 of the Adams-Novikov spectral sequence of the sphere.
The only classes in these stems are in Adams-Novikov filtration 1, so cannot possibly contribute to a
class that lives in bidegree (t − s, s) = (23, r) with 2 ≤ r ≤ 4. Therefore, the first possibility for a
differential on ∆ is the d5-differential d5(∆) = αβ2. The existence of this differential is forced by the
same differential in the Adams-Novikov spectral sequence for tmf.

Therefore, αβ2 vanishes in the E∞-page of the ANSS for B; there may, however, be a multiplicative
extension causing αβ2 to be nonzero in π∗B. But multiplicative extensions have to jump filtration, and
we established that there are no classes above filtration 5 in stem 23 of the Adams-Novikov spectral
sequence for B. Therefore, αβ2 = 0 in π∗B, as desired.

�
5



Corollary 3.10. The elements 3∆, 3∆2,∆3 ∈ π∗tmf lift to π∗B.

Proof. Theorem 3.9 verifies that 3∆ lifts to π∗B and that the brackets in Corollary 3.6 are well-
defined in π∗B. This implies that 3∆2 and ∆3 in π∗tmf lift to π∗B up to indeterminacy. Remark 3.7
tells us the indeterminacy of the brackets in Corollary 3.6. If 3∆2 + 3n[3∆2] = 3(3n + 1)∆2 (resp.
∆3 + 3n∆3 = (3n+ 1)∆3) lifts for some nonzero n ∈ Z(3), then so does 3∆2 (resp. ∆3) since 3n+ 1 is
a 3-local unit. �

The elements α, β, c4, c6, 3∆, 3∆2, ∆3, and b = 〈β2, α, α〉 (no indeterminacy) generate the homotopy
of tmf. Moreover, αβ2 = 0 in π∗B and α2 = 0 in the sphere, so b admits a lift to π∗B. Therefore, all
generators of π∗tmf admit lifts to π∗B; this yields Theorem 3.1.

4. Theorem 1.2 after localizing at 2

Our goal in this section is to prove:

Theorem 4.1. The map π∗B(2) → π∗tmf(2) is surjective on homotopy.

Together with Theorem 3.1 and Corollary 2.6, this proves Theorem 1.2.

Convention 4.2. We shall localize at 2 throughout this section, unless explicitly mentioned otherwise.

4.1. The Adams-Novikov spectral sequence for tmf. In this section, we review the Adams-
Novikov spectral sequence for tmf at p = 2. The following result is well-known, and is proved in
[Bau08] (see also [Beh20, Proposition 1.4.9]):

Theorem 4.3. The E2-page of the descent spectral sequence (isomorphic to the Adams-Novikov spectral
sequence) for tmf is

H∗(Mell;ω
2∗) ∼= Z(2)[c4, c6,∆

±1, η, a2
1η, ν, ε, κ, κ]/I,

where I is the ideal generated by the relations

2η, ην, 4ν, 2ν2, ν3 = ηε,

2ε, νε, ε2, 2a2
1η, νa

2
1η, εa

2
1η, (a

2
1η)2 = c4η

2,

2κ, η2κ, ν2κ = 4κ, εκ, κ2, κa2
1η,

νc4, νc6, εc4, εc6, a
2
1ηc4 = ηc6, a

2
1ηc6 = ηc24,

κc4, κc6, κc4 = η4∆, κc6 = η2(a2
1η)∆, 1728∆ = c34 − c26.

Remark 4.4. The elements c4 and 2c6 are permanent cycles. There is a map tmf → tmf1(3), where
the target is complex oriented. The elements c4 and 2c6 are nontrivial in π∗tmf1(3). In fact, the
image of the map tmf → tmf1(3) consists of the elements c4, 2c6, c4∆k, and 2c6∆k for k ≥ 1, so these
elements must be permanent cycles in the Adams-Novikov spectral sequence for tmf.

The ANSS for tmf is essentially determined from Toda’s relation κν3 = 0 in π29S. We will explain
this statement in the rest of this section. The relation κν3 = 0 ∈ π29S is enforced by the differential
d5(β6/2) = κν3 in the ANSS for the sphere (see [Isa14]). Then:

Lemma 4.5. There is a relation β6/2 = ∆ν2 in the E2-page of the Adams-Novikov spectral sequence
for tmf.

