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ABSTRACT. We show that the characteristic polynomial and the Lefschetz zeta function

are manifestations of the trace map from the K-theory of endomorphisms to topological

restriction homology (TR). Along the way we generalize Lindenstrauss and McCarthy’s

map from K-theory of endomorphisms to topological restriction homology, defining it for

any Waldhausen category with a compatible enrichment in orthogonal spectra. In partic-

ular, this extends their construction from rings to ring spectra. We also give a revisionist

treatment of the original Dennis trace map from K-theory to topological Hochschild ho-

mology (THH) and explain its connection to traces in bicategories with shadow (also

known as trace theories).
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1. INTRODUCTION

The trace of a matrix is one of the most fundamental invariants in mathematics.

It is concrete, computable, easy to define, and ubiquitous. It generalizes to traces of

operators, traces of endomorphisms of projective modules, traces in symmetric monoidal

categories [DP80], and traces in bicategories with shadow [Pon10, PS13, Kal15]. The

trace is computable because it is additive: given two endomorphisms of k-vector spaces

f : V → V and g : W →W, the trace satisfies

tr( f ⊕ g) = tr( f )+ tr(g).

A similar additivity statement holds for exact sequences of R-modules, in symmetric

monoidal categories [May01], and in bicategories [PS18].
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Therefore the trace, considered as a function from the set of matrices to the ground

ring, can be encoded using a universal additive invariant. The Hattori–Stallings trace

K0(A)−→HH0(A)∼= A/[A, A],

and its generalization the Dennis trace K (A) → HH(A), make this idea precise. Here

K (A) is the algebraic K -theory of a ring A [Qui73, Wal85] and HH is the Hochschild

homology. Following the outline of Goodwillie [Goo91], the Dennis trace was further

generalized to a map to topological Hochschild homology THH(A), then to topological

restriction homology TR(A) and topological cyclic homology TC(A) in the celebrated work

of Bökstedt, Hsiang, and Madsen [Bök85, BHM93]. The invariants THH,TR and TC are

the source of much of our computational knowledge of algebraic K -theory.

The Hattori-Stallings trace is constructed in a concrete way from the ordinary trace

of endomorphisms of modules. In this paper we show that the same is true of the Dennis

trace and its refinements to THH and TR: they also encode concrete and computable

trace invariants. This is a shift in perspective, because typically THH, TR, and TC are

viewed as tools for computing the whole of K -theory, rather than a sequence of natural

receptacles for trace maps. Our goals are two-fold:

• To explain why the invariants comprising the Dennis trace K (A)→THH(A) and

the TR trace K (A)→TR(A) are generalized traces arising in the bicategorical du-

ality theory of Ponto and Ponto-Shulman [Pon10, PS13]. These invariants, which

include the trace of a matrix, the characteristic polynomial, and the Lefschetz

zeta function, are easy to define, frequently computable, and have excellent for-

mal properties.

• To carefully explicate the construction of the Dennis trace map and its gen-

eralizations. We follow previous accounts of the Dennis trace [DM96, BM12,

DGM13], using shadows in bicategories to simplify and conceptualize the defini-

tion.

As a result of the first goal, we also show that fixed-point and periodic-point invariants

of “Reidemeister type” lift along the Dennis trace, as in [Iwa99, GN99].

In summary, we view THH not as a stepping stone to K -theory computations, but as

an important receptacle for invariants in its own right. This shift in perspective is ac-

companied by a shift in emphasis in the definition of the Dennis trace. Cyclic invariance

has been central to the construction of the Dennis trace since its invention by Dennis

[Wal79, p.36]. In that guise, cyclicity is more commonly called the Dennis–Waldhausen–

Morita argument [BM11]. We expand this idea, putting it in the context of bicategorical

traces.

1.1. Statement of results: Invariants. In order to relate the Dennis trace to bicate-

gorical traces, we consider a generalization of the Dennis trace of the form

K̃(A; M)−→TR(A; M)−→THH(A; M)

which was studied by Lindenstrauss and McCarthy [LM12] in the case of discrete rings

and bimodules. Here THH(A; M) denotes topological Hochschild homology with coeffi-

cients in an (A, A)-bimodule M, K (A; M) is the K -theory of perfect A-modules P and

twisted endomorphisms

(1.1) f : P → M⊗A P,

and K̃(A; M) is the cofiber of the map K (A)→ K (A; M) that sends each perfect A-module

to its zero endomorphism.
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We will recall in §2 that a twisted endomorphism f : P −→ M⊗A P, with P a dualizable

A-module, has an associated bicategorical trace (Definition 2.14)

tr( f ) : S−→THH(A; M)

Our first result, an elaboration of [CP19, 7.11], says that the Dennis trace encodes the

bicategorical trace.

Theorem 1.2 (Example 6.26). For any ring or ring spectrum A and a (A, A)-bimodule

M, there is a generalized Dennis trace map (Definition 6.16)

K̃(A; M)
trc // THH(A; M)

that on π0 takes the class of an endomorphism f : P → M ⊗A P to its bicategorical trace

tr( f ) : S→THH(A; M).

More generally, topological restriction homology encodes the traces of the iterates of

an endomorphism.

Theorem 1.3 (Theorem 8.21). There is a lift of the Dennis trace to topological restriction

homology (Definition 8.13)

K̃(A; M)
trc // TR(A; M)

that on π0 takes the class of an endomorphism f : P → M ⊗A P to the trace of its n-fold

iterate

f ◦n : P → M⊗A · · ·⊗A M⊗A P

for every n ≥1.

We call the map in Theorem 1.3 the TR-trace. The characteristic polynomial of a

matrix is a refinement of the trace, and is encoded by the TR-trace.

Theorem 1.4 (Theorem 9.9). If A is a discrete commutative ring, then the composite

K̃0(A; A)
trc // π0 TR(A)

∼= // (1+ tA[[t]])×

takes the class [ f : P → P] of an endomorphism to its characteristic polynomial det(1−t f ).

We emphasize that Theorem 1.4 states that the TR-trace is exactly the homotopical

analogue of the characteristic polynomial. Since zeta functions are built out of charac-

teristic polynomials, we summarize with the slogan:

K-theory is the natural home for additive invariants, THH is the natural

home for traces, and TR is the natural home for zeta functions.

A related slogan occurs in topological fixed-point theory:

THH is the natural home for fixed-point invariants and TR is the natural

home for periodic-point invariants.

The following result captures this idea, and is the topological analogue of the algebraic

slogan.

Theorem 1.5 (Theorems 9.22 and 9.33). Every self-map f : X → X of a connected finite

complex defines a canonical class in endomorphism K-theory

[ f ] ∈ K0(S[ΩX ];S[Ω f X ]).

The image of this class under the TR-trace coincides with the periodic-point invariant

R(Ψ∞( f )) studied in [MP18b].

Composing with the map on TR induced by the ring map

S[ΩX ]
collapse
−−−−−→S

unit
−−−→ HZ,
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the image in π0 TR(Z)∼= (1+ tZ[[t]])× is the Lefschetz zeta function of f :

ζ(t)= exp

(
∞∑

n=1

L( f ◦n)
tn

n

)
.

In more detail, the image of [ f ] in π0 TR(S[ΩX ];S[Ω f X ]) is given by the Fuller traces

R(Ψn f )Cn for all n ≥ 1. These are the strongest invariants that detect the n-periodic

points of f up to homotopy, and our work here extends [MP18b] by lifting them to the

K -theory of spherical group rings. This realizes a vision of Klein, McCarthy, Williams

and others about the fundamental nature of these periodic-point invariants.

The theorem also suggests that the higher homotopy groups of K -theory with coeffi-

cients capture parameterized versions of the Lefschetz zeta function, just as K -theory

without coefficients captures parametrized Euler characteristics [DWW03]. We intend

to return to this idea in future work.

1.2. Statement of Results: The Dennis Trace. In order to prove that the trace maps

out of K -theory encode bicategorical traces, as described in the theorems above, we in-

tegrate the perspective of shadows into the construction of the Dennis trace. This has

the unexpected benefit of simplifying many aspects of its construction. We emphasize

that our definition is similar to and very much motivated by the work in [DM96, BM12,

DGM13], but the focus on shadows is conceptually clarifying.

To make sense of both the algebraic K-theory of a category and its topological Hochschild

homology we need the category to be a spectral category and have a compatible Wald-

hausen structure. Applying the building blocks of algebraic K -theory (i.e. applying w•

and S•) to a Waldhausen category goes back to Waldhausen’s original work, but applying

these to a spectral category is the most technically demanding portion of the paper. For

the introduction we will treat this step as a black box.

Given a spectral category C and a Waldhausen category C0 with appropriate compat-

ibility (Definition 3.9), the foundation of the Dennis trace is the inclusion of the zero

skeleton in THH: ∨

f ∈End(C0)

S→THH(C).

Note that the object on the left depends only on the base category C0, which we assumed

to be Waldhausen. Since w• and S• can be applied to both C0 and C, the inclusion of the

zero skeleton gives a map of bisimplicial spectra

Σ
∞ob w•S•End(C0)→ THH(w•S•C)

and more generally for each n ≥0 a map of (n+1)-fold multisimplicial spectra

Σ
∞ obw•S

(n)
•,...,•End(C0)→THH(w•S(n)

•,...,•C).

The Dennis trace is then defined to be a map in the homotopy category

(1.6) trc: K (End(C0))−→ THH(C)

obtained from a zig-zag of the form

Σ
∞obw•S∗

•,...,•End(C0)→THH(w•S
∗
•,...,•C)

≃
←−THH(S∗

•,...,•)
≃
←−Σ

∞THH(C).

The backwards maps of the zig-zag are provided by the following two theorems.

Theorem 1.7 (Lemma 3.15). If C is a spectral category and wkC is the associated category

of flags of weak equivalences in C, then there is a natural equivalence

THH(wkC)
≃
←−THH(C).
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Theorem 1.8 (Additivity of THH, Theorem 5.1). Let C be a spectral category and let

S2C be the associated spectral category of cofiber sequences in C. Then there is a natural

equivalence

THH(S2C)
≃
←−THH(C)∨THH(C).

These equivalences inductively define an equivalence

THH(S•C)
≃
←−ΣTHH(C),

and thus an equivalence to the iterated S•-construction

THH(S(n)
•,...,•C)

≃
←−Σ

n THH(C).

Note that, as a result, the zig-zag defining (1.6) has two spectral directions. One

spectral direction comes from the enrichment of C. The other spectral direction comes

from the iterated S•-construction and additivity.

The above two theorems are essential components in the construction of the Dennis

trace. They are well known in many different contexts [DM96, BM11, BM12, DGM13,

HS18]. We provide new proofs in the context of spectral Waldhausen categories that

highlight how these theorems are completely formal consequences of the fact that

• THH is a shadow on the bicategory of spectral categories and spectral bimodules,

and that

• THH preserves cofiber sequences in the bimodule slot.

We define the Dennis trace for any ring or ring spectrum A by applying the above to

the spectral Waldhausen category PA of perfect A-module spectra:

(1.9) K (End(A)) := K (End( PA
0))−→THH( PA ).

To make this land in THH(A) we use one final core result, which is also a formal conse-

quence of the shadow property.

Theorem 1.10 (Morita invariance of THH, Example 4.16). There is a natural equiva-

lence

THH( PA )
≃
−→THH(A)

defined by a bicategorical trace.

Again, this is well known, but recognizing that the map underlying the equivalence is

itself a bicategorical trace is clarifying and simplifies the proof.

The trace to THH(A; M) for an (A, A)-bimodule M proceeds in the same way, using

variants of the above theorems with coefficients. To define the lift to TR as in [LM12] we

perform the same manipulations but replace the endomorphisms c0 → c0 in C0 by length

r cycles of maps

(1.11) a1
f1
−→ a2

f2
−→ a3

f3
−→ ···

fr−1
−−→ ar

f f
−→ a1

for each r ≥ 1, and include these into the zero skeleton of THH(r)(C), a certain r-fold

subdivision of THH. The resulting traces agree by taking fixed points along the action

of a cyclic group that rotates the endomorphisms, and therefore they assemble together

into a map to TR.

