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1. Introduction

1.1. Rigidity results. The purpose of this paper is to study the (connective)
algebraic K-theory K(R) of a commutative ring R, by means of the cyclotomic
trace [14]

K(R) → TC(R),

from K-theory to topological cyclic homology TC(R). The cyclotomic trace is
known to be an extremely useful tool in studying K-theory. On the one hand,
TC(R) is often easier to calculate directly than K(R) and has various arithmetic in-
terpretations. For instance, according to work of Bhatt–Morrow–Scholze [9], TC(R)
for p-adic rings is a form of syntomic cohomology of SpecR. On the other hand,
the cyclotomic trace is often an effective approximation to algebraic K-theory. It
is known that the cyclotomic trace is a p-adic equivalence in nonnegative degrees
for finite algebras over the Witt vectors over a perfect field [42], and the cyclotomic
trace has been used in several fundamental calculations of algebraic K-theory such
as [43].

Our main theorem extends the known range of situations in which K-theory is
close to TC. To formulate our results cleanly, we introduce the following notation.

Definition 1.1. For a ring R, we write K inv(R) for the homotopy fiber of the
cyclotomic trace K(R) → TC(R).
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412 DUSTIN CLAUSEN ET AL.

Thus K inv(R) measures the difference between K and TC. The following fun-
damental result (preceded by the rational version due to Goodwillie [36] and the
p-adic version proved by McCarthy [62] and generalized by Dundas [20]) shows that
K inv is nil-invariant.

Theorem 1.2 (Dundas–Goodwillie–McCarthy [22]). Let R → R′ be a map of rings
which is a surjection with nilpotent kernel.1 Then the map K inv(R) → K inv(R′) is
an equivalence.

The above result is equivalent to the statement that for a nilpotent ideal, the
relative K-theory is identified with relative topological cyclic homology. Our main
result is an extension of Theorem 1.2 with finite coefficients to a more general class
of surjections. We use the following classical definition in commutative algebra (see
also Definition 3.12).

Definition 1.3. Let R be a commutative ring and I ⊂ R an ideal. Then (R, I) is
said to be a henselian pair if given a polynomial f(x) ∈ R[x] and a root α ∈ R/I

of f ∈ (R/I)[x] with f
′
(α) being a unit of R/I, then α lifts to a root α ∈ R of f .

Examples of henselian pairs include pairs (R, I) where R is I-adically complete
(by Hensel’s lemma) and pairs (R, I) where I is locally nilpotent.

Algebraic K-theory with finite coefficients prime to the characteristic is known
to interact well with henselian pairs; one has the following result of Gabber [27],
preceded by work of Suslin [81] and Gillet–Thomason [35]. See also [78, Sec. 4.6]
for a textbook reference.

Theorem 1.4 (Gabber [27]). Let (R, I) be a henselian pair. Suppose n is invertible
in R. Then the map K(R)/n → K(R/I)/n is an equivalence of spectra.

The main result of this paper is the following common extension of Theorem 1.4
and the commutative and profinitely completed case of Theorem 1.2.

Theorem 1.5. Let (R, I) be a henselian pair. Then for any n, the map K inv(R)/n
→ K inv(R/I)/n is an equivalence.

What is the significance of such rigidity results in K-theory? Computing the
algebraicK-theory of rings and schemes is a fundamental and generally very difficult
problem. One of the basic tools in doing so is descent : that is, reducing the
computation of the K-theory of certain rings to that of other (usually easier) rings
built from them. As is well-known, algebraic K-theory generally does not satisfy
descent for the étale topology. On the other hand, a general result of Thomason–
Trobaugh [83] (see also [82] for a survey) states that algebraic K-theory of rings and
quasi-compact quasi-separated schemes satisfies descent for the Nisnevich topology,
which is quite well-behaved for a noetherian scheme of finite Krull dimension. In
the Nisnevich topology, the points are given by the spectra of henselian local rings.
Up to a descent spectral sequence, algebraic K-theory can thus be computed if it
is understood for henselian local rings. When n is invertible, Theorem 1.4 enables
one to reduce the calculation (with mod n coefficients) to the K-theory of fields.
Our main result extends this to the case where n is not assumed invertible, but
with the additional term coming from TC. All of this uses only the local case of
Theorem 1.5; invoking the general case also gives further information.

1Or, more generally, a map of connective E1-ring spectra such that π0R → π0R′ is a surjection
with nilpotent kernel.
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K-THEORY AND TC OF HENSELIAN PAIRS 413

1.2. Consequences. As a consequence of Theorem 1.5, we deduce various global
structural properties about algebraic K-theory and topological cyclic homology,
especially p-adic K-theory of p-adic rings. In many cases, we are able to extend
known properties in the smooth case to provide results on the K-theory of singular
schemes.

The first main consequence of our results is a general statement that p-adic
algebraic K-theory and TC agree in large enough degrees for reasonable p-torsion
schemes, or affine schemes on which (p) is henselian.

Theorem 1.6 (Asymptotic comparison of K,TC). Let R be a ring henselian along
(p) and such that R/p has finite Krull dimension. Let d = supx∈Spec(R/p) logp[k(x) :

k(x)p] where k(x) denotes the residue field at x and k(x)p ⊂ k(x) the subfield
of pth powers. Then the map K(R)/pi → TC(R)/pi is a equivalence in degrees
≥ max(d, 1) for each i ≥ 1.

Theorem 1.6 specializes to a number of existing results and calculations of alge-
braic K-theory, and enables new ones.

(1) For finitely generated algebras over a perfect field, the result was shown
in the smooth case by Geisser–Levine [34] and Geisser–Hesselholt [30]: in
fact, both K-theory and TC vanish mod p in sufficiently large degrees.

(2) For singular curves, the result appears in Geisser–Hesselholt [31].
(3) Our approach also applies to any semiperfect or semiperfectoid ring, where

it shows that K/p is the connective cover of TC/p. This recovers calcula-
tions of Nizio�l [66] and Hesselholt [40] of the K-theory of the ring OCp

of
integers in the completed algebraic closure Cp of Qp. See [9, Sec. 7.4] for
some recent applications.

(4) If R is any noetherian ring henselian along (p) and such that R/p is F -finite
(i.e., the Frobenius map on R/p is finite), then the above result applies: p-
adic K-theory and TC agree in sufficiently large degrees.

Another application of our results is to show that p-adic étale K-theory is iden-
tified with topological cyclic homology under quite general situations; this is shown
in [30] in the smooth case. As a consequence, we may regard Theorem 1.6 as a type
of p-adic Lichtenbaum–Quillen statement.

Theorem 1.7 (Étale K-theory is TC at points of characteristic p). Let R be
a strictly henselian local ring with residue field of characteristic p > 0. Then
K inv(R)/p = 0, i.e., the map K(R) → TC(R) is a p-adic equivalence.

In addition, we are able to obtain a general split injectivity statement about the
cyclotomic trace of local Fp-algebras.

Theorem 1.8 (Split injectivity of the cyclotomic trace). For any local Fp-algebra
R and any i ≥ 1, the cyclotomic trace K(R)/pi → TC(R)/pi is split injective on
homotopy groups.

In fact, the splitting is functorial for ring homomorphisms, and one can identify
the complementary summand in terms of de Rham–Witt cohomology: see Propo-
sition 6.12.

Next, our results also imply statements internal to K-theory itself, especially the
K-theory of Fp-algebras. Let R be a local Fp-algebra. If R is regular, there is a
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414 DUSTIN CLAUSEN ET AL.

simple formula for the mod p algebraic K-theory of R given in the work of Geisser–
Levine [34]. We let Ωi

R,log denote the subgroup of Ωi
R consisting of elements which

can be written as sums of products of forms dx/x for x a unit.

Theorem 1.9 (Geisser–Levine [34]). The mod p K-groups Ki(R;Z/pZ)
= πi(K(R)/p) are identified with the logarithmic forms Ωi

R,log for i ≥ 0.

Algebraic K-theory of singular Fp-algebras is generally much more complicated.
However, using results of [63,64], we are able to prove a pro-version of the Geisser–
Levine theorem (extending results of Morrow [64]).

Theorem 1.10 (Pro Geisser–Levine). For any regular local F -finite Fp-algebra R
and ideal I ⊂ R, there is an isomorphism of pro abelian groups

{Ki(R/In;Z/pZ)}n≥1 �
{
Ωi

R/In,log

}
n≥1

for each i ≥ 0.

Finally, we study the continuity question in algebraic K-theory for complete
rings, considered by various authors including [20, 32, 64, 67, 81]. That is, when R
is a ring and I an ideal, we study how close the map K(R) → lim←−K(R/In) is to

being an equivalence. Using results of Dundas–Morrow [24] on topological cyclic
homology, we prove a general continuity statement in K-theory.

Theorem 1.11 (Continuity criterion for K-theory). Let R be a noetherian ring
and I ⊂ R an ideal. Suppose R is I-adically complete and R/p is F -finite. Then
the map K(R) → lim←−K(R/In) is a p-adic equivalence.

In fact, an argument using Popescu’s approximation theorem shows that this
continuity result is essentially equivalent to our main theorem on henselian pairs,
see Remark 5.6.

In general, our methods do not control the negative K-theory.2 In addition, they
are essentially limited to the affine case: that is, we do not treat henselian pairs
of general schemes. For example, given a complete local ring (R,m) and a smooth
proper scheme X → SpecR, our methods do not let us compare the K-theory of
X to its special fiber. Note that questions of realizing formal K-theory classes as
algebraic ones are expected to be very difficult, cf. [11].

Theorem 1.5 depends essentially on a finiteness property of topological cyclic
homology with mod p coefficients. In characteristic zero, negative cyclic homology
is not a finitary invariant: that is, it does not commute with filtered colimits. The
main technical tool we use in this paper is the observation that the situation is bet-
ter modulo p. Topological cyclic homology of a ring R is built from the topological
Hochschild homology THH(R) and its natural structure as a cyclotomic spectrum.
We use the Nikolaus–Scholze [65] description of the homotopy theory CycSp of cy-
clotomic spectra to observe (Theorem 2.7) that topological cyclic homology modulo
p commutes with filtered colimits.

Theorem 1.12 (TC/p is finitary). The construction R �→ TC(R)/p, from rings R
to spectra, commutes with filtered colimits.

Theorem 1.5 also relies on various tools used in the classical rigidity results,
reformulated in a slightly different form as the finiteness of certain functors, as well
as the theory of non-unital henselian rings. In addition, it relies heavily on the

2In fact, Gabber rigidity fails for negative K-theory, cf. the discussion in [87, Ex. 8.5], based
on [73].
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K-THEORY AND TC OF HENSELIAN PAIRS 415

calculations of Geisser–Levine [34] and Geisser–Hesselholt [30] of p-adic algebraic
K-theory and topological cyclic homology for smooth schemes in characteristic p.
We do not know if it is possible to give a proof of our result without using all
of these techniques. However, in many cases (e.g., Fp-algebras) Theorem 1.5 can
be proved without the full strength of the finiteness and spectral machinery; see
Remark 4.38.

1.3. Conventions. In this paper, we will use the language of ∞-categories and
higher algebra [55, 56]. On the one hand, the constructions of algebraic K-theory
and of the cyclotomic trace are of course much older than the theory of∞-categories.
Many of our arguments use standard homotopical techniques that could be carried
out in a modern model category of spectra, and we have tried to minimize the
use of newer technology in the exposition when possible. On the other hand, we
rely crucially on the Nikolaus–Scholze [65] approach to cyclotomic spectra, which
is ∞-categorical in nature.

All rings will be commutative unless otherwise specified. The category of com-
mutative algebras over a ring R is denoted by CAlg/R.

We will let Sp denote the ∞-category of spectra, and write ⊗ for the smash
product of spectra. The sphere spectrum will be denoted by S0 ∈ Sp. In a stable∞-
category C, we will write HomC(·, ·) ∈ Sp for the mapping spectrum between any two
objects of C. We will generally write lim←−, lim−→ for inverse and direct limits in Sp; in
a model categorical approach, these would be typically called homotopy limits and
colimits and written holim, hocolim. Given an integer r, we let Sp≥r (resp. Sp≤r)
for the subcategory of X ∈ Sp such that πi(X) = 0 for i < r (resp. i > r). We let
τ≥r, τ≤r denote the associated truncation functors.

We let K denote connective K-theory and K denote its nonconnective analog;
TC denotes topological cyclic homology. Given a ring R and an ideal I ⊂ R, we let
K(R, I) (resp. K(R, I)) denote the relative K-theory (resp. relative nonconnective
K-theory), defined as fib(K(R) → K(R/I)) and fib(K(R) → K(R/I)). We define
K inv(R, I),TC(R, I) similarly. Finally, following traditional practice in algebraic
K-theory, we will sometimes write K∗(R;Z/prZ) for the mod pr homotopy of the
spectrum K(R) (i.e., π∗(K(R)/pr)) and similarly for TC.

2. The finiteness property of TC

Given a ring R, we can form both its Hochschild homology HH(R/Z) and
its topological Hochschild homology spectrum THH(R). The main structure on
Hochschild homology is the circle action, enabling one to form the negative cyclic

homology HC−(R/Z) = HH(R/Z)hS
1

. However, there is additional information
contained in topological Hochschild homology, encoded in the structure of a cyclo-
tomic spectrum. Formally, cyclotomic spectra form a symmetric monoidal, stable
∞-category (CycSp,⊗,1), and THH(R) ∈ CycSp. An object of CycSp is in partic-
ular a spectrum with a circle action but also further information. This structure en-
ables one to form the topological cyclic homology TC(R) = HomCycSp(1,THH(R)).
Introduced originally by Bökstedt–Hsiang–Madsen [14], nowadays there are sev-
eral treatments of CycSp by various authors, including Blumberg–Mandell [13],
Barwick–Glasman [6], Nikolaus–Scholze [65], and Ayala–Mazel-Gee–Rozenblyum
[5]. In particular, the paper [65] shows that the structure of CycSp admits a dra-
matic simplification in the bounded-below case.
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416 DUSTIN CLAUSEN ET AL.

The purpose of this section is to prove a structural property of TC. The datum of
a circle action is essentially infinitary in nature: for example, forming S1-homotopy
fixed points is an infinite homotopy limit, and the construction R �→ HC−(R/Z)
does not commute with filtered homotopy colimits. Classical presentations of the
homotopy theory of cyclotomic spectra and TC usually involve infinitary limits,
such as a homotopy limit over a fixed point tower. However, in this section, we
prove the slightly surprising but fundamental property that TC/p commutes with
filtered colimits. Our proof is based on the simplification to the theory CycSp in
the bounded-below case demonstrated by Nikolaus–Scholze [65].

2.1. Reminders on cyclotomic spectra. We start by recalling some facts about
the ∞-category of (p-complete) cyclotomic spectra, following [65].

Definition 2.1 (Nikolaus–Scholze [65]). A cyclotomic spectrum is a tuple

(X, {ϕX,p : X → XtCp}p=2,3,5,...),

where X ∈ Fun(BS1, Sp) is a spectrum with an S1-action which is moreover
equipped with a map ϕp : X → XtCp (the cyclotomic Frobenius at p), for each
prime number p, which is required to be equivariant with respect to the S1-action
on X and the S1 � S1/Cp-action on the Tate construction XtCp . By a standard
abuse of notation we will occasionally denote a cyclotomic spectrum simply by the
underlying spectrum X.

For the precise definition of the ∞-category CycSp of cyclotomic spectra (whose
objects are as above) as a lax equalizer, we refer the reader to [65, II.1]. See
[65, IV.2] for a treatment of the symmetric monoidal structure.

The ∞-category CycSp naturally has the structure of a presentably symmetric
monoidal ∞-category3 and the tensor product recovers the smash product on the
level of underlying spectra with S1-action. Moreover, the forgetful functor CycSp →
Sp reflects equivalences, is exact, and preserves all colimits. These properties may
be deduced from the general formalism of lax equalizers; see [65, II.1].

Definition 2.2. Given X ∈ CycSp, its topological cyclic homology TC(X) is de-
fined as the mapping spectrum TC(X) = HomCycSp(1, X), where 1 ∈ CycSp is the
unit (cf. Definition 2.9). We moreover write

TC−(X) = XhS1

, TP(X) = XtS1

for its negative topological cyclic homology and periodic topological cyclic homology,
the latter having been particularly studied by Hesselholt [41].

The theory of cyclotomic spectra studied more classically using equivariant
stable homotopy theory [13] (building on ideas introduced by Bökstedt–Hsiang–
Madsen [14]) agrees with that of Nikolaus–Scholze in the bounded-below case
[65, Thm. II.6.9]. It is the bounded-below case that is of interest to us, and it
will be convenient to introduce the following notation.

Definition 2.3. Given n ∈ Z, let Sp≥n denote the full subcategory of Sp consisting
of those spectra X that satisfy πi(X) = 0 for i < n. Let CycSp≥n denote the full

3Meaning, a presentable ∞-category with symmetric monoidal tensor product commuting with
colimits in each variable separately; or in other words a commutative algebra object in PrL with
respect to Lurie’s tensor product.
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K-THEORY AND TC OF HENSELIAN PAIRS 417

subcategory of CycSp consisting of those cyclotomic spectra (X, {ϕX,p}p=2,3,5,...)
such that the underlying spectrum X belongs to Sp≥n.

In the case in which X ∈ CycSp is bounded below and p-complete, the theory
simplifies in several ways. Firstly, the Tate constructions XtCq vanish for all primes
q �= p [65, Lem. I.2.9], and therefore we do not need to specify the maps ϕX,q:
the only required data is that of the S1-action and the S1 � S1/Cp-equivariant
Frobenius map ϕX = ϕX,p : X → XtCp . Secondly, there is a basic simplification to
the formula for TC(X), using the two maps

canX , ϕX : TC−(X) ⇒ TP(X).

Here canX is the canonical map from homotopy fixed points to the Tate construc-
tion, while ϕX arises from taking S1-homotopy-fixed points in the cyclotomic struc-
ture map X → XtCp and using a version of the Tate orbit lemma to identify

XtS1 � (XtCp)h(S
1/Cp) since X is bounded below and p-complete [65, Lem. II.4.2].

Using these two maps one has the fundamental formula [65, Prop II.1.9]

(1) TC(X) = fib(TC−(X)
canX−ϕX−−−−−−→ TP(X)),

or equivalently TC(X) is the equalizer of canX , ϕX .
A basic observation which goes into proving the main result of this section is that

the above formula makes TC have an additional finiteness property that theories
such that TC− and TP do not enjoy. Roughly speaking the idea is the following:
if in the definition above we were to replace canX − ϕX with just canX , then the
fiber would be ΣXhS1 , and this certainly commutes with colimits. We will see
that ϕX is close enough to vanishing modulo p to deduce the same conclusion for
TC(X)/p. As another example of such finiteness phenomena, compare for instance
[3], where it was shown that the topological cyclic homology of a smooth and proper
dg category over a finite field is a perfect HZp-module.

Example 2.4. A key source of examples of cyclotomic spectra arises as follows.
If R is a ring (or, more generally, a structured ring spectrum), then one can
form its topological Hochschild homology THH(R) as an object of CycSp, fol-
lowing [65, §III.2]. As usual, we will write TC(R),TC−(R),TP(R) in place of
TC(THH(R)),TC−(THH(R)),TP(THH(R)).

We will also use facts from the classical approach to topological cyclic homol-
ogy (cf. [13, §6]) in order to verify a connectivity statement below. In particular,
given X ∈ CycSp which is p-complete, one extracts genuine fixed point spectra
TRr(X; p) := XCpr−1 for each r ≥ 1, which are related by Restriction (R), Frobe-
nius (F ), and Verschiebung (V ) maps:

R,F : TRr+1(X; p) → TRr(X; p), V : TRr(X; p) → TRr+1(X; p).

Setting TR(X; p) := lim←−R
TRr(X; p), then the topological cyclic homology of X is

classically defined as

(2) TC(X) = fib(TR(X; p)
id−F−−−→ TR(X; p)).

For a comparison between this description of TC and that given in Definition 2.2,
we refer to [65, §II.4] (see also [65, Rem. II.1.3] for the relationship between p-
cyclotomic spectra and cyclotomic spectra).
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418 DUSTIN CLAUSEN ET AL.

It is the classical approach to topological cyclic homology in which important
structures such as the de Rham-Witt complex appear [39], and in which the se-
quence (3) plays a fundamental role. Using the classical approach we also obtain
the following lemma. In Remark 2.14, we will also give a proof purely based on the
Nikolaus–Scholze approach.

Lemma 2.5. Suppose X ∈ CycSp≥n is p-complete. Then TC(X) ∈ Sp≥n−1.

Proof. Using formula (2), it suffices to show that TR(X; p) ∈ Sp≥n; using the
Milnor sequence, it is therefore enough to prove that TRr(X; p) ∈ Sp≥n and that

the Restriction maps R : πnTR
r+1(X; p) → πnTR

r(X; p) are surjective for all
r ≥ 1. But this inductively follows from the basic cofiber sequence (cf. [39, Th. 1.2])

(3) XhCpr
→ TRr+1(X; p)

R→ TRr(X; p)

and the observation that XhCpr
∈ Sp≥n. �

Corollary 2.6. The functor TC/p : CycSp≥0 → Sp, X �→ TC(X)/p commutes
with geometric realizations.

Proof. A geometric realization of connective spectra agrees with its nth partial
geometric realization in degrees < n. Since X �→ TC(X)/p = TC(X/p) decreases
connectivity at most by one by Lemma 2.5, to show that TC/p commutes with
geometric realizations it therefore suffices to show that it commutes with nth partial
geometric realizations for all n. But these are finite colimits, and are thus preserved
by TC/p since the latter is an exact functor. �

2.2. Cocontinuity of TC/p. In this subsection we prove that TC/p commutes
with all colimits:

Theorem 2.7. The functor TC/p : CycSp≥0 → Sp commutes with all colimits.

Since TC/p : CycSp → Sp is an exact functor between stable ∞-categories, it
automatically commutes with finite colimits; thus the essence of the above theorem
is that it commutes with filtered colimits when restricted to CycSp≥0.

Remark 2.8. There is also a dual assertion which is significantly easier. Suppose
we have a tower · · · → X3 → X2 → X1 in CycSp≥0. Then the inverse limit of the
tower {Xi} exists in CycSp (in fact, in CycSp≥−1) and is preserved by the forgetful

functor CycSp → Sp. Indeed, we have (lim←−Xi)
tCp � lim←−X

tCp

i because the Xi’s
are uniformly bounded-below, and taking Cp-homotopy orbits behaves as a finite
colimit in any range of degrees. Then we can appeal to the description of CycSp
as a lax equalizer and [65, Prop. II.1.5]. In particular, it follows that if X = lim←−Xi

on the level of underlying spectra, then TC(X) � lim←−TC(Xi).

