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1 Introduction

1.1 Overview

1.1.1 Background and main results Chromatic homotopy theory, as a general approach, proposes
to study the 1–category Sp.p/, of p–local spectra, via the “chromatic height filtration”. In practice,
there are two prominent candidates for the “monochromatic layers” for such a filtration. The first
are the K.n/–localizations LK.n/ W Sp.p/! SpK.n/, where K.n/ is the Morava K–theory spectrum of
height n. The second are the telescopic localizations LT .n/ W Sp.p/! SpT .n/, where T .n/ is obtained by
inverting a vn–self map of a finite spectrum of type n. The two candidates are related by the inclusion
SpK.n/ � SpT .n/, which is known to be an equivalence for n D 0; 1 by the works of Miller [41] and
Mahowald [37]. Whether this inclusion is an equivalence for all n is an open question and is the subject
of the celebrated “telescope conjecture” of Ravenel. On the one hand, the 1–categories SpT .n/ are
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Chromatic cyclotomic extensions 3513

fundamental from a structural standpoint, as they arise via the thick subcategory theorem [30, Theorem 7].
They also admit a close connection to unstable homotopy theory (see Heuts [26]), and figure in the
“redshift” phenomena for algebraic K-theory (see Ausoni and Rognes [2], Hahn and Wilson [24], Land,
Mathew, Meier and Tamme [32] and Clausen, Mathew, Naumann and Noel [15]). However, they are
hard to access computationally. On the other hand, the 1–categories SpK.n/, which a priori might
contain somewhat less information, still exert a large control over Sp.p/, due to the nilpotence theorem
of Hopkins, Devinatz and Smith [30, Corollary 5] and the chromatic convergence theorem of Hopkins
and Ravenel [46, Theorem 7.5.7]. Moreover, they possess deep connections to the algebraic geometry of
formal groups, and are consequently much more amenable to computations.

One of the key instances of the relationship between the theory of formal groups and SpK.n/, is the
construction1 of the Lubin–Tate E1–ring spectrum En; see Goerss and Hopkins [23], or alternatively
Lurie [36, Construction 5.1.1]. Simply put, En provides a faithful and relatively computable (highly
structured) multiplicative (co)homology theory for K.n/–local spectra. Moreover, the cohomology
operations of En can be understood in terms of the Morava stabilizer group GnD

yZËAut.x�/, where � is
a formal group law of height n over Fp , and x� is its base-change to xFp . From a more conceptual perspective,
by the work of Devinatz and Hopkins [18], Rognes [49], Baker and Richter [5] and Mathew [38], En can
be viewed as an “algebraic closure” of the K.n/–local sphere SK.n/ in SpK.n/, with Gn as its Galois group.
Hence, as in ordinary commutative algebra, one can apply “Galois descent” to study the1–category
SpK.n/ in terms of the far more tractable1–category of K.n/–local En–modules.

In light of that, it seems beneficial to study Galois extensions of ST .n/ in SpT .n/ as well. In this regard,
we have the following result.

Theorem A (Theorem 5.31) Let G be a finite abelian group. For every G–Galois extension R of SK.n/

in SpK.n/, there exists a G–Galois extension Rf of ST .n/ in SpT .n/, such that LK.n/R
f 'R.

In particular, all of the Galois extensions of SK.n/, that are classified by finite quotients of the determinant
map det WGn!Z�p , can be lifted to Galois extensions of ST .n/ in SpT .n/. In fact, the lifting of the various
abelian Galois extensions can be done in a compatible way. In the language of [38], the localization
functor LT .n/ W SpT .n/! SpK.n/ induces a map on the weak Galois groups (in the opposite direction),
and we show that after abelianization this map admits a retract. The proof of Theorem A relies on the
1–semiadditivity of the1–categories SpT .n/ (see Carmeli, Schlank and Yanovski [14, Theorem A]),
and the theory of “higher cyclotomic extensions”, which we develop in this paper. The latter builds on the
theory of semiadditive height and semisimplicity; see Carmeli, Schlank and Yanovski [13, Theorem D].

A related structural invariant, which is better understood for SpK.n/ than for SpT .n/, is the Picard group.
Recall that for a symmetric monoidal1–category C , the Picard group Pic.C / is the abelian group of
isomorphism classes of invertible objects in C under tensor product. While Pic.SpK.n// was intensively

1In this paper, we use the version of En whose coefficients satisfy �0En 'W .xFp/ŒŒu1; : : : ;un�1��.
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studied (for instance in Hopkins, Mahowald and Sadofsky [28], Lader [31], Goerss, Henn, Mahowald and
Rezk [22] and Heard [25]), very little is known about Pic.SpT .n//. Our second main result concerns the
construction of nontrivial elements in Pic.SpT .n//.

Theorem B (Theorem 5.32) For an odd prime p, the group Pic.SpT .n// admits a subgroup isomorphic
to Z=.p� 1/.

Moreover, under K.n/–localization, this subgroup is mapped isomorphically onto the subgroup of
Pic.SpK.n//, consisting of objects which are .p�1/–torsion and of symmetric monoidal dimension
(a.k.a. Euler characteristic) 1. We also construct some nontrivial elements in Pic.SpT .n// for p D 2,
and describe their image in the algebraic Picard group (Theorem 5.33). We deduce Theorem B from
Theorem A by a generalized Kummer theory, which we develop in this paper.

1.1.2 Higher cyclotomic extensions We shall now outline our approach to Theorem A. As mentioned
above, the Galois extensions of SK.n/ are governed by the Lubin–Tate spectrum En, whose construction
relies on the theory of complex orientations. In the absence of an analogue of this construction in the
T .n/–local world, we take our cue from classical algebra, where we have a natural source of abelian Galois
extensions — the cyclotomic extensions. Namely, for a commutative ring R, we have the mth cyclotomic
extension RŒ!m� WDRŒt �=ˆm.t/; where ˆm.t/ is the mth cyclotomic polynomial, whose roots are the
primitive mth roots of unity. If m is invertible in R, this extension is Galois (though not necessarily
connected) with respect to the natural action of .Z=m/�.

As a concrete example, consider RDQp . Starting integrally, for every d 2N, the cyclotomic extension
Zp Œ!pd�1� splits into a product of copies of the Z=d–Galois extension W .Fpd /, exhibiting the latter as a
subextension of a cyclotomic one. After inverting p, we get Qp.!pd�1/DW .Fpd /Œp�1�, which assemble
into the maximal unramified extension2 Qur

p WD
S

d Qp.!pd�1/ of Qp . However, as p is now invertible,
we have also the cyclotomic extensions of p–power order, which assemble into Qp.!p1/ WD

S
r Qp Œ!pr �.

It is a classical theorem in number theory that all abelian Galois extensions of Qp can be obtained in this
way.

Theorem (Kronecker–Weber) We have that Gal.xQp=Qp/
ab ' yZ � Z�p , where Gal.xQp=Qp/ ! yZ

classifies Qur
p , and the p–adic cyclotomic character � W Gal.xQp=Qp/! Z�p classifies Qp.!p1/.

Incidentally, for 1� n<1, we also have3 Gab
n '

yZ�Z�p . The finite Galois extensions of SK.n/ that are
classified by the map Gn!

yZ, are the K.n/–localizations of the spherical Witt vectors SW .Fpd /; see
Lurie [36, Example 5.2.7]. Hence, just as for Qp, they can be obtained from cyclotomic extensions of

2We denote by Qp.!m/ the splitting field of ˆm.t/ over Qp , as opposed to Qp Œ!m� WD Qp Œt �=ˆm.t/ which may be not
connected, but rather a product of copies of Qp.!m/.
3For height nD 1, this similarity was also discussed in [49, Section 5.5].
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order prime to p; see Proposition 5.13 and Corollary 5.15. Similarly, the T .n/–localizations of SW .Fpd /

constitute a lift of the said Galois extensions of SK.n/ to Galois extensions of ST .n/. However, unlike
for Qp , the element p is not invertible in SpK.n/, and in fact, a K.n/–local commutative algebra cannot
admit primitive p–power roots of unity; see Devalapurkar [16, Theorem 1.3]. Nevertheless, and it is the
main insight leading to the results of this paper, the higher semiadditivity of the1–categories SpK.n/ (in
the sense of Hopkins and Lurie [27]) allows one to view the Galois extensions classified by det WGn!Z�p ,
as a “higher analogue” of the classical cyclotomic extensions of p–power order. Furthermore, the higher
semiadditivity of the1–categories SpT .n/ (see Carmeli, Schlank and Yanovski [14, Theorem A]), is
what allows us to construct their T .n/–local lifts. We shall now explain these ideas in more detail.

We begin by reformulating the construction of the (ordinary) cyclotomic extensions in a way which lends
itself to1–categorical generalizations. Recall that a .pr /th root of unity in a commutative ring R is a
homomorphism Cpr !R�, and it is called primitive, if it is nowhere (in the algebrogeometric sense)
of order pr�1; see Definition 3.3. For a given R, the functor which assigns to every R–algebra, the set
of its .pr /th roots of unity, is corepresented by the group algebra RŒCpr �. Consider now the short exact
sequence of abelian groups

0! Cp! Cpr ! Cpr�1 ! 0;

the associated R–algebra homomorphism f WRŒCpr �!RŒCpr�1 �, and the set map � W Cp ,!RŒCpr �. If p

is invertible in R, we can define the idempotent

" WD
1

p

X
g2Cp

�.g/ 2 RŒCpr �;

which splits f . That is, inverting " and 1� ", respectively, yields a decomposition

RŒCpr �'RŒCpr�1 ��RŒ!pr �:

In particular, we get that the cyclotomic extension RŒ!pr � corepresents the set of primitive .pr /th roots
of unity. Furthermore, the natural action of the group .Z=pr /� on Cpr induces an action on the group
algebra RŒCpr �, which then restricts to the cyclotomic extension RŒ!pr � by the invariance of ", making
it a .Z=pr /�–Galois extension of R. Reformulated in this way, the construction of the cyclotomic
extensions can be carried out for a commutative algebra object R in any additive symmetric monoidal
1–category, provided that p is an invertible element in the ring �0.R/; see Schwänzl, Vogt and Wald-
hausen [50, Theorem 3]. An extension of these ideas, which allows adjoining roots of any invertible
element, was studied in Lawson [33].

To define higher cyclotomic extensions, we first observe that for a commutative algebra R in a symmetric
monoidal1–category C , the grouplike commutative monoid (or equivalently, the connective spectrum)
of units R�, need not be discrete in general. Taking advantage of that, we define a height n root of unity
of R, to be a morphism of the form Cpr ! �nR�. For such a higher root of unity, we also have a
corresponding notion of primitivity; see Definition 4.2. The functor assigning to each R–algebra the
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space of its height n roots of unity is corepresented by the higher group algebra RŒBnCpr �. By analogy
with the above, we consider the fiber sequence

BnCp! BnCpr ! BnCpr�1 ;

the associated morphism of commutative R–algebras f WRŒBnCpr �!RŒBnCpr�1 �, and map of spaces

� W BnCp!Map.1C ;RŒB
nCpr �/:

To proceed, assume now that C is stable and n–semiadditive. This allows one to integrate families of
morphisms in C indexed by n–finite spaces. In particular, we can consider the cardinality of the n–finite
space BnCp. This is given by integrating over BnCp, the unit map 1C

1R
�!R, and is denoted by

jBnCpj WD

Z
BnCp

1R 2 �0.R/D �0 Map.1C ;R/:

Recall from Carmeli, Schlank and Yanovski [13, Definition 3.1.6] that R is said to be of height � n if the
element jBnCpj is invertible in �0.R/, in which case we can define

" WD
1

jBnCpj

Z
x2BnCp

�.x/ 2 �0.RŒB
nCpr �/:

Note that for n D 0 we have jCpj D p, hence, R is of height 0 precisely when p is invertible in the
ring �0.R/. We then show that, as in the case n D 0, the element " is idempotent and induces a
.Z=pr /�–equivariant decomposition

RŒBnCpr �'RŒBnCpr�1 ��RŒ!
.n/
pr �;

such that the projection onto the first factor coincides with f (Proposition 4.5). As a result, the commutative
R–algebra RŒ!

.n/
pr � corepresents the space of primitive .pr /th roots of unity of height n (Proposition 4.8).

We call RŒ!
.n/
pr � the height n cyclotomic extension of R of order pr .

To apply the abstract construction of higher cyclotomic extensions to the chromatic world, we recall from
[13, Section 4.4] that the semiadditive height generalizes the chromatic height. Namely, all objects of
SpT .n/, and hence also of SpK.n/, are of semiadditive height exactly n. We then prove that the resulting
.Z=pr /�–equivariant algebras SK.n/Œ!

.n/
pr � are Galois (Proposition 5.2). Furthermore, by comparing the

infinite cyclotomic extension SK.n/Œ!
.n/
p1 �, with Westerland’s Rn [51], we deduce that it is classified by4

det WGn! Z�p ; see Theorem 5.8 and the following discussion. Thus, the determinant map can be viewed
as the higher chromatic analogue of the p–adic cyclotomic character. In the same spirit, the realization
of all the abelian Galois extensions of SK.n/ in terms of (ordinary and higher) cyclotomic extensions
can be viewed as the higher chromatic analogue of the Kronecker–Weber theorem. Finally, we deduce
Theorem A from the above, by showing that the T .n/–local higher cyclotomic extensions ST .n/Œ!

.n/
pr � are

Galois as well (Proposition 5.2), using the nilpotence theorem in the guise of “nil-conservativity”; see
[14, Section 4.4].
4This requires one to choose a normalizable formal group law in the sense of Hopkins and Lurie [27, Definition 5.3.1].
Westerland in [51] uses the Honda formal group law, in which case one has to replace det with det˙.
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1.1.3 Kummer theory We now outline the relationship between abelian Galois extensions and the
Picard spectrum, which allows us to deduce Theorem B from Theorem A. Classically, given a field k

which admits a primitive mth root of unity, and a finite abelian group A which is m–torsion, Kummer
theory identifies the set of isomorphism classes of A–Galois extensions of k, with Ext1Z.A

�; k�/, where
A� D hom.A;Q=Z/ is the Pontryagin dual5 of A. One way to construct this identification is to observe
that for every A–Galois extension L=k we can simultaneously diagonalize the action of all the elements
of A on L, producing an eigenspace decomposition L'

L
'2A� L' as k–vector spaces. The L' turn out

to be all 1–dimensional, and the multiplication of L restricts to give isomorphisms L' ˝L 
�
�!L'C .

As a result, a choice of basis elements 0¤ x' 2L' provides a 1–cocycle representative of a class in the
group Ext1Z.A

�; k�/, which can then be shown to depend only on L and to completely characterize it.

For a more general commutative ring R, which admits a primitive mth root of unity (so, in particular,
m 2R�), and an A–Galois extension S of R, one can still produce a decomposition S '

L
'2A� R'

and isomorphisms R' ˝R 
�
�!R'C as before. However, this only implies that the R' are invertible

R–modules, rather than that R' 'R. This leads to a classification of A–Galois extensions of R, which
involves both the Picard group Pic.R/ and the group of units R�. These groups can be recognized as the
�0 and �1 respectively, of the Picard spectrum of R, which we denote by pic.R/.