1.3. Connection to the literature. In the case of discrete or simplicial rings A, the

trace of Theorem 1.2 is not new. The algebraic K -theory of parametrized endomorphisms

K (A; M) and its trace to THH(A; M) were first defined in [DM94] for exact categories, see

also [Iwa99, DGM13]. The lift to TR(A; M) was constructed for discrete rings (or exact

categories) by Lindenstrauss and McCarthy in [LM12]. Our contribution is mainly to

re-tool the construction so that it works for any ring spectrum, or more generally any

spectrally enriched Waldhausen category.
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Our reworking uses the Hill-Hopkins-Ravenel equivariant norm of [HHR16] and the

associated cyclotomic structure on THH from [ABG+18, Mal17a, DMP+19]. Many of our

arguments are adaptations and conceptualizations of work of Blumberg and Mandell

[BM11, BM12, BM15]. To identify the image on π0 we make heavy use of the main

result of [CP19].

In the setting of stable ∞-categories, the Dennis trace has a universal characteri-

zation [BGT13, BGT16]. The point-set model of the Dennis trace for spectrally en-

riched Waldhausen categories serves as a concrete description of the trace for stable

∞-categories. (Note from [BGT13] that the two settings are essentially equivalent.) We

expect that the generalized Dennis trace constructed here will similarly underlie the

∞-categorical Dennis trace with coefficients [BGT16, HS18], and the universal charac-

terization of the TR-trace described in forthcoming work of Nikolaus [Nik].

Finally, on the subject of fixed-point theory, we note that Theorem 1.5 is closely related

to the main result of [Iwa99], which lifts the Reidemeister traces of the iterates R( f ◦n)

to K0(Z[π1X ];Z[π1X f ]). They are related because on π0, the Fuller trace R(Ψn f )Cn is

equivalent to the Reidemeister traces R( f ◦k) for all k|n, by [MP18b]. We anticipate that

the formulation in Theorem 1.5 will be needed for future generalizations to families

of endomorphisms, where the Fuller trace becomes a strictly stronger invariant than

R( f ◦n), and approaches that use discrete rings tend to break down.

1.4. Organization. We recall preliminaries on duality and traces in symmetric mon-

oidal categories and bicategories, as well as on equivariant spectra, in §2. §3–4 recall

and extend necessary foundations to apply the trace in categories that are compatibly

spectrally enriched and have a Waldhausen structure. In §5 we revisit the additivity

of THH using shadows in preparation for the definition of the Dennis trace in §6. We

extend this definition to an equivariant trace in §7 and use it to define the TR trace in

§8. Finally in §9 we describe applications to homotopical characteristic polynomials and

periodic point invariants.

1.5. Acknowledgments. JC would like to thank Andrew Blumberg, Mike Mandell,

and Randy McCarthy for helpful conversations about this paper, and for general wis-

dom about trace methods. CM would like to thank Randy McCarthy for persistently

telling him about the TR trace for years – it’s beginning to sink in a little. KP was par-

tially supported by NSF grant DMS-1810779 and the University of Kentucky Royster

Research Professorship. The authors thank Cornell University for hosting the initial

meeting which led to this work.

2. PRELIMINARIES: DUALITY, BICATEGORIES, AND SPECTRA

We begin with a slogan:

Every endomorphism of a finite mathematical object defines a class in

K-theory, and the Dennis trace takes its trace.

In this section, we recall many of the fundamental definitions in this slogan. We de-

fine the trace of an endomorphism in a symmetric monoidal category, and then extend

the formalism to the noncommutative setting of bicategories. Ideas suggesting this

approach can be found in [Nic05], but the first successful formalization was the no-

tion of “shadowed bicategory” in the thesis of the fourth author [Pon10, PS13], later

re-discovered by Kaledin under the name “trace theory” [Kal15, Kal20]. In this sec-

tion we give a brief introduction to these ideas. The reader is encouraged to consult

[Pon10, PS13, PS14, DP80] for more details.
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2.1. Duality and trace in symmetric monoidal categories. An object X of a sym-

metric monoidal category (C,⊗, I) is dualizable if there exists an object X∗, together

with an evaluation map ǫ : X ⊗X∗ → I and a coevaluation map η : I → X∗⊗X , such that

both composites

X X ⊗ I X ⊗X∗⊗X I ⊗X X

X∗ I ⊗X∗ X∗⊗X ⊗X∗ X∗⊗ I X∗

∼= id⊗η ǫ⊗id ∼=

∼= η⊗id id⊗ǫ ∼=

are identity maps. The dual object X∗ is unique up to canonical isomorphism.

Given a dualizable object X , the trace of a map f : X → X is the composite

(2.1) tr( f ) : I X∗⊗X X∗⊗X X ⊗X∗ I.
η id⊗ f ∼= ǫ

When f is the identity morphism, we call tr(idX ) the Euler characteristic of the object

X [DP80, LMSM86, PS14].

Example 2.2. In classical contexts, the above definition becomes familiar.

i. In the category of vector spaces over a field k, the trace of an endomorphism

f : V −→ V of a finite dimensional vector space is the k-linear map tr( f ) : k −→ k

given by multiplication by the trace of a matrix representing f .

ii. In the stable homotopy category of spectra, the trace of the identity map on the

suspension spectrum Σ
∞
+ X of a finite CW complex X is a map tr(idΣ

∞
+ X ) : S→ S

whose degree is the Euler characteristic of X .

iii. More generally, if f : X −→ X is a self-map of a finite CW complex, then the

trace of the stable map Σ
∞
+ f : Σ∞

+ X −→Σ
∞
+ X is the Lefschetz number L( f ) [DP80,

Dol65].

2.2. Bicategories and shadows. If A is a non-commutative ring then A-modules do

not form a symmetric monoidal category. Hence the trace as defined in (2.1) does not

make sense. To take the trace of an endomorphism f : M → M in this setting, one must

circumvent the problem that

M⊗N ≇ N ⊗M

— they are not even objects of the same type. The Hattori–Stallings trace solves this is-

sue in an ad-hoc way, by modding out by a commutator ideal. The general solution to this

issue first appeared in [Pon10] (and was independently developed in work of Kaledin on

cyclic K -theory [Kal15]). The idea is to use bicategories to encode noncommutativity, and

create a type of wrapper 〈〈−〉〉, called a “shadow,” which removes just enough information

to give us commutativity when we need it.

Definition 2.3. A bicategory B consists of objects, A,B, . . ., called 0-cells, and categor-

ies B(A,B) for each pair of objects A,B. Objects in the category B(A,B) are called 1-cells

and morphisms are called 2-cells. The bicategory is further equipped with horizontal

composition functors

(2.4) ⊙ : B(A,B)×B(B,C)→B(A,C),

that are associative and have units UA ∈B(A, A), up to coherent isomorphism.

In our context, the horizontal composition will substitute for the tensor product; the

following family of examples is used throughout this section as motivation.

Example 2.5. There is a bicategory with one 0-cell for each ring A. For each pair of

rings A and B, the category B(A,B) is the category of (A,B)-bimodules. The horizontal

composition is the tensor product ⊗B.
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This bicategory serves as motivation for the bicategory of spectral categories, bimod-

ules, and homotopy classes of maps of bimodules, which we describe in §4. The true work

of the paper requires the bicategory in §4.

In order to define the trace, extra structure is required.

Definition 2.6 ([Pon10]). Let B be a bicategory. A shadow functor for B consists of

the following data:

a target category: T,

functors:

〈〈−〉〉: B(C,C)→T

for each object C of B,

a natural isomorphism:

(2.7) θ : 〈〈M⊙N〉〉
∼=
−→〈〈N ⊙M〉〉

for M ∈B(C,D) and N ∈B(D,C).

These must satisfy the condition that the following diagrams commute whenever they

make sense:

cyclic associativity:

〈〈(M⊙N)⊙P〉〉
θ //

〈〈a〉〉
��

〈〈P ⊙ (M⊙N)〉〉
〈〈a〉〉

// 〈〈(P ⊙M)⊙N〉〉

〈〈M⊙ (N ⊙P)〉〉
θ // 〈〈(N ⊙P)⊙M〉〉

〈〈a〉〉
// 〈〈N ⊙ (P ⊙M)〉〉

θ

OO
.

unitality:

〈〈M⊙UC〉〉
θ //

〈〈 r〉〉 &&▼
▼▼

▼▼
▼▼

▼▼
▼▼

〈〈UC ⊙M〉〉

〈〈 l〉〉
��

θ // 〈〈M⊙UC〉〉

〈〈 r〉〉xxqq
qq
qq
qq
qq
q

〈〈M〉〉

.

If 〈〈−〉〉is a shadow functor on B, then the composite

〈〈M⊙N〉〉
θ // 〈〈N ⊙M〉〉

θ // 〈〈M⊙N〉〉

is the identity [PS13, Prop. 4.3]. More generally, the circular product 〈〈M1 ⊙·· ·⊙Mn〉〉of

any composable list of 1-cells M1, . . . , Mn is well-defined up to canonical isomorphism

[MP18a, 1.6].

Example 2.8. The 0th Hochschild homology group 〈〈M〉〉= HH0(A; M) := M/(am− ma)

defines a shadow on the bicategory of rings and bimodules. The isomorphism

θ : HH0(A, M⊗B N)→HH0(B, N⊗A M)

is given by observing that both sides are the same quotient of M⊗N.

If we modify the bicategory of Example 2.5 by taking derived tensor products ⊗L

instead of ordinary ones, then the higher Hochschild homology HH∗(A; M) is also a

shadow. See Definition 4.9 for an analog of this using topological Hochschild homology.

While we won’t make any formal use of graphical reasoning or string diagram calculi,

“cartoon” images of the shadow and later generalizations can be useful. Figure 2.9 con-

tains two examples of this. We think of a 1-cell M as a vertex with two edges labeled

by the 0-cells which are the source and target of M. Then the shadow of M glues the

free ends of these edges to each other, as in Figure 2.9a. The shadow of the horizontal

composite of compatible 1-cells is displayed in Figure 2.9b.
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A

M

(A) 〈〈M〉〉

A B

M

N

(B) 〈〈M⊙N〉〉

FIGURE 2.9. Graphical representations of shadows

A

A

Q

A B

A

M

NQ

A B

B

M

PN

B

B

P

η⊙ id id⊙ f id⊙ǫ

FIGURE 2.13. The trace

2.3. Duality and trace. With a shadow we can now define traces in bicategories. We

start by recalling the generalization of dualizability to bicategories.

Definition 2.10. We say that a 1-cell P ∈B(C,D) in a bicategory is left dualizable if

there is a 1-cell P∗ ∈ B(D,C), called its left dual, and coevaluation and evaluation 2-

cells η : UD → P∗⊙P and ǫ : P ⊙P∗ →UC satisfying the triangle identities. We say that

(P∗,P) is a dual pair, that P∗ is right dualizable, and that P is its right dual.

Example 2.11.

i. For rings C and D, a (C,D)-bimodule P is left dualizable if and only if it is finitely

generated and projective as a left C-module.

ii. The 2-category of small categories, functors, and natural transformations is a

bicategory. The functors and their compositions may either be written from right

to left (function convention), or from left to right (bimodule convention, (2.4)).

Under the function convention, a functor G : C → D is left dualizable if and

only if it is a left adjoint. Under the bimodule convention, G is left dualizable if

and only if it is a right adjoint.

Definition 2.12 ([Pon10]). Let B be a bicategory with a shadow functor and let (P∗,P)

be a dual pair of 1-cells. Let M ∈B(C,C) and N ∈B(D,D) be 1-cells. The trace of a 2-cell

f : P ⊙N → M⊙P is the composite

〈〈N〉〉∼=〈〈UD ⊙N〉〉
〈〈η⊙idN〉〉
−−−−−→〈〈P∗⊙P ⊙N〉〉

〈〈 idP∗⊙ f〉〉
−−−−−−→〈〈P∗⊙M⊙P〉〉

θ
−→〈〈M⊙P ⊙P∗〉〉

〈〈 idM⊙ǫ〉〉
−−−−−→〈〈M⊙UC〉〉

∼=〈〈M〉〉.

The trace for a 2-cell g : N ⊙P∗ → P∗⊙M is defined similarly.

See Figure 2.13.

As explained in [Pon10], there is a conceptual re-interpretation of the Hattori–Stallings

trace of an A-module endomorphism f : P → P as a bicategorical trace

Z∼=HH0(Z) HH0(Z;P∗⊗A P) HH0(Z;P∗⊗A P) A/[A, A].

