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DESCENT AND VANISHING
IN CHROMATIC ALGEBRAIC K-THEORY

VIA GROUP ACTIONS

by Dustin CLAUSEN, Akhil MATHEW, Niko NAUMANN
and Justin NOEL

Abstract. – We prove someK-theoretic descent results for finite group actions on stable1-cat-
egories, including the p-group case of the Galois descent conjecture of Ausoni-Rognes. We also prove
vanishing results in accordance with Ausoni-Rognes’s redshift philosophy: in particular, we show that
ifR is anE1-ring spectrum withLT.n/R D 0, thenLT.nC1/K.R/ D 0. Our key observation is that de-
scent and vanishing are logically interrelated, permitting to establish them simultaneously by induction
on the height.

Résumé. – Nous démontrons quelques résultats sur la descente K-théorique pour des actions de
groupes finis sur des1-catégories stables, dont le cas des p-groupes de la conjecture de descente galoi-
sienne d’Ausoni-Rognes. Nous obtenons aussi des résultats d’annulation en accord avec la philosophie
de « décalage vers le rouge » d’Ausoni-Rognes: en particulier, nous démontrons que siR est un E1-an-
neau avec LT.n/R D 0, alors on a LT.nC1/K.R/ D 0. Notre observation-clef est que la descente et
l’annulation sont logiquement liées, ce qui permet de les établir simultanément par récurrence sur la
hauteur.

1. Introduction

In this paper, we prove some results concerning the algebraicK-theory of ring spectra and
stable1-categories after T .n/-localization. Throughout this paper, our telescopes T .n/ are
taken at a fixed implicit prime p and height n � 0; we adopt the convention T .0/ D SŒ1=p�.
Our starting point is the following two results concerning classical commutative rings R:

Theorem 1.1 ([59]). – For n � 2, we have LT.n/K.R/ D 0.

Theorem 1.2 ([70], [71], [23]). – For G a finite group and R ! R0 a G-Galois extension,
the natural comparison map LT.1/K.R/! .LT.1/K.R

0//hG is an equivalence.
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1136 D. CLAUSEN, A. MATHEW, N. NAUMANN AND J. NOEL

Thus, the K-theory of an ordinary commutative ring has no chromatic information
beyond height one, and the localization to height one is well-behaved in its descent prop-
erties. In fact, T .1/-local K-theory is even better-behaved than suggested by Theorem 1.2:
under mild finiteness hypotheses, the Galois descent can be upgraded to an étale hyperdes-
cent result, which leads to a descent spectral sequence from étale cohomology to T .1/-local
K-theory as produced by [70, 71]. Furthermore, one knows that under such conditions, the
map K.RIZp/ ! LT.1/K.R/ from p-adic K-theory to its T .1/-localization is an equiva-
lence in high enough degrees, i.e., one has the Lichtenbaum-Quillen conjecture, thanks to
the work of Voevodsky-Rost, cf. [65, 22] for accounts. However, we will not touch on these
more advanced aspects in this paper.

Moving from ordinary rings to more general ring spectra, Ausoni-Rognes suggested
that the above two theorems should fit into a broader “redshift” philosophy in algebraic
K-theory, [7, 8]. For an E1-ring spectrum R, one expects that taking algebraic K-theory
increases the “chromatic complexity” of R by one. In the setting of Theorem 1.1, the
Eilenberg-MacLane spectrum HR has no chromatic information at heights � 1, while the
result states thatK.R/ D K.HR/ has no chromatic information at heights� 2; furthermore,
Theorem 1.2 and its refinement to hyperdescent control the height one information very
precisely.

For E1-rings R, there is a particularly well-behaved notion of chromatic complexity,
thanks to a theorem of Hahn [32]: if LT.n/R D 0, then LT.m/R D 0 also for all m > n. If
R is an E1-ring, then so is K.R/, and in this setting one possible expression of the redshift
philosophy would be that LT.n/R D 0 , LT.nC1/K.R/ D 0. Here we prove half of this
statement.

Theorem A. – Let R be an E1-ring and n � 0. If LT.n/R D 0, then LT.nC1/K.R/ D 0.

Recent work of Burklund-Schlank-Yuan [20, Th. 9.11] and Yuan [73] proves the converse
of Theorem A: if R is a p-local E1-ring with LT.n/R ¤ 0, then LT.nC1/K.R/ ¤ 0. Many
special cases of Theorem A were previously known. In particular, in important specific cases,
much more precise (Lichtenbaum-Quillen) statements about K.R/ have been proved, as in
[34, 2, 33, 6, 7].

Theorem A generalizes Mitchell’s vanishing Theorem 1.1. We note that there is a more
general statement which applies also to E1-rings A: if both LT.n/A D 0 and LT.nC1/A D 0,
then LT.nC1/K.A/ D 0; see Corollary 4.11, which is also explored in [43].

We also have an analog of Thomason’s descent Theorem 1.2. For the statement, we need
to assume T .n/-local vanishing of the Cp-Tate construction RtCp (taken with respect to the
trivial action); this assumption is satisfied if R is a discrete ring and n D 1, i.e., the setting of
Theorem 1.2. In addition, we need to assume the finite group G is a p-group, where p is the
(throughout fixed) prime at which chromatic localizations are taken.

Theorem B. – Let R be an E1-ring and n � 0. Suppose LT.n/.RtCp / D 0 for the
fixed prime p. Then for C any R-linear idempotent-complete stable 1-category equipped
with an R-linear action of a finite p-group G, the homotopy fixed point comparison map for
T .nC 1/-local K-theory is an equivalence:

(1.1) LT.nC1/K.ChG/
�
�! .LT.nC1/K.C//hG :
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DESCENT AND VANISHING IN CHROMATIC ALGEBRAIC K-THEORY 1137

If R ! R0 is a G-Galois extension of commutative rings, then by Galois descent we
have Perf.R/

�
! Perf.R0/hG ; thus, when n D 0, Theorem B recovers the p-group case of

Theorem 1.2. But in fact the case of generalG in Theorem 1.2 reduces to the p-group case by
a simple transfer argument, as already pointed out and exploited by Thomason; in particular,
Theorem B implies Theorem 1.2.

However, Theorem B does not hold for an arbitrary finite group G, essentially because
the G-action is allowed to be arbitrary. In fact, for the trivial action of G on Perf.C/ and
n D 0, one can calculate both sides of (1.1) using Suslin’s equivalence [67] between topolog-
ical and algebraic K-theory. One obtains that the source is the p-completed G-equivariant
topological K-theory of a point while the target is KUBG

Op . For G of prime-to-p order the

result is evidently false because KUBG
Op D KU Op, while forG a p-group, Theorem B amounts

to the p-complete Atiyah-Segal completion theorem. Nonetheless, there is a generalization
of Theorem B to arbitrary finite groups which shows that the descent question for arbitraryG
reduces to that for cyclic subgroups of prime-to-p order; see Theorem 6.5.

We remark that these theorems also hold withK-theory replaced by an arbitrary additive
invariant, and one also has “co-descent” or “assembly map” equivalences dual to the descent
statements of Theorem B; see Proposition 4.1 for more details.

Let us now give the basic example of these results. Throughout this paper, we will use
the notation Lp;fn D LT.0/˚���˚T.n/, following [43]; in particular, we have the Lp;fn -local
sphere Lp;fn S. An L

p;f
n -local stable 1-category is one where the mapping spectra are

L
p;f
n -local, or equivalently one which isLp;fn S-linear. By Kuhn’s “blueshift” theorem [42], if

a spectrumX isLp;fn -local thenX tCp isLp;fn�1-local. Thus, from Theorem A and Theorem B
we deduce the following:

Theorem C. – Let n � 0, and let C be an Lp;fn -local idempotent-complete stable1-cate-
gory. Then LT.m/K.C/ D 0 for all m � n C 2, and for any finite p-group G acting on C we
have

LT.nC1/K.ChG/
�
! .LT.nC1/K.C//hG :

In fact, for the proofs of Theorem A and Theorem B we proceed by first proving this
special case, Theorem C. Then we combine with a recent result of Land-Mathew-Meier-
Tamme [43] to the effect thatLT.n/K.R/

�
! LT.n/K.L

p;f
n R/ (for n � 1) which lets us deduce

the general case. (Actually, we also use the result of [43] in the proof of Theorem C, but in a
more indirect way.)

It turns out that our arguments establish a logical connection between the vanishing and
the descent theorems. This is expressed in the following result, from which we deduce all of
the above theorems.

Theorem 1.3 (Inductive vanishing, Lemma 4.9). – Let R be an E1-ring spectrum and
n � 1. Then for the following conditions, we have the implications (A)) (B)) (C):

(A) LT.n/R D 0 and LT.n/K.RtCp / D 0.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1138 D. CLAUSEN, A. MATHEW, N. NAUMANN AND J. NOEL

(B) For any action of a finite p-groupG on anR-linear idempotent-complete stable1-cate-
gory C, the comparison map

LT.n/K.ChG/
�
! .LT.n/K.C//hG

is an equivalence.

(C) LT.i/K.R/ D 0 for i � nC 1.

Thus, a vanishing result for RtCp implies a descent result for R which implies a vanishing
result for R at the next height. For the proof that (A) implies (B), we place the descent
question in the context of equivariant algebraic K-theory, in essentially the form developed
by Barwick, [14]. The argument then relies on some equivariant and chromatic technology, a
result about the assembly map in TC proved by Hesselholt-Nikolaus [35], as well as the purity
result of [43]. The proof that (B) implies (C) also uses essentially the theorem of Hahn [32]
referenced above. In fact we use the following a priori stronger version of Hahn’s theorem,
which we however deduce from it: ifR is anE1-ring withLT.n/.RtCp / D 0, thenLT.m/R D 0
for m � nC 1, see Theorem 4.6.

Theorem 1.3 allows an inductive approach to simultaneously proving vanishing and
descent statements. In fact, Theorem C follows immediately from it by inductively taking
R D L

p;f
n S (and replacing n with nC 1), via Kuhn’s blueshift theorem.

Concerning the general descent result Theorem B, we have already mentioned that it
recovers Galois descent for K.1/-local K-theory and the p-completed p-group case of the
Atiyah-Segal completion theorem. We also use it to obtain the following p-group case of a
conjecture of Ausoni-Rognes [8, Conj. 4.2]:

Corollary (Corollary 4.16). – Let A ! B be a T .n/-local G-Galois extension
of E1-rings, in the sense of Rognes [64], for G a finite p-group.

Then the mapsLT.nC1/K.A/! LT.nC1/.K.B/
hG/! .LT.nC1/K.B//

hG are equivalences.

Besides the above thread of results, we also prove some other descent results of a slightly
different nature with different techniques. Like the results of our previous paper [23], these
work uniformly for all chromatic heights, including height zero, and do not assume G to be
a p-group; but on the other hand they make more restrictive assumptions on the action of
the group G.

Theorem D. – Let C be a monoidal, idempotent-complete stable1-category with biexact
tensor product equipped with a (monoidal) action of a finite group G. Let trW C ! ChG denote
theG-equivariant biadjoint to the forgetful functor ChG ! C. Suppose theG-equivariant object
tr.1/ 2 Fun.BG; ChG/ has class in K0.Fun.BG; ChG// equal to that of the induced G-objectL
G 1ChG 2 Fun.BG; ChG/. Then the comparison map

K.ChG/! K.C/hG

induces an equivalence after T .n/-localization for any n � 0 and for any prime p.
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Theorem D states that a type of normal basis property (e.g., for a Galois extension of
fields, the condition on tr.1/ follows from the normal basis theorem) for the G-equivariant
object tr.1/ 2 ChG implies that the homotopy fixed point comparison map for K-theory
is an equivalence after T .n/-localization. The argument is based on the vanishing [42] of
Tate spectra in telescopic homotopy theory. In fact, Theorem D yields another proof of
Theorem 1.2 avoiding the use of E1-structures, see Remark 5.6.

Next, we use [53] to prove a third descent result (Theorem F below), which applies in
more general situations, albeit with a weaker conclusion. For this, we first formulate a
generalization of the homotopy fixed point comparison maps with respect to a family of
subgroups of G.

Construction 1.4 (Comparison maps for families of subgroups).

Let C be an idempotent-complete stable1-category with an action of a finite group G.
Let F be a family of subgroups ofG, i.e., F is nonempty and closed under subconjugation,
and letOF .G/ be the category ofG-sets of the formG=H;H 2 F . We obtain a comparison
map

(1.2) K.ChG/! lim
 �

G=H2OF .G/op

K.ChH /I

this generalizes the homotopy fixed point comparison map, which is the case where
F D f.1/g.

The map (1.2) is dual to the type of assembly maps which (for infinite groups) are the
subject of the Farrell-Jones conjecture and its variants. In the rest of this paper, we will intro-
duce a basic condition on an E1-ring that guarantees the maps (1.2) are equivalences after
telescopic localization, and implies a bound on the chromatic complexity of the algebraic
K-theory.

Definition 1.5 (Swan K-theory, Malkiewich [49]). – Let R be an E1-ring spectrum,
and letG be a (discrete) group. We define the ring Rep.G;R/, called the SwanK-theory ofR,
via

Rep.G;R/ D K0.Fun.BG;Perf.R///:

For G finite, using induction and restriction functors, one makes Rep.�; R/ into a Green
functor, cf. Definition 6.1.

The1-category Fun.BG;Perf.R// is an analog of the category of complex representa-
tions of the finite group G; studying this in analogy with complex or modular representa-
tion theory for R D KU has been proposed by Treumann [72]. In this analogy, the ring
Rep.G;R/ is an analog of the classical representation ring of G (to which it reduces when
R D HC). In general, the calculation of the rings Rep.G;R/ seems to be an interesting
problem (e.g., for R D KU), although we know very few examples.

Definition 1.6 (R-based Swan induction). – Fix a finite group G and an E1-ring R.
If the Green functor Rep.�; R/ ˝ Q (for subgroups of G) is induced from a family F of
subgroups of G, then we say that R-based Swan induction holds for the family F .

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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In [68], Swan shows that HZ-based Swan induction holds for the family of cyclic groups
for any finite group; see also [69] for a detailed treatment of Swan K-theory for a discrete
ring. For HC, this is Artin’s classical induction theorem for the representation ring. Via
some explicit geometric arguments, we prove the following instances of Swan induction
for E1-ring spectra.

Theorem E. – If R is an E1-ring, then for every finite group, R-based Swan induction
holds for:

1. the family of abelian subgroups if R admits an E1-map from MU;

2. the family of abelian subgroups of rank � 2 if R D KU;

3. the family of abelian subgroups of p-rank � nC 1 and `-rank � 1 for primes ` ¤ p if
R D En is Morava E-theory of height n at the prime p D 2.

This statement subsumes Theorem 7.4, Theorem 7.13, and parts of Theorem 7.12. Infor-
mally, (2.) states that while a complex representation of a finite group G is determined by its
character (i.e., its restriction to cyclic subgroups), the class in Rep.G;KU/ of a “represen-
tation” of G with KU-coefficients should be determined by a sort of “2-character,” defined
on pairs of commuting elements of G; moreover, there should be generalizations to higher
heights. We conjecture that (3.) should be true for odd primes too (Conjecture 7.22).

We show that the Swan induction condition guarantees that the maps (1.2) become equiv-
alences after telescopic localization, for every R-linear 1-category. This relies on similar
techniques as in [23].

Theorem F (Descent via Swan induction, see Theorem 6.4). – Let R be an E1-ring
spectrum, G a finite group, and F a family of subgroups of G. Suppose that R-based Swan
induction holds for the family F . Then, for everyR-linear idempotent-complete stable1-cate-
gory C with an action of G, the natural map (1.2), namely

K.ChG/! lim
 �

G=H2OF .G/op

K.ChH /I

becomes an equivalence after T .n/-localization, for any n and any implicit prime p. Further-
more, the limit in (1.2) commutes with LT.n/.

In fact, Theorem F can be combined with Theorem B, yielding the following result
(Theorem 6.5): if LT.n/.RtCp / D 0, then the comparison map (1.2) becomes an equivalence
after T .nC 1/-localization, for F the family of cyclic subgroups of prime-to-p order.

Our final main result, which is inspired by the character theory of Hopkins-Kuhn-Ravenel
[36], is that a certain case of Swan induction implies the vanishing of the T .i/-localizations
of algebraic K-theory for large i .

Theorem G. – Let R be an E1-ring, p a prime, and n > 0. Suppose that R-based Swan
induction holds for the family of proper subgroups of C�np . Then LT.i/K.R/ D 0 for i � n at
the implicit prime p.
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DESCENT AND VANISHING IN CHROMATIC ALGEBRAIC K-THEORY 1141

As a consequence, we obtain a new proof of Mitchell’s theorem (Theorem 1.1), and we
recover several chromatic bounds, e.g., that if p D 2 or n D 1, then we haveLT.i/K.En/ D 0
for i � n C 2. These bounds are special cases of Theorem A above, although the method
is different and could be useful in other settings as well; for instance, in Theorem 7.12 we
prove 2-primary Swan induction results for MO hni which therefore implies bounds on the
chromatic complexity of K.MO hni/.

Conventions

We let S denote the 1-category of anima, Sp denote the 1-category of spectra, SG
the1-category of G-anima (i.e., genuine G-spaces), and SpG the1-category of (genuine)
G-spectra. We denote by S the unit of either of these (i.e., the sphere spectrum). We write DX
for the Spanier-Whitehead dual of X .

We let Lp;fn denote the finite localization [57] on Sp away from a finite type n C 1

spectrum (at the implicit prime p). In particular, for n D 0, we have Lp;f0 .X/ D XŒ1=p�.
This convention follows [43]; for p-local spectra, it agrees with what is usually denoted Lfn .
Equivalently, if T .i/ denotes the telescope of a vi -self map of a finite type i complex (so by
convention T .0/ can be taken to be SŒ1=p�), then Lp;fn D LT.0/˚���˚T.n/.

We write K for connective algebraic K-theory. Most of our results hold only after tele-
scopic localization, after which there is no difference between connective and nonconnective
K-theory, and we will anyway state them in the generality of additive invariants.

We write Catperf
1 for the1-category of small, idempotent-complete stable1-categories

and exact functors between them, cf. [17]. More generally, given an E1-ring R, we write
Catperf

R;1 for the1-category of small, idempotent-completeR-linear stable1-categories and

R-linear functors between them, so Catperf
R;1 is Perf.R/-modules in Catperf

1 . Compare [38] for
a treatment.