This gives the differential d5(∆ν2) = κν3 in the ANSS for tmf. By ν-linearity, we have d5(∆) = κν.
Since 4ν = 0 in the E2-page of the ANSS, the class 4∆ survives. The relation 4ν = η3 forces a
d7-differential on 4∆. In summary:

Theorem 4.6. There are differentials d5(∆) = κν and d7(4∆) = κη3 in the ANSS for tmf, and
κν = 0 in π∗tmf.

6



In particular, since 2η = 0 in the ANSS, 8∆ survives to the E8-page. There are no more differentials,
so it is a permanent cycle. Theorem 4.6 then shows that there is a Toda bracket 8∆ ∈ 〈8, ν, κ〉 in π∗tmf;
this bracket is well-defined since 8ν = 0 in π∗S. This can be expressed by the claim that 8∆ may be
expressed as a composite

S24 → Σ20Cν
κ−→ tmf,

where the first map is degree 8 on the top cell. Similarly, ∆η ∈ 〈η, ν, κ〉 in π∗tmf; this bracket is
well-defined since ην = 0 in π∗S. Arguing in the same way, and using the spherical relations 2ν2 = 0,
εν = 0, we find that:

Proposition 4.7. The following Toda brackets exist in π∗tmf:

(a) 8∆ ∈ 〈8, ν, κ〉;
(b) ∆η = 〈η, ν, κ〉;
(c) 2∆ν = 〈2ν, ν, κ〉;
(d) ∆ε = 〈ε, ν, κ〉;
(e) ∆ηκ = 〈ηκ, ν, κ〉;
(f) ∆ηκ = 〈ηκ, ν, κ〉.

None of these except the first have any indeterminacy.

To describe the other elements in π∗tmf, we adopt a slightly different approach from Section 3.1
— we will not bother writing down all the generators of π∗tmf as Toda brackets of spherical elements
unless it is convenient/necessary to do so. This is only to streamline exposition, although one can of
course work this out at one’s own leisure; see Remark 4.11.

The d5-differential on ∆ forces a differential d5(∆k) = k∆k−1κν. The d7-differential d7(∆4) =
∆3κη3 now implies that the classes {∆8k, 2∆8k+4, 4∆4k+2, 8∆2k+1} survive to the E8 = E9-page. In
fact, these are permanent cycles. A simple induction on k shows:

Proposition 4.8. Up to units, we have

(a) ∆8k ∈ 〈2,∆8k−1η3, κ〉 with indeterminacy 2Z(2){∆8k};
(b) 2∆8k+4 ∈ 〈2,∆8k+3η3, κ〉 with indeterminacy 2Z(2){2∆8k+4};
(c) 4∆4k+2 ∈ 〈2, 2∆4k+1ν, κ〉 with indeterminacy 2Z(2){4∆4k+2};
(d) 8∆2k+1 ∈ 〈8,∆2kν, κ〉 with indeterminacy 8Z(2){8∆2k+1}.

We now turn to the other generators of π∗tmf, listed in [Beh20, Figure 1.2].

Proposition 4.9. We have the following Toda brackets in π∗tmf, each without any indeterminacy:

(a) ∆2ν = 〈ν, 2ν∆, κ〉;
(b) ∆4η = 〈η,∆3η3, κ〉;
(c) ∆4ν = 〈ν,∆3η3, κ〉;
(d) ∆4ε = 〈ε,∆3η3, κ〉;
(e) ∆4κ = 〈κ, 4ν, 3ν, 2ν, ν, κ4〉;
(f) 2∆5ν = 〈2ν,∆4ν, κ〉;
(g) ∆5ε = 〈ε,∆4ν, κ〉;
(h) ∆6ν = 〈ν, 2∆5ν, κ〉;

Remark 4.10. We have excluded those elements which can be derived using the multiplicative struc-
ture. All other elements (except for c4∆k and 2c6∆k) can be expressed as products of the elements
listed in Propositions 4.7, 4.8, and 4.9. Importantly, the proofs of these propositions only use κν = 0
in π∗tmf (via Theorem 4.6) and multiplicative relations in the sphere.

Remark 4.11. There are a lot of interesting multiplicative extensions, described in [Bau08, Section
8], but we will not need them. Each of these relations can be derived essentially only using the
d5-differential of Theorem 4.6 and the multiplicative structure in the homotopy of the sphere.

