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Abstract 

In this paper I give a general procedure of transferring closed model structures along adjoint 
functor pairs. As applications 1 derive from a global closed model structure on the category of 
simplicial sheaves closed model structures on the category of sheaves of 2-groupoids, the category 
of bisimplicial sheaves and the category of simplicial sheaves of groupoids. Subsequently, the 
homotopy theories of these categories are related to the homotopy theory of simplicial sheaves. 

1. Introduction 

There are two ways of trying to generalize the well-known closed model structure on 

the category of simplicial sets to the category of simplicial objects in a Grothendieck 

topos. One way is to concentrate on the local aspect, and to use the Kan-fibrations as 

a starting point. In [ 141 Heller showed that for simplicial presheaves there is a local 
(there called right) closed model structure. In [2] Brown showed that for a topological 
space X the category of “locally fibrant” sheaves of spectra on X is a category o~fiibrunt 
objects, which is something a little bit weaker than a closed model structure. This 
has been extended to simplicial objects in an arbitrary Grothendieck topos by Jardine 
in [15]. 

The other way, which is the one that I will make use of here, is to concentrate on 
the global aspect, and to use the cofibrations being monomorphisms as a starting point. 
For the category of simplicial sheaves on a topological space X a global closed model 
structure has been given, with some assumptions on X, by Brown and Gersten in [ 3 1. 
For simplicial presheaves a global (there called left> closed model structure has been 
given by Heller in [ 141. These results have been extended to arbitrary Grothendieck 
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topoi by Joyal in [ 181, where it is shown that the category of simplicial objects in an 
arbitrary Grothendieck topos enjoys a closed model structure where the cofibrations are 
exactly the monomorphisms. 

The local and the global extensions are difSeerent: they do have the same weak equiva- 
lences, and therefore describe the same homotopy category, but the describing structures 
are different, and also the classes of fibrations are not the same (in fact, a global fibra- 
tion is always a local one, but not conversely). A good review on the relation between 
the local and global theory can be found in [ 161. 

The category of 2-groupoids enjoys a closed model structure, as shown by Moerdijk 
and Svensson in [ 281. It is related to the closed model structure on the category of 
simplicial sets via the 2-categorical nerve functor (see [ 321) and its left adjoint. This 
last relation induces an adjointness at the homotopy level, which gives a categorical 
description of homotopy 2-types: every topological space with trivial homotopy groups 
in dimensions 2 3 is homotopy equivalent to the classifying space of a 2-groupoid. Thus, 
2-groupoids are an alternative to other structures classifying 2-types such as Whitehead’s 
crossed modules (see [ 34]), Ellis’ crossed squares (see [ 71 and [ 8]), and Loday’s 

Cat’-groups (see [23] and [4]). 
The category of bisimplicial sets also enjoys a closed model structure, as shown by 

Moerdijk in [ 271. The diagonal 6 : A -+ A x A induces an adjointness relation between 
the category of simplicial sets and the category of bisimplicial sets. This adjointness 
becomes an equivalence on the level of homotopy, and is extensively used in K-theory 
(see [ 121 and [31], for example). 

Finally there is a closed model structure on the category of simplicial groupoids, as 
will be shown in [ 51, which is related to the closed model structure on the category of 
bisimplicial sets above by the dimensionwise nerve and fundamental groupoid functors. 
Simplicial groupoids are the necessary generalization for sheaf purposes of simplicially 
enriched groupoids, which, according to Dwyer and Kan in [6], model all homotopy 
types, and extensive work on simplicial sheaves of groupoids has been done by Joyal 
and Tierney in [19] and [21]. 

These three examples of closed model structures share a common ground which makes 
it possible to extend them to sheaves on a site (C, J): for all of them there is an adjoint- 
ness relation with the category of simplicial sets with certain properties concerning weak 
equivalences. These adjunctions can be lifted to adjunctions between the corresponding 
categories of sheaves on (Cc, J), and I use the properties just mentioned to transfer the 
global closed model structure on the category of simplicial sheaves, to obtain global 
closed model structures on the category of sheaves of 2-groupoids on (Cc, J), the cat- 
egory of bisimplicial sheaves on (Cc, J). and on the category of simplicial sheaves of 
groupoids on (C, J) . This closed model structure on the category of simplicial sheaves 
of groupoids appears to be different from the closed model structures in [ 211, but they 
do have the same weak equivalences and hence classify the same homotopy. 

For the transfer I define the weak equivalences using the right adjoint, and I show 
that the left adjoint preserves certain weak equivalences by considering a boolean cover 
for the topos of sheaves under consideration. This argument is a so called Barr-cover 
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argument (see [ 241). I prove the factorization axioms “as in simplicial sheaves”, that 
is, by a so called small object argument (see [ lo] or [ 291, and also the Appendix). 

A special case of the transfer occurs in [ 111, where the closed model structure on 
the category of simplicial groups is transferred (there called lifted) to the category 
of n-hypergroupoids of groups. This observation does not make the proof given there 
easier, though. 

In all the above cases the adjointness relation used to define the closed model struc- 
ture induces an adjointness relation between the homotopy categories. Thus, studying 
homotopy of sheaves of 2-groupoids and of simplicial sheaves of groupoids gives in- 
formation about, and a better understanding of, the homotopy of simplicial sheaves. 
This hopefully can be used in the Grothendieck programme [ 131 of finding a useful 
homotopy analogue of a sheaf, where gluing is also possible if the matching is only “up 
to homotopy”. 

This paper is organized as follows. Section 2 is a short review on Quillen closed model 
structures. In Section 3 I describe the general transfer, and give the conditions needed 
to make the argument work. Section 4 contains the proof of this transfer theorem. 
Section 5 gives a short review of Joyal’s closed model structure on the category of 
simplicial sheaves in [ 181. In Section 6 I apply the general theorem to the situation for 
sheaves of 2-groupoids. This gives a closed model structure on this category, which for 
presheaves is different from the closed model structure on the category of presheaves 
of 2-groupoids given in [28] since that is a local one. In Section 7 I apply the general 
theorem to the situation for bisimplicial sheaves, yielding a closed model structure on 
this category. In Section 8 I apply the general theorem to the situation for simplicial 
sheaves of groupoids, which sheds new light on the results on this category in [ 191 
and [21]. All applications are accompanied by a characterization of the homotopy that 
is classified. 

There is an appendix on the notion of small sheaf. 

