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What You Should Know About
Integer-Valued Polynomials

Paul-Jean Cahen and Jean-Luc Chabert

Abstract. The authors wish to celebrate the centenary of Pólya’s paper Ueber ganzwertige
ganze funktionen where first explicitly appeared the term “integer-valued polynomials.” This
survey is focused on the emblematic example of the ring Int(Z) formed by the polynomials
with rational coefficients taking integer values on the integers. This ring has surprising alge-
braic properties, often obtained by means of analytical properties. Yet, the article mentions
also several extensions, either by considering integer-valued polynomials on a subset of Z, or
by replacing Z by the ring of integers of a number field.

1. INTRODUCTION. In 2000, to Polynomial rings and ideals in item 13F20 of the
AMS Mathematics Subject Classification were added the words rings of integer-valued
polynomials. But what are these rings?

By integer-valued polynomial we mean a polynomial taking integral values on the
rational integers (although we shall later give various generalizations). Such a poly-
nomial has not necessarily integral coefficients as shown by 1

2 X (X − 1). More gener-
ally, for every prime number p, 1

p (X p − X) is integer-valued, thanks to Fermat’s little
theorem, and so is, for every integer n ≥ 2, the binomial polynomial(

X

n

)
= X (X − 1) · · · (X − n + 1)

n!
.

The set of integer-valued polynomials is denoted by Int(Z); that is

Int(Z) = { f ∈ Q[X ] | f (Z) ⊆ Z}.

The sum, the difference, and the product of two integer-valued polynomials are clearly
again integer-valued. Here is thus our first ring of integer-valued polynomials!

However, the interest for the ring structure of Int(Z) arose only in the last quar-
ter of the previous century. Yet it was at least well known at the time of Pólya that
every integer-valued polynomial f of degree n may be uniquely written as a linear
combination:

f (X) =
n∑

k=0

ck

(
X

k

)
, (1)

with the convention
(X

0

) = 1 and
(X

1

) = X , and the coefficients ck recursively given by
the formula

ck = f (k) −
k−1∑
i=0

ci

(
k

i

)
. (2)
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In fact, (1) evokes the Gregory–Newton formula dating back to the seventeenth
century:

f =
n∑

k=0

�k f (0)

(
X

k

)
. (3)

Here � f is the finite difference � f = f (X + 1) − f (X) and �k f is recursively
defined by �k f = �(�k−1 f ). Formula (3) is easily obtained, using Pascal’s triangle
property: �

(X
n

) = ( X
n−1

)
.

As early as 1919, two papers by Georg Pólya [49] and Alexander Ostrowski [47],
both titled “Über ganzwertige polynome in algebraischen Zahlkörpern,” considered
polynomials with coefficients in a number field K taking the ring of integers OK into
itself. This was already leading to more rings of integer-valued polynomials! Yet they
only tried to generalize (1) and the celebrated earlier paper of Pólya Ueber ganzwertige
ganze funktionen [48] was in fact of an analytical nature.

More generalizations, and a genuine interest for the ring structure, came in the
1970s, considering integer-valued polynomials on a domain D, with quotient field
K . These polynomials form a ring denoted by Int(D):

Int(D) = { f ∈ K [X ] | f (D) ⊆ D}.

As in more recent developments, one can even consider integer-valued polynomials on
a subset E of D:

Int(E, D) = { f ∈ K [X ] | f (E) ⊆ D}.

In this paper we nevertheless largely focus on Z, at least in the first sections. The
classical ring Int(Z) has, indeed, many interesting properties and we start with them
in section 2. In a way, it behaves much better than the ring Z[X ] of polynomials with
integer coefficients. For instance, it has nice interpolation properties, as the Gregory–
Newton formula may suggest. But let us immediately emphasize a negative property:
it is probably the most natural and simplest algebraic example of a non-Noetherian
ring (that is, having ideals which are not finitely generated).

Polynomials are known to be continuous functions. As integer-valued polynomials
have their coefficients in Q, it is natural to consider them as continuous in the p-adic
topology. We recall the definition of this topology and develop this aspect in section 3.
One main feature is a p-adic analogue of the theorem of Stone–Weierstrass. These
analytical tools allow us to prove many algebraic results, and this is precisely what we
do in section 4. For instance, we can describe the prime spectrum of Int(Z) and then
show that Int(Z) is a Prüfer domain (Prüfer domains generalize Dedekind domains in
the non-Noetherian case; their definition will be recalled later).

In section 5 we turn to integer-valued polynomials on a subset. Aside from some
generalities, we mostly consider subsets of Z. An interesting problem is to determine
for which subsets one can generalize formula (1) with a sequence {an}n≥0 replacing
the nonnegative integers. Significant progress was obtained thanks to the notion of
p-ordering introduced by Bhargava around 2000. This leads to Bhargava’s generalized
factorials. We also state some open problems.

Only in section 6 do we generalize to integer-valued polynomials on a domain. Yet
we focus on the ring of integers of a number field. Most algebraic properties of Int(Z)

extend to this case. Yet, as seen by Pólya and Ostrowski in 1919, there is in general
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no regular basis, as in formula (1) (that is, with one polynomial of each degree). We
end this section with the ring Fq[T ] of polynomials with coefficients in a finite field,
which in every respect compares better with Z.

In a very short final section, we quickly evoke a few more aspects of this vast the-
ory, such as polynomials that are integer-valued together with their derivatives, finite
differences, or divided differences. Our list is far from exhaustive.

Some proofs are detailed, mostly for the results dealing with Int(Z), some are just
sketched and then are so indicated. Some results are given without proof and we send
the interested reader to [16] and [46].

2. ALGEBRAIC PROPERTIES.

Interpolation. By Lagrange interpolation, one may find a polynomial with coeffi-
cients in a field K assigning arbitrary values to a given finite set of arguments in K .

Note that the same is not true for polynomials with integral coefficients: for f ∈ Z[X ],
if the integers a and b are congruent modulo some integer n, then f (a) and f (b) must
be likewise congruent. However, interpolation is possible with integer-valued polyno-
mials. To assign arbitrary values to a finite set of arguments contained in some interval
[a, b], the trick is to do better and to even assign arbitrary values to every integer
argument ranging from a to b.

Proposition 1. There exists one and only polynomial f ∈ Int(Z) with deg( f ) ≤ n,

assigning arbitrary integer values to a given set of n + 1 consecutive arguments in Z.

Proof. First, with k ranging from 0 to n, there is a unique degree n polynomial such
that f (k) = bk for each k, namely f = ∑n

k=0 ck

(X
k

)
, with the coefficients ck given

as in (2). Similarly, one can assign arbitrary values to any set of n + 1 consecutive
arguments in Z, considering the change of variable g(X) = f (X − h).

For sake of reference, let us also record the following.

Corollary 2. A degree n polynomial with rational coefficients is integer-valued if and
only if it takes integral values on n + 1 consecutive relative integers.

Remark 1. If interpolation is possible, then for every pair (a, b) of elements, there is
a fortiori a polynomial f with f (a) = 0 and f (b) = 1, we then say that f separates a
from b. Conversely this is the key: a product of such separating polynomials takes the
value 0 on n arguments, 1 on a last one and interpolation follows by linear combina-
tion of such products. This is how one argues in Lagrange interpolation. To separate a
from b in K [X ] is always possible with the (unique) degree one polynomial f = X−a

b−a ,

this is why Lagrange interpolation on n + 1 arguments is always possible, as every
student knows, with a polynomial of degree at most n, and why it fails in Z[X ] (where
there is no way to separate 0 from 2). But now note that Proposition 1, somewhat sim-
ilar to Lagrange interpolation, deals only with the specific case of n + 1 consecutive
arguments. Indeed, if a, b ∈ Z are such that |b − a| > 1, the polynomial f = X−a

b−a
is not integer-valued. To separate a from b thus requires an integer-valued polyno-
mial of degree more that one. In fact, Proposition 1 allows us to bound this degree by
|b − a|. In particular,

(X
n

)
separates 0 from n. Yet, there may exist a separating poly-

nomial of degree less than n; for instance the degree 3 polynomial f = X (X−5)(X−7)

6 is
integer-valued and separates 0 from 6. The discussion of the degree of interpolation
polynomials can be addressed, as in [30].

April 2016] WHAT ABOUT INTEGER-VALUED POLYNOMIALS 313



The ring of integer-valued polynomials is not Noetherian. A ring is said to be
Noetherian if every ideal is finitely generated. One is obviously finitely many, thus
Z is Noetherian, being a principal ideal domain and the same is true of K [X ] for
every field K . By Hilbert’s basis theorem, if R is Noetherian, then so is R[X ]. In
particular, Z[X ] is Noetherian, and by iteration, so are the rings Z[X1, X2, . . . , Xn]
and K [X1, X2, . . . , Xn] of polynomials in several indeterminates. A somewhat ad hoc
counterexample is given by the ring of polynomials in infinitely many indeterminates,
but probably the most natural and simplest example is our friend Int(Z). Indeed, con-
sider the following ideal of Int(Z):

M2,0 = { f ∈ Int(Z) | f (0) is even}.

Proposition 3. The ideal M2,0 is not finitely generated.