We can recast these extensions from the following perspective. The spectrum Cν is the Thom
spectrum of the Spin-bundle over S4 determined by the generator of π4BSpin. Since BSpin is an infinite

7



loop space, this bundle extends to one over ΩS5, and hence over the intermediate James constructions
Jk(S4) for all k ≥ 1. Let Jk(S4)µ denote the Thom spectrum of this bundle, so J1(S4)µ = Cν.
Since {Jk(S4)} forms a filtered E1-space, we obtain a map Cν∧k → Jk(S4)µ. Taking the product of
κ : Σ20Cν → tmf with itself k times defines a map

κk : Σ20kJk(S4)µ → Σ20kJk(S4)µ ∧ tmf → tmf.

If x is a spherical element, a composite S4k+|x| → Jk(S4)µ ∧ tmf where the map S4k+|x| → Jk(S4)µ

is given by x on the top (4k-dimensional) cell of Jk(S4)µ will define an element of the form x∆k ∈
π24k+|x|tmf. For instance, we have:

(a) ∆2ν ∈ 〈ν, 2ν, ν, κ2〉;
(b) ∆4η ∈ 〈η, 4ν, 3ν, 2ν, ν, κ4〉;
(c) ∆4ν ∈ 〈ν, 4ν, 3ν, 2ν, ν, κ4〉;
(d) ∆4ε ∈ 〈ε, 4ν, 3ν, 2ν, ν, κ4〉;
(e) ∆4κ ∈ 〈κ, 4ν, 3ν, 2ν, ν, κ4〉;
(f) 2∆5ν ∈ 〈2ν, 5ν, 4ν, 3ν, 2ν, ν, κ5〉;
(g) ∆5ε ∈ 〈ε, 5ν, 4ν, 3ν, 2ν, ν, κ5〉.

Remark 4.12. Mark Behrens pointed out to us that Mahowald expected κ7 = 0 in π∗S(2) (it is known

that κ6 = 0 in π∗tmf(2)). It would be interesting to know whether this is related to the existence of

∆8 in π∗tmf via the approach given in Remark 4.11.

Finally, we prove Proposition 4.9.

Proof of Proposition 4.9. We prove this case-by-case.

(a) Since d5(∆2) = 2∆κν and 2ν2 = 0 in the ANSS for the sphere, we find that ∆2ν ∈ 〈ν, 2ν∆, κ〉.
We provide the argument for indeterminacy in this case, but not for the others since the
argument is essentially the same. The indeterminacy lives in κπ31tmf+νπ48tmf, but κπ31tmf ∼=
νπ48tmf ∼= 0.

(b) Since d7(∆4) = ∆3κη3, we have d7(∆4η) = ∆3κη4 = 0. Therefore, ∆4η ∈ 〈η,∆3η3, κ〉. This
bracket is well-defined because ∆3η3 = 4∆3ν exists in π∗tmf, ην = 0 in the sphere, and κη3 = 0
in tmf.

(c) Similarly, since d7(∆4) = ∆3κη3, we have d7(∆4ν) = ∆3κη3ν = 0. Therefore ∆4ν ∈ 〈ν,∆3η3, κ〉.
This bracket is well-defined because ∆3η3 exists in π∗tmf, ην = 0 in the sphere, and κη3 van-
ishes in tmf.

(d) Similarly, since d7(∆4) = ∆3κη3, we have d7(∆4ε) = ∆3κη3ε = 0, since 2ε = 0. Therefore,
∆4ε ∈ 〈ε,∆3η3, κ〉. This bracket is again well-defined.

(e) This is in [Bau08, Corollary 8.7], where ∆4κ is denoted e[110, 2].
(f) Since d5(∆5) = 5∆4κν, we have d5(2∆5ν) = 10∆4κν2 = 0, since 2ν2 = 0. It follows that

2∆5ν ∈ 5〈2ν,∆4ν, κ〉. This is well-defined because ∆4ν lives in π∗tmf, 2ν2 = 0 in the sphere,
and κν = 0 in tmf.