Generalizing this, we show that for every additive presentable symmetric monoidal1–category C , such
that the commutative ring �01 admits a primitive mth root of unity, there is a homotopy equivalence of
spaces (Theorem 3.18)

CAlgA–gal.C /'MapSpcn.A�; pic.C //;

where on the left-hand side we have the full subcategory (which turns out to be an 1–groupoid) of
CAlg.C /BA consisting of A–Galois extensions of the unit 1C . This can be considered as a general form of
“Kummer theory” in the context of1–categories. The main difficulty in establishing the above homotopy
equivalence is to handle the multiplicativity of the eigenspace decomposition coherently. To this end, we
realize the eigenspace decomposition, under the above assumptions, as a symmetric monoidal equivalence
(Proposition 3.13)

F W Fun.BA;C /Ptw
�
�! Fun.A�;C /Day;

where the subscript “Ptw” indicates the usual pointwise symmetric monoidal structure, while the subscript
“Day” indicates the Day-convolution symmetric monoidal structure. This can be viewed as a general form
of the discrete Fourier transform.

Applying the above to ADZ=m, and taking �0, gives rise to a (noncanonically) split short exact sequence
of abelian groups (Proposition 3.23)

0! .�01�/=.�01�/m! �0 CAlgZ=m–gal.C /! Picev.C /Œm�! 0;

5For instance, for A D Z=m, we have Ext1Z..Z=m/�; k�/ D .k�/=.k�/m, so that cyclic Galois extensions of order m are
classified by invertible elements of the base field up to mth powers; see Birch [10].
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where Picev.C /� Pic.C / is the subgroup of invertible objects of monoidal dimension 1 (Definition 3.22),
and Picev.C /Œm� is its m–torsion subgroup. We note that when C is p–complete for some odd prime p,
the Zp–algebra �01 always admits primitive .p�1/st roots of unity. Thus, to every Z=.p�1/–Galois
extension of 1, corresponds a (possibly trivial) .p�1/–torsion element of Picev.C /.

Specializing to the chromatic world, we show that the K.n/–local Picard object Zn, which corresponds
to the higher cyclotomic Z=.p�1/–Galois extension SK.n/Œ!

.n/
p �, generates the group (Proposition 5.23)

Picev.SpK.n//Œp� 1�' Z=.p� 1/:

We deduce that ST .n/Œ!
.n/
p � corresponds to a T .n/–local Picard object Z

f
n 2 Picev.SpT .n//Œp� 1�, which

lifts Zn, implying Theorem B. We use a variation of the above method to produce nontrivial T .n/–
local Picard objects in the case p D 2 as well, using the three Z=2–subextensions of ST .n/Œ!

.n/
8
�; see

Theorem 5.33.

1.1.4 Faithfulness and descent Taking the colimit over all .pr /th cyclotomic extensions, we obtain
the infinite cyclotomic extension

Rn WD SK.n/Œ!
.n/
p1 �D lim

��!
SK.n/Œ!

.n/
pr �:

This continuous Z�p –Galois extension of SK.n/, which is classified by det WGn! Z�p , enables several
key constructions in SpK.n/. Among them, are the class �n 2 ��1.SK.n// (see [18, Section 8]) and
the determinant sphere SK.n/hdeti 2 Pic.SpK.n//; see Barthel, Beaudry, Goerss and Stojanoska [7],
Westerland [51] and Goerss, Henn, Mahowald and Rezk [21]. Using our results, we can similarly
construct the T .n/–local infinite cyclotomic extension R

f
n WD ST .n/Œ!

.n/
p1 �. Assuming R

f
n is faithful, one

could lift �n and SK.n/hdeti to the T .n/–local world. However, while all finite Galois extensions of ST .n/

are faithful, we do not know whether the infinite Galois extension R
f
n is faithful.6 As far as we know,

R
f
n might be even K.n/–local, in which case the faithfulness of R

f
n would be equivalent to the telescope

conjecture. As an example, one can argue directly to show that R
f
1

is both faithful and isomorphic to R1,
which leads to a new proof of the telescope conjecture at height nD 1. A more detailed account of this
circle of ideas will appear elsewhere.

1.2 Conventions

Throughout the paper, we work in the framework of1–categories (a.k.a. quasicategories), and in general
follow the notation of Lurie [34; 35]. The terminology and notation for all concepts related to higher
semiadditivity and (semiadditive) height are as in Carmeli, Schlank and Yanovski [13]. In addition,

(1) We use the notation hom.X;Y / for the enriched/internal hom-objects, as opposed to Map.X;Y /
which always denotes the mapping space.

6In an earlier stage of this project, we believed that we have a proof for the faithfulness of R
f
n , which led to [9, Remark 8.5.3].

However, while writing this paper we have discovered a crucial gap in the argument. For a more thorough discussion see [8].
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(2) For an object X in a monoidal 1–category C , we write �1X for Map.1;X / and �0X for
�0 Map.1;X /.

(3) We denote by Pr the1–category of presentable1–categories and colimit-preserving functors,
and by

Prצn
� Pr˚�n

st � Prst � Pradd � Pr

the full subcategories spanned by1–categories which are additive, stable, stable n–semiadditive
and stable n–semiadditive of semiadditive height n (with respect to an implicit prime p).7

(4) For an abelian group A and a natural number m we denote by AŒm� the subgroup of m–torsion
elements in A.
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Behrens, Robert Burklund, Ehud de Shalit, Jeremy Hahn, Mike Hopkins, John Rognes, Nathaniel
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group, especially Shaul Barkan and Shay Ben Moshe, for useful comments on the paper’s first draft.
Finally, we would like to thank the referee for numerous corrections and suggestions, which greatly
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Carmeli is supported by the Adams Fellowship Program of the Israel Academy of Sciences and Humanities.
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2 Galois theory

We begin by discussing some special features of Galois extensions following Rognes [49], under the
assumption that the classifying space of the acting group is ambidextrous with respect to the1–category.
We shall work mainly in the setting of additive presentable 1–categories. These include the stable
presentable 1–categories as well as ordinary additive presentable categories, such as that of abelian
groups.

The main result of Section 2.1 is that the Galois property can be detected by nil-conservative functors
(Proposition 2.9), and of Section 2.2, that it can be characterized by the fact that a certain associated lax
symmetric monoidal functor is strong monoidal (Proposition 2.13).

2.1 Definition and detection

We begin by recalling some terminology and notation regarding local systems. Given an1–category C

and a space A we denote by C A the1–category of functors A! C and refer to its objects as C –valued
local systems on A. If C is (symmetric) monoidal then C A is (symmetric) monoidal with respect to the

7In the language of [13, Section 5.2], these properties are classified by the modes Spcn, Sp, �Œnצ and ,nצ respectively.
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pointwise structure. For a map f WA! B, restriction along it provides a functor f � W C B! C A, which
is (symmetric) monoidal when C is. When C admits A–shaped limits/colimits, f � admits a left/right
adjoint, which we denote by f! and f�, respectively.

When f WA! B is weakly C –ambidextrous in the sense of [27, Definition 4.1.11], there is a canonical
norm map Nmf W f!! f� and f is called C –ambidextrous if Nmf is an isomorphism. In this case, we
obtain for every pair of objects X;Y 2 C B an integration operation [14, Definition 2.1.11]Z

f

W Map.f �X; f �Y /!Map.X;Y /:

In the special case of f W A! pt we write
R
f IdX W X ! X by jAj and think of it as “multiplication

by the cardinality of A”. Recall also that C is said to be m–semiadditive if every m–finite map is
C –ambidextrous.

We next recall the definition of a Galois extension from [49]:

Definition 2.1 (Rognes) Let C 2 CAlg.Pradd/, let G be a finite group and let R 2 CAlg.C BG/. We say
that R is a G–Galois extension (or just Galois) if it satisfies the following two conditions:

(1) The canonical map 1!RhG is an isomorphism.

(2) The canonical map R˝R!
Q

G R, given informally by x˝y 7! .x ��y/�2G , is an isomorphism.

A Galois extension R is called faithful if in addition the functor

.�/˝R W C �! C

is conservative. We denote by CAlgG–gal.C /� CAlg.C BG/ the full subcategory spanned by G–Galois
extensions.

Remark 2.2 For S 2 CAlg.C /, by a G–Galois extension of S , we shall mean a G–Galois extension in
the symmetric monoidal1–category ModS .C / in the sense of Definition 2.1.

Remark 2.3 It is proved in [49, Proposition 6.3.3] that faithfulness of a Galois extension R is equivalent
to the condition that the norm map

Nm WRhG!RhG

is an isomorphism. We shall be particularly interested in situations where BG is C –ambidextrous (eg when
C is 1–semiadditive or jGj is invertible in C ), in which case this condition is satisfied automatically.

Unlike in the classical Galois theory for fields, Galois extensions are not required to be connected. In
particular, for every group G, there is always the “trivial” G–extension:
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Example 2.4 (split-Galois extension) Let C 2CAlg.Pradd/ and let G be a finite group with e W pt!BG

the inclusion of the basepoint. The functor e� WC!C BG is lax symmetric monoidal and the induced object

e�1'
Y
G

1 2 CAlg.C BG/

is a G–Galois extension, where G acts by permuting the factors according to the regular action of G

on itself. We say that a G–Galois extension R is split if it is isomorphic to e�1 as a G–equivariant
commutative algebra.

The underlying object of a Galois extension is always dualizable; see [49, Proposition 6.2.1] and
[38, Proposition 6.14]. To detect Galois extensions, it will be useful to establish certain closure properties
for dualizable objects.

Proposition 2.5 Let C 2 CAlg.Pr/ and let I 2 Cat1. If the tensor product of C preserves I op–shaped
limits in each variable , then the dualizable objects in C are closed under I–shaped colimits.

Proof We denote by hom.X;Y /2C the internal hom-object of X;Y 2C . An object X 2C is dualizable
if and only if for every Y 2 C , the canonical map

hom.X; 1/˝Y ! hom.X; 1˝Y /' hom.X;Y /

is an isomorphism; see eg [45, Theorem 2.2]. Let X D lim
��!a2I

Xa be such that Xa 2 C is dualizable for
all a 2 I . For every Y 2 C the canonical map above fits into a commutative diagram

hom.lim
��!a2I

Xa; 1/˝Y

o

��

// hom.lim
��!a2I

Xa;Y /

o

��

.lim
 ��a2I op hom.Xa; 1//˝Y

�
// lim
 ��a2I op.hom.Xa; 1/˝Y /

�
// lim
 ��a2I op hom.Xa;Y /:

The vertical arrows are isomorphisms since hom.�;�/ takes colimits in the first variable into limits. The
bottom left arrow is an isomorphism because the tensor product preserves I op–limits in each variable and
the bottom right arrow is an isomorphism because each Xa is dualizable. It follows that the top map is an
isomorphism and hence that X is dualizable.

Remark 2.6 For C stable, the tensor product preserves finite limits, and we recover the classical fact
that dualizable objects in C are closed under finite colimits; see eg [40].

Corollary 2.7 Let C 2 CAlg.Pr/ and let A be a C –ambidextrous space. The dualizable objects in C are
closed under A–shaped limits and colimits.

Proof Since A is C –ambidextrous, A–shaped limits coincide with A–shaped colimits. It therefore
suffices to show that the dualizable objects are closed under A–shaped colimits. Moreover, since the
tensor product preserves A–shaped colimits in each variable, it also preserves A–shaped limits in each
variable; see [13, Proposition 2.1.8]. Therefore, the claim follows from Proposition 2.5.
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Remark 2.8 The special case of a constant A–shaped colimit was treated in [14, Proposition 3.3.6],
where we have further shown that dim.A˝1/D jLAj 2 �01; see [14, Corollary 3.3.10].

The following proposition shows that in the stable setting, the Galois property can be detected by
nil-conservative functors; see [14, Definition 4.4.1].

Proposition 2.9 Let F W C ! D be a nil-conservative functor in CAlg.Prst/, let G be a finite group
such that BG is C –ambidextrous , and let R 2 CAlg.C BG/. If F.R/ 2 CAlg.DBG/ is Galois and R is
dualizable in C , then R is Galois.

Proof First, by [14, Corollary 3.3.2], the space BG is also D–ambidextrous. Now, since BG is C – and
D–ambidextrous and F preserves colimits, F also preserves BG–shaped limits by [13, Proposition 2.1.8].
Thus, applying F to the maps

1!RhG ; R˝R!
Y
G

R;

in conditions (1) and (2) of Definition 2.1, we get the corresponding maps

1! F.R/hG ; F.R/˝F.R/!
Y
G

F.R/;

for F.R/ 2 CAlg.DBG/. Since F.R/ is Galois, these maps are isomorphisms. Since the underlying
object of R is dualizable in C , all the objects 1, RhG , R˝R and

Q
G R are dualizable as well. Indeed,

RhG is dualizable by Corollary 2.7, and the other three by standard arguments. Thus, as nil-conservative
functors are conservative on dualizable objects [14, Proposition 4.4.4], we get that R is Galois.

2.2 Twisting functors

It will be useful for the sequel to observe that the Galois property can be characterized using the following
notion:

Definition 2.10 For every C 2 CAlg.Pradd/ and R 2 CAlg.C BG/, we define the twisting functor of R

to be the composition

TR W C
BG R˝.�/
���! C BG .�/hG

���! C :

The functor TR is lax symmetric monoidal as a composition of the lax symmetric monoidal functor .�/hG

and the functor R˝ .�/, which is itself lax symmetric monoidal as a composition of the functors in the
free-forgetful symmetric monoidal adjunction

C BG F
�!ModR.C

BG/
U
�! C BG :

We note the following immediate consequence of assuming that BG is C –ambidextrous:
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Lemma 2.11 If BG is C –ambidextrous , then TR preserves colimits and is C –linear in the sense that
for all X 2 C BG and Z 2 C , the canonical map

TR.X /˝Z D .R˝X /hG
˝Z

ˇ�
�! .R˝X ˝Z/hG

D TR.X ˝Z/

is an isomorphism.

Proof The norm map
Nm W .R˝X /hG! .R˝X /hG

D TR.X /

is an isomorphism; hence the functor TR is isomorphic to the colimit-preserving functor X 7! .R˝X /hG .
Furthermore, for every Z 2C consider the colimit-preserving functor .�/˝Z WC !C and the associated
commutative norm diagram [14, Theorem 3.2.3], which for every X 2 C BG is of the form

.R˝X ˝Z/hG .R˝X ˝Z/hG

.R˝X /hG ˝Z .R˝X /hG ˝Z
Nm

ˇ!

Nm

ˇ�

�

�

o

It follows that ˇ� is an isomorphism as well.

Remark 2.12 Using the free-forgetful adjunction Pr � ModC .Pr/, the C –linearity of TR can be
rephrased as follows. Let T R be the restriction of TR along SBG! C BG . The functor T R W S

BG! C

is colimit-preserving and
TR W C

BG
' C ˝SBG

! C

is the corresponding C –linear functor.

The lax symmetric monoidal structure of TR can be used to characterize the Galois property for R.

Proposition 2.13 Let C 2 CAlg.Pradd/ and let G be a finite group such that BG is C –ambidextrous.
A G–equivariant commutative ring R 2 CAlg.C BG/ is Galois if and only if TR is (strong) symmetric
monoidal.

Proof The Galois property of R can be related to the properties of the functor TR as follows. First, for
BG

q
�! pt, the unitality of TR amounts to the unit map

1! TR.q
�1/'RhG

being an isomorphism, ie it is equivalent to the first Galois condition for R. Second, let pt e
�!BG denote

the basepoint. We have, on the one hand,

TR.e�1/˝TR.e�1/'

�Y
G

R

�hG

˝

�Y
G

R

�hG

'R˝R

and on the other,

TR.e�1˝ e�1/'

� Y
G�G

R

�hG

'

Y
G

R:
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The second isomorphism follows from the fact that the diagonal action of G on G �G is free with
quotient G. Moreover, the canonical map, induced by TR being lax symmetric monoidal,

R˝R' TR.e�1/˝TR.e�1/! TR.e�1˝ e�1/'
Y
G

R

is exactly the map appearing in the second Galois condition for R. Hence, the second condition is
equivalent to the structure map TR.X /˝TR.Y /! TR.X ˝Y / to be an isomorphism in the special case
X D Y D e�1' e!1. In particular, if TR is strong symmetric monoidal, then R is Galois.