Proof. By way of contradiction, suppose that g1, . . . , gs generate M2,0. Finding a
common denominator, write g1 = f1/2kd, . . . , gs = fs/2kd with d an odd integer and
fi ∈ Z[X ]. Each gi is in M2,0, that is, gi (0) is even, hence fi(0) is a multiple of 2k+1

and so is fi (2k+1) (for congruence reasons), therefore gi (2k+1) is even. Each g ∈ M2,0

being a linear combination g = ∑s
i=1 hi gi , with hi ∈ Int(Z), is then also such that

g(2k+1) is even. We obtain a contradiction: the binomial g = ( X
2k+1

)
is in M2,0, since

g(0) = 0, but g(2k+1) = (2k+1

2k+1

) = 1.

Although Int(Z) is not Noetherian, Gilmer and Smith proved [33] that every finitely
generated ideal of Int(Z) may be generated by two elements. In that respect, Int(Z)

compares favorably to Z[X ] for which the number of generators required to generate
an ideal can be arbitrary large. (Considering the maximal ideal m = (p, X), we can
see that mn = (pn, pn−1 X, . . . , pXn−1, Xn) needs at least n + 1 generators once we
interpret the quotient mn/mn+1 as a vector space of dimension n + 1 over the field
Fp = Z/pZ with p elements.)

Also, a ring is Noetherian if and only if it satisfies the ascending chain condition on
its ideals. A weaker property is the ascending chain condition on principal ideals, and
one may easily verify that Int(Z) satisfies this property [16, Proposition VI.2.9].

Skolem property. If two polynomials f and g generate Z[X ], that is, if one can write
u f + vg = 1 with u, v ∈ Z[X ], then, for each n ∈ Z, u(n) f (n) + v(n)g(n) = 1,

hence f (n) and g(n) are relatively prime. But what about the converse?
In 1936, Skolem [52] gave a counterexample with f = 3 and g = X 2 + 1: for each

n ∈ Z, 3 and n2 + 1 are relatively prime, but one cannot write 3 u + (X 2 + 1) v = 1,

with u, v ∈ Z[X ]. Indeed, considering complex numbers, this would imply 3 u(i) = 1,

with u(i) a Gaussian integer, that is, u(i) = a + ib, with a, b ∈ Z. But this is clearly
not the case! Yet he showed that f and g generate Int(Z), writing explicitly

(X 2 + 1)(X 2 − 6X + 10) − 3

(
8

(
X

4

)
+ 3

)
= 1.

In fact, he established a general property of Int(Z) that is now referred as the Skolem
property [16, chapter VII].

Theorem 4 (Skolem). If g1, . . . , gk are integer-valued polynomials such that, for each
n ∈ Z, g1(n), . . . , gk(n) are relatively prime, then there exist integer-valued polyno-
mials u1, . . . , uk such that u1g1 + · · · + uk gk = 1.
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Let us rephrase this property. If A is an ideal of Int(Z) then, for each n ∈ Z,

A(n) = {g(n) | g ∈ A}

is clearly an ideal of Z, quite naturally called the ideal of values of A at n. The Skolem
property states that, if A is a finitely generated ideal of Int(Z) such that, for each n,
A(n) = Z, then A = Int(Z). But then, why stop at the special case where the ideals of
values are the whole ring Z? In fact, Brizolis [13] proved a stronger property, referred
as the strong Skolem property [16, chapter VII].

Theorem 5 (Brizolis). If two finitely generated ideals A and B of Int(Z) have the
same ideals of values, that is, for each n ∈ Z,A(n) = B(n), then A = B.

As for the (non) Noetherian property, analytical tools will shed some light on these
questions [Corollaries 16 and 18].

Factorization properties. Recall that an element x of a domain D is said to be irre-
ducible if it is not a unit (that is, is not invertible) and is divisible only by elements of
the form u or ux where u is a unit. For instance the degree one polynomials of the form
X − a are clearly irreducible in Int(Z). But let us give a more interesting collection of
examples.

Proposition 6. For each n ≥ 1, the binomial polynomial
(X

n

)
is irreducible in Int(Z).

Proof. Suppose that
(X

n

) = gh, with deg(g) = r, deg(h) = s. It follows from the
expansion of g and h as linear combination of binomials that r ! g and s! h are in Z[X ].
Thus r ! s!

(X
n

) ∈ Z[X ]. Looking at the leading coefficient, we have r ! s!
n! ∈ Z. But then(n

r

) = n!
r ! s! = 1. Hence r = 0 or r = n. Say r = 0, then g is a constant, thus g ∈ Z and

n! h ∈ Z[X ]. The leading coefficient of n!
(X

n

) = g(n! h) being 1, we can conclude
that g = ±1; that is, g is a unit.

If a domain D satisfies the ascending chain condition on principal ideals, as does
Int(Z), then every nonzero nonunit element is a product of irreducible elements. But
it may happen that an element be decomposed in products of irreducibles of different
lengths, that is, x = p1 · · · pn = q1 · · · qm with m > n. The upper bound of the ratio
m
n , considering every element of D, is called the elasticity of the domain D [54]. Our
friend Int(Z) provides a fairly simple example of infinite elasticity [15].

Theorem 7. The elasticity of Int(Z) is infinite.

Proof. We just saw that each binomial
(X

n

)
is irreducible. Now, look at the equality:

n

(
X

n

)
= (X − n + 1)

(
X

n − 1

)
.

There are two irreducible factors on the right-hand side, whereas the number n, on the
left-hand side, may be chosen to have an arbitrary number of prime factors.
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3. ANALYTIC PROPERTIES. Back in 1915, the main result in Pólya’s celebrated
paper [48] was already of an analytical nature, giving a sufficient condition for an
entire function to be a polynomial.

Theorem 8. If f : C → C is an entire function such that

f (N) ⊆ Z and lim sup
r→+∞

ln | f |r
r

< ln 2, where | f |r = sup
|z|≤r

| f (z)|,

then f is a polynomial, and hence, belongs to Int(Z). Moreover, the transcendental
function 2z shows that the bound ln 2 is sharp.

In this section we shall however adopt another point of view and consider integer-
valued polynomials as continuous functions in the p-adic topology rather than with
respect to the classical Archimedean absolute value.

The p-adic ultrametric topology. Given a prime number p and a nonzero integer x,

the highest power of p that divides x is called the p-adic valuation of x and is denoted
by vp(x). For two nonzero integers x, y, we have

vp(x + y) ≥ inf{vp(x), vp(y)} and vp(xy) = vp(x) + vp(y).

With the conventions vp(0) = ∞ and p−∞ = 0, one then defines the p-adic absolute
value |x |p = p−vp(x), and the p-adic distance between x and y by |x − y|p. Hence, the
higher the power of p dividing (x − y), the closer is x to y. This distance is in fact an
ultradistance: |x − z|p ≤ max{|x − y|p, |y − z|p}, and we say that Z is an ultrametric
space. With such a distance, every ball is a clopen (that is, open and closed) subset.
For every positive integer h, the set

phZ = {x ∈ Z | vp(x) ≥ h} = {x ∈ Z | |x |p ≤ p−h}

is the clopen ball of center 0 and radius p−h . Finally Z is the disjoint union of the ph

clopen balls Ui = i + phZ with 0 ≤ i < ph .

The p-adic valuation and the ultrametric p-adic distance can be extended to the field
Q of rational numbers (letting vp(a/b) = vp(a) − vp(b)). The p-adic completion of Q
is a field, called the field of p-adic numbers and denoted by Qp, it is a transcendental
extension of Q. The completion of Z, that is, the topological closure of Z in Qp is
denoted by Zp and called the ring of p-adic integers. It is worth emphasizing that Zp

is compact. The closure of Z in Q is the ring Z(p) formed by the rational fractions a/b
such that, in reduced form, b is not a multiple of p. (About p-adic numbers and p-adic
analysis, see for instance [50, Chap. 1].)

Uniform continuity. An integer-valued polynomial can be viewed as a function from
Z to Z. The following shows it is uniformly continuous in a rather precise way.

Proposition 9. Let f be an integer-valued polynomial. If deg( f ) < ph, then

vp

(
f (b) − f (a)

) ≥ vp(b − a) − h + 1; that is, | f (b) − f (a)|p ≤ ph−1 |b − a|p.

Proof. Replacing f (X) by f (a + X) − f (a), we assume that a = 0 and f (0) = 0,
and wish to prove that vp

(
f (b)

) ≥ vp(b) − h + 1. In fact, as f is a linear combination
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of binomials, we need only to prove this implication for fn = (X
n

)
, with n < ph. The

result is obvious for
(X

0

) = 1 and
(X

1

) = X. For n ≥ 2 we write

fn =
(

X

n

)
= X

n
g where g =

∏n−1
i=1 (X − i)

(n − 1)!
.

Thus n fn(b) = b g(b) and hence vp

(
fn(b)

) = vp(b) + vp

(
g(b)

)− vp(n). The result
follows since, on the one hand, vp(n) ≤ h − 1 (as n < ph) and, on the other,
vp

(
g(b)

) ≥ 0 (as g is integer-valued: its degree is n − 1 and it takes integral val-
ues on the n consecutive integers ranging from 1 to n).

In other words, following the formulation of R. Gilmer and W. Smith [33, Theorem
2.8], an integer-valued polynomial f with degree < ph is periodic modulo pm with
period pm+h−1 if

f (a + pm+h−1) ≡ f (a) (mod pm) for each a ∈ Z.