(g) Similarly, since d5(∆5) = 5∆4κν, we have d5(∆5ε) = 5∆4κνε = 0, because εν = 0. It follows
that ∆5ε ∈ 5〈ε,∆4ν, κ〉, which is well-defined because ∆4ν lives in π∗tmf, εν = 0 in the sphere,
and κν = 0 in tmf.

(h) Since d5(∆6) = 6∆5κν, we have d5(∆6ν) = 6∆5κν2 = 0. We therefore have ∆6ν ∈ 3〈ν, 2∆5ν, κ〉.
This is well-defined because 2ν∆5 lives in π∗tmf, 2ν2 = 0 in the sphere, and κν = 0 in tmf.

�

4.2. The Adams-Novikov spectral sequence for B. In this section, we analyze the ring map
B → tmf, and show that the generators of π∗tmf(2) lift to π∗B(2). Again, we will localize at p = 2
throughout.

We begin by showing:

Proposition 4.13. There is an element in the 0-line of the E2-page of the ANSS for B which lifts the
element ∆ in the E2-page of the ANSS for tmf.
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Proof. We begin by recalling a representative for ∆ in the cobar complex for tmf at p = 2. Recall from
Proposition 3.8 that the Hopf algebroid (BP∗tmf,BP∗BP ⊗BP∗ BP∗tmf) is isomorphic to the elliptic
curve Hopf algebroid (A,Γ) presenting the moduli stack of cubic curves. As in the 3-complete setting
(studied in Proposition 3.8), it is known that upon 2-completion, every elliptic curve in Weierstrass
form is isomorphic to one of the form

y2 + a1xy + a3y = x3.

Consequently (as in the 3-complete setting), the elliptic curve Hopf algebroid is isomorphic to a Hopf
algebroid of the form (A′,Γ′) = (Z2[a1, a3], A′[s, t]/I), where I is some ideal consisting of complicated
relations, and where the Hopf algebroid structure can be written down explicitly (as in [Bau08, Section
3]). A straightforward calculation proves that the discriminant is then

(5) ∆ = a3
1a

3
3 − 27a4

3 = b34 − 27b26.

Turning to B, recall that we may identify BP∗B with BP∗[b4, y6]. The map B → tmf induces a map
(BP∗B,BP∗BP⊗BP∗ BP∗B)→ (A′,Γ′) of Hopf algebroids that sends b4 to b4 and y6 to b6. It follows
from Equation (5) that the element ∆ already exists in the 0-line of the Adams-Novikov spectral
sequence for B, and is represented by

∆ = [b34 − 27y2
6 ] ∈ Ext(BP∗B).

This finishes the proof of Proposition 4.13. �

Since the map B → tmf is an equivalence in dimensions ≤ 12 (Corollary 2.6), the elements c4 and
2c6 lift to π∗B. We claim that c4∆k and 2c6∆k live in π∗B; to show this, we argue as in Remark
4.4. There is a map B → B ∧DA1 ' T (2) (see also Remark 2.7), and there is a particular complex
orientation of tmf1(3) exhibiting it as a form of BP〈2〉, which sits in a commutative diagram

B //

��

T (2)

��

// BP

{{
tmf // tmf1(3).

There are choices of indecomposables v1 and v2 producing an isomorphism π∗tmf1(3) ∼= Z2[v1, v2] such
that c4 is sent to v4

1 and ∆ is sent to v4
2 . The map T (2)→ tmf1(3) is surjective on homotopy, since v1

and v2 live in π∗T (2). Since the elements c4, 2c6, c4∆k, and 2c6∆k for k ≥ 1 therefore already live in
the homotopy of T (2), we find by the same argument that these elements already live in the homotopy
of B.

We next turn to showing that the other elements of π∗tmf lift to π∗B. The following is the 2-local
analogue of Theorem 3.9:

Theorem 4.14. There are differentials d5(∆) = κν and d7(4∆) = κη3 in the ANSS for B. Moreover,
κν = 0 in π∗B, and 8∆ is a permanent cycle.

Proof. To prove the differentials, first note that the d7-differential follows from the d5-differential via
the spherical relation 4ν = η3; it therefore suffices to prove the d5-differential. The class κν lives in
bidegree (23, 5) in the ANSS for B, since it lives in that bidegree in the ANSS for both the sphere and
for tmf. Assume that κν is the target of a dr-differential dr(x) = κν for 2 ≤ r ≤ 4. Then the class x
maps to zero in the ANSS for tmf under the unit map ι : B → tmf, so since all differentials commute
with ι, we find that 0 = dr(ι(x)) = κν in the ANSS for tmf. This is obviously a contradiction, so
the first possibility for a differential is the d5-differential d5(∆) = κν. This is forced by the analogous
differential in the ANSS of tmf.