The proof of Theorem 2.7 will proceed by reduction to the case of cyclotomic
spectra over the “trivial” cyclotomic spectrum HFtriv

p . We therefore begin by re-

calling the definition of such trivial cyclotomic spectra, before studying HFtriv
p and

its modules in further detail.

Definition 2.9. We have a presentably symmetric monoidal ∞-category CycSp,
so it receives a unique symmetric monoidal, cocontinuous functor

Sp → CycSp, X �→ Xtriv
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K-THEORY AND TC OF HENSELIAN PAIRS 419

whose right adjoint is the functor TC : CycSp → Sp.
More explicitly, this functor X �→ Xtriv can be identified as follows: Xtriv has

underlying spectrum X equipped with the trivial S1-action; there is therefore a re-
sulting S1-equivariant map X → XhCp = F (BCp+, X), and the cyclotomic Frobe-
nius at p for Xtriv is the composition ϕX,p : X → XhCp → XtCp . (Notation: when
X is a p-complete spectrum for a particular prime number p, we will tend to drop
the p from ϕX,p.) Compare the discussion on [65, p. 126].

For example, taking X to be the sphere spectrum S0 ∈ Sp obtains the cyclotomic
sphere spectrum, which is moreover the unit 1 ∈ CycSp.

We will need some results about the cyclotomic spectrum HFtriv
p . Firstly, recall

that the Tate cohomology ring π∗(HF
tCp
p ) = Ĥ−∗(Cp;Fp) is

• (p > 2) the tensor product of an exterior algebra on a degree −1 class with
a Laurent polynomial algebra on a degree −2 class;

• (p = 2) a Laurent polynomial algebra on a degree −1 class.

Calculating the S1-homotopy fixed points and Tate construction of Fp, we find that

TC−
∗ (HFtriv

p ) = Fp[x], TP∗(HFtriv
p ) = Fp[x

±1], where |x| = −2.

The canonical map TC−(HFtriv
p ) → TP(HFtriv

p ) carries x to x (i.e., it is the local-
ization inverting x).

The cyclotomic Frobenius ϕHFp
= ϕHFtriv

p
: HFp → HF

tCp
p is an isomorphism

on π0. An essential point is that the induced Frobenius ϕhS1

HFp
: TC−(HFtriv

p ) →
TP(HFtriv

p ) (which we will abusively also denote by ϕHFp
to avoid clutter, when

the source and target are clear) kills the class x, as we now check.

Lemma 2.10. The Frobenius map ϕHFp
: TC−

∗ (HFtriv
p ) → TP∗(HFtriv

p ) annihi-
lates x.

Proof. There is a commutative diagram of spectra

TC−(HFtriv
p )

ϕHFp ��

��

TP(HFtriv
p )

��
HFp ϕHFp

�� HF
tCp
p

where the top row is obtained by taking S1-homotopy fixed points on the bot-
tom row via the Tate orbit lemma [65, Lem. II.4.2]. The right vertical map

TP(HFtriv
p ) → HF

tCp
p is an isomorphism in degree −2: indeed, the degree −2

generator is invertible in the source by the above calculation of TP(HFtriv
p ), and

therefore necessarily maps to a generator of π−2(HF
tCp
p ) by multiplicativity. Going

both ways around the diagram and noting that of course π−2(HFp) = 0, we find

that ϕHFp
must be zero on π−2(TC

−(HFtriv
p )). �

The previous proof is modeled on the analysis of the cyclotomic spectrum
THH(Fp) [65, Sec. IV-4]. In fact, noting that TC(Fp) receives a map HZp →
TC(Fp) (the source is the connective cover of the target) we obtain a map of cyclo-
tomic spectra HZtriv

p → THH(Fp), which can be used to recover Lemma 2.10 from
the more precise assertions about the cyclotomic spectrum THH(Fp).
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We next need to recall some facts about circle actions on Eilenberg–MacLane
spectra. Cf. [53, Sec. 2.2] for the classical analogs in the theory of cyclic homology.

Lemma 2.11. Let X ∈ ModHZ(Sp
BS1

) be an HZ-module spectrum equipped with
an S1-action. Then:

(1) There is a functorial cofiber sequence of HZ-module spectra

Σ−2XhS1 x−→ XhS1 −→ X,

where the first map is given by multiplication by the generator

x ∈ π−2(HZhS1

) = H2(CP∞;Z).
(2) There is a functorial cofiber sequence of HZ-modules

X → XhS1 → Σ2XhS1 .

(3) There is moreover a functorial cofiber sequence

Σ−2XhS1 xcanX−−−−→ XtS1 −→ XhS1 ,

where canX : XhS1 → XtS1

is the canonical map.

Proof. Assertion (1) is [65, Lemma IV.4.12], in view of the cofiber sequence of

HZhS1

-modules Σ−2HZhS1 x−→ HZhS1 → HZ. For assertion (2), by loc. cit.,

we have functorial equivalences XtS1 � XhS1 ⊗HZhS1 HZtS1

= XhS1

[1/x]. The

fiber sequences Σ(HZ)hS1 → HZhS1 → HZtS1

and ΣXhS1 → XhS1 → XtS1

make (HZ)hS1 into an HZhS1

-module and yield a natural equivalence XhS1 �
XhS1⊗HZhS1 (HZ)hS1 . Using the fiber sequence ofHZhS1

-modulesHZ → (HZ)hS1

x−→ Σ2(HZ)hS1 , we obtain the assertion (2). Assertion (3) follows from assertion

(1) and from the cofiber sequence XhS1 canX→ XtS1 → Σ2XhS1 , where we use that

multiplication by x is an equivalence on XtS1

. �

Proposition 2.12. For X ∈ ModHFtriv
p

(CycSp), there exists a functorial fiber se-
quence

(4) TC(X) −→ X −→ XhS1 .

Proof. We show first that, for X ∈ ModHFtriv
p

(CycSp), the composition

(5) Σ−2TC−(X)
x−→ TC−(X)

ϕX−−→ TP(X)

is functorially nullhomotopic. In fact, since X is an HFtriv
p -module, we find that

TC−(X) is an TC−(HFtriv
p )-module, TP(X) is a TP(HFtriv

p )-module, and the map
ϕX is ϕHFp

-linear. We obtain a resulting functorial commutative diagram, where

the base-changes are along ϕHFp
: TC−(HFtriv

p ) → TP(HFtriv
p ),

(6)

Σ−2TC−(X)
x ��

��

TC−(X)

��

ϕX

�����
���

���
���

���
�

Σ−2TC−(X) ⊗
TC−(HFtrivp )

TP(HF
triv
p )

ϕHFp
(x)

�� TC−(X) ⊗
TC−(HFtrivp )

TP(HF
triv
p ) �� TP(X)

.

However ϕHFp
(x) vanishes, by Lemma 2.10, and so the composite (5) is functorially

nullhomotopic as desired.
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It now follows that there is a functorial commutative diagram

(7) Σ−2TC−(X)

x

��

id �� Σ−2TC−(X)

xcanX

��
TC−(X)

canX−ϕX

�� TP(X)

in which the fiber of the bottom arrow is TC(X) by formula (1). Therefore TC(X)
is also the fiber of the natural map X → XhS1 between the cofibers of the vertical
arrows in the above diagram, where we identify the cofibers using Lemma 2.11. �

See also [65, Prop. IV.3.4] for a closely related result for p-cyclotomic spectra
with Frobenius lifts.

Corollary 2.13. The functor ModHFtriv
p

(CycSp) → Sp given by X �→ TC(X)

commutes with all colimits. That is, the unit of the presentably symmetric monoidal
stable ∞-category ModHFtriv

p
(CycSp) is compact.

Proof. Since passage to homotopy orbits commutes with all colimits, this follows
from Proposition 2.12. �

Remark 2.14. Let X ∈ CycSp≥0 be p-complete. Using the functorial fiber sequence
of Proposition 2.12, we can give an independent proof of Lemma 2.5 (and thus of
Corollary 2.6) which is independent of the classical approach to TC (i.e., based
entirely on the formula (1)). Namely, we argue that TC(X) ∈ Sp≥−1.

First, suppose that X is an HFtriv
p -module. In this case, we find that TC(X) ∈

Sp≥−1 thanks to Proposition 2.12. More generally, if X is a p-complete HZtriv-

module, then we find that X/p is an HFtriv
p -module so that TC(X/p) � TC(X)/p

belongs to Sp≥−1; by p-completeness we deduce that TC(X) ∈ Sp≥−1.
In general, let X ∈ CycSp≥0 be an arbitrary p-complete object. Then, we

consider the Adams tower for X with respect to the commutative algebra object
HZtriv ∈ CycSp, i.e., the tower for the totalization of the cosimplicial object X ⊗
(HZtriv)⊗•+1 (cf. [58, Sec. 2.1] for a reference in this generality). That is, we
consider the tower {Xn} ∈ CycSp defined inductively such that X0 = X and Xn+1

is the fiber of the map Xn → Xn ⊗HZtriv. One sees easily that Xn ∈ CycSp≥n,

and that Xn is p-complete since πi(S
0) is finite for i > 0.

Since Xn/Xn+1 is a HZtriv-module, it follows from the previous analysis that
TC(Xn/Xn+1) ∈ Sp≥(n−1) for each n. Inductively, it follows now that TC(X/Xn+1)

= TC(X0/Xn+1) ∈ Sp≥−1 for each n and that the maps TC(X/Xn+1) →
TC(X/Xn) are surjective on π−1. Since X → X/Xn+1 is an equivalence in de-
grees ≤ n, it follows (as in [65, Lem. I.2.6]) that

XhS1 � lim←−(X/Xn)
hS1

, XtS1 � lim←−(X/Xn)
tS1

and therefore by (1)

TC(X) � lim←−TC(X/Xn).

Using the Milnor exact sequence and the connectivity properties of TC(X/Xn+1),
one concludes that TC(X) ∈ Sp≥−1.

We are now prepared to prove the main result of the subsection.
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Proof of Theorem 2.7. Consider an X ∈ CycSp≥0 which is p-complete. Since

TC(X ⊗ (−)triv) is an exact functor from spectra to spectra with value TC(X)
on S0, we get a natural transformation

TC(X)⊗ (−) → TC(X ⊗ (−)triv),

uniquely characterized by being an equivalence on S0, hence on any finite spec-
trum.4 By Corollary 2.6, it is also an equivalence on any geometric realization of
finite connective spectra, i.e., for any connective spectrum whose homology groups
are finitely generated, e.g., HFp. So we have shown that, for any X ∈ CycSp≥0

which is p-complete, there is a natural equivalence

TC(X)⊗HFp � TC(X ⊗HFtriv
p ).

Replacing X with X/p, the same conclusion follows for an arbitrary X ∈ CycSp≥0.
Then from Corollary 2.13 we deduce that the functorX �→ TC(X)⊗HFp commutes
with colimits in CycSp≥0. Hence, given a diagram I → CycSp≥0, the induced map
of spectra

(8) lim−→
I

TC(Xi) → TC(X)

becomes an equivalence after smashing with HFp. Since both sides are bounded
below mod p by Lemma 2.5, it follows that (8) is an equivalence after smashing
with S0/p. �

The following consequence concerning the topological cyclic homology of rings is
of particular interest. Let Alg(Sp≥0) be the ∞-category of connective associative
ring spectra.

Corollary 2.15. The functor Alg(Sp≥0) → Sp, R �→ TC(R)/p commutes with
sifted colimits.

Proof. This follows from Theorem 2.7 since TC(R) = TC(THH(R)), where we note
that the topological Hochschild homology functor THH : Alg(Sp≥0) → CycSp≥0

commutes with sifted colimits (as geometric realizations and tensor products do).
�

Certain special cases of Corollary 2.15 appear in the literature (or can be ex-
tracted from it).

Example 2.16. For commutative Fp-algebras, Corollary 2.15 can be deduced using
the description of Hesselholt [39] of THH of smooth Fp-algebras in terms of the de
Rham–Witt complex; we detail this in subsection 2.4.

Example 2.17. In the case of square-zero extensions, the verification (called the
p-limit axiom) of Corollary 2.15 plays an important role in the proof that relativeK-
theory and TC with finite coefficients agree for nilimmersions of rings in McCarthy
[62].

4This is a standard “assembly map”. To construct it rigorously, note that left Kan extension
of the restriction of the right hand side to finite spectra is uniquely characterized by its value on
S0, by the universal property of spectra among presentable stable ∞-categories, and therefore
identifies with the left hand side.
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Example 2.18. Let M be an E1-monoid in the ∞-category of spaces, so that one
can form the spherical monoid ring Σ∞

+ M . The formula for TC of spherical monoid
rings [65, Lemma IV.3.1] (preceded by the formula for spherical group rings appear-
ing already in [14, Eq. (0.3)]) shows that for any such R, the cyclotomic structure
map THH(R) → THH(R)tCp factors S1-equivariantly through THH(R)hCp , which
is called a Frobenius lift in [65]. For cyclotomic spectrum X with a Frobenius lift,
the construction of (p-complete) TC simplifies: one has a fiber square [65, Prop.
IV-3.4] relating TC(X) to ΣXhS1 and two copies of X. It follows from this that the
construction M �→ TC(Σ∞

+ M)/p commutes with filtered colimits in M . Since the
free associative algebra is a spherical monoid ring, and since TC is already known
to commute with geometric realizations, one can also deduce Corollary 2.15 in this
way.

2.3. Further finiteness of TC/p. Here we use the material of subsection 2.2 to
deduce further finiteness properties of topological cyclic homology.

Firstly we show that, in any given range, TC/p can be approximated well by
functors finitely built from taking S1-homotopy orbits. Let Fun(CycSp≥0, Sp) de-
note the ∞-category of functors CycSp≥0 → Sp. For our purposes below, we will
need this strengthening and not only Theorem 2.7.

Proposition 2.19. For any given integer n, there exists a functor
F ∈ Fun(CycSp≥0, Sp) with the following properties:

(1) F belongs to the thick subcategory of Fun(CycSp≥0, Sp) generated by the

functor X �→ (X ⊗HFtriv
p )hS1 ;

(2) There exists an equivalence τ≤nF (X) � τ≤n(TC(X)/p).

Proof. We claim that for each n, the functor X �→ TC(X ⊗ τ≤n+1(S
0/p)triv) has

the desired properties. Indeed, it belongs to the thick subcategory generated by
X �→ (X⊗HFtriv

p )hS1 thanks to Proposition 2.12 and assertion (2) of Lemma 2.11,
while the connectivity assertion follows from Lemma 2.5. �

The second finiteness result concerns the “pro” structure of topological cyclic
homology and will be used later in the paper. Given X ∈ CycSp≥0, the classical
approach to topological cyclic homology (cf. subsection 2.1) involves the spectra

TCr(X; p) = fib(TRr(X; p)
R−F−−−→ TRr−1(X; p))

for all r ≥ 1. The system {TCr(X; p)}r≥1 naturally forms a tower of spectra under

the Restriction (or, equivalently, Frobenius) maps, and TC(X; p) = lim←−r
TCr(X; p).

Note that TCr(X; p) ∈ Sp≥−1 for all r ≥ 1 (by the proof of Lemma 2.5), and that
each functor CycSp≥0 → Sp, X �→ TCr(X; p) commutes with all colimits (by
induction using (3)).

Thus the failure of TC to commute with filtered colimits arises from the infinite
tower {TCr(−; p)}r. We will now prove a restatement of Theorem 2.7 to the effect
that this tower is pro-constant modulo p. First we need a couple of general lemmas
on inverse systems.

Lemma 2.20. Let C be a category admitting countable coproducts, and consider a
tower of functors C → Ab, say . . . → Fr → Fr−1 → . . . → F1. Suppose that:

(1) For each X ∈ C we have lim←−r
Fr(X) = lim←−

1

r
Fr(X) = 0.

(2) For each r ∈ N, the functor Fr commutes with countable coproducts.
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Then the tower {Fr}r≥1 is pro-zero, i.e. it is zero as an object of Pro(Fun(C,Ab));
or, equivalently, for all r ∈ N there is an s > r such that the morphism Fs → Fr is
0.

Proof. First we show the weaker claim that for all X ∈ C, the tower {Fr(X)}r
of abelian groups is pro-zero. Set Mr = Fr(X) for brevity. From the hypothesis
we find that an infinite direct sum of copies of the tower {Mr}r has vanishing
lim←−

1; thus [26, Cor. 6] implies that {Mr}r is Mittag–Leffler, i.e., for each r, the

descending sequence {im(Ms → Mr)}s≥r of submodules of Mr stabilizes. If this
stable submodule were nonzero for some r, we would deduce the existence of a
nonzero element of lim←−s

Ms, contradicting the hypothesis. Thus the stable value is

0 for all r, which exactly means that {Mr}r is pro-zero.
Now, suppose the claim of the lemma does not hold, i.e., {Fr}r is not pro-zero.

Then for each r ∈ N and s > r, we can find a Y ∈ C such that Fs(Y ) → Fr(Y ) is
nonzero. Let X denote the coproduct over all pairs s > r of a choice of such a Y .
Then for every s > r the map Fs(X) → Fr(X) is nonzero, so we deduce that the
tower {Fr(X)} is not pro-zero, in contradiction to what was established above. �

Lemma 2.21. Let C be an ∞-category admitting countable coproducts, and consider
a tower of functors C → Sp, say . . . → Fr → Fr−1 . . . → F1. Suppose that:

(1) For each X ∈ C we have lim←−r
Fr(X) = 0.

(2) For each r ∈ N, the functor Fr commutes with countable coproducts.
(3) The homotopy groups of each Fr(X) are zero outside some fixed interval

[a, b], independent of X and r.

Then the tower {Fr}r≥1 is pro-zero, i.e. it is zero as an object of Pro(Fun(C, Sp)).

Proof. The Milnor sequence and induction up the Postnikov tower show that (1)

implies lim←−r
πiFr(X) = lim←−

1

r
πiFr(X) = 0 for all i ∈ Z. Since πi commutes with

coproducts, we can apply the previous lemma to {πiFr}r and conclude that each
tower {πiFr}r is pro-zero. Thus each Postnikov section of {Fr}r is pro-zero, and
therefore so is {Fr}r itself, by devissage up the (finite) Postnikov tower. �

Proposition 2.22. Fix an integer k. Then the tower of objects of
Fun(CycSp≥0, Sp) given by {τ≤k(TC

r(−)/p)}r is pro-constant with value
τ≤k(TC(−)/p).

Proof. Setting Fr(X)
def
= τ≤k+1cofib(TC(X)/p → TCr(X)/p), we will show that

the tower {Fr(−)}r is pro-zero. As k varies, this shows that the map {TC(−)/p} →
{TCr(−)/p}r is a pro-isomorphism on each homotopy group in degrees ≤ k (in the
pro-category of functors CycSp≥0 → Ab), which is enough to conclude. Certainly
lim←−r

Fr(X) = 0, and Fr commutes with arbitrary coproducts by Theorem 2.7, so

the desired claim follows from Lemma 2.21. �

2.4. TC/p via de Rham–Witt. In the previous subsections, we proved that TC/p
commutes with filtered colimits on the ∞-category CycSp≥0. In practice, one is
usually interested in TC of rings, i.e., TC of the cyclotomic spectra THH(R) for
rings R.

The purpose of this subsection is twofold. The first is to review explicitly the
apparatus of THH,TC, and the de Rham–Witt complex in the case of smooth Fp-
algebras, which we will need in the sequel. The second is to use this formalism

Licensed to Univ of Rochester. Prepared on Sat Mar  1 12:04:41 EST 2025 for download from IP 128.151.13.115.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



K-THEORY AND TC OF HENSELIAN PAIRS 425

to present a more direct approach to proving that TC/p commutes with filtered
colimits on the category of (discrete, commutative) Fp-algebras. While this is much
weaker than what we have already established (and will be insufficient for some of
our applications), it can be proved without the new approach to cyclotomic spectra
of [65], and is historically the first case which was known to some experts.

We begin with a review of the relevant algebraic concepts. Let R be an Fp-
algebra (always assumed commutative). We let Ωn

R denote the n-forms of R (over
Fp) and let Ω∗

R denote the algebraic de Rham complex of R.

Definition 2.23. The inverse Cartier operator C−1 : Ωn
R → Hn(Ω∗

R) ⊂ Ωn
R/dΩ

n−1
R

is the multiplicative operator uniquely characterized by the formulas C−1(a) =
ap, C−1(db) = bp−1db, for a, b ∈ R. See [17], also [8, Prop. 3.3.4], for a construc-
tion of this map.

Note that the construction C−1 is not well-defined as an operator Ωn
R → Ωn

R;
it is only well-defined modulo boundaries. It has image in the cohomology of the
de Rham complex; if we further assume that R is ind-smooth, i.e., can be written
as a filtered colimit of smooth Fp-algebras,

5 then C−1 provides a natural (Frobe-
nius semi-linear) isomorphism between Ωn

R and Hn(Ω∗
R) by the classical Cartier

isomorphism, cf. [47, Th. 7.2].

Definition 2.24 (The de Rham–Witt complex). Let R be an Fp-algebra. For
r ≥ 1, we denote as usual by

Wr(R)
d−→ WrΩ

1
R

d−→ WrΩ
2
R

d−→ · · ·
the classical de Rham–Witt complex (more precisely, differential graded algebras)
of Bloch–Deligne–Illusie [46]; this is the usual de Rham complex Ω•

R in the case
r = 1. We recall that the individual de Rham–Witt groups are equipped with
Restriction and Frobenius maps R,F : WrΩ

n
R → Wr−1Ω

n
R. We let WΩ∗

R denote
the inverse limit of the tower {WrΩ

∗
R} under the Restriction maps.

The operator F acts as a type of divided Frobenius. For example, one has a
commutative diagram

(9) WΩ∗
R

��

F �� WΩ∗
R

��
Ω∗

R
C−1

�� Ω∗
R/dΩ

∗−1
R .

Here the vertical maps are induced by the natural projections to the first term of
the inverse limit defining WΩ∗

R.
In the approach to THH via equivariant stable homotopy theory, the de Rham–

Witt complex plays a fundamental role thanks to the following result of Hessel-
holt, a version of the classical Hochschild–Kostant–Rosenberg (HKR) theorem for
Hochschild homology.

Theorem 2.25 (Hesselholt [39]). Let R be a smooth Fp-algebra. Then, for each
s ≥ 1, we have an isomorphism of graded rings

(10) TRs
∗(R; p) � WsΩ

∗
R ⊗Z/ps Z/ps[σs], |σs| = 2.

5Since smooth algebras are finitely presented, it follows that the category of ind-smooth alge-
bras indeed identifies with Ind of the category of smooth algebras.
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The Restriction maps are determined by the Restriction maps on the de Rham–Witt
complex and send σs �→ pσs−1. Therefore, we have an isomorphism

(11) TR∗(R; p) � WΩ∗
R,

and the F map on TR(R; p) induces the F map on WΩ∗
R.