2. Quillen closed model structures 

2. I. Axioms 

Recall (for example from [ 301) that a Quillen closed model structure on a category 
@ consists of three classes of arrows: weak equivalences, fibrations and cofibrations, 
such that the following axioms are satisfied (an arrow which is a fibration and a weak 
equivalence will be called a trivial fibration, and an arrow which is a cofibration and a 
weak equivalence will be called a trivial cofibration): 
CM1 C has all finite limits and colimits; 
CM2 For any pair of composable arrows f and g, if two of the three f, g, g o f are 

weak equivalences, so is the third; 
CM3 The classes of weak equivalences, fibrations and cofibrations are closed under 

retracts; 
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CM4 (factorization axioms) Any arrow can be factored as a cofibration followed by a 

trivial fibration, and as a trivial cofibration followed by a fibration; 

CM5 (lifting axioms) For any diagram 

Such a category Cc with a closed model structure on it can be localized with respect to 

c C-D 

with f a cofibration and g a trivial fibration or f a trivial cofibration and g a 

fibration there exists an arrow 5 : C’ --t D such that 5 o f = 5 and go 4 = 

6 (fibrations are said to have the right lifiing property with respect to trivial 

cofibrations, etc.). 

its weak equivalences. The resulting category is called the homotopy category of Cc, and 

is denoted by Ho(@). The homotopy category has the property that an arrow in @ is a 

weak equivalence iff its image in Ho(C) is an isomorphism. For details about this the 

reader is referred to [29]. 

2.2. Comparing homotopy categories 

Homotopy categories can be compared directly, that is, by considering arrows up to 

weak equivalence. In general this is not easy, and various methods have been developed 

to get around the problem. One of these, which is especially for categories with closed 

model structures, appears in [29]. Since it will be used repeatedly in the sequel I will 

recall it here: 

Lemma 2.1. Let @ and D be categories equipped with a closed model structure, and 
let 

@ +ID 

be a pair of adjoint functors, L being the left and R the right adjoint functor. Suppose 
that L preserves cojibrations and that L carries weak equivalences between cojibrant 
objects in @ into weak equivalences in D. Also suppose that R preserves fibrations and 
that R carries weak equivalences between fibrant objects in ID into weak equivalences 
in @. Then there is a canonical adjunction 

Ho(@) + Ho(D). 

Suppose in addition for C a cofibrant object of Cc and D a fibrant object of D that 
a map L(C) -+ D is a weak equivalence iff the associated map C -+ R(D) is a 
weak equivalence. Then the adjunction morphisms id + L o R and & o L + id are 
isomotphisms so the categories Ho(@) and Ho(ltD) are equivalent. 0 
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3. The transfer 

Consider categories C and ID and functors as in 

C +D, 

with L left adjoint to R, and the category C comes equipped with a closed model 

structure. The idea is to use the adjoint functors to equip D with three classes of 

arrows: weak equivalences, fibrations and cofibrations, and to show that under certain 

assumptions on the closed model structure on C, on the category D, and on the adjunction 

L -I R this defines a closed model structure on ID. 

Definition 3.1. In the situation above, define the following classes of arrows in D: 

- weak equivalences: an arrow d in D is a weak equivalence if R(d) is a weak 

equivalence in C. 

- fibrations: an arrow d in D is a fibration if R(d) is a fibration in C, equivalently, 

if d has the right lifting property with respect to all arrows L(c) with c a trivial 

cofibration in @. 
- co$brufions: an arrow d in D is a cofibration if d has the left lifting property with 

respect to all trivial fibrations in D. 

This definition agrees with the one given in [ 111, and also with the definition in [ 33 1, 

where the case of the adjunction cSdL -I Ex2 N between simplicial sets and categories 

is treated. 

I will prove the factorization axioms for the closed model structure on D by a small 

object argument, using that the (trivial) cofibrations in @ are “generated” by (trivial) 

cofibrations between A-small objects (see the Appendix), and that L preserves “enough” 

of this generating smallness structure. More precisely, the following will be assumed 

about the closed model structure on C: 

Definition 3.2. Let A be an infinite regular cardinal. A closed model structure on a 

category @ is A-generated if Cc has all colimits, and every (trivial) cofibration in @ 

is a transfinite composition of pushouts of coproducts of (trivial) cofibrations between 

A-small objects. The closed model structure is generared if it is A-generated for some 

infinite regular cardinal A. 

The important example of a generated closed model structure, that will be used in the 

applications here, is the closed model structure on the category of simplicial sheaves as 

given in [ 181. I will recall it briefly in Section 5. 

Next it will be necessary that D has all A-filtered colimits too, and that L preserves 

the notion of A-smallness. This last condition holds in almost all practical cases because 

its right adjoint R is almost always A’-accessible (see [26] ) for some A’ 2 A, which 

suffices since then for a A/-filtered category I[ and an II-indexed diagram D one has the 

following sequence of isomorphisms: 
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D(L(C),l~irD,) G C(C,R(hIiI,)) S C(C,lil(D,)) 

S hrirC(CJ?(D,)) S l~~(L(C),&). 

The condition that is crucial to the argument is a statement about what L does to trivial 
cofibrations, in particular, whether a certain colimit of these is a weak equivalence in 
D. In the applications this condition will be proven by lifting the statement to a boolean 
cover of the topos of sheaves, noting that this cover is a model of classical set theory, 
and using the closed model structure on the category of 2-groupoids, for example, to 
show that this colimit is in fact a trivial cofibration. 

Theorem 3.3. Let A be an infinite regular cardinal. Let Cc be a category equipped with 

a A-generated closed model structure, let ItI be a category having finite limits and all 

colimits, and let 

be such that L -I R, with L preserving A-smallness. Suppose that for every arrow d in 

D which is a tran@nite composition of pushouts of coproducts of arrows L(c) with c a 

trivial cojibration in C the arrow R(d) is a weak equivalence in Cc. Then Definition 3.1 

defines a closed model structure on D. 

4. Proof of Theorem 3.3 

Axiom CM1 holds by assumption. Axiom CM2 and two parts of axiom CM3 follow 
directly from the corresponding facts in C using the adjunction. The remaining part of 
axiom CM3 follows by a standard formal argument. 

The first factorization axiom states that every arrow in ID can be factored as a cofibra- 
tion followed by a trivial fibration. I will prove that every arrow in D can be factored 
as a transfinite composition of pushouts of arrows L(c) with c a coproduct of cofibra- 
tions between A-small objects in Cc followed by an arrow in D having the right lifting 
property with respect to all arrows L(c) with c a cofibration in C. The first part of 
the factorization to be constructed will be a cofibration since by a formal adjunction 
argument the functor L preserves cofibrations and 

Lemma 4.1. The class of cofibrations in D is closed under coproducts, pushouts and 

transfinite composition. 