Therefore, κν vanishes in the E∞-page of the ANSS, but this does not yet imply that κν vanishes
in π∗B, since there may be nontrivial multiplicative extensions. Since multiplicative extensions have
to jump filtration by at least one degree, it suffices to show that there are no permanent cycles in
the ANSS for B in stem 23 of filtration greater than 5. The class κν is the first element of filtration
5 in the ANSS for the sphere which does not come from an η = α1-tower on the α-family elements,
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so the only contributions in the ANSS for B in ANSS filtration > 5 come from such elements in the
algebraic Atiyah-Hirzebruch spectral sequence (and κη3). However, all such η-towers are truncated
by an ANSS d3-differential, so they only contribute to elements in filtrations ≤ 3 in the E4-page.
Thus, they contribute no elements of filtration greater than 5 in the E∞-page of the ANSS for B.
Consequently, κν vanishes in π∗B, as desired. There also cannot be any longer differentials on ∆, so
8∆ is a permanent cycle. �

Finally:

Proof of Theorem 4.1. Theorem 4.14 implies that 8∆ lifts to π∗B, and that all the brackets in π∗tmf
in Propositions 4.7, 4.8, and 4.9 are well-defined in π∗B. The elements of π∗tmf in those propositions
for which the bracket has no indeterminacy therefore lift to π∗B. By Remark 4.10, all that remains is
to show that the constant multiples of the powers of ∆ which live in π∗tmf in fact lift to π∗B. Theorem
4.14 implies that they lift up to indeterminacy, and this indeterminacy is specified in Proposition 4.8.
If ∆8k + 2n∆8k = (2n+ 1)∆8k lifts for some n ∈ Z(2), then so does ∆8k since 2n+ 1 is a 2-local unit.

Similarly, one finds that 2∆8k+4, 4∆4k+2, and 8∆2k+1 also lift to π∗B, as desired. �

Remark 4.15. We briefly look at the Adams spectral sequence for B. The Steenrod module structure
of the 20-skeleton of B is as in Figure 1; since we are at the prime 2, straight lines are Sq4, and
curved lines correspond to Sq8 and Sq16, in order of increasing length. Using this, we can calculate
the Adams spectral sequence in small dimensions. The Adams charts below were created with Hood
Chatham’s Ext calculator, and the Steenrod module file for B in this range can be found at http:

//www.mit.edu/~sanathd/input-B-leq-24-prime-2.
The E2-page for B in the first few dimensions is shown in Figure 2; there are no classes in higher

Adams filtration in stem 23. The red class is g = κ, and the purple lines are d2-differentials. The
differential on the class in stem 23 already exists in the Adams spectral sequence for the sphere as
d2(i) = h0Pd0. The other classes in stem 23 except for the one in filtration 9 are permanent cycles,
and there is no multiplicative extension causing any of them to be κν on homotopy.

As shown in Figure 3, there is also a d3-differential on the leftmost class x
(0)
24,1 in bidegree (24, 6)

(which supports a h0-tower) to the class in bidegree (23, 9); the class h0x
(0)
24,1 is a permanent cycle in

the ASS for B which is sent to 8∆ in the ASS for tmf. The class in bidegree (25, 5) is a permanent
cycle in the ASS for B which is sent to ∆η in the ASS for tmf.

Remark 4.16. We now compare the approach of this paper with that of [HM02], where the E1-ring
B was constructed under the name X. The special case of our Theorem 1.2 for elements in π∗tmf of
ANSS filtration 0 is stated as [HM02, Theorem 11.1], where a proof is only sketched.

First, their Proposition 11.2 is a combination of our Theorem 3.9 and Theorem 4.14. Secondly, their
proof proceeds by calculating the mod 2 Adams spectral sequence of B in dimensions ≤ 24 to show
that κν vanishes in the 2-local homotopy of B. Their argument does not seem to resolve potential
multiplicative extensions: as Figure 3 shows, there are two possibilities for multiplicative extensions in
the Adams spectral sequence which could make κν nonzero in π∗B(2). (Namely, the classes in bidegrees
(23, 6) and (23, 7) could represent κν.) Thirdly, Remark 4.11 essentially gives a proof of their Lemma
11.5, which seems to appear without proof.