HH0(A;P ⊗Z P∗) HH0(A)

η f

∼=
ǫ

∼=
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This formalism is precisely what we need to generalize the classical link between the

Dennis trace and the Hattori–Stallings trace so that it also applies to ring spectra.

Definition 2.14. If P ∈ B(C,D) and P is left dualizable with left dual P∗, the Euler

characteristic of P is the trace of its identity 2-cell,

χ(P) : 〈〈UD〉〉→〈〈UC〉〉 χ(P) := tr(idP ).

(Here, M =UC and N =UD .) Similarly, the Euler characteristic χ(P∗) is the trace of the

identity 2-cell of P∗. A check of the definitions shows that χ(P)= χ(P∗).

As for symmetric monoidal categories, there is also a notion of invertible 1-cell that is

stronger than being dualizable. It gives us a natural notion of equivalence between the

0-cells.

Definition 2.15 ([Bén67][CP19, Def. 4.1]). A pair of 1-cells P ∈B(C,D) and P∗ ∈B(D,C)

forms a Morita equivalence between C and D if (P∗,P) is a dual pair whose coevalua-

tion and evaluation maps are isomorphisms.

Example 2.16. Morita equivalence in the bicategory of rings and bimodules is the usual

notion of Morita equivalence between rings.

When (P∗,P) is a Morita equivalence, the Euler characteristic χ(P) is an isomor-

phism since it is a composite of isomorphisms. We will make significant use of this

observation—it is an essential part of our approach to Theorem 1.10.

We finish this section with a definition which will be used often in this paper:

Definition 2.17. Let C be a category, such as the category of rings and ring homo-

morphisms. A pre-twisting of an object C ∈ C is a pair of morphisms F : A → C and

G : B → C; this is denoted A/C /B
F G

. When clear from context we often omit A and B

from the notation. A morphism of pre-twistings (H, I, J) : A/C /B
F G

→ A′/C′ /BF ′ G′ is

a commutative diagram

A
F //

H
��

C

J
��

B
Goo

I
��

A′ F ′

// C′ B′G′

oo

A pre-twisting is a twisting if A = B; we denote a twisting by A/C
F G

, and often omit A

from the notation. If A/C
F G

→ A′/C′
F ′ G′ is a morphism of pre-twistings between twist-

ings then it is a morphism of twistings if H = I; this is denoted (I, J).

Many bimodules of interest arise from twistings in the following way.

Example 2.18. Let R be a ring, and let f : S → R and g : T → R be a pre-twisting of

R. Then S/R /T
f g

gives R the structure of an (S,T)-bimodule, with S acting on the

left through f and T acting on the right through g. Morphisms of twistings produce

morphisms of bimodules. In a similar manner, a twisting S/R
f g

gives R an S-bimodule

structure.

We use this perspective in future sections (e.g. Definition 4.4) to produce examples of

bimodules over spectral categories.

2.4. Review of orthogonal G-spectra. We will also recall a bit of the theory of equi-

variant spectra; more details can be found in [MM02, HHR16, CLM+].

For simplicity, let G be a finite abelian group, such as Cr = Z/rZ. An orthogonal

G-spectrum is an orthogonal spectrum with an action of G. By the point-set change

of universe functor, this is the same thing as an orthogonal spectrum indexed on the

finite-dimensional representations of G [MM02, V.1.5]. An equivalence of G-spectra

is a map that induces an isomorphism on the homotopy groups that are defined using
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all of the G-representations; these are the weak equivalences in a model structure on

orthogonal G-spectra from [MM02, III.4.2], and when we say “cofibrant” or “fibrant” we

are always referring to the notions coming from this model structure.

There is a categorical fixed-points functor (−)H from orthogonal G-spectra to orthog-

onal G/H-spectra. It is right Quillen and its right-derived functor is the genuine fixed

points functor. There is also a point-set geometric fixed points functor Φ
H from orthog-

onal G-spectra to orthogonal G/H-spectra [MM02, V.4.1]. It is not a left adjoint, but it is

left-deformable and we refer to its left-derived functor LΦ
H as the (left-derived) geo-

metric fixed points functor. On suspension spectra we have canonical isomorphisms

Φ
H
Σ
∞X ∼= Σ

∞X H . There is a natural transformation κ : X H → Φ
H X for G-spectra X

called the restriction map. Making X cofibrant and fibrant gives a corresponding re-

striction map from the genuine fixed points to the geometric fixed points.

We recall a common tool for checking that a map of G-spectra is an equivalence.

Proposition 2.19. [May96, XVI.6.4] A map of G-spectra X →Y is an equivalence if and

only if for every H ≤G the induced map on derived geometric fixed points LΦH X → LΦ
HY

is an equivalence of spectra.

As discussed in [DMP+19, 4.1], the geometric fixed point functor Φ
H and its left-

derived functor LΦ
H also commute with the forgetful functor from G-spectra to H-

spectra. As a result, to determine whether a map of G-spectra is an equivalence, it

suffices to forget down to the H-action and measure its geometric H-fixed points, for

each H ≤G.

If X is an orthogonal spectrum, then the r-fold smash product X∧r admits a canonical

Cr-action by rotating the factors. By the above discussion, we may then consider X∧r to

be an orthogonal Cr-spectrum. This is the Hill–Hopkins–Ravenel norm of X . The fol-

lowing fundamental property of the norm gives us control over its equivariant homotopy

type.

Proposition 2.20. [HHR16] There is a natural diagonal map of orthogonal spectra

Dr : X −→Φ
Cr X∧r.

If X is cofibrant, then X∧r is cofibrant and Dr is an isomorphism on the point-set level.

We therefore get a natural equivalence for cofibrant X,

X ≃ LΦ
Cr X∧r.

In [ABG+18, Mal17a] this result is used to build a cyclotomic structure on the topologi-

cal Hochschild homology of an orthogonal ring spectrum, that by [DMP+19] is equivalent

to the cyclotomic structure of Bökstedt [Bök85]. In this paper we use Proposition 2.20

in much the same way to control the equivariant homotopy type of the r-fold topological

Hochschild homology spectrum THH(r) (see Definition 7.4).

Remark 2.21. It is especially important for us to note that on suspension spectra, the

HHR norm agrees with the more obvious map

Σ
∞X ∼=Σ

∞(X∧r)Cr ∼=Φ
CrΣ

∞X∧r ∼=Φ
Cr (Σ∞X )∧r.

This can be checked by tracing through the definitions, but it is much easier to conclude

it formally by noting that any point-set automorphism of the functor Σ
∞X has to be the

identity when X = S0 and therefore has to be the identity for all X . The rigidity theorem

for geometric fixed points from [Mal17a, 1.2] is a generalization of this observation.
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3. SPECTRAL CATEGORIES AND SPECTRAL WALDHAUSEN CATEGORIES

In this section we establish our conventions on spectral categories, define the notion

of a spectral Waldhausen category, and set up notation. In later sections, spectral cate-

gories will play the role that rings played in the primary example of §2.

3.1. Spectral categories.

Definition 3.1. A spectral category C is a category enriched in orthogonal spectra. In

other words, for every ordered pair of objects (a, b) there is a mapping spectrum C(a, b),

a unit map S−→C(a,a) from the sphere spectrum for every object a, and multiplication

maps

C(a, b)∧C(b, c)−→C(a, c)

that are strictly associative and unital. A spectral category is pointwise cofibrant if

all mapping spectra are cofibrant in the stable model structure on orthogonal spectra

[MMSS01, §9].

A functor of spectral categories F : C −→ D consists of a map on the object sets

and maps of spectra F : C(a, b) −→ D(Fa,Fb) that agree with the multiplications and

units. Such a functor is called a Dwyer–Kan embedding if each of these maps is an

equivalence [BM12, 5.1].

Throughout, we assume that spectral categories are small, meaning that they have a

set of objects.

Remark 3.2. Our convention that C(a, b) is an orthogonal spectrum imposes no essential

restriction. Any category enriched in symmetric or EKMM spectra can be turned into an

orthogonal spectral category using the symmetric monoidal Quillen equivalences (P,U)

and (N,N#) from [MMSS01] and [MM02], respectively.

Example 3.3.

i. Every (orthogonal) ring spectrum A is a spectral category with one object.

ii. If C0 is a pointed category, then there is a spectral category Σ
∞C0 with the same

objects as C0, mapping spectra given by the suspension spectra Σ
∞C0(a, b), and

composition arising from C0.

Definition 3.4. A base category of a spectral category C is a pair (C0,F : Σ∞C0 → C)

where C0 is an pointed category and F is a spectral functor that is the identity on object

sets. When the functor is clear from context we omit it from the notation.

We can form such a base category C0 by restricting each mapping spectrum to level

zero and forgetting the topology. However, there are also examples, such as Example 3.7,

which do not arise in this way.

Definition 3.5. Let A be an orthogonal ring spectrum. The category of A-modules

MA is a spectral category whose objects are the cofibrant module spectra over the ring

spectrum A. The mapping spectra are the right-derived mapping spectra. When A is

clear from context we omit it from the notation.

Perfect modules also form a spectral category.

Example 3.6. For a ring spectrum A, the category of perfect A-modules PA is the full

subcategory of MA spanned by the modules that are retracts in the homotopy category

of finite cell A-modules. When A is understood, we call this P. There is a functor of

spectral categories A → PA taking A to A equipped with the left-multiplication action.

In both of these cases, we make the mapping spectra right-derived by passing through

the category of EKMM spectra, using the symmetric monoidal Quillen adjunction (N,N#)

from [MM02, I.1.1]. A more explicit treatment appears in [CLM+, Section 3.2].

Another common example of a spectral category is a functor category.
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Example 3.7. Let I be a small category, and let C be a spectral category with a base cat-

egory C0. Write Fun(I,C0) for the category of functors (and natural transformations)

I →C0. The category Fun(I,C0) is a base category of a spectral category Fun(I,C), whose

mapping spectra are right-derived from the equalizer

eq
( ∏

i0∈ob I

C(φ(i0),γ(i0))⇒
∏

i0−→i1

C(φ(i0),γ(i1))
)
.

To be more precise, the spectral category Fun(I,C) is defined using the Moore end con-

struction of [MS02, 2.4] and [BM11, 2.3]. An explicit and detailed treatment of this

construction for spectra appears in [CLM+, Section 4].

Many of our techniques will require the use of pointwise cofibrant spectral categories.

Spectral categories can always be replaced with equivalent pointwise cofibrant spectral

categories using the model structure from [SS03, 6.1, 6.3].

Theorem 3.8. There is a pointwise cofibrant replacement functor Q and a pointwise

fibrant replacement functor R on spectral categories. In particular,

Q : SpCat→SpCat

is a functor equipped with a natural transformation q : Q ⇒ idSpCat such that qC is a

pointwise equivalence for every spectral category C.

3.2. Spectral Waldhausen categories. We now extend the definition of Waldhausen

categories to spectral categories. Recall that a Waldhausen category C0 is a category

with cofibrations and weak equivalences satisfying the axioms in [Wal85, §1.2].

Definition 3.9. A spectral Waldhausen category is a spectral category C together

with a base category C0 which is equipped with a Waldhausen category structure. This

data is subject to the following three conditions:

i. The zero object of C0 is also a zero object for C.

ii. Every weak equivalence c −→ c′ in C0 induces stable equivalences

C(c′, d)
∼

−→C(c, d), C(d, c)
∼

−→C(d, c′).

iii. For every pushout square in C0 along a cofibration

a

��

� � // b

��

c
� � // d

and object e, the resulting two squares of spectra

C(a, e)
OO

oo C(b, e)
OO

C(c, e) oo C(d, e)

C(e,a)

��

// C(e, b)

��

C(e, c) // C(e, d)

are homotopy pushout squares.

A functor of spectral Waldhausen categories F : (C,C0) −→ (D,D0) is an exact

functor F0 : C0 −→D0 and a spectral functor F : C−→D such that the diagram

Σ
∞C0

Σ
∞F0 //

��

Σ
∞D0

��

C
F // D

commutes. When it is clear from context, we omit C0 from the notation and refer simply

to the spectral Waldhausen category C.
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Example 3.10. The categories PA of perfect A-modules and MA of all A-modules are

both spectral Waldhausen categories.