Since integer-valued polynomials are uniformly continuous functions, they can be
extended to the p-adic completion of Z. In other words, Int(Z) is contained in the ring
C(Zp,Zp) of continuous functions from Zp to Zp. This leads us to the following.

The p-adic version of the Stone–Weierstrass theorem. According to the well-
known Stone–Weierstrass theorem, for any compact subset F of R, the polynomial
ring R[X ] is dense in the ring C(F,R) of real continuous functions endowed with the
uniform convergence topology. As early as 1944, Dieudonné similarly proved that the
polynomial ring Qp[X ] is dense in the ring C(F,Qp) of continuous functions on a
compact subset F of Qp [27, Theorem 4]. As Zp is compact and Q is dense in Qp,

it follows that Q[X ] is dense in C(Zp,Qp), and hence (restricting to functions with
values in Zp) that Int(Z) is dense in C(Zp,Zp). Mahler established independently an
effective version of this result in 1958, writing explicitly the expansion of a continuous
function as a series of binomials [41, Thm 1].

We give here some insight into these results. We first show how to approximate
some specific characteristic functions, but only modulo p. This may seem quite restric-
tive but Mahler’s theorem follows easily and moreover the proof of this very particular
case is the most interesting part!

Lemma 10. For each h, and each i, 0 ≤ i < ph, the characteristic function ϕi of the
clopen ball Ui = i + phZp can be approximated modulo p by a linear combination of
the binomials

(X
k

)
, 0 ≤ k < ph .

Proof. By Proposition 9, for k < ph the binomials
(X

k

)
are constant modulo p in each

Ui . As Zp is the disjoint union of these clopen balls, each
(X

k

)
is thus modulo p a linear

combination of the characteristic functions ϕi . We obtain ph relations(
X

k

)
=

∑
0≤i<ph

(
i

k

)
ϕi + pδk, with δi ∈ C(Zp,Zp).

We can summarize these relations in a matrix identity

� = M� + p�,
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where �, �, and � are column matrices whose entries are respectively the binomials(X
k

)
, the characteristic functions ϕi , and the functions δk, and where M is the square

matrix with entry
(i

k

)
on line k column i. In fact, M is an upper triangular matrix with

entries equal to 1 on the diagonal. Thus M is invertible and its inverse M−1 is a square
matrix with integral entries αi,k . We then have the matrix identity

� = M−1� − pM−1�,

giving rise to the proposed approximation for each characteristic function ϕi :

ϕi =
∑

0≤k<ph

αi,k

(
X

k

)
+ pγi , with γi ∈ C(Zp,Zp).

Every continuous function ϕ ∈ C(Zp,Zp) can be likewise approximated; as ϕ is
uniformly continuous, it is constant modulo p in each Ui = i + phZp for some h.

Thus ϕ can be approximated modulo p by a linear combination of the corresponding
characteristic functions ϕi , and hence by an integer-valued polynomial, since it is so
for each ϕi by Lemma 10:

ϕ = f0 + pγ1, with f0 ∈ Int(Z) and γ1 ∈ C(Zp,Zp).

Applying the same procedure to γ1 we have

ϕ = f0 + p f1 + p2γ2, with f1 ∈ Int(Z)and γ2 ∈ C(Zp,Zp).

Iterating this procedure, we obtain an approximation modulo pn+1:

ϕ = f0 + p f1 + · · · + pn fn + pn+1γn+1.

The series of functions
∑∞

n=0 pn fn is therefore uniformly convergent and its sum is ϕ.

We thus obtain the p-adic Stone–Weierstrass theorem.
As each fn is integer-valued, and hence a linear combination of binomials, we also

obtain Mahler’s result, expanding ϕ ∈ C(Zp,Zp) as a series of binomials with coeffi-
cients in Zp. In fact, Mahler even expands every function ϕ ∈ C(Zp,Qp) as a series
of binomials with coefficients in Qp. Indeed, as Zp is compact, pkϕ ∈ C(Zp,Zp), for
some k, and the expansion of ϕ is immediately derived from that of pkϕ.

Theorem 11 (Mahler [41]). Every function ϕ ∈ C(Zp,Qp) can be written

ϕ(x) =
∞∑

k=0

ck

(
x

k

)
where ck ∈ Qp and lim

k→∞
(
vp(ck)

) = +∞, (4)

where the ck’s are given by the recursive formulae

ck = ϕ(k) −
k−1∑
i=0

ci

(
k

i

)
, or ck = �kϕ(0). (5)

Moreover,

‖ϕ‖ := max
x∈Zp

|ϕ(x)|p = max
n≥0

|cn|p. (6)
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It is immediate that the coefficients in (5) are given by the same formulae as in (2)
or (3) (Gregory–Newton’s formula) and we leave (6) to the reader.

One says that the
(X

n

)
’s form an orthonormal basis of the Banach space C(Zp,Qp).

Formulas (4) and (6) are characteristic of such bases in p-adic analysis. (See [50, Chap.
3] for the definition of orthonormal and details.)

4. BACK TO THE RING STRUCTURE. Analytical tools allow us to derive easily
many properties seen in section 2. But first we can now describe the prime spectrum.

Prime spectrum. If P is a prime ideal of Int(Z), then the intersection P ∩ Z is a
prime ideal of Z and there are two cases: either P ∩ Z = pZ for some prime number
p, P is then said to be above p, or P ∩ Z = (0), P is then said to be above (0).

One can see (using localization) that the prime ideals above (0) are in one-to-one
correspondence with the prime ideals of Q[X ], just as in the case of Z[X ]: they are
obtained by intersection with Int(Z) of the prime ideals of Q[X ]. Nothing special
there, but standard commutative algebra. The prime ideals above p are much more
interesting and, in fact, easier to deal with. We gave above an example, for p = 2,

with the ideal M2,0 = { f ∈ Int(Z) | f (0) is even}. More generally, we could consider
Mp,a = { f ∈ Int(Z) | f (a) is a multiple of p} for each prime p, and each a ∈ Z. But
why stop at Z?

Lemma 12. For each prime number p and each α ∈ Zp the set

Mp,α = { f ∈ Int(Z) | vp

(
f (α)

) ≥ 1}
is a maximal ideal of Int(Z) with residue field isomorphic to the field Fp = Z/pZ.

Proof. It is obvious that Mp,α is an ideal. That its residue field is isomorphic to Fp, and
hence that Mp,α is maximal, follows from the fact that, for each f ∈ Int(Z), f (α) − k
is a multiple of p for some k ∈ {0, 1, . . . , p − 1}.

It follows obviously from the Stone–Weierstrass theorem that these primes are all
distinct. A spectacular consequence is that the set of primes above p is uncountable
(since Zp, just like R, is uncountable), so is a fortiori the spectrum of Int(Z). Another
major difference with Z[X ]! It turns out there are no other prime ideals above p (we
prove this below). We can then summarize the description of the spectrum of Int(Z).

Theorem 13.

(i) The prime ideals of Int(Z) above a prime p are in one-to-one correspondence
with the elements of Zp : to α ∈ Zp corresponds the maximal ideal

Mp,α = { f ∈ Int(Z) | f (α) ∈ pZp}.
(ii) The nonzero prime ideals of Int(Z) above (0) are in one-to-one correspon-

dence with the irreducible monic polynomials of Q[X ]: to the irreducible poly-
nomial q corresponds the prime ideal

Pq = qQ[X ] ∩ Int(Z).

(iii) The ideal Pq is contained in the maximal ideal Mp,α if and only if q(α) = 0.

(iv) The maximal ideals of Int(Z) are the ideals Mp,α .
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Proof. (Sketch) We only really prove (i). By Lemma 12, it remains to show that every
prime P above p is an Mp,α . The short proof we give here is due to Sophie Frisch [31].
Suppose otherwise; for each α ∈ Zp, there is fα ∈ Mp,α such that fα �∈ P. By continu-
ity there is a neighborhood Uα of α such that vp

(
fα(x)

)
≥ 1 for all x ∈ Uα. As Zp is compact, it can be covered by a finite number of
these neighborhoods, say U1, . . . , Us, with corresponding integer-valued polynomials
f1, . . . , fs, none of them in P. Now consider the product f = ∏s

i=1 fi . As the Ui ’s
cover Zp, f is such that vp

(
f (x)

) ≥ 1 everywhere. Thus g = f/p is integer-valued.
As p ∈ P, it follows that f = pg ∈ P. We obtain a contradiction since P is prime,
f = ∏s

i=1 fi , and no fi is in P.

(ii) Is easily obtained by localization [16, Corollary V.1.2].
(iii) It is immediate that q(α) = 0 implies Pq ⊂ Mp,α. The converse can be proved

using an analytical argument [16, Prop. V.2.5].
(iv) One can show that every irreducible polynomial q has a root in Zp for some p

(in fact infinitely many) [16, Proposition V.2.8]. It then follows from (iii) that
the corresponding prime Pq is not maximal.

Corollary 14. For every proper finitely generated ideal A of Int(Z), there is a prime
number p and an open set U of Zp such that A is contained in Mp,β for each β ∈ U.

(In particular A is contained in infinitely many maximal ideals Mp,β .)

