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Let Top be the category of compactly generated topological spaces and continuous
maps. The category, Top, can be given the structure of a simplicially enriched category
(or S-category, S being the category of simplicial sets). For A a small category, Vogt
(in [22]) constructed a category, Coh(A, Top), of homotopy coherent A-indexed
diagrams in Top and homotopy classes of homotopy coherent maps, and proved a
theorem identifying this as being equivalent to Ho (Top*), the category obtained from
the category of commutative A-indexed diagrams by localizing with respect to the
level homotopy equivalences. Thus one of the important consequences of Vogt's
result is that it provides concrete coherent models for the formal composites of maps
and formal inverses of level homotopy equivalences which are the maps in Ho (Top*).
The usefulness of such models and in general of Vogt's results is shown in the series of
notes [14-17] by the second author in which these results are applied to give an
obstruction theory applicable in prohomotopy theory.

Vogt's proof is quite difficult to follow as it relies very heavily on results from his
work with Boardman[l]. In this paper, we give a simplification of Vogt's proof. Our
proof replaces Vogt's Top-enriched categorical methods by simplicially enriched
methods. This allows us not only to generalize Vogt's theorem to handle other S-
categories than Top but also to distinguish between two parts of the proof. Each
distinct part uses different properties of the S-category being considered. (It should
be noted that whilst Vogt uses the monoid multiplication tx*t2 = txt2 on [0,1], our
results being simplicial use the alternative form t1 * t% = sup (tlt t2).)

From the first author's description of Coh (A, Top) (given in [6]), one obtains a
generalization Coh (A, Bs) for any S-category B s . This category Coh (A, Bs) is defined
to be the category associated to the simplicial class S-Cat (S(A), Bs) where S(A) is a
certain comonad simplicial resolution of A. There is a natural functor

y:BA->Coh(A,Bs)

sending an actually commutative diagram to itself considered as a homotopy coherent
diagram. (More details are given in the first section.)

The first part shows that y inverts level homotopy equivalences in BA. By a level
homotopy equivalence, we mean a map/ : Jf-> Y in BA so that, for each object i in A,
the map f(i): X(i)^> Y(i) is a homotopy equivalence. Thus each/(i) will have a
homotopy inverse g{i) but these (g(i): Y(i) -+ X(i)) will usually not be natural, i.e. they
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66 JEAN-MARC CORDIEB AND TIMOTHY PORTER

will not give us a map g: Y-^-X in BA. We prove that the g(i) do give one a coherent
map from X to Y, in fact we prove more (see Theorem 1-1 for a detailed statement):
if f: X-+Y is a coherent map between coherent diagrams X and Y of type A (that is a
diagram of form A x [1] agreeing with X and with Y on Ax {0} and A x {1} respectively)
and if each f(i): X(i)-> Y{i) is a homotopy equivalence, then there is a coherent map,
g: Y-+X, homotopy inverse to fin Coh (A, Bs).

Our proof depends on filling arguments and so it needs the assumption that B s is
' locally Kan', i.e. that each horn simplicial set Bs (X, Y) is a Kan complex. This means
that this part of the result does not apply to S itself but does apply to categories of
spaces, Kan complexes, simplicial modules, chain complexes, crossed complexes and
probably also to Cat71 (Groups). It will also apply to categories of commutative
diagrams in the above cases.

The second part uses an adaptation of a construction of Graeme Segal to 'rigidify'
a coherent diagram; that is to say, given a homotopy coherent A-indexed diagram X,
we construct a commutative diagram X indexed by A and a coherent map

X-+X

such that for each object A of A, the corresponding

is a homotopy equivalence. The construction requires that Bg be complete or co-
complete, but in fact in the useful case of Bg = Kan, the category of Kan complexes, a
short additional argument shows that if X is a coherent diagram of Kan complexes,
so is X, and hence the rigidification works in this case even though Kan is not
complete.

Using this construction together with the results of the previous section one shows
that the induced functor

y*:Ho(BA)->Coh(A,Bs)

is an equivalence of categories (thus generalizing Vogt's result for the case Bg = Top).
The rigidification construction is a type of homotopy coherent Kan extension. Such

constructions have been mentioned in the literature, e.g. by Heller[24], but we were
unable to find a reference which handled our particular case in a detailed enough way.
We therefore include the details for completeness. In fact the theory of coherent Kan
extensions (as opposed to homotopy Kan extensions) is little represented in the
literature. A detailed treatment of their general theory is in preparation.

Finally we should briefly mention a recent preprint of Dwyer and Kan [23] received
after the first version of this paper was written. They prove, amongst other things,
results linking localized categories Ho (SA) and Ho (SS(A)) (in our notation), but where
localization is with respect to level weak equivalences, not level homotopy equiv-
alences. Their results therefore do not give them information on homotopy coherent
diagrams, although it may be possible to deduce special cases of our generalized form
of Vogt's theorem from their results.

Throughout the paper we will use the language of enriched category theory. A useful
reference for this theory is Kelly [11].

We would like to thank the referee for helpful advice which improved the pres-
entation of our results.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004100065877
Downloaded from https://www.cambridge.org/core. Eastman School of Music, on 27 Jun 2018 at 19:19:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004100065877
https://www.cambridge.org/core


VogVs theorem on categories of homotopy coherent diagrams 67

1. Descriptions of homotopy coherence

We start with a brief introduction to homotopy coherence, as this is quite hard to
find in the literature.

The intuitive idea of a homotopy coherent diagram is best illustrated by a sequence
of interrelated examples, namely the n-simplices for different n. Recall that the
category [n] has as objects the integers {0,1, ...,n) and has a unique map, (ij), from
i toj if i ^ j . Thus we get:

[0] has a single morphism.
[1] looks like

0->l
together with, of course, identities at 0 and 1.

[2] is likewise

(01)

(02)

where the composite of the morphism (01) with (12) is (02) and so on.
Diagrams in Top of type [0] and [1] are, of course, respectively spaces and maps. At

n = 2, the first homotopy phenomenon can occur; a diagram of type [2] in Top

consists of three spaces F(0), F(l) and F(2) and maps F(01), F(12), andi^(02) such that
F(02) = F(12)F(01).