An 1-category C is called preadditive (also called semiadditive in the literature) if it is
pointed, admits finite coproducts, and finite coproducts are (canonically) identified with
finite products, see [27, Sec. 2]. Given a preadditive1-category C, we say that C is additive if
the E1-anima HomC.X; Y / for X; Y 2 C are grouplike.
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2. Mackey functors and equivariant algebraic K-theory

In this section, we review the setup of equivariant algebraicK-theory which plays an inte-
gral role in our approach to the present descent theorems. The use of equivariant algebraic
K-theory refines the use of the transfer, which is central to all such descent results, going back
to [70]. (1) In studying the comparison map K.ChG/ ! K.C/hG , one observes that there is
also a map

(2.1) K.C/hG ! K.ChG/;

arising from theG-equivariant functor C ! ChG biadjoint to the forgetful functor ChG ! C,
such that the composition with the comparison map is the norm map K.C/hG ! K.C/hG :
In the case of C D Perf.R0/ for a G-Galois extension R ! R0 of commutative rings, then
Galois descent gives Perf.R/ ' Perf.R0/hG and (2.1) is the map

K.R0/hG ! K.R/;

which arises from restriction of scalars from R0-modules to R-modules. These types of
transfer maps and their functorialities can be encoded using the language of (genuine)
G-spectra, and some of the techniques for proving descent results can be expressed using
the language of F -nilpotence [54, 55].

Several authors have considered the setup of equivariant algebraic K-theory, including
Merling [56], Barwick [14], Malkiewich-Merling [50], and Barwick-Glasman-Shah [15]. We
will follow the setup of [14, 15], but will try to keep the exposition mostly self-contained.
In particular, we will use the theory of spectral Mackey functors, which is equivalent to the
theory of G-spectra by work of Guillou-May [31] and Nardin [60]; we will also give another
proof of this equivalence in the appendix.

Definition 2.1 (The effective Burnside1-category, [14, Sec. 3]).

For a finite groupG, let Burneff
G denote the effective Burnside1-category of the category of

finite (left) G-sets and G-maps; informally, Burneff
G is the nerve of the (weak) .2; 1/-category

defined as follows:

— The objects of Burneff
G are finite G-sets S ,

— Given finite G-sets S and T , HomBurneff
G
.S; T / is the nerve of the groupoid of spans

of finite G-sets

U

  ��
S T

and isomorphisms of spans.

— Composition is given by pullback of spans.

(1) A toy example of this argument is the Galois descent for rationalized algebraicK-theory, cf. [70, Th. 2.15].
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DESCENT AND VANISHING IN CHROMATIC ALGEBRAIC K-THEORY 1143

That is, Burneff
G is the span category of the category of finite G-sets, as in [9, App. C]. The

1-category Burneff
G is preadditive, and the direct sum comes from the disjoint union of finite

G-sets.

One then obtains the following definition [14, Sec. 6] of a Mackey functor; this reduces to
the classical notion when C is the category of abelian groups.

Definition 2.2 (Mackey functors). – Given any presentable, preadditive1-category C,
we define a C-valued Mackey functor (for the finite group G) to be a C-valued presheaf
on Burneff

G which takes finite coproducts ofG-sets to products in C. We let MackG.C/ denote
the1-category of C-valued Mackey functors.

Let M 2MackG.C/. Given a subgroup H � G, we write

MH def
D M.G=H/;

and call this the H -fixed points of M .

Remark 2.3 (Comparison with the P†-construction). – Consider the nonabelian
derived1-categoryP†.Burneff

G / of Burneff
G , in the sense of [46, Sec. 5.5.8], i.e.,P†.Burneff

G / is
the 1-category of presheaves on Burneff

G which preserve finite products, or equivalently
P†.Burneff

G / is obtained by freely adding sifted colimits to Burneff
G . Then MackG.C/ D

P†.Burneff
G /˝ C via the Lurie tensor product, cf. [47, Sec. 4.8.1].

Construction 2.4 (The symmetric monoidal structure on Mackey functors).

Suppose now C is a presentably symmetric monoidal 1-category which is preaddi-
tive. Then there is a canonical structure of a presentably symmetric monoidal structure
on MackG.C/, obtained (implicitly by Day convolution) as follows. We consider the
symmetric monoidal structure on Burneff

G obtained from the cartesian product on finite
G-sets (and products of spans). This symmetric monoidal structure commutes with finite
coproducts in each variable. Applying P†, we obtain a canonical presentably symmetric
monoidal structure on P†.Burneff

G / such that the Yoneda functor is symmetric monoidal,
[47, Prop. 4.8.1.10]. Now via the Lurie tensor product, MackG.C/ D P†.Burneff

G /˝ C then
acquires the structure of a presentably symmetric monoidal1-category.

Remark 2.5 (Functoriality of MackG.�/). – Let C;D be presentable, preadditive
1-categories. LetF W C ! D be an accessible functor which commutes with finite coproducts
(but not necessarily all colimits).

Then we can still define a natural functor MackG.C/!MackG.D/ induced by F by
sending a C-valued Mackey functor to the corresponding D-valued one (i.e., composing
with F ). However, this is slightly awkward to formulate in our setup where MackG.C/ D
C ˝ P†.Burneff

G /, since this tensor product takes place in the world of presentable1-cate-
gories. We can modify this by fixing a suitable cardinal �, considering the �-compact
objects C� � C, then defining the cocontinuous functor Ind.C�/ ! D and applying
MackG.�/ D .�/˝ P†.Burneff

G / to it. Varying �, we obtain a functor out of C. In partic-
ular, this also shows that if C;D are symmetric monoidal and if F has a lax symmetric
monoidal structure, then MackG.C/!MackG.D/ has a lax symmetric monoidal structure;
alternatively one could see this using Day convolution, cf. [29] or [47, Sec. 2.2.6].
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Remark 2.6 (Spectral Mackey functors and G-spectra). – Suppose C D Sp is the
1-category of spectra. Then by [31, 60], we have an equivalence between MackG.Sp/
and the 1-category SpG of (genuine) G-spectra, cf. also the appendix for an independent
account of this equivalence. The target of equivariant algebraic K-theory will naturally be
MackG.Sp/, and so we can equally regard equivariant algebraicK-theory as a G-spectrum.

Example 2.7 (The case of the trivial group). – Suppose G D .1/ is the trivial group.
Then Burneff

.1/ is the category of finite sets and correspondences between them. This is the free
preadditive category on a single generator, a result due to Cranch [24], cf. [9, Prop. C.1] for
another account. It follows that Mack.1/.C/ D C. In particular, it follows thatP†.Burneff

.1// is
the 1-category of E1-anima, since this is the free presentable preadditive 1-category on
one object, cf. [27].

Construction 2.8 (Relation to the orbit category). – Let O.G/ be the orbit cate-
gory of G, i.e., the category of nonempty transitive G-sets. We have a natural functor
O.G/! Burneff

G which sends the G-set S to S 2 Burneff
G and the G-map f WS ! T to the

span
S

id��

f

��
S T:

We also obtain a natural functor O.G/op ! Burneff
G in a similar (dual) manner. Suppose

f WG=H ! G=H 0 is a morphism in O.G/. Given a C-valued Mackey functor M , we then
obtain morphisms in C

f �WMH 0
!MH ; f�WM

H
!MH 0 :

Thus, given the Mackey functor M , we obtain two functors

O.G/op
! C; O.G/! C;

which both send G=H 7! M.G=H/ D MH , and such that the functoriality is via f � in the
first case and via f� in the second case.

Next, we discuss the most basic source of Mackey functors: the Borel-equivariant ones,
or those M for which M.G=H/ ' M.G/hH for all subgroups H � G. We begin with the
case where C is given by E1-monoids in anima.

Proposition 2.9. – There is a symmetric monoidal Bousfield localization functor
P†.Burneff

G / ! Fun.BG;P†.Burneff
.1/// such that the essential image of its right adjoint

inclusion consists of those product-preserving presheaves F W .Burneff
G /

op ! S such that for
each finiteG-set S , the natural mapF.S/! F.G�S/hG is an equivalence. HereG acts onG
(in the category of finite G-sets, and hence in Burneff

G ) by right multiplication.

Proof. – Let yWBurneff
G ! P†.Burneff

G / be the Yoneda embedding, and consider the
Bousfield localization functor LI on P†.Burneff

G / with respect to the maps
I D fy.G � S/hG ! y.S/g, for each finite G-set S . Here we use the map of G-sets
G � S ! S given by projection onto the second factor, and the G-action on the source (in
the category of G-sets) by right multiplication on the first factor.
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Since y is symmetric monoidal and the tensor product on P†.Burneff
G / commutes with

colimits in each variable, the class I is preserved by tensoring with objects in the image of y,
and we see that this Bousfield localization LI respects the symmetric monoidal structure.
Unwinding the definitions, we see that the image of LI is precisely those product-preserving
presheavesF as in the statement because HomP†.Burneff

G
/.y.G�S/hG ;F/ D F.G�S/hG . In

particular, for any finite G-set S which is G-free, y.S/ is I-local, as one sees by unwinding
the definition of mapping anima in Burneff

G .
We claim that the fy.S/g for S finite and G-free form a set of compact projective

generators for LIP†.Burneff
G /. Compactness and projectivity follow because for a finite

free G-set S , the functor F 7! F.S/ (with values in S) commutes with sifted colimits
onP†.Burneff

G / and carries the maps in I to equivalences. Moreover, the y.T / for T 2 Burneff
G

can be expressed up to I-equivalence as colimits of the y.S/ for S finite G-free by construc-
tion; therefore, the fy.S/g generate. This verifies the claim about LIP†.Burneff

G /.
The symmetric monoidal functor Burneff

G ! Fun.BG;Burneff
.1// which remembers an

underlying set, or correspondence, with G-action extends to a cocontinuous symmetric
monoidal functor P†.Burneff

G / ! Fun.BG;P†.Burneff
.1///. Evidently, this functor carries

the class of maps I to equivalences, and factors symmetric monoidally through the Bousfield
localization LI .

It remains to show that the induced functor LIP†.Burneff
G /! Fun.BG;P†.Burneff

.1/// is
an equivalence. The compact projective generators on both sides are given by y.S/ for S a
finite freeG-set, so it suffices to compare maps between them. Equivalently, it suffices to show
that the map HomBurneff

G
.S; T /! HomFun.BG;Burneff

.1/
/.S; T / is an equivalence for S; T finite

free G-sets (in fact, it suffices for the G-action on one of them to be free). By decomposing
S and T and using duality, it suffices to prove that this map is an equivalence when S D �
and T D G; then one checks directly that both sides are the free E1-space on a generator
and the map is an equivalence.

Construction 2.10 (Borel-equivariant objects). – Let C be a presentably symmetric
monoidal, preadditive1-category. Tensoring the Bousfield localization of Proposition 2.9
with C, we obtain a symmetric monoidal Bousfield localization functor

MackG.C/! Fun.BG; C/;

with a fully faithful lax symmetric monoidal right adjoint functor called “Borelification,”

.�/Bor
WFun.BG; C/!MackG.C/:

The essential image of .�/Bor (called Borel-equivariant objects) is given by those product-
preserving presheaves F W .Burneff

G /
op ! C such that for any finite G-set S , we have

F.S/ ��! F.G � S/hG . In other words, F is Borel-equivariant if and only if the restriction
of F to O.G/op is right Kan extended from the full subcategory spanned by the G-set G.

We will be interested in the above construction when C D Catperf
1 . For this, recall

that Catperf
1 is preadditive (cf. [13, Prop. 4.7] for this result in the closely related context of

Waldhausen1-categories). Moreover, Catperf
1 is presentable [17, Cor. 4.25], and symmetric

monoidal under the Lurie tensor product [17, Th. 3.1]. For an idempotent-complete
stable 1-category A with G-action, we obtain a Catperf

1 -valued Mackey functor MA such
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that MA.G=H/ D AhH . For a map of finite G-sets f WG=H ! G=K, then f � is the natural
pullback mapAhK ! AhH . We will need to know that in this case, f� can also be described
explicitly.

Proposition 2.11. – Let M 2 MackG.Catperf
1 / be Borel-equivariant. Then for any

map f WS ! T of finite G-sets, the functor f� W M.T / ! M.S/ (of Construction 2.8) is
both left and right adjoint to f � WM.S/!M.T /.

Proof. – We will verify this by invoking from [14] a construction of a Catperf
1 -valued

Mackey functor which does have the desired adjointness property, which is Borel, and whose
underlying object of Fun.BG;Catperf

1 / agrees with that of M .

Let A D M.G= feg/ 2 Fun.BG;Catperf
1 /. Note first that for any map of finite sets

f WS0 ! T0, the pullback functor f �WFun.T0;A/ ! Fun.S0;A/ admits a right (and left)
adjoint f�WFun.S0;A/! Fun.T0;A/ given by summing over the fibers. Moreover, one has
the base-change property: given a pullback square of finite sets

U0

��

// V0

��
S0 // T0;

the induced square in Catperf
1 obtained by applying pullback everywhere is left and right

adjointable [46, Def. 7.3.1.2].

Now for every G-set S , we consider FunG.S;A/ 2 Catperf
1 ; this is also Fun.S;A/hG for

the diagonal G-action (with G acting on both S and A). Given a map of G-sets f WS ! T ,
we have a pullback functor f �WFunG.T;A/ ! FunG.S;A/; we obtain a Catperf

1 -valued
presheaf on the category of finite G-sets. We claim that for any map f WS ! T , the functor
f �WFunG.T;A/! FunG.S;A/ admits an adjoint (in either direction), and furthermore that
for any pullback square of finite G-sets

U

��

// V

��
S // T;

the induced square in Catperf
1 obtained by pullback functoriality is adjointable (in either

direction). This follows from the above verification in the case of finite sets, and then taking
homotopy fixed points in view of [47, Cor. 4.7.4.18]. Indeed, the result of loc. cit. shows that
given a square in Fun.BG;Cat1/ which is left (or right) adjointable, the square in Cat1
obtained by taking G-homotopy fixed points remains left (or right) adjointable.

We thus have a Catperf
1 -valued presheaf on the category of finiteG-sets, S 7! FunG.S;A/,

and we have verified the adjointability conditions needed to apply the unfurling construction
of [14, Sec. 11], which produces a Catperf

1 -valued Mackey functor M 0 extending the above
presheaf whose restriction to O.G/ is given by the adjoints f�. In particular,M 0 satisfies the
condition of the proposition. The Mackey functorM 0 is Borel-complete (since this condition
only depends on the restriction to the category of finite G-sets) and must therefore agree
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withM , since the restrictions ofM;M 0 in Fun.BG;Catperf
1 / agree; it follows now thatM has

the desired property in the proposition.

Now we describe the fundamental construction for our purposes, the equivariant alge-
braicK-theory of group actions, in the form constructed by Barwick-Glasman-Shah, cf. [15,
Sec. 8].

Construction 2.12 (Equivariant K-theory of group actions [15, Sec. 8]).
It follows from Construction 2.10 that we have a lax symmetric monoidal functor of

“Borelification”
.�/Bor

WFun.BG;Catperf
1 /!MackG.Catperf

1 /;

and composing it with the lax symmetric monoidal algebraic K-theory functor as in
Remark 2.5, we obtain a lax symmetric monoidal functor

(2.2) KG WFun.BG;Catperf
1 /!MackG.Sp/;

such that KG.A/H D K.AhH / whenever A 2 Fun.BG;Catperf
1 / and H � G.

Example 2.13 (Equivariant algebraic K-theory of E1-rings). – Let R be an E1-ring
with G-action. Then we write KG.R/ for KG.Perf.R//.

We will actually need a slight generalization of the above, in order to handle invari-
ants other than algebraic K-theory. Given a base E1-ring R, we consider the presentably
symmetric monoidal 1-category MotR of R-linear noncommutative motives, cf. [17, 38].
We have a symmetric monoidal functor U WCatperf

R;1 ! MotR which is an additive invariant,
i.e., it preserves filtered colimits and carries semiorthogonal decompositions to direct sums
in MotR; moreover, U is initial for these data and conditions.

Construction 2.14 (MotR-valued Mackey functors). – Composing the functor .�/Bor

with U , we obtain a lax symmetric monoidal functor

UG WFun.BG;Catperf
R;1/!MackG.MotR/ 'MackG.Sp/˝MotR;

i.e., UG takes values in Mackey functors in R-linear noncommutative motives. (Here we
use Remark 2.5, since U does not preserve all colimits.) Since for any A 2 Catperf

R;1, the
algebraicK-theoryK.A/ can be recovered as HomMotR

.1;U.A// by [17] and [38], it follows
that the equivariant algebraicK-theory functorKG is the composition ofUG and the functor
id˝HomMotR

.1;�/WMackG.Sp/˝MotR !MackG.Sp/.

Finally, in order to treat assembly-type maps for group rings, we will need to discuss the
coBorel variant of the above.

Construction 2.15 (coBorel Mackey functors). – Let M be a C-valued Mackey
functor, for C a presentable preadditive1-category. Note that MackG.C/ D P†.Burneff

G /˝ C
is naturally tensored over P†.Burneff

G /. Let y W Burneff
G ! P†.Burneff

G / denote the Yoneda
embedding.

We will say that M is coBorel if the natural map .M ˝ y.G//hG ! M is an equivalence
in MackG.C/. Any M 2 MackG.C/ admits its coBorelification McoBor D .M ˝ y.G//hG ,
which is the universal coBorel Mackey functor mapping toM ; this follows because the object
y.G/hG in P†.Burneff

G / is an idempotent object for the tensor structure. (In fact, there is a
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natural symmetric monoidal functor from the1-category ofG-anima toP†.Burneff
G /which

is the identity onG-sets; then y.G/hG is the image of theG-spaceEG.) The coBorelification
only depends on the underlying object of Fun.BG; C/ (sinceM ˝y.G/ does), so we can also
consider this as a functor

.�/coBorWFun.BG; C/!MackG.C/:

Dually as in Construction 2.10, .�/coBor is fully faithful; the essential image consists of those
M 2MackG.C/ such that the dual comparison maps

�
M f1g

�
hH
!MH are equivalences for

allH � G. By the universal property, we obtain a natural map .�/coBor ! .�/Bor which is an
equivalence after forgetting to Fun.BG; C/. The functor .�/coBorWFun.BG; C/!MackG.C/
is the left adjoint to the localization functor MackG.C/! Fun.BG; C/ of Construction 2.10
(whose right adjoint was the Borelification).

We now describe the coBorelification of the Catperf
1 -valued Mackey functors constructed

above. This involves controlling homotopy orbits in Catperf
1 . To begin with, we need some

facts about limits and colimits of presentable, stable1-categories, cf. [46, Sec. 5.5.3]. LetPrLst

denote the1-category of presentable, stable1-categories and left adjoint functors between
them. Let PrRst denote the1-category of presentable, stable1-categories and right adjoint
functors between them, so we have an equivalence in PrLst ' .PrRst /

op. It follows that the
underlying1-category of a colimit inPrLst (of some diagram i 7! Ci ; i 2 I ) can be calculated
by taking the inverse limit along I op of the right adjoints [46, Th. 5.5.3.18]. Explicitly, via the
Grothendieck construction, we can express the diagram I ! PrLst in terms of a presentable
fibration eC ! I , which is both a cartesian and a cocartesian fibration (cf. [46, Def. 5.5.3.2]);
the limit in PrLst is given by the 1-category of cocartesian sections, whereas the colimit is
given by the1-category of cartesian sections.