Example 3.11. If C0 is a simplicially enriched Waldhausen category in the sense of

[BM11] then the spectral enrichment CΓ from [BM11, 2.2.1] is compatible with the Wald-

hausen structure in our sense. The same is true for the non-connective enrichment CS

from [BM11, 2.2.5] if C0 is enhanced simplicially enriched.

Proposition 3.12 ([CLM+, Theorem 4.1]). The category of functors construction from

Example 3.7 respects Waldhausen structures and defines a functor

Fun: Catop
×SpWaldCat→SpWaldCat,

by giving Fun(I,C0) the levelwise Waldhausen structure.

By levelwise Waldhausen structure, we mean that a map of diagrams φ→ γ is a cofi-

bration (resp. weak equivalence) if φ(i) → γ(i) is a cofibration (resp. weak equivalence)

for every object i of the indexing category I. In practice, this is usually more cofibrations

than we need, but we can always restrict the class of cofibrations:

Lemma 3.13. If (C,C0) is a spectral Waldhausen category, and C′
0 is a different Wald-

hausen structure on C0 with the same weak equivalences and fewer cofibrations, then

(C,C′
0) is also a spectral Waldhausen category.

3.3. The S• construction and the K -theory of spectral Waldhausen categories.

Let [k]= {0< 1< ·· · < k} denote the totally ordered set on k+1 elements. Recall that for

a Waldhausen category C0, the S• construction produces a simplicial category whose kth

level is the full subcategory

SkC0 ⊆Fun([k]× [k],C0)

consisting of functors that vanish on all pairs (i, j) with i > j, and on the remaining pairs

(in other words the category of arrows Arr[k]) form a sequence of cofibrations and their

quotients [Wal85, §1.3].

We extend this definition to spectral Waldhausen categories C by defining SkC to be

the full subcategory of Fun([k]× [k],C) on the objects that define SkC0. We define the

n-fold S• construction and the simplicial category w• of composable sequences of weak

equivalences for spectral Waldhausen categories in a similar way; see [CLM+, Defini-

tions 5.6 and 5.10] for more details.

Lemma 3.14 ([CLM+, Definition 5.10]). For every n ≥ 0, there is a functor from spectral

Waldhausen categories to multisimplicial Waldhausen categories

w•S(n)
• : SpWaldCat−→Fun(∆n+1,SpWaldCat)

which on base categories takes C0 to w•S
(n)
• C0, as defined by Waldhausen [Wal85].

For the next lemma, recall that a Dwyer–Kan equivalence is a Dwyer–Kan em-

bedding of spectral categories that induces an equivalence of ordinary categories after

applying π0 to the mapping spectra.

Lemma 3.15 ([CLM+, Lemma 5.7]). The iterated degeneracy map

w0Sk1,...,kn
C−→ wkSk1,...,kn

C

is a Dwyer–Kan equivalence of spectral categories. In particular, the spectral categories

wkC are all canonically Dwyer–Kan equivalent to C.

Definition 3.16. We define the K -theory of a spectral Waldhausen category C to be the

K -theory of the base category C0. In other words, the nth level of the K -theory spectrum
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is obtained from the spectral category w•S
(n)
• C by restricting to objects and taking the

geometric realization:

K (C)n =
∣∣obw•S(n)

• C
∣∣.

Note that, as usual, the K -theory spectrum is a symmetric spectrum with the sym-

metric groups permuting the S• terms.

4. BIMODULES OVER SPECTRAL CATEGORIES AND THEIR TRACES

In this section, we define the bicategory of spectral categories and bimodules, which

is the relevant generalization of the bicategory of rings and bimodules from §2. This

bicategory can be equipped with a shadow via THH, and we use the notion of Morita

equivalence from Proposition 4.12 to construct examples of equivalences on THH.

4.1. Spectral bimodules.

Definition 4.1. If C and D are spectral categories, a (C,D)-bimodule is a spectral func-

tor

X : Cop
∧D→Sp

to the spectral category of orthogonal spectra. More explicitly, a bimodule X consists of

an orthogonal spectrum X(c, d) for every ordered pair (c, d) ∈ obC× obD, along with a

left action by C and a right action by D

C(a, c)∧X(c, d)−→X(a, d), X(c, d)∧D(d, e)−→X(c, e)

satisfying evident unit and associativity conditions. A morphism of (C,D)-bimodules

X→ Y is a collection of maps of orthogonal spectra X(c, d)→ Y(c, d) commuting with the

C and D actions. A pointwise equivalence of bimodules is a morphism which induces

weak equivalences of spectra X(c, d)
∼

−→Y(c, d) for all objects c ∈C and d ∈D. We denote

the category of spectral (C,D)-bimodules by M(C,D).

Example 4.2. If A and B are ring spectra, then a (B, A)-bimodule is the same thing as

a bimodule over the associated one-object spectral categories.

Example 4.3. Let C be a spectral category. Then C gives rise to a (C,C)-bimodule defined

by the enrichment functor Hom: Cop ∧C→ Sp. By an abuse of notation we denote this

bimodule by C.

We can further generalize this example by allowing different sources for the domains

and codomains of the mapping spectra.

Definition 4.4. Recall from Definition 2.17 that a pre-twisting of spectral categories

A/C /BF G is a pair of spectral functors F : A→C and G : B→C. Given a pre-twisting, we

define an (A,B)-bimodule (which, by an abuse of notation, we denote by C
F G

) by

CF G(a, b) :=C(F(a),G(b)).

We have the following special cases:

• the (A,C)-bimodule C
F id

, abbreviated by C
F

or C
A

(when F is clear from context).

• the (C,B)-bimodule C
id G

, abbreviated by C
G

or C
B

(when G is clear from context).

• the (C,C)-bimodule C
id id

, abbreviated by C. Note that this agrees with the use of

C as a bimodule above.

Example 4.5. Let A and B be ring spectra and let M be a cofibrant (B, A)-bimodule. As

discussed in [CLM+, Definition 3.8], M induces a spectral functor on the categories of

modules M∧A − : MA → MB , and thus defines a ( MB , MA )-bimodule ( MB )M∧A−. We will

often abbreviate this to MM if the rings are understood. By [CLM+, Lemma 3.15], there

is a natural equivalence of (B, A)-bimodules M →MM given by the map M → MB (B, M)
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adjoint to the B-action on M. Note that the target is implicitly restricted to a (B, A)-

bimodule along the canonical inclusions of spectral categories A → MA and B → MB .

The bar construction provides a canonical model for the derived coend of bimodules

over spectral categories; this is the appropriate analog in our context of the derived

tensor product of bimodules over rings.

Definition 4.6. Let X be a (C,D)-bimodule and let Y be a (D,E)-bimodule. Define the

two-sided categorical bar construction B(X,D,Y) to be the (C,E)-bimodule whose

value at (c, e) is the geometric realization of the simplicial spectrum B•(X,D,Y)(c, e)

given by

Bn(X,D,Y)(c, e)=
∨

d0,...,dn

X(c, d0)∧D(d0, d1)∧·· ·∧ (dn−1, dn)∧Y(dn, e).

As is usual for bar constructions, the iterated D-action maps define canonical pointwise

equivalences

(4.7) B(D,D,Y)(d, e)
∼

−→Y(d, e) and B(X,D,D)(c, d)
∼

−→X(c, d).

When X is a (C,C)-bimodule we define the topological Hochschild homology or

cyclic bar construction THH(C;X) to be the realization of the simplicial spectrum

B
cy
• (C;X) given by

B
cy
n (C;X) :=

∨
c0,...,cn

C(c0, c1)∧C(c1, c2)∧·· ·∧C(cn−1, cn)∧X(cn, c0).

When C is pointwise cofibrant, the definition is equivalent to all other definitions of THH

in the literature, e.g. [Bök85, BM11, DGM13, NS18].

Note that THH(C;X) is functorial in both C and X. Directly from the definition we get

the following observation:

Lemma 4.8. A morphism of twistings A/CF G → A′/C′
F ′ G′ induces a morphism

THH(A; CF G)→THH(A′; C′
F ′ G′ ).

We equip the category M(C,D) of (C,D)-bimodules with the model structure discussed

in [BM12, 2.4-2.8], in which the weak equivalences are the pointwise equivalences.

Bimodules over spectral categories form a bicategory with shadow, and this structure

is the foundation of all our work in this paper. It echoes the structure of the bicategory

of rings and bimodules from Example 2.5. There are several previous constructions in

the literature, for instance [Shu06, 22.11], [LM19, 4.13], [CP19, 2.17], [Mal19, 7.4.2].

Definition 4.9. Let Bimod(SpCat) be the bicategory with

0-cells the pointwise cofibrant spectral categories C,

1- and 2-cells the objects and morphisms in the homotopy categories Ho
(
Mod(C,D)

)
,

and horizontal composition of 1-cells X, a (C,D)-bimodule, and Y, a (D,E)-

bimodule, given by the bar construction

X⊙Y := B(X,D,Y).

The bimodules D = D
id id

are the units for the horizontal composition, with unit iso-

morphisms given by (4.7). The associativity of the horizontal composition follows from

a comparison of bisimplicial spectra. We equip the bicategory Bimod(SpCat) with a

shadow using topological Hochschild homology:

〈〈X〉〉:=THH(C;X).

The horizontal composition of 1-cells is compatible with the bimodule structures given

by functors:
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Lemma 4.10. For any twisting C
F G

there is a canonical isomorphism of 1-cells

CF G ≃ CF ⊙CG .

For composable spectral functors A→B→C, there are canonical isomorphisms of 1-cells

B
A

⊙ C
B

≃ C
A

C
B
⊙B

A
≃C

A
.

Our examples of 1-cells also give simple ways to construct dual pairs:

Proposition 4.11 ([Pon10, Appendix], [PS12, Lem. 7.6]). Let F : A → C be a spectral

functor. Then there is a dual pair ( C
F

,C
F

) whose coevaluation and evaluation maps are

induced by the composites

η : A(a, b)
F

−−−→C(Fa,Fb)
∼

−→ B(C,C,C)(Fa,Fb)= ( CF ⊙CF )(a, b)

and

ǫ : (CF ⊙ CF )(c, d)=B(CF ,A, CF )(c, d)
F

−−−→ B(C,C,C)(c, d)
∼

−−→C(c, d).

4.2. Bicategorical traces and THH. In this subsection we show how familiar maps on

THH can be described as traces of endomorphisms of bimodules. The primary results are

well-known, but our explicit use of the shadow structure on THH simplifies and clarifies

previous proofs, e.g. in the work of Blumberg and Mandell [BM12].

Proposition 4.12 ([CP19, 5.8]). Let F : A→C be a spectral functor.

i. Given a (C,C)-bimodule X, write X
F F

:= C
F

⊙X⊙C
F

. Then the trace of the map

XF F ⊙ CF = CF ⊙X⊙CF ⊙ CF

id⊙ǫ
−−−→ CF ⊙X,

taken with respect to the dual pair ( C
F

,C
F

), is the map

THH(F) : THH(A; XF F )−→THH(C;X)

induced by F on the cyclic bar construction.

ii. The Euler characteristic χ(C
F

) of the left dualizable 1-cell C
F

(resp. the right

dualizable 1-cell C
F

) is the induced map

THH(F) : THH(A)−→THH(C).

Definition 4.13. A spectral functor F : A→C is a Morita equivalence if the dual pair

( C
F

,C
F

) is a Morita equivalence, in the sense of Definition 2.15.

Lemma 4.14 ([BM12, 5.12]). If F is a Dwyer–Kan embedding and surjective up to thick

closure, then F is a Morita equivalence.

The condition of being surjective up to thick closure means that the representable

functors C(c,−) can be obtained from the representable functors C(Fa,−) for a ∈ obA by

cofiber sequences and retracts, and similarly on the other side C(−, c).

Proposition 4.12 implies that when F : A → C is a Morita equivalence, the induced

map THH(F) is an equivalence. The next result follows immediately:

Theorem 4.15 (See [CP19, 5.9] and [BM12, 5.12]). Let F : A→C be a map of pointwise

cofibrant spectral categories and X be a (C,C)-bimodule. If F is a Dwyer–Kan embedding

and surjective up to thick closure, then the induced maps of spectra

THH(F) : THH(A)−→THH(C), THH(F) : THH(A; XF F )−→THH(C;X)

are equivalences.