5. Applications of Theorem 1.1

In this section, we study some applications of Theorem 1.1. One application of Theorem 1.1 was
stated as [Hop02, Corollary 6.26], and provides an answer to Hirzebruch’s prize question [HBJ92, Page
86]. See also [HM02].

Corollary 5.1. There exists a 24-dimensional compact smooth string manifold M with Â(M) = 1 and

Â(M, τM ⊗C) = 0.

Proof. By the discussion on [HBJ92, Page 86], the conditions on the Â-genus of M are equivalent to
the Witten genus of M being c34 − 744∆ = ∆(j − 744), where j is the j-function. Let M8

0 denote the
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Figure 2. E2-page of the Adams spectral sequence for B. The class highlighted in red is κ.

Figure 3. E3-page of the Adams spectral sequence for B. The class highlighted in
red is κ. There are no differentials in this range from the E4-page onwards.

Kervaire-Milnor almost parallelizable 8-manifold; then, the 8-manifold −M8
0 − 224HP 2 (whose string

cobordism class we will denote by [Nc4 ], where Nc4 is the explicit manifold representative above) admits
a string structure by [Lau04, Lemma 15]. The map tmf → bo sends c4 ∈ π8tmf to v4

1 ∈ π8bo. By
11



Lemma 5.2, there is a commutative diagram:

(6) MString //

��

MSpin

��
tmf // bo,

where the left vertical map is the Ando-Hopkins-Rezk orientation and the right vertical map is the
Atiyah-Bott-Shapiro orientation. Consequently, the Witten genus of −M8

0 − 224HP 2 is c4.
By Theorem 1.1, the element 24∆ ∈ π24tmf lifts to a class [N∆] in π24MString, where N∆ is any

manifold representative. Since 744∆ = 31 · 24∆, we conclude that the string cobordism class of the
24-dimensional compact oriented smooth string manifold N3

c4 − 31N∆ has Witten genus c34 − 744∆, as
desired. �

The proof of Corollary 5.1 utilized the following lemma.

Lemma 5.2. The diagram (6) commutes, where the left vertical map is the Ando-Hopkins-Rezk ori-
entation and the right vertical map is the Atiyah-Bott-Shapiro orientation.

Proof. We need to show that the composite MString → tmf → bo comes from the Atiyah-Bott-
Shapiro orientation. By [AHR10, Corollary 7.12], it suffices to show that this composite has the same

characteristic series as the restriction of the Â-genus to string manifolds. There is an isomorphism
π∗bo ⊗ Q ∼= Z[β2], where β2 lives in degree 4 and is the square of the Bott element. Moreover,
π∗tmf ⊗Q is isomorphic to the ring of rational modular forms (of weight given by half the degree in
π∗tmf ⊗Q) by [Bau08, Proposition 4.4]. The map π∗tmf ⊗Q → π∗bo ⊗Q sends a modular form of
weight k with q-expansion f(q) =

∑
anq

n to the element a0(β2)k ∈ π2kbo ⊗ Q. Consequently, the
composite π∗MString→ π∗tmf⊗Q→ π∗bo⊗Q sends a string manifold M to the constant term of the
q-expansion of its Witten genus. The lemma will therefore follow if this constant term is the Â-genus
of M , but this follows from the discussion on [HBJ92, Page 84]. �

Remark 5.3. The modular form c34 − 744∆ is θΛ24 − 24∆, where Λ24 is the 24-dimensional Leech
lattice and θΛ24

is its theta function.

Remark 5.4. The original motivation for Hirzebruch’s prize question was to relate the geometry of
the 24-dimensional string manifold M of Corollary 5.1 to representations of the monster group by
constructing an action of the monster group on M . The question of constructing this action remains
unresolved.