We can use this to describe colimits in Catperf
1 .

Construction 2.16 (Colimits in Catperf
1 ). – Consider the functor IndWCatperf

1 ! PrLst

([46, Sec. 5.3.5]). This functor admits a right adjoint sending a presentable, stable1-category
to its subcategory of compact objects; therefore, Ind commutes with all colimits. To compute
a colimit in Catperf

1 of an I -indexed diagram, i 7! Ai , we therefore form the I op-indexed
diagram of Ind.Ai / and the right adjoint functors, and then take the compact objects in the
limit.

Example 2.17 (Homotopy orbits in Catperf
1 ). – Let A 2 Fun.BG;Catperf

1 /. We claim
that AhG is naturally described as the full subcategory of compact objects in Ind.A/hG .

To see this, we first describe the homotopy orbits Ind.A/hG in PrLst . Form the presentable
fibration over BG with fiber Ind.A/; as above, the cocartesian sections give Ind.A/hG
(the homotopy limit in PrLst ) while the cartesian sections give Ind.A/hG . Since BG is an
1-groupoid, the cartesian and cocartesian sections are the same and we have a canonical
identification Ind.A/hG D Ind.A/hG in PrLst . The claim about AhG now follows by passage
to compact objects.

Equivalently, we find that AhG 2 Catperf
1 is the full subcategory of AhG generated as a

thick subcategory by the image of the functor A ! AhG adjoint to the forgetful functor,
since this image forms a set of compact generators of Ind.A/hG : In particular, we have
a natural fully faithful embedding AhG � AhG (which we verify below to be the norm
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map); it follows that for any diagram Aj ; j 2 J in Fun.BG;Catperf
1 /, the natural map

.lim
 �J

Aj /hG ! lim
 �J

.Aj /hG is fully faithful, since .�/hG commutes with limits.

Proposition 2.18. – LetA 2 Fun.BG;Catperf
1 /. Then the natural map of Catperf

1 -valued
Mackey functors

AcoBor ! ABor;

is fully faithful onH -fixed points forH � G. Moreover, .AcoBor/
H � .ABor/H D AhH is the

thick subcategory generated by the image of the biadjoint A! AhH .

Proof. – LetH � G. Then we claim that the natural map (i.e., the norm map) in Catperf
1 ,

(2.3) AhH D ..A˝G/hH /hG ! AhH D ..A˝G/hG/hH

is fully faithful; this map is the H -fixed points of AcoBor ! ABor. But this follows from the
observation in the previous example: we saw that if TWFun.BG;Catperf

1 / ! Catperf
1 is the

functor B 7! BhG , then if B has a G �H -action, then T.BhH / ! T.B/hH is fully faithful.
It follows that AcoBor ! ABor is fully faithful on each fixed point. To see that its essential
image is the subcategory as claimed, we observe that A ! AhH has image generating the
target as a thick subcategory.

Example 2.19 (Assembly maps). – Let G act trivially on Perf.R/. Then we find that
for each subgroup H � G, one has Perf.R/hH ' Perf.RŒH�/ � Fun.BH;Perf.R// is
the collection of compact objects in Fun.BH;Mod.R//. In particular, the Catperf

1 -valued
Mackey functor .Perf.R//coBor is precisely the one that leads to the theory of assembly maps,
cf. [62].

Construction 2.20 (Equivariant algebraic K-theory, coBorel version).
Combining the above, we obtain a functor

UG;coBorWFun.BG;Catperf
R;1/

.�/coBor
�����!MackG.Catperf

R;1/!MackG.MotR/;

which is the coBorel version of Construction 2.14. If A is an algebra object of Fun.BG;Catperf
R;1/,

then AcoBor D ABor ˝ y.G/hG is a module over ABor in MackG.Catperf
R;1/. Therefore,

UG;coBor.A/ is a module over UG.A/ (which is an algebra object of MackG.MotR/).

3. Review of nilpotence

To prove our descent theorems, it will be convenient to use the language of nilpotence, as
in [54, 55]. For the material in Section 5 and further, we also need the variant of "-nilpotence,
as used in [23].

Definition 3.1 (Nilpotence). – Given a finite group G and a family F of subgroups,
a G-spectrum X is said to be F -nilpotent [54, Def. 6.36] if it belongs to the thick subcat-
egory (or equivalently the thick ˝-ideal) generated by G-spectra which are induced from
subgroups in F . We say that a G-spectrum X is .F ; "/-nilpotent if there exists a finite set of
prime numbers† such that for every finite spectrumF whose localizations at primes in† are
nontrivial, thenX belongs to the thick˝-ideal ofG-spectra generated byF and the F -nilpo-
tent G-spectra. (This somewhat involved definition in particular implies that every passage

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1150 D. CLAUSEN, A. MATHEW, N. NAUMANN AND J. NOEL

to T .n/-local coefficients makesX F-nilpotent, and this is an if and only if for the endomor-
phism G-ring spectrum of X . Compare [23, Sec. 2.3] with A D

Q
H2F F.G=HC;S/.)

Definition 3.2 (F -completeness, cf. [54, Sec. 6.1]). – Given a finite group G and a
family F of subgroups, let EF be the classifying space of the family F as reviewed in [54,
Cons. 6.3]. We say that X 2 SpG is F -complete if the map X ! F.EFC; X/ is an equiva-
lence, or equivalently if X is complete with respect to the algebra object A D

Q
H2F F.G=HC;S/.

This in particular implies that XG
�
�! lim
 �G=H2OF .G/op

XH .

Proposition 3.3. – Given an .F ; "/-nilpotent G-spectrum X , the natural comparison
maps

(3.1) lim
�!

G=H2OF .G/

XH ! XG ! lim
 �

G=H2OF .G/op

XH ;

become equivalences after applying LT.n/ for any height n and implicit prime p; moreover, the
functor LT.n/ can be applied either inside or outside the homotopy limit on the right of (3.1),
i.e., the map

(3.2) LT.n/

0@ lim
 �

G=H2OF .G/op

XH

1A! lim
 �

G=H2OF .G/op

LT.n/X
H

is an equivalence.

Proof. – Fix n and the implicit prime p. Given an F -nilpotent G-spectrum X , the maps
of (3.1) are equivalences, cf. [55, Prop. 2.8] (in particular,X is F -complete). IfX is F -nilpo-
tent then the T .n/-localization of X remains F -nilpotent by a thick subcategory argument,
whence (3.2) is also an equivalence. Now the collection ofG-spectra for which (3.1) and (3.2)
are equivalences is a thick subcategory which contains the F -nilpotent G-spectra and the
G-spectra of the form F ˝ Y for Y 2 SpG and F a finite torsion spectrum of type (at p)
� nC 1; this collection therefore contains the .F ; "/-nilpotent G-spectra.

We now discuss some criteria for nilpotence, starting with the case of the family T

consisting only of the trivial subgroup. Let EG denote the universal free G-space (or
equivalently the classifying space of the family consisting of the trivial subgroup). Let gEG
denote the cofiber of EGC ! S in SpG ; it is naturally an algebra object in SpG , as the
smashing localization of S in SpG away from the localizing ˝-ideal generated by the free
G-spectra, cf. [54, Prop. 6.5]. In the following, let R be an associative algebra in SpG . Then
we consider the associative algebra .R˝gEG/G in Sp. SinceEG D .G/hG (in the1-category
of G-anima), we have a cofiber sequence

RhG ! RG ! .R˝gEG/G ;
where RhG D R

f1g

hG
and RhG ! RG is the transfer for the G-spectrum R.

Proposition 3.4 (Criteria for T -nilpotence). – An associative algebra R in SpG is
T -nilpotent (for T D f.1/g) if and only if .R˝gEG/G is contractible.

Proof. – This follows from [54, Th. 4.19], since R˝gEG is the localization of R (in SpG)
away from the localizing˝-ideal generated by the free G-spectra.
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Proposition 3.5 (Criterion for .T ; "/-nilpotence). – Let R be an associative algebra
in SpG . Suppose that .R˝gEG/G has trivial T .n/-localization for n � 1 and all primes p and
trivial rationalization. Then R is .T ; "/-nilpotent.

Proof. – Our assumptions imply that there exists a finite set of prime numbers† such that
for every finite complexF with nontrivial localizations at primes in†, the associative algebra
spectrum .R˝gEG/G belongs to the thick˝-ideal generated by F , cf. [23, Prop. 2.7]. Thus,
theG-spectrumR˝gEG belongs to the thick˝-ideal generated byF ; here we use the natural
adjunction .i�; .�/G/ W Sp ⇄ SpG . Therefore, R belongs to the localizing˝-ideal generated
by F and by theG-spectrumGC (using the fiber sequenceR˝EGC ! R! R˝gEG), and
hence it belongs to the similarly generated thick ˝-ideal by [54, Th. 4.19] (which we apply
to C D SpG and the dualizable associative algebra object F ˝ DF � DGC 2 SpG , for D the
categorical dual) again. The result follows.

We next include three general results about F -nilpotence for an arbitrary family. The
first result states that when R is rational (i.e, T .0/-local), F -nilpotence is a purely algebraic
condition on �0; the second (which will only be used with F D T ) gives a generalization
of this to T .n/-local objects. The third result allows us to transfer rational F -nilpotence
to .F ; "/-nilpotence in the presence of an E1-structure, using the May nilpotence conjecture
[53]. For this, we let EF denote the universalG-space for the family F and gEF the cofiber
of the mapEFC ! S in SpG , so gEF is the localization of S away from the localizing˝-ideal
generated by the fG=HC;H 2 F g.

Proposition 3.6 ([55, Prop. 4.11]). – Suppose that the associative algebra R in SpG is
rational. ThenR is F -nilpotent if and only if the induction map

L
H2F �0.R

H /! �0.R
G/ is

surjective, or equivalently has image containing the unit.

Let LT.i/SpG denote the full subcategory of SpG spanned by the T .i/-local objects, i.e.,
those for which the H -fixed points for each subgroup H � G are T .i/-local spectra (at
the implicit prime p); this equivalence follows because the orbits form a set of compact
generators for SpG . We next give a criterion for F -completeness in LT.i/SpG . This will use
the vanishing of the Tate constructions in LT.i/ Sp, due to [42], in the following equivalent
form:

Lemma 3.7. – If C is any presentable stable 1-category and X 2 Fun.BH; C/ is an
H -object in C for some finite group H , then XhH ˝ T .i/ 2 C belongs to the thick subcategory
generated by X ˝ T .i/.

Proof. – An equivalent form of the telescopic Tate vanishing is that, as an object of
Fun.BH; Sp/ (with trivialH -action), T .i/ belongs to the thick subcategory of Fun.BH; Sp/
generated by T .i/ ˝ HC, cf. [55, Prop. 5.31]. From this, the result easily follows, since
.X ˝ T .i/˝HC/hH D X ˝ T .i/.

In the next result, we use the notation ˆH for the H -geometric fixed points functor
on SpG .

Proposition 3.8 (Properties of T .i/-local G-spectra). – Let G be a finite group, F a
family of subgroups and i � 0. Let M 2 LT.i/SpG . Then the following are equivalent:
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1. M is F -complete.

2. For every finite type i complex F , the G-spectrum M ˝ F is F -nilpotent.

3. We have LT.i/.ˆHM/ D 0 for H … F .

Proof. – We first claim that for each family G of subgroups of G, the G-spectrum
EGC ˝ T .i/ is G -nilpotent; we prove this by induction on G . To start with, when G D T ,
then EGC D .GC/hG ; this uses the G-action on the G-space G (by right multiplication, so
in the category of G-anima). It follows from Lemma 3.7 that ETC ˝ T .i/ is T -nilpotent.
Now we treat the inductive step. Fix a proper family G such thatEGC˝T .i/ is G -nilpotent.
Choose a subgroup H � G which is minimal for the property of not belonging to G ; one
forms a new family G 0 obtained by adding the conjugates of H to G . Then there is a cofiber
sequence of pointed G-anima

EGC ! EG 0C ! EG 0C ^ eEG D .G=HC/hWH
^ eEG ;

where WH is the Weyl group of H � G. Using this, the inductive assumption, and
Lemma 3.7, the inductive step follows and the claim is proved.

Now we prove the result. Suppose M 2 LT.i/SpG is F -complete. By the thick subcat-
egory theorem, condition .2/ is independent of the choice of F and we choose a finite
type i complex F such that F admits the structure of a ring spectrum; given a vi -self
map v of F which we may assume central, we can take T .i/ D F Œv�1�. Then M ˝ F

admits the structure of a T .i/-module, since M is T .i/-local. It follows that the F -cellu-
larization (cf. [54, Cons. 3.2, Prop. 6.5] for an account, where cellularization is called
acyclization.) EFC ˝M ˝ F of M ˝ F belongs to the thick ˝-ideal of SpG generated
by EFC ˝ T .i/ and is therefore F -nilpotent, by our initial claim. Consequently, the
F -completion F.EFC; EFC ˝M ˝ F / (which is M ˝ F again since this is F -complete)
is also F -nilpotent (here we implicitly use that the F -completion of a G-spectrum depends
only on its F -cellularization). Thus, (1) implies (2). Clearly (2) implies (3), again by smashing
with F . If (3) holds, then M ˝ F D M ˝ T .i/ has trivial geometric fixed points ˆH

for H … F , whence M ˝ F D EFC ˝ M ˝ F D EFC ˝ M ˝ T .i/, which we have
seen is F -nilpotent. Thus, (3) implies (2). Finally, (2) implies (1) by writing M (which is
assumed T .i/-local) as an inverse limit ofM ˝F for suitable finite type i complexes F (e.g.,
generalized Moore spectra).

Corollary 3.9. – Let R 2 LT.i/ SpG be an algebra object which is F -complete. Then
any R-module M 2 LT.i/ SpG is F -complete.

Proof. – This follows from item (3) of Proposition 3.8, sinceˆH is a symmetric monoidal
functor.

Proposition 3.10. – Let R 2 LT.i/ SpG be an E1-algebra, and let M 2 LT.i/ SpG be
an R-module. Then the map MG ! M hG admits a section as RG-modules. Similarly, the
map LT.i/.MhG/ ! MG admits a section as RG-modules. If G D Cp, then M is Borel-
complete if and only if either of these maps is an equivlaence.
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Proof. – All of this follows because the composite map LT.i/.MhG/ ! MG ! M hG is
the norm, which is an equivalence since Tate constructions vanish in T .i/-local homo-
topy [42].

Proposition 3.11. – Let R be an E1-algebra in the symmetric monoidal 1-category
SpG . Suppose that the rationalization RQ is F -nilpotent. Then R is .F ; "/-nilpotent.

Proof. – By assumption, the E1-ring .R˝gEF /GQ is contractible. Therefore, by the main
result of [53], the E1-ring .R˝gEF /G is annihilated byLT.n/ for all n and implicit primes p.
In particular, by [23, Prop. 2.7], there exists a finite set † of primes such that .R ˝ gEF /G

belongs to the thick˝-ideal of spectra generated by any finite spectrumF such thatF.p/ ¤ 0
for p 2 †. This implies that R ˝ E eF belongs to the thick ˝-ideal of SpG generated by F ,
whence R belongs to the localizing˝-ideal generated by F and fG=HC;H 2 F g in view of
the cofiber sequenceR˝EFC ! R! R˝gEF . Finally, [54, Th. 4.19] again implies thatR
belongs to the thick˝-ideal generated by F and fG=HC;H 2 F g in SpG , as desired.

Definition 3.12. – Let C be a presentably symmetric monoidal stable1-category. We
say that an object of MackG.C/ D MackG.Sp/ ˝ C ' SpG ˝ C is F -nilpotent (resp.
.F ; "/-nilpotent) if it belongs to the thick˝-ideal of MackG.C/ generated by the F -nilpotent
(resp. .F ; "/-nilpotent) objects in SpG .

It follows that for any cocontinuous functor C ! Sp, the induced functor

MackG.C/!MackG.Sp/ ' SpG

carries F -nilpotent (resp. .F ; "/-nilpotent) objects in the source to F -nilpotent (resp.
.F ; "/-nilpotent) objects in the target. Using the adjunction Sp ⇄ C where the symmetric
monoidal left adjoint carries S to the unit, we obtain the next result.

Proposition 3.13. – Let C be a presentably symmetric monoidal stable1-category, and
suppose 1 2 C is compact. LetA be an object of MackG.C/which admits a unital multiplication
in the homotopy category. Then A is F -nilpotent (resp. .F ; "/-nilpotent) in MackG.C/ if and
only if it is carried to an F -nilpotent (resp. .F ; "/-nilpotent) object of MackG.Sp/ under the
functor HomC.1;�/WMackG.C/!MackG.Sp/.

Proof. – Let i� W MackG.Sp/ ! MackG.C/ denote the canonical symmetric monoidal
functor (obtained from Sp ! C), and let i� W MackG.C/ ! MackG.Sp/ denote its right
adjoint (which is equally obtained by the cocontinuous functor HomC.1;�/ W C ! Sp). By
assumption, i�A is F -nilpotent (resp. .F ; "/-nilpotent); thus, so is i�i�A and hence so is A
since our assumption of a unital multiplication implies that A belongs to the thick ˝-ideal
generated by i�i�A.

Example 3.14. – Let A 2 Fun.BG;Catperf
R;1/. Consider UG.A/ 2 MackG.MotR/,

a Mackey functor valued in MotR. Suppose A is an algebra object of Catperf
R;1 (i.e., is an

R-linear monoidal stable1-category). Then UG.A/ is F -nilpotent (resp. .F ; "/-nilpotent)
if and only if the G-spectrum KG.A/ is F -nilpotent (resp. .F ; "/-nilpotent), using the
representability of K-theory.
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4. Descent for p-groups; proof of Theorem A and Theorem B

In this section, we give the proof of Theorems A and B via Theorem 1.3. We start with the
following general reduction.

Proposition 4.1. – LetR be anE2-ring, and let j � 0. Then the following are equivalent:

(1) LT.j /.ˆCpKCp
.R// D 0.

(2) The Cp-spectrum LT.j /KCp
.R/ is Borel-complete.

(3) For every R-linear idempotent-complete stable 1-category C equipped with an
(R-linear) action of a finite p-group G, and every additive invariant E with values
in T .j /-local spectra, we have E.ChG/ ��! E.C/hG .

(4) For every R-linear idempotent-complete stable 1-category C equipped with an
(R-linear) action of a finite p-group G, and every additive invariant E, we have

(4.1)
LT.j /.E.C/hG/

�
�! LT.j /E.ChG/

�
�! LT.j /E.ChG/

�
�! LT.j /.E.C/hG/

�
�! .LT.j /E.C//hG :

Proof. – (1) and (2) are equivalent by Proposition 3.8; (2) is the special case of (3) where
E D LT.j /K.�/ and G D Cp acts trivially on Perf.R/; and (3) is a special case of (4). Thus
let us show (1) implies (3) and (3) implies (4).