We can use the theorem to show that THH(A) is equivalent to THH( PA ).



18 J. A. CAMPBELL, J. A. LIND, C. MALKIEWICH, K. PONTO, AND I. ZAKHAREVICH

Example 4.16. If A is a ring spectrum, then the inclusion of spectral categories A −→

PA is a Dwyer–Kan embedding, and surjective up to thick closure essentially by the

definition of PA . Thus

THH(A)
∼

−→THH( PA ).

Furthermore, if M is an (A, A)-bimodule, then along the map A → PA we have an equiv-

alence of bimodules M → MA
M

from Example 4.5, and hence an equivalence

THH(A; M)
∼

−→THH( PA ; MA
M ).

Example 4.17. In Lemma 3.15 we saw that the iterated degeneracy maps w0C→ wkC

for a spectral Waldhausen category C are Dwyer–Kan equivalences, and thus induce

equivalences on THH.

Example 4.18. Let C and D be spectral categories with chosen zero object, let C×D be

their product in spectral categories, and let C∨D⊂C×D be the full subcategory spanned

by the pairs in which at least one coordinate is the zero object. Then the inclusion C∨

D−→C×D is both a Dwyer–Kan embedding and surjective up to thick closure. Therefore

we have an equivalence

THH(C)∨THH(D)
∼=

−→THH(C∨D)
∼

−→THH(C×D).

This gives a short proof of the nontrivial fact that THH preserves finite products.

We can further strengthen Proposition 4.12 if X is of the form D
F G

.

Proposition 4.19. Given a morphism of twistings (I, J) : C/DF G → C′/D′
F ′ G′ there are

induced maps1

DF G ⊙ C′
I → C′

I ⊙ D′
F ′ G′ and C′

I ⊙ DF G → D′
F ′ G′ ⊙C′

I

whose traces are both the induced map

THH(I; J) : THH(C; DF G)−→THH(C′; D′
F ′ G′ )

Proof. Write F̂ := JF and Ĝ := JG, and observe that F̂ = F ′I and Ĝ =G′I by the commu-

tativity of the diagram defining a morphism of twistings (Definition 2.17). We prove the

proposition for the first map; the second is proved analogously.

The desired map is the composite

DF ⊙DG ⊙ C′
C

id⊙η⊙id
−−−−−→ DF ⊙ D′

D ⊙D′
D⊙DG ⊙ C′

C

∼
−→ D′

F̂ Ĝ

∼
−→ C′

C ⊙ D′
F ′ ⊙D′

G′ ⊙C′
C⊙ C′

C
id⊙ǫ
−−−→ C′

C ⊙ D′
F ′ ⊙D′

G′ ,

where the two isomorphisms of 1-cells are obtained using Lemma 4.10. This map is

now in a form where its trace agrees with the right-hand side of the equation in [PS13,

Proposition 7.1], with M = C′
C . Applying the proposition and simplifying implies that

the trace of this map is

〈〈 DF G〉〉
〈〈 id⊙η⊙id〉〉
−−−−−−−−→〈〈 D′

F̂ Ĝ
〉〉

tr(id⊙ǫ)
−−−−−−→〈〈 D′

F ′ G′〉〉.

Applying the definition of the shadow 〈〈−〉〉 on the bicategory of spectral categories and

using Proposition 4.12 with X= D′
F ′ G′ , the composite is

THH(C; DF G)
THH(idC;J)
−−−−−−−−→ THH(C; D′

F̂ Ĝ
)

THH(I)
−−−−−→THH(C′; D′

F ′ G′ ),

where the first map applies J to mapping spectra in D and the second is the map induced

by I. �

Putting Theorem 4.15 and Proposition 4.19 together gives the following:

1These are examples of Beck–Chevalley maps.
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Corollary 4.20. Let (I, J) : C/DF G → C′/D′
F ′ G′ be a morphism of twistings where I and

J are Dwyer–Kan embeddings and I is surjective up to thick closure. Then the induced

map

THH(I; J) : THH(C; DF G)−→THH(C′; D′
F ′ G′ )

is an equivalence.

5. THE ADDITIVITY THEOREM FOR THH, REVISITED

5.1. Additivity without coefficients. In this section we prove:

Theorem 5.1. There is an equivalence of spectra

(ι j)
k
j=1 :

k∨

j=1

THH(C)
∼

−→THH(SkC).

This is similar in spirit to existing additivity results, such as [DM96, 1.6.20] and

[DGM13, IV.2.5.8] which use a category of upper-triangular matrices, [BM12, Thm. 10.8]

which proves a version for DG-categories, and [BM11, 3.1.1] which proves additivity for

WTHH(C) :=THH(S•C), in other words after one copy of S• has been applied.

Our approach to Theorem 5.1 is fundamentally an adaptation of a technique from

[BM12, §7], made more conceptual by the machinery of shadows.

Definition 5.2. Let C be a spectral Waldhausen category. By [CLM+, Theorem 4.1] there

is a canonical equivalence S1C≃C. Let sk−1 : Sk−1C→ SkC and dk : SkC→ Sk−1C be the

last degeneracy and face functors, respectively. Let πk : SkC→ S1C
∼
→ C be the induced

by dk−1
0

and let ιk : C
∼
→ S1C → SkC be induced by sk−1

0
. More generally, for 1 ≤ j ≤ k

write ι j : C→ SkC for the functor induced by s
j−1

0
s

k− j

1
; these are the functors inducing

the equivalence in Theorem 5.1.

The next proposition is the main ingredient for the proof of the additivity theorem. As

the proof is technical, we postpone it until §5.3.

Proposition 5.3. The coevaluation map of the dual pair ( (SkC)sk−1
, (SkC)sk−1

) and the

evaluation map of the dual pair ( Cπk
,Cπk

) are pointwise equivalences of bimodules. The

other evaluation map and coevaluation map induce a homotopy cofiber sequence of (SkC,SkC)-

bimodules

(SkC)sk−1
⊙ (SkC)sk−1

ǫ
−→ SkC

η
−−→ Cπk

⊙Cπk
.

Theorem 5.1 follows by induction from the following proposition:

Proposition 5.4. The spectral functors sk−1 and ιk induce an equivalence

THH(Sk−1C)∨THH(C)
∼

−→THH(SkC).

Figure 5.5 is the version of Figure 2.9a for Theorem 5.1.

Proof. By Proposition 4.12, the induced map THH(sk−1) is the Euler characteristic of

(SkC)sk−1
, computed using the dual pair ( (SkC)sk−1

, (SkC)sk−1
). By Definition 2.14, the

Euler characteristic is the following composite:

χ((SkC)sk−1
) : 〈〈Sk−1C〉〉−→〈〈 (SkC)sk−1

⊙ (SkC)sk−1
〉〉≃〈〈 (SkC)sk−1

⊙ (SkC)sk−1
〉〉

ǫ
−→〈〈SkC〉〉.

The first map is an equivalence by the first statement in Proposition 5.3. Rewriting in

terms of THH, it follows that the induced map THH(sk−1) is the composite

(5.6) THH(Sk−1C)
∼

−→THH(SkC; (SkC)sk−1
⊙ (SkC)sk−1

)
ǫ

−→THH(SkC).

Similarly, the induced map THH(πk) is the composite

(5.7) χ(Cπk
) : THH(SkC)

η
−−→THH(SkC; Cπk

⊙Cπk
)

∼
−→THH(C),

where the equivalence is induced by the evaluation map of the dual pair ( Cπk
,Cπk

).
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(A) THH(SkC) (B)
∨k

i=1
THH(C)

FIGURE 5.5. Graphical representations of Theorem 5.1

Composing the two sequences in (5.6) and (5.7), the two middle maps arise by applying

THH(SkC;−) to the cofiber sequence from Proposition 5.3. Since THH preserves cofiber

sequences, this produces a cofiber sequence

THH(Sk−1C)
sk−1
−→ THH(SkC)

πk
−→THH(C).

The second map has a section, induced by ιk, so the cofiber sequence splits. �

5.2. Additivity with coefficients. Next we generalize Theorem 5.1 to allow for twisted

coefficients. For ease of future reference we state the theorem in its multisimplicial form.

Remark 5.8. From the properties of the S•-construction, any twisting C/DL R of spectral

Waldhausen categories induces a twisting (S•C/S•D)S•L S•R . For ease of reading, in such

cases we drop the S•-notation from the subscripts and simply write (S•C/S•D)L R .

Theorem 5.9. Given a twisting C/DL R of spectral Waldhausen categories there is an

equivalence of spectra
∨

1≤i j≤k j

1≤ j≤n

THH(C; DL R)
∼

−→THH(wk0
S(n)

k1,...,kn
C; (wk0

S(n)
k1,...,kn

D)L R).

The theorem follows from the w•-invariance of THH (see Example 4.17), and an in-

ductive argument based on the following generalization of Proposition 5.4:

Proposition 5.10. Let C/DL R be a twisting of spectral Waldhausen categories. The spec-

tral functors sk−1 and ιk induce an equivalence

THH(Sk−1C; (Sk−1D)L R)∨THH(C; DL R)
∼

−→THH(SkC; (SkD)L R ).

The proof of this proposition is largely analogous to the proof of Proposition 5.4; the

main difficulty that the twisting adds is that the construction of the equivalences in (5.6)

and (5.7) requires an extra step.

The functors sk−1, dk, πk, and ι j are functors of spectral Waldhausen categories. By

definition, dksk−1 = id and πkιk = id. These identities define the unit and counit, respec-

tively, of adjunctions

Sk−1C0

sk−1 //
SkC0

dk

oo SkC0

πk //
C0

ιk
oo

on the associated base categories. These adjunctions do not extend to spectrally enriched

adjunctions between our models for the spectral categories SkC, because the Moore end

is not 2-functorial ([CLM+, Section 4.5]). They do, however, still satisfy a condition

analogous to an adjunction:
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Proposition 5.11. The spectral functors dk and πk induce equivalences of spectra

SkC(sk−1a, b)
∼

−→ Sk−1C(dksk−1a, dkb)= Sk−1C(a, dkb)

SkC(a, ιkb)
∼

−→C(πka,πkιkb)=C(πka, b).

We postpone the proof of the proposition to §5.3, and now prove Proposition 5.10.

Proof of Proposition 5.10. We fill in the details that differ from the proof of Proposi-

tion 5.4. The spectral functor sk−1 defines a morphism of twistings

(sk−1, sk−1) : (Sk−1D)L R −→ (SkD)L R .

By Proposition 4.19 there is an associated map

f : (Sk−1D)L R ⊙ (SkC)sk−1
−→ (SkC)sk−1

⊙ (SkD)L R

whose trace is the induced map

THH(sk−1) : THH(Sk−1C; (Sk−1D)L R)−→THH(SkC; (SkD)L R ).

By definition, the trace of f is the composite

〈〈 (Sk−1D)L R〉〉
η

−−→〈〈 (Sk−1D)L R ⊙ (SkC)sk−1
⊙ (SkC)sk−1

〉〉

f
−−→〈〈 (SkC)sk−1

⊙ (SkD)L R ⊙ (SkC)sk−1
〉〉

∼=〈〈 (SkC)sk−1
⊙ (SkC)sk−1

⊙ (SkD)L R〉〉
ǫ

−→〈〈 (SkD)L R〉〉.

As in the proof of Proposition 5.4, we will prove that, prior to the application of the

evaluation map, the composite is an equivalence. It suffices to prove that f is a pointwise

equivalence of (Sk−1C,SkC)-bimodules, which follows from the commutative diagram

(Sk−1D)L ⊙ (Sk−1D)R ⊙ (SkC)sk−1
(SkC)sk−1

⊙ (SkD)L ⊙ (SkD)R

(Sk−1D)L ⊙ (SkD)sk−1
⊙ (SkD)R

(Sk−1D)L ⊙ (Sk−1D)R ⊙ (Sk−1C)dk
(Sk−1D)L ⊙ (SkD)dk

⊙ (SkD)R ,

f

≃ id⊙id⊙dk

≃

≃id⊙dk⊙id

≃

where the unlabeled equivalences are instances of Lemma 4.10 and the equivalences

induced by dk are from Proposition 5.11.