Proof. Let A = (g1, . . . , gs) be a proper finitely generated ideal. A is contained in
some maximal ideal Mp,α, thus vp

(
gi(α)

) ≥ 1 for each i. By continuity, vp

(
gi (β)

) ≥
1 for each β in some neighborhood U of α. Thus A is contained in Mp,β for each
β ∈ U.

We derive the following, generalizing Theorem 3.

Corollary 15. None of the nonzero prime ideals of Int(Z) is finitely generated.

Proof. Each Mp,α is contained in only one maximal ideal (itself!). For a given p, each
Pq is contained in only finitely many Mp,α’s, since q has finitely many roots in Zp.

We can also derive an easy proof of the Skolem property [Theorem 4].

Corollary 16. Int(Z) satisfies the Skolem property.

Proof. Let A be a proper finitely generated ideal. As A is contained in Mp,β for each
β in some open set U of Zp and as Z is dense in Zp, A is contained in Mp,a for some
a ∈ Z. Equivalently A(a) ⊆ pZ.

Invertible ideals and Prüfer domains. Recall that the inverse of a nonzero ideal A
of a domain D, with quotient field K , denoted by A−1, is the conductor of A in D:

A−1 = [D : A] = {x ∈ K | ∀y ∈ A, xy ∈ D}.

A−1 is a fractional ideal of D. By definition, the product AA−1 is contained in D. One
says that A is invertible if actually, AA−1 = D. This is the case in particular of every
nonzero principal A = x D (with inverse A−1 = x−1 D). It is recorded in every basic
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commutative algebra textbook (and easy to prove) that an invertible ideal is finitely
generated (for instance, [35, Theorem 58]). A domain such that every (nonzero) finitely
generated ideal is invertible is called a Prüfer domain (equivalently the localization at
every maximal ideal is a valuation domain).

Theorem 17. Int(Z) is a Prüfer domain.

Proof. (Sketch) Let A = ( f1, . . . , fr ) be a finitely generated nonzero ideal of Int(Z).

To show that AA−1 = Int(Z), we show that AA−1 is not contained in any maximal
ideal. Picking a prime p and α ∈ Zp, we show it is not contained in Mp,α. We set

n = inf
f ∈A

{
vp

(
f (α)

)}
.

We pass on the fact that we can assume that A contains a nonzero constant (this is easy
but technical, see [16, Lemma VI.1.2]). We can thus assume that n is finite. For each
generator fi of A, we have vp

(
fi (α)

) ≥ n. By continuity, there is a neighborhood U
of α such that, for each f ∈ A:

for x ∈ U, vp

(
f (x)

) ≥ n, for x �∈ U, vp

(
f (x)

) ≥ 0.

(The second inequality holds simply because f is integer-valued.) By the Stone–
Weierstrass theorem, there is a polynomial h ∈ Int(Z) (approximating a suitable con-
tinuous function) such that

for x ∈ U, vp

(
h(x)

) = 0, for x �∈ U, vp

(
h(x)

) = n.

Hence, for each f ∈ A, the product (h/pn) f is integer-valued. By definition we thus
have h/pn ∈ A−1. By the choice of n, there is f0 ∈ A such that vp

(
f0(α)

) = n. Hence
vp

(
(h/pn) f0(α)

) = 0, that is, (h/pn) f0 /∈ Mp,α. But (h/pn) f0 ∈ A−1 A. We can con-
clude that A−1 A is not contained in Mp,α.

Corollary 18. Int(Z) satisfies the strong Skolem property.

Proof. (Sketch) Let A and B be two finitely generated ideals with same ideals of
values. As Int(Z) is a Prüfer domain, B is invertible. We can assume that A ⊆ B (if
need be replacing B by A+B), hence that AB−1 ⊆ BB−1 = Int(Z). With a little bit
of work, one can show that AB−1 and BB−1 have the same ideals of values [16, proof
of Proposition VII.1.14]: ∀n ∈ Z,AB−1(n) = BB−1(n) = Z. The Skolem property
then implies AB−1 = Int(Z), hence AB−1 = BB−1, and finally A = B.

5. INTEGER-VALUED POLYNOMIALS ON A SUBSET. Although we shall
mostly focus on subsets of Z, we start with some generalities. We first let E be a
subset of a domain D, with quotient field K , and consider

Int(E, D) = { f ∈ K [X ] | f (E) ⊆ D}.

Finite subsets. Let us first consider the case where E has a single element and, for
simplicity, let it be 0. Then Int({0}, D) is formed by the polynomials with constant
term in D. In other words, Int({0}, D) is a pullback:

Int({0}, D) = D + X K [X ].
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More generally, let E = {a0, . . . , an}. Each f ∈ K [X ] can be written

f = h + (X − a0) · · · (X − an)g with g ∈ K [X ] and deg(h) ≤ n.

Then f and h have the same values on E . By Lagrange interpolation, we thus have

Int(E, D) =
n∑

j=0

D
∏
i �= j

X − ai

a j − ai
+ (X − a0)(X − a1) · · · (X − an)K [X ].

This being said, we shall from here on assume E to be infinite.

Characteristic ideals. As in the case of the binomials
(X

n

)
for Int(Z), one may ask if

there is a basis of the D-module Int(E, D), formed by a sequence { fn}n≥0 of polyno-
mials with deg( fn) = n for each n. Such a basis is called a regular basis. The answer
is positive in the case of Int(E,Z), because Z is a principal ideal domain. For the sake
of further reference, we give here a more general result.

We let In(E, D) be the set formed by the leading coefficients of the degree n poly-
nomials in Int(E, D) to which we adjoin 0. Each In(E, D) is clearly a D-module.
Moreover it follows by Lagrange interpolation that, for any set {a0, . . . , an} of distinct
arguments in E , every degree n polynomial f ∈ Int(E, D) is such that d f ∈ D[X ],
where d = ∏

i �= j (a j − ai ), and hence, dIn(E, D) ⊆ D. Therefore each In(E, D) is a
fractional ideal of D.

The ideals In(E, D) are called the characteristic ideals of Int(E, D). We simply
denote by In(D) the characteristic ideals of Int(D). Finally, we note that, for each n,

In(E, D) ⊆ In+1(E, D). Indeed, if f is a degree n polynomial in Int(E, D), then X f
is a degree n + 1 polynomial in Int(E, D).

The following is not very difficult and we state it without proof [16, Prop. II.1.4].

Proposition 19. Let E be an infinite subset of the domain D. The D-module Int(E, D)

admits a regular basis if and only if all the fractional ideals In(E, D) are princi-
pal. Moreover, in this case, a sequence { fn}n≥0 of polynomials in Int(E, D), where
deg( fn) = n, forms a regular basis if and only if, for each n, the leading coefficient of
fn generates In(E, D).

Newton sequences. In fact, the basis formed by the binomials
(X

n

)
is much more than

a regular basis of Int(Z). It is linked with the property that the first n + 1 integers (more
generally, n + 1 consecutive integers) form a test set for integer-valued polynomials.
Can we find such nice bases for Int(E, D)?

Given a sequence {an}n≥0 of distinct elements of E , we define the generalized bino-
mials

( X
an

)
by

(
X

a0

)
= 1 and, for n ≥ 1,

(
X

an

)
=

n−1∏
k=0

X − ak

an − ak
.

Proposition 20. Let E be an infinite subset of D and {an}n≥0 be a sequence of distinct
elements of E . Then, the following assertions are equivalent.

(i) The generalized binomials
( X

an

)
are integer-valued on E .

(i i) The generalized binomials
( X

an

)
form a basis of the D-module Int(E, D).
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(i i i) A polynomial f ∈ K [X ] of degree at most n is integer-valued on E if and
only if it is integer-valued on the first n + 1 terms of the sequence {an}n≥0.

Proof. As in the classical case,
( X

an

)
is the unique degree n polynomial in K [X ] such

that f (ak) = 0, for k ≤ n − 1, and f (an) = 1. Thus, as in formulas (1) and (2) in the
introduction, a degree n polynomial f with coefficients in K can be expressed as a sum

fn(X) =
n∑

k=0

ck

(
X

ak

)
with ck = f (ak) −

k−1∑
j=0

c j

j−1∏
i=0

ak − ai

a j − ai
.

If the binomials
( X

an

)
are integer-valued and if f takes integer-values on the first n + 1

terms of the sequence {an}n≥0, it follows that ck ∈ D for each k, and hence that
f ∈ Int(E, D). This shows also that the binomials

( X
an

)
form a basis of the D-module

Int(E, D). We have shown that (i) implies (ii) and (iii). That (ii) implies (i) is obvious.
Finally, if (iii) holds, then

( X
an

)
is integer-valued on E as it takes only the value 0 or 1

on the first n + 1 terms of the sequence {an}n≥0.

When it exists, a sequence that satisfies the equivalent conditions of Proposition 20
is called a Newton sequence. It may be there is no such sequence, but for subsets of Z
one can at least obtain one locally. Let us explain what we mean by that.