A homotopy commutative diagram of type [2] has the same data as this but one
merely requires that F( 12) .F(01) is homotopic to F(02); a homotopy coherent diagram
of type [2] in addition specifies the homotopy

F(012):F(0)xI-+F(2)
such that

F(012) (x, 1) = ^(12)^(01) (x)
and

.F(012) (a;, 0) = F(02) (x)

for all xeF(0), I = [0,1] being the unit interval.
The full significance of the difference between homotopy commutative and homo-

topy coherent is evident when one considers n = 3.
For n = 2, we now have a diagram

: F(2);
F(02)

for n = 3 we thus already have a diagram
3-2
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68 JEAN-MARC COEDIEB AND TIMOTHY PORTER

#(0)

#(2)
plus a homotopy #(013) on the back face of the simplex. More precisely, we have
homotopies

#(012):#(0)xJ->#(2), #(012): F(02) ~#(12)#(01),

#(013): F(Q) x /->#(3), #(013): #(03) ~ #(13)#(01),

^(023): F(0) x I-+F&), F(023): F(03) ~ ^(23)^(02),

^(123): F(l)xl-+F(3), #(123): #(13) ~ F(23)F(12).

These are composable as follows:

and

#(023) #(23) #(012)
#(03) ~ #(23) #(02) ~ #(23) #(12) #(01)

#(013) #(123)(#(01)xi)
#(03) ~ #(13) #(01) ~ #(23) #(12) #(01).

These compositions may be conveniently schematized in a face diagram square

(23)(012)
(23) (02) ,

(023)

(03)

»(23) (12) (01)

(123)(01)

(013)
*J(13)(01)

For homotopy coherence, we need a homotopy between the composed homotopies,
i.e. a map

#(0123):#(0)x72^#(3)
'filling in' the square.

For n = 4, the actual diagram is more difficult to make precise, but the face diagram
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VogVs theorem on categories of homotopy coherent diagrams 69

(a cube with one commuting face) can still be drawn. Apart from its faces all of which
compose well, one needs an additional

^(01234): ^(0)xi3->Jf(4)

linking these composites - and so on.
Clearly one might attempt some sort of inductive definition using the face diagrams

of higher dimensional simplices; however, this would seem to be technically very
difficult and it is better to approach the general case in one go. This is what Vogt does
in [21].

There is a formal similarity between the chains of composable maps used by Vogt
and the bar construction of the comonad free simplicial group resolution used in group
cohomology. This leads one to consider the analogue for (small) categories (which are,
in any case, 'merely' monoids with many objects).

From the category Cat of small categories, there is an obvious forgetful functor to
the category of directed graphs with distinguished loops at the vertices. The free
category construction gives a left adjoint to this forgetful functor and together they
induce a comonad on Cat (cf. Mac Lane [13] for the basic ideas behind monads and
comonads). This in turn yields an S-category S(A) together with an augmentation
functor

which for each pair (A, B) of objects of A gives a homotopy equivalence of simplicial
sets

S(A){A,B)-+K(A(A,B),0)
where K(A(A,B),0) is the simplicial set with K(A(A,B),0)0 = A(A,B) and all
«-simplexes with n > 0 degenerate.

In [6] one finds a proof that coherent diagrams of type A a la Vogt correspond
precisely to S-functors

S(A) -+Top8.

The 'secret' behind the success of S(A) in capturing coherence phenomena may be
seen as follows:

S(A)0 consists of composable chains of maps in A, none of which is the identity.
S(A)X consists of composable chains of maps in S(A)0, none of which is the identity,

and hence can be considered as consisting of chains of maps in A together with a choice
of bracketing.

To see this let us examine A = [3]. S([3]) (0, 3)0 for instance is the set

{(03), (01,13), (02,23), (01,12,23)}
whilst

S([3]) (0, 3)x = {((01,13)), ((01), (12,23)), ((02,23)), ((01,12)), (23)), ((01,12, 23))}

plus degenerate simplices. (Think of words in the generators of a group giving a free
group and then words in these words giving the next level of a resolution, and so on.)

It is an instructive exercise to calculate S(A) for A = [ri], n = 2,3,4 say, and to
check that this does tally with our ' intuitive' description. The case A = [3] is handled
in some detail in our notes [7].

Since we now have a simplicial description of homotopy coherence, it seems a good
idea to use this as a basis for a general definition.
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70 JEAST-MARC CORDIER AND TIMOTHY PORTER

Let Bs be an S-category and A a small category. A homotopy coherent diagram of
type A in B s is an S-functor from S(A) to Bs. (This is equivalent to specifying a
simplicial map from Ner (A), the nerve of A, to Nerh c (Bs), the homotopy coherent
nerve of Bs (see [6] and Section 2 below for details on Nerh c (Bs).)

Remark. It is worth remarking that in general the naive description, even for
A = [3], may not quite agree with that given by this definition. The difficulty is to
know what a homotopy between homotopies should be relative to the S-category
structure of Bs. If one takes it to be a map

7x7 = A[l] x A[l] -+ Bs(F(0), F(B))

all turns out well. The slight difficulty occurs because in the square face diagram the
higher simplicial homotopies go from the middle to the sides,

and unless reverse homotopies can be defined in Bs (e.g. if Bs is locally Kan) some
difficulty in reconciling an ' exterior' view of the higher homotopies with the ' correct'
interior view may be experienced.

The following ' bare hands' description of a homotopy coherent diagram generalizes
that of Vogt to the case of an arbitrary S-category (see [6]). We start with some
notation; we work simplicially throughout.

As before / = A[l]. We let m: I2->I be the multiplicative structure on / making
it into a simplicial monoid. It is given by

m(0, 0) = 0,
m(0,1) = w(l, 0) = m(l, 1) = 1.

For any n, we write 7™ for the ra-cube, the product of n copies of I. Finally, given two
simplicial maps

g 2 s ( y , ) ,
we will denote the composition

/X<7 C

Kx x K2 — • Bs(x, y) x Bs(y, z) —> Bs(x, z)
simply by gf.

Now we can give the data for a homotopy coherent diagram
F: S(A)->BS

as follows: to each object A of A it assigns an object F(A) of Bs; for each

fo
a simplicial map

F(<r):I"->Bs(F(A),F(B))
such that

(i) if /„ = id, F(o-) = F(doa) (proj x I™'1), where proj: 7->-A[0] is the unique map
to A[0];
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Vogt's theorem on categories of homotopy coherent diagrams
(ii) if fi = id, 0 < i < n,

F(o-) = F[diCr) .(Fxmx /»-<);

71

(iii) if/n = id, F(<r) = F(dn<r) (/*-i x proj);
(iv), J((r)|(/*-i x {0} x /—*) =
(v), J(o-)|(/*-ix{l}x/-*) = i ^ )

where o< = (/0, ...,/<_!), and erj = (/„ . . . , /J, 1 < » < n - 1.
(Here we are using 8{ for the face operators in the nerve of A.)
We will need this detailed description later when discussing a homotopy coherent

analogue of the nerve construction.
Given a small category A and two homotopy coherent diagrams, F and 0, of type A

in an ^-category Bs, we want to define a coherent map,/from F to G.
Given ordinary diagrams F, G: A-^-B a natural transformation from F to G can

be considered to be a functor from A x [1] to B taking the value FonAx {(0)} and
the value of G on A x {(1)}. Thus there is an obvious way of defining a coherent map in
our more general situation.