Proof. Formal lifting arguments. Cl 

The second part of this factorization is a trivial fibration since 

Lemma 4.2. An arrow d in D having the right lifting property with respect to all 

arrows L(c) with c a cojibration in Cc is a trivial jibration. 
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Proof. By the adjunction R(d) has the right lifting property with respect to all cofibra- 
tions in Cc, hence is a trivial fibration in @. q 

To construct the above factorization of an arrow d : D --+ D', define with transfinite 
induction for each ordinal K E A an object D" of ID, an arrow bK+’ : D" + DK+' and an 
arrow d” : DK --t D', as follows. Do = D, do = d. Having obtained D" and d”, consider 
the set 2” of all diagrams 

L(k) 1 1 d' 

L(C;) - D' 

with cW a cofibration between h-small objects in Cc, which is a set since there is only a 
set of A-small objects of UZ, the functor L preserves A-smallness and there is only a set 
of arrows between two A-small objects. Define D%+*, P+' and dK+I by the diagram 

in which the rectangle is a pushout in D. 
For a limit ordinal K 5 A, having obtained D*' and d”’ for all K’ E K, define 

D" = limDK’, I’ : D ---) DK the canonical arrow, and d” : DK --) D' the arrow induced 

by the%“s. By definition ~~ : D --+ DA is a transfinite composition of pushouts of 
arrows L(c) with c a coproduct of small cofibrations in @. d” has the right lifting 
property with respect to all arrows L(c) with c a cofibration in Cc since it follows from 
the cotibrations in C being generated that this lifting problem reduces to c a cofibration 
between A-small objects in @, and then given a diagram 

L(C) -DA 

L!ci 1dA 
L(C') - D' 

with c a cofibration between h-small objects in @, A-smallness of L(C) implies that J 
must factor through DK for some K E A, which gives a lifting to DK+l in the (K + 1)-th 
step above. So d” o Lo is the required factorization of d. 

The second factorization axiom states that every arrow in D can be factored as a 
trivial cofibration followed by a fibration. I will prove something more, namely that 
every arrow in D can be factored as a transfinite composition of pushouts of arrows 
L(c) with c a coproduct of trivial cofibrations between A-small objects in @ followed 
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by a fibration. By the last assumption in the statement of the theorem the first part of 

this factorization is indeed a trivial cofibration. 

To construct this factorization one proceeds analogously to the former factorization, 

again using that L preserves h-smallness. The fact that the trivial cofibrations in C are 

generated ensures that the last part of the factorization is a fibration. 

The first lifting axiom holds by definition of the cofibrations in D. 

The second lifting axiom states that it is possible to lift in every diagram 

in D with d a trivial cofibration and e a fibration. To find such a lifting I will use a 

standard argument (see e.g. [ 271) , adapted to this situation. Use the proof of the second 

factorization axiom to factor d as a transfinite composition of pushouts of arrows L(c) 
with c a coproduct of trivial cofibrations between A-small objects in C followed by a 

fibration, say d = p oi. Now p is even a weak equivalence by axiom CM2, which implies 

that R(p) is a trivial fibration in C, in other words, p has the right lifting property with 

respect to all arrows L(c) with c a cofibration in C. So, using lemma 4.1, there is a 

lifting in 

by the first lifting axiom, and in 

c D-E 

i 
1 1 

e 

0 hDtz E’ 

since it can be done for i of the form L(c) with c a trivial cofibration in Cc, which 

suffices by formal lifting arguments. Composing both gives the required lifting. 

All axioms for a closed model structure have been checked, which finishes the proof 

of Theorem 3.3. 

5. Simplicial sheaves 

In [ 181 Joyal showed that the category of simplicial sheaves enjoys a generated closed 

model structure. Because this closed model structure will be used for the applications 

later on I will recall it briefly. 

Let E be the topos of sheaves on a site (C, J), which will be fixed from now on. 

Denote the topos of simplicial sheaves on (Cc, J) , in other words, of simplicial objects in 
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E, by SE. For X an object of SE its homotopy sheaves are defined as follows. ~a( X) is 

the coequalizer in & of the pair X1 z Xc. To describe rr,, (X), consider X as a simplicial 

sheaf over X0, i.e., consider X in the base extension E/X0 4 E, so that X has a generic 

basepoint. Now Kan’s construction (see [22]) can be applied internally in the topos 

&/Xc since it only uses finite limits and colimits, yielding 7r,,( X) as an object over Xc. 

Definition 5.1. Define the following classes of arrows in sE: 

weak equivalences: an arrow f : X + Y in SE is a weak equivalence if 

(1) I : TO(X) 4 TO(Y) is an isomorphism, 

(2) for all n > 1, the square 

n,(X) - Z”(Y) 

1 1 
X0 - yo 

is a pullback. 

cofibrarions: an arrow f : X --) Y in s& is a cofibration if it is a monomorphism. 

fibrations: an arrow f : X --) Y in sE is a fibration if it has the right lifting property 

with respect to all trivial cofibrations in SE. 

In [ 181 it is proven that 

Theorem 5.2. Definition 5.1 defines a closed model structure on SE. 0 

Being a topos over Sets the category sE has all (set-indexed) colimits. In [ 181 it is 

shown that there exists an infinite regular cardinal A such that every trivial cofibration 

in SE is a transfinite composition of pushouts of trivial cofibrations between A-small 

objects. Using the same method it can be shown that also every cofibration in SE is a 

transfinite composition of pushouts of cofibrations between A-small objects, for the same 

A. In short, the closed model structure on SE is A-generated for some large enough A. 

Another important property of the above closed model structure on SE is the following. 

Take a boolean cover of the topos I, that is, a surjective geometric morphism f : 3 + & 

where F is a boolean topos satisfying the axiom of choice, for example, the Barr-cover 

of E (see [ 171) . In general, constructions with finite limits and colimits are preserved 

under the inverse image of a geometric morphism. When the geometric morphism is 

surjective these so-called geometric constructions are also reflected. The same holds 

for geometric properties, i.e.. properties which are equivalent to the invertibility of a 

geometrically constructed arrow. Thus, in order to verify that a certain geometrically 

constructed arrow in E has a certain geometric property it suffices to verify the property 

in F. Now 7 is a boolean topos, which is a model of classical set theory. Thus in 

checking statements in F one can pretend to be working in Sets. The property of 

being a weak equivalence in sE is geometrical (see [ 18]), which thus implies that a 

geometrically constructed arrow in SE is a weak equivalence iff the same construction in 

sSets yields a weak equivalence. When I make use of this property of weak equivalences 
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in SE I will say that I apply the Barr-cover argument. 