Conversely, assume that R is Galois. By the C –linearity of TR (Lemma 2.11), to show that TR is
strong symmetric monoidal, it suffices to show that the restriction T R W S

BG! C is strong symmetric
monoidal (Remark 2.12). By the above, the structure map for the symmetric monoidality of T R is an
isomorphism in the case X D Y D e!.pt/. The local system e!.pt/ generates SBG under colimits, and
T R is colimit-preserving. It follows that T R is strong symmetric monoidal and hence so is TR.

The strong symmetric monoidality of the twisting functor implies that it induces a “descent” map
Pic.C BG/! Pic.C /. This allows one to construct Picard objects in C by twisting Picard objects in C BG ;
see eg [7]). Though we shall adopt a somewhat different perspective, our construction of Picard objects
from Galois extensions in the next section fits into this paradigm.

3 Kummer theory

In this section, we study the relationship between abelian Galois extensions and the Picard spectrum. As
in Section 2, we shall work mainly in the setting of additive1–categories.

In Section 3.1, we review the notion of (primitive) roots of unity (Definition 3.3) and prove a general
form of the “orthogonality of characters” (Proposition 3.11). In Section 3.2, we give a general form of the
discrete Fourier transform (Proposition 3.13) and use the results of Section 2.2 to characterize the Galois
property of a commutative algebra in terms of its Fourier transform (Corollary 3.17). In Section 3.3, we
use this characterization to establish the general form of Kummer theory (Theorem 3.18), and analyze the
special case of a cyclic group (Proposition 3.23). We conclude with a certain variant for constructing
Picard objects out of Z=2–Galois extensions (Proposition 3.27), which will play a role in the chromatic
world when p D 2.

3.1 Character theory

3.1.1 Roots of unity Following [1, Section 1.3], for every C 2 CAlg.Pr/, there is a unique symmetric
monoidal colimit-preserving functor S! C which induces an adjunction

CAlg.S/� CAlg.C /:
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Furthermore, CAlg.S/' CMon.S/ contains a coreflective full subcategory of grouplike commutative
monoids CMongp.S/ � CMon.S/, which is equivalent to the full subcategory of connective spectra
Spcn
� Sp. Composing these adjunctions, we get an adjunction of the form

1Œ�� W Spcn� CAlg.C / W.�/�:

We think of the left adjoint 1Œ�� as the group algebra functor, and of the right adjoint .�/� as the
commutative group of units.

Specializing to the case C D Cat1 with its Cartesian symmetric monoidal structure, CAlg.Cat1/ is the
1–category of symmetric monoidal1–categories. In this case, the functor

1Œ�� W Spcn
! CAlg.Cat1/

is fully faithful with essential image those symmetric monoidal1–categories in which all morphisms are
invertible and all objects are ˝–invertible. We shall thus abuse notation and regard a connective spectrum
also as a symmetric monoidal1–category via this fully faithful embedding.

Definition 3.1 For C 2 CAlg.Cat1/, the Picard spectrum of C is given by

pic.C / WD C� 2 Spcn;

and the Picard group is
Pic.C / WD �0.pic.C // 2 Ab:

Less formally, the Picard spectrum of C consists of tensor invertible objects of C with the tensor product
as a coherently commutative group operation. This is a (usually nontrivial) delooping of the connective
spectrum 1�C in the following sense:

.�pic.C //�0 ' 1�C 2 Spcn:

The counit of the adjunction Spcn� CAlg.Cat1/ provides a symmetric monoidal functor pic.C /! C ,
which is the nonfull embedding of the ˝–invertible objects and the isomorphisms between them into C .

Remark 3.2 For a large symmetric monoidal1–category C , the spectrum pic.C / might a priori be
large as well. However, if C is presentable, the spectrum pic.C / is (essentially) small; see for instance
[39, Remark 2.1.4].

Having introduced the space of units of a commutative algebra, we can now further consider roots of
unity.

Definition 3.3 (roots of unity) Let C 2 CAlg.Pradd/ and let R 2 CAlg.C /. For every m 2N:

(1) We define the space of mth roots of unity in R by

�m.R/ WDMapSpcn.Cm;R
�/;

where Cm is the cyclic group of order m.
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(2) We say that an mth root of unity Cm
!
�! R� is primitive if R is m–divisible (ie m is invertible

in �0R), and for every d which strictly divides m, the only commutative R–algebra S for which
there exists a dotted arrow rendering the diagram of connective spectra

Cm

����

// R�

��

Cd
// S�

commutative, is S D 0. We denote by �prim
m .R/� �m.R/ the union of connected components of

primitive mth roots of unity.

By convention, a (primitive) mth root of unity of C is a (primitive) mth root of unity of 1C .

Employing the adjunction 1Œ�� a .�/�, the functor �m W CAlg.C /! S is corepresented by the group
algebra 1ŒCm�. If we further assume that 1 is m–divisible, then for every divisor d jm, the map 1ŒCm�!

1ŒCd � can be identified with 1ŒCm�! 1ŒCm�Œ"
�1
d
�, for the idempotent

"d D
d

m

X
a2d �Cm

a 2 �0.1ŒCm�/:

Definition 3.4 (cyclotomic extensions) Let C 2 CAlg.Pradd/, such that m is invertible in C . We define
the mth cyclotomic extension to be

1Œ!m� WD 1ŒCm�Œ"
�1�; where "D

Y
1�d<m;d jm

.1� "d / 2 �0.1ŒCm�/:

The commutative algebra 1Œ!m� carries a tautological (primitive) mth root of unity denoted by !m.

By the above discussion, the cyclotomic extension 1Œ!m� corepresents the functor of primitive mth roots
of unity �prim

m W CAlg.C /! S. Namely, for all R 2 CAlg.C / we have a natural isomorphism

�
prim
m .R/'MapCAlg.C /.1Œ!m�;R/:

Example 3.5 For the1–category C D Spcn of connective spectra, the mth cyclotomic extension

S
h

1

m

i
! S

h
1

m
; !m

i
is the unique étale extension which on �0 induces the ordinary m–cyclotomic extension

Z
h

1

m

i
! Z

h
1

m
; !m

i
WD Z

h
1

m
; t
iı
ˆm.t/:

See [35, Theorem 7.5.0.6]. Here, ˆm.t/ is the mth cyclotomic polynomial.

For C 2CAlg.Pradd/, we have a unique symmetric monoidal colimit-preserving functor Spcn
! C , whose

right adjoint (the “underlying connective spectrum”) we denote by X 7!X .
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Lemma 3.6 Let C 2 CAlg.Pradd/ and let R 2 CAlg.C /. For every m, there is a canonical isomorphism
�m.R/' �m.R/, which restricts to an isomorphism �

prim
m .R/' �

prim
m .R/, if R is m–divisible.

Proof The first claim follows from the adjunction CAlg.Spcn/� CAlg.C / as follows:

�m.R/DMapCAlg.C /.1ŒCm�;R/'MapCAlg.Spcn/.SŒCm�;R/D �m.R/:

Assuming R is m–divisible, we can without loss of generality assume that 1 is also m–divisible, by
replacing C with Mod.R/. Thus, the second claim follows similarly:

�
prim
m .R/DMapCAlg.C /.1Œ!m�;R/'MapCAlg.Spcn/

�
S
h

1

m
; !m

i
;R
�
D �

prim
m .R/:

We deduce that Example 3.5 is universal in the sense that a primitive mth root of unity in C is the same
as a symmetric monoidal colimit-preserving functor from ModSŒ1=m;!m�.Spcn/ to C .

Proposition 3.7 Let C 2 CAlg.Pradd/. For every m, we have

�
prim
m .C /'MapCAlg.Pr/.ModSŒ1=m;!m�.Spcn/;C / 2 S:

Proof By [19, Corollary 4.8] we have an equivalence Pradd 'ModSpcn.Pr/. Thus, by [35, Theorems
4.8.5.11, 4.8.5.16 and Corollary 4.8.5.21], we have an adjunction

Mod.�/.Spcn/ W CAlg.Spcn/� CAlg.Pradd/ W 1.�/:

Applying this to SŒ1=m; !m� 2 CAlg.Spcn/ and C 2 CAlg.Pradd/, we get by Lemma 3.6,

�
prim
m .1C /'�

prim
m .1C /'MapCAlg.Spcn/

�
S
h

1

m
; !m

i
; 1C

�
'MapCAlg.Pradd/

.ModSŒ1=m;!m�.Spcn/;C /:

We also deduce that for an m–divisible commutative algebra R, the space of (primitive) mth roots of
unity is discrete and depends only on �0.R/.

Proposition 3.8 Let C 2 CAlg.Pradd/ and let R 2 CAlg.C / which is m–divisible. We have a canonical
bijection �m.R/' �m.�0R/, which restricts to a bijection �prim

m .R/' �
prim
m .�0R/.

Proof By Lemma 3.6, it suffices to consider the universal case C D Spcn. In this case, we have that

�1.R�/��1.R/ 2 S

is an inclusion of connected components. Thus, �nR ' �nR� for all n � 1. Namely, the fiber R�
�1

(in Sp) of the truncation map R�! �0R� has the same homotopy groups as the spectrum R�1. We
therefore deduce that R�

�1
is m–divisible and hence MapSpcn.Cm;R�1/D 0. It follows that

�m.R/DMapSpcn.Cm;R
�/ ��!MapSpcn.Cm; �0R�/D �m.�0R/:

Since the invertibility of an idempotent is a condition on �0, under this bijection primitive roots correspond
to primitive roots.
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Of specific importance for us, is the following special case:

Corollary 3.9 Let C 2 CAlg.Pradd/ and let R 2 CAlg.C / be p–complete8 for some prime p. For every
mj.p� 1/, the commutative algebra R admits a primitive mth root of unity.

Proof First of all, since R is p–complete, it is m–divisible. Now, by Proposition 3.8, it suffices to show
that �0R admits a primitive mth root of unity. This follows from the fact that �0R is a Zp–algebra, and
Zp admits primitive mth roots of unity given by Teichmüller lifts.

3.1.2 Characters As in ordinary commutative algebra, primitive roots of unity in C allow us to set up
a character theory for C . Let A be a finite m–torsion abelian group with Pontryagin dual denoted by

A� WD hom.A;Cm/D hom.A;Q=Z/:

Given C 2 CAlg.Pradd/ with a choice of a primitive mth root of unity ! W Cm! 1� (so that in particular
m is invertible in C ), the canonical pairing of A with A� induces a map of spectra

A�˝A! Cm
!
�! 1�!�pic.C /:

This map corresponds to a map of connective spectra

A�! hom.A; �pic.C //' hom.†A; pic.C //:

Definition 3.10 Let C 2CAlg.Pradd/ with a primitive mth root of unity !, and let A be a finite m–torsion
abelian group. We define a map of connective spectra

1.�/ WA�! pic.C BA/

to be the composition

A�! hom.†A; pic.C //! pic.C /BA
' pic.C BA/;

where the first map is the one given above and the second is induced from the counit SŒBA�!†A by
precomposition. Even though the construction of 1.�/ depends on !, we shall keep this dependence
implicit.

Intuitively, for every character A
'
�!Cm, the object 1.'/ 2 C BA is the unit 1 2 C , on which the group A

acts through the composition of the character ' with Cm
!
�!1�. The fact that 1.�/ is a map of connective

spectra encodes in a coherent way the A–equivariant identities

1.0/' 1 and 1.'C /' 1.'/˝1. /:

For X 2 C BA, we define its twist by a character ' 2A� to be

X.'/ WDX ˝1.'/ 2 C BA:

8That is, homC .X;R/ 2 Spcn is p–complete for all X 2 C .
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We shall implicitly treat an object X 2 C as an object of C BA with a trivial action. The main fact we
shall need about this construction is the following analogue of the “orthogonality of characters” from
classical algebra:

Proposition 3.11 Let C 2 CAlg.Pradd/ with a primitive mth root of unity and let A be a finite m–torsion
abelian group.

(1) For every X 2 C and ' 2A�, we have

X.'/hA
'

�
X if ' D 0;

0 else.

(2) For every X 2 C , we have Y
a2A

X '
M
'2A�

X.'/ 2 C BA;

where on the left side we have the induced representation , ie A acts by permuting the factors.

Proof (1) Since BA is C –ambidextrous, we have (by [14, Proposition 3.3.1])

X.'/hA
D .X ˝1.'//hA

'X ˝ .1.'/hA/:

Thus, it suffices to show the claim for X D 1. By Proposition 3.7, we have a colimit-preserving symmetric
monoidal functor F W ModSŒ1=m;!m�.Spcn/! C , which in particular takes the unit SŒ1=m; !m� to the
unit 1. Since A is m–torsion, by [13, Proposition 2.1.8], F also preserves A–homotopy fixed points, thus it
suffices to prove the claim for SŒ1=m; !m�. Since �� preserves A–homotopy fixed points for m–divisible
spectra, the result for SŒ1=m; !m� follows from the analogous fact for ��.SŒ1=m; !m�/D��.S/Œ1=m; !m�.
Finally, in the case ' D 0 the action of A on ��.S/Œ1=m; !m� is trivial so the statement is clear. For
' ¤ 0, there is a 2A such that

'.a/¤ 0 2 Z=mZ�Q=Z;

and since !m is a primitive mth root of unity, !'.a/m � 1 is invertible in �0.S/Œ1=m; !m�' ZŒ1=m; !m�.
Thus, !'.a/m � 1 acts invertibly on ��.S/Œ1=m; !m�, and therefore .��.S/Œ1=m; !m�.'//

hA ' 0.

(2) It again suffices to consider the case X D 1. Under the free-forgetful adjunction C � C BA, the
nonequivariant map 1.'/ ��! 1 corresponds to the map

�' W 1.'/!
Y
a2A

1;

which on the a–factor is given by multiplication with !'.a/m . Hence, the induced map

� W
M
'2A�

1.'/!
Y
a2A

1

is represented by the discrete Fourier transform .A� � A/–matrix c';a D !
'.a/
m . The square of the

determinant of this Fourier transform matrix is jAjjAj, which is invertible in the ring ZŒ1=m; !m� since A

is an m–torsion group. Hence, this matrix is invertible also in �0.1/.
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3.2 Fourier transform

3.2.1 Construction Consider the composition

A�
1.�/
��! pic.C BA/! C BA;

of symmetric monoidal functors, in which the second functor is the counit map described below
Definition 3.1. We shall denote it again by 1.�/. Since the dual of an invertible object coincides
with its inverse we have

1.'/_ ' 1.�'/:

Consider the following composition of functors

yF WA� �C BA 1.�/_�Id
�����! C BA

�C BA ˝
�! C BA .�/hA

���! C :

On the level of objects, for every X 2 C BA and ' 2A� we have

yF.�;X /'X.�'/hA:

This should be thought of as extracting from X the eigenspace corresponding to the character '. Taking
the mate of the above functor under the exponential law, we get:

Definition 3.12 (Fourier transform) Let C 2 CAlg.Pradd/ with a choice of a primitive mth root of unity
and let A be a finite m–torsion abelian group. We define the C -Fourier transform to be the functor

F W C BA
! Fun.A�;C /

given by F.X /' WD yF.�;X /.