Similarly, the map πk induces a morphism of twistings

(πk,πk) : (SkD)L R → DL R .

The same logic as above reduces the proof to showing that the map

g : (SkD)L R ⊙ Cπk
−→ Cπk

⊙ DL R

from Proposition 4.19 is a pointwise equivalence of bimodules, which follows in the same

manner from the commutative diagram

(SkD)L ⊙ (SkD)R ⊙ (SkC)ιk (SkD)L ⊙ (SkD)ιk ⊙D
R

(SkD)L ⊙ Dπk
⊙D

R

(SkD)L ⊙ (SkD)R ⊙ Cπk
Cπk
⊙ D

L
⊙D

R
.

≃ id⊙id⊙πk

≃

id⊙πk⊙id ≃

≃

g
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The rest of the proof proceeds as in the untwisted case. �

Remark 5.12. These results can be generalized to the case when D is a pointed spectral

category. In this case, wkD is defined to include all maps and w0D → wkD is still a

Dwyer–Kan embedding. The definition of SkD from §3.3 is modified to be the subcate-

gory of Fun([k]× [k],D) on diagrams sending each (i ≥ j) to the zero object ∗ ∈D0.

This doesn’t affect any of the proofs because we only ever consider diagrams in the

image of the functors L and R, and so it is enough to control the behavior of cofibrations

and pushouts in SkC.

5.3. The technical proofs. In this subsection we prove Propositions 5.3 and 5.11.

Proof of Proposition 5.11. The proof requires explicit properties of the construction of the

mapping spectra in SkC from [CLM+, §4]. The key fact is that the mapping spectrum

SkC(a, b) is equivalent, via the canonical restriction maps, to the homotopy limit of the

zig-zag diagram of spectra built out of the composition maps between C(a(i, j), b(i, j))

for 0 ≤ i, j ≤ k [CLM+, Theorem 4.1ii]. Under these equivalences, the last face functor

dk : SkC→ Sk−1C agrees with the map to the homotopy limit of the subdiagram where

0 ≤ i, j ≤ k−1. Replacing the domain a with a diagram sk−1a in the image of the last

degeneracy functor, the canonical map sk−1a(k−1, j) → sk−1a(k, j) is the identity map,

and thus the induced maps of spectra

C(sk−1a(k, j), b(k, j))−→C(sk−1a(k−1, j), b(k, j))

are identity maps for any j. Similarly, restricting to the bottom row gives

C(sk−1a(i, k), b(i, k))=∗

for any i. It follows that the map of homotopy limits from the diagram with 0 ≤ i, j ≤ k

to the diagram with 0 ≤ i, j ≤ k−1 is an equivalence of spectra. Therefore, the last face

functor dk induces an equivalence of mapping spectra

SkC(sk−1a, b)
≃

−→ Sk−1C(dksk−1a, dkb),

as claimed. A similar argument shows that the functor πk induces an equivalence of

mapping spectra

SkC(a, ιkb)
∼

−→C(πka,πkιkb).

�

For ease of notation, we require an extra definition.

Definition 5.13. A pointwise map of (C,D)-bimodules, denoted X // Y , is a map of

spectra X(c, d)→ Y(c, d) for each c ∈ obC and d ∈ obD. These are not required to satisfy

any coherence with the C and D actions. When a pointwise map of (C,D)-bimodules is

compatible with the C-action, we denote it by X � � // Y .

We write ǫ0 : sk−1dk −→ id for the counit of the adjunction (sk−1 ⊣ dk) of base categor-

ies. Composing with the morphism ǫ0 : sk−1dkb −→ b in SkC0 defines a pointwise map of

bimodules

(SkC)sk−1dk

� � // SkC ,

compatible with the left action. Similarly, composing with the unit η0 : b −→ ιkπk for the

adjunction (πk ⊣ ιk) of base categories defines a pointwise map of bimodules

(SkC) � � // (SkC)ιkπk

that is also compatible with the left action.
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Lemma 5.14. The pointwise equivalences from Proposition 5.11 fit into commutative

diagrams of pointwise morphisms of bimodules

(SkC)sk−1
⊙ (SkC)sk−1

≃

��

ǫ // SkC

(SkC)sk−1
⊙ (Sk−1C)dk

≃ // (SkC)sk−1dk

?�

ǫ0

OO
and SkC

η
//

� _

η0

��

Cπk
⊙Cπk

(SkC)ιkπk

≃ // (SkC)ιk ⊙Cπk

≃

OO

relating the evaluation (resp. coevaluation) map for the dual pairs with the counit (resp.

unit) of the adjunction on base categories.

Proof. We prove the lemma for the first diagram; the second follows analogously. Recall

that the spectral category SkC is defined as a full subcategory of the functor category

Fun([k]2,C). Define a twisting of spectral categories SkC/�SkCL R where

�SkC⊆Fun([1]× [k]2,C)

is the full subcategory of diagrams that at each i ∈ [1] satisfy the conditions for SkC.

The spectral functor L : SkC → �SkC arises from the collapse [1] → ∗, and the spectral

functor R : SkC→ �SkC arises from the map of posets [1]× [k]2 → [k]2 that on 1 ∈ [1] is

the identity of [k]2 and on 0 ∈ [1] applies i 7→max(i, k−1) to each coordinate of [k]2 (this

is the map of totally ordered sets inducing sk−1dk). Let r0, r1 : �SkC⇒ SkC denote the

spectral functors that restrict to 0 ∈ [1] and 1 ∈ [1], respectively. We form the following

diagram of (SkC,SkC)-bimodules

SkCsk−1
⊙ SkCsk−1

(1,1,dk)

��

=

**
�SkCsk−1

⊙ SkCsk−1

∼

(r0,1,1)
oo

(1,sk−1,1)

��

∼

(r1 ,1,1)
// SkCsk−1

⊙ SkCsk−1

(1,sk−1,1)

��

SkCsk−1
⊙Sk−1Cdk

∼

��

�SkC⊙SkC
∼

(r0,dk ,dk)
oo

∼

��

∼

(r1 ,1,1)
// SkC⊙SkC

∼

��

(SkC)sk−1dk
� x

ǫ0

44
�SkC

∼

r0

oo ∼

r1

// SkC.

The four rectangular regions commute and all the solid arrows are maps of (SkC,SkC)-

bimodules, as is verified by checking that various maps of twistings, arising from maps

of posets, agree with each other. The top region also commutes easily. The region at

the very bottom commutes in the category of pointwise maps of bimodules, again using

the description of Fun([1],C) as a homotopy limit of a zig-zag – see [CLM+, §4] for more

details. The outside maps are the desired pointwise maps of bimodules, finishing the

proof. �

We are now ready to prove Proposition 5.3.

Proof. The first claim in the proposition follows from the commutativity of the diagrams

Sk−1C (SkC)sk−1
⊙ (SkC)sk−1

(Sk−1)
dk sk−1

(Sk−1C)dk
⊙ (SkC)sk−1

η

dk⊙id≃

≃

and

Cπk
⊙ Cπk

C

Cπk
⊙ (SkC)ιk Cπk ιk

ǫ

≃id⊙πk

≃
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which are formally analogous to those in Lemma 5.14 (but easier to check because η0 = id

for (sk−1 ⊣ dk) and ǫ0 = id for (πk ⊣ ιk)).

To check the cofiber sequence statement note that the two diagrams in Lemma 5.14

give, for each x, y ∈ obSkC, a natural weak equivalence betwen the sequence of interest

and the sequence

SkC(x, sk−1dk y)→ SkC(x, y)→ SkC(x, ιkπk y).

Thus to show that the given sequence of bimodules is a homotopy cofiber sequence it

suffices to show that this is a homotopy cofiber sequence of spectra for each x, y.

The counit and unit of the adjunctions (sk−1 ⊣ dk) and (πk ⊣ ιk) of base categories fit

into a pushout square of functors SkC0 → SkC0

(sk−1dk)

��

ǫ0 // id

η0

��

∗ // (ιkπk)

whose horizontal arrows are cofibrations. Since SkC is a spectral Waldhausen category,

there is an induced homotopy pushout square of spectra

SkC(x, sk−1dk y)

��

// SkC(x, y)

��

SkC(x,∗) // SkC(x, ιkπk y).

Since the lower-left corner is contractible, the other three terms form a homotopy cofiber

sequence, as desired. �

6. THE DENNIS TRACE

In this section we construct the Dennis trace map K (End(C)) → THH(C) out of endo-

morphism K -theory for a spectrally enriched Waldhausen category C, as well as a twisted

Dennis trace which allows bimodule coefficients. This material serves as the scaffolding

for the construction of the trace map to TR in §7–8. We conclude the section with a con-

crete description of the effect of the Dennis trace on π0 in terms of bicategorical traces

(Proposition 6.24).

6.1. Endomorphism categories. We begin by defining endomorphism categories.

Definition 6.1. For any Waldhausen category C0, let End(C0) be the Waldhausen cat-

egory of functors Fun(N,C0), where N is considered as a category with one object and

morphism set N. More concretely, the objects of End(C0) are endomorphisms f : a −→ a

in C0, and the morphisms are commuting squares of the form

a
f

//

i
��

a

i
��

b
g

// b.

We define the morphism to be a cofibration or weak equivalence if i is a cofibration or

weak equivalence, respectively. We also define exact functors

C0 End(C0)

ι0

ι1
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where End(C0) −→ C0 forgets the endomorphism f . The inclusions ι0, ι1 : C0 −→ End(C0)

equip each object a with either the zero endomorphism or the identity endomorphism.

Example 6.2. If A is a ring spectrum and C=P= PA is the spectral Waldhausen cate-

gory of perfect A-modules from Example 3.10, then K (C0) is the usual algebraic K -theory

spectrum K (A) of A, and the K -theory of End(C0) is the K -theory of endomorphisms

K (End(A)).

It is also possible to extend the definition of endomorphism K -theory to twistings.

First we recall our main example of a twisting.

Example 6.3. Let A be a ring spectrum. Recall from Definition 3.5 and Examples 3.6

and 4.5 the spectral categories P of perfect left A-modules and M of all left A-modules.

Let

L,R : P⇒M

denote, respectively, the inclusion and the functor M∧A− for a cofibrant (A, A)-bimodule

M. This defines a twisting that we denote by P/MM .

Definition 6.4. Given a twisting C/D
L R

of spectral Waldhausen categories, the twisted

endomorphism category End
(
C/D

L R

)
is the category where

• the objects are pairs (a, f ) of a ∈ obC0 and a morphism f : L(a)→ R(a) in D0, and

• a morphism (a, f )→ (b, g) is a morphism i : a → b in C0 such that the diagram

L(a) R(a)

L(b) R(b)

f

L(i) R(i)

g

commutes.

Note that this definition only uses the base categories C0 and D0, and not the spectral

enrichment.

Example 6.5.

i. When D=C and L = R = idC we get the usual endomorphism category.

ii. The twisted endomorphism category for P/MM = PA / MA
M has as objects A-

module maps P → M ∧A P with P a perfect A-module. Following [LM12], the

K -theory of its base Waldhausen category is denoted by

K (A; M) := K End( PA / MA
M).

6.2. Bispectra. Before defining the Dennis trace, we introduce some formal structure

that arises naturally when analyzing THH.

Definition 6.6. A bispectrum is a symmetric spectrum object in orthogonal spectra

[MMSS01, Hov01, CLM+].

In order to construct bispectra, we need a technical tool which formalizes the way that

the iterated S•-constructions |S
(n)
•,··· ,•C0| assemble into a symmetric spectrum. Let I be

the skeleton of the category of finite sets and injections spanned by the objects

n = {1, . . . , n}

for n ≥ 0. Let ∆
op×n be the n-fold product of the opposite of the category ∆ of nonempty

totally ordered finite sets

[k]= {0< ·· · < k}.

For each morphism f : m −→ n in I, there is an induced functor f∗ : ∆op×m −→ ∆
op×n

taking ([k1], . . . , [km]) to the n-tuple whose value at f (i) is [ki] and whose value outside

the image of f is always [1]. In particular, when m = n there is an action of the symmetric
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group Σn on ∆
op×n. This rule defines a strict diagram of categories indexed by I, and

we write I
∫
∆

op×− for its Grothendieck construction. Thus, the objects of the category

I
∫
∆

op×− are tuples

(m; k1, . . ., km),

where m, ki ≥ 0, and a morphism

(m; k1, . . ., km)→ (n; l1, . . . , ln)

consists of an injection f : m −→ n and a morphism (φi) : f∗([k1], . . . , [km])→ ([l1], . . . , [ln])

in ∆
op×n.