We can now prove the finiteness property of TC/p for Fp-algebras. While the
result is not logically necessary now, the diagram (12) will play a role in the sequel.

Proposition 2.26. The functor CAlg/Fp
→ Sp, R �→ TC(R)/p commutes with

filtered colimits.

Proof. Let R = colimi Ri be a filtered colimit of Fp-algebras. By functorially pick-
ing simplicial resolutions of all the terms by ind-smooth Fp-algebras, and recalling
that TC/p commutes with geometric realizations of rings, we reduce to the case in
which all the Ri (hence also R itself) are ind-smooth over Fp.

Next we use Hesselholt’s HKR theorem. Since each TRs(−; p) commutes with
filtered colimits (induction on (2)), as does WsΩ

n
−, the formula (10) remains valid

for ind-smooth Fp-algebras. By taking the inverse limit over s, we deduce that
π∗(TR(R; p)) � WΩ∗

R for any ind-smooth Fp-algebra R, i.e., (11) is valid in the ind-
smooth case as well. Note here that each WΩn

R is p-torsion-free, by a basic property
of the de Rham–Witt complex for smooth Fp-algebras [46, Cor. I.3.6] which can
easily be extended to the ind-smooth case as it derives from the stronger assertion
that each Restriction map WsΩ

∗
R → Ws−1Ω

∗
R annihilates every element x ∈ WsΩ

∗
R

with px = 0. As a result, we also conclude that π∗(TR(R; p)/p) � WΩ∗
R/p.

Taking fixed points for the Frobenius, we find that πn(TC(R)/p) fits into an
exact sequence

WΩn+1
R /p

F−1−−−→ WΩn+1
R /p −→ πn(TC(R)/p) −→ WΩn

R/p
F−1−−−→ WΩn

R/p,

and similarly for each Ri. To complete the proof it is enough to show, for each
n ≥ 0, that the kernel and cokernel of F − 1 : WΩn

−/p → WΩn
−/p commutes with

our filtered colimit R = colimi Ri; we stress that WΩn
−/p does not commute with

filtered colimits.
For any ind-smooth Fp-algebra R, consider the commutative diagram

(12) WΩn
R/p

F−1 ��

��

WΩn
R/p

��
Ωn

R
C−1−1

�� Ωn
R/dΩ

n−1
R

.

Here C−1 is the inverse Cartier operator. To complete the proof we will show that
the two horizontal arrows have isomorphic kernels (resp. cokernels), i.e., the square
is both cartesian and cocartesian.

To see this, it suffices to show that the map induced between the kernels of
the vertical maps (which are surjective) is an isomorphism. The kernel of the
map WΩn

R → Ωn
R is generated by the images of V, dV by [46, Proposition I.3.18].

Note that the citation is for smooth Fp-algebras, but the statement clearly passes
to an ind-smooth algebra as the terms WsΩ

n
− commute with filtered colimits and

WΩn
− = lim←−WsΩ

n
−. It follows that the kernel of the first vertical map in (12)
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K-THEORY AND TC OF HENSELIAN PAIRS 427

is spanned by the images of V, dV while the kernel of the second vertical map is
spanned by the images of V, d.

Thus, we need to show that the map

(13) F − 1 : im
(
WΩn

R/p⊕WΩn−1
R /p

V+dV−−−−→ WΩn
R/p

)

→ im
(
WΩn

R/p⊕WΩn−1
R /p

V+d−−−→ WΩn
R/p

)
is an isomorphism.

First, we show that F − 1 is surjective. We record the following identities in
WΩn

R/p,

(F − 1)V = −V, (F − 1)d
∑
i>0

V i = d;

using it, we see immediately that F − 1 is surjective in (13).
To see injectivity, we will use an important property of the de Rham–Witt com-

plex: the image of F on WΩn
R consists precisely of those elements w with dw

divisible by p, thanks to [46, (I.3.21.1.5)]. Again, the reference is stated in the
smooth case, but it also passes to the ind-smooth case;6 for more on this point
cf. [8, Sec. 2].

Suppose x ∈ WΩn
R can be written as x = V y + dV z and (F − 1)x is divisible

by p; we show that x is divisible by p in WΩn
R. This will hold if y, z ∈ im(F ).

First, −dx ≡ d((F − 1)x) modulo p, so dx is divisible by p. It follows that dV y,
and hence dy = FdV y is divisible by p, so that y belongs to the image of F . In
particular, modulo p, we have x ≡ dV z and (F−1)dV z = d(z−V z) is divisible by p.
Therefore, z− V z belongs to the image of F . Since the operator V is topologically
nilpotent on WΩn

R, we find that (1− V ) is invertible and z ∈ im(F ). Therefore, x
is divisible by p as desired. �

An alternate approach to the de Rham–Witt complex is developed in [8] based
on the theory of strict Dieudonné complexes, which are essentially a linear version
of Witt complexes (at least in the case of algebras over Fp).

A saturated Dieudonné complex (X∗, d, F ) is a p-torsion-free cochain complex
equipped with an operator F : X∗ → X∗ such that dF = pFd, the operator
F : Xn → Xn is injective, and the image of F consists precisely of those x ∈ Xn

such that p divides dx; this implies that one can define uniquely an operator V such
that FV = V F = p. A saturated Dieudonné complex (X∗, d, F ) is called strict if
X∗ is in addition complete for the filtration defined by {im(V n, dV n)}. The de
Rham–Witt complex of an ind-smooth algebra is a strict Dieudonné complex, and
the functorA �→ WΩ∗

A commutes with filtered colimits from ind-smooth Fp-algebras
to the category of strict Dieudonné complexes (where colimits in the latter involve
a completion process). Thus, the result can be deduced once one knows:

6Since the passage to the ind-smooth case is not completely immediate, we provide the
argument. Firstly, the quasi-isomorphisms WsΩ•

R/p � Ω•
R for s ≥ 1 in the smooth case

[46, Corol. I.3.15] extend at once to the ind-smooth case, and taking the limit then shows
WΩ•

R/p � Ω•
R (to take the limit recall again that the p-torsion in WsΩn

R is annihilated by

R : WsΩn
R → Ws−1Ωn

R). Secondly, the identity ker(d : Ωn
R → Ωn+1

R ) = Im(F : W2Ωn
R → Ωn

R)
also extends at once from the smooth [46, Prop. I.3.21] to the ind-smooth case. Therefore, given
w ∈ WΩn

R satisfying dw ∈ pWΩn
R, we may write w = Fx + y for some x, y ∈ WΩn

R such that y
vanishes in Ωn

R. But then dy = dw − pFdx ∈ pWΩn
R, so y defines a class in Hn(WΩ•/p) which

vanishes in Hn(Ω•
R); by the first claim, we deduce that the initial class was zero, in other words

that y = dz + pz′ for some z ∈ WΩn−1
R , z′ ∈ WΩn

R. So w = Fx+ FdV z + FV z′, as required.
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Proposition 2.27. The functors from the category of strict Dieudonné complexes
to graded abelian groups given by

(X∗, d, F ) �→ ker(F − 1 : X∗/p → X∗/p), coker(F − 1 : X∗/p → X∗/p)

commute with filtered colimits.

Proposition 2.27 can be proved in an entirely analogous manner as above.

3. Henselian rings and pairs

3.1. Nonunital rings. In this section we will study various categories of non-unital
rings.

Definition 3.1. Given a commutative base ring R, a nonunital R-algebra is an
R-module I equipped with a multiplication map I ⊗R I → I which is commutative
and associative. We denote the category of nonunital R-algebras by RingnuR . By
contrast, when we say “R-algebra,” we assume the existence of a unit.

Given an R-algebra S, any ideal I ⊂ S is a nonunital R-algebra. Conversely,
given a nonunital R-algebra J , we can adjoin to it a unit and thus form the R-
algebra S = R � J , in which J is embedded as an ideal. This latter construction
establishes an equivalence between the category of nonunital R-algebras and the
category of augmented R-algebras.

Note that the category RingnuR has all limits and colimits, and that the forgetful
functor to sets preserves all limits and sifted colimits. We next describe the free
objects in RingnuR .

Example 3.2. Let R[x1, . . . , xn]
+ denote the ideal (x1, . . . , xn) ⊂ R[x1, . . . , xn] in

the polynomial ring R[x1, . . . , xn]. Then R[x1, . . . , xn]
+ is the free object of RingnuR

on n generators.

Example 3.3. We say that a sequence I ′ → I → I in RingnuR is a short exact
sequence if it is a short exact sequence of underlying abelian groups. That is,
I → I is surjective, and we can recover I ′ as the pullback 0 ×I I in the category
RingnuR .

Next we define the notion of a local nonunital R-algebra.

Definition 3.4. A non-unital R-algebra I is local if the following equivalent con-
ditions hold:

(1) For any x ∈ I, there exists y ∈ I (necessarily unique) such that x+y+xy =
0.

(2) Whenever I embeds as an ideal in an R-algebra S, then I is contained in
the Jacobson radical of S.

(3) I ⊂ R � I is contained in the Jacobson radical of R� I.

The equivalence of the above conditions follows because, given an ideal I ⊂ S in
a commutative ring S, then I belongs to the Jacobson radical of S if and only if
1 + I consists of units of S.

We let Ringnu,locR ⊂ RingnuR denote the full subcategory of nonunital local R-
algebras.

Since the element y in condition (1) is unique, the subcategory Ringnu,locR is
closed under limits and sifted colimits in RingnuR , both of which are computed at
the level of underlying sets.
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K-THEORY AND TC OF HENSELIAN PAIRS 429

To describe all colimits, we need to localize further by observing that the inclu-

sion Ringnu,locR ⊂ RingnuR admits a left adjoint. Namely, given a nonunital R-algebra
I, we can build a local nonunital R-algebra I[(1 + I)−1] as follows: the elements
formally written “1 + x” for x ∈ I form a commutative monoid under multiplica-
tion, and this monoid acts on I by multiplication. This makes I into a non-unital
algebra over the monoid ring R[1 + I], and we can set

(14) I[(1 + I)−1] := I ⊗R[1+I] R[(1 + I)gp],

where (1 + I)gp is the group completion.
Equivalently, if I is embedded as an ideal in an R-algebra S, then we can form

the localization S[(1 + I)−1] in the usual sense of commutative algebra, and then
realize I[(1 + I)−1] as the kernel of the augmentation S[(1 + I)−1] → S/I. The
equivalence of this description with the previous one follows from the exactness of
localizations.

In any case, this construction RingnuR → Ringnu,locR , I �→ I[(1 + I)−1] is the

desired left adjoint. To compute a colimit in Ringnu,locR , one computes the colimit
in RingnuR and then applies this left adjoint.

Example 3.5. Let R[x1, . . . , xn]
+
(x1,...,xn)

∈ Ringnu,locR be the image of

R[x1, . . . , xn]
+ ∈ RingnuR under the left adjoint explained above. In other words,

R[x1, . . . , xn]
+
(x1,...,xn)

is the ideal (x1, . . . , xn) of the localization

R[x1, . . . , xn]1+(x1,...,xn) of the polynomial ring R[x1, . . . , xn] at its multiplicative
subset 1 + (x1, . . . , xn).

It follows that R[x1, . . . , xn]
+
(x1,...,xn)

is a local nonunital R-algebra, and it is the

free object on n generators.

Remark 3.6. Stated more formally, the preceding discussion shows that the inclu-

sion Ringnu,locR ⊂ RingnuR is the right adjoint of a localization functor on the category

RingnuR . Specifically, Ringnu,locR consists of those objects in I ∈ RingnuR which are

orthogonal [15, Sec. 5.4] to the map R[x]+ → R[x]+1+(x), in the sense such that any

map R[x]+ → I extends uniquely over R[x]+1+(x). Moreover, one sees easily from

the construction of the localization (14) that it is independent of the ground ring
R.

Analogous statements will be true when we restrict further to the subcategory
of henselian nonunital rings; see the proof of Lemma 3.9.

We now make the following definition following the discussion in [27]. This is
surely known to experts, but for the convenience of the reader we spell out some
details.

Definition 3.7. A nonunital R-algebra I is henselian if for every n ≥ 1 and every
polynomial g(x) ∈ I[x], the equation

(15) x(1 + x)n−1 + g(x) = 0

has a solution in I. We let Ringnu,hR ⊂ RingnuR denote the full subcategory of
henselian nonunital R-algebras.

Remark 3.8. We note that if I is a henselian nonunital R-algebra then:

(1) Considering the equation x+ xy + y = 0 for y ∈ I, we find that I is local,

i.e., Ringnu,hR ⊂ Ringnu,locR .
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(2) The root of equation (15) is necessarily unique: denoting the equation by
f(x) = 0 for simplicity, if α, α′ ∈ I are both roots then we have f ′(α) ∈ 1+I
and so the Taylor expansion shows that

0 = f(α)− f(α′) ∈ α− α′ + I(α− α′),

whence α = α′ since I is local.

Since the solution of (15) is unique if it exists, the category of henselian nonunital
rings has all limits and sifted colimits, both of which are computed at the level of

underlying sets. Moreover, if I � I ′ is a surjection in RingnuR and I ∈ Ringnu,hR , then

I ′ ∈ Ringnu,hR too. Finally, the condition that a nonunital R-algebra be henselian
does not depend on the base ring R, i.e., we might as well take R = Z in the
definition.

Now we prove the existence of a left adjoint RingnuR → Ringnu,hR , which will be
called henselization.7 We will see in Corollary 3.22 that the henselization does not
depend on the base ring R.

Lemma 3.9. The category Ringnu,hR is presentable and the inclusion Ringnu,hR ⊂
RingnuR admits a left adjoint.

Proof. It follows from the above discussion that Ringnu,hR is the orthogonal [15,
Sec. 5.4] of RingnuR with respect to the maps

fn,t : R[x0, . . . , xt]
+ → R[x0, . . . , xt, y]

+/(y(1 + y)n−1 + x0 + x1y + · · ·+ xty
t),

for n, t ≥ 1. That is, a given object X ∈ RingnuR belongs to Ringnu,hR if and only if

(16)
HomRingnu

R
(R[x0, . . . , xt, y]

+/(y(1 + y)n−1 + x0 + x1y + · · ·+ xty
t), X)

·◦fn,t−−−−→ HomRingnu
R
(R[x0, . . . , xt]

+, X)

is an isomorphism for all n, t ≥ 1. It now follows formally that Ringnu,hR is pre-
sentable and the desired left adjoint exists [15, Cor. 5.4.8].

Alternatively, one can appeal to the theory of henselian pairs and define the left
adjoint directly by taking the henselization of the pair (R� I, I); see Construction
3.18. �

Example 3.10. Let R {x1, . . . , xn}+ ∈ Ringnu,hR denote the henselization of

R[x1, . . . , xn]
+ ∈ RingnuR . By construction, R {x1, . . . , xn}+ ∈ Ringnu,hR is the free

object on n generators.

Remark 3.11. The categories RingnuR , Ringnu,locR and Ringnu,hR are all examples of
models for a Lawvere or algebraic theory [1, Ch. 3], [16, Ch. 3].

Let C be a category satisfying the following conditions:

(Law) C has all limits and colimits, and is equipped with a functor U : C → Sets
which is conservative, preserves sifted colimits, and admits a left adjoint
F : Sets → C.

7It follows from this that the category of henselian nonunital rings is the category of algebras
over a Lawvere theory, cf. Remark 3.11. The free algebras in this theory are the henselizations of
polynomial rings, Example 3.10.
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K-THEORY AND TC OF HENSELIAN PAIRS 431

For example, C might be the category of rings, nonunital rings, groups, etc. In this
case, one takes for U the forgetful functor taking the underlying set, and its right
adjoint F is the free ring, nonunital ring, group, etc. on the given set. Denoting
by {1} a one-point set, the element F ({1}) is therefore both compact projective
(i.e., HomC(F ({1}), ·) commutes with sifted colimits) and a strong generator (i.e.,
HomC(F ({1}), ·) is faithful and conservative). The free object of C on n generators is
by definition

⊔
n F ({1}) � F ({1, . . . , n}). By the monadicity theorem, C is monadic

over Sets, via a monad that preserves sifted colimits.
Let C′ ⊂ C be a full subcategory, and assume that C′ is closed under limits

and sifted colimits (in C) and that the inclusion C′ ⊂ C is a right adjoint. Then
clearly C′ also satisfies conditions (Law), with U ′ given by the restriction of U to
C′. Moreover, the free objects of C′ are given by applying the left adjoint C → C′

to the free objects of C. In practice, this is how the “free objects” in the above
categories are constructed.

According to general results of Lawvere theory [16, Thm. 3.9.1] (in fact, we do
not use the results in this paragraph, but the point of view may be helpful), the
full subcategory CΣ ⊂ C of compact projective objects of C is the idempotent com-
pletion of the full subcategory consisting of the free objects {

⊔
n F ({1}) : n ≥ 0}.

Furthermore, C can be identified with the category of presheaves on CΣ which com-
mute with finite products. In particular, objects of C can be identified with sets
equipped with various “operations” arising from maps between the free objects
satisfying various relations.

3.2. Henselian pairs. Following Gabber [27], we now discuss the connection be-
tween henselian nonunital rings and the more familiar notion of henselian pairs
[79, Tag 09XD] or [72, Ch. XI]. We will thus deduce that the constructions of the
previous subsection do not depend on the base ring R.

Definition 3.12. A pair is the data (S, I) where S is a commutative ring and
I ⊂ S is an ideal. The collection of pairs forms a category in the obvious manner.

The pair (S, I) is said to be henselian if the following equivalent (cf. [79, Tag
09XD] for the equivalence) conditions hold:

(1) Given a polynomial f(x) ∈ S[x] and a root α ∈ S/I of f ∈ (S/I)[x] with

f
′
(α) being a unit of S/I, then α lifts to a root α ∈ S of f . Note that the

lifted root α ∈ S is necessarily unique by the same argument as we gave
after Definition 3.7.

(2) The ideal I is contained in the Jacobson radical of S, and the same condition
as (1) holds for monic polynomials f(x) ∈ S[x].

(3) Given any commutative diagram

(17) A

��

�� S

��
B ��

���
�

�
�

�
S/I

with A → B étale, there exists a lift as in the dotted arrow.

We may also say that the surjective map S → S/I is a henselian pair, if there is no
risk of confusion.

If S is local with maximal ideal m, then S is said to be a henselian local ring if
(S,m) is a henselian pair.
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Remark 3.13 (Uniqueness in the lifting property). Let (S, I) be a henselian pair
and consider a diagram as in (17) with A → B étale. Then the lifting is unique.
Indeed, given two liftings f1, f2 : B → S in (17), we have a commutative diagram

B ⊗A B

m

��

f1⊗f2 �� S

��
B �� S/I,

for m : B ⊗A B → B the multiplication map. Since m is also étale (in fact, the
projection on a direct factor), the lifting property again shows that f1 ⊗ f2 factors
through m, so f1 = f2.

Remark 3.14 (Cf. [79, Tag 09XD]). Let (R, I) be a henselian pair and let J ⊂ I be
a subideal. Then (R, J) remains a henselian pair.

We also record for future reference the following property of henselian pairs with
respect to smooth morphisms.

Theorem 3.15 (Elkik [25, Sec. II]). Let (S, I) be a henselian pair. Then S → S/I
has the right lifting property with respect to smooth maps. That is, any diagram as
in (17) with A → B smooth (rather than étale) admits a lift as in the dotted arrow.

We crucially need the following observation of Gabber that the condition that
(S, I) be henselian depends only on I as a nonunital ring, cf. also [72, Prop. XI.1].

Proposition 3.16 ([27, Prop. 1]). Let (S, I) be a pair. Then (S, I) is a henselian
pair if and only if I is henselian as a nonunital ring.

Corollary 3.17. Let (S, I) be a pair. Then (S, I) is a henselian pair if and only
if (Z � I, I) is a henselian pair.

We recall the following basic construction (see [79, Tag 0EM7]) in the theory of
henselian pairs.

Construction 3.18. Given a pair (S, I), there is a pair (Sh, Ih) and a map (S, I) →
(Sh, Ih), called the henselization of the original pair, with the following properties.

(1) (Sh, Ih) is a henselian pair and is the initial henselian pair receiving a map
from (S, I). That is, the construction (S, I) �→ (Sh, Ih) is the left adjoint
to the forgetful functor from henselian pairs to pairs.

(2) Sh is a filtered colimit of étale S-algebras and Ih = ISh = I ⊗S Sh.
(3) The map S/I → Sh/Ih is an isomorphism.

Remark 3.19. Let (S, I) be a pair. Suppose given a factorization S → S̃ → S/I

such that S̃ is a filtered colimit of étale S-algebras and such that S̃ → S/I has the

right lifting property with respect to étale morphisms (i.e., the surjection S̃ → S/I

is a henselian pair). Then (S̃, IS̃) is the henselization of (S, I). To see this, consider
a henselian pair (A, J) and a map (S, I) → (A, J). Considering the commutative
diagram

S

��

�� S̃

���
�
�
�

�� S/I

��
A �� A/J

,
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K-THEORY AND TC OF HENSELIAN PAIRS 433

the ind-étaleness of S → S̃ implies the existence of a unique dotted arrow S̃ →
A making the diagram commute (cf. Remark 3.13). This verifies the universal
property of the henselization.

In particular, one can construct (Sh, Ih) by appealing to Quillen’s small object
argument [45, Th. 2.1.14] to factor S → S/I as the composite of a filtered colimit
of étale morphisms and a morphism that has the right lifting property with respect
to étale morphisms; the universal property of the henselization then constructs it
as a functor. Note that in (17), it suffices to take A,B finitely generated over Z,
by the structure theory for étale morphisms.

We now review the relation between henselizations of pairs and henselizations of
nonunital rings. Most of this is implicit in [27], but we spell out the details.

Definition 3.20. A Milnor square of commutative rings is a diagram

(18) S

��

�� T

��
S′ �� T ′

such that the vertical arrows are surjective and such that the diagram is both carte-
sian and cocartesian in the category of commutative rings. It follows in particular
that if I ⊂ S, J ⊂ T are the respective kernels of the vertical maps S → S′, T → T ′,

then f |I : I

→ J establishes an isomorphism of the ideals I, J .

Lemma 3.21. Consider a Milnor square as in (18) with respect to the ideals I ⊂ S,
J ⊂ T . Then the henselizations Sh, Th of S, T along I, J fit into a Milnor square

Sh

��

�� Th

��
S′ �� T ′

.

Furthermore, Th � Sh ⊗S T .

Proof. Since Sh is flat over S, we can base-change (18) along S → Sh to obtain a
new Milnor square

Sh

��

�� T ⊗S Sh

��
S′ ⊗S Sh �� T ′ ⊗S Sh

.