The category of functors from A� to C can be endowed with the Day convolution symmetric monoidal
structure, which we denote by Fun.A�;C /Day; see [35, Section 2.2.6] and [20]. By [35, Example 2.2.6.9],
the construction of Fun.A�;C /Day is a special case of the norm construction for1–operads, in the sense
of [35, Definition 2.2.6.1]. Thus, by its universal property, we have an equivalence of1–categories

Funlax.A� �C BA;C /' Funlax.C BA;Fun.A�;C /Day/:

Since yF is lax symmetric monoidal, as a composition of functors that are canonically such, the functor F
acquires a lax symmetric monoidal structure as well. In fact,

Proposition 3.13 Let C 2CAlg.Pradd/ with a choice of a primitive mth root of unity and let A be a finite
m–torsion abelian group. The C –Fourier transform

F W C BA
! Fun.A�;C /Day

is a (strong) symmetric monoidal equivalence.

Proof We first show that F is an equivalence of1–categories (ignoring the symmetric monoidal structure)
by showing that it admits a fully faithful and essentially surjective left adjoint. The functor F admits a
left adjoint

F�1
W Fun.A�;C /! C BA;
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given by tensoring pointwise with the functor 1.�/ W A� ! C BA followed by taking the direct sum
over A�. Thus, its value on objects is given by

F�1.fX'g/D
M
'2A�

X'.'/:

To show that F�1 is fully faithful, it suffices to show that the unit of the adjunction F�1 a F is an
isomorphism. Unwinding the definitions and using Proposition 3.11(1), we get

F.F�1.fX'g// '

� M
'2A�

X'.' � /

�hA

'X ;

and that the unit map under this identification is the identity. Now, we observe that for all X 2 C , the
induced representations (see Proposition 3.11(2))Y

A

X '
M
'2A�

X.'/

are in the essential image of F�1. Since these generate C BA under colimits (by [27, Proposition 4.3.8]),
and F�1 is fully faithful, we deduce that F�1 is essentially surjective and hence is an equivalence.

We now turn to the preservation of the symmetric monoidal structure. To show that F is strong symmetric
monoidal, it suffices to consider objects of the form X.'/ for X 2 C and ' 2 A�, as they generate
C BA under colimits and F is colimit-preserving (being an equivalence). For such objects, we have by
Proposition 3.11(1)

F.X.'// 'X.' � /hA
'

�
X if  D ';
0 else,

and the structure map is the obvious isomorphism

F.X.'//˝F.Y . //! F..X ˝Y /.'C //:

One can similarly show that F is unital and hence strong symmetric monoidal.

3.2.2 Fourier of rings In the situation of Proposition 3.13, the symmetric monoidal equivalence

F W C BA �
�! Fun.A�;C /Day

induces an equivalence of the1–categories of commutative algebra objects. By [35, Example 2.2.6.9],
we have

CAlg.C /BA
' CAlg.C BA/ ��! CAlg.Fun.A�;C /Day/' Funlax.A�;C /:

Remark 3.14 Informally, this equivalence expresses the fact that for R2CAlg.C /BA, the A–equivariant
decomposition into eigenspaces

R'
M
'2A�

R'.'/ 2 C BA

is also compatible with the multiplicative structure. Namely, the unit and multiplication maps of R

respectively decompose, in a coherent way, through maps

1!R0 and R' ˝R !R'C :
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Given R 2 CAlg.C BA/, we shall now express the lax symmetric monoidal functor F.R/ W A�! C in
terms of the twisting functor TR of Definition 2.10. For this, we first discuss the following general setting.
Let D 2 CAlg.Pr/ and let R 2 CAlg.D/. The functor R˝ .�/ W D ! D can be made lax symmetric
monoidal in two ways. First, as a composition of the functors in the free-forgetful symmetric monoidal
adjunction

D
FR
�!ModR.D/

UR
�! D :

Second, the tensor product functor D �D
˝
�! D corresponds to a lax symmetric monoidal functor

S.�/ W D! Fun.D ;D/Day;

which on objects is given by SX .Y /DX˝Y . This induces a functor on the1–categories of commutative
algebras

S.�/ W CAlg.D/! Funlax.D ;D/;

so that SR.�/DR˝ .�/, becomes lax symmetric monoidal. We shall need the fact that these two lax
symmetric monoidal structures on the functor R˝ .�/ are in fact equivalent.

Proposition 3.15 Let D 2 CAlg.Pr/ and let R 2 CAlg.D/. We have an isomorphism

UR ıFR ' SR 2 Funlax.D ;D/:

Proof For convenience we write U WD UR and F WD FR. We observe that the composition

D �ModR.D/
F�Id
���!ModR.D/�ModR.D/

˝
�!ModR.D/

induces the lax symmetric monoidal functor

S.�/ ıF WModR.D/! Fun.D ;ModR.D//Day:

Consider the following diagram of symmetric monoidal 1–categories and lax symmetric monoidal
functors:

D

F

��

S.�/
// Fun.D ;D/Day

Fı.�/

��

ModR.D/

U

��

S.�/ıF
// Fun.D ;ModR.D//Day

Uı.�/

��

D
S.�/

// Fun.D ;D/Day

The top square commutes by construction. The bottom square is obtained from the top square by taking
right adjoints of the vertical functors. Thus, it canonically “lax commutes” in the sense that we have the
Beck–Chevalley natural transformation of lax symmetric monoidal functors

ˇ W SU.�/! U ıF ıSU.�/
�
�! U ıSF U.�/ ıF ! U ıS.�/ ıF;
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where the first and last maps are the unit and counit of the respective adjunctions. For every M 2ModR.D/

and X 2 D this is the composition

M ˝X !R˝ .M ˝X / ��! .R˝M /˝R .R˝X /!M ˝R .R˝X /;

where the first map is induced by the unit 1!R and the last by the action R˝M !M , and hence is
an isomorphism for all M and X . Therefore the diagram commutes up to homotopy. Applying CAlg.�/
to it, we get that the composition

CAlg.D/
S.�/
��! Funlax.D ;D/

Fı.�/
���! Funlax.D ;ModR.D//

Uı.�/
���! Funlax.D ;D/

can be identified with the composition

CAlg.D/ F
�! CAlgR.D/

U
�! CAlg.D/

S.�/
��! Funlax.D ;D/:

Applying this to 1 2 CAlg.D/, we get U ıF ' SR 2 Funlax.D ;D/.

Proposition 3.16 Let C 2 CAlg.Pradd/ with a choice of a primitive mth root of unity, and let A be a
finite m–torsion abelian group. For R 2 CAlg.C BA/, the functor F.R/ WA�! C is homotopic , as a lax
symmetric monoidal functor , to the composition

A�
1.�/_
��! C BA TR

�! C :

Proof Unwinding the definitions, for all ' 2A� we have

F.R/' 'R.�'/hA
' TR.1.�'//:

More precisely, we have

TR ' .�/
hA
ı .UR ıFR/ and F.R/' .�/hA

ıSR ı 1.�/_

as lax symmetric monoidal functors. Thus, the claim follows from Proposition 3.15.

As a consequence, we obtain a characterization of the Galois property of R 2 CAlg.C BA/, in terms of its
Fourier transform F.R/ WA�! C .

Corollary 3.17 Let C 2 CAlg.Pradd/ with a choice of a primitive mth root of unity and let A be a
finite m–torsion abelian group. A commutative algebra R 2 CAlg.C BA/ is Galois if and only if the lax
symmetric monoidal functor F.R/ WA�! C is strong symmetric monoidal.

Proof Since BA is C –ambidextrous, by Proposition 2.13, R is Galois if and only if TR is strong
symmetric monoidal. By Proposition 3.16 we have an equivalence of lax symmetric monoidal functors
F.R/ ' TR ı 1.�/_. Thus, we wish to show that TR is strong symmetric monoidal if and only if its
precomposition with 1.�/_ is strong symmetric monoidal. Since TR is C –linear and colimit-preserving
(by Lemma 2.11), it remains to show that the image of 1.�/_, or equivalently, of 1.�/, generates C BA
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under colimits and tensoring with objects of C . The1–category C BA is generated under colimits by the
induced objects

e�X D
Y
A

X 'X ˝
Y
A

1 for X 2 C ;

where e W pt!BA is a basepoint. Consequently, it is generated under colimits and tensoring with objects
of C by the single object

Q
A 1. Finally, by Proposition 3.11(2) applied to X D1, we have an isomorphismY

A

1'
M
'2A�

1.'/;

and hence the generator
Q

A 1 is a direct sum of objects in the image of 1.�/.

3.3 Galois and Picard

Using the results of the previous subsection, we obtain the following1–categorical version of Kummer
theory:

Theorem 3.18 (Kummer theory) Let C 2 CAlg.Pradd/ with a choice of a primitive mth root of unity
! 2 �

prim
m .C / and let A be a finite m–torsion abelian group. The C –Fourier transform induces an

isomorphism
CAlgA–gal.C / ��!MapSpcn.A�; pic.C //;

natural in the pair .C ; !/. Moreover , one can replace pic.C / with its 1–truncation pic.C /�1 in the above
isomorphism.

Proof In view of Corollary 3.17, the natural equivalence

F W CAlg.C BA/ ��! Funlax.A�;C /

restricts to a natural equivalence

CAlgA–gal.C / ��! Fun˝.A�;C /:

Since A� is an abelian group, we have

Fun˝.A�;C /'MapCAlg.Cat1/.A
�;C /'MapSpcn.A�; pic.C //:

Finally, for n� 2, we have
�npic.C /' �n�1.1

�/' �n�1.1/;

which is m–divisible (since C admits a primitive mth root of unity). Thus, we get

CAlgA–gal.C /'MapSpcn.A�; pic.C //'MapSpcn.A�; pic.C /�1/:

To summarize, given R 2 CAlg.C BA/, we have a decomposition into eigenspaces R'
L
'2A� R' as

objects of C , and the unit and multiplication of R are induced from maps

1!R0 and R' ˝R !R'C :
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Now, R is Galois if and only if those maps are isomorphisms, in which case the R' are invertible and
assemble into a map R.�/ WA

�! pic.C /.

Remark 3.19 The equivalence provided by Theorem 3.18 induces an abelian group structure on the set
�0.CAlgA–gal.C //. In fact, this set always admits a canonical group structure, even without assuming
the existence of primitive roots of unity. The objects of CAlgA–gal.C / can be viewed as local systems of
commutative algebras on BA. The external product R�S of two such, as a local system on BA�BA,
can be pushed forward along the addition map BA � BA

˛
�! BA to produce a new local system

RCA S WD ˛�.R�S/ of commutative algebras on BA. It can be shown that if R and S are A–Galois
extensions, then RCA S is an A–Galois extension and that this operation endows �0.CAlgA–gal.C //

with an abelian group structure. In the situation of Theorem 3.18, this group structure coincides with the
one induced from pic.C /.

3.3.1 Cyclic group We shall now analyze the case A D Z=m in greater detail. For a symmetric
monoidal1–category C and a dualizable object X 2 C , we can form the symmetric monoidal dimension
(a.k.a. Euler characteristic) dim.X /2�0.1/; see for instance [44, Defintion 2.2]. The symmetric monoidal
dimension satisfies

dim.1/D 1 and dim.X ˝Y /D dim.X / � dim.Y /:

Hence, it restricts to a group homomorphism dim W Pic.C / ! .�01/�: We shall now describe this
homomorphism in terms of the spectrum pic.C /.

Proposition 3.20 Let C be a symmetric monoidal1–category. The homomorphism

�0pic.C /' Pic.C / dim
��! .�01/� ' �1pic.C /

is given by precomposition with the Hopf map � 2 �1.S/.

Proof The space �1S admits a structure of a commutative monoid in S that we can regard as a
symmetric monoidal1–category. An element Z 2 Pic.C / is classified by a map of connective spectra
S! pic.C /, which corresponds to a symmetric monoidal functor �1S! C sending 1 2ZD �0S to Z.
Since both the dimension and precomposition with � are natural in C , it suffices to prove the claim for
C D S and Z D 1.

In this case, we have

dim.1/ 2 �1S' Z=2 � �;

so we only need to show that dim.1/¤ 0. For this, it suffices to produce some example of an invertible
object with a nontrivial dimension. For example, in C D Sp we have

dim.†S/D�1 2 Z� D �0S�:
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Corollary 3.21 Let C be a symmetric monoidal 1–category. For every X 2 Pic.C /, we have
dim.X /2 D 1. In particular , if �01 is a connected ring and 2 is invertible in �01, then dim.X /D˙1.

Proof The first part follows from Proposition 3.20 and the fact that � 2 �1S is 2–torsion. Now, if 2 is
invertible and �01 admits no nontrivial idempotents, then the only solutions to the equation t2� 1D 0

are t D˙1.

Given the above, we shall be interested in the following variant of the Picard group:

Definition 3.22 The even Picard group of a symmetric monoidal 1–category C , is the subgroup
Picev.C /� Pic.C / given by the kernel of the map Pic.C / dim

�! .�01C /
�:

We shall now describe the collection of isomorphism classes of Z=m–Galois extensions in C in terms of
the homotopy groups of the Picard spectrum of C .

Proposition 3.23 Let C 2 CAlg.Pradd/ with a choice of a primitive mth root of unity ! 2 �prim
m .C /. We

have a short exact sequence of abelian groups

0! .�01�/=.�01�/m! �0 CAlgZ=m–gal.C /! Picev.C /Œm�! 0

which is natural in the pair .C ; !/. Moreover , this sequence splits (though not naturally).

Proof Throughout the proof, we work in the1–category Spcn. In particular, for X;Y 2 Spcn we denote
by hom.X;Y / the internal mapping object in connective spectra. By Theorem 3.18, we have a natural
isomorphism

�0 CAlgZ=m–gal.C /' �0 hom.Z=m; pic.C /�1/:

Let S=� be the cofiber of the map †S
�
�! S. Since .S=�/�1 ' Z, we get

hom.Z; pic.C /�1/' hom.S=�; pic.C /�1/:

Hence, hom.Z; pic.C /�1/ is the fiber of the map

pic.C /�1
�
�!�pic.C /�1 2 Spcn:

By Proposition 3.20, we have

�0 hom.Z; pic.C /�1/' ker.Pic.C / dim
�! .�01/�/' Picev.C /

and we also have
�1 hom.Z; pic.C /�1/' �1pic.C /�1 ' .�01/�;

�n hom.Z; pic.C /�1/D 0 for all n� 2:

Thus, inspecting the long exact sequence in homotopy groups associated with the natural fiber sequence

hom.Z=m; pic.C /�1/! hom.Z; pic.C /�1/
m
�! hom.Z; pic.C /�1/;
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we get a natural short exact sequence of abelian groups

0! .�01�/=.�01�/m! �0 hom.Z=m; pic.C /�1/! Picev.C /Œm�! 0:

Further, since hom.Z; pic.C /�1/ is a Z–module, it splits (noncanonically) as a direct sum

hom.Z; pic.C /�1/' Picev.C /˚†.�01/�

and thus we get a splitting for the above exact sequence.

The following example shows that Theorem 3.18 indeed generalizes classical Kummer theory for field
extensions.

Example 3.24 For a field k and C D Vectk , we have Pic.C / D 0. Hence, if k contains a primitive
mth root of unity, Proposition 3.23 reduces to the classical fact that the isomorphism classes of Z=m–Galois
extensions of k are in bijection with the set .k�/=.k�/m.

At the other extreme, we have the following:

Example 3.25 Let C be a smooth projective algebraic curve over an algebraically closed field k whose
characteristic is prime to m (and hence, admits primitive mth roots of unity), and let C be the category
of quasicoherent sheaves on C . We have .k�/=.k�/m D 0, while Picev.C /Œm� is the m–torsion of the
Jacobian of C . In this case, Proposition 3.23 recovers the classification of cyclic m–covers of C by the
m–torsion points on the Jacobian.

3.3.2 A Z=2–variant In the case AD Z=2, one can carry out the construction of Picard objects out of
Z=2–Galois extensions with fewer assumptions on the ambient category than in Proposition 3.23. For
convenience, we shall use here the multiplicative notation �2D f˙1g, instead of the additive Z=2, for the
group of order 2. For simplicity, we shall assume that all the1–categories under consideration are stable.