6. Application 1: Homotopy 2-types of sheaves 

The first application I will give is the transferring of the closed model structure on s& 
to the category 2Grpd(E) of sheaves of 2-groupoids on (CT, J), in other words, of 2- 
groupoids in &, using the closed model structure on the category 2Grpd of 2-groupoids 
in [ 281. The category of (sheaves of) 2-groupoids only serves as a sample: once a 
closed model structure with the same properties is obtained on a category classifying a 
certain finite homotopy type, there is also a closed model structure on the corresponding 
category of sheaves. 

6.1. 2-Groupoids 

It is not necessary to describe the closed model structure on 2Grpd in full detail for 
two reasons. First, because full detail is already supplied by [ 281, and second because 
I will only use a very specific part. 

There is an adjoint functor pair 

sSets G 2Grpd 

where N is the 2-categorical nerve (see [ 321) : 

N(E) =Goz=G E (32 XC1 (Gl XC0 GI) E . . . , (1) 

and W is the Whitehead 2-groupoid described in [ 281: 

W(X) =x0 z=F(Xl) E F(X2)/X3, (2) 

where F describes a free construction, i.e., F(Xi) consists of finite formal composites 
of i-cells of X and their formal inverses. 

The closed model structure on 2GqxI has the following properties (see [ 281) that 
are relevant here: 

Lemma 6.1. An arrow g in 2Grpd is a weak equivalence @N(g) is a weak equiva- 
lence in sSets . 0 

Lemma 6.2. For every simplicial set X the unit q : X --t NW(X) is a weak equivalence 
iY7rn(X) = Ofor any n > 2. 0 

Lemma 6.3. The functor W : sSets --t 2Grpd preserves weak equivalences and co- 
jibrations. 0 

So it will not be necessary to know exactly what the trivial cofibrations in 2Grpd 
are, but only that they are part of a closed model structure, and that they are preserved 
by W. 
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6.2. Applying Theorem 3.3 

I will now show that for sheaves of 2-groupoids on (C, J) Theorem 3.3 can be 
applied. The category 2Grpd( E) has all (set-indexed) colimits, calculated by taking the 
pointwise colimit, which exists because 2Grpd has all colimits, followed by sheafifica- 
tion. Finite limits in 2Grpd(&) can be calculated pointwise, and then for objects and 
arrows separately. 

Because of their geometric nature equations ( 1) and (2) also define an adjoint functor 
pair 

N 
s& _ 2Grpd(E) 

W 

(the ambiguity in notation introduced here will do no harm because it will always be 
clear from the context which version of N and W is meant, and it avoids the need 
of writing lots of subscripts E). The functor N : 2Grpd(&) -+ s& is expressed, in 
Eq. ( 1) , by finite limits, hence N preserves filtered colimits, which implies, as remarked 
in section 3, that W preserves A-smallness. 

It remains to be shown that every arrow in 2Grpd(E) which is a transfinite compo- 
sition of pushouts of coproducts of arrows W(f) with f a trivial cofibration in SE is 
a weak equivalence in 2Grpd( E) . Because the construction of the functors W and N is 
geometrical the Barr-cover argument can be applied to the present situation: an arrow 
in SE constructed using finite limits and colimits and the functors W and N is a weak 
equivalence in SE if the corresponding construction in &eta yields a weak equivalence. 
Thus I only need to show that every arrow in sSets which is the N-image of a transfinite 
composition of pushouts of coproducts of arrows W(f) with f a trivial cofibration in 
sSet.s is a weak equivalence. 

Starting with a trivial cofibration in sSets, W sends it to a trivial cofibration in 2Grpd 
by Lemma 6.3. Every transfinite composition of pushouts of coproducts of such arrows 
is then again a trivial cofibration in 2Grpd since by the closed model structure the class 
of trivial cofibrations is closed under these operations. Lemma 6.1 then gives that the 

N-image of this arrow is a weak equivalence in sSets, as was needed. 
Concluding: 

Theorem 6.4. There is a closed model structure on the category of sheaves of 2- 

groupoids on (Cc, .I), where the weak equivalences are arrows for which the 2-categor- 
ical nerve is a weak equivalence of simplicial sheaves. 

6.3. A Mac Lane-Whitehead result 

One of the first results on classification of finite homotopy types occurred in [25], 
where it was shown that homotopy 2-types can be classified by what is there called 
algebraic 3-types. As a consequence of Theorem 6.4 I will give the sheaf analogon of 
this result in terms of 2-groupoids: sheaves of 2-groupoids classify homotopy 2-types 
of sheaves. 
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Theorem 6.5. The functors W and N induce adjoint functors 

Ho(&) + Ho(2Grpd(E)). 

W and B induce an equivalence of categories between the full subcategory of Ho(sE) 
given by those simplicial sheaves X for which r,,(X) = 0 for every n > 2, and 
Ho(2Grpd(l)). 

Proof. The first statement is a straightforward application of Lemma 2.1: W preserves 
cofibrations by a formal lifting argument and weak equivalences by Lemma 6.3 and the 
Barr-cover argument, and N preserves fibrations and weak equivalences by definition. 
For the second part, note that W lands in the full subcategory of SE given by those 
simplicial sheaves X for which r,,(X) = 0 for every n > 2 since for g a 2-groupoid 
N(Q) is coskeletal, hence has trivial homotopy, above dimension 2. When the adjunction 
is restricted to this subcategory the unit becomes a weak equivalence by Lemma 6.2 
and the Barr-cover argument, and the counit is then also a weak equivalence: apply 
axiom CM2 to one of the triangular identities. So on the level of homotopy categories 
the restricted adjunction becomes an equivalence of categories. 0 

7. Application 2: Bisimplicial sheaves 

The second application I will give is the transferring of the closed model structure on 

SE to the category bis& of bisimplicial sheaves on (Cc, J) , in other words, of bisimplicial 
objects in &, using the closed model structure on the category of bisimplicial sets in 

v71. 