Given coherent diagrams F, G of type A in Bs, a coherent map f: F -> G is a coherent
diagram of type A x [1] in Bs agreeing with FonAx {(0)} and with ffonAx {(1)}.

We say two coherent maps/,,,/^: F-+G are homotopic if there is a coherent diagram
H of type A x [1] x [1] in Bs agreeing with/0 on A x [1] x {(0)} and with/j on

and such that H\A x {(0)} x [1] gives the identity map on F whilst H\A x {(1)} x [1]
gives the identity map on G:

A

Remark. If Bs is locally Kan, this is equivalent to saying that there is a coherent
diagram of type A x [2] as follows:

G

As a map is a coherent diagram of type A x [1] in Bg,/can be described by a simplicial
map

/: Ner(Ax [!])-• Ner,,....^),
or since

Ner (A x [1]) ~ Ner (A) x Ner ([1])
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72 JEAN-MARC CORDIER AND TIMOTHY PORTER

by a simplicial map
/:Ner(A)xA[l]->Nerh.c.(Bs)

with agreement of/ on the ends with F and G respectively. Similarly homotopies of
coherent maps can be defined to be maps

H: Ner(A) x A[l] x A[l]->Nerh.c.(Bs)

with the obvious agreement on the sides.
Now suppose B s is locally Kan, and that

and

9-

are coherent maps. Then one clearly has a simplicial map

Ner (A) x Ax[2] -* Nerhc. (Bs)

which, since Nerh c (Bs) is weakly Kan (see Section 2 for a discussion of this), can be
extended to give

say with d0H = g, d2H = f:

We would like to take dxH as the composite of/ and g; however, this would not be
well defined, as there may be more than one extension possible. If on the other hand
we pass to homotopy classes, one easily sees that the weak Kan condition satisfied by
Nerh c (Bs) implies that

[</][/] = [<*!#]

gives a well defined composition, as any two choices of extension differ by a homotopy.
Also, this composition is associative, has identities, etc., and hence one has a category
which we will denote Coh (A, Bs), of coherent diagrams of type A and homotopy
classes of coherent maps between them.

Remark. We can view this category in a slightly different way. Recall that, given
any simplicial set K., one can construct an associated (small) category by taking chains
of 1-simplices and then adding in the relations coming from the 2-simplices. (If K. is
a weak Kan complex all chains of 1-simplices can be replaced by single 1-simplices.)
Now Nerj,c (Bs) is a simplicial class; if we form a new simplicial class S(Ner(A),
Nerhc (Bs)) of all simplicial maps from Ner (A) to Nerhc (Bs) and then form its
associated (large) category then we get exactly the category Coh (A, Bs) defined above.

Any actual commutative diagram
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Vogt's theorem on categories of homotopy coherent diagrams 73

can be considered as an S-functor (with the trivial simplicial enrichment on the
category A)

F

A—>BS

and hence it gives a composite S-functor

S(A)—>A—> = S(A)-
F,

Bs.

Any natural transformation/: F-*-G in BA = Func (A, B), the category of functors
from A to B, similarly gives rise to a coherent map/,: FS-^GS (since it can be considered
to be a functor

Thus we get a functor
y:BA->Coh(A,Bs).

Our task will be to analyse this functor y.
Firstly we notice that if/is such that y{f) is invertible (in Coh (A, Bs) then as there

will be diagrams

and

F G

(i.e. of type A x A[2]), / must satisfy the following condition:
for each object i of A,f(i): F(i)->G(i) is a homotopy equivalence.
Definition. We will say in general, that a morphism /: F->G is a level homotopy

equivalence if for each i in A the morphism/(i): F(i) -> G(i) is a homotopy equivalence
(thus adapting the terminology of Edwards-Hastings [8]).

What has just been observed is thus that if/is such that y{f) is invertible then/is
a level homotopy equivalence. What is less obvious is that the converse of this result
holds, i.e. any level homotopy equivalence is inverted by y. Because of this, writing 2
for the class of level homotopy equivalences in BA and Ho (BA) for the category
obtained by formally inverting the maps in S, one gets an induced functor

We will study this functor, producing conditions on Bs which will imply that it is
an equivalence.

Our main object in section 3 will be to prove that level homotopy equivalences are
inverted by y. In fact we will prove more.

THEOREM 1-1. Let Abe a small category, Bs a locally Kan S-category, and f: F^-G
a coherent map between coherent diagrams of type A in Bg. If for each object i in A, the
mapf(i): F(i) -+ G(i) is a homotopy equivalence, then [/] is an isomorphism in Coh (A, Bs).

Before giving the proof of this theorem, we will need to study the homotopy coherent
nerve of an S-category, introduced by the first author in [6]. In particular we will need
detailed information on the extent to which the Kan conditions are satisfied.
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74 JEAN-MARC CORDIEB AND TIMOTHY PORTER

2. The homotopy coherent nerve

Let A be a small category. Then a well known construction yields a simplicial set
called the nerve of A, explicitly

Ner(A)n = Cat([n],A).

Let B s be an S-category. We define, by analogy with the above, a homotopy coherent
nerve of Bg to be a simplicial class Nerh c (Bg) specified by

Nerh.c.(Bs)B = S-Cat(S[n],Bs).

The following result is fairly easy to check:
There is a one-to-one correspondence between S-functors

f:S(A)-*Bs
and simplicial maps

Jf:Ner(A)->Ner11.c.(Bs).

This result has as an immediate consequence the necessity of studying Nerh c (Bg) in
detail as it clearly contains more or less all the information necessary for the study of
coherent diagrams. We start by studying the extent to which it satisfies the various
Kan conditions. To explain to some extent the resulting set of theorems and to fix
notation, we shall briefly recall the statement of the analogous results for Ner (A).

Firstly the notation: if n ^ 0 then A[re] denotes the standard ^-simplex in S, which
it is convenient to view as

A[«] = horn ( — ,[%]).

For each 0 < i < n, A r̂e] denotes the subobject of A[«] given by

[re]m for 0 ^ m < n — 1
A*[n]w = A[n] - {dt} if m = n — 1

degenerate simplices if m ^ n,

where dt: \n — 1]->[n] is the increasing map missing out the element i. Of course
A?\n] is an n-simplex with its centre and ith face missing.