Note that S′ ⊗S Sh � S′ by the properties of the henselization, and similarly for
T . Therefore the bottom arrow can be rewritten as S′ → T ′. Since this is a Milnor
square and the left vertical arrow is a henselian pair, so is the right vertical arrow
thanks to Proposition 3.16. We have a factorization T → T ⊗S Sh → T ′ as the
composite of an ind-étale map and a map having the right lifting property with
respect to étale maps. Thus, the result follows in view of Remark 3.19. �

Corollary 3.22. Let (S, I) be a pair and let (Sh, Ih) be its henselization. Let R be
any ring mapping to S. Then Ih is the henselization of I as an object of RingnuR .
In particular, the henselization of I as an object of RingnuR does not depend on the
base ring R.
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Proof. To distinguish the possible henselizations which a priori might not coincide,
we temporarily write Inuh to denote the henselization of I as an object of RingnuR .
The equivalence between RingnuR and augmented R-algebras easily implies that
(R � Inuh, Inuh) is the henselization of the pair (R � I, I). Applying Lemma 3.21
to the Milnor square

R� I

��

�� S

��
R �� S/I

then reveals that the square

R� Inuh

��

�� Sh

��
R �� Sh/Ih

is also Milnor, i.e., Inuh

→ Ih, as desired. �

Finally we recall Gabber’s result that free henselian nonunital Q-algebras are
colimits of such Z-algebras. For each N > 0, denote by

[N ] : Z {x1, . . . , xn}+ → Z {x1, . . . , xn}+

the endomorphism in Ringnu,h
Z

which sends xi �→ Nxi.

Corollary 3.23 ([27, Prop. 3]). Let n > 0. The filtered colimit of the endo-

morphisms [N ] on Z {x1, . . . , xn}+, indexed over natural numbers N ordered by

divisibility, is Q {x1, . . . , xn}+.

Proof. Henselization commutes with filtered colimits, and the filtered colimit of
the analogous maps [N ] : Z[x1, . . . , xn]

+ is given by Q[x1, . . . , xn]
+. We now use

Corollary 3.22 that henselization does not depend on the base ring. �

4. The main rigidity result

In this section, we prove the main result of the paper (Theorem 4.36), which
states that the relative K-theory and relative topological cyclic homology of a
henselian pair agree after profinite completion.

Our proof will rely on several steps: a direct verification for smooth algebras
in equal characteristic (where it is a corollary of the deep calculations of Geisser–
Levine [34] of p-adic K-theory and of Geisser–Hesselholt [30] of topological cyclic
homology), a finiteness property of K-theory and topological cyclic homology (ex-
pressed in the language of “pseudocoherent functors” below), and an imitation of
the main steps of the proof of Gabber rigidity [27].

4.1. Generalities on pseudocoherence. In this subsection, we describe a basic
finiteness property (called pseudocoherence) for spectrum-valued functors that will
be necessary in the proof of the main theorem. Later, we will show that K-theory
and TC satisfy this property.
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Definition 4.1. Let C be a small category and F : C → Ab a functor. We say
that F is finitely generated if there exist finitely many objects X1, . . . , Xn ∈ C and
a surjection of functors

(19)

t⊕
i=1

Z[HomC(Xi, ·)] � F.

We now want to introduce analogous concepts when Ab is replaced by the ∞-
category Sp of spectra. We consider the ∞-category Fun(C, Sp) of functors from C
to spectra, and recall that Fun(C, Sp) is a presentable, stable ∞-category in which
limits and colimits are computed targetwise. A family of compact generators of
Fun(C, Sp) is given by the corepresentable functors Σ∞

+ HomC(C, ·), for C ∈ C.
Definition 4.2. Let C be a small category and F : C → Sp a functor.

(1) We say that F is perfect if F belongs to the thick subcategory of Fun(C, Sp)
generated by the functors Σ∞

+ HomC(C, ·) for C ∈ C (or equivalently is a
compact object of Fun(C, Sp), by a thick subcategory argument).

(2) We say that F is pseudocoherent if, for each n ∈ Z, there exists a perfect
functor F ′ and a map F ′ → F such that τ≤nF

′(C) → τ≤nF (C) is an
equivalence for all C ∈ C.

In the setting of structured ring spectra, the analog of a perfect functor is a
perfect module and the analog of a pseudocoherent functor is an almost perfect
module. We refer to [56, 7.2.4] for a detailed account of the theory in that setting;
therefore, in our setting of functors, we will only sketch the proofs of the basic
properties. Note in the next result that pseudocoherent functors are automatically
bounded below, so the initial hypothesis is no loss of generality.

Lemma 4.3. Let d ∈ Z. The following conditions on a functor F ∈ Fun(C, Sp≥d) ⊂
Fun(C, Sp) are equivalent:

(1) F is pseudocoherent.
(2) For each n ∈ Z, the functor τ≤nF is a compact object of the ∞-category

Fun(C, Sp≤n).
(3) There exists a sequence Gd−1 = 0 → Gd → Gd+1 → Gd+2 → . . . such that

Gi/Gi−1 is a finite direct sum of functors of the form ΣiΣ∞
+ HomC(C, ·) for

C ∈ C and such that lim−→i
Gi � F .

Proof. Without loss of generality, we can assume d = 0 by shifting. For (1) ⇒ (2),
suppose that F ∈ Fun(C, Sp) (we do not need F connective) is pseudocoherent and
let n ∈ Z. Then by definition there is a perfect functor F ′ and a map F ′ → F
inducing an equivalence τ≤nF

′ � τ≤nF . Since τ≤n : Fun(C, Sp) → Fun(C, Sp≤n)
preserves compact objects (as its right adjoint preserves filtered colimits), it follows
that τ≤nF ∈ Fun(C, Sp≤n) is compact.

For (2) ⇒ (3), suppose that F ∈ Fun(C, Sp≥0) and τ≤nF ∈ Fun(C, Sp≤n) is
compact for each n. Then, by assumption τ≤0F ∈ Fun(C,Ab) ⊂ Fun(C, Sp≤0) is a
compact object and thus π0F is a finitely generated functor. We can thus find a
functor G ∈ Fun(C, Sp≥0) which is a direct sum of Σ∞

+ HomC(X, ·), for finitely many
X ∈ C, and a mapG → F which is a surjection on π0. Let F1 be the resulting cofiber
and observe that F1 has the same property as F (namely τ≤nF1 ∈ Fun(C, Sp≤n)
is compact for each n, since compact objects are closed under pushouts) and that
F1 is connected. Continuing in this way, we find a sequence of functors F → F1 →
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F2 → . . . such that Fn is concentrated in degrees ≥ n and such that the cofiber of
each Fn → Fn+1 is a finite direct sum of shifts of representables. We obtain the
desired sequence Gn by setting Gn = Fib(F → Fn+1).

For (3)⇒ (1), note that eachGn is perfect by induction on n, and thatGn+1 → F
is an equivalence on τ≤n. �

Before stating some more properties, we introduce a further generalization (for
a category relative to a subcategory) that will also be necessary in the sequel.

Definition 4.4. Let D ⊂ C be a small full subcategory of a (possibly large, but
locally small) category C. Let F : C → Sp be a functor.

(1) We say that F is D-perfect if F belongs to the thick subcategory of
Fun(C, Sp) generated by the functors Σ∞

+ HomC(D, ·) for D ∈ D.
(2) We say that a functor F : C → Sp is called D-pseudocoherent if for each

n ∈ Z, there exists a D-perfect functor F ′ and a map F ′ → F such that
τ≤nF

′(C) → τ≤nF (C) is an equivalence for all C ∈ C.
(3) A functor F0 : C → Ab is called D-finitely generated if there is a surjection

as in (19) with Xi ∈ D for each i.

Next, we recall a basic construction that lets us reduce D-pseudocoherence to
(unrelative) pseudocoherence.

Construction 4.5. Let D ⊂ C be a full subcategory. Given a functor G : D → Sp,
we can form the left Kan extension Lan(G) : C → Sp (cf. [55, Sec. 4.3]). By
definition, for C ∈ C, Lan(G)(C) is the colimit

Lan(G)(C) = lim−→
D→C,D∈D

G(D) ∈ Sp.

The construction F �→ Lan(F ) is the left adjoint of the forgetful functor
Fun(C, Sp) → Fun(D, Sp). A functor F ∈ Fun(C, Sp) is said to be left Kan ex-
tended from D if the natural map Lan(F |D) → F is an equivalence in Fun(C, Sp).
The objects of Fun(C, Sp) which are left Kan extended from D form a subcategory
equivalent to Fun(D, Sp) (via restriction).

Lemma 4.6. A functor F : C → Sp is D-pseudocoherent if and only if it is left
Kan extended from D and F |D : D → Sp is pseudocoherent.

Proof. The functor Σ∞
+ HomC(D, ·) ∈ Fun(C, Sp) for D ∈ D is left Kan extended

from D, so a thick subcategory argument shows that any D-perfect functor is left
Kan extended from D. To get the same for any D-pseudocoherent functor, note
that the truncations Sp → Sp≤n are a conservative family of colimit-preserving
functors, so a functor to Sp is left Kan extended if and only if its image in each
Sp≤n is.

Conversely, suppose that F is left Kan extended from D and F |D : D → Sp
is pseudocoherent. Then τ≤nF |D� τ≤nG |D for some G : C → Sp in the thick
subcategory generated by the Σ∞

+ HomC(D, ·), and we deduce τ≤nF � τ≤nG by left
Kan extension. �

Proposition 4.7. Let D ⊂ C be a small full subcategory. Let F : C → Sp≥d be a
functor for some d ∈ Z. Then the following are equivalent:

(1) F is D-pseudocoherent.
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(2) There exists a sequence Gd−1 = 0 → Gd → Gd+1 → Gd+2 → . . . such that
Gi/Gi−1 is a finite direct sum of functors of the form ΣiΣ∞

+ HomC(D, ·) for
D ∈ D and such that lim−→i

Gi � F .

Proof. Combine Lemmas 4.6 and 4.3. �

Proposition 4.8. Let C be a category and D ⊂ C a small full subcategory.

(1) The subcategory of Fun(C, Sp) spanned by the D-pseudocoherent functors is
thick.

(2) Let d ∈ Z, let K be a simplicial set, and let f : K → Fun(C, Sp≥d) be
a K-indexed diagram of functors C → Sp≥d. Suppose that the n-skeleton
sknK is a finite simplicial set for every n ∈ Z and that for each vertex
k0 ∈ K0, the functor f(k0) ∈ Fun(C, Sp) is D-pseudocoherent. Then the
functor lim−→K

f ∈ Fun(C, Sp) is D-pseudocoherent.

(3) Let d ∈ Z, and let F• : Δop → Fun(C, Sp≥d) be a simplicial object in
the category of functors C → Sp≥d. Suppose that Fi is D-pseudocoherent
for every i ≥ 0. Then the geometric realization |F•| : C → Sp is D-
pseudocoherent.

(4) Let d ∈ Z, and let F ∈ Fun(C, Sp) be a D-pseudocoherent functor such that
πnF = 0 for all n < d. Then πdF : C → Ab is a D-finitely generated
functor.

(5) If C has finite coproducts and D is closed under them, then the subcategory
of D-pseudocoherent functors in Fun(C, Sp) is closed under smash products.

Proof. Thanks to Lemma 4.6, we may assume without loss of generality that C = D,
since the property of being left Kan extended is preserved under all colimits. We
may also take d = 0. Claim (1) follows from Lemma 4.3 because compact ob-
jects (of any ∞-category) are closed under finite colimits and retracts. For (2),
it suffices by Lemma 4.3 to show that τ≤n(lim−→K

f) is compact as an object of

Fun(C, Sp≤n) for each n. But τ≤nf = τ≤n(lim−→skn+1K
f) and lim−→skn+1K

f is a fi-

nite colimit of pseudocoherent functors, hence pseudocoherent itself by (1); this
implies the desired compactness assertion. Claim (3) is handled similarly, because
τ≤n(|F•|) � τ≤n(lim−→Δ≤n+1

F ) can be computed as a truncated geometric realiza-

tion, and this is a finite colimit, cf. [56, Lemma 1.2.4.17]. Claim (4) follows from
the filtration Lemma 4.3. For (5), it suffices to observe that the smash products of
functors of the form {Σ∞

+ HomC(X, ·)}X∈D are still of this form under the assump-
tion that C has finite coproducts and D ⊂ C is closed under them. It then follows by
a thick subcategory argument that the subcategory of D-perfect functors is closed
under smash products, which implies the analogous assertion for D-pseudocoherent
functors. �

In order to analyze algebraic K-theory below, it will be useful to use both the
K-theory space and spectrum simultaneously. Therefore we first prove a useful
tool (Proposition 4.10) that for functors F taking values in connected spectra,
pseudocoherence of F is equivalent to that of Σ∞Ω∞F . To prove it, we need
the following general result from Goodwillie calculus. Compare [2, Cor. 1.3], for
instance. The tower {Pn(Σ

∞Ω∞)} is a special case of the Goodwillie tower of an
arbitrary functor introduced in [37].

Licensed to Univ of Rochester. Prepared on Sat Mar  1 12:04:41 EST 2025 for download from IP 128.151.13.115.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



438 DUSTIN CLAUSEN ET AL.

Proposition 4.9. There is a natural tower {Pn = Pn(Σ
∞Ω∞)}n≥0 of functors

Sp → Sp receiving a map from Σ∞Ω∞,

Σ∞Ω∞X → {· · · → Pn(X) → Pn−1(X) → · · · → P1(X)}
such that:

(1) P1(X) � X and the fiber of Pn(X) → Pn−1(X) is naturally equivalent to
(X⊗n)hΣn

.
(2) If X ∈ Sp≥1, the map Σ∞Ω∞X → lim←−n

Pn(X) is an equivalence and the

connectivity of Σ∞Ω∞X → Pn(X) tends to ∞ with n.

We can now prove the following tool for pseudocoherence.

Proposition 4.10. Let C be a category with finite coproducts and let D ⊂ C be
a small subcategory closed under finite coproducts. Let F : C → Sp≥1 a functor.
Then the following are equivalent:

(1) F is D-pseudocoherent.
(2) Σ∞Ω∞F is D-pseudocoherent.
(3) Σ∞

+ Ω∞F is D-pseudocoherent.

Proof. The equivalence of (2) and (3) follows because Σ∞,Σ∞
+ differ by the constant

functor at S0, which is corepresentable since C has an initial object in D.
Suppose F is D-pseudocoherent. Using Proposition 4.9, we conclude that

Σ∞Ω∞F is the homotopy limit of a tower whose associated graded is given by
F, (F⊗2)hΣ2

, (F⊗3)hΣ3
, . . . . Since F takes values in Sp≥1, the connectivity of the

associated graded terms tends to∞, so this tower stabilizes in any given finite range.
As F is D-pseudocoherent, so are all the graded terms in view of Proposition 4.8.
It follows that Σ∞Ω∞F is D-pseudocoherent.

Conversely, suppose Σ∞Ω∞F is D-pseudocoherent. First, recall that the adjunc-
tion (Σ∞,Ω∞) between the ∞-categories of pointed spaces and connective spectra
is monadic since Ω∞|Sp≥0

commutes with sifted colimits [56, Prop. 1.4.3.9] and in

view of the ∞-categorical monadicity theorem [56, Sec. 4.7.3]; alternatively, this
follows explicitly from delooping machinery going back to [61]. As a result of
monadicity, for any X ∈ Sp≥0, one has a natural simplicial spectrum (the bar reso-

lution) (Σ∞Ω∞)•+1X whose geometric realization is equivalent to X. Therefore, in
our case, we can resolve F via the iterates (Σ∞Ω∞)kF for k ≥ 1. By the previous
direction and our assumption, each of these is D-pseudocoherent. Thus we have
written F as a geometric realization of D-pseudocoherent functors C → Sp≥1, so F
itself is D-pseudocoherent. �

Finally, we observe that for functors into connective spectra, pseudocoherence
can be tested after smashing with HZ.

Proposition 4.11. Let D ⊂ C be a small subcategory. Let F : C → Sp be a
functor. If F is D-pseudocoherent, then HZ⊗F is D-pseudocoherent. Conversely,
if F : C → Sp is uniformly bounded-below and HZ ⊗ F is D-pseudocoherent, so is
F .

Proof. The first direction follows because we can approximate HZ in any range
by a finite spectrum. The second direction follows because a thick subcategory
argument now implies that if HZ ⊗ F is D-pseudocoherent, so is τ≤nS

0 ⊗ F for
each n, and we can approximate F in any given range by τ≤nS

0 ⊗ F . �
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4.2. An axiomatic rigidity argument. In this subsection, we present an ax-
iomatic form, in the language of finitely generated functors, of the argument used
by Gabber [27] to deduce rigidity for henselian pairs from the case of henselizations
of smooth points on varieties. We will use the notion of pseudocoherence in the case

where C = Ringnu,hR and D = (Ringnu,hR )Σ is the category of compact projective ob-

jects obtained by idempotent completing the subcategory {R {x1, . . . , xn}+ : n ≥ 0}
of Ringnu,hR .

Definition 4.12. (1) A functor Ringnu,hR → Ab is projectively finitely gener-

ated if it is D-finitely generated for D = (Ringnu,hR )Σ.

(2) A functor Ringnu,hR → Sp is projectively pseudocoherent if it is D-

pseudocoherent for D = (Ringnu,hR )Σ.

Example 4.13. For each n, the functor I �→ Σ∞
+ In (where In here denotes the

cartesian product of n copies of I) is projectively pseudocoherent. Indeed, it is
the suspension spectrum of the corepresentable associated with R{x1, . . . , xn}+ ∈
(Ringnu,hR )Σ.

Example 4.14. A projectively pseudocoherent functor Ringnu,hR → Sp commutes
with filtered colimits. In fact, the corepresentable functors I �→ Σ∞

+ In clearly do,
and the result for arbitrary projectively pseudocoherent functors follows because

the class of functors Ringnu,hR → Sp which commute with filtered colimits is stable
under all colimits. See also Corollary 4.18.

We now give the following technical result for functors into abelian groups, which
is simply a slight reformulation of the approach taken by Gabber [27].

Lemma 4.15. Let F0 : Ringnu,h → Ab be a projectively finitely generated functor.
Suppose that:

(1) F0(I) = 0 if I ∈ Ringnu,h is annihilated by an integer N > 0.

(2) F0(I) = 0 if I ∈ Ringnu,h is a nonunital Q-algebra.

(3) Given a short exact sequence I ′ → I � I in Ringnu,h, the sequence F0(I
′) →

F0(I) → F0(I) → 0 of abelian groups is exact.
(4) F0 commutes with filtered colimits.

Then F0 = 0.

Proof. We will prove the following claim: there exists N ≥ 1 such that, for any
I ∈ Ringnu,h, the inclusion map iN : NI → I induces the zero map 0 = (iN )∗ :
F0(NI) → F0(I). Once this is done, the statement of the lemma will follow by
applying (1) and (3) to the short exact sequence NI → I → I/NI.

As in Corollary 3.23, let [N ] : Z {x1, . . . , xn}+ → Z {x1, . . . , xn}+ be the operator
that multiplies each xi by N , so that the colimit of the [N ], indexed over N ≥
1 ordered by divisibility, is Q {x1, . . . , xn}+. By assumption F0 commutes with
filtered colimits and annihilates any nonunital henselian Q-algebra; so, given any
element u ∈ F0(Z {x1, . . . , xn}+), it follows that there exists N > 0 such that
[N ]∗(u) = 0.

Now we use that F0 is projectively finitely generated. This means that there
exists a surjection

t⊕
i=1

Z[HomRingnu,h(Z {x1, . . . , xni
}+ , ·)] → F0
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of functors for some n1, . . . , nt ≥ 1. For each i = 1, . . . , t, let gi ∈ F0(Z{x1, . . . ,

xni
}+) be the image of id ∈ HomRingnu,h(Z {x1, . . . , xni

}+ ,Z {x1, . . . , xni
}+). Then

the above surjection concretely means the following: given any I ∈ Ringnu,h and
any element y ∈ F0(I), then y is a finite sum of elements of F0(I) obtained by

pushing forward the gi along various maps φ : Z {x1, . . . , xni
}+ → I.

By the second paragraph, there exists an integer N > 0 such that [N ]∗(gi) = 0
for all the generators gi. From this we can easily complete the proof of the claim,
as follows. Given any I ∈ Ringnu,h, every map φ : Z{x1, . . . , xni

}+ → NI has the

property that the composite iN ◦φ : Z {x1, . . . , xni
}+ → I factors through [N ], i.e.,

one has a commutative diagram in Ringnu,h

Z {x1, . . . , xn}+
φ

��

[N ]

��

NI

iN

��
Z {x1, . . . , xn}+ �� I

.

By choice of N it follows that the composite

Z[HomRingnu,h(Z {x1, . . . , xni
}+ , NI)] → F0(NI) → F0(I)

is zero. But we have shown that every element of F0(NI) is a finite sum of elements

of the form φ∗(gi) for various maps φ. Since gi ∈ F0(Z {x1, . . . , xni
}+) is annihilated

by [N ], it follows that (iN )∗ : F0(NI) → F0(I) is zero, as claimed. �

The following is the main technical step used in the proof of our rigidity result.

Proposition 4.16 (Axiomatic rigidity argument). Let F : Ringnu,h → Sp be a
projectively pseudocoherent functor. Suppose that:

(1) For each prime field R and each n, we have F (R {x1, . . . , xn}+) = 0.

(2) Given a short exact sequence I ′ → I � I in Ringnu,h, the sequence F (I ′) →
F (I) → F (I) is a fiber sequence of spectra.

(3) If I ∈ Ringnu,h is nilpotent, then F (I) = 0.

Then F = 0.

Proof. Let R be a prime field and restrict F to Ringnu,hR to obtain a functor FR :

Ringnu,hR → Sp. We observe first that FR is projectively pseudocoherent (since the

building blocks I �→ Σ∞
+ In for projectively pseudocoherent functors Ringnu,hR → Sp

are independent of the base ring R). In particular, FR is left Kan extended from

the subcategory (Ringnu,hR )Σ. By assumption, FR annihilates (Ringnu,hR )Σ, so that

FR = 0 on Ringnu,hR .
It follows that F annihilates any nonunital henselian algebra over a field. More-

over, if I ∈ Ringnu,h is such that there exists N ∈ Z>0 with NI = 0, it follows that
F (I) = 0: in fact, since F preserves finite products we reduce to the case where
N = pr for some r, and then use the short exact sequence pI → I → I/pI where
pI is nilpotent. The resulting fiber sequence then shows that F (I) � F (I/pI) = 0.

Suppose F is not the zero functor. Let d be minimal such that πdF �= 0. Then
πdF is a projectively finitely generated functor Ringnu,h → Ab which commutes
with filtered colimits; furthermore, πdF annihilates any I ∈ Ringnu,h which is
either of bounded torsion or a Q-vector space. Using Lemma 4.15, we find that
πdF = 0, a contradiction. �
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This completes the proofs of the main results from the present subsection. For
the convenience of the reader, we recall that the process of Kan extension which
appeared in our notion of projective pseudocoherence has an alternative description
via simplicial resolutions (which will not be used in the sequel).