Definition 3.26 Let C 2 CAlg.Prst/ and let R 2 CAlg�2–gal.C /. We denote by R the cofiber of the unit
map 1!R.

When 2 is invertible in C , and hence �1 2 �01 is a primitive second root of unity, we have by Kummer
theory a splitting R' 1˚R, and furthermore, R 2 Pic.C /; see the discussion after Theorem 3.18. It
turns out that the invertibility of R holds regardless of whether 2 is invertible.

Proposition 3.27 Let C 2 CAlg.Prst/. For every R 2 CAlg�2–gal.C /, we have R 2 Pic.C /.

Proof If R is split-Galois then R' 1 2 Pic.C /. We now reduce the general case to the split case. The
object R 2 C is the cofiber of a map between dualizable objects and hence dualizable; see Remark 2.6.
Hence, it suffices to show that the evaluation map R˝R_! 1 is an isomorphism. This can be checked
after applying the conservative symmetric monoidal functor

R˝ .�/ W C !ModR.C /:

The image of R under this functor is split-Galois, so the general case follows from the split case.
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We stress, however, that unlike the case where 2 is invertible in C , the element R 2 Pic.C / need not be
2–torsion.

Example 3.28 [49, Proposition 5.3.1] We have KU2CAlg�2–gal.ModKO.Sp//. The unit map KO!KU
fits into the (nonsplit) Bott periodicity cofiber sequence

†KO �
�! KO! KU 2 ModKO.Sp/:

It follows that KU'†2KO. Hence, by real Bott periodicity, KU 2 Pic.ModKO.Sp// is of order 4.

Warning 3.29 More generally, when 2 is not invertible in C , the function

.�/ W �0.CAlg�2–gal.C //! Pic.C /

need not be a group homomorphism with respect to the group structure on the source given by Remark 3.19.

4 Higher cyclotomic theory

In this section, we define and study “higher” cyclotomic extensions in the setting of higher semiadditive
stable1–categories. These are the higher (semiadditive) height analogues of the cyclotomic extensions
of Definition 3.4. We shall work primarily in Pr˚�n

st � Pr for some n� 0, which is the full subcategory
of Pr, spanned by stable n–semiadditive1–categories. We also fix an implicit prime p, with respect to
which one can consider semiadditive height. We recall from [13, Theorem C], that every1–category in
Pr˚�n

st splits into a product of1–categories according to height. Moreover, the finite-height factors are
1–semiadditive9 [13, Theorem A]. We shall mainly concentrate on the full subcategory Prצn

� Pr˚�n
st

of those1–categories which are of height n.

We begin in Section 4.1, by discussing primitive higher roots of unity (Definition 4.2), and continue
in Section 4.2, with the higher cyclotomic extensions which corepresent them (Definition 4.7 and
Proposition 4.8).

4.1 Higher roots of unity

In Definition 3.3, we have recalled the space �m.R/ of mth roots of unity of a commutative algebra
object R in a symmetric monoidal1–category C . By decomposing m into a product of distinct prime
powers mD p

r1

1
� � �p

rs
s ; we obtain a decomposition of the functor �m W CAlg.C /! S into a product

�m ' �p
r1
1

� � � � ��p
rs
s
:

We may thus restrict attention to the case mD pr . While the definition of .pr /th roots of unity is rather
general, the notion of primitive roots behaves well only when R is p–divisible, in which case �pr .R/

is discrete; see Proposition 3.8. In the terminology of [13, Definition 3.1.6], the condition that R is

9To be precise, the height nD 0 factor is only p–typically1–semiadditive.
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p–divisible amounts to R having (semiadditive) height 0. More generally, when C is higher semiadditive,
the properties of the construction �pr .R/ turn out to be closely related to the height of R. To begin with:

Proposition 4.1 Let C 2 CAlg.Pr˚�n
st / and let R 2 CAlg.C /. If R is of height � n, then for all r 2N

the space �pr .R/ is n–truncated.

Proof By [13, Proposition 2.4.7], we have RŒBnC1Cpr �'R. We thus get a sequence of isomorphisms

�nC1�pr .R/'�nC1 MapCAlg.S/.Cpr ;R�/'MapCAlg.S/.B
nC1Cpr ;R�/

'MapCAlg.C /.1ŒB
nC1Cpr �;R/'MapCAlgR.C /

.RŒBnC1Cpr �;R/

'MapCAlgR.C /
.R;R/' pt:

Since all connected components of the space �pr .R/ are isomorphic, it follows that it is n–truncated.

As we shall demonstrate, when R is of height exactly n, the set �n.�pr .R// serves as a good substitute for
the set �0.�pr .R// of ordinary .pr /th roots of unity of R. With that in mind, we introduce the following
generalization of Definition 3.3:

Definition 4.2 (higher roots of unity) Let C 2 CAlg.Pr˚�n
st / and let R 2 CAlg.C /. For every prime p

and r 2N:

(1) We define the space of .pr /th roots of unity of height n in R to be

�
.n/
pr .R/ WD�

n�pr .R/'MapSpcn.Cpr ; �nR�/:

(2) We say that a higher root of unity Cpr
!
�! �nR� is primitive if R is of height n and the only

commutative R–algebra S for which there exists a dotted arrow rendering the diagram of spectra

Cpr

����

// �nR�

��

Cpr�1
// �nS�

commutative, is S D 0. We denote by �.n/; prim
pr .R/��

.n/
pr .R/ the union of connected components

of height n primitive .pr /th roots of unity.

By convention, a height n (primitive) .pr /th root of unity of C is a height n (primitive) .pr /th root of
unity of 1C .

The (higher) .pr /th roots of unity for various r are interrelated in two ways. First, for all k � r , the
surjective group homomorphisms Cpr � Cpk induce, by precomposition, natural transformations

�
.n/

pk .R/'Map.Cpk ; �nR�/!Map.Cpr ; �nR�/' �
.n/
pr .R/:
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We can think of this as the inclusion of the (higher) .pk/th roots of unity into the (higher) .pr /th roots of
unity. Second, the injective group homomorphisms Cpr�k ,! Cpr induce, by precomposition, natural
transformations

.�/p
k

W �
.n/
pr .R/'Map.Cpr ; �nR�/!Map.Cpr�k ; �nR�/' �

.n/

pr�k .R/:

We can think of this as raising a (higher) .pr /th root of unity to the .pk/th power to get a (higher) .pr�k/th

root of unity.

Proposition 4.3 Let C 2 CAlg.Prצn
/ and let R 2 CAlg.C /. For 0 � k < r , a higher root of unity

! 2 �
.n/
pr .R/ is primitive , if and only if !pk

2 �
.n/

pr�k .R/ is primitive.

Proof This follows from the definition of primitivity (Definition 4.2) and the fact that we have a pushout
diagram in Spcn of the form

Cpr�k

����

� � // Cpr

����

Cpr�k�1
� � // Cpr�1

4.2 Higher cyclotomic extensions

4.2.1 Definition and properties We shall now mimic the construction of cyclotomic extensions, which
corepresent primitive roots of unity, to produce higher cyclotomic extensions, which corepresent primitive
higher roots of unity. For C 2 CAlg.Prst/ and a fixed r 2N, the functor

�
.n/
pr W CAlg.C /! S

is corepresented by the group algebra 1ŒBnCpr �. The group homomorphism q W Cpr � Cpr�1 induces a
map of commutative groups in spaces qn W B

nCpr ! BnCpr�1 and hence a map of group algebras

xqn W 1ŒB
nCpr �! 1ŒBnCpr�1 � 2 CAlg.C /:

The map xqn corepresents the inclusion �.n/
pr�1.R/ ,! �

.n/
pr .R/ discussed above. The key point is that if C

is higher semiadditive of height n, then we can realize xqn as a splitting of an idempotent in �0.1ŒBnCpr �/.
To translate between local systems and modules we need the following general fact, which seems to be
well known, but for which we could not find a reference in the literature.

Proposition 4.4 Let C 2CAlg.Pr/ and let B be a pointed connected space. There is a natural equivalence
of C –linear 1–categories

C B
' LMod1Œ�B�.C / 2 ModC .Pr/:

Proof We first consider the case C D S. Let pt e
�! B be the base point of B and let M D e!.pt/

in SB . The functor FM W S! SB , which is given by pointwise product with M , is left adjoint to the
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pullback functor e� W SB ! S: Since e� is itself a symmetric monoidal, conservative left adjoint, it
follows from [35, Proposition 4.8.5.8], that SB is equivalent to LModEnd.M /.S/. Finally, under the
Grothendieck construction equivalence SB ' S=B , the object M D e!.pt/ corresponds to pt e

�! B and
its endomorphisms are given by �B 2AlgE1

.S/. For a general C 2CAlg.Pr/, we shall deduce the claim
by tensoring the equivalence

SB
' LMod�B.S/ 2 Pr

with C in Pr. Indeed, it follows from [35, Proposition 4.8.1.17] that C ˝ SB ' C B; and from
[35, Theorems 4.8.4.6 and 4.8.5.16] that

C ˝LMod�B.S/' LMod�B.C /' LMod1Œ�B�.C /:

This allows us to use the results of [13, Section 4.3], to deduce the following:

Proposition 4.5 Let C 2 CAlg.Prצn
/. There exists an idempotent " 2 �0.1ŒBnCpr �/, such that

1ŒBnCpr �Œ"�1�' 1ŒBnCpr�1 �;

and under this isomorphism , the canonical map 1ŒBnCpr �! 1ŒBnCpr �Œ"�1� is identified with xqn.

Proof By the naturality of the equivalence of1–categories in Proposition 4.4

C BnC1Cpr
'Mod1ŒBnCpr �.C /;

restriction of scalars along xqn is identified with the functor q�
nC1
W C

BnC1C
pr�1 ! C BnC1Cpr . By

[13, Theorem 4.3.2], this induces an equivalence of1–categories

C BnC1Cpr �
�! C

BnC1C
pr�1 � .C

BnC1C
pr�1 /?;

where .C BnC1C
pr�1 /? � C BnC1Cpr is the full subcategory spanned by the objects X , for which

.qnC1/�X D 0. Let
" W Id

C
BnC1Cpr

! Id
C

BnC1Cpr

be the idempotent natural endomorphism which projects onto the essential image of C
BnC1C

pr�1 under
the functor q�

nC1
. This corresponds to a natural endomorphism

x" W IdMod1ŒBnCpr �.C /
! IdMod1ŒBnCpr �.C /

;

which evaluates at 1ŒBnCpr � to an idempotent element in the commutative ring �0.1ŒBnCpr �/. By
construction, the decomposition

1ŒBnCpr � ��! 1ŒBnCpr �Œx"�1�� 1ŒBnCpr �Œ.1�x"/�1�

identifies the projection onto the first factor with xqn.
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In [13, Proposition 4.3.4], we also provided an explicit description of the idempotent " of Proposition 4.5
in the language of local systems. Translating into the language of rings, we get the following description of
"2�0.1ŒBnCpr �/, in terms of the higher semiadditive structure of C . The fiber of qn WB

nCpr !BnCpr�1

is isomorphic to BnCp, and we thus get a map of spaces � W BnCp!�11ŒBnCpr �. The idempotent "
can be identified with the “average of �”, in the sense that

"D
1

jBnCpj

Z
BnCp

� 2 �0.1ŒB
nCpr �/:

When n D 0, we recover the classical formula of Definition 3.4 for the case m D pr ; see also
[13, Example 4.3.3].

Remark 4.6 Consider the1–group G D BnCp and the canonical maps

f W 1ŒG�hG
! 1ŒG� and g W 1ŒG�! 1ŒG�hG ' 1:

It can be shown that if C is1–semiadditive of height n (and hence in particular G is C –stably dualizable
in the sense of [48, Definition 2.3.1]), then h D g ı f is invertible and f ı h�1 D ". In the case
C D SpK.n/, the fact that h is invertible, which suffices for the construction of ", was first observed in
[48, Example 5.4.6]. We thank John Rognes for explaining to us this alternative description of ".

We are now ready to give the main definition of the paper.

Definition 4.7 (higher cyclotomic extensions) Let C 2 CAlg.Prצn
/. For every integer r � 1, we define

1Œ!.n/pr � WD 1ŒBnCpr �Œ.1� "/�1� 2 CAlg.C /;

where " 2 �0.1ŒBnCpr �/ is the idempotent provided by Proposition 4.5. For every R 2 CAlg.C /, we
define

RŒ!
.n/
pr � WDR˝1Œ!.n/pr � 2 CAlgR.C /:

We refer to it as the (height n) .pr /th cyclotomic extension of R.

As promised, the higher cyclotomic extensions indeed corepresent the higher primitive roots:

Proposition 4.8 Let C 2 CAlg.Prצn
/. The object 1Œ!.n/pr � 2 CAlg.C / corepresents the functor

�
.n/; prim
pr W CAlg.C /! Set� S:

Proof By Proposition 4.1, the essential image of �.n/; prim
pr is contained in the full subcategory Set� S.

Using the adjunction

1Œ�� W CMon.S/� CAlg.C / W .�/�;
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we see that for R 2 CAlg.C /, a higher root of unity 1ŒBnCpr �
!
�!R is primitive if and only if

1ŒBnCpr�1 �˝1ŒBnCpr �R' 0:

By the decomposition
1ŒBnCpr � ��! 1ŒBnCpr�1 ��1Œ!.n/pr �;

the property above holds if and only if the map ! W 1ŒBnCpr �!R factors through the projection map
1ŒBnCpr �! 1Œ!.n/pr �.

The higher cyclotomic extensions enjoy some additional pleasant properties:

Proposition 4.9 Let C 2 CAlg.Prצn
/.

(1) 1Œ!.n/pr � is dualizable as an object of C for all r 2N.

(2) 1Œ!.n/p � is faithful.

Proof (1) We have a fiber sequence

1Œ!.n/pr �! 1ŒBnCpr �! 1ŒBnCpr�1 � 2 C :

Since C is1–semiadditive, B˝1 is a dualizable object of C for every �–finite space B (Corollary 2.7),
and dualizable objects in a stable category are closed under (co)fibers (Remark 2.6).

(2) For nD 0 the object 1Œ!.n/p � is the fiber of the fold map

1˚p
' 1ŒCp �! 1

and hence isomorphic to 1˚.p�1/. Tensoring with this object is conservative since it contains the unit as
a direct summand. Assume now that n� 1. For every object X 2 C we have a fiber sequence

X ˝ 1Œ!.n/p �!X ˝1ŒBnCp �!X 2 C :

Therefore, X ˝ 1Œ!.n/p �D 0 if and only if the fold map X ˝BnCp!X is an isomorphism. We wish to
deduce that X D 0. Indeed, for n� 1 by [13, Proposition 2.4.7], we get that X is of height < n. Since C

is of height n, the only object X 2 C which is of height < n is X D 0.