An (n, i) box in a simplicial set K. is a simplicial map

F:A.\n]->K..
A filler for F is a simplicial map,

F:A[n]->K.

which restricts to F on A*[?i]. We say that K. satisfies the (n, i) extension condition (of
Kan) if any (n, i)-box has a filler. K. is a weak Kan complex if it satisfies the (re, i)
extension condition for all pairs (n, i) with 0 < i < n and it is a Kan complex if, in
addition, it satisfies all (n, 0) and (w,m)-extension conditions. Thus K. is Kan if all
boxes have fillers.

Example. If A is a category, Ner (A) is a weak Kan complex. If all morphisms in A
are isomorphisms (i.e. if A is a groupoid) then Ner (A) is a Kan complex and con-
versely. In general, a box

/ : A°M->Ner(A)
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VogVs theorem on categories of homotopy coherent diagrams 75

has a filler if/(Ol) is an isomorphism and similarly any (n,n)-box vnthfln — l,n) an
isomorphism has a filler.

As suggested above, the point of this example is that a similar phenomenon occurs
with Nerh e (Bs) if Bs is locally Kan. (In fact the following results specialize down to
that of the above example when B s is a simplicial category with trivial hom simplicial
sets.)

THEOREM 2-1. / / B g is a locally Kan S-category and

is a (n, i)-box in Nerh c (Bs)for 0 < i < n, then it has a filler

(In other words if Bs is locally Kan, Nerh c (Bs) is weakly Kan.)

Proof. For any n, 1 ^ i < n and e = 0 or 1, we will denote by Jf_e the subcomplex of
IH given by

Ji.e = ' /»- in t /«- /*- 1 x{e}xi*-* '
or more precisely

Jle = 8In -7*-1 x {e} x In~\

where 8In is the simplicial boundary of In.
The map F specifies n different coherent diagrams of type [n — 1] in Bg agreeing on

suitable faces. Each of these is completely determined by what F does on its top
dimensional simplices. Thus it is as if we knew F(djO-) for all j 4= i, and hence that we
had a map <j>F defined on the union of the faces {/'-1 x {0} x /("-1)-'} of 7"-1. We also
have all the information on the F(o-'k) F(crk), as both crk and a'k are simplices of A*[»];
i.e. we know <j>F also on I*-1 x {1} x /(»-«-* for au j .

The map F thus gives us already a simplicial map

J™ o1 c* Z71"1 is a simplicial cofibration, and Hs(F(0), F(n)) is a Kan complex, so there
exists an extension

If one now puts F(8io-) = F^^I1-1 x {0} x Z"-*-1, then the identities (i),..., (v)t are
all satisfied, thus completing the proof.

If Bs = Tops, the fillers in BS(F(Q), F(n)) can be specified by choosing specific
retractions

|A[n]|-HA*[n]|,

which will then allow one to write down a specific F given F. Of course a change in
the choice of fillers, will change F.

PROPOSITION 2-2. If Bs is locally Kan and

.F:A0[n]-»"Nerlu,(Bs)

is a (n, 0)-box such that F(0) = F(l) and F(0l) is the identity on F(O), then there is a filler

_F:AM
Proof. F gives us a box
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76 JEAN-MARC CORDIER AND TIMOTHY PORTER

which extends, as before, to a map

F: I"-1-* Bs(F(0),F(n)),
and one takes

but as .F(01) = F(01) is the identity on .^(0), we are all right. (However, this does show
that, in general, one should not hope to get away so lightly!)

(' Dualizing', we get a similar result for (», w)-boxes, if F(n -1) = F(n) and F(n-l,n)
is the relevant identity.)

The question immediately arises: is there a filler for a (n, 0)-box if F(0,1) is merely a
homotopy equivalence1*

To attack this question we first look at a result which is, in some way, a converse
of it.

Let us suppose that / is a morphism in Bs, which has the property that for each
(n, 0)-box

F:
having F(0,1) = / (and let us say Bs locally Kan as well), there is a filler

F: A[n]->Nerh.c.(Bs).
What are the properties of/?

First look at n = 2:
We consider the (2,0)-box

i.e. with .F(2) = F(0). There is a filler, say

F(0)

so / has a one-sided homotopy inverse with homotopy

F(Q12): id ~ gf.

We feed this into the case n = 3 in the following (3,0)-box

F(0)
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Vogfs theorem on categories of homotopy coherent diagrams 11

with F(2) = F(0), F(S) = F(l),F(0V2) the homotopy already found, and the 1̂ (023)
and i^(013) homotopies trivial. The existence of a filler gives a homotopy

F(123): id ~fg,

so/ is a homotopy equivalence. Our face diagram gives

-F(123)/

fF(0l2)

id
so the homotopies F(123)f and /F(012) are homotopic via the homotopies involved in
^(0123). Using n = 4, one can show that 2̂ (012)gr and gr.F(123) are similarly homotopic.
Thus we have a strongly coherent set of data (/, g, i^(012), .F(123)) for this homotopy
equivalence/.

Such 'strong homotopy equivalences' seem first to have been considered by
Lashof [12]. Vogt in [21] proved that in the topological case, any homotopy equivalence
/ i s part of such a strong homotopy equivalence (/, g, H, K). Spencer [20] has considered
this in an abstract setting (proposition 2-3, p. 416). It is clear from these proofs that
the analogous result should work in any locally Kan S-category as it only needs results
about the 2-categorical structure of Top (given by spaces, maps and homotopy classes
of homotopies).

We start with the definition of homotopy equivalence in an arbitrary S-category
Bs . Although it should be clear what the definition is, it is still useful to have it
explicitly stated.

/ e BS(A, B)o is a homotopy equivalence if there is a g e BS(B,A)O &nd H eBs(A, A)v

KeBgiB.B^ such that
d0H = gf, d,H = idA,

d0K=fg, dtK = idB.

A strong homotopy equivalence is a quadruple (/, g, H, K) with two higher homotopies
joining/ff and Kf, and Hg and gK respectively. The neatest way to make this explicit
is the following:

there are two simplicial maps

which are such that for at e A[l] = / , the non-degenerate 1-simplex,

F({0}x<r1) = 8o(f)

F({l}xo~1)=fH

similarly for G with the roles of/ and g, and of H and K, reversed.
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78 JEAN-MARC CORDIER AND TIMOTHY PORTER

PROPOSITION 2-3. Let Bs be a locally Kan S-category. Then, iffs BS(A,B)O is a homo-
topy equivalence with g as its homotopy inverse and HeB^A^^ with d0H = gf,
d^H = id^, there isaKe BS(B, B)x such that (/, g, H, K) is a strong homotopy equivalence.