Construction 4.17. Let E be an ∞-category that has sifted colimits, fix a base
ring R and a functor

F : Ringnu,hR → E ,
and consider the following condition on F :

(Kan) F is left Kan extended from the subcatgory (Ringnu,hR )Σ ⊂ Ringnu,hR .

Suppose F satisfies (Kan). Then one can compute F from its values on

(Ringnu,hR )Σ as follows. First, F commutes with filtered colimits, and hence its

value is determined on all free objects in Ringnu,hR . Next, if I is an arbitrary
nonunital henselian R-algebra, then there exists an augmented simplicial object

I• : Δop
+ → Ringnu,hR such that I−1 = I, each Ii is a free algebra in Ringnu,hR , and

|I•| � I−1 = I, i.e., I• is a simplicial resolution of I by free objects; then the value
of F on I is given by F (I) = |F (I•)|.

The construction of such simplicial resolutions (and the independence of choices)
is a general homotopical technique going back to Quillen [71], originally developed to
build the cotangent complex via simplicial commutative rings. Using the results of
[71] (which work in particular for any category satisfying (Law) from Remark 3.11,
by [71, Rmk. 1, pg. II.4.2]), we can make the category Fun(Δop,RingnuR ) of simplicial
nonunital henselian R-algebras into a model category where the weak equivalences
and fibrations are those of underlying simplicial sets. The resolution I• of I is
then obtained as a cofibrant replacement in this model category of the constant
simplicial object I. This can also be phrased using the language of nonabelian
derived ∞-categories [55, Sec. 5.5.8].

We record these observations for the future in the following corollary which does
not mention simplicial non-unital henselian rings.

Corollary 4.18. Let E be an ∞-category with sifted colimits, and let

F : Ringnu,hR → E be a functor. Then the following are equivalent:

(1) F is left Kan extended from (Ringnu,hR )Σ ⊂ Ringnu,hR .

(2) Whenever I• is a simplicial object in Ringnu,hR whose geometric realization

is equivalent to I−1 ∈ Ringnu,hR (in particular, the homotopy type of the
underlying simplicial set of I• is discrete), then the map |F (I•)| → F (I−1)
is an equivalence.8 Furthermore, F commutes with filtered colimits.

4.3. Pseudocoherence of K,TC. In this subsection, we show that K-theory and
TC satisfy the projective pseudocoherence property studied in subsection 4.2. Given
a space X, we write C∗(X;Z) = HZ ⊗ Σ∞

+ X for the singular chains on X with
Z-coefficients, viewed as a (generalized) Eilenberg–MacLane spectrum.

Proposition 4.19. The functor Ringnu,h → Sp given by I �→ C∗(BGL∞(Z�I);Z)
is projectively pseudocoherent.

8Since the category of nonunital henselian rings is the category of algebras over a monad on
the category of sets, there is always a canonical resolution of any object by free objects; it would
suffice to consider these resolutions.
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Proof. First, by the homological stability results of Maazen and van der Kallen
[85], we can approximate C∗(BGL∞(Z � I);Z) by C∗(BGLn(Z � I);Z) in any
given finite range. It is crucial for us that this stability range is independent of
the choice of I: namely, the stability range depends on the Krull dimension of the
maximal spectrum of Z� I, but since I is contained in the Jacobson radical this is
the maximal spectrum of Z.

Thus, it suffices to show that for any n, the functor I �→ C∗(BGLn(Z� I);Z) is
projectively pseudocoherent. We use the short exact sequence of groups

1 → GLn(1 + I) → GLn(Z � I) → GLn(Z) → 1,

where GLn(1 + I) is, by definition, the kernel of the second map in the above
sequence. It follows that there is a GLn(Z)-action on C∗(BGLn(1 + I);Z) and we
have

(20) C∗(BGLn(Z � I);Z) � C∗(BGLn(1 + I);Z)hGLn(Z).

We next argue that the functor I �→ C∗(BGLn(1+ I);Z) is projectively pseudo-
coherent. Note that as a set, GLn(1 + I) is naturally isomorphic to the cartesian

product In
2

since I is contained in the radical of Z � I. Now we observe that us-

ing the classical bar construction and the isomorphism (of sets) GLn(1 + I) � In
2

,

C∗(BGLn(1+I);Z) is a geometric realization of functors of the form I �→ Z[In
2i] for

i ≥ 0. Since the functor I �→ Z[In
2i] � HZ⊗Σ∞

+ HomRingnu,h(Z {x1, . . . , xn2i}+ , I)
is clearly projectively pseudocoherent, it follows that I �→ C∗(BGLn(1 + I);Z) is
projectively pseudocoherent as desired.

Finally, the group GLn(Z) admits a finite index normal subgroup N ≤ GLn(Z)
such that BN has the homotopy type of a finite CW complex, by the existence
of the Borel-Serre compactification (see [76] for a survey). Since (−)hGLn(Z) �
((−)hN)h(G/N), we conclude by two applications of Proposition 4.8 that taking
GLn(Z)-homotopy orbits preserves projective pseudocoherence. Therefore, we con-
clude in view of the previous paragraph and (20). �

The following lemma is well-known:

Lemma 4.20. Let (R, I) be a henselian pair. Then K0(R) � K0(R/I).

Proof. In fact, we claim that isomorphism classes of finitely generated projective
R modules and isomorphism classes of finitely generated projective R/I-modules
agree. For one direction, if M,N are finitely generated projective R-modules, then
any isomorphism M/IM � N/IM can be lifted to a map M → N , which is
necessarily an isomorphism by Nakayama’s lemma applied to the kernel; we use
here that I is contained in the Jacobson radical of R. For the other direction, by
lifting idempotents any projective R/I-module lifts to R, cf. [79, Tag 0D49]. �

Proposition 4.21. The functor Ringnu,h → Sp given by I �→ K(Z � I) is projec-
tively pseudocoherent.

Proof. Since I is henselian, we have K0(Z � I) = Z by Lemma 4.20; since the
constant functor Z is projectively pseudocoherent, it remains to see that the functor
I �→ τ≥1K(Z � I) is projectively pseudocoherent. By Propositions 4.10 and 4.11
and the plus-construction description of K-theory (cf. [88, IV.1] for an account), it
suffices to check that the functor

I �→ HZ⊗ Σ∞
+ Ω∞τ≥1K(Z � I) � C∗(BGL∞(Z � I);Z)
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is projectively pseudocoherent, which follows from Proposition 4.19. �

Remark 4.22. In particular, Proposition 4.21 shows that the functor Ringnu,h → Sp,
I �→ K(Z � I) commutes with simplicial resolutions in view of Construction 4.17.
The same argument shows that this also holds in the larger category of nonunital
local rings, even without the henselian condition. This observation, in various forms,
plays an important role in the study of the local structure of K-theory. Compare,
for instance [36, Lemma I.2.2] for the nilpotent case and [22, Ch. III, Prop. 1.4.2]
for a more general assertion for radical pairs.

We next carry out analogous arguments for topological cyclic homology. This is
considerably simpler and does not rely on tools such as homological stability; we
will instead use the finiteness properties of cyclotomic spectra from Section 2.

Lemma 4.23. The Eilenberg–MacLane functor Ringnu,h → Sp given by I �→ HI
is projectively pseudocoherent.

Lemma 4.23 is a direct consequence of the following result, in the context of
abelian groups.

Lemma 4.24. Let Ab be the category of abelian groups. The functor Ab → Sp
given by A �→ HA is Latt-pseudocoherent for Latt ⊂ Ab, the subcategory of finitely
generated free abelian groups.

Proof. We can write functorially HA = lim−→n
Σ−nΣ∞K(A, n) for K(A, n), the nth

Eilenberg–MacLane space for A. This colimit stabilizes in any ranges of degrees
by the Freudenthal suspension theorem, so it suffices to show that the functor
A �→ Σ∞K(A, n) is projectively pseudocoherent. But this follows from the iterated
bar construction which gives a functorial model for K(A, n) as the colimit of an
n-fold simplicial space each of whose terms is a product of copies of A. �

In the setting of HZ-modules rather than spectra, Lemma 4.24 is an unpublished
result of Deligne, which states that any abelian group A has a functorial resolution
by free abelian groups all of whose terms are finite direct sums of the form Z[An].
One can deduce Deligne’s result from the above using the finiteness of the stable
homotopy groups of spheres, and vice versa; compare Proposition 4.11. For more
discussion and a presentation of essentially the same argument in more classical
terms of homological algebra, cf. [75, Appendix to Lec. IV].

Lemma 4.25. The functor Ringnu,h → Sp given by I �→ THH(Z�I) is projectively
pseudocoherent.

Proof. Using the cyclic bar construction for THH, this follows because all the terms
(H(Z� I))⊗k (of which THH is a geometric realization) are projectively pseudoco-
herent in view of Lemma 4.23 and Proposition 4.8. �

Proposition 4.26. The functor Ringnu,h → Sp given by I �→ TC(Z � I)/p is
projectively pseudocoherent.

Proof. This now follows from Lemma 4.25 and Proposition 2.19. Indeed, for any of
the functors F in the statement of the latter, we have that I �→ F (THH(Z� I)) is
projectively pseudocoherent (note that taking S1-homotopy orbits preserves pseu-
docoherence thanks to Proposition 4.8, as the skeleta of BS1 are finite complexes),
and then we can approximate TC/p in any range. �
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4.4. Equal characteristic case. We next prove a special case of the rigidity result
in equal characteristic. We begin by reviewing results of Geisser–Levine [34] and
Geisser–Hesselholt [30] in a formulation that will be convenient for us. Compare
also [29] for a survey treatment. Our main result here (Proposition 4.32) is a special
case of the rigidity statement in the case of a smooth henselian pair over a perfect
field of characteristic p. We keep the notation and terminology of the introduction.
In particular, we will use the cyclotomic trace K(R) → TC(R) for a ring R, and
denote by K inv(R) the homotopy fiber of this map. Recall also (Definition 2.23)
the inverse Cartier operator on differential forms.

Definition 4.27. For an Fp-algebra R, we let νn(R) = ker(1 − C−1 : Ωn
R →

Ωn
R/dΩ

n−1
R ). We will also write this as Ωn

R,log. We also let ν̃n(R) be the cokernel

of 1− C−1.

The construction νn thus defines a sheaf for the étale topology. To see this, we
observe that it is a kernel of a map between two objects, both of which are quasi-
coherent over the Frobenius twist by the next lemma. By contrast, ν̃n vanishes
locally in the étale topology since 1−C−1 is surjective locally in the étale topology.
Moreover, ν0 is the constant sheaf Fp and νn(R) ⊂ Ωn

R is the subgroup generated
étale locally by differential forms d log x1 ∧ · · · ∧ d log xn for x1, . . . , xn units (cf.
[46, Thm. 2.4.2] for the smooth case, and [64, Cor. 4.2] in general).

Lemma 4.28. Let R → S be an étale map of Fp-algebras. Let R(1) → R,S(1) → S
be the Frobenius twists of R and S.9 Then:

(1) The map Ωn
R ⊗R S → Ωn

S is an isomorphism.

(2) The de Rham differentials d : Ωn−1
R → Ωn

R,Ω
n−1
S → Ωn

S are respectively

R(1), S(1)-linear so that the quotients Ωn
R/dΩ

n−1
R ,Ωn

S/dΩ
n−1
S inherit the

structure of R(1), S(1)-modules respectively. The map Ωn
R/dΩ

n−1
R ⊗R(1) S(1)

→ Ωn
S/dΩ

n−1
S is an isomorphism.

Proof. Part (1) is standard. Since R → S is étale, the natural square linking
R(1), R, S(1) and S is cocartesian (cf. [79, Tag 0EBS]), which now implies (2). �

We will need this definition in light of the following fundamental results about
the structure of K-theory and TC for ind-smooth Fp-algebras.

Theorem 4.29. Let R be an ind-smooth Fp-algebra. Then, for each n ≥ 0, one
has:

(1) (Geisser–Levine [34]) There is a natural map πn(K(R)/p) → νn(R), which
is an isomorphism if R is local.

(2) (Geisser–Hesselholt [30]) There is a functorial exact sequence 0 → ν̃n+1(R)
→ πn(TC(R)/p) → νn(R) → 0. Furthermore, under these identifications,
the composite of πn(K(R)/p) → πn(TC(R)/p) → νn(R) (where the first
map arises from the cyclotomic trace) is the map of (1).

(3) If R is local, we have a functorial identification πn(K
inv(R)/p) � ν̃n+2(R).

Proof. First we note that it suffices to prove this theorem in the case where R is
essentially of finite type over Fp, by extending using filtered colimits. Then the first

9Thus R(1) consists of formal expressions of the form “ap”, and the map to R is “ap” �→ ap.
More straightforwardly, we can set R(1) = R and take the map R(1) = R → R to be the Frobenius.
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assertion follows from [34, Thm. 8.3], which shows that on smooth varieties over
Fp, the Zariski sheafification of the presheaf πn(K(·)/p) is given by νn.

The exact sequence describing πn(TC(R)/p) actually follows from (12), though
we will give a slightly different proof of the stronger second claim. Namely, we use
the results of Geisser–Hesselholt [30, Thm. 4.2.6] that on smooth quasi-compact
quasi-separated schemes over Fp, the homotopy group sheaves in the étale topology
of TC/p identify with those of K/p via the cyclotomic trace, and hence identify
with the νn; and moreover one has an étale descent spectral sequence starting from
the étale cohomology of νn and converging to π∗(TC/p). In the étale topology,

there is a short exact sequence of sheaves 0 → νn → Ωn 1−C−1

−−−−→ Ωn/dΩn−1 → 0,
and the second and third terms are quasi-coherent (either over the structure sheaf
or its Frobenius twist by Lemma 4.28), so have no higher cohomology on affines. It
follows that H0((SpecR)et, ν

n) = νn(R), H1((SpecR)et, ν
n) = ν̃n(R), and the étale

descent spectral sequence thus implies the second claim. The third claim follows
from the first two. �

Lemma 4.30. Let (R, I) be a henselian pair. Let s ∈ I and let n ≥ 1. Then the
equation x− sxn = 1 can be solved in R.

Proof. The equation has a simple root in R/I (namely, x = 1), which therefore
admits a lift to R by definition of henselian. �

Proposition 4.31. Let (R, I) be a henselian pair of Fp-algebras. Then for each
n, the map νn(R) → νn(R/I) is surjective and the map ν̃n(R) → ν̃n(R/I) is an
isomorphism.

Proof. We use the commutative diagram

V0

��

�� V1

��
Ωn

R

1−C−1

��

��

Ωn
R/dΩ

n−1
R

��
Ωn

R/I

1−C−1

�� Ωn
R/I/dΩ

n−1
R/I

where we define V0, V1 to be the kernels of the surjective vertical maps Ωn
R → Ωn

R/I

and Ωn
R/dΩ

n−1
R → Ωn

R/I/dΩ
n−1
R/I . We will show that the map V0 → V1 is surjective.

This easily implies the desired conclusions about the maps νn(R) → νn(R/I) and
ν̃n(R) → ν̃n(R/I) thanks to the snake lemma.

Consider a differential form ω = adx1dx2 . . . dxn ∈ Ωn
R such that one of

{a, x1, . . . , xn} belongs to I (here n = 0 is allowed). The image of such a class
in Ωn

R/dΩ
n−1
R belongs to V1, and V1 is generated by such classes. For u ∈ R, we

have

(1− C−1)(uω) = (u− upap−1xp−1
1 . . . xp−1

n )ω.

Since (R, I) is a henselian pair and ap−1xp−1
1 . . . xp−1

n ∈ I, we can choose u ∈ R such

that u − upap−1xp−1
1 . . . xp−1

n = 1, using Lemma 4.30. The class uω ∈ Ωn
R belongs

to V0 and has image given by ω; so ω is in the image of V0 → V1, as desired. �
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Proposition 4.32. Let (R,m) be an ind-smooth henselian local Fp-algebra with
residue field k. Then the map K inv(R) → K inv(k) becomes an equivalence modulo
p.

Proof. By Theorem 4.29, it suffices to show that the map ν̃n(R) → ν̃n(k) is an
isomorphism. This follows from Proposition 4.31. �

4.5. Proof of the main result. In this subsection, we prove the main result of
this paper, Theorem 4.36. Our goal is to show that the construction R �→ K inv(R)
with mod p coefficients is invariant under taking the quotient by a henselian ideal.

A key ingredient in the proof will be to use results of Geisser–Hesselholt [31]
about excision in K-theory and topological cyclic homology to relate the setup of a
general henselian pair to the case (Z � I, I), where we can appeal to the finiteness
results of the previous subsection.

We start by discussing these excision results. For this, we need to invoke the non-
connective variant Kinv of K inv, defined as the fiber of the cyclotomic trace K →
TC from non-connective K-theory. Recall also the standard notation K(R, I) =
fib(K(R) → K(R/I)), and similarly for any other functor on rings.

The following was proved in the rational case in [19], with finite coefficients in
[31], integrally under some assumptions in [23], and in full generality in [51]. Here
commutativity is not necessary.

Theorem 4.33 (Cortiñas; Geisser–Hesselholt; Dundas–Kittang; Land–Tamme).
Suppose R is a unital associative ring, I ⊂ R a two-sided ideal, and f : R → S a
homomorphism such that f restricts to an isomorphism from I to a two-sided ideal
J of S (so one has a Milnor square, cf. Definition 3.20). Then the induced map

Kinv(R, I) → Kinv(S, J)

is an equivalence.

This can be read as saying that Kinv(R, I) “only depends on I.” To make this
precise, one can define Kinv(I) = Kinv(Z�I, I) for any non-unital ring I. Clearly the
new Kinv restricts to the old one on unital rings; moreover, Theorem 4.33 implies
that Kinv sends short exact sequences I ′ → I � I ′′ of non-unital rings to fiber
sequences of spectra. In particular, Kinv(I) � Kinv(R, I) whenever I embeds as a
two-sided ideal in R, in view of Theorem 4.33 applied to the map (Z⊕I, I) → (R, I)
of pairs of rings with an ideal.

For our purposes, we will need the analog of Theorem 4.33 for connective K-
theory, in the context of non-unital henselian (commutative) rings. We can make
the switch thanks to the following proposition, whose proof uses another excision
theorem due to Bass-Milnor-Swan:

Proposition 4.34. Suppose (R, I) is a henselian pair, and f : R → S is a ring
homomorphism such that f restricts to an isomorphism from I to an ideal J of S.
Then the square of spectra

(21) K(R, I)

��

�� K(S, J)

��
K(R, I) �� K(S, J)

is cartesian.
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Proof. Let F be the fiber of the top horizontal map and let F be the fiber of the
bottom horizontal map. Note that the maps K(R) → K(R),K(R/I) → K(R/I),
etc. are equivalences in degrees ≥ 0; thus, taking fibers, the maps K(R, I) →
K(R, I) and K(S, J) → K(S, J) are equivalences in degrees ≥ 0. Taking fibers
again, we find that the map F → F is an equivalence in degrees ≥ 0.

On the other hand, F is concentrated in degrees ≥ 0 (even ≥ 1) by the excision
theorem of Bass and Bass–Heller–Swan [7, Thm. XII.8.3]. Thus it suffices to show
that F is also concentrated in degrees ≥ 0.

But since (R, I) and (S, J) are henselian pairs, it follows by Lemma 4.20 that
the maps K0(R) → K0(R/I),K0(S) → K0(S/J) are isomorphisms and the maps
K1(R) → K1(R/I),K1(S) → K1(S/J) (which are the abelianizations of
GL∞(R) → GL∞(R/I), GL∞(S) → GL∞(S/J)) are surjections; thus K(R, I)
and K(S, J) are concentrated in degrees ≥ 1, so that F is concentrated in degrees
≥ 0, as desired. �
Corollary 4.35. Suppose (R, I) is a henselian pair, and f : R → S is a ring
homomorphism which restricts to an isomorphism from I to an ideal J ⊂ S. Then
the map K inv(R, I) → K inv(S, J) is an equivalence.

Proof. Combining with the homotopy cartesian square (21) between relative con-
nective and nonconnective K-theory, we find that the result now follows from The-
orem 4.33. �

Again, this can be interpreted as saying that K inv makes sense for non-unital
henselian rings. We can now state and prove the main result of this paper.

Theorem 4.36. Let (R, I) be a henselian pair. Then for any prime number p, the
map K inv(R) → K inv(R/I) becomes an equivalence modulo p. Equivalently, the
map K(R, I) → TC(R, I) becomes an equivalence modulo p.

Proof. By Corollary 4.35, it suffices to consider the case where (R, I) = (Z � I, I)
where I is a nonunital henselian ring. We now consider the functor

F : Ringnu,h → Sp, F (I) = K inv(Z � I, I)/p.

By Propositions 4.21 and 4.26, F is a projectively pseudocoherent functor. Implicit
here is the statement (due to Quillen) that the K-groups of Z are finitely generated,
as are the mod p homotopy groups of TC(Z) (both of which follow from evaluating
the projectively pseudocoherent functors I �→ K(Z � I),TC(Z � I)/p at I = 0).

The assertion of the theorem is that F = 0. We will show this by checking that
F satisfies the hypotheses of Proposition 4.16.

First observe that F sends a short exact sequence I ′ → I � I of nonunital
henselian rings to a fiber sequence of spectra. To see this, we consider the diagram

F (I ′)

id

��

�� F (I)

��

�� F (I)

��
F (I ′) �� K inv(Z � I)/p �� K inv(Z � I)/p.

Note that the right-hand square is homotopy cartesian, so the top row is a fiber
sequence if and only if the bottom row is a fiber sequence. But the bottom row
is a fiber sequence by Corollary 4.35 applied to the homomorphism (Z � I ′, I ′) →
(Z � I, I ′).
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Next, we claim that if I ′ ∈ Ringnu,h is nilpotent, then F (I ′) = 0. This follows
from Theorem 1.2 which shows that K inv(Z � I ′, I ′) = 0. To complete the proof,
i.e., to verify the conditions of Proposition 4.16, we need to check that

F (k {x1, . . . , xn}+) = 0,

whenever k is a prime field. We write k {x1, . . . , xn} for the henselization of the

polynomial ring k[x1, . . . , xn] at (x1, . . . , xn), so k {x1, . . . , xn}+ ⊂ k {x1, . . . , xn}
is the maximal ideal. Using Corollary 4.35, it suffices to show that the map
K inv(k {x1, . . . , xn}) → K inv(k) is an equivalence modulo p. There are two cases
for this. If char(k) �= p, this follows from Gabber rigidity. If char(k) = p, this
follows from Proposition 4.32. �

Remark 4.37. Recall that Gabber’s proof [27] of rigidity is cleanly separated into
two halves: the first half reduces the general case to the case of henselizations of
smooth algebras over a field at a rational point, and the second half proves that
case. In our proof above, we only need to invoke the second half of Gabber’s work,
which is also covered by Gillet–Thomason [35].