Local study: p-orderings. The very simple but fruitful notion of p-ordering was
introduced by Manjul Bhargava [6, 7, 8]. Considering a subset E of Z and choosing a
prime number p, let us play in his own terms, as in [8], the game called p-ordering:

• choose any element a0 ∈ E;
• choose an element a1 ∈ E that minimizes the highest power of p dividing a1 − a0;
• choose an element a2 ∈ E that minimizes the highest power of p dividing (a2 − a0)

(a2 − a1);

and so on.
Denoting by vp(x) (as in section 3) the highest power of p dividing x, we can say

that a p-ordering of E is a sequence {an}n≥0 of elements of E such that

∀n ≥ 1, vp

(
n−1∏
k=0

(an − ak)

)
= min

x∈E
vp

(
n−1∏
k=0

(x − ak)

)
.

Let Z(p) = Zp ∩ Q be the ring formed by the rational numbers a/b such that, in
reduced form, b is not a multiple of p. If {an}n≥0 is a p-ordering, for each n ≥ 0
and each x ∈ E, we have, by definition,

∏n−1
k=0

x−ak
an−ak

∈ Z(p). In other words, the cor-

responding generalized binomials
( X

an

)
belong to Int(E,Z(p)). A p-ordering is thus

nothing else than a Newton sequence of E considered as a subset of Z(p)!
As noted by J. Yeramian [56], p-orderings in the case of Z are nothing else than the

very well distributed sequences introduced by Y. Amice [5] back in 1964: a sequence
{an}n≥0 is a p-ordering of Z if and only if for each k, and each s, the pk consecu-
tive terms {aspk , aspk+1, . . . , a(s+1)pk−1} form a complete system of representatives of
Z modulo pk . Amice even considered subsets but had to restrict herself to the so called
regular subsets [see Example 2 below]. The beauty of p-orderings is that it applies to
any subset. Where Amice generalized Mahler’s theorem only for regular compact sub-
sets, p-orderings allowed Bhargava and Kedlaya [11] to consider any compact subset.
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Theorem 21. Let E be a compact subset of Zp. For every p-ordering {an}n≥0 of E,

the binomials
( X

an

)
form an orthonormal basis of the Banach space C(E,Qp).

The p-sequence. Given a p-ordering {an}n≥0, we set

wE,p(n) = vp

(
n−1∏
k=0

(an − ak)

)
=

n−1∑
k=0

vp(an − ak). (7)

Clearly, p-orderings are far from unique, since there may be a choice at each step,
which we see as follows.

Proposition 22. The sequence {wE,p(n)}n≥0 depends only on E and p.

Proof. Having a Newton sequence, the binomials
( X

an

)
form a regular basis of Int

(E,Z(p)). The leading coefficient
(∏n−1

k=0(an − ak)
)−1

is thus a generator of the char-

acteristic ideal In(E,Z(p)). Obviously this ideal does not depend on the choice of the
p-ordering! The largest power of p dividing

∏n−1
k=0(an − ak) is thus the same for every

p-ordering.

The sequence {wE,p(n)}n≥0 is called the p-sequence of E .

Remark 2. Note that each difference an − ak as in formula (7) is divisible by only
finitely many primes. One can thus show that wE,p(n) = 0 for almost every p.

Examples 23. 1. The sequence {n}n≥0 is a p-ordering of Z (for every p). From
Legendre’s formula [38], one then has

wN,p(n) = vp(n!) =
∑
k≥1

[
n

pk

]
.

2. Let E be a subset of Z and qk be the number of classes modulo pk met by E . The
subset E is said to be regular with respect to p in Amice’s sense [5] if, for each k,

in each class modulo pk met by E, E meets the same number of classes modulo
pk+1. In this case qk divides qk+1. Building a very well distributed sequence,
Amice then established Legendre’s generalized formula:

wE,p(n) =
∑
k≥1

[
n

qk

]
. (8)

Conversely S. Evrard and Y. Fares [28] showed that if wE,p(n) = ∑
k≥1

[
n
qk

]
then the p-adic topological closure of E is a regular subset and that this is the
case if and only if E admits a very well distributed sequence.

3. Let E = Z \ pZ be the set of integers not divisible by p, then

wE,p(n) =
∑
k≥0

[
n

(p − 1)pk

]
. (9)
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Note that E is regular and that wE,p(n) fits with Legendre’s generalized formula.
A p-ordering of E is given by the sequence of positive integers that are not
divisible by p [12].

Globalization: simultaneous orderings. A sequence {an}n≥0 is a p-ordering of E
for each prime p if and only if the corresponding generalized binomials

( X
an

)
are in

Int(E,Z(p)) for each p, hence if and only if they are in Int(Z), since Z = ⋂
p∈P Z(p).

Such a sequence, often called a simultaneous p-ordering, is therefore in fact nothing
else than a Newton sequence.

Examples 24. A sequence is said to be self-simultaneously ordered if it is a Newton
sequence of the subset formed by its own elements. The following sequences are self-
simultaneously ordered:{

(−1)n
[

n
2

]}
n≥1

, {n2}n≥0 ,
{

n(n+1)

2

}
n≥0

,

{qn}n≥0 (q �= 0, 1, −1), {Fn = 22n + 1}n≥0.

Denoting by N2 = {n2 | n ≥ 0} the set of square numbers, it follows for instance that
the binomials

∏n−1
k=0

X−k2

n2−k2 form a regular basis of Int(N2,Z), and that a degree n poly-
nomial is integer-valued on all squares if and only if it is so up to n2. We have similar
statements for each of these sequences.

Observe that the sequence {Fn = 22n + 1}n≥0 of Fermat numbers is the orbit of 3
under the iteration of the quadratic polynomial f = X 2 − 2X + 2. In fact, the last two
examples follow from a general property [4, Proposition 18].

Proposition 25. If f is a nonconstant polynomial of Z[X ], distinct from ±X, then
every infinite orbit {b, f (b), f ( f (b)), . . .}, for b ∈ Z, is self-simultaneously ordered.

Question. It is easy to see that if {an}n≥0 is self-simultaneously ordered, then so is
the sequence a {an + b}n≥0 (a, b ∈ Z, a �= 0). Are there any other self-simultaneously
ordered sequences aside the sequences obtained by such an affine transformation from
the sequences listed above or by iteration of a polynomial? Note for instance that
{nk}n≥0 is not self-simultaneously ordered, for k ≥ 3 [4].

An algorithm to construct a regular basis. Starting with f0 = 1, assume we have
the first terms f0, f1, . . . , fn−1 of a regular basis of Int(E,Z). We show how to obtain
fn, using p-orderings.

For each prime p such that wE,p(n) �= 0, we let {ap,k}k≥0 be a p-ordering of E .
By Remark 2 there are finitely many such primes and the Chinese remainder theorem
provides n + 1 integers bn,k, 0 ≤ k ≤ n, such that, for each such p and each k,

vp(bn,k − ap,k) > wE,p(n).

Finally let

fn = 1∏
p∈P pwE,p(n)

n−1∏
k=0

(X − bn,k).

Keep the product
∏

p∈P pwE,p(n) in mind for what comes next (it looks like an infinite
product, but pwE,p(n) = 1 for almost every p). For every prime p, f0, f1, . . . , fn are the
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first terms of a regular basis of Int(E,Z(p)). If wE,p(n) �= 0, this is because, replacing
ap,k by bn,k for 0 ≤ k ≤ n, we still have a p-ordering, otherwise this is because the
leading coefficient of fn is a unit in Z(p). It is easy to conclude that f0, f1, . . . , fn are
the first terms of a regular basis of Int(E,Z).

Remark 3. This algorithm provides a regular basis but not a Newton sequence, and
this is for two reasons; the integers bn,k are not necessarily in E . Moreover they depend
on the degree n, as there are more and more primes such that wE,p(n) �= 0 as n
increases. Also they do not form a test set of arguments, even for the polynomials
of degree at most n, that is, it is not enough that a polynomial of degree m ≤ n takes
integer-values on the first m + 1 of terms of the sequence bn,0, bn,1, . . . , bn,n to be
integer-valued (as opposed to assertion (iii) in Proposition 20).

Bhargava’s factorials. Observing that n! = ∏
p∈P pwZ,p(n) (by Legendre’s formula),

Bhargava proposed, in [8] (entitled The factorial Function and Generalizations), to
define similarly the factorial function of a subset E as

n!E =
∏
p∈P

pwE,p(n).

And yes,
∏

p∈P pwE,p(n) is the product encountered in the previous algorithm! In other
words, 1

n!E
is the leading coefficient of fn in the regular basis we constructed above.

Equivalently, by Proposition 19, 1
n!E

is a generator of the characteristic ideal In(E,Z).
Bhargava then described several fine properties (generalizing classical factorials).

1. For every two nonnegative integers m and n, (m + n)!E is a multiple of m!E n!E .
2. If f is a primitive polynomial of degree at most n, then n!E is a multiple of the

fixed divisor d( f, E) = gcd{ f (a) | a ∈ E} of f in E .

3. Let a0, a1, . . . , an ∈ E . Then the product
∏

0≤i< j≤n(a j − ai ) is a multiple of
1!E 2!E · · · n!E .

4. The number of polynomial functions from E to Z/nZ (that is, functions induced
by a polynomial of Z[X ]) is equal to

∏n−1
k=0

n
gcd(n,k!E )

(a generalization of Kemp-
ner’s formula [36]).