Proof. I t is well known (or see Gabriel and Zisman[9]) that, if X is a simplicial set,
one can form its fundamental groupoid IIX by considering the free groupoid on the
1-skeleton and then dividing out by the relations coming from the 2-simplices. Also it
is clear that, if X is a Kan complex, each element in the set WX(x, y) for x,yeX0

(i.e. each path from x to y in X) is the image of a 1-simplex (i.e. an edge) in X from x
to y, the proof being by induction on the length of the path.

The functor II preserves products, so from the compositions

c: Bs{A,B)xBs{B,C)->Bs(A,C),
we derive compositions

c*: TlBs(A,B)xnBs(B,C)-+nBs(A,C).

Thus we have a 2-category TIBS with, for each pair A, B of objects in Bs, a groupoid
YIBS(A, B). (Of course the objects and maps of IIBS(^4, B) can be interpreted as being
maps and homotopy classes of homotopies between them - provided that B^ is
locally Kan.)

We follow Vogt[20] in stating two lemmas.

LEMMA 1. Suppose A, B, C are objects in Bs, I, JceBs(B,C)0, u, veBs(B,C)0 and
BeBs(A,B)vTeBs(B, C)v with d0R = l,dxR = k, d0T = u,dxT = v, then

[uH + Tl] = [Tk + vB],

where + denotes composition in nBs(^4,(7) and [ ] denotes the equivalence class of the
enclosed element in IIBS(^1, C).

Proof. Diagrammatically one has

k v

This is thus just a statement of the Godement interchange law in this case and it states
that composition is a functor in II B s .

LEMMA 2. / / / , g are as in the proposition, then the induced functors

f*-.nBs(B,C)->nBs(A,C)
and

g*:TlBs(A,C)-+nBs(B,C)
are bijective on horn-sets.

Proof. We refer the reader to Vogt's paper [21]. The necessary changes are minor
and can be easily made.

Thus as long as B s is locally Kan, we can embed any homotopy equivalence data in
strong homotopy equivalence data. We next turn to apply this in our study of
Nerh c (Bg) when B g is locally Kan.
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VogVs theorem on categories of homotopy coherent diagrams 79

PROPOSITION 2-4. / / B s is locally Kan and

J?':A«[»]->Nerll.c.(Bs)

is such that F(0,1) is a homotopy equivalence, then F has a filler,

F: &[n]-+Nerb^(Bs).

Proof. The strong homotopy equivalence data for 7^(0,1) will be denoted

(F(01),g,H,K)

as before. (In [7] we have given the case n = 3 in detail by way of illustration.)
We have already a box

<j>F:J
for which we take a filler

and set G = G(a)\{l} x 7"~2. We also have a (n — l)-cube

GH: I"-1-* BS(F(O), F(n)).

Now let GeA = G\{i] x 7*-2 x {e} x 7"-*-1 for each e = 0,1, then

J for .
Let

3 M = J P ( l » - l , » + l , . . . , n n
again for 2 ^ i ^n-1,

so that Gei = HeiF(01). As before, let L be the square linking lf.F(01) with
and consider the (n — l)-cube HeiL. We have that

..,i-l,i+l n)F(01)
and

have a common face, similarly for H0iL\{0} x I x In~3. Using the hyperprisms which
result, and the Kan condition on Bs(F(0),F(n)), one obtains some (n— l)-cubes, 80%i,
such that

S0>i\I x {0} x /«-s = ^0fi|{0} x 7 x 7"-3

= ^(0,1 0 - l , » - l , . . . , n ) ,

and
SOii\{l} x 7 x / - » = H0tiKF(0,1).

One now repeats this construction for each side, adapting the details for Shi in the
obvious way.

Fitting the sides HeiK and Gg together, one has a (n - l)-box in BS(.F(1), F(n)) and
thus a filler M. We take

Finally one has an n-box in B8(F(0),F(n)), using if^(0,1), GH, G(o~) and the faces
8ei. The remaining face of the filler gives us .F(0,1,..., n) with the required properties.
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80 J E A N - M A R C CORDIEB AND TIMOTHY P O R T E R

Clearly the above proof can be easily adapted to give a proof of the following ' dual'
proposition.

PROPOSITION 2-4*. If Bs is locally Kan and

F: A[n\-»KeThJB8)

is such that F(n —l,n) is a homotopy equivalence, then F has a filler

F: A[n]

3. The invertibility of level homotopy equivalences in Coh (A, Bs)

In this section we give the proof of Theorem 1-1. For the convenience of the reader,
we recall the statement of that result:

THEOREM 1-1. Let A. be a small category, B s a locally Kan S-category, andf: F-+G
a coherent map between coherent diagrams of type A in B s . If for each object i in A, the
mapf(i): F(i)^> G(i) is a homotopy equivalence, then [/] is an isomorphism in Coh (A, B^).

Proof. We start by reformulating the result with the aim of reducing it to special
cases of A.

We have t h a t / may be described by

/ : Ner (A) x A[l]->Nerhc.(Bs).

Similarly, specifying that (f(i),g(i),H{i),K(i)) for each i in A be a strong homotopy
equivalence implies that we have a simplicial map

Ner(|A|)xA[2]^Nerh.c.(Bs)

9d)

for each *e |A| (here |A| denotes the set (or discrete category) of objects of A).
Thus we obtain a simplicial map

(j>: (Ner(A)x A»[2]) U (Ner(|A|) x A[2])-».NerlLc.(Bs)

by defining <}> on Ner (A) x dx A[2] by the identity on F.
Using the K(i)'s, we similarly can define

f: (Ner (A) x A«[2]) U (Ner (|A|) x A[2])^Nerh.c.(Bs).

Suppose, for the moment, that <f> and yjr can both be extended over Ner (A) x A[2],
giving say 0 and Ijr. Then ^ gives a map [<?]] in Coh (A, Bs) such that [g>j] [/] = [idF]
whilst i]r gives a [g2] with [/] [g2] = [id0]. Associativity of composition in Coh (A, Bs)
then implies [g,] = [g2], so [/] is invertible in Coh (A, Bs). Thus it is sufficient to prove
that 0 and \jr do extend as supposed.

Now ^ and \jr will be determined once their values on all <rn x A[2] are given, for all
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VogVs theorem on categories of homotopy coherent diagrams 81

n e N , <rneNer(A)n. Thus it sufficies to prove the result for the case A = [n] as the
general case will then follow by the usual glueing/colimit type argument. We are
therefore reduced to proving the following proposition and its 'dual' with A°[2]
replaced by A2[2].