4.2.2 Infinite cyclotomic extensions From Proposition 4.8, it follows in particular that we have
canonical maps 1Œ!.n/

pr�1 �! 1Œ!.n/pr � corepresenting the natural transformation ! 7! !p on primitive roots
of unity; see Proposition 4.3. Gathering the cyclotomic extensions for all r � 0 along these maps we get:

Definition 4.10 Let C 2 CAlg.Prצn
/. We define

1Œ!.n/p1 � WD lim
��!
r2N

1Œ!.n/pr �:
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Loosely speaking, the commutative algebra 1Œ!.n/p1 � corepresents choices of compatible systems of height n

primitive roots of unity !p; !p2 ; !p3 ; : : : such that !p
pr D !pr�1 for all r 2N. The infinite cyclotomic

extension 1Œ!.n/p1 � can also be constructed directly by splitting off an idempotent from a group algebra.
The group homomorphism Zp

�p
�! Zp induces a map of commutative algebras

xq W 1ŒBnC1Zp �! 1ŒBnC1Zp �:

The following is a direct analogue, and a consequence, of Proposition 4.5 for the case r D1:

Proposition 4.11 Let C 2 CAlg.Prצn
/ for some n � 1. Then there exists an idempotent element

" 2 �0.1ŒBnC1Zp �/ such that

1ŒBnC1Zp �Œ.1� "/
�1�' 1Œ!.n/p1 � and 1ŒBnC1Zp �Œ"

�1�' 1ŒBnC1Zp �;

and under the second isomorphism , the canonical map 1ŒBnC1Zp � ! 1ŒBnC1Zp �Œ"
�1� is identified

with xq.

Proof Using Proposition 4.5 for every r � 0, and taking the colimit, we get that Cp1
�p
�! Cp1 induces

an idempotent " 2 �0.1ŒBnCp1 �/, such that

1ŒBnCp1 �Œ"
�1�' 1ŒBnCp1 � and 1ŒBnCp1 �Œ.1� "/

�1�' 1Œ!.n/p1 �:

Now, the short exact sequence of abelian groups

0! Zp!Qp! Cp1 ! 0

induces a Bockstein homomorphism

BnCp1 ! BnC1Zp;

which becomes an isomorphism upon p–completion. Since C is assumed to be of height � 1, it is
p–complete and the result follows.

4.2.3 Equivariance and Galois For every C 2 CAlg.Prst/ and R 2 CAlg.C /, the space

�
.n/
pr .R/DMapSpcn.Cpr ; �nR�/

admits a canonical action of the group .Z=pr /� by precomposition. If C is higher semiadditive and
of height n, then �.n/pr .R/ is discrete (Proposition 4.1). Furthermore, since for every commutative R–
algebra S the subset �.n/

pr�1.S/ � �
.n/
pr .S/ is closed under the action of .Z=pr /�, so is the subset of

primitive roots �.n/; prim
pr .R/� �

.n/
pr .R/. We therefore obtain an action of .Z=pr /� on the corepresenting

object 1Œ!.n/pr � 2 CAlg.C / making the map 1ŒBnCpr �! 1Œ!.n/pr � equivariant with respect to .Z=pr /�.
Given C 2 CAlg.Prצn

/, it is natural to ask whether the objects

1Œ!.n/pr � 2 CAlg.C B.Z=pr /�/
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are Galois. For nD 0, this is always the case. However, for nD 1 a counterexample was constructed by
Yuan in [52]. In the next section, we shall address this question for higher semiadditive1–categories
arising in chromatic homotopy theory.

5 Chromatic applications

In this final section, we apply the general theory of higher cyclotomic extensions to the chromatic world
and deduce the main results of the paper. We begin in Section 5.1 by showing that the higher cyclotomic
extensions in SpK.n/ are Galois, and deduce using the results of Section 2.1, that the same holds for
SpT .n/ (Proposition 5.2). Then, in Section 5.2, we review the Galois theory of SpK.n/, and identify the
quotients of the Morava stabilizer group corresponding to the (higher) cyclotomic extensions of SK.n/

(Theorem 5.8 and Corollary 5.15). In particular, we deduce that all the abelian Galois extensions of SK.n/

can be obtained as a combination of ordinary and higher cyclotomic extensions. In Section 5.3, we apply
the results of Section 3 to relate the higher cyclotomic extensions of SK.n/ to the K.n/–local Picard
group (Proposition 5.23 and Proposition 5.30). Finally, in Section 5.4, we establish the consequences of
the above for the Galois extensions of SpT .n/ (Theorem 5.31) and its Picard group (Theorem 5.32 and
Theorem 5.33).

5.1 Cyclotomic Galois extensions

We fix a natural number n� 1, a prime number p, and a formal group law � of height n over Fp (which
will be kept implicit throughout). We denote by K.n/ and En the Morava K–theory and Lubin–Tate ring
spectra associated to � . In particular, the homotopy groups of K.n/ and En are given by10

��K.n/D Fp Œv
˙
n �; where jvnj D 2.pn

� 1/;

��En DW .Fp/ŒŒu1; : : : ;un�1��Œu
˙�; where jui j D 0; juj D 2:

We view En as an object of CAlg.SpK.n// (see [23; 29]) and denote the symmetric monoidal1–category
of K.n/–local En–modules as

‚n WDModEn
.SpK.n//:

For M 2‚n, we consider ��.M / as a graded module over the twisted continuous group algebra of Gn

over ��En. Namely, as an object in the category of Morava modules; see [6, Definition 3.37]. If
�odd.M /D 0, we say that the Morava module of M is even. In this case, one can consider the equivalent
data of �0.M / as a module over the twisted continuous group algebra of Gn over �0.En/, which we call
the even Morava module of M . For X 2 Sp, we refer to the (even) Morava module of LK.n/.En˝X /,
simply as the (even) Morava module of X .

10In the literature, En often denotes a closely related ring spectrum whose homotopy groups are W .Fpn/ŒŒu1; : : : ;un�1��Œu
˙�.
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In addition, we let F.n/ be some finite spectrum of type n, with a vn–self map v W†dF.n/! F.n/, and
an associated ”telescope”

T .n/ WD F.n/Œv�1�D lim
��!

�
F.n/

v
�!†�dF.n/

v
�!†�2dF.n/

v
�! � � �

�
:

The1–categories SpK.n/, SpT .n/, and ‚n are all1–semiadditive and of height n [13, Propostion 4.4.4
and Theorem 4.4.5]; see also [27, Theorem 5.2.1] and [14, Theorem A]. That is, we have

SpK.n/; SpT .n/; ‚n 2 CAlg.Prצn
/:

Thus, we can consider height n cyclotomic extensions in each one of them. Our first goal is to show that
all these extensions are Galois. We begin by showing that in ‚n, the higher cyclotomic extensions are, in
fact, split-Galois (Example 2.4).

Proposition 5.1 For every r 2N, there is a .Z=pr /�–equivariant commutative ring isomorphism

EnŒ!
.n/
pr �'

Y
.Z=pr /�

En:

Proof For every finite abelian p–group A, we denote by

A� ' hom.A;Qp=Zp/

the Pontryagin dual of A. By [27, Corollary 5.3.26], we have an isomorphism

EnŒB
nA�'EA�

n 2 CAlg.SpK.n//;

which is furthermore natural in A. In particular, when A is of exponent pr , this isomorphism is
equivariant with respect to the .Z=pr /�–action on A given by scalar multiplications. Consider the
.Z=pr /�–equivariant decomposition

EnŒB
nCpr �'EnŒB

nCpr�1 ��EnŒ!
.n/
pr �:

The group homomorphism Cpr �Cpr�1 induces an injection on Pontryagin duals, which we can identify
with the embedding Cpr�1 ,! Cpr , whose image is pCpr . Noting that

Cpr npCpr ' .Z=pr /�;

it follows that we have a .Z=pr /�–equivariant isomorphism

EnŒ!
.n/
pr �'

Y
.Z=pr /�

En 2 CAlg.SpK.n//:

Using nil-conservativity, we can now deduce that the higher cyclotomic extensions of SpT .n/ (and hence
SpK.n/) are Galois as well.

Proposition 5.2 For all r 2N, the .pr /th cyclotomic extensions in SpK.n/ and SpT .n/ are faithful Galois
extensions.
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Proof The nilpotence theorem [30] implies that the functors

SpT .n/

LK.n/
���! SpK.n/

En˝.�/
����!‚n

are nil-conservative; see [14, Corollary 5.1.17]. Moreover, ST .n/Œ!
.n/
pr � and SK.n/Œ!

.n/
pr � are dualizable by

Proposition 4.9(1). Thus, the Galois property of these extensions follows from Propositions 5.1 and 2.9.
Since SpT .n/ and SpK.n/ are1–semiadditive, these extensions are faithful; see Remark 2.3.

5.2 The K.n/–local cyclotomic character

In classical algebra, Galois theory allows one to classify the Galois extensions of a commutative ring
in terms of its Galois group. For example, the sequence of .pr /th cyclotomic extensions Qp.!pr / is
classified by the (p–adic) cyclotomic character

� W Gal.Qp/! Z�p :

By the work of Devinatz and Hopkins [18], Rognes [49], Baker and Richter [5] and Mathew [38], the
Galois extensions of SK.n/ can be similarly classified in terms of the (extended) Morava stabilizer group.
In this subsection, we define the higher analogue of the p–adic cyclotomic character for SpK.n/, which
classifies the higher cyclotomic extensions SK.n/Œ!

.n/
pr �, and prove that it identifies with the determinant

map of the Morava Stabilizer group (see Theorem 5.8). We also show that the canonical map Gn!
yZ

classifies the (ordinary) prime to p cyclotomic extensions (Corollary 5.15), by analogy with the map
Gal.Qp/! yZ, which classifies the maximal unramified extension of Qp.

5.2.1 Morava stabilizer group We begin with a recollection of the Galois theory of SpK.n/. The
commutative ring �0.En/ carries the universal deformation of the formal group x� D � �Fp

xFp . As such,
it is acted on by the following group:

Definition 5.3 For every integer n� 1, the height n (extended) Morava stabilizer group Gn is defined to
be the group of automorphisms of x� over Fp . That is, the group of pairs .�; '/, where � 2 Gal.Fp/ and
' W ��x� �

�! x� . We denote by
� WGn� Gal.Fp/' yZ

the projection .�; '/ 7! � , whose kernel is Aut.x�=xFp/.

In [18], Devinatz and Hopkins have lifted the canonical continuous action of the pro-finite group Gn on
the .p;u1; : : : ;un�1/–adic ring �0.En/, to a continuous action on En itself as an object of CAlg.SpK.n//,
which allows taking continuous fixed points with respect to closed subgroups. This action was shown to
exhibit En as a pro-finite Galois extension of SK.n/ in [49, Theorem 5.4.4]. Furthermore, En itself is
algebraically closed (by [5, Theorem 1.1] for p odd, and [38, Section 10.2 and Theorem 6.29] for all p).
Consequently, Gn classifies Galois extensions of SK.n/ via a version of the “Galois correspondence”

Geometry & Topology, Volume 28 (2024)



3548 Shachar Carmeli, Tomer M Schlank and Lior Yanovski

that we recall (with some paraphrasing) from [38]. For every finite group G and a continuous group
homomorphism � WGn!G, we equip

C.G;En/ WD
Y
G

En 2 CAlg.SpK.n//

with the (continuous) �–twisted action of Gn, which, in addition to the standard action on each factor,
permutes the factors through � and the left regular action of G on itself. In particular, on homotopy
groups, g 2G acts by the formula

g � .xh/h2G D .gx�.g/�1h/h2G for .xh/h2G 2

Y
G

��.En/:

In addition, the group G acts on C.G;En/ by permuting the factors through the right regular action of G

on itself, and the two actions clearly commute. Thus, C.G;En/
hGn acquires a G–action.

Proposition 5.4 (“K.n/–local Galois correspondence” [38, Theorem 10.9, Proposition 5.32]) Let G be
a finite group. Taking Gn!G to C.G;En/

hGn establishes a bijection

fcontinuous homomorphisms Gn!Gg=conjugation ' fG–Galois extensions of SK.n/g= isomorphism:

In particular , for a surjective homomorphism with kernel U �Gn, the corresponding Galois extension is
given by EhU

n (with the residual G–action).

We deduce that the Morava module of a Galois extension R can be described in terms of the �–twisted
action.

Proposition 5.5 For R 2 CAlgG–gal.SpK.n// classified by � WGn!G, the Morava module of R is even ,
and there is an isomorphism of even Morava modules

�0.En˝R/' C.G; �0.En//;

where on the left-hand side the action of Gn is induced from the action on En and the trivial action
on R, and on the right-hand side , it is the �–twisted action. In particular , the Gn action on �0.En˝R/

determines � up to conjugation.

Proof By Proposition 5.4, we have R' C.G;En/
hGn : By [18, Theorem 1(iii)], we have a canonical

G–equivariant isomorphism

��.En˝C.G;En/
hGn/ ��! C.G;C.Gn; ��En//

hG
' ��C.G;En/;

so in particular this holds on the level of �0.

5.2.2 The p–adic cyclotomic character By Proposition 5.4, the cyclotomic extensions SK.n/Œ!
.n/
pr � are

classified by a sequence of homomorphisms �r WGn! .Z=pr /�. Since �rC1 identifies with �r upon
reduction modulo pr for every r � 0, these assemble into a single continuous group homomorphism

� WGn! Z�p ' lim
 ��
r2N

.Z=pr /�:
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The map � thus classifies, via the K.n/–local Galois correspondence, the infinite cyclotomic extension

SK.n/Œ!
.n/
p1 �D lim

��!
r2N

SK.n/Œ!
.n/
pr �:

Definition 5.6 We refer to � WGn! Z�p as the p–adic cyclotomic character of SpK.n/.

We would like to describe the p–adic cyclotomic character in terms of the description of Gn as the group
of automorphisms of the formal group x� . The case of an odd prime p for the Honda formal group
law was carried out in [51]. The general case follows similarly using the results of [27] expressing the
K.n/–homology of Eilenberg–Mac Lane spaces in terms of alternating powers of the associated formal
group following [47]. For completeness, we shall provide the details of the argument.

From now on, we shall consider x� as a connected p–divisible group x� D lim
��!
x�Œpr � with x�Œpr � the

corresponding finite flat group schemes of pr –torsion. As in [27, Construction 3.2.1], for a finite
flat group scheme G and an integer d � 1, one associates a finite flat group scheme Alt.d/

G
called the

d th alternating power of G. Again as in [27, Corollarly 3.5.4], given a p–divisible group‡ of dimension 1,
we can now assemble the finite flat group schemes of p–power torsion Alt.d/

‡Œpr �
to a p–divisible group

Alt.d/
‡
WD lim
��!

Alt.d/
‡Œpr �

:

Moreover, when ‡ is of height m the p–divisible group Alt.d/
‡

is of height
�
m
d

�
and dimension

�
m�1

d

�
. In

particular, when d Dm the p–divisible group Alt.m/
‡

is étale of height 1.

Returning to our p–divisible group x� , the top alternating power Alt.n/
x�

is an étale p–divisible group of
height 1 over the algebraically closed field xFp , and hence its xFp–points identify noncanonically with the
group Qp=Zp. As a result there is a canonical isomorphism

Aut.Alt.n/
x�
.xFp//' Z�p :

The group Gn acts on both Alt.n/
x�

(by functoriality) and on xFp via � WGn�Gal.Fp/, hence it acts on the
group of xFp–points Alt.n/

x�
.xFp/.

Proposition 5.7 The cyclotomic character � WGn! Z�p identifies with the map

Gn! Aut.Alt.n/
x�
.xFp//' Z�p ;

classifying the action discussed above.

Proof It suffices to show that for each r � 0 the map in the statement agrees with � after reduction
modulo pr , which we denote by �r WGn! .Z=pr /�. Via the Galois correspondence �r corresponds
to the finite cyclotomic extension SK.n/Œ!

.n/
pr �. Hence, by Proposition 5.5, we have a Gn–equivariant

isomorphism
�0.En˝SK.n/Œ!

.n/
pr �/' C..Z=pr /�; �0En/;
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where on the right-hand side we have the so-called �r –twisted action. By collecting together the terms in
the decomposition

SK.n/ŒB
nCpr �' SK.n/Œ!

.n/

p0 �˚SK.n/Œ!
.n/

p1 �˚ � � �˚SK.n/Œ!
.n/
pr �;

and reducing modulo the maximal ideal of �0.En/, we similarly get a Gn–equivariant isomorphism

�0.K.n/˝SK.n/ŒB
nCpr �/' C.Z=pr ; xFp/;

where again on the right-hand side we have the �r –twisted action.