The beauty of integer-valued polynomials is to allow one to prove easily most of
these properties. For instance, the first one follows immediately from the fact that the
product of two integer-valued polynomials respectively of degree n and m is an integer-
valued polynomial of degree n + m. We invite the reader to read Bhargava’s proofs,
having integer-valued polynomials in mind, and using an extra property [8, Lemma
13] that follows immediately from the containment Int(F,Z) ⊆ Int(E,Z) if E ⊆ F :

5. If E, F are two subsets such that E ⊆ F , then n!E is a multiple of n!F .

In particular, for every subset E of Z, n!E is a multiple of n!.

Factorials and Newton sequences. If E admits a simultaneous ordering {an}n≥0, that
is, a Newton sequence, the leading coefficient of the generalized binomial

( X
an

)
is

1∏n−1
k=0(an−ak )

. We thus simply have

n!E =
∣∣∣∣∣

n−1∏
k=0

(an − ak)

∣∣∣∣∣ .
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Examples 26. • E = {an + b | n ≥ 0}, n!E = ann!;
• E = {n2 | n ≥ 0}, n!E = (2n)!

2
; • E = { n(n+1)

2 | n ≥ 0}, n!E = (2n)!

2n
;

• E = {qn | n ≥ 0}, n!E = q
n(n−1)

2 (qn − 1)(qn−1 − 1) · · · (q − 1);
(Jackson’s factorials).

Bhargava raises several questions in [8]. For instance whether there is a combinato-
rial interpretation of n!E , observing that the generalized binomial coefficients(

n

k

)
E

= n!E

k!E(nk)!E

are integers by property 1 above. He also asks about analogues of the Stirling or expo-
nential functions. Some answers have been given in this last case [42]. The generalized
exponential

expE(x) =
∞∑

n=0

xn

n!E

converges everywhere, since n! divides n!E . The generalized Euler number

eE =
∞∑

n=0

1

n!E

is such that 1 < eE ≤ e and never rational. For instance, for N(2) = {n2 | n ≥ 0},
expN(2) (x) = 2 cosh

√|x | and eN(2) = e + 1
e is transcendental.

Questions. • When is eE = ∑∞
n=0

1
n!E

a transcendental number?
• Mingarelli [42] noticed there cannot be three equal consecutive terms in the

sequence {n!E}n≥0, whatever the subset E . Indeed, k!E = (k + 1)!E = (k + 2)!E

would imply 2!E = 1 (since (k + 2)!E is a multiple of 2!E k!E ). He then raised the
question: is there a subset E such that n!E = (n + 1)!E for infinitely many n?

Polynomially equivalent subsets. It is clear that Int(N,Z) = Int(Z), as it follows
immediately from Corollary 2 that a degree n polynomial is in Int(Z) as soon as it
takes integer-values on n + 1 consecutive nonnegative integers. R. Gilmer devoted a
paper on Sets that determine integer-valued polynomials [32]. More generally, one can
ask under which conditions two subsets E and F are such that Int(E,Z) = Int(F,Z).

We start with some definitions given in all generality for subsets of a domain D.

• If two subsets E and F are such that Int(E, D) = Int(F, D), we say that E and F
are polynomially equivalent.

• For each subset E, E = {x ∈ K | ∀ f ∈ Int(E, D), f (x) ∈ D} is clearly the largest
subset of D polynomially equivalent to E . We say that E is the polynomial closure
of E .

• If E = E, we say that E is polynomially closed and, if Int(E, D) = Int(D), we say
that E is polynomially dense in D.

Analytical tools allow us to settle the question of (polynomially) equivalent and
dense subsets of Z.
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Proposition 27. (i) Two subsets of Z are polynomially equivalent if and only if, for
every prime p, they have the same p-adic closure in Zp.

(ii) A subset is polynomially dense in Z if and only if, for every prime p, it is topo-
logically dense in Z in the p-adic topology.

(iii) The polynomial closure of a subset is the intersection of its p-adic closures in Z.

Proof. (i) Two subsets E and F, have the same p-adic completion, if and only if
Int(E,Zp) = Int(F,Zp). This condition is necessary by continuity, it is sufficient
by the p-adic analogue of the Stone–Weierstrass theorem. The result follows using
the fact that Int(E,Z) = Q[X ]

⋂
p∈P Int(E,Zp). (ii) and (iii) follow immediately

from (i).

The subset P. Let us finally pay a particular attention to the subset P formed by the
prime numbers. By Dirichlet’s theorem on primes in arithmetical progression, the p-
adic closure of P in Z is {p} ∪ (Z \ pZ). The polynomial closure of P is thus

P = P ∪ {−1, +1}.

From formula (9) in Examples 23, we derive

wP,p(n) =
∑
k≥0

[
n − 1

(p − 1)pk

]
[25]. (10)

We then obtain the factorial

n!P =
∏
p∈P

p
∑

k≥0

[
n−1

(p−1)pk

]
. (11)

The sequence {n!P}n≥0 = {1, 1, 2, 24, 48, 5760, 11520, . . .} is sequence A053657 in
The On-Line Encyclopedia of Integer Sequences (but not sequence A002552 which
begins with the same seven first terms). There are links with Bernoulli numbers, as
already described by Bhargava [8, Example 21] (see also [23, §4] for more details),
but also with Bernoulli polynomials B(m)

n . Let us recall that the B(m)
n ’s are defined by(

z
ez−1

)m = ∑∞
n=0 B(m)

n
zn

n! , and it turns out that (n + 1)!PB(m)
n is a primitive polynomial

in Z[X ] (that is, the gcd of its coefficients is 1) [24, §2].
These factorials appear also in other contexts. First in group theory: (n + 1)!P is

equal to the nth Minkowski number, that is, the least common multiple of the orders
of all finite subgroups of GLn(Q) (cf. Minkowski [43] and Schur [51]). And also in
algebraic topology: following Johnson [34], they are the denominators of the Laurent
polynomials forming a regular basis for the Hopf algebroid of stable cooperations for
complex K-theory.

Using the algorithm described above to construct a regular basis, the bn,k’s may be
chosen in P (thanks to Dirichlet’s theorem). For instance, for n = 5, we may choose
1, 2, 3, 5, 79 [25] (1 is not really a prime, but it is in the polynomial closure of P). We
obtain a basis of Int(P,Z) starting with

1, (X − 1),
(X − 1)(X − 2)

2
,

(X − 1)(X − 2)(X − 3)

24
,

(X − 1)(X − 2)(X − 3)(X − 5)

48
,

(X − 1)(X − 2)(X − 3)(X − 5)(X − 79)

5760
.
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Finally, we have the following test for the polynomials of degree at most n [22]:

f ∈ Int(P,Z) ⇐⇒
{

for p ∈ P, p ≤ n + 1, f (p) ∈ Z

for k ∈ N, k ≤ 2n − 1, k2n−5 f (k) ∈ Z.
(12)

Question. If a subset E admits a Newton sequence, the polynomials of degree at most
n can be tested on n + 1 elements. In general, is there a test set of ϕ(n) elements, with
some control on ϕ(n)? Or at least a finite test of some sort as in (12) for integer-valued
polynomials on the prime numbers?

6. NUMBER FIELDS AND MORE. We now turn to the study of integer-valued
polynomials in number fields, as initiated by Pólya in [49] and Ostrowski in [47]. We
shall use localization and first consider this standard tool of commutative algebra in
the more general frame of a domain D, with quotient field K .

Localization. A multiplicative subset S of the domain D is a subset stable under mul-
tiplication, with 0 �∈ S and 1 ∈ S. The localization of D with respect to S, denoted by
S−1 D, is the set of fractions

S−1 D = {a/s ∈ K | a ∈ A, s ∈ S}.

This set is an overring of D. In particular, the complement S = D \ p of a prime ideal p
is a multiplicative subset. The corresponding localization is called the localization with
respect to p and is denoted by Dp. The ring Dp has only one maximal ideal (namely,
the extension pDp of the prime p). One says that Dp is a local ring (some people say
quasi-local in the non-Noetherian case). Local rings are often simpler to deal with.

Lemma 28. Let S be a multiplicative subset of the domain D with quotient field K . If
a polynomial f ∈ K [X ] is such that f (D) ⊆ S−1 D, then f (S−1 D) ⊆ S−1 D.

Proof. Sketch: the result is trivial for a constant. By induction on the degree, if f is of
degree n, to show that f (a/s) ∈ S−1 D, one considers the polynomial of lesser degree
g(X) = sn f (X) − f (s X).

As S can also be considered as a multiplicative subset of Int(D), one can easily
derive the containment S−1Int(D) ⊆ Int(S−1 D). It is not too difficult to show that this
containment is an equality in the Noetherian case [16, Theorem I.2.3]. In particular,
we have the following.

Proposition 29. Let D be a Noetherian domain. For each prime ideal p of D, one has

Int(D)p = Int(Dp).

Remark 4. As already noted above, if f ∈ Int(D) is of degree n, it follows from
Lagrangian interpolation that, for every set of arguments {a0, a1, . . . , an}, d f ∈ D[X ]
where d = ∏

i �= j (ai − a j ). If D/p is infinite, in particular, if p is not maximal, these
arguments can be chosen in distinct classes modulo p, thus d �∈ p, and so one has the
containment Int(D) ⊆ Dp[X ], and the equalities Int(D)p = Int(Dp) = Dp[X ].