However, our entire line of reasoning is in some sense modeled on the first half
of Gabber’s proof. (The exceptions are Proposition 4.32, which is the new char-
acteristic p ingredient, and the commutation of TC/p with filtered colimits, which
is a necessary technical statement.) So we are not really avoiding the first half of
Gabber’s proof, just explicating it in a modified context. Let us note in particular
that the projective pseudocoherence of K-theory is our replacement for Suslin’s
“method of universal homotopies” from [81], which has been crucial to many of the
known rigidity results in K-theory.

Remark 4.38. While the full strength of pseudocoherence appears to be necessary
to obtain results for Z-algebras, the result for henselian pairs of Fp-algebras follows
from Proposition 4.32 and the observation that K,TC/p commutes with filtered
colimits of Fp-algebras. One can then extend the result to Zp-algebras using the
p-adic continuity statement of [32] (and a similar filtered colimit argument). Thus,
for Zp-algebras at least, one can prove the main result purely using the classical
approach to TC and ingredients predating [65].

Remark 4.39. Theorem 4.36 is false integrally; that is, the integral Dundas–
Goodwillie–McCarthy theorem does not hold for henselian pairs. As an example, let
(R,m) be a henselian local Fp-algebra with residue field Fp. Then TC(R),TC(Fp)
are p-complete spectra, so TC1(R,m) is a derived p-adically complete abelian
group. However, K1(R,m) = ker(R× → F×

p ) which will essentially never be de-
rived p-complete. For instance, consider the power series ring R0 = Fp[[x]] and
let R = (R0)perf be the perfection of R0. We have a surjection R → Fp, whose

kernel is the henselian ideal I =
⋃
(x1/pn

). In this case, ker(R× → F×
p ) is a nonzero

Z[1/p]-module, which in particular is not derived p-complete.

5. Continuity and pro statements in algebraic K-theory

In this section we consider various applications to the continuity problem in alge-
braic K-theory and to the related problem of describing the pro K-theory of formal
schemes. In particular we show that, under mild hypotheses, algebraic K-theory
with finite coefficients is continuous for complete noetherian rings (Theorem 5.5).
We also show that algebraic K-theory satisfies a “derived” form of p-adic continuity
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for rings that are henselian along p (Theorem 5.21), extending results of Geisser–
Hesselholt [32]. Finally, we prove a pro version of the Geisser–Levine [34] theorem
on the p-adic K-theory of regular local Fp-algebras to describe (under mild hy-
potheses) the pro abelian groups {K∗(A/Is;Z/prZ)}s when A is a regular local
Fp-algebra and I ⊂ A is any ideal, extending results of Morrow [64].

5.1. Continuity and K-theory. In this and the next subsection, we consider the
following classical continuity question in K-theory.

Question. Let R be a ring and I be an ideal. How close is the map

(22) K(R) −→ lim←−
s

K(R/Is)

to being an equivalence?

In order for this question to be reasonable, we should assume that R is I-adically
complete, or at least that (R, I) forms a henselian pair. This question has been
considered by various authors, and the above map has notably been shown to be
an equivalence modulo p in the following cases, which we order historically:

(1) R a complete discrete valuation ring of mixed characteristic (0, q), q �= p,
with I being the maximal ideal (Suslin [81]).

(2) R a complete discrete valuation of mixed characteristic (0, p), with I being
the maximal ideal (Panin [67]);

(3) (R, I) a henselian pair and p invertible in R (Gabber rigidity [27]; this
subsumes case (1)).

(4) R a complete discrete valuation ring of equal characteristic p with perfect
residue field, with I being the maximal ideal, in degrees ≤ 4 (Dundas [21]).

(5) R = A[[x1, . . . , xn]] and I = (x1, . . . , xn), where A is any F -finite, regular,
local Fp-algebra (Geisser–Hesselholt [33]; this subsumes case (4)).

(6) R any ring of finite stable rank in which p is a non-zero-divisor and which
is henselian along I = pR (Geisser–Hesselholt [32])

(7) R any F -finite, regular, local Fp-algebra which is complete with respect to
an ideal I ⊆ R such that R/I is “generalised normal crossings” (Morrow
[64]; this subsumes case (5)).

In order to apply our earlier results to this question, we observe that if (R, I) is a
henselian pair then Theorem 4.36 implies that the map (22) becomes an equivalence
modulo p if and only if the corresponding map TC(R) → lim←−s

TC(R/Is) becomes

an equivalence modulo p. This latter question is often more tractable and has
been carefully studied in the recent work of Dundas–Morrow [24], who show that
such continuity for topological cyclic homology holds quite generally under the
assumption of F -finiteness.

Definition 5.1. An Fp-algebra R is said to be F -finite if the absolute Frobenius
map R → R is finite, in other words if R is a finitely generated module over its
subring of pth-powers.

Under F -finiteness, many additional finiteness properties follow; we refer to [24]
for more details. For example, if R is an F -finite, noetherian Fp-algebra, then
the homotopy groups πnLR/Fp

of the cotangent complex are finitely generated R-
modules for all n [24, Cor. 3.8]; in particular, the (algebraic) module of Kähler
differentials Ω1

Fp[[t]]/Fp
is a free Fp[[t]]-module of rank one, whereas the analogous
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construction for a characteristic zero field is much harder to control and is not
t-adically separated.

In this subsection, we simply combine the Dundas–Morrow results on topological
cyclic homology with Theorem 4.36 to give a general answer to the above continuity
question in K-theory. Since the results of [24] are stated only for Z(p)-algebras, we
begin with a brief detour.

Lemma 5.2. Let R → R′ be a map of commutative rings such that the map
R ⊗L

Z
Fp → R′ ⊗L

Z
Fp is an equivalence. Then THH(R) → THH(R′) is a mod p

equivalence.

Proof. The hypothesis is equivalent to saying that HR → HR′ is a mod p equiva-
lence of spectra. It follows that (HR)⊗n → (HR′)⊗n is a mod p equivalence for all
n ≥ 0, and hence that THH(R) → THH(R′) is a mod p equivalence, since mod p
equivalences are preserved under colimits. �

Lemma 5.3. Let R be a noetherian ring and let R̂p be its p-adic completion (which
is also the derived p-adic completion, as R has bounded p-power torsion). Then the

map THH(R) → THH(R̂p) is a mod p equivalence.

Proof. A noetherian ring has bounded p-torsion, which implies that the map R →
R̂p induces an equivalence R ⊗L

Z
Fp � R̂p ⊗L

Z
Fp. Thus the statement follows from

Lemma 5.2. �

The following is a slight extension of the continuity results of Dundas–Morrow
[24], who treated the case in which R is a Z(p)-algebra.

Proposition 5.4. Let R be a noetherian ring which is complete along an ideal I ⊆
R, and suppose that R/pR is F -finite. Then the map THH(R) → lim←−s

THH(R/Is)

is an equivalence modulo p.

Proof. First we note that R̂p = lim←−s
R̂/Isp and R̂/Isp = R̂p/I

sR̂p. Indeed, R being

noetherian, we have that on finitely generated R-modules the p-adic completion
identifies with the derived p-completion. It therefore preserves short exact sequences
and sequential inverse limits along surjective transition maps, as these are examples
of derived limits.

In particular, R̂p is IR̂p-adically complete. Therefore, the canonical map

THH(R̂p)/p −→ lim←−
s

THH(R̂p/I
sR̂p)/p

is an equivalence by [24, Thm. 4.5]. But by the above, each quotient R̂p/I
sR̂p

coincides with the p-adic completion of R/Is, so that applying Lemma 5.3 to R
and to each R/Is completes the proof. �

We can now state and prove our main result of the subsection, which resolves
the continuity question in algebraic K-theory for all complete noetherian rings
satisfying an F -finiteness hypothesis.

Theorem 5.5. Let R be a noetherian ring which is complete along an ideal I,
and suppose that R/pR is F -finite. Then the map K(R) → lim←−s

K(R/Is) is an

equivalence modulo p.
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Proof. Using Theorem 4.36, the result reduces to the statement that TC(R)/p →
lim←−s

TC(R/Is)/p is an equivalence. By Remark 2.8, this in turn follows from the

analogous statement for THH, which is given by Proposition 5.4. �
Remark 5.6. One can see that Theorem 5.5 is in fact equivalent to Theorem 4.36
(our main theorem on henselian pairs). Indeed, suppose Theorem 5.5 is known, and
let (R, I) be a henselian pair. We want to show that K inv(R)/p → K inv(R/I)/p is
an equivalence. Since K and TC/p commute with filtered colimits, so does K inv/p,
hence we can assume (R, I) is the henselization of a finite type Z-algebra at an
ideal.

Let R̂ denote the I-adic completion of R. By Néron–Popescu desingularization
[68,69] (see also [79, Tag 07BW]), applicable in view of the geometric regularity of

R → R̂ (see [38, 7.8.3(v)]), the map R → R̂ is ind-smooth, i.e., we can write R̂ as
a filtered colimit of smooth R-algebras. Given a smooth R-algebra A and a map

A → R̂ of R-algebras, it follows that the map R → A admits a section by Elkik’s

theorem (Theorem 3.15). Therefore, we deduce that R → R̂ is a filtered colimit of
split injections. Thus the claim for (R, I) (i.e., that K inv(R)/p → K inv(R/I)/p is

an equivalence) will follow from the claim for (R̂, IR̂). (This is a standard Artin
approximation argument.)

However, by the above continuity in K and TC, we have

K inv(R̂)/p

→ lim←−K inv(R/In)/p.

On the other hand, the right hand side is a constant limit with value K inv(R/I)/p,

by Theorem 1.2. This gives the claim for (R̂, IR̂), and therefore in general, by the
above argument.

We finish the subsection by checking that the F -finiteness hypothesis in the
above theorem appears to be necessary. This arises from a well-known problem
in Milnor K-theory, namely that the complexity of symbols modulo powers of the
ideal in question can increase without bound; to make this precise we closely follow
the exposition of [10, App. B], where Bloch–Esnault–Kerz proved an analogous
discontinuity result in characteristic zero.

Theorem 5.7. Let k be a field of characteristic p which is not F -finite, i.e., any p-
basis10 of k has infinite cardinality. Then the map K(k[[t]])/p → lim←−s

K(k[t]/(ts))/p

is not an equivalence; more precisely, the map on π2 is not surjective.

Proof. We begin with several straightforward reductions to Milnor K-theory.
Firstly, since k[[t]]× is p-torsion-free, the canonical map K2(k[[t]])/p →
π2(K(k[[t]])/p) is an isomorphism. The p-torsion in the pro abelian group
{k[t]/(ts)×}s is also zero, since the transition map k[t]/(tps)× → k[t]/(ts)× clearly
kills all p-torsion in the domain, and therefore {K2(k[t]/(t

s))/p}s →
{π2(K(k[t]/(ts))/p)}s is an isomorphism of pro abelian groups. Secondly, k[[t]] and
k[t]/(ts) are local rings with infinite residue field, whence a classical result in alge-

braic K-theory [84, §8] states that KM
2 (k[[t]])


→ K2(k[[t]]) and KM
2 (k[t]/(ts))


→
K2(k[t]/(t

s)). Finally, the canonical map π2(lim←−s
K(k[t]/(ts))/p) →

lim←−s
π2(K(k[t]/(ts))/p) is surjective, by the Milnor sequence. In conclusion, to

10We refer to [60, §26] for a reminder on the notion of a p-basis, including the fact that a
collection of elements {bi} of k forms part of a p-basis if and only if their differentials {dbi} are
linearly independent in Ω1

k.

Licensed to Univ of Rochester. Prepared on Sat Mar  1 12:04:41 EST 2025 for download from IP 128.151.13.115.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



452 DUSTIN CLAUSEN ET AL.

prove the theorem it is sufficient to show that the canonical map KM
2 (k[[t]])/p →

lim←−s
KM

2 (k[t]/(ts))/p is not surjective.

To do this, we will detect symbols using the dlog maps from KM
2 to absolute

Kähler differentials Ω2
− := Ω2

−/Fp
:

Ω2
k[[t]]

�� lim←−s
Ω2

k[t]/(ts)

KM
2 (k[[t]])/p

dlog

��

�� lim←−s
KM

2 (k[t]/(ts))/p

dlog

��

It remains to construct an element in the bottom right of the diagram whose image
in the top right does not come from the top left.

We now closely follow Bloch–Esnault–Kerz, with the necessary modifications to
deal with the fact that we will eventually need to restrict to dlog forms. Given
any map of rings R → S and differential form τ ∈ Ω2

S/R, define its weight w(τ )

to be the smallest integer n for which it is possible to write τ =
∑n

i=1 aidbi ∧ dci
for some ai, bi, ci ∈ S. If 
 is a subfield of k and b1, . . . , bn, c1, . . . , cn ∈ k form
part of a p-basis for k relative to 
, then the elements db1, . . . , dbn, dc1, . . . , dcn are
linearly independent in the k-vector space Ω1

k/� and so this element
∑n

i=1 dbi ∧ dci

has weight ≥ n in Ω2
k/� (Lemma 5.8).

Next consider the derivation

k[t]/(ts) → Ω1
k ⊗k k[t]/(ts)

which “holds t constant”, so
∑

n cnt
n �→

∑
n(dcn)t

n. This extends by multiplica-
tivity to a map

Ω∗
k[t]/(ts) → Ω∗

k ⊗k k[t]/(ts)

which splits the canonical map Ω∗
k ⊗k k[t]/(ts) → Ω∗

k[t]/(ts). Restricting to degree

∗ = 2 and passing to the limit as s → ∞ defines

e : lim←−
s

Ω2
k[t]/(ts) −→ lim←−

s

Ω2
k ⊗k k[t]/(t

s),

where each element on the right may be expressed as
∑

j≥0 τit
i for some unique

τ0, τ1, · · · ∈ Ω2
k (the t-adic coefficients of the element). Bloch–Esnault–Kerz [10,

Lem. B2] show (assuming k = C, but the argument works in general) that the
image of the composition

Ω2
k[[t]] −→ lim←−

s

Ω2
k[t]/(ts) −→ lim←−

s

Ω2
k ⊗k k[t]/(ts)

lands inside the set of those elements
∑

j≥0 τjt
j whose t-adic coefficients satisfy the

following: there exists N ≥ 0 such that w(τj) ≤ N
(
j+2
j

)
for all j ≥ 0.

We are now prepared to complete the proof by constructing a bad element of
lim←−s

KM
2 (k[t]/(ts))/p. First pick a sequence 0 < w1 < w2 < · · · of integers growing

sufficiently fast such that no value of N satisfies wj ≤ N
(

2j
2j−2

)
for all j ≥ 1. Then

pick a sequence of subfields Fp = k0 ⊂ k1 ⊂ k2 ⊂ · · · of k such that any p-basis for

kj relative to kj−1 has ≥ 2wj elements; let b
(j)
1 , · · · , b(j)wj , c

(j)
1 , · · · , c(j)wj ∈ ki be part
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of such a relative p-basis. Set

fs :=
s−1∑
j=1

wj∑
i=1

{1 + tjb
(j)
i , 1 + tjc

(j)
i } ∈ KM

2 (k[t]/(ts))/p

and note that the transition map KM
2 (k[t]/(ts))/p → KM

2 (k[t]/(ts−1))/p exactly
kills the j = s− 1 part of the sum and therefore sends fs to fs−1; we therefore may
define f := lim←−s

fs ∈ lim←−s
KM

2 (k[t]/(ts))/p.

Let
∑

i≥1 τit
i be the expansion of e(dlog f) ∈ lim←−s

Ω2
k ⊗k k[t]/(ts). Noting that

dlog(1 + tjb) ∧ dlog(1 + tjc) ≡ t2jda ∧ db mod dt, t3j

with all the higher order terms given by various expressions in b, c, we see that

τ2s−2 ≡
ws∑
i=1

b
(s)
i ∧ c

(s)
i mod Ω2

ks−1
.

By the second paragraph of the proof we deduce that the image of τ2s−2 in Ω2
k/ks−1

has weight ≥ ws, whence a fortiori w(τ2s−2) ≥ ws. By choice of the sequence
0 < w1 < · · · , it follows that dlog f cannot be lifted to Ω2

k[[t]], which completes the

proof. �

Let V be a vector space over a field k. Given a 2-form ω ∈
∧2 V , we define the

weight of ω to be the minimal n such that there exist elements {xi, yi|1 ≤ i ≤ n} ⊂
V such that ω =

∑n
i=1 xi ∧ yi. The following linear algebra lemma was used in the

above proof.

Lemma 5.8. Let {u1, . . . , un, v1, . . . , vn} be linearly independent in V . Then the
form

∑n
i=1 ui ∧ vi has weight n.

Proof. Recall that we have an interior product V ∨⊗
∧2

V → V given by v⊗(x∧y) �→
〈v, x〉 y − 〈v, y〉 x. Given ω ∈

∧2 V , we obtain a map fω : V ∨ → V . If ω has
weight w, then the rank of fω is at most 2w. Completing {u1, . . . , un, v1, . . . , vn}
to a basis of V and forming the dual basis, one now sees that the rank of fω0

for
ω0 =

∑n
i=1 ui ∧ vi is 2n; together, this implies the lemma. �

5.2. p-adic continuity and K-theory. We now specialize the continuity question
to the case where the ideal is (p). In this case, we can often obtain stronger pro
isomorphisms rather than simply isomorphisms on inverse limits and, secondly,
hypotheses such as noetherianness and F -finiteness are no longer necessary.

Definition 5.9. Let R be a commutative ring. We say that K-theory is p-adically
continuous for R if the map of spectra K(R) → lim←−i

K(R/piR) is an equivalence

modulo p.

One has the following general result.

Theorem 5.10 (Geisser–Hesselholt [32]). If R is a local ring which is p-torsion-free
and henselian along (p), then K-theory is p-adically continuous at R. Moreover, the
map K(R)/p →

{
K(R/piR)/p

}
i≥1

induces an isomorphism of pro abelian groups

upon applying πj for any j.
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Although the previous theorem concerns p-adic rings, its proof uses Gabber
rigidity for Z[1/p]-algebras, via a clever trick due to Suslin. Here we will obtain a
generalization of Theorem 5.10 using our version of rigidity, which directly applies
to p-adic rings. We observe also that the proof naturally yields something slightly
stronger than an equivalence of pro abelian groups.

In this section, it will be convenient to work not only with commutative rings,
but also with more general ring spectra. Hence, we will use the following variant.

Variant. The functors K,TC are defined not only for ordinary rings R, but more
generally for arbitrary E1-ring spectra R. For such R, we define K inv(R) similarly,
as the fiber of the cyclotomic trace K(R) → TC(R).

Part of the theorem of Dundas–Goodwillie–McCarthy [22] states that if R is a
connective E1-algebra, then the map K inv(R) → K inv(π0R) is an equivalence. In
this sense, there is no extra generality afforded by the above variant. On the other
hand, we will find that it is often easier to control TC for appropriately “derived”
constructions than underived constructions.

We next review some facts about nilpotent towers; compare [57].

Definition 5.11. Let {Ai}i≥1 be a tower of abelian groups. We say that the
tower is nilpotent if there exists N > 0 such that all the maps Ai+N → Ai are
zero. We say that the tower is quickly converging if there exists r ∈ Z>0 such that
the tower {im(Ai+r → Ai)}i≥1 is eventually constant. This is stronger than the
Mittag–Leffler condition.

By [57, Lemma 3.10], it follows that the collection of towers of abelian groups
which are quickly converging forms an abelian subcategory of the category of towers
which is closed under extensions. It thus follows that if {Ai} is a quickly converging
tower and A is the inverse limit, then the kernel and cokernel of the map of towers
{A} → {Ai} are both nilpotent. In particular, the category of quickly converging
towers is the smallest abelian subcategory containing the nilpotent towers and the
constant towers which is closed under extensions.

Definition 5.12. Let {Xi}i≥1 be a tower in Sp, i.e., {Xi}i≥1 ∈ Tow(Sp) :=

Fun(Nop, Sp). We say that the tower is nilpotent if there exists N > 0 such that all
the maps Xi+N → Xi are nullhomotopic. The collection of nilpotent towers forms
a thick subcategory of the stable ∞-category Tow(Sp). We say that a tower {Xi}
is quickly converging if the cofiber of the map of towers {X} → {Xi} is nilpotent,
where X := lim←−i

Xi, or equivalently if {Xi} lies in the smallest thick subcategory

of towers containing the constant towers and the nilpotent towers.

Lemma 5.13. Let {Xi}i≥1 be a tower in Sp. If {Xi} is quickly converging, the

tower {πjXi} of abelian groups is quickly converging for each j. The converse holds
if we suppose that each Xi has homotopy groups concentrated in the fixed range [a, b].

Proof. It follows from [57, Lemma 3.11] that if {Xi} is quickly converging, then the
towers of homotopy groups are quickly converging. Indeed, if {Xi} is nilpotent or
constant, then the tower of homotopy groups is clearly quickly converging, and the
referenced result shows that the condition on homotopy groups is stable in cofiber
sequences of towers. For the converse direction, a dévissage reduces to the case
where a = b. In this case, it follows from the paragraph following Definition 5.11:
that is, quickly convergent towers of abelian groups are built up from constant and
nilpotent towers. �
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Definition 5.14. We say that a tower {Xi} of spectra is almost nilpotent if for
each n ∈ Z, the truncated tower {τ≤nXi} is nilpotent, or equivalently if each tower
{πn(Xi)} of abelian groups is nilpotent. We say that a tower is almost quickly
converging if for each n, the tower {τ≤nXi} is quickly converging. If the tower is
uniformly bounded below, then it is almost quickly converging if and only if each
tower {πn(Xi)} of abelian groups is quickly convergent.

The following then is a direct consequence of [57, Lemma 3.11].

Lemma 5.15. The almost nilpotent and almost quickly converging towers form
thick subcategories of Tow(Sp) including the nilpotent and quickly converging towers
respectively.

From this we get:

Lemma 5.16. Let X•,∗ be a simplicial object in the ∞-category of towers of connec-
tive spectra. Suppose each tower · · · → Xj,2 → Xj,1 is almost quickly convergent,
with limit Xj. Then the geometric realization · · · → |X•,2| → |X•,1| is almost
quickly converging and has limit |X•| via the natural comparison map.

Proof. This follows from approximating the geometric realization with an n-skeletal
geometric realization in any range of degrees. �

We now include a basic observation that given a tower of cyclotomic spectra
whose underlying tower of spectra is almost quickly converging, the tower of TC/p
is also almost quickly converging.

Lemma 5.17. Let {Xi} be a tower in CycSp≥0. Suppose that the underlying
tower of spectra {Xi/p} is almost quickly converging. Then the tower of spectra
{TC(Xi)/p} is almost quickly converging.