7.1. Bisimplicial sets 

I will recall some results from [ 271. 
The diagonal 6 : A -+ A x A induces an adjoint functor pair 

6’ 
Sets S bisSets 

a! 

where 6* is given by composition with S. The left adjoint functor S! is completely 
determined by the images of the standard simplices A[ n] , which are given by 

h(A[nl)=A[n,nl ~ffA~A)(-,([nl,[nl)). (3) 

In [27] a closed model structure on bisSets is defined essentially via Theorem 3.3. 
Indeed, weak equivalences, fibrations and cofibrations are defined as in Definition 3.1, 
and it is proven that 

Lemma 7.1. 6! sends Ak [ n] L-) A[ n] to a trivial co$bration in bisSets . Cl 
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7.2. Applying Theorem 3.3 

I will now show that for bisimplicial sheaves on (C, J) Theorem 3.3 can be applied. 
Being a topos over Sets the category bisE has finite limits and all colimits. 

The diagonal 6 : A -+ A x A induces for every Grothendieck topos & an adjoint 
functor pair 

S’ 
SE - bis& - . 

and a further right adjoint 6, to 6*, hence 6* preserves all colimits, which implies that 
S! preserves A-smallness. 

It remains to be shown that every arrow in s& which is the 6*-image of a transfinite 
composition of pushouts of coproducts of arrows S!(f) with f a trivial cofibration 
in SE is a weak equivalence in SE. The constructions of the functors S! and 6* are 
geometrical: S*(X), = X,,, and S!(X) = ~“A[n,n] x X, = (Un>OA[n,n] x X,)/w 
for a suitable equivalence relation N. Applying the Barr-cover argument again, an arrow 
in SE constructed using finite limits and colimits and the functors S! and S* is a weak 

equivalence in SE if the corresponding construction in sSets yields one. Thus it suffices 
to show that every arrow in sSets which is the 6*-image of a transfinite composition of 
pushouts of coproducts of arrows 8!( f) with f a trivial cofibration in sSets is a weak 
equivalence. 

Starting with a trivial cofibration in sSets, it can be written as a transfinite composition 
of pushouts of coproducts of horn-inclusions since the horn-inclusions generate the class 
of trivial cofibrations. Lemma 7.1 gives that 6! of such a horn-inclusion is a trivial 
cofibration in bissets. By the closed model structure on bisSets the class of trivial 
cofibrations is closed under coproducts, pushouts and transfinite composition, which not 
only implies that 6! of the original arrow is a trivial cofibration in bisSets, but also, using 
that S! preserves colimits, that every transfinite composition of pushouts of coproducts 
of such arrows is again a trivial cofibration. By definition of the weak equivalences in 
bisSets the S*-images of these arrows are weak equivalences in sSets, as was needed. 

Concluding: 

Theorem 7.2. There is a closed model structure on the category of bisimplicial sheaves 
on (UI, J) , where the weak equivalences are arrows for which the diagonal is a weak 
equivalence of simplicial sheaves. 

7.3. Classifying homotopy with bisimplicial sheaves 

To compare the homotopy category of bisimplicial sheaves with the homotopy cate- 
gory of simplicial sheaves one more property of the functor S! will be needed. 

Lemma 7.3. The functor 6! : SE -+ bisE preserves weak equivalences between coJibrant 
objects. 
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Proof. Consider a weak equivalence X --) Y between cofibrant objects in s&. Factor 
it as p o i where i is a trivial cofibration and p a fibration. Because of the closed 

model structure on bis& and the preservation of fibrations by S’ the functor S! preserves 
trivial cofibrations, so S!(i) is a weak equivalence. To see that 6!(p) is also a weak 
equivalence, find a dotted lifting in 

which exists because Y is cofibrant and p is a trivial fibration by axiom CM2. Since p’ is 
a right inverse it is a monomorphism, i.e., a cofibration in sE, and it is a weak equivalence 
by axiom CM2. Therefore, &(p’) is a weak equivalence, and since S!(p) o 6!(p’) = id 
axiom CM2 again implies that L%(p) is a weak equivalence as well. El 

Theorem 7.4. The functors S! and S* induce an equivalence of homotopy categories 
6’ 

HOW) 61 c=- Ho(bisE). 
i 

Proof. 6! preserves cofibrations by the same formal lifting argument as in the proof 

of Theorem 6.5, and weak equivalences between cofibrant objects by Lemma 7.3. S 
preserves fibrations and weak equivalences by definition. Applying Lemma 2.1 gives 
that 6! and S’ induce adjoint functors 4 and E between the homotopy categories. 

In [27] Moerdijk has shown that 6* and S, induce an equivalence of homotopy 
categories. Because adjoints are unique up to isomorphism, 4 is isomorphic to the 
functor induces by S,, which implies that & and E also give an equivalence of homotopy 

categories. Cl 

8. Application 3: Simplicial sheaves of groupoids 

The third application I will give is the transferring of the closed model structure on 
SE to the category sGrpd(E) of simplicial sheaves of groupoids on (C, J), in other 
words, of simplicial groupoids in E, via bisE. This is much more practical than trying 
to transfer the closed model structure on bisE directly, since then one has to prove for 
example that this closed model structure is generated, which is not necessary in the 
present approach. Note that there is no assumption on the simplicial sheaf of objects of 
the groupoid, contrary to [6], where it is assumed that the simplicial set of objects of 
any simplicial groupoid is discrete, thus is in fact a simplicially enriched groupoid. 

8.1. Simplicial groupoids 

I will say nothing here about the closed model structure on the category SGrpd of 
simplicial groupoids since it will not be used in the sequel. Instead, I will collect a few 
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things that will be used in this section, among which a brief recall of two other closed 
model structures on bisimplicial sets, and of one on presheaves of groupoids. The reader 
is referred to the forthcoming paper [5] for details about the closed model structure on 
simplicial groupoids. 

There are adjoint functor pairs 
6’ N 

sSets . bisSets 
6! 

_ sGrpd 
n 

where 6* and 6! are as in the previous section, and N and n are the dimensionwise 
(say vertical) nerve and fundamental groupoid, respectively. The composite S* o N is 
the “classifying space” functor, and will be denoted by B. The composite 170 61 will be 
denoted by P. 