First, we show (1) implies (3). Since everyp-group has a composition series with successive
quotients cyclic of order p, we can use dévissage to reduce to the case when G D Cp.
Let ECp

.C/ D E.CBor/ denote the Cp-spectrum obtained by applying E to the Cp-Mackey
functor CBor in Catperf

1 . By construction, ECp
.C/ is a module in Cp-spectra over KCp

.R/. In
fact, this follows because CBor is a module over Perf.R/Bor, and UCp

.C/ 2 MackCp
.Mot/ is

therefore a module overKCp
.R/. SinceECp

.C/ is T .j /-local, we find thatECp
.C/ is a module

over LT.j /KCp
.R/ and is therefore Borel-complete by Corollary 3.9.

Finally, we show (3) implies (4). To this end, we will produce a sequence of G-spectra
which we will show to be Borel-complete, and which on fixed points realizes the maps in (4.1).
In fact, consider theG-Mackey functors CBor; CcoBor with values in Catperf

1 ; we have a natural
map CcoBor ! CBor. Both are modules over Perf.R/Bor in MackG.Catperf

1 /. Applying E and
then LT.j /, we obtain a sequence of G-spectra

(4.2) E.CcoBor/coBor ! E.CcoBor/! E.CBor/! E.CBor/Bor
! .LT.j /E.CBor//Bor:

Note that all of these G-spectra are modules over KG.R/. Therefore, the T .j /-localization
of theG-spectra in (4.2) are modules over theG-ring spectrumLT.j /KG.R/, which is Borel-
complete by (3) (applied to the trivialG-action on Perf.R/). Consequently, in view of Corol-
lary 3.9, theT .j /-localizations of theG-spectra in (4.2) are all Borel-complete. Finally, all the
maps of G-spectra in (4.2) induce T .j /-equivalences on underlying spectra; consequently,
the T .j /-localizations induce equivalences onG-fixed points, whence the equivalences in (4).

For future reference, we recall also the following lemma.
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Lemma 4.2. – LetEi denote MoravaE-theory of height i . For any T .i/-local E1-algebra
R over Ei , we have that EhCp

i ˝Ei
R
�
! RhCp , and this is a free R-module of rank pi . Here

we always have Cp acting trivially, and the relative tensor product is algebraic, not (a priori)
T .i/-localized.

Proof. – AsEi is complex oriented and even periodic, and thep-series Œp�.t/ 2 .�0Ei /ŒŒt ��
of its associated formal group law is a nonzerodivisor, the Gysin sequence for S1 ! BCp ! BS1

shows that EhCp

i D E
BCp

i is also even periodic, and �0E
hCp

i D .�0Ei /ŒŒt ��=Œp�.t/. Since
the formal group has height i , this is a free module of rank pi over �0Ei . Since Ei is
T .i/-local, Kuhn’s Tate vanishing result from [42] (or the earlier [30]) shows that this implies
thatLT.i/..Ei /hCp

/ is free of rank pi . Mapping out to an arbitrary T .i/-localEi -moduleM ,
we deduce that

M hCp D HomEi
.LT.i/..Ei /hCp

/;M/ D HomEi
.LT.i/..Ei /hCp

/; Ei /˝Ei
M D E

hCp

i ˝Ei
M;

implying all the desired claims.

4.1. The case of ordinary rings

For the proof of Theorem 1.3, we will need to give an independent treatment of a special
case: namely, the case where R is an ordinary ring. Note that for n D 1, T .1/ andK.1/-local
homotopy coincide [48, 58], and for all n we have LT.n/A D 0 if and only if LK.n/A D 0

whenever A is a ring spectrum, thanks to the nilpotence theorem; see [43, Lem. 2.3]. This
will let us consider K.n/ instead of T .n/.

What we will really need for the main proof is the following.

Lemma 4.3. – Let R be a commutative ring. Then the assembly map

K.R/hCp
! K.RŒCp�/

is a T .n/-equivalence for all n � 1.

The hypothesis that R should be commutative is a posteriori not necessary, by Theorem 4.12,
but it will be used in the proof here.

Proof. – In fact, we will show that the assembly map is aT .n/-local equivalence forn D 1.
By Mitchell’s theorem (Theorem 1.1),LT.n/K.Z/ D 0 for n � 2, which implies the statement
also holds when n � 2 since both sides vanish.

Thus, assume n D 1. Since K.A/! K.AŒ1=p�/ is a K.1/-equivalence for all rings A (see
[16, 43, 52] for three different proofs), we can reduce to the case whereR is a ZŒ1=p�-algebra.
By transfer along the degree p � 1 extension ZŒ1=p� ! ZŒ1=p; �p�, we can even assume
R is a ZŒ1=p; �p�-algebra. The claim is equivalent to the assertion that the Cp-spectrum
K.Perf.R/coBor/ (obtained by applyingK.�/ to theCp-Mackey functor Perf.R/coBor) has the
property that .KU˝K.Perf.R/coBor//=p is Borel-complete. Equivalently, we need to show
that the map

(4.3) .KU˝K.R//hCp
! KU˝K.RŒCp�/

induces an equivalence upon p-completion.
The p-completion of the map (4.3) admits a retraction as .KU˝K.R// Op-modules by

Proposition 3.10. (For this argument, cf. [49].) We will show that the p-completions of
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both sides are free .KU˝K.R// Op-modules of rank p, which will therefore imply the claim.
Indeed, the fact that the p-completion of .KU˝K.R//hCp

is free of rank p follows from
Lemma 4.2. Moreover, the fact that .KU˝K.RŒCp�//bp is free of rank p follows because the
standard idempotents in the group ring give RŒCp� ' R�p as R-algebras. This proves the
claim and hence the lemma.

Remark 4.4 (A proof of Mitchell’s theorem). – The above methods also reprove
the vanishing LT.n/K.Z/ D 0 for n � 2 using similar methods; it suffices to prove
LK.n/K.Z/ D 0 for such n. By Quillen’s localization sequenceK.Fp/! K.Z/! K.ZŒ1=p�/
and Quillen’s calculationK.Fp/.p/ D Z.p/, it suffices to show LK.n/K.ZŒ1=p�/ D 0, or again
by a transfer argument LK.n/K.ZŒ1=p; �p�/ D 0. We now run a similar argument as above.
Let R D ZŒ1=p; �p�. The map

(4.4) LK.n/.En ˝K.R/hCp
/! LK.n/.En ˝K.RŒCp�//

admits a retraction of LK.n/.En ˝ K.R//-modules by Proposition 3.10. We showed in the
proof of Lemma 4.3 thatK.RŒCp�/ is a freeK.R/-module of rank p, whence the right-hand-
side of (4.4) is a free LK.n/.En ˝ K.R//-module of rank p. By Lemma 4.2, the left-hand-
side of (4.4) is a free module of rank pn. In particular, we obtain a split injection from a free
module of rank pn overLK.n/.En˝K.R// to a free module of rank p. As pn > p, this forces
LK.n/.En ˝K.R// D 0, whence the claim.

Remark 4.5. – Suppose R is an associative Z=pn-algebra for some n � 1. Then the
assembly mapK.R/hCp

! K.RŒCp�/ is a T .0/-equivalence as well. In fact, after T .0/-local-
ization this map is simply the mapK.R/Œ1=p�! K.RŒCp�/Œ1=p�. This map admits a section
given by the augmentationRŒCp�! R which is surjective with nilpotent kernel, and induces
an equivalence on K.�/Œ1=p� by [44, Th. 2.25]. We thank the referee for this remark.

4.2. Extending to higher heights

In this subsection, we prove Theorem B and Theorem A together and in full generality via
an inductive argument on the height.

To obtain the desired bounds on the chromatic complexity on K.R/, we will use the
following converse to chromatic blueshift.

Theorem 4.6 (Cf. [32, Prop. 4.7] and [20, Th. 9.8]). – LetA be an E1-ring and let i � 0.
Suppose that LT.i/.AtCp / D 0. Then LT.j /A D 0 for j � i C 1.

For the convenience of the reader, we include a deduction of Theorem 4.6 from the main
theorem of [32].

Lemma 4.7. – The �0.EiC1/-algebra �0.E
tCp

iC1/ has the property that

�0.E
tCp

iC1/=.p; v1; : : : ; vi�1/ is faithfully flat over the field �0.EiC1/=.p; v1; : : : ; vi�1/Œv�1i � D

k..vi //.

Proof. – Note that �0.E
tCp

iC1/=.p; v1; : : : ; vi�1/ is nonzero and has vi invertible, since

E
tCp

iC1 has trivialK.iC1/-localization but nontrivialK.i/-localization by [30, 37]. Therefore,
the result follows.
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Proof. – The vanishing results for the telescopic localizations are equivalent to those for
the analogous K.j /-localizations, i.e., it suffices to show that LK.j /A D 0 for j � i C 1

(cf. [43, Lem. 2.3]). By [32, Th. 1.1], it suffices to show that LK.iC1/A D 0. Therefore,
without loss of generality, we may replace A with LK.iC1/.EiC1 ˝ A/ and assume that A is
a K.i C 1/-local E1-EiC1-algebra such that LK.i/.AtCp / D 0; we then need to show
that A D 0.

Now we have

(4.5) AtCp D A˝EiC1
E
tCp

iC1;

by Lemma 4.2. Furthermore, ��.E
tCp

iC1/ is a localization of ��.E
hCp

iC1 / and is therefore flat
over ��.EiC1/, whence it follows from Lemma 4.7 (and the Künneth spectral sequence) that
the map

�0.A=.p; v1; : : : ; vi�1/Œv
�1
i �/! �0.A

tCp=.p; v1; : : : ; vi�1/Œv
�1
i �/

is faithfully flat. Our assumption is that the target vanishes since AtCp is Li�1-local. There-
fore, the source vanishes and we find thatLK.i/A D 0, whenceLK.iC1/A D 0 by [32, Th. 1.1];
thus A D 0 since it is K.i C 1/-local, as desired.

We will also need to use some of the results of [43] on the chromatic behavior of algebraic
K-theory.

Theorem 4.8 ([43, Th. 3.8]). – Let A be an E1-ring and let n � 1. Then the map
K.A/! K.L

p;f
n A/ is a T .i/-local equivalence for 1 � i � n.

Now we get into the proofs of Theorem B and Theorem A; the following lemma, equiva-
lent to Theorem 1.3 from the introduction (thanks to Proposition 4.1), will be the key induc-
tive step.

Lemma 4.9. – Let R be an E1-ring and let i � 1. For the following conditions, we have
the implications (1)) (2)) (3):

(1) LT.i/R D 0 and LT.i/K.RtCp / D 0.

(2) LT.i/ˆCp .KCp
.R// D 0:

(3) LT.j /K.R/ D 0 for all j � i C 1:

Proof. – In the following proof, we use the following notation: given a Cp-Mackey
functor M with values in Catperf

1 , we simply write K.M/;TC.M/, etc. for the associated
Cp-spectrum obtained by applying K;TC, etc. With this notation, we have that KCp

.R/ D

K.Perf.R/Bor/; note that our hypotheses imply that this is an E1-algebra in Cp-spectra.

We start by showing (1) implies (2). First, we reduce to the case where R is connective.
Indeed, given a coconnective spectrum X , the Cp-Tate construction X tCp is annihilated
by Lp;fn for any n � 0; this follows by dévissage and filtered colimits (note that .�/tCp

commutes with filtered colimits on coconnective spectra) from the case where X is an
Eilenberg-MacLane spectrum in a single degree. Therefore, the map .��0R/tCp ! RtCp

induces an equivalence on Lp;fn -localizations for any n � 0.
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It follows that LT.i/K..��0R/tCp /
�
�! LT.i/K.R

tCp / by Theorem 4.8. Therefore, the
hypotheses of (1) hold for R if and only if they hold for ��0R, so we may assume R is
connective; note also that the conclusion of (2) for ��0R implies it for R.

Now we have the categorical Mackey subfunctor Perf.R/coBor � Perf.R/Bor. By defini-
tion, this map of categorical Cp-Mackey functors is an equivalence on underlying objects
(both have underlying object of Catperf

1 given by Perf.R/), and on Cp-fixed points it is given
by the inclusion Perf.RŒCp�/ � Fun.BCp;Perf.R//, see Proposition 2.18 and Example 2.19.
The Verdier quotient of categorical Mackey functors Perf.R/Bor=Perf.R/coBor is there-
fore a Catperf

1 -valued Cp-Mackey functor with trivial underlying object and Cp-fixed
points given by the Verdier quotient Fun.BCp;Perf.R//=Perf.RŒCp�/, which is linear
over the E1-ring RtCp (cf. [61, Sec. I.3]). Applying K-theory, we obtain a cofiber sequence
of Cp-spectra

K.Perf.R/coBor/! KCp
.R/! K.Perf.R/Bor=Perf.R/coBor/:

If we suppose that LT.i/K.RtCp / D 0, then by the above, it follows that LT.i/ˆCp .�/

annihilates the last term.

Therefore, in order to prove (2), it suffices to show that LT.i/ˆCpK.Perf.R/coBor/ D 0.

Now K.Perf.R/coBor/ of any E1-algebra is group-ring K-theory, cf. Example 2.19. Thus,
since R is now assumed connective, we may apply the Dundas-Goodwillie-McCarthy
theorem [26] to obtain a pullback square of Cp-spectra,

K.Perf.R/coBor/

��

// TC.Perf.R/coBor/

��
K.Perf.�0R/coBor/ // TC.Perf.�0R/coBor/:

Here K.Perf.�0R/coBor/ has trivial T .i/-localized geometric fixed points by Lemma 4.3.
Thus, to prove (2), it suffices to prove that LT.i/ˆCp TC.Perf.A/coBor/ D 0 whenever A is
a connective E1-ring with LT.i/A D 0 (as this holds for both A D R by hypothesis and
A D �0R trivially).

Now we use an expression for the p-completion of ˆCp TC.Perf.A/coBor/ given in the
work of Hesselholt-Nikolaus, [35, Th. 1.4.1]. Indeed, ˆCp TC.Perf.A/coBor/ is the cofiber of
the assembly map TC.A/˝BCpC ! TC.AŒCp�/ and loc. cit. shows that after p-completion,
this cofiber becomes THH.AIZp/hTp

Œ1�˝Cp forTp thep-fold cover of the circleT. In partic-
ular, our assumption that LT.i/A D 0 thus implies that LT.i/

�
ˆCp TC.Perf.A/coBor/

�
D 0

as desired. This shows (1) implies (2).

Finally, we show (2) implies (3). The Borel-completion of the Cp-spectrumKCp
.R/ is the

Borel-complete Cp-spectrum associated to the trivial Cp-action on K.R/; in particular, we
have a map of E1-rings ˆCpKCp

.R/! K.R/tCp . It follows from (2) that LT.i/.K.R/tCp / D 0,
whence (3) by Theorem 4.6.

We now prove Theorem A and Theorem B from the introduction, by starting with their
special case Theorem C, which we restate here:
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Theorem 4.10. – Let n � 0, and let C be an L
p;f
n -local stable 1-category. Then

LT.m/K.C/ D 0 for all m � nC 2, and for any finite p-group G acting on C we have

LT.nC1/K.ChG/
�
! .LT.nC1/K.C//hG :

Proof. – Taking R D L
p;f
n S, by applying Lemma 4.9 and Proposition 4.1 it suffices

to show that LT.nC1/R D 0 and LT.nC1/K.RtCp / D 0. The first vanishing follows from
the definition. As for the second vanishing, we use induction on n. When n D 0 we have
R D SŒ1=p� so RtCp D 0. When n > 0, Kuhn’s blueshift theorem [42] shows that RtCp is
L
p;f
n�1-local, whenceK.RtCp / is a module overK.Lp;fn�1S/ and we conclude by induction.

As a corollary of combining this theorem with the results of [43] (in particular, Theorem 4.8),
one obtains the following purity result in T .n/-local K-theory; this also appears in [43] and
is explored further there.

Corollary 4.11. – LetA be anE1-ring, and letn � 1. Then the mapA! LT.n�1/˚T.n/A

induces an equivalence on LT.n/K.�/.

Proof. – By Theorem 4.8, we may assume that A is already Lp;fn -local. We have a pull-
back square

K.A/

��

// K.LT.n�1/˚T.n/A/

��

K.Lp;fn�2A/ // K.Lp;fn�2.LT.n�1/˚T.n/A//;
since both vertical homotopy fibers are given by the (non-connective) K-theory of the thick
subcategory of Perf.A/ generated byA˝F , for F a finite type n�1 complex. The result now
follows from Theorem C, which shows that the spectra on the bottom row are T .n/-acyclic.

Now we can input this back in to our arguments and obtain Theorem A and Theorem B,
which we combine and restate here.

Theorem 4.12. – Let R be an E1-ring.

(1) Suppose LT.n/.RtCp / D 0 for some n � 0. Let C be an R-linear idempotent-complete
stable 1-category equipped with an R-linear action of a finite p-group G. Let E be
an additive invariant of R-linear idempotent-complete stable 1-categories. Then the
natural maps induce equivalences

LT.nC1/.E.C/hG/
�
�! LT.nC1/E.ChG/

�
�! LT.nC1/E.ChG/

�
�! LT.nC1/.E.C/hG/

�
�! .LT.nC1/E.C//hG :

(2) Suppose LT.nC1/R D 0 for some n � �1. Then LT.j /K.R/ D 0 for j � nC 2.

Proof. – For (1), by Lemma 4.9 and Proposition 4.1 it suffices to show thatLT.nC1/R D 0
andLT.nC1/K.RtCp / D 0. The first follows from Theorem 4.6; for the second, we also get the
weaker vanishing LT.nC1/.RtCp / D 0 (Hahn’s theorem, [32]) so this follows from the purity
result Corollary 4.11. For (2), Hahn’s theorem shows LT.nC2/R D 0 as well, so this follows
from Corollary 4.11.
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Remark 4.13. – The converse of part (2) of Theorem 4.12 is proved (for p-local
E1-rings) in [20, Th. 9.11] using the nonvanishing of LT.nC1/K.En/ proved in [73].

4.3. Comparison with the redshift conjectures

Finally, we discuss the relationship of our results to redshift. Conjecture 4.2 of [8] predicts
that if A ! B is a K.n/-local G-Galois extension of E1-rings in the sense of [64], then
LT.nC1/K.A/ ' LT.nC1/.K.B/

hG/. Here we will prove this conjecture in the case whereG is
a p-group. In fact, we will allow the (a priori more general) case of a T .n/-local G-Galois
extension.