Proof. This follows in a similar fashion as Proposition 2.19. See also Remark 2.8
for the identification of the inverse limit of the above tower in CycSp. �

Lemma 5.18. Let {Xi} and {Yi} be two towers of connective spectra. If {Xi} and
{Yi} are almost quickly converging with inverse limits X and Y , then {Xi ⊗ Yi} is
almost quickly converging with inverse limit X ⊗ Y .

Proof. Note that τ≤m(Xi ⊗ Yi) � τ≤m(τ≤mXi ⊗ Yi). So if {τ≤mXi} is nilpotent,
then so is {τ≤m(Xi ⊗ Yi)}, and the limit is zero. Symmetrically, we get the same
if {τ≤mYi} is nilpotent. On the other hand, if {τ≤mXi} and {τ≤mYi} are both
constant, we see that τ≤m(Xi ⊗ Yi) is constant, and the map from X ⊗ Y to the
limit is an isomorphism degrees ≤ m − 1. A thick subcategory argument lets us
conclude. �

Theorem 5.19. Suppose that {Ri}i≥1 is a tower of connective E1-ring spectra,
and R is another connective E1-ring spectrum with a comparison map R → lim←−i

Ri.

If this comparison map is an equivalence modulo p and the tower of spectra {Ri/p}
is almost quickly converging, then the comparison map

TC(R) → lim←−
i

TC(Ri)

is an equivalence modulo p and the tower {TC(Ri)/p} is almost quickly converging.
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Proof. Note that a tower is almost quickly converging modulo p if and only if it
is almost quickly converging after smashing with X, for any choice of spectrum
X generating the same thick subcategory as S0/p. For example one can take
X = S0/p⊗S0/p.11 Keeping this in mind, an inductive application of Lemma 5.18
shows that {(HRi)

⊗n}i is almost quickly converging modulo p for any n ≥ 0, and
has mod p limit (HR)⊗n/p. Then by Lemma 5.16 we deduce that {THH(Ri)/p}
is almost quickly converging with limit THH(R)/p. From this, Lemma 5.17 lets us
conclude. �

In the Z-linear case, this immediately implies the following general p-adic conti-
nuity result for TC. We denote by ModHZ the symmetric monoidal ∞-category of
HZ-module spectra, or equivalently the derived ∞-category of Z.

Theorem 5.20. Let R be a connective E1-algebra in ModHZ. Then the map

TC(R) → lim←−
i

TC(R⊗HZ HZ/pi)

is a p-adic equivalence. Moreover the tower on the right-hand-side is almost quickly
converging modulo p.

Proof. It suffices to remark that the transition maps in the tower of fibers {fib(R →
R ⊗HZ HZ/piZ)}n identify with multiplication by p maps, hence are zero modulo
p, so that Theorem 5.19 applies. �

We now obtain a general result on derived p-adic continuity of K-theory, and as
a corollary a generalization of Theorem 5.10.

Theorem 5.21. Let R be a connective E1-algebra in ModHZ such that π0(R) is
commutative and henselian along (p). Then the tower {K(R ⊗HZ HZ/piZ)/p}i≥1

is almost quickly converging, and

K(R) → lim←−
i

K(R⊗HZ HZ/piZ)

is an equivalence modulo p.

Proof. By Theorem 4.36 we see K inv(R) = K inv(R ⊗HZ HZ/piZ) for each i. This
reduces us to the analogous result for TC, which is Theorem 5.20. �

There is also an underived version under a very mild hypothesis, which general-
izes Geisser–Hesselholt’s Theorem 5.10.

Theorem 5.22. Let R be a commutative ring which is henselian along (p), and
suppose the p-power-torsion in R is bounded. Then K-theory is p-adically continu-
ous at R. Moreover, the tower {K(R/piR)/p} is almost quickly converging.

Proof. The map of towers {HR ⊗Z Z/piZ} → {H(R/piR)} has fiber {ΣH(R[pi])}
with transition maps multiplication by p. Because of the bounded p-power torsion
hypothesis, this tower {ΣH(R[pi])} is almost nilpotent modulo p. So we deduce p-
adic continuity for TC as in Theorem 5.20, and then p-adic continuity for K-theory
as in Theorem 5.21. �

11This is the cone of multiplication by p on S0/p, hence lies in the thick subcategory generated
by S0/p. For the converse, note that p2 kills S0/p, so S0/p is a retract of (S0/p⊗ S0/p)/p.
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Remark 5.23. Without assuming Z-linear structure, one can get similar results by
replacing −⊗Z Z/piZ with −⊗Si for any reasonable tower of E∞-algebras {Si} of
which p-adically approximates the sphere spectrum, for example the tower coming
from the usual cosimplicial Adams resolution associated with S0 → HFp.

5.3. Pro Geisser–Levine theorems. We begin by recalling from subsection 4.4
that one classically associates with any Fp-algebra R the abelian group νn(R) =

Ωn
R,log, defined either as ker(1−C−1 : Ωn

R → Ωn
R/dΩ

n−1
R ) or as the subgroup of Ωn

R

which is generated étale locally by dlog forms. As we recalled in Theorem 4.29,
when R is moreover local and ind-smooth then Geisser and Levine established iso-
morphisms Kn(R;Z/pZ) ∼= Ωn

R,log for all n ≥ 0. The goal of this section is to estab-

lish an entirely analogous description of the pro abelian groups {Kn(R/Is;Z/pZ)}s
whenever I ⊆ R is an ideal.

It is convenient to work with not only modulo p but more generally modulo pr

with r > 1. This necessitates introducing some standard notation surrounding de
Rham–Witt groups, in particular the logarithmic subgroup which serves as a mod
pr lift of Ωn

R,log.

Definition 5.24 (Logarithmic de Rham–Witt groups). Let R be an Fp-algebra.
We recall the de Rham-Witt complex {WrΩ

∗
R} as in [46] (see also Definition 2.24).

Letting [·] : R → Wr(R) denote the Teichmüller lift, there is a resulting group

homomorphism dlog[·] : R× → WrΩ
1
R, α �→ dlog[α] = d[α]

[α] , and more generally

dlog[·] : R×⊗n → WrΩ
n
R, α1 ⊗ · · · ⊗ αn �→ dlog[α1] ∧ · · · ∧ dlog[αn].

When R is local, the image of this map will be denoted by WrΩ
n
R,log.

Definition 5.25 (Globalization). Given an Fp-scheme X, one defines WrΩ
n
X to

be the Zariski (or étale, depending on the context) sheaf obtained by sheafifying
U �→ WrΩ

n
OX(U). When X = SpecR is affine, this sheaf (in either topology) has

no higher cohomology and has global sections WrΩ
n
R: this follows from flat descent

and the facts that if R → S is étale then so is Wr(R) → Wr(S) [86, Thm. 2.4]
and moreover the canonical map WrΩ

n
R ⊗Wr(R)Wr(S) → WrΩ

n
S is an isomorphism

[52, Prop. 1.7].
We define WrΩ

n
R,log to be the subgroup of WrΩ

n
R consisting of elements which

can be written Zariski locally as sums of dlog forms, i.e., H0(SpecR,−) of the
image (as a Zariski sheaf) of

dlog[·] : G⊗n
m,SpecR → WrΩ

n
SpecR, α1 ⊗ · · · ⊗ αn �→ dlog[α1] ∧ · · · ∧ dlog[αn].

We note that WrΩ
n
R,log would be unchanged if we were to replace Zariski by étale

in the previous sentence, by [64, Cor. 4.1(iii)]; in particular, W1Ω
n
R,log really is the

same as Ωn
R,log as defined at the start of the subsection. Similarly, if X is a scheme,

we let WrΩ
n
X,log denote the sheaf SpecR �→ WrΩ

n
R,log.

In the case that R is an ind-smooth local Fp-algebra, Geisser–Levine [34] es-
tablished isomorphisms Kn(R;Z/prZ) ∼= WrΩ

n
R,log (given by the map dlog[·] on

symbols) for all n ≥ 0, r ≥ 1, and proved that each group Kn(R) is p-torsion-free.
The primary goal of this subsection is to establish the following pro version of this
theorem:

Theorem 5.26. Let R be a F -finite, regular, local noetherian Fp-algebra and I ⊆ R
an ideal; fix n, r ≥ 0. Then the pro abelian group {Kn(R/Is)}s is p-torsion-free
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and there is a natural isomorphism of pro abelian groups

{Kn(R/Is;Z/prZ)}s 
→ {WrΩ
n
R/Is,log}s

given by dlog[·] on symbols.

This theorem was proved in [64] under the assumption that SpecR/I was suf-
ficiently regular (the terminology used there was “generalised normal crossing”),
and some applications were given to higher dimensional class field theory and to
the deformation theory of algebraic cycles. Here we combine the results of [64] with
our main rigidity theorem to prove the theorem in general as well as a similar result
in a non-local, relative case (Theorem 5.31).

In fact, Theorem 5.31 (which works for an arbitrary henselian ideal in a regular
F -finite Fp-algebra) is more fundamental. We can view this statement as a pro-
version of the following calculation.

Proposition 5.27. Let (R, I) be a henselian pair of Fp-algebras. Suppose that R
and R/I are ind-smooth. Then we have a natural isomorphism

(23) Kn(R, I;Z/p) � Ωn
(R,I),log,

where Ωn
(R,I),log

:= ker(Ωn
R,log → Ωn

R/I,log).

Proof. Indeed, this follows from our main result (which identifies the relative K-
theory with relative TC), together with the Geisser–Hesselholt calculations of rel-
ative TC. We have the short exact sequence

0 → ν̃n+1(R) → πn(TC(R)/p) → νn(R) → 0

as in Theorem 4.29 (see also (12)). Using Proposition 4.31, the result follows. �

We begin with a couple of lemmas concerning relative log de Rham–Witt groups.

Definition 5.28. Given an Fp-algebra R and ideal I ⊆ R, we set WrΩ
n
(R,I),log

:=

ker(WrΩ
n
R,log → WrΩ

n
R/I,log).

Lemma 5.29. Let R be an Fp-algebra which is henselian along an ideal I ⊆ R.
Then R − F : WrΩ

n
(R,I) → Wr−1Ω

n
(R,I) is surjective.

Proof. If R is F -finite, noetherian, and I-adically complete then this was proved
in [64, Prop. 2.20], and we will reduce the general case to this one. Firstly, by
taking a filtered colimit we may suppose that R is the henselization of a finite
type Fp-algebra along some ideal, and in particular that R is F -finite and excellent

[79, Tag 07QS]. Then the I-adic completion R̂ is geometrically regular over R by
[38, 7.8.3(v)], whence it is a filtered colimit of smooth R-algebras A by Néron–
Popescu. But each structure map R → A admits a splitting as in Remark 5.6.
Therefore, taking a filtered colimit shows that

Coker(WrΩ
n
(R,I)

R−F−−−→ Wr−1Ω
n
(R,I)) −→ Coker(WrΩ

n
( ̂R,I ̂R)

R−F−−−→ Wr−1Ω
n
( ̂R,I ̂R)

)

is injective. Since the right side vanishes by the first sentence of the paragraph, the
proof is complete. �
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An important result of Illusie states that if X is a smooth variety over a perfect
field of characteristic p, then the canonical map of étale sheaves WsΩ

n
X,log/p

r →
WrΩ

n
X,log is an isomorphism whenever s ≥ r and n ≥ 0, and therefore

0 −→ {WsΩ
n
X,log}s

pr

−→ {WsΩ
n
X,log}s

{Rs−r}s−−−−−→ WrΩ
n
X,log −→ 0

is an exact sequence of pro sheaves on Xét [46, §I.5.7]. We will require the following
relative form of this result for henselian ideals:

Lemma 5.30. Let R be an F -finite, regular, noetherian Fp-algebra which is
henselian along an ideal I ⊆ R; fix n ≥ 0. Then the sequence of pro abelian
groups

0 −→ {WsΩ
n
(R,Is),log}s

pr

−→ {WsΩ
n
(R,Is),log}s

{Rs−r}s−−−−−→ {WrΩ
n
(R,Is),log}s −→ 0

is exact for any r ≥ 1.

Proof. We will need to argue via the étale topology, so we begin by introducing
the necessary sheaves. Let X := SpecR, with closed subschemes Ys := SpecR/Is

for s ≥ 1; let WrΩ
n
X , WrΩ

n
Ys
, and WrΩ

n
(X,Ys)

:= ker(WrΩ
n
X → WrΩ

n
Ys
) be the

corresponding étale sheaves on X. As explained in Definition 5.24, these sheaves
have no higher étale cohomology (since X is affine) and their global sections are
respectively WrΩ

n
R, WrΩ

n
R/Is , and WrΩ

n
(R,Is).

Next let WrΩ
n
X,log be the image in the étale topology of dlog[·] : G⊗n

m,X → WrΩ
n
X ,

and similarly for each Ys, and set WrΩ
n
(X,Ys),log

:= ker(WrΩ
n
X,log → WrΩ

n
Ys,log

).

As we already mentioned in Definition 5.24, the subgroup of dlog forms may be
defined using either the Zariski or étale topology by [64, Cor. 4.1(iii)], and therefore
the global sections of these sheaves are respectively WrΩ

n
R,log, WrΩ

n
R/Is,log, and

WrΩ
n
(R,Is),log.

We claim that {H1
ét(X,WrΩ

n
(X,Ys),log

)}r = 0 for each s ≥ 1. After replacing I by

Is (since a subideal of a henselian ideal remains henselian, Remark 3.14) we may
as well assume s = 1 and write Y = Ys for simplicity of notation; the key will be
that X is an affine scheme, henselian along Y . Appealing to [64, Cor. 4.1(iii)] for
both X and Y gives rise to short exact sequences of pro sheaves on Xét, in which
the three vertical arrows are surjective:

0 �� {WrΩ
n
X,log}r ��

��

{WrΩ
n
X}r

R−F ��

��

{Wr−1Ω
n
X}r ��

��

0

0 �� {WrΩ
n
Y,log}r �� {WrΩ

n
Y }r

R−F �� {Wr−1Ω
n
Y }r �� 0.

Taking the kernels of the vertical arrows gives us a short exact sequence of relative
terms

(24) 0 −→ {WrΩ
n
(X,Y ),log}r −→ {WrΩ

n
(X,Y )}r

R−F−−−→ {Wr−1Ω
n
(X,Y )}r −→ 0

Since the middle and right terms have no higher cohomology, it is enough to check
that R−F is surjective on global sections; but this is even true for each fixed level
r by Lemma 5.29.

Finally, appealing to Illusie’s result recalled immediately before the lemma (which
has been extended to arbitrary regular Fp-schemes by A. Shiho [77, Cor. 2.13]) and
to an analogous pro version for the formal completion of X along Y1 [64, Cor. 4.8]

Licensed to Univ of Rochester. Prepared on Sat Mar  1 12:04:41 EST 2025 for download from IP 128.151.13.115.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



460 DUSTIN CLAUSEN ET AL.

gives rise to short exact sequences of pro sheaves on Xét, in which the three vertical
arrows are again surjective:

0 �� {WsΩ
n
X,log}s

pr

��

��

{WsΩ
n
X,log}s

{Rr−s}s ��

��

WrΩ
n
X,log

��

��

0

0 �� {WsΩ
n
Ys,log

}s
pr

�� {WsΩ
n
Ys,log

}s
{Rr−s}s�� {WrΩ

n
Ys,log

}s �� 0.

Taking kernels gives a short exact sequence of relative terms

0 −→ {WsΩ
n
(X,Ys),log

}s
pr

−→ {WsΩ
n
(X,Ys),log

}s
{Rr−s}s−−−−−→ {WrΩ

n
(X,Ys),log

}s −→ 0.

Taking global sections completes the proof since the previous paragraph showed
that the left term has no H1

ét. �
The following is our relative form of Theorem 5.26 for henselian ideals (and a

pro-version of the identification (23)), from which Theorem 5.26 will immediately
follow.

Theorem 5.31. Let R be a F -finite, regular, noetherian Fp-algebra which is
henselian along an ideal I ⊆ R; fix n, r ≥ 0. Then the trace map induces a natural
isomorphism of pro abelian groups

{Kn(R, Is;Z/prZ)}s 
→ {WrΩ
n
(R,Is),log}s.

Proof. The proof is similar to the techniques of [64, §5.1], but we repeat the neces-
sary details here. In particular, we begin with the same recollections on Hochschild–
Kostant–Rosenberg theorems for the spectra TRs. If R is any Fp-algebra, then the
pro graded ring {TRs

∗(R; p)}s is a p-typical Witt complex with respect to its op-
erators F, V,R; by universality of the de Rham–Witt complex, there are therefore
natural maps of graded Ws(R)-algebras [39, Prop. 1.5.8] λs,R : WsΩ

∗
R → TRs

∗(R; p)
for s ≥ 0, which are compatible with the Frobenius, Verschiebung, and Restriction
maps (in other words, a morphism of p-typical Witt complexes).

From now on in the proof assume that R is regular, noetherian, and F -finite,
and let I ⊆ R be any ideal. Hesselholt’s HKR theorem [39, Thm. B] implies that
the resulting map of pro abelian groups

λR : {WsΩ
n
R}s −→ {TRs

n(R; p)}s
is an isomorphism for each n ≥ 1; similarly, the pro HKR theorem of Dundas–
Morrow [24, Cor. 4.15] implies that

(pro-HKR) λR/I∞ : {WsΩ
n
R/Is}s −→ {TRs

n(R/Is; p)}s
is an isomorphism of pro abelian groups for each n ≥ 0. Since WsΩ

n
R → WsΩ

n
R/Is

is surjective for all s, n ≥ 0, it follows that the long exact sequence associated
with {TRs(R, Is; p)}s → {TRs(R; p)}s → {TRs(R/Is; p)}s breaks into short exact
sequences and there are therefore natural induced isomorphisms of relative theories

{WsΩ
n
(R,Is)}s


→ {TRs
n(R, Is; p)}s

for all n ≥ 0.
Now assume that R is henselian along I. By Lemma 5.29, the map R − F :

WsΩ
n
(R,Is) → Ws−1Ω

n
(R,Is) is surjective for all n, s ≥ 0, and therefore the previous

isomorphism shows that the long exact sequence associated with {TCs(R, Is; p)}s →
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{TRs(R, Is; p)}s R−F−−−→ {TRs(R, Is; p)}s breaks into short exacts and thereby in-
duces natural isomorphisms

{TCs
n(R, Is; p)}s 
→ {ker(WsΩ

n
(R,Is)

R−F−−−→ Ws−1Ω
n
(R,Is))}s.

The right side of the previous line is precisely {WsΩ
n
(R,Is),log}s by applying [64, Cor.

4.1(iii)] to R and R/Is for each s ≥ 1 (in fact, we have already made this argument:
just take global sections in line (24) for each Ys and then pass to the resulting
diagonal of the N2-indexed pro abelian group); moreover, this latter pro abelian
group is p-torsion-free by the injectivity in Lemma 5.30 (this is anyway easy: the
pro abelian group is contained in {WsΩ

n
R}s, which is p-torsion-free thanks to the

equality of the p- and canonical-filtrations on the de Rham–Witt groups of any
regular Fp-algebra: see [46, Prop. I.3.2 & I.3.4] for the case of a smooth algebra
over a perfect field, then apply Néron–Popescu), so passing to finite coefficients
gives us isomorphisms

{TCs
n(R, Is;Z/prZ)}s ∼= {WsΩ

n
(R,Is),log/p

r}s
for each fixed r ≥ 1. The right side is {WrΩ

n
(R,Is),log}s by (the hard part of) Lemma

5.30.
Finally, pro-constancy of {TCs(−;Z/pr)}s (Proposition 2.22) implies that the

left side of the previous line is {TCn(R, Is;Z/prZ)}s, which by Theorem 4.36 iden-
tifies with {Kn(R, Is;Z/prZ)}s via the trace map. �

Corollary 5.32. Theorem 5.26 is true.

Proof. Let R be as in the statement of Theorem 5.26. Without loss of generality R
is henselian along I, whence R is also local, and so the result follows by combining

Theorem 5.31 with the isomorphism Kn(R;Z/prZ)

→ WrΩ

n
R,log of Geisser–Levine

[34]. Note that the two results are compatible since the trace map is given by dlog[·]
on symbols by [30, Lem. 4.2.3 & Cor. 6.4.1].

We establish the p-torsion-freeness of {Kn(R/Is)}s in the next corollary. �

In the following corollary KM
n denotes Milnor K-theory (either the classical

version or Kerz’s improved variant [48]; the corollary holds for both):

Corollary 5.33 (Comparison to Milnor K-theory; p-torsion-freeness). Let R be an
F -finite, regular, noetherian Fp-algebra and I ⊆ R an ideal such that R/I is local.
Then, for all n, r ≥ 0:

(1) the canonical map {KM
n (R/Is)/pr}s → {Kn(R/Is;Z/pr)}s is surjective

and has the same kernel as dlog[·] : {KM
n (R/Is)/pr}s → {WrΩ

n
R/Is}s;

(2) the pro abelian group {Kn(R/Is)}s is p-torsion-free.

Proof. We can replace R by its I-adic completion and thereby assume R itself is
local. Part (1) is an immediate consequence of the commutative diagram

{KM
n (R/Is)/pr}s ��

dlog[·]

��
{Kn(R/Is;Z/prZ)}s

∼= �� {WrΩ
n
R/Is,log}s

which summarises the statement of Theorem 5.26, since the bendy arrow is surjec-
tive.
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Part (1) clearly implies that {Kn(R/Is)}s → {Kn(R/Is;Z/pZ)}s is surjective,
whence the usual exact sequence implies it is an isomorphism and that
{Kn−1(R/Is)[p]}s = 0. �

Corollary 5.34 (Lifting classes). Let R be an F -finite, regular, noetherian, local
Fp-algebra and I ⊆ R an ideal. Then, for all n, r ≥ 0:

(1) the sequences

0 −→ {Kn(R, Is;Z/prZ)}s −→ Kn(R;Z/prZ) −→ {Kn(R/Is;Z/prZ)}s −→ 0

are short exact;
(2) there exists s ≥ 1 with the following property: if an element of

Kn(R/I;Z/prZ) lifts to Kn(R/Is;Z/prZ), then it is symbolic and hence
lifts to Kn(R).

Proof. As we have just seen in Corollary 5.33, {Kn(R/Is;Z/prZ)}s is entirely sym-
bolic; since R → R/I is surjective on units (using the assumption I ⊆ Jac(R)),
we deduce that Kn(R;Z/prZ) → {Kn(R/Is; prZ/Z)}s is surjective for all n ≥ 0.
Therefore the long exact relative sequences breaks into the desired short exact
sequences.