The closed model structure on simplicial sheaves of Section 5 also gives a closed 
model structure on simplicial presheaves, of course. In particular, this gives two closed 
model structures on bisimplicial sets, a “vertical” and a “horizontal” one, by considering 
bisimplicial sets as simplicial objects in the presheaf category of simplicial sets, in the 
two possible directions. Since global and local weak equivalences coincide, an arrow 
in bisSets is a weak equivalence in the vertical (resp. horizontal) structure iff it is for 
every horizontal (resp. vertical) dimension a weak equivalence of simplicial sets. In 
both structures the cofibrations are monomorphisms of bisimplicial sets. 

In [ l] it is shown that there is a remarkable relation between the weak equivalences 
in the horizontal and vertical structures, and the weak equivalences in the “diagonal” 
structure in Section 7: 

Lemma 8.1. lf f : X -3 Y is an arrow in bisSets such that f,,,. : X,,. --) Y,,. is a 
weak equivalence in sSets for each n, then S*(f) : S*(X) --+ 6*(Y) is also a weak 
equivalence. 0 

The category of (pre)sheaves of groupoids enjoys a closed model structure with in- 
ternal categorical equivalences of groupoids as weak equivalences, as shown in 1201. 
The nerve functor N : Grpd(&) --f SE sends these weak equivalences to weak equiva- 
lences of simplicial (pre) sheaves. The cofibrations in this structure are the arrows whose 
object part is a monomorphism, which together with the full & faithfulness of weak 
equivalences implies that trivial cofibrations are always monomorphisms. 

8.2. Applying Theorem 3.3 

I will now show that for simplicial sheaves of groupoids on (Cc, J) Theorem 3.3 can 
be applied. The category sGrpd(&) has all colimits and finite limits since the category 
of sheaves of groupoids has them and colimits and finite limits of simplicial objects are 
pointwise. 

As before, the geometric nature of the adjoint functors P and B gives an adjoint 
functor pair 

B - 
P 
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As in Section 6 the nerve functor can be expressed by finite limits, which implies that 
N preserves filtered colimits. Together with the preservation of colimits by S* as shown 
in Section 7 this gives that P preserves A-smallness. 

It remains to be shown that every arrow in sGrpd( E) which is a transfinite composition 
of pushouts of coproducts of arrows P(f) with f a trivial cofibration in s& is a 
weak equivalence in sGrpd(l). By arguments as before this can be done using the 
Barr-cover argument: weak equivalences are geometrical, and P and B are constructed 
geometrically. Hence it suffices to show that every arrow in &Jets which is the B-image 
of a transfinite composition of pushouts of coproducts of arrows P(f) with f a trivial 
cofibration in &eta is a weak equivalence. To do this I will use an argument from [5] 
which exploits the closed model structures recalled above. 

Starting with a trivial cofibration in sSets, it can be written as a transfinite composition 
of pushouts of coproducts of horn-inclusions. It therefore suffices, since P preserves 
colimits and since a pushout of a transfinite composition is a transfinite composition of 
pushouts, to prove the above for arrows f which are horn-inclusions. Denote by T, the 
antidiscrete groupoid on n points, i.e., with exactly one arrow between any two points. 
From the description in [ 271 of S! (k[ n] ) it follows that for fixed horizontal dimension 
1 the monomorphism P( Ak [ n] ) I L--$ P (A [ n] ) [ of groupoids is given by 

II T 4l - LI T II+19 
o:[ll-,“I 

im(olU{k}+[~~l 
a:[l]+[n] 

n if #(im(a) U k) = n, 
n, = 

n + 1 if #(im( cu) U k) < n. 

Factor P(Ak[n]) - P(A[n]) as 

LI T n, - II T n+l - LI 
T n+l- 

oEAk ttt1 crGl’[nl aWnI 

The first part of this factorization is a trivial cofibration of internal groupoids in sSets 
because Tn, is a deformation retract of Tn+l and a coproduct of trivial cofibrations is again 
one. It therefore has the property, by the closed model structure on Grpd(sSet.s), that 
every pushout of it is a trivial cofibration of internal groupoids as well, Since the nerve 
functor N : Grpd(sSets) + s(sSets), which is in fact nothing but the dimensionwise 
nerve, preserves monomotphisms and weak equivalences, N of such a pushout is a 
trivial cofibration in s(sSets), i.e., is a trivial cofibration in the vertical structure on 
bisimplicial sets. 

N of the second part of the factorization above can also be written as 

LI nkbl - u A[nl 
SN(T,t+I) xEN(T.+I) 

which is a trivial cofibration of simplicial objects in sSets. Considering a pushout of the 
second part, this pushout is preserved by N since N commutes with coproducts. There- 



SE. Crans/Journal of Pure and Applied Algebra 101 (1995) 35-57 51 

fore, by the closed model structure on s(sSets), N of this pushout is a trivial cofibration 
in s(sSets), i.e., is a trivial cofibration in the horizontuf structure on bisimplicial sets. 

So NsendsanypushoutofthemonomorphismP(A’[n]) ~P(d[n]) toanarrowin 
bisSets which is a composite of a vertical and a horizontal trivial cofibration of bisimpli- 
cial sets. Considering a transfinite composition of those, S’ sends it, since S’ preserves 
colimits and monomorphisms and sends vertical and horizontal weak equivalences of 
bisimplicial sets to weak equivalences of simplicial sets by Lemma 8.1, to a transfinite 
composition of trivial cofibrations of simplicial sets. By the closed model structure on 
sSets this is a trivia1 cofibration as well, in particular, it is a weak equivalence in &eta, 

as was needed. 

Concluding: 

Theorem 8.2. There is a closed model structure on the category of simplicial sheaves 
of groupoids on (@, J) , where the weak equivalences are arrows for which the diagonal 
of the dimensionwise nerve is a weak equivalence of simplicial sheaves. 

8.3. Classifying honwtopy with simplicial sheaves of groupoids 

As in the previous cases, the homotopy category of simplicial sheaves of groupoids 
can be compared with the homotopy category of simplicial sheaves. 

Theorem 83. The functors P and B induce an equivalence of homotopy categories 

Ho(sE) + Ho(arpd(E) ). 

Proof. By arguments as before P preserves cofibrations, and weak equivalences between 
cofibrant objects because the proof of Lemma 7.3 goes through without change. B 
preserves fibrations and weak equivalences by definition. Applying Lemma 2.1 gives 
that P and B induce adjoint functors between the homotopy categories. This adjointness 
is an equivalence of categories if both unit and counit are weak equivalences. 

By definition, cg : PB(G) + Q is a weak equivalence if B(EG) : BPB(G) ---) B(6) 
is. By one of the triangular identities this map is left inverse to v~(g) : B(G) --+ 
BPB( G), so axiom CM2 gives that if the unit is a weak equivalence, the counit is too. 