We recall that the condition of being a T .n/-local G-Galois extension, in which the
map B ˝A B !

Q
G B need only be a T .n/-equivalence, is much weaker than being a

G-Galois extension of underlying E1-ring spectra (also known as a “global Galois exten-
sion”), and fundamental examples such as the Galois extensions of the K.n/-local sphere
produced by Devinatz-Hopkins are only T .n/-locally (or K.n/-locally) Galois. Thus the
descent results in our previous paper [23] do not apply to them. Moreover, even in the case
of underlyingG-Galois extensions our previous results required being able to verify an extra
condition: the rational surjectivity of the transfer map.

In the global case, we directly obtain from Theorem 4.12 and Galois descent the following.

Corollary 4.14. – Let A ! B be a faithful G-Galois extension of E1-rings (the
faithfulness assumption is imposed to ensure Galois descent, in the form of [51, Th. 9.4] or [11])
with G a finite p-group, and suppose that LT.n/.AtCp / D 0.

Then the mapsLT.nC1/K.A/! LT.nC1/.K.B/
hG/! .LT.nC1/K.B//

hG are equivalences.

Now we consider the T .n/-local case, where we can also obtain results, but with an
additional argument. Given a T .n/-local E1-ring A, we write K 0.A/ for the K-theory of
the small, symmetric monoidal, stable1-category D.A/ of dualizable objects in T .n/-local
A-modules. We have a natural inclusion Perf.A/ � D.A/, whence a map of E1-rings
K.A/ ! K 0.A/. The next result (together with Theorem A) shows that this map is a
T .nC1/-equivalence and implies thatK orK 0 can be used equivalently in the Ausoni-Rognes
conjecture.

Proposition 4.15. – Let A be a T .n/-local E1-ring. Then the homotopy fiber of
K.A/! K 0.A/ is naturally a module over K.Lp;fn�1S/.

Proof. – Indeed, consider the Verdier quotient D.A/=Perf.A/. We claim that this stable
1-category is naturallyLp;fn�1S-linear. To this end, we need to show that if F is a finite type n
complex, then for any M 2 D.A/, we have M ˝ F 2 Perf.A/ (so that this vanishes in the
Verdier quotient). To this end, we observe that dualizability implies that the functor

HomLT .n/Mod.A/.M;�/ W LT.n/Mod.A/! LT.n/Mod.A/

commutes with all colimits. Tensoring with F , we find that M ˝ F is a compact object
of LT.n/Mod.A/; this uses that tensoring with F yields a colimit-preserving functor
LT.n/Sp! Sp. SinceLT.n/Mod.A/ is compactly generated byA˝F , it follows thatM ˝F
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belongs to the thick subcategory generated by A ˝ F and is therefore a perfect A-module,
whence the result.

Given a T .n/-local G-Galois extension A! B with G a finite group, we have
D.A/ ' D.B/hG ; this follows because LT.n/Mod.A/ '

�
LT.n/Mod.B/

�hG
by Galois

descent, (2) and using [47, Prop. 4.6.1.11] to commute the formation of dualizable objects
over homotopy fixed points. Therefore, the next result follows in a similar manner; this
proves [8, Conj. 4.2] in the case of a p-group.

Corollary 4.16. – Let A ! B be a T .n/-local G-Galois extension, with G a finite
p-group. Then LT.nC1/K.A/

'
�! LT.nC1/.K.B/

hG/
'
�! .LT.nC1/K.B//

hG .

Let G be a finite p-group acting on a T .n/-local E1-ring B 0; then the map A0
def
D B 0hG ! B 0

is T .n/-locally G-Galois, cf. [12, Cor. 7.31].

Proof. – In fact, Theorem B yields the analog of this result withK 0.�/ replacingK, since
D.�/ satisfies T .n/-local Galois descent. Using Proposition 4.15, we find that the difference
between the statements forK 0.�/ andK.�/ is controlled by modules overK.Lp;fn�1S/, which
have trivial T .nC 1/-localizations by Theorem A.

Example 4.17. – An important example of a T .n/-local (pro-)Galois extension is the
map LK.n/S! En, where the profinite group in question is the extended Morava stabilizer
group Gn. We have a short exact sequence

1! Sn ! Gn ! Gal.Fp=Fp/! 1;

where Sn has an open subgroup which is pro-p. For each open subgroup H � Gn, we write
EhHn for the (Devinatz-Hopkins) continuous homotopy fixed points, [25]. Now, we choose
an open subgroupU of Gn such thatU \Sn is a pro-p-group. Then for any normal inclusion
V 0 ⊴ V � U of open subgroups, we haveLT.nC1/K.EhVn /

�
�! .LT.nC1/K.E

hV 0

n //h.V=V
0/, i.e.,

we obtain Galois descent for theK.n/-local finite Galois extensions ofEhUn , and we therefore
obtain a sheaf of T .n C 1/-local spectra on finite continuous U -sets. This follows from the
descent for p-groups proved above as well as the descent for finite étale extensions, proved as
in [23]. Our methods do not (to the best of our knowledge) yield hyperdescent for this sheaf,
which would closely relate LT.nC1/K.En/ and LT.nC1/K.LK.n/S/.

Remark 4.18. – Finally, [8, Conjecture 4.3] predicts that for appropriate K.n/-local
E1-ring spectra B (e.g., LK.n/S), and for a finite type nC 1-complex V , the map
V ˝K.B/! LT.nC1/.V ˝K.B// is an equivalence in high enough degrees; this is a
higher chromatic analog of the Lichtenbaum-Quillen conjecture, cf. [7, 6, 34, 2, 33] for
instances where such statements are proved. Our methods are certainly not strong enough
to prove such statements; however, this conjecture would imply the weaker assertion
LT.nCi/K.B/ D 0 for i � 2, which we have proved above as Theorem A.

(2) Note that A! B is automatically T.n/-locally faithful. In fact, A ' BhG ' LT .n/BhG , so tensoring with
B is conservative on LT .n/Mod.A/.
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5. Descent by normal bases; proof of Theorem D

In this section, we will give another condition that guarantees T .n/-local descent, which
will work uniformly for all n (including n D 0).

Construction 5.1 (The transfer). – We use the transfer map of the finite group G,
which is a map of spectra

trBGWBGC ! S:
The adjoint map of anima BG ! �1S arises from interpreting the target as the K-theory
of the category Fin of finite sets (the Barratt-Priddy-Quillen theorem), and considering
the G-action on the G-set G (by right multiplication), so we take the composite map
BG ! Fin' ! �1K.Fin/ D �1S. Our basic tool will be the following observation:

Theorem 5.2. – For any n � 0 and implicit prime p, the map

LT.n/.trBG/WLT.n/BGC ! LT.n/S

admits a section.

Proof. – This follows from (and is equivalent to, as explained in [21]) the vanishing of
Tate spectra in the T .n/-local category, due to Kuhn [42]. In fact, this vanishing yields
that LT.n/BGC

�
�! C �.BG;LT.n/S/ via the norm map, and the transfer is the composite of

the norm with the projection C �.BG;LT.n/S/! LT.n/S, which clearly admits a section. (3)

Proposition 5.3. – Let R be an associative algebra in SpG . Suppose that there is a

factorization of BGC
trBG
���! S ! RG through the R-transfer RhG ! RG . Then R is

.T ; "/-nilpotent.

Proof. – By Proposition 3.5, it suffices to show that

LT.n/.R
G=RhG/ D LT.n/.R˝gEG/G D 0

for any p and n (including p D 0). For this, it suffices to show that the map

LT.n/.RhG/! LT.n/.R
G/

has image on �0 containing the unit. But this follows because we have seen above that the
map LT.n/.trBG/WLT.n/.BGC/! LT.n/S has image (on �0) containing the unit.

We will apply this below to associativeG-ring spectra of a particularly special kind, where
one has a homotopy commutative diagram

(5.1) RhG // RG

BGC

OO

trBG // S;

OO

(3) Note also that as explained in [21], the existence of the section in the essential case G D Cp

follows via the Bousfield-Kuhn functor [19, 41] from the Kahn-Priddy theorem [40], which states
that�1C1.trBG/W�

1C1BGC! �1C1S has a section.
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in which the factorization BGC ! RhG required in Proposition 5.3 is obtained as the
G-homotopy orbits of the map S ! R; in particular, these satisfy the conditions of Propo-
sition 5.3. Note that this now is merely a condition on the algebra R in SpG , namely that
the diagram

(5.2) RhG // RG

BGC

.�/hG

OO

trBG // S;

�

OO

should commute up to homotopy, where � denotes the unit map. Such R arise via the
following categorical construction, namely by taking R D KG.C/ below.

Let .C;˝; 1/ be a monoidal, stable1-category equipped with a G-action. Let f WG ! �
be the map of G-sets. We use the induction functor f�W C ! ChG (biadjoint to the forgetful
functor ChG ! C); we note that this isG-equivariant with respect to the trivial action on the
target. Since 1 2 C is G-invariant, we obtain a G-action on f�.1/ 2 ChG .

Definition 5.4 (The normal basis condition). – We say that theG-action on C as above
satisfies the normal basis property if the object f�.1/ 2 Fun.BG; ChG/ defines the same
K0-class as the object 1ChG ˝GC 2 Fun.BG; ChG/.

In other words, the normal basis condition implies that the following diagram, which is
not commutative,

(5.3) C'
hG

f� // .ChG/'

BG

Œ1�hG

OO

trBG // �1S;

1ChG

OO

gives rise to two objects in Fun.BG; ChG/with the sameK0-class; the class obtained by going
right and up is the normal basis class 1ChG ˝GC, while the class obtained by going up and
right is f�.1/. It follows that we do have a homotopy commutative diagram if we replace the
top right in (5.3) with �1K.ChG/.

We now prove the following result, which is a slight refinement of Theorem D.

Theorem 5.5. – Suppose R is an E1-ring, C is an algebra object of Catperf
R;1 equipped

with an action of a finite group G, and the G-action on C satisfies the normal basis property.
Then UG.C/ 2 MackG.MotR/ is .T ; "/-nilpotent. In particular, for any additive invariant E
on Catperf

R;1, the mapE.ChG/! E.C/hG induces an equivalence afterT .i/-localization for any i
and any implicit prime p, including p D 0.

Proof. – We show that UG.C/ 2 MackG.MotR/ is .T ; "/-nilpotent, which also implies
the other claims. By Example 3.14, it suffices to show that KG.C/ is .T ; "/-nilpotent. By
Proposition 5.3, it suffices to show that we have a factorization of the BGC ! S through
K.C/hG ! K.ChG/. However, this follows from the diagram (5.3) (which is not commutative,
but which becomes homotopy commutative when we replace the upper right by�1K.ChG/
by our hypotheses).
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Remark 5.6 (Alternative proof of Theorem 1.2). – Let R ! R0 be a G-Galois exten-
sion of commutative rings. Then Zariski locally on R, one has the normal basis property
(even before passage to K0): the RŒG�-module R0 is locally isomorphic to RŒG�; indeed, this
follows because of the usual normal basis theorem when R is a field, and hence more gener-
ally a local ring. Using Zariski descent for K-theory [71], one reduces to this case, whence
the result via Theorem 5.5.

Remark 5.7. – In fact, the above argument for Theorem 1.2 is valid more generally
(with LT.n/-localization for any n) if R! R0 is a G-Galois extension of E1-ring spectra in
the sense of [64] in the case where �0.R/! �0.R

0/ is additionally G-Galois, i.e., R! R0 is
étale in the sense of [47, Sec. 7.5]. This is a special case of the results of [23], which assume
a weaker condition on R! R0, but which essentially use the E1-structures on the algebras
in question.

6. Swan induction and applications; proofs of Theorem F and G

In this section, we recall the notion of SwanK-theory, and prove Theorems F and G from
the introduction. In the final section, we will give a number of examples of Swan induction.

The Swan K-theory of a ring spectrum with respect to a finite group was introduced
by Malkiewich in [49], following ideas of Swan [68, 69] who defined it for discrete rings.
Throughout the subsection, let R be an E1-ring spectrum.

Definition 6.1 ([49, Def. 4.11]). – Given a finite group G, we let Rep.G;R/ denote the
Grothendieck ring of the stable 1-category Fun.BG;Perf.R//. We will call this the Swan
K-theory of R with respect to G. The groups fRep.H;R/gH�G form a Green functor, as the
�0 of the E1-algebra KG.R/ in SpG .

For a family F of subgroups ofG, we will say that F -based Swan induction holds forR if
there exist classes xH 2 Rep.H;R/˝Q for H 2 F such that

(6.1) 1 D
X
H2F

IndGH .xH / 2 Rep.G;R/˝Q;

for IndGH WRep.H;R/ ! Rep.G;R/ the map obtained by induction of representations
on R-modules.

Remark 6.2. – The condition that F -based Swan induction holds forR is precisely the
condition that KG.R/˝Q 2 SpG is F -nilpotent, in light of Proposition 3.4.

Example 6.3 (Classes in Rep.G;R/). – LetM be a finiteG-CW complex. ThenR˝MC
defines an object of Fun.BG;Perf.R// and consequently an element ŒR˝MC� 2 Rep.G;R/.
If M has the homotopy type of a G-CW complex, then a cell decomposition shows that the
class ŒR˝MC� actually belongs to the image of the map A.G/! Rep.G;R/, for A.G/ the
Burnside ring.

We now prove the descent statement in the K-theory of R-linear1-categories that Swan
induction implies (this is Theorem F); the use of a rational statement to deduce telescopic
ones follows [23].
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Theorem 6.4 (Descent via Swan induction). – Let R be an E1-ring and let G be a finite
group. Suppose that R-based Swan induction holds for the family F . Then for any R-linear
1-category C equipped with aG-action, and for any additive invariantE on Catperf

R;1, the maps

E.ChG/! lim
 �

G=H2OF .G/op

E.ChH /(6.2)

and

lim
�!

G=H2OF .G/

E.ChH /! E.ChG/(6.3)

become an equivalence after T .n/-localization, for any n and any implicit prime p.

Proof. – For the first claim, it suffices to show that UG.C/ 2 MackG.MotR/ is
.F ; "/-nilpotent. By multiplicativity, this reduces to showing that UG.Perf.R// is .F ; "/-nil-
potent, where the G-action on Perf.R/ is trivial; for this in turn, it suffices to show that
KG.R/ 2 SpG is .F ; "/-nilpotent as in Example 3.14. By Proposition 3.11, it suffices to
show that KG.R/Q is F -nilpotent, which is precisely the condition of R-based Swan induc-
tion for F (Remark 6.2).

For the second claim, we use the coBorel construction of Construction 2.20. We claim
that UG;coBor.C/ 2 MackG.MotR/ is .F ; "/-nilpotent. But this follows because it is a
module over UG.Perf.R//, which we have just seen is .F ; "/-nilpotent; thus UG;coBor.C/ is
.F ; "/-nilpotent. This implies that (6.3) becomes an equivalence after T .n/-localization,
cf. Proposition 3.3.

Now we record a variant of Theorem 6.4 specifically in the context where R D L
p;f
n S,

and where the localization is precisely at height n C 1; this relies on similar techniques as
in Section 4, and follows from combining them with the above. In fact, this yields a slight
refinement of the results of Section 4 to non-p-groups.

Theorem 6.5. – Fix n � 0. Let R be an E1-ring such that LT.n/.RtCp / D 0. Let C be an
R-linear idempotent-complete stable1-category equipped with an R-linear action of a finite
groupG. Then for any additive invariantE, the maps (6.2) and (6.3) become equivalences after
T .nC 1/-localization, for F the family of cyclic subgroups of G of prime-to-p-power order.

Proof. – Let us first observe that we may replaceR by its connective cover ��0R. Indeed,
via the Postnikov tower, we find that .���1R/tCp is annihilated by T .n/. Thus, the vanishing
assumption forR is equivalent to the same assumption for ��0R, whence we may assume for
the rest of the argument that R is connective.

Now observe that for any finite group H , we have LT.n/.RtH / D 0. Indeed, we reduce
to the case where H is a p-group by restricting to a p-Sylow. Inductively, we have a normal
subgroup Cp ⊴ H . The norm map RhH ! RhH factors as

RhH D .RhCp
/h.H=Cp/ ! .RhCp /h.H=Cp/ ! .RhCp /h.H=Cp/ D RhH :

By induction on H and the assumption LT.n/.RtCp / D 0, we see that each map above has
T .n/-acyclic cofiber, whence RtH is T .n/-acyclic.

The rest of the argument will closely follow that of Lemma 4.9. We will show that
LT.nC1/KG.R/ is F -complete, for F as in the statement. This will imply the result. Indeed,
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for any additive invariant E, the G-spectra E.CBor/; E.CcoBor/; F .EFC; E.CBor// are
modules over KG.R/. If LT.nC1/KG.R/ is shown to be F -complete, then the G-spectra

LT.nC1/E.CBor/; LT.nC1/E.CcoBor/; LT.nC1/F.EFC; E.CBor//

will be F -complete by Corollary 3.9 and thus become F -nilpotent after smashing with
a finite type .n C 1/-spectrum by Proposition 3.8. The result then follows in light of [55,
Prop. 2.8].

To see that LT.nC1/KG.R/ is F -complete, we let D D Perf.R/ with trivial G-action. We
have the fully faithful inclusion of G-Mackey functors DcoBor ! DBor (Proposition 2.18);
the cofiber takes values in RtH -linear1-categories for various subgroups H � G; indeed,
this follows because the Verdier quotient Fun.BH;Perf.R//=Perf.RŒH�/ is linear over RtH

as in [61, Sec. I.3]. Therefore, using Theorem A, we find an equivalence of G-Mackey func-
tors LT.nC1/K.DcoBor/ ' LT.nC1/K.DBor/ D LT.nC1/KG.R/. Thus, it suffices to show
thatLT.nC1/K.DcoBor/ is F -complete, or equivalently that its T .nC1/-local geometric fixed
points vanish at all subgroups except possibly those which are cyclic of prime-to-p order
(Proposition 3.8).

Now K.DcoBor/ is group-ringK-theory (Example 2.19). Since R is connective, we obtain
from the Dundas-Goodwillie-McCarthy theorem [26] a pullback square of G-spectra,

LT.nC1/K.DcoBor/

��

// LT.nC1/TC.Perf.R/coBor/

��
LT.nC1/K.Perf.�0R/coBor/ // LT.nC1/TC.Perf.�0R/coBor/:

Now we obtain from [45, Th. 1.2] that the G-spectra TC.Perf.R/coBor/;TC.Perf.�0R/coBor/

are modulop induced from the family of cyclic subgroups ofG; in particular, their geometric
fixed points at non-cyclic subgroups vanish modulo p.

Finally, the term LT.nC1/K.Perf.�0R/coBor/ vanishes for n � 1 by Mitchell’s theorem;
if n D 0, it follows from Theorem 6.4 and Swan’s induction theorem from [68] (reproved
below as Theorem 7.5) that LT.nC1/K.Perf.�0R/coBor/ is induced from the family of cyclic
subgroups.