When there is such a nonzero prime ideal p with an infinite residue ring, many of
the beautiful properties of Int(Z) are then lost: for instance, Int(D) cannot be a Prüfer
domain since the overring Dp[X ] is not Prüfer; moreover, Int(Dp) is not dense in

April 2016] WHAT ABOUT INTEGER-VALUED POLYNOMIALS 329



C(D̂p, D̂p), where D̂p denotes the p-adic completion of Dp. Also, the prime ideals of
Int(D) above p are obtained by intersection of Int(D) with the primes of Dp[X ] above
p, and there is nothing special to them, as in the case of the primes above (0) in Int(Z)

[Theorem 13 (ii)]. This is why the study of integer-valued polynomials is focused on
domains for which every nonzero prime ideal is maximal with finite residue field, and
such are precisely the rings of integers of number fields.

Number fields and valuations. Recall that a number field K is a finite extension
of Q, that its ring of integers OK is formed by the elements of K which are roots
of monic polynomials with integral coefficients, and that the quotient field of OK is
K itself. We shall see that Int(OK ) has algebraic properties like those of Int(Z). The
reason is that we can use very similar analytical tools, replacing p-adic valuations by
m-adic valuations.

Given a maximal ideal m of the ring of integers OK of a number field K and a
nonzero element x, the highest power of m such that x belongs to mn is called the
m-adic valuation of x and is denoted by vm(x). It can be extended to the number field
K , letting vm(a/b) = vm(a) − vm(b).

More generally a discrete valuation on a field K is a map v : K 
 → Z such that,
alike the p-adic valuation, for two nonzero elements x, y:

v(x + y) ≥ inf{v(x), v(y)} and v(xy) = v(x) + v(y).

One also sets v(0) = ∞. With the convention e−∞ = 0, one defines an absolute value
|x | = e−v(x), and a distance by d(x, y) = |x − y| on K . The set V = {x ∈ K | v(x)

≥ 0} is a ring called the ring of the valuation v: it is a principal ideal domain with a
single maximal ideal m = {x ∈ K | v(x) > 0}. One can consider the completion V̂ of
V (and the completion of K ), as we considered Zp (and Qp).

The ring of the m-adic valuation is the localization (OK )m, and the residue field
of this discrete valuation domain, isomorphic to OK /m, is finite. By Proposition 29,
we have (Int(OK ))m = Int((OK )m). To study Int(OK ), we may thus first consider
integer-valued polynomials over a valuation domain V with finite residue field.

We can consider integer-valued polynomials on V as continuous functions from the
completion V̂ into itself. Since the residue field of V is finite, V̂ is compact and we
have the analogue of the Stone–Weierstrass theorem: Int(V ) is dense in C(V̂ , V̂ ). We
can easily derive, as for Int(Z) that the prime ideals of Int(V ) above the maximal ideal
of V are in one-to-one correspondence with the elements of V̂ and that Int(V ) is a
Prüfer domain. By globalization we obtain similar results for the ring OK of integers
of a number field, and more generally, for a Dedekind domain D with finite residue
fields, that is, a Noetherian domain such that Dm is a discrete valuation domain for
each maximal ideal m.

Theorem 30. Let D be a Dedekind domain with finite residue fields.

(i) For each maximal ideal m of D, the prime ideals of Int(D) above m are in one-
to-one correspondence with the elements of the completion D̂m of Dm:

α ∈ D̂m �→ Mm,α = { f ∈ Int(D) | f (α) ∈ mD̂m} ∈ Max(Int(D)).

(ii) Int(D) is is a Prüfer domain.

Moreover, in the case where D = OK the ring of integers of a number field K ,

(iii) the maximal ideals of Int(OK ) are the ideals Mm,α,

(iv) Int(OK ) satisfies the strong Skolem property.
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Remark 5. Properties (iii) and (iv) hold in case D = OK , the ring of integers of
a number field, as for Int(Z), with very similar proofs, but fail to hold in general
for a Dedekind domain. For instance, both properties always fail to hold for a local
domain, Dedekind or not for that matter. Indeed, if m is a nonzero element of the
unique maximal ideal of a local domain D, the irreducible polynomial q = 1 + m X,

is then such that q(a) = 1 + am is a unit for each a ∈ D. Yet the principal ideal
generated by q is a proper ideal of Int(D), thus down goes the Skolem property, let
alone the strong Skolem property! Also to q corresponds a prime ideal Pq above (0)

that is maximal.

v-orderings. Pólya and Ostrowski studied the additive structure of the ring Int(OK ).

But unlike the previous algebraic properties, this structure is quite different from the
case of Int(Z): there is no Newton sequence, and thus no way to test a degree n poly-
nomial on n + 1 elements. Sometimes there is even no regular basis! Once again, life
is easier in the local case; that is, considering Int((OK )m) rather than Int(OK ). And
once again, we may as well first consider a discrete valuation domain V with finite
residue field, denoting by v the corresponding valuation, m its maximal ideal, and q
the cardinality of V/m (when one considers OK , q is the norm of m, denoted by N (m),
that is, the cardinality of OK /m).

Generalizing the notion of p-ordering, it is possible to build a sequence {an}n≥0,
choosing a0 arbitrarily, and then inductively an such that

v

(
n−1∏
k=0

(an − ak)

)
= min

x∈V
v

(
n−1∏
k=0

(x − ak)

)
.

Such a sequence is called a v-ordering. By these choices, the generalized binomials( X
an

) = ∏n−1
k=0

X−ak
an−ak

are integer-valued, hence {an}n≥0 is a Newton sequence of V . The

binomials
( X

an

)
form a regular basis of Int(V ) and a degree n polynomial in K [X ]

belongs to Int(V ) if and only if it takes integral values on the n + 1 terms of the
sequence {an}n≥0 (see [Proposition 20]).

As for p-orderings, v-orderings are far from unique but the valuation of the product∏n−1
k=0(an − ak) depends only on n and on the ring V . In fact, it depends only on n and

q, as we see next, building explicitly a v-ordering. We thus denote it by wq(n).

Choose a set of representatives a0 = 0, a1, . . . , aq−1 of V/m and choose π in V
such that v(π) = 1. Then, writing every integer n in its base q expansion, that is,

n = n0 + n1q + · · · + nr qr

with 0 ≤ ni < q for each ni , set

an = an0 + an1π + · · · + anr π
r . (13)

If vq(n − m) denotes the largest h such that qh divides n − m, it is easy to see that

vm(an − am) = vq(n − m). (14)

It follows that, for each k, the qk first terms of the sequence {an}n≥0 form a complete set
of representatives of V/mk . One can derive that the sequence {an}n≥0 is a v-ordering
[16, Lemma II.2.6] and a formula for wq(n) [16, Lemma II.2.4]:
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wq(n) = v

(
n−1∏
k=0

(an − ak)

)
=

n−1∑
k=0

v(an − ak) =
n∑

l=1

vq(l) =
∑
k≥1

[
n

qk

]
.

Note that the formula wq(n) = ∑
k≥1

[
n

qk

]
is similar to Legendre’s formula.

Remark 6. Formula (14) shows that for each h, the truncated sequence {an}n≥h

keeps the same nice properties. One says it is a strong v-ordering: analogously to the
sequence of integers in the case of Z, a polynomial is integer-valued on V if and only
if it is so on n + 1 consecutive terms of this sequence.

Globalization. Back to number fields, as Int(OK )m = (Int(OK ))m for each maximal
ideal m, the characteristic ideals In(OK ) are such that (In(OK ))m = In((OK )m). As
in the case of a subset of Z, we define the nth factorial ideal of OK as the inverse of
the fractional ideal In(OK ). We thus have

n!OK =
∏

m∈Max(OK )

mwN (m)(n) where wq(n) =
∑
k≥1

[
n

qk

]
. (15)

The factorial ideal n!OK is principal if and only if its inverse In(OK ) is principal. By
Proposition 19 we have the following.

Proposition 31. Let OK be the ring of integers of a number field. Then Int(OK ) admits
a regular basis if and only if, for each n, n!OK is a principal ideal of OK .

One could be more greedy and ask for a Newton sequence, equivalently a sequence
that would be simultaneously a vm-ordering for each maximal ideal m. But that may
be asking too much.

Conjecture. Q is the only number field for which there is a Newton sequence.

Wood [55, Thm. 5.2] proved the conjecture holds for imaginary quadratic number
fields, Adam and Cahen [3] that it fails for at most finitely many real quadratic fields.

Remark 7. Newton sequences are related to the Schinzel problem [45, Problem 8]:
is there a sequence in OK such that, for every ideal I with norm N = Card(OK /I),
the first N terms of the sequence form a set of representatives modulo I? So is the
sequence of nonnegative integers in Z. As for Newton sequences, the answer is con-
jectured to be negative for every number field but Q. At least one could build finite
sequences {an}N

n=0 with this property for the ideals with norm up to N . Similarly, one
could build finite sequences to be used as test sets for integer-valued polynomials of
degree up to N . See [3] for a computation of the maximal length of such sequences in
quadratic number fields (for both the Schinzel and Newton problem).

Pólya groups and Pólya fields. Following Zantema [57], a number field K is called
a Pólya field if Int(OK ) admits a regular basis. This is certainly the case if OK is a
principal ideal domain, as is in particular the ring Z[i] of Gaussian integers, yet this is
asking too much.