To show that the unit vx : X -+ BP(X) is a weak equivalence, observe that X = 

Bdis( X), where dis : SE --t sGrpd(E) sends a simplicial object to the discrete sim- 

plicial groupoid on it, and consider the map E&(X) : P(X) = PBdis(X) -+ dis( X). 
B of this map is left inverse to ‘&‘Sdis(X) = 73~ by the same triangular identity. So 

by axiom CM2 it now suffices to show that e&(X) : P(X) + dis(X) is a weak 
equivalence in sGrpd(&). But for every Y E SE one has sGrpd(E)(P(X),dis(Y)) 2’ 
s&(X, Bdis(Y)) = sE(X,Y) 2 sGrpd(&)(dis(X),dis(Y)), and because every object of 
sGrpd( E) is weakly equivalent to a discrete one (see [20] ), this implies that &&s(X) : 
P(X) - dis(X) induces an isomorphism in the homotopy category, i.e., that it is a 
weak equivalence, as required. 0 
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The last argument in this proof, namely that P(X) -+ dis( X) is a weak equivalence, 
also implies that P and dis induce isomorphic functors between the homotopy categories. 
Thus, the above is an alternative proof of the result in [21] that dis and (-)O (which is 
taking the simplicial object of objects of a simplicial groupoid) induce an equivalence 
of homotopy categories. 

Appendix A. A-small sheaves 

There are three important facts that make Quillen’s small object argument (see [29, 
Lemma 3, Section II.3 ] ) work. The first one is that the category of topological spaces 
has countable colimits of chains. The second one is that the (trivial) fibrations are 
characterized by the right lifting property with respect to a set of maps {CU + CA 1 

u E 2:) where each C, is “small”. The third one is that those small objects C, have 
the property that cC( C,, -) preserves countable colimits of chains. 

To apply such a small object argument when working with a category of sheaves some 
adaptations must be made. For example, in the category of simplicial sets small objects 
are finitely generated, but what is the correct analogue of finiteness in the category of 
simplicial sheaves in this case? This also implies that countable colimits of chains might 
not be sufficient. And to obtain a characterization of the (trivial) fibrations as above 
some geometric (see Section 6) construction of small objects must yield a small object. 

In [ 18 ] these problems are solved by defining A-smallness essentially as A-sequentially 
small (in fact, as A-presentable, see [ 261)) taking some large enough infinite regular 
cardinal A and showing that the class of A-small objects satisfies the needed closure 
properties. I will define A-smallness via cardinality, which immediately implies some of 
the properties, and then show that for large enough infinite regular A the A-small objects 
are A-sequentially small and satisfy also the remaining properties. 

A.l. A-smallness 

Definition A.l. Let CG be a category and J a basis for a Grothendieck topology on 
@. Let A be an infinite regular cardinal. A sheaf X on the site (UZ, J) is A-small if 
there exists a set S = {y 1 y E X(Cy)} of cardinality less than A such that the presheaf 
Y : Cc -+ Sets which is given on objects by Y(C) = {x E X(C) 1 x = y ]c for some y E 
S, c : C --) C,} is a dense subpresheaf of X. 

The reason for defining A-smallness this way instead of as in [ 181 is that this 
definition is the direct generalization to sheaves of the notion of a set of cardinality less 
than A. The disadvantage of this definition is that it defines A-smallness in terms of the 
site, rather than in terms of the topos, as is done in [ 181. For large enough A, however, 
both definitions will appear to be the same (Theorem A.8). Note that this large enough 
A may be smaller than the A chosen in [ 181. 
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Now fix a site (@, J) and an infinite regular cardinal A. A first property of the set of 

A-small sheaves on (@, J) is the following (cf. [ 9, 6.2 Satz] ) : 

Lemma A.2. A colimit of a collection of cardinality less than A consisting of A-small 
sheaves is again A-small. 

Proof. Let {XI}I~~ an II-indexed collection of A-small sheaves on (@, J), with 11 a 

category with less than A many objects. Since every XI is A-small there exist sets 

S/ = {y ) y E Xr(C,>} of cardinality less than A such that for each I E II the presheaf 

Y/(C) = {x E X/(C) I x = y lc for some y E SI, c : C -+ C,} is a dense subpresheaf 

ofX,.TakeSi={i,(y) 1 i : I’ -+ I, y E S/t ( Cy>}, which not necessarily has cardinality 

less than A, and Y/ likewise. This way each &’ is still a dense subpresheaf of X, and 

moreover {Y/}I~I is an n-indexed collection of presheaves on @. Because sheafitication, 

denoted by a, commutes with colimits X = hrir = liir_( Y;> = a(lii~;), so 1~l1/ is 

a dense subpresheaf of X. Now take S = {[y] 1 y E S, for some I E li}, which does 

have cardinality less than A by the assumption on II and by infinite regularity of A. Then 

(liirYI)(C) = hrir(U;(C)) = {[y] ( y E c(C) for some I E ll} = {[(i*(y)) [cl ( c : 

C + C,, [y] E S, for some I E ll} = {[y] tc 1 c : C + C,, [y] E S}, which shows 

that X is again A-small. 0 

The A-small sheaves generate the topos Sh(@, J), in the sense that: 

Lemma A.3. Every sheaf on (@, J) is A-filtered union of its A-small subsheaves. 

Proof. Let X be a sheaf on (@, J), and let {XI}K~ be the collection of A-small 

subsheaves of X. A-filteredness if I[ is immediate from lemma A.2, so it remains to show 

X = 1~i1X,. To this end, consider for each x E X(C,) the A-small subsheaf 2, of X 

with S = {x} and Y,(C) = {x [c 1 c : C + Cx}. Now U{S I x E X(G)} = U{a(W 1 

x E X( C,)} = ~(&,.,,{Yx 1 x E X(C,>}> = a(X) = X, from which it follows that X is 

the A-filtered union of its A-small subsheaves. Cl 

In the terminology of [26], this lemma implies that the category Sh( @, J) is A- 

accessible for every A. 

A.2. Condition on A 

From now on I will assume that A is such that for every object C of @ the set 

LI C,EC @(C’, C) has cardinality less than A. This assumption on A is somewhat stronger 

than needed for each one of the following extra properties of A-small sheaves, but since 

I will need all of them in order to apply a small object argument and since A can always 

be chosen larger than necessary this causes no problems. 