Thus, we find that LT.nC1/K.DcoBor/ D LT.nC1/K.DBor/ D LT.nC1/KG.R/ is complete
for the family of cyclic subgroups. In particular, the T .n C 1/-local geometric fixed points
vanish for non-cyclic subgroups. Suppose then that G is cyclic and has order divisible by p;
we must show that LT.nC1/ˆGK.DBor/ D 0.

In fact, since there is an inclusion H ⊴ G with G=H ' Cp, we have the transfer map

.K.DBor/H /hCp
! K.DBor/G :

This map, or equivalently K.DhH /hCp
! K.DhG/, is T .n C 1/-locally an equivalence

thanks to Theorem 4.12 (applied to the residual Cp-action onDhH ). Since it factors through
the map .EP ˝ K.DBor//G ! K.DBor/G for P the family of proper subgroups, it
follows that this last map has T .n C 1/-local image (on �0) containing the unit, whence
LT.nC1/ˆ

GK.DBor/ D 0 as desired.
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Next, we prove Theorem G, which was inspired by the generalized character theory of
Hopkins, Kuhn, and Ravenel [36] as well as the results of [55]. We will apply this below to
recover some cases of the chromatic bounds on K-theory spectra.

Proposition 6.6. – Fix a prime p and a non-negative integer n. Let R be an E1-ring
spectrum and G D C�np . Suppose that the sum of the rationalized transfer maps

(6.4)
M
H⊊G

R0.BH/˝Q! R0.BG/˝Q

is a surjection (or equivalently has image containing the unit). ThenLT.nCi/R ' 0 for all i � 0
(at the prime p).

Proof. – A T .n/-local ring spectrum is contractible if and only if its K.n/-localization is
contractible, cf. [43, Lem. 2.3]. Therefore, it suffices to prove thatLK.nCi/R D 0. To verify the
desired vanishing, we can replace R by the E1-R-algebra LK.nCi/.EnCi ˝R/; by naturality
of the transfer map, the hypotheses of the result are preserved by this replacement. Thus, we
may assume throughout that R D LK.nCi/R receives an E1-map from EnCi . By the main
result of [53] then, it suffices to show �0R˝Q D 0.

When n D 0, the left hand side of (6.4) is 0, so �0R ˝ Q D 0. So it suffices to consider
the case n > 0. Since each transfer map factors through a maximal proper subgroup, the
surjectivity of (6.4) is equivalent to the surjectivity of

(6.5)
M

C
�.n�1/

p ŠH⊊G

R0.BH/˝Q! R0.BG/˝Q:

The left hand side of this equation contains pn�1
p�1

-copies of R0.BC�.n�1/p /. Since R is a

K.n C i/-local EnCi -module, it follows that for any k, one has that C �.BC�kp ; R/ D

C �.BC�kp ; EnCi /˝EnCi
R is a freeR-module of rank p.nCi/k (cf. Lemma 4.2). In particular,

the right-hand-side of (6.5) is free over �0.R/ ˝ Q of rank p.nCi/n, while each summand
on the left-hand-side has rank p.nCi/.n�1/. Using the surjectivity of (6.5), we find that if
�0.R/˝Q ¤ 0, then we would conclude the inequality of ranks,

p.nCi/.n�1/
pn � 1

p � 1
� p.nCi/n:

However, we see easily that this inequality cannot hold if i � 0 and n > 0. This contradiction
proves the result.

Theorem 6.7. – Let p be a prime, n � 0 and R an E1-ring spectrum. Suppose
that R-based Swan induction holds for the family of proper subgroups of C�np . Then
LT.i/K.R/ D 0 for i � n at the prime p.

Proof. – We write G D C�np and consider the E1-algebra in G-spectra KG.R/. By
assumption, KG.R/Q is nilpotent for the family of proper subgroups, cf. Remark 6.2. There
is a natural map of E1-algebras in SpG of the form KG.R/Q !

�
KG.R/

Bor
�
Q, so the

target is also nilpotent for the family of proper subgroups. But KG.R/Bor is simply the
Borel-equivariant G-spectrum associated to the trivial G-action on K.R/, so the condition
that

�
KG.R/

Bor
�
Q should be nilpotent for the family of proper subgroups is exactly that
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the map (6.4) (with K.R/ replacing R) should be a surjection. Thus, the result follows from
Proposition 6.6.

7. Swan induction theorems; proof of Theorem E

In this section, we establish several examples of Swan induction theorems for structured
ring spectra, and prove Theorem E. In particular, we show that one always has Swan induc-
tion for the family of abelian subgroups for MU (Theorem 7.4), for the cyclic groups for Z
(Theorem 7.5, recovering results of [68]) or for SŒ1=jGj� (Theorem 7.6), for the rank � 2

abelian subgroups for KU (Theorem 7.13), and for the rank� nC1 abelian subgroups forEn
at p D 2 (Theorem 7.12).

7.1. Geometric arguments

Throughout, let R be an E1-ring spectrum. We first observe the following basic features
of the Swan induction property.

Remark 7.1. – (1) If R is an E1-ring such that one has R-based Swan induction
with respect to a family of subgroups F of some group G, and R0 is an E1-ring
admitting a map from R (even an E1-map suffices), then R0-based Swan induction
for F and G holds as well (this was used in the proof of Proposition 6.6).

(2) In order to prove that R-based Swan induction holds with respect to a family F of
subgroups ofG, it suffices to show that for every subgroupH � G which is not in F ,
then one has Swan induction with respect to the family of proper subgroups of H .
This is an elementary observation about Green functors, cf. [54, Prop. 6.40].

(3) SupposeG ↠ G0 is a surjection, and R-based Swan induction holds for the family of
proper subgroups ofG0. ThenR-based Swan induction holds for the family of proper
subgroups of G.

In this subsection, we give geometric proofs of Swan induction in several cases. Our basic
tool is the following.

Proposition 7.2. – Let M be a G-space such that:

(1) M admits a finite G-CW structure.

(2) M has isotropy in the family F of subgroups of G.

(3) There is an equivalence

(7.1) R˝MC '

nM
kD1

†2ikR 2 Fun.BG;Perf.R//

for some integers i1; : : : ; in. Here we equip the †2ikR with the trivial G-action. (4)

Then R-based Swan induction holds for the family F .

(4) In fact, for the argument, it suffices that the class in Rep.G;R/ ofR˝MC is a nonzero integer. This would be
satisfied, for example, if there are odd suspensions of R that appear in (7.1), as long as the Euler characteristic is
nonzero.
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Proof. – We consider the object X D R ˝ MC 2 Fun.BG;Perf.R// and calculate its
K0-class ŒX� in two different ways.

(1) By assumption, M has a finite G-CW decomposition with equivariant cells of the
formG=H �Dn. TheG-cells necessarily satisfyH 2 F by hypothesis on the isotropy
of M . It follows that there exist integers nH ;H 2 F such that

(7.2) ŒX� D
X
H2F

nH ŒR˝G=HC� D
X
H2F

IndGH .nH / 2 Rep.G;R/:

(2) The assumption (3) gives an equivalence in Fun.BG;Perf.R// betweenX and a direct
sum of n > 0 even shifts of the unit. It follows that

(7.3) ŒX� D n 2 Rep.G;R/:

Equating (7.2) and (7.3), we obtain the result.

The first condition in Proposition 7.2 will be satisfied if, for example, M is a compact
smooth manifold withG-action, by the equivariant triangulation theorem [39]. We can check
the condition (3) of Proposition 7.2 via the following result.

Proposition 7.3. – Let M be a G-space with the homotopy type of a finite G-CW
complex. Then M satisfies condition (3) of Proposition 7.2 if and only if:

1. The R�-cohomology R�.MhG/ is a free module on generators in even degrees over R�.BG/.

2. The natural map

R�.�/˝R�.BG/ R
�.MhG/! R�.M/

is an isomorphism.

Proof. – In fact, using .1/, we can produce a G-equivariant map from a sum of shifts
of the unit into R ˝ DMC 2 Fun.BG;Perf.R//, by choosing a basis of R�.MhG/ D

���HomFun.BG;Perf.R/.R;R˝ DMC/; the induced map is an equivalence in Fun.BG;Perf.R//
by the second condition.

Theorem 7.4. – Suppose there exists anE1-map MU! R. ThenR-based Swan induction
holds for the family of abelian subgroups (for any finite group G).

Proof. – We fix an embedding G � .n/ and consider the action on the flag variety
M D F D .n/=T for T � .n/ a maximal torus. As a smooth G-manifold, M admits a finite
G-CW structure. The stabilizers of the G-action are abelian (as they are contained in conju-
gates of T ). By [54, Prop. 7.49], we obtain an equivalence of the form (7.1). Alternatively, we
can use Proposition 7.3 and the projective or flag bundle formula to see this. Therefore, we
can apply Proposition 7.2 to conclude.

When R is a discrete commutative ring, a classical theorem of Swan [68] states that one
has Swan induction for the family of cyclic subgroups. We give a geometric proof of Swan’s
theorem in the spirit of some of our other results.

Theorem 7.5 (Swan [68]). – Let R be an E1-ring which admits an E1-map from HZ.
Then R-based Swan induction holds for the family of cyclic groups (for any finite group G).
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Proof. – Without loss of generality, we may take R D HZ. By Theorem 7.4 and down-
ward induction based on Remark 7.1, we see that it suffices to consider G D C�2p for some
prime p. We consider the p-dimensional projective Heisenberg representation of G on Cp,
given by the matrices

(7.4) A D

266666664

1

�p

�2p
: : :

�
p�1
p

377777775 ; B D

2666664
1

1

: : :

1

3777775 :

Here A is a diagonal matrix whose eigenvalues are the powers of a primitive pth root �p
of unity, and B is the permutation matrix for a cyclic permutation. Since the matrices A
and B commute up to scalars, they define a projective representation of G, yielding an
embedding G � PGLp.C/.

The group PGLp.C/ acts naturally on CPp�1, and the action of the subgroup G � PGLp.C/
has no fixed points. It follows that the class ŒHZ˝ CPp�1C � in Rep.G;Z/ is a sum of classes
induced from proper subgroups. To calculate the class ŒHZ ˝ CPp�1C � in another manner,
we can also consider the finite Postnikov filtration f��2i .HZ ˝ CPp�1C /g whose successive
subquotients are even suspensions†2iZ. TheG-action on each of the (shifted discrete) asso-
ciated graded terms is trivial because the G-action extends to an action of the connected
group PGLp.C/. Therefore, we find that ŒHZ ˝ CPp�1C � D p 2 Rep.G;Z/. It follows that
we have integers nH for each H ⊊ G such that

(7.5) p D
X
H⊊G

nH IndGH .1/ 2 Rep.G;Z/:

Theorem 7.6. – Let G be a finite group. If R is any E1-ring with jGj 2 �0.R/�, then
R-based Swan induction holds for the family of cyclic subgroups of G.

Proof. – Without loss of generality, we may take R D SŒ1=jGj�.
We have Fun.BG;Perf.R// ' Perf.RŒG�/; equivalently, an RŒG�-module is perfect if

and only if its underlying R-module is perfect, and similarly for every subgroup of G. This
follows from the fact that taking homotopyG-fixed points commutes with arbitrary colimits
in the1-category of R-modules. Recall that if A is a connective E1-ring, then the natural
map K0.A/! K0.�0A/ is an isomorphism. We thus find a chain of isomorphisms

Rep.G;R/ D K0.Fun.BG;Perf.R/// ' K0.RŒG�/

' K0.�0RŒG�/ ' K0.Fun.BG;Perf.ZŒ1=jGj�///:

Applying Swan’s theorem (Theorem 7.5 above), we conclude the result.

Next, we prove a Swan induction result for KU. We give a geometric argument here that
only works at small primes; we will prove the result in full generality later in Theorem 7.13.

Theorem 7.7. – For any finite groupG, KU-based Swan induction holds for the family of
abelian subgroups of G whose p-part for p 2 f2; 3; 5g has rank � 2.
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Proof. – In view of Theorem 7.4, we may assume that G is abelian. We then reduce to
proving that one has Swan induction for G D C�3p and p 2 f2; 3; 5g for the family of proper
subgroups (cf. Remark 7.1). Since p � 5, we have an embedding G ,! � for � a suitable
simply connected compact Lie group whose image is not contained in any maximal torus: by
the results of [18], it suffices to choose � such thatH�.�IZ/ has p-torsion in its cohomology,
e.g., we can take� D E8. Let T � � be a maximal torus and consider the�-action on the flag
variety �=T , as well as its restricted G-action. We will show that the G-space �=T satisfies
the hypotheses of Proposition 7.2, for F the family of proper subgroups. First of all, G acts
without fixed points since it is not contained in any maximal torus of �. By [54, Cor. 8.17],
we have an equivalence

�=TC ˝KU '
jW jM
1

KU 2 Fun.B�;Perf.KU//;

where W is the Weyl group of �. Restricting to G, this proves hypothesis (3) of Proposi-
tion 7.2 and thus our result.

Next, we include some results which are specific to the prime 2, based on the use of
representation spheres; they have the advantage of applying at arbitrary chromatic heights.
We first need two lemmas that will enable us to recognize the triviality of group actions (for
which we fix an arbitrary prime p).

Lemma 7.8. – Let E be an even E1-ring spectrum such that ��E is p-torsion-free. Let
M 2 Fun.BCp;Perf.E// be such that:

(1) The underlying E-module of M is equivalent to a direct sum of copies of E.

(2) The Cp-action on ��M is trivial.

Then M is equivalent to a direct sum of copies of the unit in Fun.BCp;Perf.E//.

Proof. – Let fxig � �0M be a basis of the free ��E-module ��M . For each i , we want
to produce a Cp-equivariant map of E-modules

(7.6) E !M

which carries 1 7! xi in homotopy. Taking the direct sum of these maps, we will have
the desired equivalence. Equivalently, to produce (7.6), we need to show that the image
of ��.M hCp /! ��M contains each xi . However, the E2-term of the homotopy fixed point
spectral sequence for ��.M hCp / is concentrated in even total degree by our assumptions, and
thus collapses. This shows that there are no obstructions to producing the maps (7.6) and thus
to providing the equivalence of the lemma.

Lemma 7.9. – Fix a group G. Let E be an E1-ring spectrum such that ��.C �.BGIE// is
even and p-torsion-free. Let M 2 Fun.B.Cp �G/;Perf.E// be such that:

(1) The underlying object ofM in Fun.BG;Perf.E// is equivalent to a direct sum of copies
of the unit.

(2) The Cp-action on ��.M hG/ is trivial.

Then M is equivalent to a direct sum of copies of the unit in Fun.B.Cp � G/;Perf.E//: in
particular, the Cp �G-action is trivial.
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Proof. – We use that Fun.B.Cp � G/;Perf.E// D Fun.BCp;Fun.BG;Perf.E///. The
thick subcategory of Fun.BG;Perf.E// generated by the unit is equivalent to Perf.C �.BGIE//,
via the functor .�/hG . Thus, the result follows from Lemma 7.8 applied to the object
M hG 2 Fun.BCp;Perf.C �.BGIE///.

Proposition 7.10. – Let p be a prime, n � 1 and G be an elementary abelian
p-group of rank n C 2. Let R be a T .n/-local, even E1-ring under En such that ��R is
torsion-free. Let M 2 Fun.BG;Perf.R//. Suppose that for each H ⊊ G, the object
ResGHM 2 Fun.BH;Perf.R// is equivalent to a direct sum of copies of the unit. Then M is
equivalent to a direct sum of copies of the unit in Fun.BG;Perf.R//.

The above proposition establishes a very weak result towards the general expectation that
the complexity of the representation theory over E1-rings should stabilize once the rank of
the group is a bit larger than the chromatic complexity of the coefficients. A more subtle such
result would be our Conjecture 7.22.

Proof of Proposition 7.10. – Let G0 ⊊ G be a maximal proper subgroup, and fix a
complement Cp ' H � G, so that G D G0 � H . By our assumptions and Lemma 7.9,
it suffices to show that the H -action on ��.M hG0/ is trivial (cf. Lemma 4.2, which shows
that C �.BG0IR/ is even and torsion-free).

To see this, we claim that the map of C �.BG0; R/-modules

(7.7) M hG0
!

Y
G00'C�n

p ⊊G0
M hG00

is injective on homotopy. Since M is G0-equivariantly isomorphic to a sum of copies of the
unit, it suffices to verify the injectivity of ��.(7.7)/ with M replaced by R; this case follows
because

(7.8) C �.BG0; R/!
Y

G00'C�n
p ⊊G0

C �.BG00; R/

is injective on ��.�/ ˝ Q in light of [55, Th. 3.18 and Prop. 5.36] (this is essentially a
consequence of the character theory of [36]) since both sides are torsion-free.

For any G00 ⊊ G0, we have an induced H -action on the C �.BG00; R/-module M hG00 , and
the map in (7.7) is H -equivariant. Since M restricts to a direct sum of copies of the unit for
every proper subgroup of G, the H -action on M hG00 is trivial; indeed, this follows because
the action of the proper subgroup generated byG00 andH onM is trivial. It follows from the
injectivity on homotopy of (7.7) and this observation that the H -action on M hG0 is trivial
on homotopy groups. This completes the proof.

We now start considering representation spheres. For a based space B, let Bhni be
the .n � 1/st connective cover of B, so the first potentially non-trivial homotopy group
is in degree n. Let MOhni be the Thom spectrum associated to the J -homomorphism
BOhni ! BO! B GL1 S. We define the function � for all integers n � 1 via �.n/ D 8aC2b

when n D 4aC b C 1 with 0 � b � 3.
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Lemma 7.11. – Let n � 1,G D C�n2 and consider the characters f�ig1�i�n ofG obtained
by pulling back the sign character along the n projection maps. Define ˛ D

Qn
iD1.1 � �i / 2 RO.G/.

Then for any MOh�.n/i-oriented E1-ring spectrum R, there is an equivalence S˛ ˝R ' R
in Fun.BG;Perf.R//.

Proof. – We claim that the map

(7.9) BC�n2

Qn
iD1.1��i /
��������! BO

lifts to BO h�.n/i. This implies that for any MOh�.n/i-oriented R, there is an equivalence
S˛ ˝R ' R in Fun.BG;Perf.R// as desired.

By Bott periodicity, �.n/ is the degree of the nth nonzero homotopy group of BO, starting
with �.1/ D 1. We argue inductively on n � 1 to construct the lifting. If � is the sign
representation of C2, then the virtual representation sphere S1�� is classified by a map

BC2 ' BO.1/! BO

which lifts to BO h�.1/i D BO h1i becauseBC2 is connected. This settles the base case n D 1.
Suppose now we have a lifting of (7.9) to BO h�.n/i for some n � 1. The next classifying

map is obtained as follows:

BC�nC12 ' BC2 � BC
�n
2

.1��nC1/˝
Qn

iD1.1��i //
�����������������! BO.1/ ^ BOh�.n/i ! BO^BO

˝
�! BO :

Since BO.1/ ^ BOh�.n/i is �.n/-connected, the composite of the last two maps lifts
to BOh�.nC 1/i as desired.