Part (2) is a consequence of the surjectivity arguments of the previous paragraph,
unravelling what it means for a map of pro abelian groups to be surjective. �

Corollary 5.35 (Relative pro Geisser–Levine). Let R be an F -finite, regular, noe-
therian, local Fp-algebra and I ⊆ R an ideal. Then, for all n, r ≥ 0, the trace
map induces a natural isomorphism of pro abelian groups {Kn(R, Is;Z/prZ)}s ∼=
{WrΩ

n
(R,Is),log}s

Proof. This follows from the short exact sequence of Corollary 5.34(1) by applying
usual Geisser–Levine to the middle term and Theorem 5.26 to the right term. �

6. Comparisons of K and TC

In this section, we prove two main general results: the comparison of K-theory
and TC in large degrees under mild finiteness hypotheses (Theorem 6.5) and the
étale local comparison of K and TC (Theorem 6.1). We give various examples in
subsection 6.3. Finally, we prove an injectivity result for the cyclotomic trace on
local Fp-algebras (Theorem 6.11).

6.1. Étale K-theory is TC. The results of [30] show that if R is a smooth algebra
over a perfect field of characteristic p, then the p-adic étale K-theory of R agrees
with TC(R). We extend this result to all commutative rings which are henselian
along (p). Recall that a local ring is called strictly henselian if it is henselian local
and its residue field is separably closed.

Theorem 6.1. Let R be a strictly henselian local ring of residue characteristic p.
Then K inv(R)/p = 0, i.e., the map K(R) → TC(R) is a p-adic equivalence.

Proof. By Theorem 4.36, we may assume that R = k is a field itself, which is then
separably closed. Thus we need to show that if k is a separably closed field of
characteristic p > 0, then the map K(k) → TC(k) is a p-adic equivalence.
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As Fp is perfect, k is an ind-smooth Fp-algebra (e.g., choose a transcendence
basis for k). Thus it suffices to show that the terms ν̃n(k) vanish by Theorem 4.29.
That is, we need to show that the map

1− C−1 : Ωn
k → Ωn

k/dΩ
n−1
k

is surjective. Given a form ω = adx1 . . . dxn ∈ Ωn
k , we have (1 − C−1)(uω) =

(u− upap−1xp−1
1 . . . xp−1

n )ω. Since k is separably closed, we can solve the equation

u−upap−1xp−1
1 . . . xp−1

n = 1 in k. This implies that 1−C−1 is surjective as desired
and completes the proof. �

In the proof above, rather than using Theorem 4.29 and the groups ν̃n(k), one
can instead follow Suslin’s arguments from [80] to show invariance of K inv(−)/p
under extensions of separably closed fields. This reduces to the case k = Fp, which
is easy since K/p and TC/p can be directly calculated, cf. [42, 70] or Example 6.8.
We record this alternative argument in the following proposition.

Proposition 6.2. Let F : Ring → Ab be a functor from rings to abelian groups.
Suppose that F commutes with filtered colimits and satisfies rigidity, i.e., for a
henselian pair (R, I) we have F (R) � F (R/I). Then for an extension K → L of
separably closed fields, we have F (K) � F (L).

Proof. Let k be a separably closed field. The crux of Suslin’s argument is to show
that if q : X → Spec(k) is a connected smooth affine k-scheme of finite type, then
for any class α ∈ F (X) and section x : Spec(k) → X, the pullback x∗α ∈ F (k)
is independent of the choice of x. It suffices to fix a section x0 : Spec(k) → X,
and show (by connectedness, in view of the Zariski density of k-points in X, cf.,
e.g., [79, Tag 04QM]) that there exists a Zariski neighborhood U of x0 such that
x∗
0α = x∗α for all sections x : Spec(k) → U . Replacing α by α − q∗x∗

0α, we can
assume x∗α = 0. Then by the assumption of rigidity, applied to the henselization
of X at x0, and the commutation of F with filtered colimits, we deduce that there
is an étale neighborhood Y → X of x0 such that α pulls back to 0 on Y . Then we
can take U to be the image of Y → X: as k is separably closed, every k-point of U
lifts to Y .

Now we prove the proposition. It suffices to consider the case where K is the
separable closure of a prime field, and so is in particular perfect. Therefore, the
extension K → L is ind-smooth, i.e., L is a filtered colimit of smooth K-algebras
Aα, with α running over a filtered poset. Then each map K → Aα admits a
retraction, as K is separably closed. It follows that F (K) → F (Aα) is injective for
each α, so that F (K) → F (L) is injective.

We now argue surjectivity. Let u ∈ F (Aα); we show that the image of u in
F (L) belongs to the image of F (K). Passing to a component if necessary, we can
assume Spec(Aα) is connected. Then Spec(Aα ⊗K L) is connected as well, since K
is algebraically closed. Now consider the two maps

f1, f2 : Aα ⇒ L,

where the first map is the colimit structure map and where the second map is

Aα
s→ K → L. By the first paragraph of the argument applied to the L-algebra

Aα⊗K L, we conclude that these two maps have the same effect on u, verifying the
claim. �
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We can rephrase Theorem 6.1 in terms of homotopy group sheaves. Let πn(K/p)
denote the étale sheafification of the functor πn(K(−)/p) over an arbitrary scheme
X, and let πn(T C/p) denote the same for πn(TC(−)/p). Then if i denotes the
closed inclusion (X ×Spec(Z) Spec(Fp))et → Xet, Theorem 6.1 (plus the trivial fact
that TC/p vanishes on rings where p is invertible) is equivalent to the statement
that for all n, there is an equivalence

(25) πn(T C/p) � i∗i
∗πn(K/p)

adjoint to the map i∗πn(K/p) → i∗πn(T C/p) (also an equivalence) given by the
restriction of the cyclotomic trace. We can clearly also replace (−)/p with (−)/ps

for any s.
As a consequence, one obtains the following result, which will be discussed in

more detail in the forthcoming paper [18]. In the smooth case, this is one of the
main results of [30].

Theorem 6.3. Let X be a scheme proper over SpecR for a ring R henselian along

(p). Denote by K̂ ét(−) the étale Postnikov sheafification of the K-theory presheaf,
meaning the limit over the étale sheafified Postnikov tower of K(−).12 Then the
natural map

K̂ ét(X)/p → TC(X)/p

is an equivalence.

Proof. The comparison map is induced by the cyclotomic trace, given that TC/p
is an étale Postnikov sheaf (see [18, Thm 5.16] in full generality; for affines, see
[30, Sec. 3]; in the semi-separated case see [12] for the conclusion of Nisnevich de-
scent). Now assume X is proper over Spec(R) henselian along (p). Then the proper
base change theorem together with Gabber’s affine analog of the proper base change
theorem [28] combine to show Hj

ét(X,F) � Hj
ét(X ×Spec(R) Spec(R/pR), i∗F) for

all torsion abelian sheaves F on Xet. In particular, Xet has finite p-cohomological
dimension by induction on an affine cover and Lemma 6.4, so by comparing de-

scent spectral sequences for K̂ ét(X) and TC(X) it suffices to show that πn(K/p)
and πn(T C/p) have the same cohomology on Xét. But by the same base change
results, this follows from the fact (see above) that they have the same restriction
to X ×Spec(R) Spec(R/pR). �

Above we used the following standard lemma.

Lemma 6.4. Let R be an Fp-algebra. Then the mod p étale cohomological dimen-
sion of R is ≤ 1.

Proof. This is classical in the noetherian case from the Artin-Schreier sequence (see
[4, Exp. X, Thm. 5.1]). To obtain the non-noetherian case, we use the criterion
from [4, Exp. IX, Prop. 5.5] together with the fact that cohomology commutes with
filtered colimits [79, Tag 03Q4]. �

12This is what Thomason’s étale hypercohomology construction implements. By [18, Thm. 1.3]
it agrees with the more basic sheafification for the etale site as considered in [55] under very mild
finiteness assumptions on X. We refer also to [54, Sec. 1.3] as a source for sheaves of spectra and
the associated t-structure.
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6.2. Asymptotic comparison of K and TC. Next, we show that K/p and TC/p
agree in large degrees for p-adic rings satisfying mild finiteness conditions. In
view of Theorems 6.3 and 4.36, this yields a general p-adic Lichtenbaum–Quillen
statement for rings which are henselian along (p). Note that for smooth algebras,
the result follows from the calculations of Geisser–Levine and Geisser–Hesselholt
(Theorem 4.29) and for singular curves, a slight strengthening of this result appears
in [31].

Theorem 6.5. Let R be a commutative ring and p be a prime number. Suppose
that d ≥ 1 and:

(1) R is henselian along (p).
(2) The ring R/p has finite Krull dimension.
(3) For any x ∈ Spec(R/p), the residue field k(x) has the property that [k(x) :

k(x)p] ≤ pd.

The map K(R)/pr → TC(R)/pr is an equivalence in degrees ≥ d for any r.

Proof. We use throughout the following basic observation: if T → T ′ is a map of
spectra which is an equivalence in degrees ≥ d, then for any spectrum T ′′ with a
map T ′′ → T ′, the map T ×T ′ T ′′ → T ′′ is an equivalence in degrees ≥ d. Using
the pullback square from Theorem 4.36 (involving the spectra K(R)/pr,TC(R)/pr,
K(R/p)/pr,TC(R/p)/pr), we reduce to the case where R is an Fp-algebra. It now
suffices to see that K(R)/pr → TC(R)/pr is an equivalence in degrees ≥ d.

Note also that the result is clearly equivalent if we replace K(R)/p with K(R)/p.
By the theorems of Thomason–Trobaugh [83] and Blumberg–Mandell [12] respec-
tively, K(−)/pr and TC(−)/pr are Nisnevich sheaves on SpecR with values in the
∞-category Sp.

By [18, Th. 3.17], the finiteness of Krull dimension implies that the Nisnevich
topos of SpecR has finite homotopy dimension in the sense of [55, Def. 7.2.2.1].
In the case where R is noetherian, the finiteness of homotopy dimension appears
in [54, Thm. 3.7.7.1]. As a consequence, Postnikov towers in the ∞-category of
Nisnevich sheaves of spectra on SpecR are convergent and one has a descent spectral
sequence. Therefore, it suffices to see that the maps on stalks induce isomorphisms
in degrees ≥ d. The maps on stalks are

K(A)/pr → TC(A)/pr,

as A ranges over the connected finite étale algebras over henselizations of R at prime
ideals. Since the map K(A)/p → K(A)/p is an equivalence in degrees ≥ 1, it suffices
to see that K(A)/p → TC(A)/p is an equivalence in degrees ≥ d for each such A.
This in turn follows from the fiber square of Theorem 4.36 (applied to the henselian
local ring A) and the fact that if k is a field of characteristic p, then the map
K(k)/pr → TC(k)/pr is an equivalence in degrees ≥ logp[k : kp] (which follows from

Theorem 4.29 and the theory of p-bases, which implies dimΩ1
k ≤ d and so Ωn

k = 0
for n > d [59, Thm. 26.5]). Note also that the invariant logp[k : kp] = dimΩ1

k is
invariant under finite separable extensions of fields of characteristic p. �

We immediately conclude the following p-adic Lichtenbaum–Quillen
isomorphism.

Corollary 6.6. Let R be a commutative ring which is henselian along (p) with
Spec(R/p) of finite Krull dimension, and suppose that d ≥ 1 is such that [k(x) :
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k(x)p] ≤ pd for all x ∈ Spec(R/p). Then the map K(R)/pr → K̂ ét(R)/pr is an
equivalence in degrees ≥ d for any r.

Proof. Combine Theorems 6.5 and 6.3. �
6.3. Examples. Finally, we include several explicit examples of comparisons be-
tween K and TC. We begin with an example of Theorem 6.5. In particular, the
standard rings occurring in algebra or algebraic geometry over a perfect field of
characteristic p are covered by this example.

Example 6.7. Let R be a noetherian Fp-algebra which is F -finite, i.e., the Frobe-
nius map is finite (Definition 5.1). Then R has finite Krull dimension [50, Prop.
1.1]. Moreover, if R is generated as a module by pd elements over the Frobenius,
this passes to any localization. It follows that if k is any residue field of R, then
[k : kp] ≤ pd. Therefore, the map K(R)/p → TC(R)/p is an equivalence in degrees
≥ d thanks to Theorem 6.5. Note that Theorem 6.5 assumes that d ≥ 1, but if
d = 0 then R is a finite product of perfect fields, so that the result follows from
Example 6.8.

We can also show that K-theory and TC agrees in connective degrees for certain
large rings.

Example 6.8. Let R be a perfect Fp-algebra, i.e., such that the Frobenius is an
isomorphism. Then the map K(R)/pr → TC(R)/pr is an equivalence on connective
covers for each r ≥ 0.

In fact, TCi(R) vanishes for i > 0. This follows as in the calculation of TC(Fp) in
[65, Sec. IV-4]. Indeed, by a variant of Bökstedt’s calculation, one finds THH(R)∗ �
R[σ] for |σ| = 2 and

TC−
∗ (R) = W (R)[x, σ]/(xσ − p), TP∗(R) � W (R)[x±1], |x| = −2.

If R has no nontrivial idempotents, it follows that π0(TC(R)/pr) = Z/prZ and
that π−1(TC(R)/pr) is the cokernel of F − 1 on Wr(R). We refer to the work of
Bhatt–Morrow–Scholze [9] for more details.

Moreover, Ki(R) is a Z[1/p]-module for i > 0. This follows from the existence of
Adams operations in higher K-theory and the fact that ψp is the Frobenius, cf. [44,
49]. If R has no nontrivial idempotents, it follows by Zariski descent that the kernel
of the map K0(R) → Z is a Z[1/p]-module, so that K0(R)/p � Z/p. Combining
all these observations, the claim for R follows provided Spec(R) is connected. To
reduce the general case to that one, note that everything commutes with filtered
colimits, so we can assume R is the perfection of a finite type Fp-algebra. Then
Spec(R) is noetherian, hence a finite disjoint union of connected affines, giving the
reduction.

We obtain the following corollary.

Corollary 6.9. Let R be a ring henselian along (p). Suppose R/p is a semiperfect
ring, i.e., an Fp-algebra such that the Frobenius map on R/p is a surjection. The
map K(R)/pr → TC(R)/pr is an equivalence in degrees ≥ 0 for any r.

Proof. Using Theorem 4.36, we immediately reduce to the case where R itself is a
semiperfect Fp-algebra. In this case, let I ⊂ R be the nilradical. It follows that
R/I is perfect and that I is locally nilpotent, so that (R, I) is a henselian pair. By
Theorem 4.36 and Example 6.8, it follows that the map K(R)/pr → TC(R)/pr is
an equivalence in degrees ≥ 0. �
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Example 6.10. Let C be a complete nonarchimedean field whose residue field is
perfect of characteristic p. Let OC ⊂ C be the ring of integers, and let π ∈ OC

be a nonzero element of positive valuation. Then OC is π-adically complete, and
the image of the maximal ideal mC ⊂ OC is a locally nilpotent ideal in OC/π:
in particular, mC ⊂ OC is henselian. We conclude that the map K(OC)/p

r →
TC(OC)/p

r exhibits the former as the connective cover of the latter for r ≥ 0 since
we know the analogous statement for the residue field (as in Example 6.8).

Given a perfectoid field C (in the sense of [74]), the ring of integers OC has
perfect residue field, so the above conclusion holds. When C = Cp is the com-
pleted algebraic closure of Qp, the p-adic K-theory of OC was calculated by Nizio�l,
cf. [66, Lem 3.1] which shows that K(OC ;Zp) � K(C;Cp), which in turn is p-
adic connective topological K-theory by [80,81]. Similarly, TC(OC ;Zp) was calcu-
lated by Hesselholt [40] and shown to agree with the K-theory. A description of
TC(OC ;Zp) in general has been given in [9].

6.4. Split injectivity. As we recalled in Theorem 4.29, results of Geisser–Levine
and Geisser–Hesselholt show that the trace map K(R)/p → TC(R)/p induces split
injections on homotopy groups whenever R is an ind-smooth local Fp-algebra. In
fact, the same argument shows that this also holds with mod pr coefficients for
any r, if we use the logarithmic de Rham-Witt groups (see Definition 5.24) as the
mod pr generalizations of the νn(R). The splitting comes from the étale descent
spectral sequence for TC, so that the complementary summand of πn(K(R)/pr)
in πn(TC(R)/pr) is given by H1(Spec(R)ét;πn+1(T C/pr)), where πn+1(T C/pr) de-
notes the étale sheafification of the presheaf πn(TC(−)/pr).

We can use our main result to extend this to arbitrary local Fp-algebras.

Theorem 6.11. Let R be any local Fp-algebra, n ≥ −1, and r ≥ 1. Then
the trace map πn(K(R)/pr) → πn(TC(R)/pr) is split injective. More precisely,

there is a functor ν̃n+1
r : CAlgFp

→ Ab and a natural transformation ν̃n+1
r (−) →

πn(TC(−)/pr) such that, for R local, the induced map

ν̃n+1
r (R)⊕ πn(K(R)/pr) −→ πn(TC(R)/pr)

is an isomorphism. This is also compatible with the natural transition maps as r
varies.

Moreover, ν̃n+1
r commutes with filtered colimits; in particular, the direct sum

decomposition above holds for arbitrary R after Zariski sheafification.

Proof. Recall that if R is an Fp-algebra, we can make a functorial surjection to
R from a polynomial algebra, namely take the polynomial algebra Fp[xa]a∈R on
variables indexed by the elements of R with the map xa �→ a. Let R′ → R denote
the henselization of this surjection at its kernel; thus R′ is a functorial ind-smooth
Fp-algebra surjecting onto R with henselian kernel. Moreover, R �→ R′ evidently
commutes with filtered colimits.

Define for m ≥ 0

ν̃mr (R) := H1(Spec(R′)ét;πm(T C/pr)).
Since the coefficient presheaf πm(TC(−)/pr) commutes with filtered colimits by
Corollary 2.15, this étale cohomology group commutes with filtered colimits in R′

by standard cocontinuity arguments. Combining with the previous, we find that
ν̃mr (−) commutes with filtered colimits.
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Furthermore, since Spec(R′) has étale p-cohomological dimension ≤ 1, the de-

scent spectral sequence for TC(−)/pr gives a natural map ν̃n+1
r (R) →

πn(TC(R
′)/pr) (compare with the proofs of Theorem 4.29 and Theorem 6.3). Com-

posing with the map on TC induced by R′ → R defines the desired natural trans-

formation ν̃n+1
r (R) → πn(TC(R)/pr).

Now assume R is local. Then R′ is too, since a henselian ideal is radical, and it
is moreover ind-smooth. Thus the argument recalled before the statement of the
theorem, based on the results of Geisser–Levine and Geisser–Hesselholt, shows that

ν̃n+1
r (R)⊕ πn(K(R′)/pr)

∼→ πn(TC(R
′)/pr).

On the other hand our main rigidity theorem, Theorem 4.36, gives a long exact
sequence

. . . → πn(K(R′)/pr) → πn(TC(R
′)/pr)⊕ πn(K(R)/pr) → πn(TC(R)/pr) → . . . .

Combining shows both that this long exact sequence breaks up into short exact
sequences and that

ν̃n+1
r (R)⊕ πn(K(R)/pr)

∼→ πn(TC(R)/pr),

as claimed. �

We next proceed to identify these constructions ν̃mr . When r = 1, the proof of

Theorem 4.29 shows that ν̃m1 (R) = ν̃m(R′), and this combines with Proposition
4.31 to give an identification

ν̃m1 (R) = ν̃m(R) := coker(1− C−1 : Ωm
R → Ωm

R /dΩm−1
R )

for arbitrary Fp-algebras R and m ≥ 0. More generally, we can obtain a similar

description of the ν̃mr for r > 1 as follows. As in [64, Sec. 4], we have a natural map

F : WrΩ
m
R → WrΩ

m
R /dV r−1Ωm

R

for an arbitrary Fp-algebra R which factors the Frobenius F : Wr+1Ω
m
R → WrΩ

m
R .

Let π : WrΩ
m
R → WrΩ

m
R /dV r−1Ωm

R be the natural projection and consider the map

(26) WrΩ
m
R

π−F−−−→ WrΩ
m
R /(dV r−1Ωm

R ).

By [64, Cor. 4.2(iii)], the map π − F has kernel given by the logarithmic forms,
i.e., we have a short exact sequence

(27) 0 → WrΩ
m
R,log → WrΩ

m
R

π−F−−−→ WrΩ
m
R /(dV r−1Ωm

R ).

Proposition 6.12. For any Fp-algebra R, we have a natural identification of graded
abelian groups

ν̃mr (R) � coker(π − F ).

Proof. We claim that the map π− F is surjective locally in the étale topology and
the cokernel satisfies rigidity for henselian pairs. The first claim follows because
the composite map

Wr+1Ω
m
R

R→ WrΩ
m
R

π−F−−−→ WrΩ
m
R /dV r−1Ωm

R

actually lifts to the map Wr+1Ω
m
R

R−F−−−→ WrΩ
m
R , which is a surjection in the étale

topology thanks to [64, Cor. 4.1(ii)].
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Second, let (R, I) be a henselian pair of Fp-algebras. To see that coker(π−F ) is
rigid, we can imitate the strategy of Proposition 4.31. Namely, we let L denote the
kernel of the surjection WrΩ

m
R /dV r−1Ωm

R → WrΩ
m
R/I/dV

r−1Ωm
R/I and contemplate

the commutative diagram

WrΩ
m
(R,I)

��
Wr+1Ω

m
(R,I)

��

R−F

		�������������������������
R �� WrΩ

m
(R,I)

��

ψ �� L

��
Wr+1Ω

m
R

��

R �� WrΩ
m
R

��

π−F �� WrΩ
m
R /dV r−1Ωm

R

��
Wr+1Ω

m
R/I

R �� WrΩ
m
R/I

π−F �� WrΩ
m
R/I/dV

r−1Ωm
R/I

.

To prove rigidity, it suffices by the snake lemma to show that ψ : WrΩ
m
(R,I) → L

is a surjection. Note that the kernel L is surjected upon by the relative forms
WrΩ

m
(R,I); this follows easily from the fact that Ωm

R → Ωm
R/I is a surjection. Thus,

the surjectivity of ψ now follows from the surjectivity of R − F : Wr+1Ω
m
(R,I) →

WrΩ
m
(R,I) given by Lemma 5.29.

Now we prove the proposition. Let R be an Fp-algebra and recall that, by
definition,

ν̃mr (R) = H1(Spec(R′)et;πm(T C/pr)),
where R′ → R is a surjective map from an ind-smooth Fp-algebra with henselian
kernel. Since πm(T C/pr) � WrΩ

m
log (as étale sheaves) over the ind-smooth Spec(R′)

by the results of Geisser–Levine and Geisser–Hesselholt, we can use the resolution
of (27) in the étale topology and the fact that the two terms of (27) have no higher
cohomology on affines to calculate this etale cohomology group. It follows that
ν̃mr (R) identifies with coker(π − F ) on R′. Since we have just seen this cokernel
satisfies rigidity, we can replace R′ by R, whence the claim. �
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Rive Gauche, and the University of Copenhagen for hospitality during which parts
of this work were done.

References
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