With this extra assumption A-smallness can be characterized as follows: 
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Lemma A.4 Let A be such that for every object C of UZ the set &,Ec @(C’, C) 
has cardinality less than A. Then a sheaf X on (U2, J) is A-small iff X has a dense 
subpresheaf Y such that the cardinal&y of each of the sets Y(C) is less than A, and 
non-empty for only less than A many C E (II. 

Proof. If X satisfies the right-hand side, take S = &_c Y(C). Conversely, if X is 

A-small with S and Y showing this, then because the site is of local weight less than 

A the set S can be extended with all restrictions of elements of S without raising its 

cardinality. But then S = J’&,@ Y(C), and the given condition on Y follows. 0 

A.3. Properties 

In general, a subsheaf of a A-small sheaf need not be A-small, as the following 

example shows. Let @ be the category with as objects the ordinals less than or equal 

to A, and for every K < A an arrow K + A. Let J be the minimal topology, and X the 

sheaf on (Cc, J) defined by X(C) = {*} f or every C E Cc. Then clearly X is A-small 

(take S = {* ) * E X(A)}), but the subsheaf Y(C) = {* 1 C < A} is not. 

With the extra assumption on A, however, the set of A-small sheaves does have that 

property: 

Lemma A.5 Assume that A satisjes the extra assumption. Then every subsheaf of a 
A-small sheaf is again A-small. 

Proof. Let W be a subsheaf of the A-small sheaf X on (C, 1). By Lemma A.4 X has 

a dense subpresheaf Y with only less than A many non-empty Y(C), each of which 

has cardinality less than A. Now W fl Y is a dense subpresheaf of W since a( W fl Y) = 
a(W) ncz(Y) = WnX = W, and because (WnY)(C) C Y(C) for every C E Cc: the 

sets (W n Y) (C) have cardinality less than A, and are non-empty for only less than A 

many C. Lemma A.4 again implies that W is indeed A-small. Cl 

In general, the product of two A-small sheaves need not be A-small, as the following 

example shows. Let @ be the category with two objects 0 and 1, and A many arrows from 

1 to 0. Let J be the minimal topology, X the sheaf on (C, J) defined by X( 1) = {*}, 

X(0) = A, and X’ the sheaf on (C, J) defined by X( 1) = 8, X(0) = (0). Clearly X and 

X’ are A-small (take S = {* 1 * E X( 1)) and S’ = (0 10 E X’(O)}), but X x X’ is not. 

With the extra assumption on A, however, the set of A-small sheaves does have that 

property: 

Lemma A.6 Assume that A satisfies the extra assumption. Then the product of two 
A-small sheaves on (@, J) is again A-small. 

Proof. Let X and X’ be A-small sheaves on (@, J), thus, by Lemma A.4, having dense 

subpresheaves Y and Y’ respectively such that Y(C) and Y’(C) are non-empty for less 

than A many C and have cardinality less than A. Then X x X’ has a dense subpresheaf 
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Y x Y’, there are only less than A many non-empty sets Y(C) x Y’(C), and each one 

of those has cardinality less than A2 = A. 0 

A.4. Characterization 

Before comparing A-small sheaves as defined here with A-smallness as defined in 

[ 181 the following is needed about A-filtered colimits of sheaves. 

Lemma A.7. Assume that A satis$es the extra assumption. Then A-filtered colimits in 
Sh(@, J) can be calculated pointwise. 

Proof. Standard sheaf arguments. •I 

With this lemma: 

Theorem A.& Let (Cc, J) be a site, and let A be an infinite regular cardinal such that 
for every object C of @ the set uctE@ @(Cl, C) has cardinulity less than A. Then a 
sheaf X on (Cc, J) is A-small ifl Sh( @, J) (X, -) preserves A-$ltered colimits. 

Proof. Suppose X is A-small with Y as in Lemma A.4, and let {Z,}I~~ be an I-indexed 

collection of sheaves on (@, J), with II a A-filtered category, and with colimit Z. There 

is a canonical map 40 : l$Sh(@, J)(X, Z,) + Sh(@, J)(X,Z) given by q$[f, : X -+ 

Z, ] ) = pi o f 1, where p/ is the colimit injection Z, -+ Z. 

To prove Q to be surjective, let f : X -+ Z be a sheaf morphism. For y E Y (C_,.), 

suppose fc, (y) = [z,] with zI E Z,, ( Cr), using the description of Lemma A.7 for the 

A-filtered colimit Z. Since there are less than A many y’s to be considered there is, by 

A-filteredness of II, an 1~ majoring all Ir’s. Now every [z,] can be represented by an 

element of ZG CC,), which implies that the presheaf map f TV : Y --) Z factors through 

ZI,. But X is the associated sheaf of Y and Z,, is a sheaf so f also factors through Z/r. 

To prove (p to be injective, let [ f, : X -+ Z, ] and [fir : X --t Z,, ] both have q-image 

f : X + Z. This means, again using Lemma A.7, that for all x E X(C,) the elements 

of Z represented by ( ft )c, (x) and (fit ) C, (x) are equal, which by filteredness of II 

comes down to the existence of a diagram 

in II such that (Zi)c,((f,)c,(x)) = (Zit)c,((f/r)c,(x)). In particular, this holds for 

every y E Y( C!), Since there are less than A many y’s to be considered there exists, by 

A-filteredness of II, a cocone Zy for the diagram consisting of I, I’ and all I,, say with 

maps iy : I --$ Iy and ik : I’ + ly in II. Now (Zj, of,) ry = (Zi; o fp) ry, and because 

X is the associated sheaf of Y and ZI, is a sheaf also Zi, of, = Z;; o fit, in other words, 

If/l = [f//l. 
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Conversely, suppose X satisfies the right-hand side of the statement in the proposition. 
By Lemma A.3, X = hrir with {X } I 1~1 the collection of A-small subsheaves of X. 

Now Sh(C,J)(X,X) = Sh(C,/)(X,liiIX,) = liin+r Sh(C, J) (X, XI). In particular, id : 

X -+ X factors through a certain XI, which implies, because Xl is a subsheaf of X, that 
X g XI, in other words, that X is A-small. Cl 

This proposition gives that for A large enough the definition of A-smallness given 
here agrees with the one in [ 181, which means that for such A the A-small objects are 
A-sequentially small, which can be used to do a “A-small object argument”. Because of 
this observation there is no harm in confusing /\-smallness and A-sequential smallness, 
especially when there is no sheaf in sight, as in Sections 3 and 4. 
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