Theorem 7.12. – Let G be an abelian 2-group. Let R be an E1-ring spectrum. Suppose
that for some n � 1, we have either:

(1) R D En, a Lubin-Tate theory of height n at the prime 2.

(2) R is MOh�.nC2/i-orientable (as anE1-ring and with � as defined before Lemma 7.11).

Then R-based Swan induction holds for the family of subgroups of G of rank at most nC 1.

Proof. – By pulling back along the map to a maximal elementary abelian quotient of G,
it suffices to treat the case where G D C�nC22 and prove that R-based Swan induction
holds for the family of proper subgroups, cf. Remark 7.1. Let "1; : : : ; "nC2 be independent
sign characters G ! f˙1g, i.e., f"ig is a basis for the F2-vector space Hom.G; f˙1g/. Let
�i 2 RO.G/ .1 � i � nC 2/ be the class of the associated one-dimensional representation
(as in Lemma 7.11). We consider the class

˛ D

nC2Y
iD1

.1 � �i / 2 RO.G/;

and the associated representation G-sphere S˛ 2 SpG . Note that for any proper subgroup
H ⊊ G, ˛ restricts to a class in RO.H/ which is divisible by 2 and therefore comes from the
complex representation ring. This follows because ˛ belongs to the .nC 2/-th power of the
augmentation ideal, and for any m, the augmentation ideal in RO.C�m2 /=2 D F2ŒC�m2 � has
its .mC 1/th power equal to zero.

Given a nontrivial character � of G, considered as a 1-dimensional real representation,
the cofiber sequence S.�/C ! S ! S� shows that the class ŒS�� 2 Rep.G;S/ has the
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property that ŒS���1 D ŒS.�/C� is induced from a proper subgroup, namely the kernel of�.
Consequently, if V is a sum of nontrivial characters in RO.G/, then ŒSV �� 1 2 Rep.G;S/ is
a sum of classes induced from proper subgroups in Rep.G;S/. Expanding out the product
defining ˛ into a sum of characters, we find only a single trivial representation (since the "i
are linearly independent). It follows that in Rep.G;S/, one has

(7.10) ŒS˛� D �ŒS˛�1� D �1C C;

for C a sum of classes induced from proper subgroups.

We also claim that

S˛ ˝R ' R in Fun.BG;Perf.R//:

Under the first hypothesis, this follows from Proposition 7.10 since the restriction of ˛ to a
proper subgroup is a complex representation sphere, and thus trivializable. Under the second
hypothesis, this follows from Lemma 7.11. Consequently, ŒS˛ ˝ R� D 1 2 Rep.G;R/. By
(7.10), it follows that 1 D �1CC , so 2 2 Rep.G;R/ is a sum of classes induced from proper
subgroups, as desired.

Note that this argument cannot work at odd primes, since all representations of Cp are
complex for p > 2.

Proof of Theorem E, (3.). – This follows from Theorem 7.6 to handle the prime-to-2
case combined with Theorem 7.12, which handles the prime 2.

7.2. Swan induction for KU

In this subsection, we prove the Swan induction theorem for KU. Note that we have
already given (geometric) proofs earlier for the p-part with p � 5, see Theorem 7.7.

Theorem 7.13. – LetG be any finite group. Then KU-based Swan induction holds for the
family of abelian subgroups of rank � 2.

To prove Theorem 7.13, it suffices (cf. Remark 7.1) to treat the case of G D C�3p for
an arbitrary prime p. Our proof will rely essentially on twisted K-theory. We will first need
various preliminaries.

Construction 7.14 (Twists of K-theory). – There is a natural map of anima

K.Z; 3/! B GL1.KU/;

where B GL1.KU/ is the classifying space of trivial invertible KU-modules, cf. [1, Sec. 7] for
an account, which induces the identity on �3. Consequently, for any finite group G, we have
a natural map

(7.11) H 3.GIZ/! Pic.Fun.BG;Perf.KU///;

where the right-hand-side is the Picard group of the symmetric monoidal 1-category
Fun.BG;Perf.KU//. Given a class � 2 H 3.GIZ/, we let KU� be the associated object
of Fun.BG;Perf.KU//.
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We will be especially interested in the case G D C�2p . Choosing a nonzero class
� 2 H 3.GIZ/ D Fp, we obtain an invertible object KU� 2 Fun.B.C�2p /;Perf.KU//.
The induced map B.C�2p /! B GL1.KU/ is nontrivial, as it lifts uniquely to the 3-connec-
tive cover ��3B GL1.KU/, and K.Z; 3/ splits off as a direct factor from here; this means
that KU� is not equivalent to the unit in Fun.BG;Perf.KU//.

In the next lemma, to distinguish the factors, we write C ap � C�2p for the first factor
and C bp � C�2p for the second. Note that KU0.BC bp / is isomorphic to the completion of
the representation ring R.C bp / at the augmentation ideal by the Atiyah-Segal completion
theorem [5, 4]. If � is a nontrivial character of C bp , then R.C bp / is free on the powers of Œ��.

Lemma 7.15. – Let � 2 H 3.C�2p IZ/ be a nontrivial element.

(1) The underlying object KU� jCb
p

in Fun.BC bp ;Perf.KU// is isomorphic to the unit.

(2) The residualC ap -action on .KU� /
hCb

p ' C �.BC bp ;KU/ has the property that the action
by a generator in C ap acts by multiplication by Œ��i ; for some 0 < i < p.

Proof. – The first assertion follows because � restricts to zero in H 3.CpIZ/ D 0. The
second assertion follows because the action of a generator is necessarily given by multiplica-
tion by an element of KU0.BCp/whose pth power is the identity. Moreover, this generator is
necessarily nontrivial or the entire C�2p -action on KU� would be trivial by Lemma 7.9.

Our key tool is the following result. We consider theC�2p -action onCPp�1 arising from the
projective representation onCp as in the proof of Theorem 7.5. We identify the KU-lineariza-
tion of this action.

Proposition 7.16. – We have a decomposition in Fun.B.C�2p /;Perf.KU//

(7.12) KU˝DCPp�1C '

M
�2H3.C�2

p IZ/

KU� :

Proof. – Again, we label the first and second factors of C�2p by C ap ; C
b
p . We first calculate

KU�
Cb

p
.CPp�1/, i.e., the C bp -equivariant KU-theory of CPp�1C . Fix a nontrivial character �

of C bp . The underlying C bp -space of CPp�1C is the projectivization of the representation
1˚ � ˚ � � � ˚ �˝.p�1/ of C bp .

By the projective bundle theorem, it follows that there is an isomorphism of R.C bp /-alge-
bras,

KU�
Cb

p
.CPp�1/ ' R.C bp /Œx�

,
p�1Y
iD0

.x � Œ�i �/ ;

cf. [66, Prop. 3.9]. Here x is the class of the tautological line bundle on CPp�1, which is
(canonically) C bp -equivariant. We have a residual C ap -action on this R.C bp /-algebra. Using
the definition of x as the class of a tautological bundle, one checks that a generator of C ap
carries x to xŒ�i � for an appropriate i ¤ 0. Explicitly, we consider the C bp -equivariant line
bundle onCPp�1 given by the set of pairs .x; v/ for x 2 CPp�1 and v 2 x; theC bp -equivariant
structure is by action on the pair. The claim follows by noting thatC ap ; C

b
p act onCp, but their

actions fail to commute by a pth root of unity.
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From this, it follows that .KU˝DCPp�1C /jCb
p

is a direct sum of p copies of the unit

in Fun.BC bp ;Perf.KU//. Therefore, we have .KU˝DCPp�1C /hC
b

p '
Lp�1
iD0 C

�.BC bp ;KU/.
By the comparison between equivariant and Borel-equivariant K-theory, and the above
calculation, we see that the residual C ap acts on the i -th factor by multiplication by
Œ�i � 2 R.C bp /! KU0.BC bp / (up to renumbering factors).

Now we prove the desired equivalence. It suffices to compare the C bp -homotopy fixed
points of both sides of (7.12), C ap -equivariantly as free modules over the even, torsion-
free E1-ring spectrum C �.BC bp IKU/. We will do this by a homotopy fixed-point spectral
sequence argument. On �0, we have seen from the previous paragraph and

Lemma 7.15 that �0

�
.KU˝DCPp�1C /hC

b
p

�
and �0.

L
� KU

hCb
p

� / are isomorphic as

�0.C
�.BC bp ;KU//-modules equipped with a C ap -action. Using the homotopy fixed point

spectral sequence (and observing that there is no room for obstructions since all the

summands �0.KU
hCb

p
� / for � ¤ 0 have trivial higher C ap -cohomology), we can produce

C ap -equivariant maps KU
hCb

p
� ! .KU˝DCPp�1/hCb

p for each � , and the direct sum of
these is an equivalence.

Proof of Theorem 7.13. – It suffices to show that KU-based Swan induction holds for the
family of proper subgroups ofC�3p . We first observe that Rep.�;KU/˝Q is a Green functor
and thus Rep.G;KU/ ˝ Q receives a map from the rationalized Burnside ring A.G/ ˝ Q.
For any finite group G, we have complementary idempotents eG ;eeG in A.G/˝Q (which is
isomorphic to a product of copies of Q over conjugacy classes of subgroups H � G) such
that:

(1) eG is a Q-linear combination of the classes of the G-sets G=H;H ⊊ G.

(2) For each H ⊊ G, the restriction of eG to A.H/ ˝ Q is equal to 1. Equivalently, for
each H ⊊ G, the homomorphism A.G/ ˝ Q ! Q which sends a G-set T to jTH j
carries eG to 1.

(3) eG CeeG D 1.

Let M be a rational Green functor for the group G, so that we have a ring map
A.G/˝Q!M.G/. Then M is induced from the family of proper subgroups (equiva-
lently, 1 2M.G/ is a sum of classes induced from proper subgroups) if and only if this map
carries eG to 1 (or, equivalently, sendseeG to zero); indeed, this follows because multiplication
by eG acts as the identity on classes induced from a proper subgroup.

Our strategy of proof is to verify this identity in Rep.C�3p ;KU/˝Q directly using (7.12),
using a relation (proved in the next paragraph) between the idempotent forC�2p and the class
of CPp�1.

Consider Rep.C�2p ; R/ for any E1-ringR. In this case, we have another expression for the
image of eC�2

p
underA.C�2p /˝Q! Rep.C�2p ; R/˝Q (for which we will simply write eC�2

p
).

In fact, we claim that

(7.13) ŒR˝ CPp�1C �=p D eC�2
p
2 Rep.C�2p ; R/˝Q;
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for the C�2p -action on CPp�1 arising from the p-dimensional projective representation as

above. In other words, peC�2
p

is the class of R ˝ CPp�1C 2 Fun.BC�2p ;Perf.R// in ratio-
nalized K0. To see this, we first observe that any finite G-CW complex has a well-defined
Euler characteristic taking values in A.G/ which can be calculated by taking the Euler char-
acteristic of the cellular chains. Now CPp�1 is a finite fixed-point-free C�2p -complex such
that the fixed points under any proper subgroup have Euler characteristic p (since these fixed
points will either bep distinct points orCPp�1). This implies the associated class inA.C�2p / is
peC�2

p
as desired, by the above characterization of the idempotent eG , whence the claim.

We specialize now to the case where R D KU. Let � be a generator of H 3.C�2p IZ/ D Fp
and let x D ŒKU� �. Then, combining (7.13) and the decomposition of Proposition 7.16, we
conclude

1C x C � � � C xp�1

p
D eC�2

p
2 Rep.C�2p ;KU/˝Q:

Note that xp D 1, so the left hand side is clearly idempotent. This also determines the
complementary idempotent; we therefore have

(7.14)
1

p

p�1Y
jD1

.1 � xj / DeeC�2
p
;

since 1
p

Qp�1
jD1 .1 � x

j / is the complementary idempotent to 1CxC���Cxp�1

p
in the group ring

ZŒ1=p; x�=.xp D 1/ D ZŒ1=p; �p� � ZŒ1=p�.
Our goal is to show that eeC�3

p
D 0 in Rep.C�3p ;KU/ ˝ Q, which is equivalent to the

Swan induction claim. Given an elementary abelian p-group G of rank rk.G/ � 2, one
has eeG D Q

�WG↠G0 �
�eeG0 , where the product ranges over all surjections G ↠ G0 with

rk.G0/ D rk.G/ � 1. This follows since the given product over all � is an idempotent
in A.G/˝ Q with trivial restriction to proper subgroups and with image under the G-fixed
point map A.G/! Q equal to 1. Therefore, we can expresseeC�3

p
as the product

(7.15)
Y

�WC�3
p ↠C�2

p

��eeC�2
p
;

using the pullback in the representation ring. We will now analyze this using group rings.
For any finite group G, we have a natural map H 3.BGIZ/! Pic.Fun.BG;Perf.KU///;

which defines a map of commutative rings

(7.16) 'G WQŒH 3.BGIZ/�! Q˝Z Rep.G;KU/;

which is compatible with pullback in G. By (7.14), there exists a class in the group ring
QŒH 3.BC�2p IZ/�whose image under 'C2

p
is precisely the idempotenteeC�2

p
. Using the expres-

sion (7.15), we see that there is a class u 2 QŒH 3.BC�3p IZ/� whose image under 'C
p3

iseeC�3
p

. Moreover, u restricts to zero in QŒH 3.BH IZ/� for all proper subgroups H ⊊ Cp3 . By
the next two lemmas, this is enough to force u D 0, which proves the theorem.

Lemma 7.17. – Let X ' C�3p be a rank 3 elementary abelian p-group, so H 3.X IZ/ is
also a rank 3 elementary abelian p-group by the Künneth formula. As Z � X ranges over
the rank 2 subgroups of X , the maps H 3.X IZ/ ! H 3.ZIZ/ ' Fp range over the nonzero
maps H 3.X IZ/! Fp, up to scalars.
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Proof. – The construction which sends Z � X to the kernel of the surjection
H 3.X IZ/! H 3.ZIZ/ establishes a map

(7.17) ‰W f2-dimensional subspaces Z � Xg !
˚
hyperplanes in H 3.X IZ/

	
:

We need to show that (7.17) is a bijection. Note that both sides are finite sets of the same
cardinality, and that the map is Aut.X/ D GL3.Fp/-equivariant (using the induced action
on H 3.X IZ/).

Choose a decomposition X D V ˚ W where V has rank 2 and W has rank 1. By the
universal coefficient theorem, we have a natural short exact sequence

(7.18) 0! H 3.V IZ/! H 3.X IZ/! Tor1.H 2.V IZ/;H 2.W IZ//! 0;

where Tor1.H 2.V IZ/;H 2.W IZ// has rank two. On the left-hand-side of (7.17), we consider
the collection C of subspaces Z � X such that the composite Z � X ↠ V is not surjective;
equivalently,Z D L˚W for someL � V a 1-dimensional subspace. Note that jC j D pC1.
On the right-hand-side, consider the collectionD of hyperplanes inH 3.X IZ/which contain
H 3.V IZ/; the exact sequence (7.18) also easily shows jDj D p C 1.

We claim that ‰�1.D/ D C . In fact, given a two-dimensional subspace Z � X such
thatH 3.V IZ/! H 3.X IZ/! H 3.ZIZ/ is zero, it follows easily that the mapZ ! X ↠ V

fails to be surjective, and conversely. The group Aut.V / � Aut.X/ (via the diagonal
embedding, fixing W ) preserves and acts transitively on C . Moreover, Aut.V / � Aut.X/
preserves and acts transitively on D, because we have an Aut.V /-equivariant identifica-
tion H 2.V IZ/ ' H 1.V IQ=Z/ D Hom.V;Fp/, and D is identified with the set of lines
in H 2.V IZ/. Therefore, for c 2 C , we necessarily have that ‰�1.‰.c// consists of a single
point since the fibers of ‰ at points of D must all have the same cardinality. Since Aut.X/
acts transitively on the set of 2-dimensional subspaces of X , it follows easily that (7.17) is
an isomorphism as desired.

Lemma 7.18. – Let A be a finite abelian group. Let x 2 QŒA� be an element such that for
every map A ! C , for C a cyclic group, the image of x under QŒA� ! QŒC � is zero. Then
x D 0.

Proof. – We can extend scalars toC. Then we have a natural isomorphismCŒA� '
Q
A_ C,

for A_ the group of characters of A. Our assumption is that for any map C 0 ! A_ with C 0

cyclic, the restriction
Q
A_ C!

Q
C 0 C annihilates x; this clearly forces x D 0.

7.3. Applications to chromatic complexity

In this subsection, we record the applications of the above Swan induction theorems to
chromatic bounds for theK-theory of certain ring spectra. We recover another new proof of
Mitchell’s theorem and are able to treat some special cases of Theorem A.

Corollary 7.19 (Mitchell [59]). – For i � 2, we haveLT.i/K.Z/ ' 0 (for any primep).

Proof. – Combine Theorem 6.7 and Theorem 7.5 (Swan induction for HZ).

Corollary 7.20. – Let En be a height n � 1 Lubin-Tate theory at the prime 2 and
G � Gn a finite subgroup of the extended Morava stabilizer group. ThenLT.nCm/K.EhGn / D 0

for all m � 2.
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Proof. – When G is the trivial subgroup, this follows directly from Theorem 7.12 and
Theorem 6.7. The general case then follows from the Galois descent theorem [23, Thm. 1.10],
which gives LT.nCm/K.EhGn / ' .LT.nCm/K.En//

hG ' 0:

We next recover the following result. At p � 5, the result is a consequence of the
calculations of Ausoni-Rognes [7] and Ausoni [6], which determine the mod .p; v1/ homo-
topy groups of K.`/ (resp. K.ku/) at such primes (and in particular yield the stronger
Lichtenbaum-Quillen style claim that K.ku/=.p; v1/ agrees with its T .2/-localization in
high degrees). For all primes, this result has been recently proved by Angelini-Knoll-Salch
[3] and Hahn-Raksit-Wilson [33]. The result is also a special case of Theorem A.

Corollary 7.21. – For i � 3, we have LT.i/K.KU/ D LT.i/K.KO/ ' 0 (at any
prime p).

Proof. – By Galois descent [23], it suffices to handle the case of KU. In this case,
Theorem 6.7 together with Theorem 7.13 imply the result.

Motivated by the above results, we conjecture the following Swan induction result forEn;
we have proved it at p D 2 in Theorem 7.12, or for n D 1 as a consequence of Theorem 7.13.