On the other hand, by [27, Theorem 2.0.1] there is a Gn–equivariant isomorphism

�0.K.n/˝SK.n/ŒB
nCpr �/' O.Alt.n/

x�Œpr �
/;

where O.�/ stands for the algebra of regular functions on a scheme. Since Alt.n/
x�Œpr �

is an étale finite flat
group scheme over xFp, its algebra of regular functions can be described as

O.Alt.n/
x�
Œpr �/' C.Alt.n/

x�
Œpr �.xFp/; xFp/' C.Z=pr ; xFp/;

and this isomorphism is Gn–equivariant, where the action on the right is twisted by the reduction
modulo pr of the map in the statement.

The above result provides a completely algebraic description of the cyclotomic character �. To compute
it more explicitly, we need to recall some facts about the structure of the group Gn. Let Dn be a division
algebra over Qp of invariant 1=n 2Q=Z, and On � Dn the maximal order. The group of units O�n � On

is isomorphic to Aut.x�=xFp/, which is the kernel of Gn
�� Gal.xFp=Fp/. As for any finite dimensional

division algebra, there is a determinant (a.k.a reduced norm) multiplicative map det W Dn!Qp, which
restricts to a group homomorphism det W O�n ! Z�p .

Theorem 5.8 The restriction of the p–adic cyclotomic character � WGn! Z�p to the subgroup O�n GGn

is the determinant map.

Proof By Proposition 5.7, we have to show that the action of O�n �Gn on Alt.n/
x�
.xFp/' Z�p is via the

determinant map. Recall that to the p–divisible group x� over xFp we can associate its Dieudonné module
DM.x�/, which is in particular a free W .xFp/–module of rank n (see [27, Section 1.3]). The action of
On ' EndxFp

.x�/ on the Dieudonné module DM.x�/ gives rise to a Zp–algebra map

i W On! EndW .xFp/
.DM.x�//'Mn�n.W .xFp//:

Extending scalars along Zp!Qp we get a Qp–algebra map

Dn! EndW .xFp/
.DM.x�//˝Qp 'Mn�n. yQ

ur
p /;

where yQur
p DW .xFp/Œ1=p� is the completion of the maximal unramified extension of Qp. Since Dn is a

central division algebra of dimension n2 over Qp , after extending scalars on the source along Qp!
yQur

p ,
we get an isomorphism of yQur

p –algebras

Dn˝Qp
yQur

p
�
�!Mn�n. yQ

ur
p /:
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By the definition of the reduced norm, the map det WDn!Q�p is therefore the restriction of the ordinary
determinant det WMn�n. yQur

p /!
yQur

p along the inclusion Dn ,!Mn�n. yQur
p / above. Since the determinant

of a matrix is given by its action on the top alternating power of a vector space, we deduce that the map

det W O�n ! Z�p ,!W .xFp/
�

can be written as the composition

O�n D AutxFp
.x�/

DM
�! AutW .xFp/

.DM.x�// ^
n.�/_
����! AutW .xFp/

.^n DM.x�/_/'W .xFp/
�:

Finally, by [27, Theorem 3.3.1] we have a natural identification

^
n

W .xFp/
DM.x�/_ ' DM.Alt.n/

x�
/:

We deduce that the action of On on the Dieudonné module DM.Alt.n/
x�
/ is via the determinant map. Since

the map
Z�p ' Aut.Alt.n/

x�
/

DM
�! Aut.DM.Alt.n/

x�
//'W .xFp/

�

is the canonical inclusion, this implies that the action of O�n on Alt.n/
x�

is via the determinant map as
well.

Theorem 5.8 identifies the p–adic cyclotomic character � W Gn ! Z�p only on the kernel of the map
� WGn� Gal.xFp=Fp/' yZ: However, it is possible to identify � on the entire group Gn as well. The
choice of � (namely, the choice of an Fp–form of x�) yields a section of � , and hence, a semidirect
product decomposition Gn '

yZËO�n : It therefore remains to identify the restriction of � to the subgroup
yZ�Gn under this decomposition, which we denote by

�gal W yZ �! Z�p :

While the p–divisible group Alt.n/
x�

is isomorphic to the constant p–divisible group Qp=Zp , this no longer
necessarily holds for Alt.n/

�
. In fact, the isomorphism class of Alt.n/

�
depends on � , and might or might

not be split. In general, Alt.n/
�

is an Fp–form of Qp=Zp, and therefore corresponds to a continuous
cohomology class in

H 1
c .Gal.Fp/;Aut.Qp=Zp//' homc.Gal.Fp/;Z

�
p /:

By the classical theory of Galois forms, we have the following:

Proposition 5.9 The cohomology class classifying Alt.n/
�

is �gal W yZ! Z�p .

Proof By Proposition 5.7, the group Gal.Fp/' yZ acts on the xFp–points of Alt.n/
x�

via �gal. By inspecting
the construction of the cohomology class corresponding to an Fp–form, this action is given by the
mentioned cohomology class.

Combining Theorem 5.8 with Proposition 5.9 we get a complete algebraic description of the p–adic
cyclotomic character

� WGn '
yZËO�n ! Z�p :
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Namely,
�.u; a/D det.a/�gal.a/ for all a 2 O�n ; u 2 yZ;

where �gal is as in Proposition 5.9.

Example 5.10 Assume that � is normalizable in the sense of [27, Definition 5.3.1]. That is, we have an
isomorphism Alt.n/

�
'Qp=Zp defined over Fp. In this case, with respect to the splitting Gn '

yZËO�n
defined by � , the map �gal is trivial and

�.u; a/D det.a/ for all a 2 O�n ; u 2 yZ:

The next example is a reformulation of a computation carried out in [51, Proposition 3.20].

Example 5.11 (Westerland) Let p be an odd prime and let � be the Honda formal group law of height
n over Fp . The form Alt.n/

�
is classified in this case by the cocycle �gal.u/D .�1/u.n�1/. Consequently,

with respect to the splitting
Gn '

yZËO�n

defined by � , the cyclotomic character � is given by

�.u; a/D .�1/u.n�1/ det.a/ for all a 2 O�n ; u 2 yZ:

This is the map denoted by det˙ in [51, Section 1.1]. Namely, for n even the Honda formal group is not
normalizable, which introduces the sign factor in det˙.

For future use, we record here a mild variation on [11, Lemma 1.33] regarding the fixed points of the
action of Gn on the ring �0En.

Proposition 5.12 Let N GGn be the kernel of the cyclotomic character � WGn! Z�p . We have

.�0En/
N
D Zp � �0En:

Proof Recall that �0.En/ D W .xFp/ŒŒu1; : : : ;un�1��, and that W .xFp/Œ1=p� is isomorphic to yQur
p , the

completion of the maximal unramified extension of Qp. Since �0En is torsion-free, it embeds in
�0EnŒ1=p�. Therefore, it suffice to show that .�0EnŒ1=p�/

N DQp. Consider the subgroup O�n � Gn,
and recall that the algebra On has the following presentation:

On 'W .Fpn/fSg=.Sn
D p; Sx D '.x/S for all x 2W .Fpn//;

where S is a noncommutative indeterminate and ' WW .Fpn/!W .Fpn/ is the (unique) lift of the Frobenius
endomorphism of Fpn . By [17, Proposition 3.3], we have an O�n –equivariant embedding11

�0EnŒ1=p� ,! yQ
ur
p ŒŒw1; : : : ; wn�1��;

11This embedding exhibits the target as the completion of the source with respect to its unique maximal ideal. We also remark
that the wi do not belong to the image of �0En.
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such that the action of O�n on the right-hand side is yQur
p –linear, and each x 2W .Fpn/� � O�n acts on a

power series f D f .w1; : : : ; wn�1/ by

.x �f /.w1; : : : ; wn�1/D f

�
'.x/

x
w1; : : : ;

'n�1.x/

x
wn�1

�
:

It will suffice to show that
yQur

p ŒŒw1; : : : ; wn�1��
N
DQp:

Consider now the subgroup

W .1/.Fpn/� WDW .Fpn/�\N � O�n :

If f is fixed by N , and hence by W .1/.Fpn/�, the only monomials wd1

1
w

d2

2
� � �w

dn�1

n�1
, that can appear

in f with nonzero coefficients, are those for which

xd1Cd2C���Cdn�1 D '.x/d1'2.x/d2 � � �'n�1.x/dn�1 for all x 2W .1/.Fpn/�:

For a general element x 2W .Fpn/� � O�n , the determinant det.x/ coincides with the norm Nm.x/ WDQn�1
iD0 '

i.x/. Taking p–adic logarithm on the above displayed formula, this implies that the equation

(�) .d1C d2C � � �C dn�1/y D d1'.y/C d2'
2.y/C � � �C dn�1'

n�1.y/

holds for every y 2 W .Fpn/ with Tr.y/ D
Pn�1

iD0 '
i.y/ D 0 and a sufficiently high p–adic valuation.

Since (�) is a linear equation, it in fact holds for all y 2Qp.!pn�1/DW .Fpn/Œ1=p� such that Tr.y/D 0.
We deduce, by the linear independence of the 'i , that d1 D � � � D dn�1 D 0. This means that f has to be
constant, ie an element of yQur

p � �0EnŒ1=p�.

Finally, we have a semidirect product decomposition Gn '
yZËO�n , by which we identify the topological

generator 12 yZ with an element � 2Gn. Since detDNm WW .Fpn/�!Z�p is surjective ([42, Proposition
III.1.2]), there exists an element a2W .Fpn/�, with det.a/D det.�/. Thus, we get an element a�1� 2N ,
which acts on yQur

p ��0EnŒ1=p� as the Frobenius (see [6, Section 3.2.2]). By the Ax–Sen–Tate theorem [3],
the fixed points of a�1� on yQur

p are Qp � �0EnŒ1=p�.

5.2.3 The total cyclotomic character We conclude this subsection by discussing the Galois extensions
classified by the map � WGn� yZ from Definition 5.3. Roughly speaking, � classifies the ordinary, ie
height 0, cyclotomic extensions of SK.n/ of order prime to p (see Corollary 5.15 for the precise statement).
This perspective is originally due to Rognes (see [49, Section 5.4.6]) and we review it for completeness.

We begin by considering the Galois extensions of the p–complete sphere Sp 2 Sp. Since Sp is connective,
by [38, Theorem 6.17], all Galois extensions of Sp (ie of ModSp

) are algebraic. Namely, they are étale
and, by applying �0, correspond bijectively to the (ordinary) Galois extensions of the ring �0.Sp/D Zp .
The Galois extensions of Zp are in turn classified by the Galois group

Gal.Zp/' Gal.Fp/' yZ:
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More concretely, the finite quotients yZ� Z=m correspond to the rings of Witt vectors W .Fpm/ with
the action given by the lift of Frobenius. Hence, the corresponding Galois extensions of Sp are the
rings of spherical Witt vectors SW .Fpm/, which are characterized by being étale over Sp and having
�0.SW .Fpm//'W .Fpm/; see [36, Example 5.2.7].

Proposition 5.13 For every m 2N, the composition

Gn
�
�! yZ� Z=m

classifies the Z=m–Galois extension LK.n/SW .Fpm/ of SK.n/.

Proof By Proposition 5.5, it suffices to show that LK.n/SW .Fpm/ is Galois and the even Morava module

�0.En˝LK.n/SW .Fpm//' �0.En/˝W .Fpm/

is equivariantly isomorphic to C.Z=m; �0.En// with the �–twisted Gn–action. The second claim follows
from the fact that the action of Gn on the coefficient ring W .xFp/ � �0.En/ factors through � and is
given again by the lift of Frobenius; see [6, Section 3.2.2]. We now observe that the first claim follows
from the second. Indeed, by [51, Theorem 3.24], if a K.n/–local commutative ring spectrum R has a
Morava module isomorphic to C.G; �0.En// for some � WGn�G, then R is isomorphic to the Galois
extension E

h ker.�/
n and hence in particular Galois.

Remark 5.14 In the language of [38, Definition 6.8], the map � WGn� yZ is the map induced on (weak)
Galois groups by the functor LK.n/ WModSp

! SpK.n/.

The relation to cyclotomic extensions of order prime to p (ie of height zero) is as follows:

Corollary 5.15 (Rognes) For every m 2N, the composition

Gn
�
�� yZ� Z=m

p.�/

,��! Z=.pm
� 1/�

classifies the (nonconnected ) cyclotomic Galois extension SK.n/Œ!pm�1�.

Proof By Proposition 5.13, it suffices to show that the composition

f W yZ� Z=m
p.�/

,��! Z=.pm
� 1/�

classifies Sp Œ!pm�1�. Since all Galois extensions of Sp are algebraic [38, Theorem 6.17], it suffices
to show that the Galois extension of Zp D �0Sp classified by f is Zp Œ!pm�1�. The splitting of the
cyclotomic polynomial p̂m�1.t/ into irreducible factors over Zp induces an isomorphism of the ring

Zp Œ!pm�1�' Zp Œt �= p̂m�1.t/

with a product of �.pm � 1/=m copies of W .Fpm/. Moreover, as a Z=.pm � 1/�–equivariant ring,
Zp Œ!pm�1� is isomorphic to the induction of W .Fpm/ along the group homomorphism

p.�/ W Z=m ,! Z=.pm
� 1/�;

and hence the claim follows.
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Remark 5.16 For every N 2 N with .N;p/ D 1, we have N j.pm � 1/ for some m 2 N. Thus,
� WGn� yZ accounts for all prime to p cyclotomic extensions of SK.n/.

Taken together, � and � assemble into a single map

�tot WGn� yZ�Z�p ;

which we call the (total) cyclotomic character. We recall the following standard fact:

Proposition 5.17 The map �tot exhibits yZ�Z�p as the (profinite) abelianization of Gn.

Proof Let Dn be a division algebra over Qp of invariant 1=n, so that On is the maximal order in Dn. We
may present On as

On 'W .Fpn/fSg=
�
Sn
D p; Sx D '.x/S for all x 2W .Fpn/

�
:

Then, S is a uniformizer of Dn and hence there is a split short exact sequence

1! O�n ,! D�n ! Z! 1

in which the second map is the S–adic valuation map. Since conjugation by S acts by ' on W .Fpn/,
after profinite completion, the above short exact sequence identifies with

1! O�n ,!Gn
�
�! yZ! 1:

By [43] the map
D�n

det
�!Q�p

exhibits Q�p as the abelianization of D�n . Taking profinite completions, we obtain, as claimed, that

Gab
n ' .

cD�n /ab det
�!
�

bQ�p ' Z�p � yZ:

Consequently, every abelian Galois extension of SK.n/ is a subextension of a cyclotomic extension,
obtained by adding an ordinary root of unity of some order prime to p and a higher root of unity of some
p–power order.

Remark 5.18 For Qp 2 CAlg.SpQ/, considered as the extrapolation to height nD 0 of the sequence
SK.n/ 2 CAlg.SpK.n//, we have a completely analogous picture. By the (p–local) Kronecker–Weber
theorem, every abelian extension of Qp is contained in a cyclotomic extension. Moreover, we have
Gal.Qp/

ab' yZ�Z�p ;where the yZ component corresponds to the maximal unramified cyclotomic extension
Qun

p D
S

m Qp.!pm�1/, and the Z�p component corresponds to the maximal ramified cyclotomic extension
Qp.!p1/.

5.3 Picard groups

In this subsection we relate the higher cyclotomic extensions of SK.n/ to the Picard group of SpK.n/.