PROPOSITION 3-2. Let Bs be a locally Kan simplicial category and n be anon-negative
integer. Suppose

Fz: {0,1,..., n} x A[2] -> Nerh.c.(Bs)

are two simplicial morphisms such that
(i) F2\{i} x A[2] is part of a strong homotopy,

(F(i; 0,1), F(i; 1,2), F(i; 0,1,2), K)

F(i; 0, 1) / \ . F(i; 1, 2)

F(i, 0) 5 F(i, 2) = F(i, 0)

(ii) JP1|{0,l,...>n}
Then there is an extension

-FI:A[n]xA[2]-*Ner11.c.(Bg)
of both Ft and F2.

Proof. If n = 0, there is nothing to prove as |[0]| = [0], so suppose that we have the
result for every k <n. One can thus extend Fx and F2, which together give us a map

to one
F': (AH x A°[2]) u («£„_! A[w] x A[2])^Nerh.c.(Bs).

where skt indicates the Z-skeleton functor. I t therefore remains for us to extend F'
over the remaining simplices of dimensions n + 1 and n + 2 of A[«] x A[2].

Using our knowledge of Nerh c(Bs) (Propositions 2-1 and 2-4), we see thp.twe can
extend if one has an (n+ 1, i)-box (i + 0, n+ 1), an (n + 2, i)-box (i + 0, n + 2), or an
(w + 1,0) or (n + 2,0)-box, if the first map is part of a homotopy equivalence.

We first enumerate the (n + 2)-simplices of A[%] x [2] in a way which will enable us
to fill them in succession:

The non-degenerate (n + 2)-simplices are of the form

o~Ui = (0,1,...,»,», ...,j,j,...,n) x (0, . . . , 0 ,1 , . . . . 1,2,..., 2)
t t
i j + 1

for i < j , and one thus has the relations

8j+i<ri,j

and

and no others.
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82 JEAN-MARC CORDIBB AND TIMOTHY PORTER

Firstly let us look at crn n = (0, l,...,n,n,n) x (0, ...,0,1,2) and examine its faces.
We already know the value of F' on the following faces:

for i = 0, ...,n— 1, ^cr^^es^^Afw]) x A[2]), known by hypothesis;
for i = n+ 1, n + 2, dtan ne A[»] x A°[2], therefore in the domain of'Fx.
We thus have a An[n + 2] and we can therefore fill its image in Nerh c (Bs) and have,

as a pay-off, a knowledge of the image of 8n<rnn) which is the same as dn<rn_ln (this
giving us a face of <rn_ln).

Looking at (rn_ln, we already know dian_ln for i = 0, ...,n — 2 and for i = n + 2,
and we have just received as a gift from crnn, the necessary information on 8n(Tn_ln.
We are ignorant about dn_1 and 8n+v We turn our attention to 8n+1crn_ln. On this
(n + 1 )-simplex we already know dt dn+i <rn_lyn for i = 0,..., n — 2, n, n + 1, so we know
a A""1^-!-1] which we can thus fill. Returning to crB_ln, we now have knowledge of
a An~1[n + 2] and we can fill, getting a gift of dn_1an_ln = ^n_iO-n_2>m- We also have
the information on 8n+1 <rn_ln = 8n+1arn_ln_1, which will be useful later.

Suppose now that we have defined our extension on each

<T
n-m,n>m= 0, 1, . . . , & - 1 <n,

and thus we have knowledge of

and also of

For <rn_jfc,n>
 w e already have 8ia

f
n_kn for i = 0, ...,n — k— 1, n —i + 2,...,» and

n + 2, also dn_k+1 as a gift from (rn_k+ln. We lack Sn+1 and dn_fc. As before we attack
8n+1 for which we know di for i = 0,...,» — A— 1,» —A+ 1,...,»,%+ 1, that is, we know
our extended map on a An~k[n +1] and we can fill it, noting that

so this face will be useful later on.
We should note that if k = n, our first morphism in F(dn+1crOn) is a homotopy

equivalence since
o-0jn = (0 ,0 , l , . . . ,n ,n)x(0, l 1,2).

Thus we have F(<rln) for each I = 0,1, . . . , n. We continue the process with F(trn_ln_1).
On o*n_1>n_i, we know d{ for i = 0,..., n — 2, n, n + 2, but also for dn+1, a gift from <rn_ljn.
We therefore can extend.

The pattern repeats. One can easily formalize this into an inductive proof in which
we take as hypothesis the existence of an extension F on <rtj,

j = n,n — 1, ...,n — I, i = n — l,n — l— 1, ...,n — k+ 1, etc.

At each stage, one must hypothesize the 'gifts' from earlier stages and of course one
has to take some slight care, as above for <7On, when one gets to the (0, n — k) stage each
time, as one then needs the fact that at this stage F(<r0> n_k) has a homotopy equivalence
as first morphism so an extension exists for the (n + 2,0)-box that is known.

(A slight difficulty arises each time when filling crOn_k as we do not seem to know
four faces, d0, dlt dn_k+1 and dn_k+2, but we note the following:

and so is already known,
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VogVs theorem on categories of homotopy coherent diagrams 83

and so is also already known, and in the faces of dn_k+1crOn_k, we have

dldn-k+l°~0,n-k = ^n-s

= d1dn_k+1(T1>n_k

and so this is all right as well.)
This induction completes the proof.
The previous results, and in particular Theorem 1-1, show that the natural functor

y:BA-*Coh(A,Bs)
factors through a localization

where S is the class of level homotopy equivalences in BA. We will write

y:Ho(BA)->Coh(A,Bs)

for the unique functor such that y = yp.
The remainder of this paper analyses this functor y, finding conditions under which

it is an equivalence.

4. Rigidification of a coherent functor

In order to show that y is an equivalence, we have to show that it is full and faithful
and that, given any coherent diagram F in Bs , there is a commutative diagram iso-
morphic to F in Coh (A, Bs). We start with the second of these.

Precisely this sort of problem has been tackled in the topological case by Segal [17]
in his Appendix B. Analysis of his result gives the skeleton of a proof for the non-
topological and general case. Although he does not mention this, his n * F construction
is an example of a particular type of Kan-extension. As with many of the results in
this theory, the 2-categorical and bicategorical analogues have already been studied,
e.g. by Street [19], Giraud [10], and Bozapalides [5]. Combining these two special cases,
one arrives at the following idea.