Remark 5.5. The disussion on [HBJ92, Page 86] implies that Â(N∆) = 0 and Â(N∆, τN∆ ⊗C) = 24.
It follows from [Sto92, Theorem A] that N∆ (which we may assume is simply-connected by surgery)
admits a metric with positive scalar curvature. Since the Witten genus of N∆ is nonzero, Stolz’s
conjecture in [Sto96] would imply that it does not admit a metric of positive-definite Ricci curvature.
We do not know whether Stolz’s conjecture holds in this particular case. Note, however, that there
are examples of non-simply-connected manifolds which admit positive scalar curvature metrics but no
metrics of positive-definite Ricci curvature: as pointed out to us by Stolz, a connected sum of lens
spaces of dimension at least 3 gives such a manifold.

Corollary 5.1 may be generalized in the following manner. Recall the following definition from
[Ono04, Section 2.3]. Let j1(z) = j(z) − 744, and define jn(z) for n ≥ 2 via nTn(j1(z)), where Tn is
the weight zero Hecke operator, acting on f(z) via

Tnf(z) =
∑

d|n,ad=n

d−1∑
b=0

f

(
az + b

d

)
.

By [Ono04, Proposition 2.13], jn(z) is a monic integral polynomial in j(z) of degree n; for instance,

j2(z) = j(z)2 − 1488j(z) + 159768, j3(z) = j(z)3 − 2232j(z)2 + 1069956j(z)− 36866976.
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The functions jn(z) for n ≥ 0 (where j0(z) = 1) form a basis for the complex vector space of weakly
holomorphic modular forms of weight 0, and appear in the denominator formula for the monster Lie
algebra. They may be defined by Faber polynomials on j. The generalization of Corollary 5.1 is as
follows.

Proposition 5.6. For all n ≥ 0, there is a 24n-dimensional compact smooth string manifold M24n

whose Witten genus is ∆njn(z).

Remark 5.7. By arguing as in [HBJ92, Pages 86-87], we find that the twisted Â-genera of bundles over
M24n constructed from the complexified tangent bundle of M are integral linear combinations of dimen-
sions of irreducible representations of the monster group; for instance, Â(M48; Sym2(τM⊗C)) is the co-

efficient of q2 in ∆2j2(z), which is 2×(21296876+196883+1). More generally, Â(M24n; Sym2(τM⊗C))
is an integral linear combination of the dimensions of the n smallest irreducible representations of the
monster group. In light of Hirzebruch’s original motivation for his prize question (see Remark 5.4), it
seems reasonable to conjecture that the 24n-dimensional string manifold M24n admits an action of the
monster group by diffeomorphisms.

Remark 5.8. It would be interesting to know if there is an analogue of Proposition 5.6 for other
McKay-Thompson series.

Before providing the proof, we need the following result.

Theorem 5.9. A modular form f is in the image of the boundary homomorphism π∗tmf → MF∗ in
the Adams-Novikov spectral sequence if and only if it is expressible as an integral linear combination
of monomials of the form aijkc

i
4c
j
6∆k with i, k ≥ 0 and j = 0, 1, where

aijk =


1 i > 0, j = 0

2 j = 1

24/ gcd(24, k) i, j = 0.

Proof. This is [Hop02, Proposition 4.6], proved in [Bau08]. �

Proof of Proposition 5.6. We have

∆njn(z) =
∑

0≤k≤n

αkj(z)
k∆n =

∑
0≤k≤n

αkc
3k
4 ∆n−k,

for some integers αk (where αn = 1). By Theorem 1.1 and Theorem 5.9, it suffices to show that the
constant term α0 of jn(z) (when expanded as a monic integral polynomial in j(z)) is a multiple of
24/ gcd(24, n). The j-function vanishes on a primitive third root of unity, so α0 = jn(ω). Its generating
function is ∑

n≥0

jn(ω)qn = −j
′(z)

j(z)
=
c6
c4
,

where q = e2πiz and ω is a primitive third root of unity.
Let m ≥ 1; we claim that the coefficients a4,m and a6,m of qm in the q-expansion for c4 and c6

(respectively) are divisible by 24/ gcd(24,m). Indeed, the expression for their q-expansion shows that
a4,n = −240σ3(n) and a6,n = 504σ5(n), and both 240 and 504 are already divisible by 24. Since the
coefficient of qm in 1/c4 can be expressed as an integral linear combination of the a4,k, it follows that
the coefficient of qm for m ≥ 1 in c6/c4 (which is jm(ω)) is divisible by 24, and hence by 24/ gcd(24,m),
as desired. �
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