Definition 5.19 Let Picn WD Pic.SpK.n//, and let Pic0
n � Picn be the (index 2) subgroup of objects

X 2 Picn, such that En˝X 'En as En–modules.
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We denote by Picalg;0
n the Picard group of the category of even Morava modules. The functor �0.En˝�/

induces a map Pic0
n! Picalg;0

n (whose kernel is known as the exotic Picard group). Furthermore, there is
a canonical isomorphism [22, Proposition 2.5]

Picalg;0
n 'H 1

c .GnI .�0En/
�/:

Remark 5.20 Since it will play a role in the sequel, we recall briefly how this identification goes. Given
M 2 Picalg;0

n , we have M ' �0En as �0En–modules. By choosing a generator x 2M, we associate
with M the function ˛M WGn! �0E�n given by ˛M .�/ WD �.x/=x. This function is a 1–cocycle, whose
cohomology class Œ˛M � 2H 1

c .GnI .�0En/
�/ is independent of the generator x 2M.

5.3.1 Odd prime We begin by considering the case where the prime p is odd. First:

Lemma 5.21 If p is odd , then Pic0
n D Picev.SpK.n//.

Proof Since .�0SK.n//
red'Zp (see for instance [13, Proposition 2.2.6]), the commutative ring �0SK.n/

is connected with 2 invertible. Hence, by Corollary 3.21, every X 2Picn satisfies dim.X /D˙1. Applying
the symmetric monoidal functor

En˝ .�/ W SpK.n/!ModEn
.SpK.n//;

we can test whether dim.X / is 1 or �1, by looking at dim.En˝X /. Finally, by [4, Theorem 8.7], we
have Pic.En/ ' Z=2, with representatives given by En and †En, which have dimensions 1 and �1,
respectively.

We can now apply the Kummer theory developed in Section 3 to relate the pth cyclotomic extension to
the .p�1/–torsion in the Picard group of SpK.n/. Namely, since the pth cyclotomic extension is Galois it
provides us with a distinguished Picard object.

Definition 5.22 For p odd, let Zn2Pic0
nŒp�1� be the Picard object corresponding to the Z=.p�1/–Galois

extension SK.n/Œ!
.n/
p � in SpK.n/, under the map of Proposition 3.23.

That is, Zn is a .p�1/–torsion Picard object of dimension 1 in SpK.n/ such that

SK.n/Œ!
.n/
p �'

p�2M
kD0

Z˝k
n 2 SpK.n/:

The Picard object Zn can be characterized in an intrinsic way to Picn as follows:

Proposition 5.23 For p odd , the group Pic0
nŒp� 1� is isomorphic to Z=.p� 1/ and is generated by Zn.

Proof Using Lemma 5.21 and Proposition 3.23 together with its naturality with respect to the symmetric
monoidal the functor

LK.n/ WModSp
.Sp/! SpK.n/;
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we obtain the following commutative diagram of abelian groups:

0 // .�0S�p/=.�0S�p/
p�1

f

��

// �0 CAlgZ=.p�1/–gal.Sp/

g

��

// Picev.Sp/Œp� 1�

��

// 0

0 // .�0S�
K.n/

/=.�0S�
K.n/

/p�1 // �0 CAlgZ=.p�1/–gal.SpK.n//
// Pic0

nŒp� 1� // 0

First, it is well known that Pic.Sp/'Z (see for instance [12, Proposition 4.13]), so the upper-right corner
vanishes. In the top-left corner, we have

.�0S�p /=.�0S�p /
p�1
' .Z�p /=.Z

�
p /

p�1
' Z=.p� 1/:

Furthermore, the left vertical map f is an isomorphism. Indeed, the map

Zp ' �0
bSp! �0SK.n/

admits a retract r W �0SK.n/!Zp , whose kernel consists of nilpotent elements [13, Proposition 2.2.6]. In
particular, every element in the kernel of r� W�0S�

K.n/
!Z�p , is of the form xD .1C"/ for some nilpotent

" 2 �0SK.n/. Since p � 1 is invertible in �0SK.n/ and the power series expansion of .1C t/1=.p�1/

belongs to ZŒ1=.p� 1/�ŒŒt ��, every such element x has a .p�1/st root. Hence, r� induces an isomorphism
after modding out the .p� 1/st powers. Since this induced isomorphism is a left-inverse of f , it follows
that f is an isomorphism as well.

Next, by Proposition 5.17, the map
.�; �/ WGn!

yZ�Z�p

exhibits the target as the abelianization of the source. Hence, g can be identified with the inclusion (see
Remark 5.14)

hom.yZ;Z=.p� 1// ,! hom.yZ;Z=.p� 1//˚ hom.Z�p ;Z=.p� 1//:

Since hom.yZ;Z=.p� 1//' Z=.p� 1/, the entire diagram can be identified with

0 // Z=.p� 1/

D

��

D
// Z=.p� 1/� _

��

// 0

��

// 0

0 // Z=.p� 1/
� � // Z=.p� 1/˚ hom.Z�p;Z=.p� 1// // Pic0

nŒp� 1� // 0

where both inclusions of Z=.p� 1/ are as the first summand of the target. Thus, the bottom right map
restricts to an isomorphism

Z=.p� 1/' hom.Z�p ;Z=.p� 1// ��! Pic0
nŒp� 1�:

Chasing through the identifications, the generator 1 2 Z=.p� 1/ corresponds to the Z=.p� 1/–Galois
extension SK.n/Œ!

.n/
p �, and thus its image, Zn, generates Pic0

nŒp� 1�.
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Remark 5.24 By [51, Section 3.3], the image of Zn in Picalg;0
n is classified by the composition

Gn
�
�! Z�p � F�p

�
�! Z�p � .�0En/

�;

where � is the Teichmüller lift.

5.3.2 Even prime In the case p D 2, we cannot rely on Kummer theory to produce Picard objects
in SpK.n/. However, we can use instead the variant afforded by Definition 3.26. Recall that given
R 2 CAlg�2–gal.SpK.n//, where �2 D f˙1g, the cofiber of the unit map 1!R, denoted by R, belongs
to Picn (Proposition 3.27). In fact, we have a somewhat stronger statement:

Lemma 5.25 For every R 2 CAlg�2–gal.SpK.n//, we have R 2 Pic0
n.

Proof Let R 2 CAlg�2–gal.SpK.n//. We need to show that En˝R'En as an En–module. For this,
we first observe that R˝R is isomorphic to the cofiber of the unit map 1!R tensored with R. Since
this map can be identified with the diagonal R!R�R, whose cofiber is R, we get that R˝R'R as
R–modules. Since R is a Galois extension of SK.n/, there exists a map of commutative algebras R!En.
Base-changing from R to En along this map, we get that En˝R'En.

Thus, we get a function

„ W homc.Gn; �2/' �0 CAlg�2–gal.SpK.n//
.�/
�! Pic0

n:

To analyze the image of „, we shall consider its further image in Picalg;0
n . For this, it will be convenient

to identify homc.Gn; �2/ with H 1
c .GnI�2/ for the trivial Gn–action on �2.

Proposition 5.26 The composition

H 1
c .GnI�2/' homc.Gn; �2/

„
�! Pic0

n! Picalg;0
n 'H 1

c .GnI�0E�n /

is induced by the inclusion �2 � �0E�n .

Proof Let Gn
�
�! �2 be a homomorphism, and let R 2 CAlg�2–gal.SpK.n// be the Galois exten-

sion classified by � by the Galois correspondence (Proposition 5.4). We have an isomorphism of
Gn–equivariant En–modules En ˝ R '

Q
�2

En, where Gn acts on the right-hand side via the �–
twisted action (Proposition 5.5). Hence, we can identify �0.En˝R/ with the cokernel of the diagonal
map �0En!

Q
�2
�0En. This cokernel can be further identified with �0En, via the difference mapQ

�2
�0En! �0En. Choosing the generator x0 2 �0.En˝R/, that corresponds via this identification

to 1 2 �0En, we get that the action of � 2Gn on x0 is given by �.x0/D �.�/x0: This implies that the
image of R in H 1

c .Gn; �0E�n / is the 1–cocycle Gn
�
�! �2 � �0E�n ; see Remark 5.20.

Remark 5.27 The above shows that the composition

�0 CAlg�2–gal.C /
.�/
�! Pic0

n! Pic0;alg
n

is a group homomorphism. This is in contrast to the fact that .�/ itself is not; see Example 3.28.
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From Proposition 5.26 we deduce the following:

Proposition 5.28 The composition

homc.Z
�
2 ; �2/

��

�! homc.Gn; �2/
„
�! Pic0

n

is injective.

Proof It suffices to show that composing further with Pic0
n ! Picalg;0

n yields an injective map. By
Proposition 5.26, this reduces to showing that the composition

H 1
c .Z

�
2 I�2/

��
�!H 1

c .GnI�2/!H 1
c .GnI�0E�n /

is injective. Let NGGn denote the kernel of the cyclotomic character � WGn�Z�
2

. By Proposition 5.12,
we have �2 � Z�

2
D .�0E�n /

N , so this composition fits into the commutative diagram

H 1
c .Z

�
2
I�2/ H 1

c .Z
�
2
IZ�

2
/ H 1

c .Z
�
2
I .�0E�n /

N /

H 1
c .GnI�2/ H 1

c .GnI .�0E�n /
N /

H 1
c .GnI�0E�n /

�� ��

The top left horizontal map is injective because the residual action of Gn=N D Z�
2

on .�0E�n /
N D Z�

2

is trivial. The composition of the right vertical map �� with the right diagonal map is the inflation map

H 1
c .Z

�
2 I .�0E�n /

N /!H 1
c .GnI�0E�n /:

The injectivity of this map is part of the inflation-restriction exact sequence in (continuous) group
cohomology. It follows that the composition of the left vertical map �� and the left diagonal map is
injective as well.

In concrete terms, we have

homc.Z
�
2 ; �2/' homc..Z=8/

�; �2/' Z=2�Z=2:

The three nonzero elements correspond to the Z=2–Galois subextensions of the .Z=8/�–Galois cyclotomic
extension SK.n/Œ!

.n/
8
�, which we denote by R1, R2 and R3. The zero element corresponds of course to

the split Z=2–Galois extension R0 WD
Q
�2

SK.n/.

Definition 5.29 For i D 0; : : : ; 3, we define the Picard objects Wi WDRi 2 Pic0
n.

Proposition 5.28 implies that W0.D SK.n//;W1;W2 and W3 are all different. We shall now show further
that all of their (de)suspensions are different as well.
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Proposition 5.30 The various (de)suspensions of W0.D SK.n//, W1, W2 and W3 are all different
elements of Picn.

Proof We need to show that if †ki Wi D†
kj Wj , then i D j and ki D kj . By (de)suspending, we may

assume that kj D 0, and by Proposition 5.28, it suffices to show that we must have ki D 0 as well. Let
k D ki and let RDRi and R0 DRj . By Lemma 5.25, we have

En 'En˝R0 'En˝†
kR'†kEn

as En–modules. Thus, we get that k D 2m for some m 2 Z. To show that m must be zero, we shall
consider the image of †2mR in Picalg;0

n . More specifically, since the center Z�
2
�Gn acts trivially on

�0E�n (see [6, Section 3.2.2]), restriction along its inclusion into Gn is a map of the form

�.�/ W Picalg;0
n 'H 1

c .GnI�0E�n /!H 1
c .Z

�
2 I�0E�n /' homc.Z

�
2 ; �0E�n /:

Every element of the center a 2 Z�
2
GGn acts on the polynomial generator u 2 �2.En/ by multiplication

u 7! au; see [6, Section 3.2.2]. Thus, the object �2mEn 2 Picalg;0
n is mapped to

��2m.En/ D .�/
�m
W Z�2 ! Z�2 � �0E�n :

Since we have
�0.En˝†

2mR/' .�2mEn/˝�0En
�0.En˝R/;

we get
�†2mR.a/D a�m�R.a/ for all a 2 Z�2 :

If �†2mR were to be equal to �R0 , it would in particular have to factor through the finite group �2 � Z�
2

.
However, this cannot happen unless mD 0.

5.4 Telescopic lifts

We can now combine the results of the previous subsections to deduce the main results of the paper
regarding the Galois extensions and Picard groups of the telescopic categories SpT .n/. Recall that by
Remark 2.3 in higher semiadditive1–categories such as SpK.n/ and SpT .n/ all finite Galois extensions
are automatically faithful. First, we have:

Theorem 5.31 Let G be a finite abelian group. For every G–Galois extension R in SpK.n/, there exists
a G–Galois extension Rf in SpT .n/ such that LK.n/R

f 'R.

Proof By Proposition 5.17, the abelian Galois extensions of SpK.n/ are classified by the group Gab
n '

yZ�Z�p , through the homomorphism

�tot WGn� yZ�Z�p :

Thus, it suffices to show that the Galois extensions corresponding to the finite quotients

Gn� yZ� Z=m and Gn� Z�p � .Z=pr /�
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can be lifted to SpT .n/. For the first kind, we can take LT .n/SW .Fpm/, which is Galois by the nil-
conservativity of LK.n/ W SpT .n/! SpK.n/ (see [14, Proposition 5.1.15]) and Propositions 5.13 and 2.9.

For the second kind, it follows from Proposition 5.2 that we can take ST .n/Œ!
.n/
pr �.

The proof of Theorem 5.31 shows in fact a bit more. Namely, that the telescopic lifts of the abelian Galois
extensions in SpK.n/ can be chosen in a “compatible way”. In the language of [38], the situation can
be described as follows. The functor LK.n/ W SpT .n/! SpK.n/ induces a continuous homomorphism on
weak Galois groups [38, Definition 6.8]

�weak
1 .SpK.n//! �weak

1 .SpT .n//

and after passing to abelianizations, this homomorphism admits a left-inverse. Hence, �weak
1

.SpT .n//
ab

contains
�weak

1 .SpK.n//
ab
' yZ�Z�p

as a direct summand.

Consider now the telescopic Picard group Picfn WD Pic.SpT .n// and its subgroup Picf;0n � Picfn of objects
that map to Pic0

n under K.n/–localization. When p is odd, the cyclotomic extension ST .n/Œ!
.n/
p � provides

us with the following:

Theorem 5.32 For every n � 1 and an odd prime p, there exists a Z
f
n 2 Picf;0n Œp � 1� such that

LK.n/Z
f
n 'Zn; see Definition 5.22. In particular , Picf;0n Œp� 1� contains Pic0

nŒp� 1�' Z=.p� 1/ as a
direct summand.

Proof We define Z
f
n to be the image of the Z=.p�1/–Galois extension ST .n/Œ!

.n/
p � under the map

of Proposition 3.23. By the naturality with respect to the functor LK.n/ W SpT .n/ ! SpK.n/, we have
LK.n/Z

f
n 'Zn. In view of Proposition 5.23, this provides a section to the map

Picf;0n Œp� 1�! Pic0
nŒp� 1�' Z=.p� 1/;

which proves the last claim.

In the case p D 2, the cyclotomic extension ST .n/Œ!
.n/
8
� provides the following:

Theorem 5.33 For every n � 1 and p D 2, there exist objects W
f

1
;W

f
2
;W

f
3
2 Picf;0n such that

LK.n/W
f

i DWi ; see Definition 5.29. In particular , all the (de)suspensions of the W
f

i are different and
nontrivial.

Proof Let R
f
1
;R

f
2
;R

f
3
2 Picfn be the nontrivial Z=2–Galois subextensions of the .Z=8/�–Galois

cyclotomic extension ST .n/Œ!
.n/
8
�, corresponding to the three order 2 subgroups of

.Z=8/� ' Z=2�Z=2:

We define W
f

i D R
f
i 2 Picfn for i D 1; 2; 3. Since LK.n/W

f
i ' Wi , the last claim follows from

Proposition 5.30.
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