There is a canonical augmentation

and we have a functor
F:S(A)-*BS;

clearly if we want the best approximation to F by an ' actual' functor from A to B,
we need to form a right or left Kan extension

S(A) • A

The problem is that there is no reason to suppose that F is isomorphic to FK. The
reason is soon clear. F will be defined using an /S-limit or colimit, but we are dealing
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84 JEAN-MARC CORDIER AND TIMOTHY PORTER

with homotopy phenomena so we should form an P via a coherent limit or colimit, that
is a homotopy limit or colimit.

We will briefly recall this theory here as it helps motivate the construction of a
suitable P later ('suitable' in the sense that it works!). For the details of this theory,
we refer the reader to the paper of Bourn and the first author [3]. For details on general
indexed limits see Kelly [11], or the original Borceux-Kelly[2].

Let C be an S-category. The projective ^-indexed cone functor over F (denoted
10, FJ: Bop ->• S) is given by the formula

l<f>,F](B)=( S(<j>(A),Bs(B,FA)).
J A

Thus l<f>, -FJ is the right Kan extension of F along the distributor (or profunctor) <j>:

C »-l
y

y

B
The simplicial functor F admits a, projective ^-indexed limit if \<j>, F} is representable,

i.e. if there is an object in Bs, denoted by <j>-]imF, such that

The notion of ^-indexed colimit is dual.
The advantage of indexed limits is that one can choose the indexation to capture

coherence phenomena. The simplest example of this is the Bousfield-Kan homotopy
limit [4] which has the following description:

if I is a category, F: I -> S a functor, then

ho lira F= f S(Ner(I/»),JP(»))
Ji

and for B is S
S(B, ho lim F) = Per ( / / - ) , Jfl (B),

so the Bousfield-Kan homotopy limit is Ner (// — )-indexed.
We have to make two generalizations from this example. Firstly we need a

generalization replacing S by an arbitrary simplicial category Bs, and then we need to
replace the actual functor by a coherent functor, i.e. a simplicial functor S(A)-^BS.

Let B s be as usual a simplicial category and let B be an object of Bs. B defines
functors

Ba(B, - ) : B S ^ S
and

We say that B s is tensored if BS(B, —) has a left adjoint (which is denoted — (gj B),
whilst B s is cotensored if Bs( —, B) has a right adjoint, which is denoted Bs( —, B).

Thus, if Bg is tensored and K is a simplicial set, there is a natural isomorphism
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VogVs theorem on categories of homotopy coherent diagrams 85

and if Bs is cotensored then

S(K, Bs(-,B))~ Bs(-,BS(K,B)).

Remark, (i) One can think of K (gj B as being a sort of product of the simplicial set
K with B, while BS(K, B) is an ' object of maps' from K to B.

(ii) Although we shall use co-tensors and tensors in conjunction with indexed limits
and colimits, they are themselves simple examples of such.

Next we turn to an indexation which is suitable for non-trivially simplicial categories
and yet which reduces to the Bousfield-Kan Ner (// —)-indexation in the case that the
category has trivial simplicial structure. We shall give the obvious generalization for
the case of S(A), referring the reader to [3] for the general theory.

Let A be a category and S(A) the resolved simplicial category. If G is an object of
A (and hence also of S(A)), we define a simplicial object in S, S(A)/C, by

US(A)(A,G)Z II S(A)(A0,A1)xS(A)(A1,C)t-...
A A,,A, ^

II S(A)(A0,A1)x...xS(A)(An_vAn)xS(A)(An,C)
A, An

with faces and degeneracies given by the following formulae:

Si

do(z1,...,zn,g) = (z2,...,zn,g),

di(z1,...,zi,zM,...,g) = (zlt...,zi+1-zi,...,g) (0 < i < n),

dn(zv...,zn,g) = (zlt...,g-zn),

si(z1, ...jZ^Zf+i, ...,zn+vg) = (zv ...jZi, l_At,zi+1
 z

n-i>9)-

This construction thus gives a bisimplicial set S(A)/C
To reduce to a simplicial set, we take the diagonal and define

We define for F: S(A)->Bs, ho limF = H&-limF, that is

= f BS(HA(G),FC)
Jc

(of course assuming that Bs is a complete S-category).
This functor reduces to Bousfield and Kan's homotopy limit if F factors via

It is now easy to suggest a definition of the coherent right Kan extension of F along
K: S(A)-> A, provided Bg is cotensored.

We set, for X in A,

F(X) = ho lim (X | K —^ S(A) —> Bs)

= f
J f.

Bs{H(X\K)(f,A), F8x(f,A)), fl)
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86 JEAN-MARC CORDIEB AND TIMOTHY PORTER

where X \ K is now a simplicial comma category. (The objects of X j K are pairs
(f: X->KA,A), and for (f,A), (g,A') in X\ K the simplicial set of maps from (/, A)
to (g,A') is given by

8X is the simplicial functor, 8x(f,A) = A.)
Our objects in defining P were (i) that it be a 'true' functor from A to B (and this it

clearly is by construction) and (ii) to have that the functor K: S(A)-> A induces a
natural transformation

8*: PK->F

which on any object X is a homotopy equivalence (as this will ensure that PK and F
are isomorphic in Coh (A, Bs).)

In order to compare P and F, it will help to have an end formula for F(X). This is
given by the Yoneda type result

P(X)= I* KS(S(A)(X,A),F(A)). (2)
J A

We next need to make (1) look more like (2), and this we do by simplifying (1) as
follows.

We have
HiX^K)(f,A) = I>iag((X IK)/(f,A)),

where (X 4- K)/(f, A) is the bisimplicial set with

U (XlK)((fo,Ao),(f1,A1))x...x(X\K)((fn,An),(f,A))
(/o,^.) (fn,An)

in dimension n.
Given the description of X | K, it is clear that

II A(X,A0)xS(A)(A0,A1)x...xS(A)(An,A) = ir(X,A)n,
A,,...,An

say, is the disjoint union of the ((X^K)/(f, A))n 0 over the various maps/: X-*-A.
As all of these have the same codomain A, we have

z f B(T>i&gi/r(X,A),F{A))
J A

with rfr(X, A) having face and degeneracies induced from those given for H(XiiK) (f,A).
Clearly the induced map from P(X) to F(X) is given by the ' augmentation' map

defined by composing the disjoint union of the various augmentation maps

S(A) (Ait Ai+1) -y A(Ait Ai+1) (0 < i < n)
with the map

d0: U A(X,A0)x...xA[An_1,An)xS(A)(An,A)^S(A)(X,A)
A,,..., An

given by
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VogVs theorem on categories of homotopy coherent diagrams 87

Our best hope of proving 8* to be a homotopy equivalence would seem to be to prove
that d(X, A) is a homotopy equivalence naturally in X and A and then to prove some
general lemmas about natural homotopy equivalences between indexing functors.