Conjecture 7.22. – Let p be a prime, n � 1, En a Lubin-Tate theory of height n at
the prime p andG finite group. ThenEn-based Swan induction holds for the family of those
abelian subgroups of G for which:

(1) The prime-to-p part is cyclic.

(2) The p-part has rank � nC 1.

Remark 7.23 (A purely algebraic question). – Finally, Theorem 6.7 can be used to
prove thatLK.1/K.Fp/ D 0, which is a consequence of the stronger resultK.FpIZp/ D HZp
proved by Quillen; indeed, one sees that HFp-based Swan induction holds for the trivial
family in Cp using the filtration of the regular representation FpŒCp� by trivial representa-
tions. One also knows that LK.1/K.Z=pn/ D 0 for any n � 1, cf. [43, 16, 52] for three proofs.
Can this result also be proved using Theorem 6.7, i.e., does HZ=pn-based Swan induction
hold for the trivial family in Cp?

Appendix

Mackey functors and orthogonal G-spectra

This appendix provides a fairly self-contained proof of the fact that, for a finite group G,
the symmetric monoidal 1-categories afforded by orthogonal G-spectra and by spectral
Mackey functors are equivalent. This result is due originally to Guillou and May [31]
(ignoring the monoidal structure), and was revisited by Barwick and Barwick-Glasman-
Shah [14, 15] in the context of more general parametrized homotopy theory, see specifically
[60, Thm. A.4]. Compared to their work, our approached is streamlined by ignoring all
models (as used by [31]), and by not addressing any universal properties of Mackey functors
(as in [14, 15]).
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The motivation for giving our proof of their result is the immediate need of the present
paper: We use categorical methods to construct Mackey functors, and then apply descent
results proven for the homotopy theory of orthogonal G-spectra to them. Our work also
yields a new proof of the equivariant Barratt-Priddy-Quillen theorem (which however uses
the non-equivariant one).

Throughout, let G denote a finite group. We refer the reader to [54, Sec. 5] for a quick
account of the symmetric monoidal1-category SpG extracted from the model category of
orthogonal G-spectra. We denote by O.G/ the orbit category of G, by S the1-category of
anima, by SG WD Fun.O.G/op;S/ the presentable, cartesian closed1-category of G-anima
(see [9, Lem. 2.1]), by SG;� ' SG;�= the presentable, closed symmetric monoidal1-category
of basedG-anima, and by†1G WSG;� �! SpG the suspension spectrum functor. We consider
SG with its cartesian monoidal structure. In the appendix, we will write the units ofG-spectra
and spectral Mackey functors by 1 rather than S.

To set the notation for Mackey functors, we denote by FinG the category of finite G-sets,
by Span.FinG/ the .2; 1/-category of spans on FinG (cf. [9, App. C]) and set

MackG WDMackG.Sp/ D Fun�.Span.FinG/op; Sp/;

the category of finite product-preserving presheaves on Span.FinG/ with values in the
1-category Sp of spectra. Note that Span.FinG/ D Burneff

G as recalled in Definition 2.1, but
we stick to the former notation in the appendix, in order to be compatible with our main
references. We recall that MackG ' P†.Span.FinG//˝ Sp, cf. Remark 2.3. Below, we will
recall the suspension functor in the Mackey context, to be denoted

†1MWSG;� �!MackG :

The cartesian product on FinG induces a symmetric monoidal structure on Span.FinG/, we
endow MackG with the symmetric monoidal structure given by Day-convolution and denote
it by˝. This is the unique symmetric monoidal structure which is bicocontinuous and is such
that †1M is symmetric monoidal.

Our main result is the following.

Theorem A.1. – There is a unique symmetric monoidal left-adjoint LW SpG ! MackG
such that L ı†1G ' †

1
M, and L is an equivalence.

The rest of this section will provide a proof of this result.
The construction of L rests on the following result, and we thank Markus Hausmann for

providing a key reference in its proof. Compare also [28, App. C] for a treatment.

Theorem A.2. – The suspension†1G WSG;� �! SpG is the initial example of a presentably
symmetric monoidal functor (in other words, a map in CAlg.PrL/) which inverts the functor
SV ˝� for all finite-dimensional, orthogonal representations V of G.

Proof. – We have the symmetric monoidal suspension functor †1G W SG;� �! SpG .
By construction of SpG , the representation spheres map to invertible objects in SpG . Now
the initial presentably symmetric monoidal 1-category C equipped with a cocontinuous,
symmetric monoidal functor from SG;� inverting the representation spheres is discussed (in
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a more general context) in [63, Sec. 2.1], cf. also [9, Lem. 4.1]; note that the representation
spheres are symmetric objects by [28, Lem. C.5] and that the required cyclic invariance
condition is easily checked. Equivalently, we can also perform this construction at the level
of small finitely cocomplete symmetric monoidal1-categories by restricting to the compact
objects. By [63, Prop. 2.19, Cor. 2.22], we find that this formal inversion (in PrLst ) is given by
the colimit of smashing with SV on SG;�, as V ranges over G-representations. By construc-
tion, we obtain a canonical, cocontinuous symmetric monoidal functor C ! SpG . It follows
from the above that the mapping anima between the finite G-sets T; T 0 are computed in the
same way (namely, as lim

�!V
HomSG;�

.SV ^ TC; S
V ^ T 0C/), so C ! SpG is fully faithful on

compact generators, whence the result.

To construct †1M, recall from [9, §9.1 before Lem. 9.4] the canonical cartesian monoidal
functor �WFinG;C ! Span.FinG/ and the symmetric monoidal equivalence

P†.FinG;C/ ' SG;�

([9, Lem. 2.1]). This induces †1M, to be defined as the composition

†1M WD

�
SG;� ' P†.FinG;C/

P†.�/
����! P†.Span.FinG// D Fun�.Span.FinG/op;S/!MackG

�
;

where the final map is the stabilization. By construction, †1M is a map in CAlg.PrL/.

Theorem A.2 tells us that to construct the functor L in Theorem A.1, we need to see
that †1M inverts all representation spheres. We will do this by constructing from scratch
on MackG what will a posteriori turn out to be geometric fixed point functors, and by
establishing some of their basic properties. Denote byP the family of proper subgroups ofG
and recall the cofiber sequence in SG;�, defining gEP :

lim
�!

G=H2O.G/P

G=HC ' EPC �! �C D S0 �!gEP;
(cf. [55, Appendix A.1]). The least formal part of our argument is the following.

Lemma A.3. – We have an equivalence
�
†1M.

gEP/� .G=G/ ' S in Sp (since the source is
an E1-ring, the equivalence is uniquely specified).

To see this, we will need the following result on manipulating colimits. For an 1-cate-
gory C, we denote by C▷ the result of freely adjoining a final object to C, and by C' the
maximal underlying subgroupoid of C. The construction C 7! C' is right adjoint to the inclu-
sion S ' Grp1 � Cat1 of1-groupoids into all1-categories.

Proposition A.4. – Let C be an 1-category and F W C▷ ! S the functor defined
by F.c/ D

�
.C▷/=c

�'. Then the canonical map of anima lim
�!C

F ! lim
�!C▷

F is equivalent

to the inclusion C' � .C▷/'.

Proof. – The closely related functor F 0W C▷ ! Cat1 defined by F 0.c/ WD .C▷/=c
classifies the cocartesian codomain fibration cd WFun.�1; C▷/ �! C▷ given by evalua-
tion on 1 [46, Cor. 2.4.7.12]. It follows that F D .�/' ı F 0 classifies the left fibration
cd 0WFun.�1; C▷/left �! C▷ obtained by passing from Fun.�1; C▷/ to the sub-simplicial
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set Fun.�1; C▷/left � Fun.�1; C▷/ consisting of all simplices whose edges are cd -cocarte-
sian. Informally then, the objects of Fun.�1; C▷/left are the morphisms in C▷, and the
morphisms are the commuting squares in which the map between sources is an equivalence.

We now observe that evaluation at zero, ezWFun.�1; C/left ! C', is a Cartesian fibration
which has all fibers contractible (because each of them has an initial object). In particular,
ez is a weak equivalence, and an inverse equivalence is provided by sending objects to identity
morphisms. We have thus seen that lim

�!C
F ' C'.

Furthermore, the canonical map lim
�!C

F ! lim
�!C▷

F is equivalent to the obvious

map Fun.�1; C/left ! Fun.�1; C▷/left, the target of which is equivalent to the fiber over
the cone point, namely .C▷/'. One checks that this identifies the canonical map with the
inclusion C' � .C▷/', as claimed.

Proof of Lemma A.3. – Applying Proposition A.4 with C D O.G/P the category of
orbits with proper isotropy (hence C▷ D O.G/), we obtain a cofiber sequence in anima

lim
�!

G=H2O.G/P

.O.G/=.G=H//' ' O.G/'P ,! O.G/' �! � tC;

where the final map sends all orbits with proper isotropy toC, and sends G=G to �. We can
consider this as a cofiber sequence in pointed anima S� of the form

lim
�!

G=H2O.G/P

.O.G/=.G=H//'C ' O.G/'P;C �! O.G/'C �! S0 D �C;

where the final map sends all orbits with proper isotropy to the base-pointC, and sendsG=G
to �. Applying the free commutative monoid functor PWS� ! CMon.S/ yields a cofiber
sequence in CMon.S):

(A.1) lim
�!

G=H2O.G/P

.FinG=.G=H//
'
�! Fin'G �! Fin';

in which the final map is identified with taking G-fixed points. To see this, observe
that O.G/=.G=H/ ' O.H/ and that P.O.H/'C/ ' Fin'H , as can be checked most easily
using the general formula P.Z/ D

W
n�0

�
Z�n �†n

E†nC
�
.

We denote by .�/C the group completion on CMon.S/, and observe that

�1
�
†1M.G=HC/.G=G/

�
D HomSpan.FinG/.G=G;G=H/

C
' .FinG=.G=H//

';C :

We thus see that the delooping of the group completion of the cofiber sequence (A.1) is a
cofiber sequence in Sp of the form�

†1M.EP/
�
.G=G/ �! †1M.S

0/.G=G/ �! †1M.
gEP/.G=G/ ' S;

using the Barratt-Priddy-Quillen theorem that �1.S/ ' Fin';C.

Next, we will need to discuss restriction for Mackey functors.

Construction A.5 (Restriction for Mackey functors). – Let H � G be a subgroup.

(1) We have a symmetric monoidal and coproduct preserving functor

ResGH W Span.FinG/ �! Span.FinH /:

This sends a G-set U to the underlying H -set of U , and behaves accordingly on
correspondences (cf. [9, App. C.3]).
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(2) We also have a functor

G �H .�/W Span.FinH / �! Span.FinG/;

which takes a H -set T to the G-set G �H T , and behaves analogously on correspon-
dences. Note that the construction T 7! G�H T on finiteH -sets preserves fiber prod-
ucts.

Proposition A.6. – Both the functors

.ResGH .�/; G �H .�// W Span.FinG/⇄ Span.FinH /

and the functors

.G �H .�/;ResGH .�// W Span.FinH /⇄ Span.FinG/

are biadjoint.

Proof. – If S is a finite H -set and T is a finite G-set, then we have an equivalence of
categories

.FinG/=.G�HS/�T

'
�! .FinH /=S�ResG

H
.T / ;

given by pulling back along the H -map S � T ! .G �H S/ � T .

Using that HomSpan.FinG/.X; Y / ' .FinG/
'
=X�Y , the result follows. See also [9, App. C.3]

for a more general treatment of Span.�/ as an .1; 2/-functor.

We now define restriction for Mackey functors, essentially by left Kan extension. Namely,
we define the symmetric monoidal, cocontinuous functor ResGH;MWMackG !MackH to be
ResGH;M WD P†.ResGH /˝ idSpG

.

As an example, note that for F 2MackG and subgroups H 0 � H � G we have

ResGH;M.F /.H=H
0/ ' F.G=H 0/:

To see this, since both sides are colimit preserving functors of F , it suffices to check the
case when F is the suspension of an orbit, and then the claim is immediate from the second
adjunction in Proposition A.6.

Proposition A.7. – Assume F 2 MackG is such that for all proper subgroups H � G

we have ResGH;M.F / ' �. Then the canonical map

F.G=G/ �!
�
†1M.

gEP/˝ F /� .G=G/
is an equivalence.

Proof. – First observe that for all subgroups H � G, the suspension †1M.G=HC/ 2MackG
is self-dual. It then follows that for all proper subgroups H � G, the spectrum

.F ˝†1M.G=HC//.G=G/ ' F.G=H/ ' ResGH;M.F /.H=H/ ' �

is contractible, and hence that
�
F ˝†1M.EPC/

�
.G=G/ ' �. The result follows.
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We next introduce geometric fixed points in the Mackey context. The fixed point functor
.�/G W FinG �! Fin commutes with pullbacks and hence induces a functor on span
categories. This functor preserves finite coproducts and the cartesian product, hence the
functor

ˆGM WD P†.Span..�/G//˝ idSp WMackG �! P†.Span.Fin//˝ Sp ' Sp

commutes with all colimits and is symmetric monoidal. By construction, it takes the expected
values on orbits, namely ˆGM.†

1
M.G=HC// is contractible for a proper subgroup H � G,

and equivalent to S for H D G. In fact, more generally, for each X 2 SG;� we have

ˆGM.†
1
M.X// ' †

1.X.G=G//:

For a subgroup H � G, we denote ˆG;HM WD ˆHM ıResGH;M.
We will need to know that our geometric fixed points are given by the familiar contruction:

Proposition A.8. – There is an equivalence (5) of functors

ˆGM.�/ '
�
†1M.

gEP/˝ .�/� .G=G/:
Proof. – First, we have a natural transformation for F 2MackG given by

F.G=G/! ˆGM.F /, since F.G=G/ is corepresented by the unit and ˆGM.�/ is symmetric
monoidal by construction. Since the target is unaffected by replacing F by †1M.gEP ˝ F /,
we obtain a map

�
†1M.

gEP ˝ .�//� .G=G/ ! ˆGM.�/. This map is an equivalence on all
orbits, because for a subgroup H � G we can compute that�

†1M.
gEP/˝†1M.G=HC/� .G=G/ ' �†1M �gEP ˝ .G=HC/�� .G=G/

is contractible ifH is proper, and is S ifH D G by Lemma A.3. Therefore, the result follows
since both functors preserve colimits.

This allows to easily establish the basic properties of geometric fixed points in the Mackey
context:

Proposition A.9. – The family fˆG;HM gH�G of symmetric monoidal left adjoints is jointly
conservative.

Proof. – Assume ˆG;HM .F / ' � for all H � G, and we need to see that F ' �.
This is clear for trivial G, and we argue by induction on the group order in general. We

can thus assume that ResGH;M.F / ' � for all proper subgroups H � G. In particular then,
for all proper subgroups H � G we know that

F.G=H/ D ResGH;M.F /.H=H/ D �

is contractible, and need to see that F.G=G/ is as well. But combining Proposition A.7 and
Proposition A.8, we see that F.G=G/ ' ˆGM.F / D ˆ

G;G
M .F /, and this is contractible by

assumption.

This finally lets us check that suspension for Mackey functors inverts all representation
spheres.

Proposition A.10. – For every representation V of G, †1M.S
V / 2MackG is invertible.

(5) The equivalence is constructed in the proof, we will only need an abstract equivalence.
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Proof. – We first note that †1M.S
V / 2 MackG is at least dualizable. Since MackG is

stable, the dualizable objects are stable under finite colimits, and SV is a finite colimit of
orbits. It thus suffices to remark that the orbits are dualizable (in fact, self-dual) already
in Span.FinG/. Once we know †1M.S

V / 2 MackG is dualizable, it will be invertible if and
only if it becomes so after applying any family of jointly conservative symmetric monoidal
functors. By Proposition A.9 it will thus suffice to see that for every subgroup H � G, the
spectrum ˆ

G;H
M .†1M.S

V // is invertible, but this follows from a direct computation:

ˆ
G;H
M .†1M.S

V // D ˆHM.ResGH;M.†
1
M.S

V /// ' †1..SV /H / ' Sdim.VH /:

We can now complete the proof of our main result.

Proof of Theorem A.1. – Theorem A.2 and Proposition A.10 show that there is a unique
symmetric monoidal left adjoint L W SpG �! MackG such that L ı†1G ' †

1
M. It remains

to see that L is an equivalence. Denote by R the right adjoint of L. Since both SpG and
MackG are generated under colimits by dualizable objects (namely the suspensions of orbits),
it follows from [10, Thm. 1.3] that R admits itself a right adjoint, hence preserves colimits,
and that the adjunction .L;R/ satisfies a projection formula. Furthermore,R is conservative
because the image of its left adjoint L contains a set of generators. We can thus apply [54,
Prop. 5.29] to conclude that the adjunction .L;R/ induces an adjoint equivalence

ModSpG
.R.1MackG

// 'MackG ;

and it remains to see that the counit of the adjunction

(A.2) 1SpG
�! R.L.1SpG

// ' R.1MackG
/

is an equivalence.

Now we use induction on the group order. Given a proper subgroup H ⊊ G, we have a
commutative diagram in CAlg.PrL/,

SpG

��

// MackG

��
SpH // MackH ;

by the universal property of SpG . The inductive hypothesis gives that the bottom hori-
zontal arrow is an equivalence. This implies that if X 2 SpG , then HomSpG

.G=HC; X/ D

HomMackG
.G=HC; X/ since both sides are calculated as maps out of the unit in SpH

(resp. MackH ). In particular, this implies that (A.2) restricts to an equivalence after restric-
tion to proper subgroups; therefore, it suffices to see that ˆG (i.e., geometric fixed points for
orthogonal spectra) turns this map into an equivalence. Since ˆG.1SpG

/ D S and we are
looking at a map of commutative algebras, it suffices in fact to see that there is an equivalence
of spectra ˆG.R.1MackG

// ' S. This follows from the following computation:

ˆG.R.1MackG
// '

�
†1G .

gEP/˝R.1MackG
//
�G
'
�
R
�
L.†1G .

gEP//˝ 1MackG
/
��G

' L.†1G .
gEP//.G=G/ ' .†1M.gEP//.G=G/ ' S:
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This computation used in turn: the definition of ˆG , the projection formula for .L;R/, the
fact that .R.�//G ' .�/.G=G/ (by adjointness of L and R), the fact that L ı †1G ' †1M,
and finally Lemma A.3.

As promised earlier, our account yields the following proof of the equivariant Barratt-
Priddy-Quillen theorem (originally due to [31]), which by-passes any loop-space theory (but
uses the non-equivariant version).

Corollary A.11. – For a finite group G, there is an equivalence in CMon.S/

lim
�!
V

�V SV ' .FinG/
';C ;

where the colimit is taken along any cofinal system of representations of G, and .�/C denotes
group completion.

For the proof, one simply computes the endomorphism anima of the unit of both SpG and
MackG from the definition, and compares the result.
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