Recall that the class group of K is the quotient Cl(OK ) = I(OK )/P(OK ) of the
group I(OK ) of nonzero fractional ideals of OK by the subgroup P(OK ) of nonzero
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principal ideals. As a measure of the obstruction for Int(OK ) to have a regular basis,
the Pólya group Po(OK ) is the subgroup of the class group generated by the classes
of the factorial ideals: K is a Pólya field if and only if the Pólya group is trivial.

As n!OK = ∏
m∈Max(OK ) mwN (m)(n), the Pólya group is also generated by the classes

of the products �q(OK ) = ∏
m∈Max(OK ), N (m)=q m (where q is such there is some max-

imal ideal with norm q) [16, Prop. II.3.9]. For a Galoisian extension of Q, as noticed
by Ostrowski [47], the ideal �q is principal unless q is a power of a ramified prime.
Consequently we have the following.

Proposition 32. If K/Q is Galoisian, the Pólya group Po(OK ) is generated by the
classes of the ideals �q(OK ) where q is a power of a ramified prime.

Happily, there are finitely many ramified primes. For quadratic fields, the Pólya
group is also the group of ambiguous classes of Hilbert [16, Proposition II.4.4]. The
quadratic Pólya fields were characterized by Zantema [57]. They are all the quadratic
fields with only one ramified prime and also, in the real case, the fields with 2 ramified
primes under another condition.

Proposition 33. The quadratic Pólya fields are:
- in the imaginary case: Q(i), Q(

√−2), and Q(
√−p) with p prime ≡ 3 (mod 4),

- in the real case: Q(
√

p) with p prime, and if the norm of the fundamental unit is 1,

also Q(
√

pq) with p and q prime.

Example 34. K = Q(
√−23) is a Pólya field. Indeed, 23 is the only ramified prime

and �23(OK ) is the principal ideal
√−23OK . Yet K has class number 4 [37, Tables].

In the same paper, Zantema proved also that all cyclotomic fields (that is, fields
generated by roots of unity) are Pólya fields. More recently, a systematic study of the
Galoisian Pólya fields of degree ≤ 6 was undertaken by Leriche [39].

The classical embedding problem asks if every number field is contained in a num-
ber field whose ring of integers is a principal ideal domain. The answer is negative.
A similar but weaker question asks to embed every number field in a Pólya field. A
positive answer was recently obtained: every number field K is contained in its Hilbert
class field L (that is, its maximal nonramified Abelian extension) and L was shown to
be a Pólya field [40, Thm. 3.3].

A twin of Z in characteristic p. The strongest similarities with Z are to be found in
the ring Fq[T ] of polynomials with coefficients in a finite field, rather than in the ring
of integers of a number field, although Fq[T ] has a positive characteristic p. Indeed it
admits a (strong) Newton sequence, often referred to as the Car sequence [17].

Similarly to what we did in (13) to build a v-ordering, let a0 = 0, a1, . . . , aq−1 be
the elements of Fq and n = n0 + n1q + · · · + nr qr be the base q extension of n. Then
set

an = an0 + an1 T + · · · + anr T r .

It is not difficult to see that for each degree n polynomial f ∈ Fq[T ], the first qn

terms of this sequence form a set of representatives modulo f. In fact, the same is
true of qn consecutive terms. This is a strong answer to the Schinzel problem, as in
[Remark 7], and one can derive that {an}n≥0 is a strong Newton sequence. The gen-
eralized binomials

( X
an

) = ∏n−1
k=0

X−ak
an−ak

thus form a regular basis of Int(Fq[T ]) and a
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degree n polynomial is integer-valued on Fq[T ] if and only if it is so on n + 1 consec-
utive terms of this sequence!

Having a Newton sequence, the factorial n!Fq [T ] is the product
∏n−1

k=0(an − ak) and
this turns out to be (up to an invertible element) the factorial introduced by Carlitz
back in 1940! [18].

As for number fields (finite extensions of Q), one may ask if a finite extension K
of Fq(T ), that is, a function field, can be such that its ring of integers, denoted by OK ,

admits a Newton sequence. Unlike number fields, that can obviously be the case: if
K = Fq(

√
T ), then OK = Fq[

√
T ] is clearly isomorphic to Fq[T ]; the same can be

said for K = Fq2(T ), with OK = Fq2 [T ]. Yet it is conjectured that for a separable
finite extension, OK never admits a Newton sequence, unless it is isomorphic to some
Fqn [T ]. This was proved by Adam for a totally imaginary extension [2, Theorem 18].

Finally let us mention that Adam [1] also obtained an analogue of Pólya’s 1915
theorem [Theorem 8] for entire functions in the case of Fq(T ).

7. MORE AND MORE RINGS. We focused our review on the classical ring Int(Z)

of integer-valued polynomials over Z, then over subsets of Z, and then over the ring
of integers of a number field (or more generally a Dedekind domain with finite residue
fields). But of course, there is more.

Subsets. As encountered occasionally above, one can consider the ring Int(E, D) of
integer-valued polynomials over a subset E of a domain D, other than Z. For instance,
if D is a Dedekind domain with finite residue fields, Int(E, D) is a Prüfer domain,
being an overring of Int(D), and has thus many interesting properties.

Derivatives. f = (X
2

)
is integer-valued, f ′ = X − 1

2 is not. The study of integer-
valued polynomials whose derivatives are integer-valued dates back to the 1950s
[53]. More generally one can investigate the rings Int(k)(D) of polynomials which are
integer-valued on a domain D, together with their derivatives up to order k, allowing
k to be infinite. For instance f = X2(X−1)2

2 belongs to Int(∞)(Z) as f ′ ∈ Z[X ]. And of
course one can generalize again to subsets!

Finite differences. Given a polynomial f ∈ Z[X ], one can define, for each h ∈ Z, the
finite difference �h f = f (X+h)− f (X)

h . And then finite differences of order 2 by �l�h f ,
and so on. The study of the ring Int[k](Z) of polynomials which are integer-valued
together with their finite differences up to order k, allowing k to be infinite, is also
quite ancient. A regular basis of Int[k](Z) was determined by Carlitz in 1959 [19], of
the form c[k]

n

(X
n

)
, with coefficients c[k]

n in Z. For instance

c[1]
n = lcm{ j | 1 ≤ j ≤ n} and c[∞]

n =
∏
p∈P

p[ n
p ]

.

Of course one can more generally consider Int[k](D), for any domain D. But finite
differences do not really agree with subsets (even in the case of a subset E of Z :
a, h ∈ E does not imply a + h ∈ E).

Divided differences. The divided difference of a polynomial f ∈ K [X ] (given some
field K ) is a polynomial in two indeterminates: �( f )(X, Y ) = f (X)− f (Y )

X−Y . One can iter-
ate this procedure. In fact, divided differences (with K = R) date back to Cauchy (who
attributes them to Ampere) [20]. If f is a polynomial of degree n, its divided difference
of order k is a symmetric polynomial of degree n − k in k + 1 indeterminates:
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�k f (X0, . . . , Xk) =
∑

0≤i≤k

f (Xi )∏
j �=i (Xi − X j )

.

There is also the following analogue of Taylor’s formula:

f (X) = f (a) + (X − a) �1 f (a, a) + · · · + (X − a)n �n f (a, a, . . . , a). (16)

One can study the ring Int{k}(D) of polynomials that are integer-valued on a domain
D together with their divided differences up to order k. No need here to allow k to be
infinite, as Int{∞}(D) = D[X ] by (16). But one can perfectly well consider subsets!

As for finite differences, there are regular bases of Int{k}(Z) of the form cn

(X
n

)
.

Bhargava obtained such bases in 2009 [9], using another notion of p-orderings called
k-removed p-orderings. He also generalized Mahler’s approximation theorem: these
bases are orthonormal bases of the Banach space Ck(Zp,Qp) of functions whose
derivatives up to the order k are “uniformly continuously differentiable” [9]. In fact,
even for a subset E of Z such that the completion Ê of E is compact, every basis
of Int{k}(E,Z) is an orthonormal basis of Ck(Ê,Qp). Explicit formulas were recently
given [26] for such bases in case Ê is a regular subset [Example 23.2].

Interplay. In general, one has the containments

Int{k}(D) ⊆ Int[k](D) ⊆ Int(k)(D).

Moreover, Int{1}(D) = Int[1](D). For k finite, these containments are usually strict.
For instance, the set of prime ideals above some prime number p is uncountable in the
case of Int(k)(Z) but finite for Int[k](Z). Moreover, there is no regular bases of the form
cn

(X
n

)
for Int(k)(Z) (see [14] for the description of a basis of Int(1)(Z)). Yet

Int(∞)(Z) = Int[∞](Z) [53].

One can ask when Int(∞)(D) = Int[∞](D) (not true for the ring of Gaussian integers!).
A full answer is given in the case of Dedekind domains in [21, 15].

More, more, and more! There are many other generalizations: for instance, integer-
valued polynomials on matrices! Let us just give one recent example [29]: if Tn(Z)

denotes the ring of n × n triangular integer matrices, the ring of integer-valued poly-
nomials on Tn(Z), that is, Int(Tn(Z)) = { f ∈ Q[X ] | f (Tn(Z)) ⊆ Tn(Z)} is nothing
else than Int{n−1}(Z). But one must draw the line somewhere!
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