Now S(A) is defined by a comonad generated by a free-forget pair going to directed
graphs with 'identity' loops. Thus, as a simplicial resolution of A, it will be split at
the underlying directed graph level. This implies that the augmented map,

S ( A ) (Ai, A i + 1 ) ^ A ( A t , A i + 1 ) ( O ^ i < n ) ,

is a homotopy equivalence of simplicial sets, but that the homotopy inverse need not
be compatible with composition. We can thus use these maps safely in the required
range (0 < i < n), since our only operation on these A^s is disjoint union (no 'inte-
gration' is done with them).

Thus \jr(X,A) is naturally homotopy equivalent to a bisimplicial set r/r'(X,A) with

f{X,A)n>p= II A(X,A0)x...xA(An_1,An)xS(A)(An,A)p.
At An

We now show that the augmentation

d:ir'(X,A)-+S(A)(X,A)

given above has a homotopy inverse. For this we define a 'contraction' or an 'extra
degeneracy' s_x by

s-i(/o> •••>/„,o-) = ( l j f , /o . •••>fn><r)-

It is easy to check that s_x satisfies the simplicial identities, so

is a homotopy equivalence of bisimplicial sets. Again this is natural in X and A.
Composing, we get the map

to be a homotopy equivalence of bisimplicial sets (here as above we are considering
S(A) (X, A) as a bisimplicial set, constant in the second direction; when we need to
stress this point, as we will later, we will write K(S(A) (X,A), 0) for this bisimplicial
set.)

We will need to make this notion of 'natural homotopy' more precise.

Definition. Let F, G be two S-functors from S(A)°P X S(A) to Bs where B s is co-
tensored. Suppose /0,/i: F-+G are two coherent natural maps. We shall say that
/o'/i a r e naturally homotopic if there is an S-natural transformation

such that composition of A with djf and df gives respectively f0 and/j (where

dt: A[0]^A[l]

are the two end maps and we have identified Bs(A[0], (?) with G).

LEMMA 4-1. Given two S-functors

.F , ( ? :S (A) O PXS(A) -*B S
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88 JEAN-MARC CORDIER AND TIMOTHY PORTER

with, TZS cotensored, and two naturally homotopic maps

UA-.F-+G,
then the induced maps

! /o , f fi-f F(A,A)->[ G(A,A)
JA JA JA JA

are homotopic in Bs.
Proof. There is some natural

h:F-^Bs(A[l],G),
hence a map

f h: f F(A,A)^\ BS(A[1],G(A,A)),
JA JA JA

but since Bs commutes with ends (as it is a right adjoint), we have

f BS(A[1],G(A,A))^BS(A[1], f G(A,A)),
J A J A

so jAh gives the required homotopy between J/o and jfv (Note: here we are implicitly
using the useful fact that if Bs is cotensored,

so BS(A[1], —) acts like a cocylinder functor and can be used to give an explicit
description of homotopies.)

COROLLARY 4-2. / / / : F->G, g: G^-F are homotopy inverse to each other, the homo-
topies being natural, then \F(A,A\ and JG(A, A) are homotopically equivalent.

LEMMA 4-3. Let K,L:S(A)->S be two S-functors and i^:S(A)->Bg a coherent
diagram in Bs. Suppose

is a natural homotopy between /„ = MJ andft = hd%; then the two induced maps

f?:Bs(L,F)^Bs(K,F)
are naturally homotopic.

Proof, h induces a maph: K x A[1]->L and hence

A*: Bs(L,F)-+Bs(KxA[l],F) s Bs(A[l],Bfl(ff,F))

which gives the required natural homotopy.
We have already noted that

8(X,A): f{X,C)-»J5T(S(A)(X,C),0)

is a homotopy equivalence, natural in C. Taking diagonals, we get

Dia,gijr(X,C)^S(A)(X,C) = DiagZ(S(A)(Z,C), 0)

is a homotopy equivalence natural in C, since Diag-t- is given by a coend
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and so the dual of 4-2 applies to give the desired natural homotopy equivalence.
(Note: this actually uses G as a 'dummy' variable; it also uses the tensoring on S.)

Now applying 4-2 again, but this time with respect to 'integration' over C, we
obtain a homotopy equivalence

f Bs(S(A)(X,C),F(C))->f Bs(Dia«^(Z>C
Jc J c

but, as mentioned before,

f BS(S(A)(X,G),F(G))^F(X)
J c

by the enriched version of the Yoneda lemma, and

f
Jc

by definition.

COROLLARY 4-4. For any F: S(A) -> Bg, with Bs cotensored, one has for any X in A,

F(X)-+F{X)
is a homotopy equivalence.

As F is an actual commutative diagram, this gives us the required rigidification.

COROLLARY 4-5. Given any F in Coh (A, Bs), there is a commutative diagram F and
a natural isomorphism

in Coh (A, Bs).
Applying 4-5 to the indexing category A x [1], we get

COROLLARY 4-6. Given coherent diagrams F, G of type A in a complete S-category Bg

and a coherent mapf: F->G, there is a commutative diagram in Coh (A, Bs)

in which F >G is within the image of the canonical functor

y:Ho(BA)->Coh(A,Bs).

Together with 11, these results imply the following Theorem which is the formal
statement of our generalized version of Vogt's theorem.

THEOREM 4-7. Let A. be a small category and B g a locally Kan complete S-category.
Then there is an equivalence of categories

Ho(B A ) -^Coh(A ,B s ) .

This theorem is also true if one replaces 'complete' by 'co-complete', as the
construction of Segal [18] gives an F defined as a left coherent Kan extension and thus
as a homotopy colimit.
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90 JEAN-MARC CORDIER AND TIMOTHY PORTER

Remark. In the introduction, we mentioned that the above generalized form of
Vogt's theorem also applied to the case B s = Kan even though Kan is not complete.
We sketch below the steps necessary to prove this.

The essential point is to show that if F: S(A) -> S is a simplicial functor with F(A)
a Kan complex for each object A, then F(A) is also a Kan complex.

First one uses the cosimplicial replacement technique given by Bourn and the first
named author [3] to produce a cosimplicial simplicial set Y, say with

F(A) = Tot (Y),
where Tot is the Bousfield-Kan total complex functor. From the analysis of the Tot
functor given in [4], one can deduce that Tot (Y) is Kan if Y is a fibrant cosimplicial
simplicial set. The explicit description of Y coming from [3] allows one to check that
this is indeed the case if each FA is Kan. A detailed proof of a generalization of this
result is included in a forthcoming paper by the authors on coherent ends and coherent
Kan extensions.
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