Definition 6.7. Given a pointed category M, a Σ∆-diagram in M is a functor

X(•;•,...,•) : I
∫
∆

op×− −→M

with the following two properties:

• X(m;k1,...,km)
∼=∗ any time ki = 0 for at least one i, and

• the morphisms (m; k1, . . . , km)−→ (n; f∗(k1, . . . , km)) with every φi = id induce iso-

morphisms

X(m;k1,...,km)
∼= X(n; f∗(k1,...,km)).

The symmetric group action on ∆
op×n defines an action of Σn on the geometric realiza-

tion of the multisimplicial object |X(n,•,...,•)|, and this construction extends to a functor

from Σ∆-diagrams in a pointed simplicial model category M to symmetric spectrum ob-

jects in M [CLM+, Lemma 6.3]. For further discussion of Σ∆-diagrams, see [CLM+, §6].

6.3. Definition of the Dennis trace. Let C be a spectral Waldhausen category and let

X be a (C,C)-bimodule. The key observation for the construction of the Dennis trace is

that the inclusion of 0-simplices in the cyclic bar construction defines a canonical map

(6.8)
∨

c0∈obC0

X(c0, c0)→THH(C;X).

When X = C, each object f : c0 → c0 of End(C0) defines a map of spectra S −→ C(c0, c0),

and so composing with (6.8) gives a map

(6.9) Σ
∞ob End(C0)=

∨

f : c0→c0 ,
c0 6=∗

S−→
∨

c0∈obC0

C(c0, c0)−→THH(C)

where f runs over the objects of End(C0). See Figure 6.11a for a picture of this map.

Applying (6.9) to the spectral Waldhausen category wk0
S

(n)
k1,...,kn

C for each value of n and

k0, . . . , kn defines a map of orthogonal spectra

Σ
∞ob End(wk0

S
(n)
k1,...,kn

C0)−→THH(wk0
S

(n)
k1,...,kn

C).

Appending the splitting from Theorem 5.9 gives a zig-zag of orthogonal spectra

(6.10) Σ
∞ob End(wk0

S
(n)
k1,...,kn

C0)−→THH(wk0
S

(n)
k1,...,kn

C)
≃

←−
∨

i1,...,in

1≤i j≤k j

THH(C).

The number of summands on the right is the same as the number of nonzero points in

the set S1
k1
∧·· ·∧S1

kn
, where S1

• is the simplicial circle ∆[1]/∂∆[1]. Therefore these wedge

sums form an (n+1)-fold multisimplicial spectrum that is constant in the k0 direction.

The construction of the zig-zag (6.10) works identically for a bimodule arising from

a twisting C/DL R of spectral Waldhausen categories. In this case, the map (6.8) with

X= (w•S
(n)
• D)L R defines a zig-zag of multisimplicial orthogonal spectra

(6.12)
Σ
∞ob End( (w•S(n)

• C/w•S
(n)
• D)L R )−→ THH(w•S(n)

• C; (w•S(n)
• D)L R)

≃
←− (S1

•)∧n
∧THH(C; DL R).



K -THEORY OF ENDOMORPHISMS, THE TR-TRACE, AND ZETA FUNCTIONS 27

c0

c0c0

f

C

C

(A) C/DL R =C

c0

R(c0)L(c0)

f

LDR

C

(B) General case

FIGURE 6.11. Graphical representation of (6.9). An endomorphism is

“closed up” via a bar construction.

The following lemma follows directly from the definitions and Theorem 5.9:

Lemma 6.13. The maps in the zig-zag (6.12) of multisimplicial orthogonal spectra com-

mute with the Σn-actions and the identifications that remove a simplicial direction when

its index is equal to 1. In other words the given maps produce a zig-zag of Σ∆-diagrams

of simplicial orthogonal spectra.

Another way of saying this is that (S1
• )∧n ∧THH(C) is the free Σ∆-diagram on the

spectrum THH(C) at level (0; ), and
∨
ιi1,...,ik

agrees with the map that arises from the

free-forgetful adjunction.

Taking the geometric realization of these multisimplicial orthogonal spectra gives a

zig-zag of bispectra. At level n in the symmetric spectrum direction, the zig-zag of bis-

pectra is

(6.14)
|Σ

∞ob End( (w•S(n)
• C/w•S

(n)
• D)L R)| −→ |THH(w•S

(n)
• C; (w•S

(n)
• D)L R)|

≃
←−Σ

n THH(C; DL R).

There is a canonical identification of sets

ob End( (w•S
(n)
• C/w•S

(n)
• D)L R )= obw•S(n)

• End( C/DL R ).

This identifies the bispectrum on the left of (6.14) with the orthogonal suspension spec-

trum of the symmetric spectrum K (End( C/DL R)). On the other hand, the spectrum on

the right of (6.14) is the symmetric suspension spectrum of the orthogonal spectrum

THH(C; D
L R

).

Applying the (left-derived) prolongation functor from [CLM+, Proposition A.7] to these

bispectra, we get a zig-zag of orthogonal spectra

(6.15) PK (End( C/DL R))−→P|THH(w•S∗
•C; (w•S

∗
•D)L R)|

≃
←−THH(C; DL R).

The first term in (6.15) is the prolongation of K (End( C/DL R)) from symmetric to orthog-

onal spectra.

Definition 6.16. The Dennis trace map associated to a twisting C/DL R is obtained by

choosing an inverse to the wrong-way map in (6.15), defining a map

(6.17) trc: PK (End( C/DL R))−→THH(C; DL R)

in the homotopy category of orthogonal spectra, or, equivalently, in the homotopy cate-

gory of symmetric spectra

(6.18) trc: K (End( C/DL R ))−→UTHH(C; DL R)

to the underlying symmetric spectrum of THH.

Remark 6.19. It is unnecessary to check that the multisimplicial objects above are Reedy

cofibrant, because the realization can be automatically left-derived without losing the

symmetric spectrum structure ([CLM+, Theorem 6.4]). See [CLM+, Remark 7.14] for
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additional discussion. The upshot is that this construction of the Dennis trace is insen-

sitive to the choice of model for THH.

Observation 6.20. Consider the case when C=D and L = R = id. The Dennis trace map

on K (End(C0)) extends the Dennis trace on K (C0), as constructed in e.g. [BM11, DGM13],

in the sense that the following diagram commutes:

K (C0)

trc

��

ι1 // K (End(C0))

trcww♦♦
♦♦
♦♦
♦♦
♦♦
♦

THH(C).

To see this, observe that other authors construct the Dennis trace map in the same

way that we did for K (End(C0)), except using the map (6.8) with X(c0, c0) =S instead of

(6.9). The two maps agree along the inclusion of the identity morphisms, and tracing

through the construction above this becomes the map of K -theory spectra ι1 : K (C0) −→

K (End(C0)) induced by the exact functor ι1 from beneath Definition 6.1.

Remark 6.21. The same argument shows that the diagram

K (C0)

0

��

ι0 // K (End(C0))

trcww♣♣
♣♣
♣♣
♣♣
♣♣
♣

THH(C)

commutes. As a result, the Dennis trace factors through the mapping cone of ι0, often

called cyclic K -theory (or the reduced K -theory of endomorphisms):

K cyc(C0)= K̃(End(C0))= K (End(C0)) / ι0K (C0).

If we return to the case of general D, the inclusion of identity endomorphisms ι1
becomes meaningless, but the inclusion of zero endomorphisms ι0 is still defined, and

there is a commutative diagram

K (C0)

0

��

ι0 // K End
(
C/D

L R

)

trcvv♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠

THH
(
C; D

L R

)
.

Thus the Dennis trace descends to a map out of cyclic K -theory,

K̃ End
(
C/DL R

)
= K End

(
C/DL R

)
/ ι0K (C0)−→THH

(
C; DL R

)
.

In particular, for a ring spectrum A and bimodule M the Dennis trace defines a map

K cyc(A; M)= K̃(A; M)
trc
−−→THH( PA ; MA

M)
∼

←−THH(A; M).

Remark 6.22. We sketch an argument that this agrees with the trace defined in [LM12,

9.2], see also [DGM13, V]. The idea is to use a version of [DMP+19] with bimodule co-

efficients to turn our smash products into Bökstedt smash products. Then the relevant

bispectrum is an Ω-spectrum in the THH direction, hence the prolongation is equivalent

to the functor that restricts to the symmetric spectrum direction. After these manip-

ulations, the inclusion of endomorphisms map (6.9) is the same as the one in [LM12,

9.1].
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Example 6.23. Taking C= PA for a ring spectrum A, we get maps

K (A) K̃ End(A) THH(A)
∼
��

K ( PA )
ι1 // K̃ End( PA )

trc // THH( PA )

whose composite agrees with the Dennis trace map K (A)→ THH(A) studied previously,

e.g. [DM96, DGM13, Mad94].

Proposition 6.24. Let f : L(a)→ R(a) be an object of the twisted endomorphism category

End
(
C/D

L R

)
. The image of [ f ] ∈ K0 End

(
C/D

L R

)
under the Dennis trace is the homotopy

class of the composite

S
[ f ]
−−→D(L(a),R(a))−→

∨

c0∈C

D(L(c0),R(c0))
0-skeleton
−−−−−−−→ THH(C; DL R)

which includes f as a 0-simplex in the cyclic bar construction.

Proof. Consider the following commutative diagram, where the top row maps to the

bottom row by mapping symmetric spectrum level 0 and simplicial level 0 into the zig-

zag of bispectra:

Σ
∞ob End(w0 C/DL R)

��

// THH(w0C; w0DL R)

��

Σ
0 THH(C; D

L R
)

∼=oo

∼=
��

PK (End( C/DL R )) // P|THH(w•S
∗
•,...,•C; (w•S

∗
•,...,•D)

L R
)| THH(C; D

L R
)

∼=oo

The vertical map on the left is surjective on π0 by the standard presentation for K0 of a

Waldhausen category. By the construction of the Dennis trace, the first horizontal map

in the top row is the inclusion of endomorphisms map, so the conclusion follows. �

Example 6.25. If A is a ring spectrum, each perfect left A-module P defines a class

[P] ∈ K0(A). By Proposition 6.24, its image in π0 THH( PA ) is the inclusion of the 0-

simplex corresponding to the identity map of P into the cyclic bar construction. By

[CP19, §7], the image of this class under the Morita equivalence

π0 THH( PA )∼=π0 THH(A)

is the Euler characteristic of P. More generally, each endomorphism f : P −→ P defines

a class [ f ] ∈ K0 End(A) whose image in π0 THH(A) is the trace of f , by Proposition 6.24

and [CP19, 7.11].

Example 6.26. Every twisted endomorphism f : P → M∧A P of a perfect left A-module

P defines a class [ f ]∈ K0(A; M) whose image in π0 THH( PA ; MA
M

) is the inclusion of the

0-simplex corresponding to f in the cyclic bar construction. By [CP19, 7.4], applied as in

the proof of [CP19, 7.11], its image under the Morita equivalence

π0 THH( PA ; MA
M )∼=π0 THH(A; M)

is the bicategorical trace

tr( f ) : S=〈〈S〉〉−→〈〈M〉〉=THH(A; M).
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7. THE EQUIVARIANT DENNIS TRACE

In order to build a trace to topological restriction homology (TR), we construct Cr-

equivariant refinements of THH and the K -theory of endomorphisms whose fixed points

for varying r are linked together. This requires some generalizations of the constructions

and theorems of the previous three sections. For a short review of equivariant spectra

and the notation we are using see §2.4. We then define the equivariant Dennis trace and

give a description of its effect on π0 in terms of the bicategorical trace

tr( fr ◦ · · · ◦ f1)

of a composite twisted endomorphism (Proposition 7.18).

7.1. r-fold endomorphisms and THH(r).

Definition 7.1. Given a spectral Waldhausen category C, let C×r
0

denote the r-fold prod-

uct of the base category, with Waldhausen structure determined coordinate-wise. Let ρ

denote the rotation functor

ρ : (c1, . . ., cr) 7−→ (c2, . . . , cr, c1).

Given a twisting LC/DR of C, let Rr
ρ = Rr ◦ρ = ρ◦Rr : C×r

0 →D×r
0 denote the exact functor

Rr
ρ(c1, . . ., cr)= (R(c2), . . . ,R(cr),R(c1)).

Definition 7.2. Define the r-fold twisted endomorphism category of C/DL R by

End(r)
(
C/DL R

)
:=End

( (
C×r/D×r

)
Lr Rr

ρ

)
.

There is an exact functor

∆r : End( C/DL R )→End(r)( C/DL R )

taking (a, f ) to ((a, . . .,a), ( f , . . ., f )); we refer to this as the duplication functor.

An object of this category consists of an r-tuple of objects (a1, . . . ,ar) in C0 and an

r-tuple of morphisms in D0
(
f1 : L(a1)−→ R(a2), . . . , fr−1 : L(ar−1)−→ R(ar), fr : L(ar)−→ R(a1)

)
.

See Figure 7.3a. A morphism (a i, f i)−→ (bi, g i) is an r-tuple of morphisms (ti : a i −→ bi)

such that

R(ti+1)◦ f i = g i ◦L(ti) (indices taken mod r).

See Figure 7.3b.

Definition 7.4. Suppose C is a pointwise cofibrant spectral category and X is a pointwise

cofibrant (C,C) bimodule. For each r ≥ 1, let C∧r be the spectral category with object set

(obC)×r and mapping spectra

C∧r((a1, . . . ,ar), (b1, . . . , br))=
r∧

i=1

C(a i, bi).

As in Definition 7.1 we let

ρ : C∧r
→C∧r, ρ(c1, . . . , cr)= (c2, . . . , cr, c1)

be the spectral functor that rotates the smash product factors.

Similarly, let X∧r denote the (C∧r,C∧r)-bimodule whose value on each pair of r-tuples

is the evident r-fold smash product. Twisting on the right by ρ gives another (C∧r,C∧r)-

bimodule X∧r
ρ . We define r-fold topological Hochschild homology by the formula

THH(r)(C;X) :=THH(C∧r;X∧r
ρ ).
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L(a1)
f1

// R(a2) · · · L(ar−1)
fr−1

// R(ar) L(ar)
fr

// R(a1)

a1

BB
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B�
B�

a2

\\
\�
\�
\�

BB
B�
B�
B�

ar−1

\\
\�
\�
\�

BB
B�
B�
B�

ar

\\
\�
\�
\�

BB
B�
B�
B�

a1

\\
\�
\�
\�

(A) Objects of End(r)
(
C/D

L R

)

a1

t1

��

%%
%e

%e
%e

a2

yy y9
y9
y9
y9

t2

��

· · · ar

tr

��

$$
$d

$d
$d

a1

yy y9
y9
y9
y9

t1

��

L(a1)

L(t1)
��

f1
// R(a2)

R(t2)
��

· · · L(ar)

L(tr )
��

fr
// R(a1)

R(t1)
��

L(b1)
g1

// R(b2) · · · L(br)
gr

// R(b1)

b1

:::z
:z

:z
:z

b2

dd d$
d$
d$
d$

· · · br

:::z
:z

:z
:z

b1.

dd d$
d$
d$
d$

(B) Morphisms of End(r)
(
C/D

L R

)

FIGURE 7.3

Rotating the coordinates of X∧r
ρ gives an isomorphism of bimodules ρ : X∧r

ρ −→X∧r
ρ over

the map of spectral categories ρ : C∧r −→ C∧r. In other words, we get an action of the

cyclic group Cr on the pair consisting of the spectral category C∧r and the bimodule X∧r
ρ .

This makes r-fold THH into an orthogonal Cr-spectrum.

Proposition 7.5. When C and X are pointwise cofibrant, THH(r) is cofibrant and the

Hill–Hopkins–Ravenel norm diagonal of Proposition 2.20 induces isomorphisms of or-

thogonal Cs-spectra

Φ
Cr THH(rs)(C;X)∼=THH(s)(C;X)

for all r, s ≥1.

Proof. For the cofibrancy statement it suffices to check that the latching maps of the

simplicial spectrum defining THH(r) are cofibrations of orthogonal Cr-spectra. These

latching maps are cofibrations since the r-fold smash power turns cofibrations into equi-

variant cofibrations [Mal17a, 4.11].

For the second part, we commute Φ
Cr with the realization and apply the norm diago-

nal Dr at every simplicial level:

Φ
Cr

∣∣∣∣∣∣
[k] 7→

∨

(a0
i
),...,(ak

i
)

C∧rs((a0
i ),(a1

i ))∧·· ·∧C∧rs((ak−1
i ),(ak

i ))∧X∧rs
ρ ((ak

i ),(a0
i ))

∣∣∣∣∣∣

∼=

∣∣∣∣∣∣
[k] 7→

∨

(b0
i
),...,(bk

i
)

Φ
Cr

(
C∧rs((b0

i )×r,(b1
i )×r)∧·· ·∧C∧rs((bk−1

i )×r,(bk
i )×r)∧X∧rs

ρ ((bk
i )×r,(b0

i )×r)
)
∣∣∣∣∣∣

∼=

∣∣∣∣∣∣
[k] 7→

∨

(b0
i
),...,(bk

i
)

C∧s((b0
i ),(b1

i ))∧·· ·∧C∧s((bk−1
i ),(bk

i ))∧X∧s
ρ ((bk

i ),(b0
i ))

∣∣∣∣∣∣
.

Here (a
j

i
) = (a

j

1
,a

j

2
, . . .,a

j
rs) ranges over rs-tuples of objects of C, (b

j

i
) = (b

j

1
, b

j

2
, . . . , b

j
s)

ranges over s-tuples of objects of C, and

(b
j

i
)×r

= (b
j

1
, . . . , b

j
s, . . . , b

j

1
, . . . , b

j
s)
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is the rs-tuple obtained by duplicating an s-tuple r times. It remains to check that the

diagonal respects the faces and degeneracy maps, and the Cs-action. For degeneracies

and every face but the first, this follows by naturality of the diagonal. For the first face

this follows from [Mal17a, 3.26], and for the Cs-action it follows from [Mal17a, 3.27]. In

other words, both are consequences of the rigidity theorem [Mal17a, 1.2]. �

Remark 7.6. When X=C, the spectrum THH(r)(C;C) is isomorphic to THH(C) using r-fold

subdivision, and this is the cyclotomic structure constructed in [Mal17a, 4.6]. It is equiv-

alent to Bökstedt’s cyclotomic structure on THH(C) by the main result of [DMP+19].

The next result formalizes the observation that if we unwind the r-fold topological

Hochschild homology spectrum we get the construction illustrated in Figure 7.7.

C

CC

C

C C

X

X

X

X

X

X

FIGURE 7.7. THH(r)(C;X)

Proposition 7.8. After forgetting the Cr-action, there is a natural equivalence

THH(r)(C;X)≃THH(C;X⊙·· ·⊙X)

with r copies of X on the right.

Proof. The spectrum THH(C;X⊙r) is built using r bar constructions, the final one being

the cyclic bar construction, so it is the realization of an r-fold multisimplicial spectrum.

Taking the diagonal of this multisimplicial spectrum, we identify the resulting simplicial

spectrum with the one for THH(r)(C;X) by regrouping copies of C and X. Note that the

use of the cyclic action ρ in the definition of THH(r) is essential to this argument. �

Remark 7.9. As a consequence of Corollary 4.20 and Propositions 2.19, 7.5 and 7.8, the

construction THH(r)(C; D
L R

) sends Morita equivalences in the C variable and Dwyer–

Kan embeddings in the D variable to equivalences of Cr-spectra. Consequently, the map

THH(r)(A; M)
∼

−→THH(r)( PA ; MA
M)

induced by the Morita equivalence A −→ PA (Example 4.16) is an equivalence of Cr-

spectra.

Theorem 7.10 (Additivity of THH(r)). Let C be a spectral Waldhausen category. Then

the maps ιi1,...,in
defined above Theorem 5.9 induce an equivalence of Cr-spectra

∨

i1,...,in

1≤i j≤k j

THH(r)(C)
∼

−→THH(r)(wk0
S

(n)
k1,...,kn

C).

For any twisting L,R : C⇒D, the maps ιi1,...,in
also induce an equivalence of Cr-spectra

∨

i1,...,in

1≤i j≤k j

THH(r)(C; DL R)
∼

−→THH(r)(wk0
S(n)

k1,...,kn
C; (wk0

S(n)
k1,...,kn

D)L R ).
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(A) (B)

FIGURE 7.11. Graphical representations of Theorem 7.10

cr

L(cr)fr

R(c1)
c1

L(c1)

f1R(c2)

c2

L(c2) f2

R(c3) c3

C

LDR

C

LDR

C

LDR

C

FIGURE 7.15. Graphical representation of (7.14)

Proof. By Propositions 2.19, 7.5 and 7.8, it suffices to check that the corresponding non-

equivariant map
∨

i1,...,in

1≤i j≤k j

THH(C; DL R
⊙r)

∼
−→THH(wk0

S
(n)
k1,...,kn

C; (wk0
S

(n)
k1,...,kn

D)L R
⊙r).

is an equivalence. This is proven by the same induction as in Theorem 5.9. The only

difference is that in the inductive step (proof of Proposition 5.10) we apply the map f a

total of r times instead of just once. �

7.2. Definition of the equivariant Dennis trace. We next define the equivariant

refinement of the Dennis trace.

Remark 7.12. If C is a spectral Waldhausen category, then (C∧r,C×r
0

) fails to be a spectral

Waldhausen category because it does not satisfy the pushout axiom. Therefore the equi-

variant Dennis trace is not the twisted Dennis trace applied to C∧r. Instead, the smash

powers have to occur on the outside of the S• construction.

Definition 7.13. Let C/D
L R

be a twisting of a spectral Waldhausen category C. For

each r ≥ 1 the inclusion of the 0-simplices into the cyclic bar construction defines a Cr-

equivariant map

(7.14) Σ
∞ob End(r)

(
(C/D)L R

)
−→

∨

c1,...,cr∈obC

r∧

i=1

D(L(c i),R(c i+1))−→ THH(r)(C; DL R).

See Figure 7.15. This is natural with respect to morphisms of twisted spectral Wald-
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hausen categories, so we apply it to the multisimplicial spectral Waldhausen category

w•S
(n)
• C twisted by w•S

(n)
• D, and get a zig-zag of multisimplicial orthogonal spectra

Σ
∞ob End(r)

(
(w•S(n)

• C/w•S
(n)
• D)L R

)
−→THH(r)

(
w•S(n)

• C; (w•S(n)
• D)L R

)

≃
←− (S1

• )∧n
∧THH(r)

(
C; DL R

)
,

the second map coming from Theorem 7.10. The same argument as in Lemma 6.13

shows that this is a zig-zag of Σ∆-diagrams of simplicial orthogonal Cr-spectra, hence

we can take their geometric realization and get a zig-zag of Cr-equivariant bispectra.

We describe these in detail in [CLM+, Appendix A]. Applying left-derived prolongation

([CLM+, Proposition A.7]), and using the canonical identifications of object sets

obw•S(n)
• End(r)

(
C/DL R

)
= ob End(r)

(
(w•S(n)

• C/w•S
(n)
• D)L R

)
,

we get a zig-zag of orthogonal Cr-spectra

(7.16) PK End(r)
(
C/DL R

)
−→

∣∣∣THH(r)
(
w•S

∗
•C; (w•S∗

•D)L R

)∣∣∣ ≃
←−THH(r)

(
C; DL R

)
.

The r-fold Dennis trace map

trc(r) : K End(r)
(
C/DL R

)
−→THH(r)

(
C; DL R

)

is the map represented by this zig-zag in the stable homotopy category of orthogonal

Cr-spectra.

The case r =1 recovers the twisted Dennis trace

trc(1)
= trc: Σ∞K (End(LC/DR))−→THH(C; DL R )

from Definition 6.16.

The following is an extension of Proposition 6.24:

Lemma 7.17. Let ( f i : L(a i) −→ R(a i+1)) be an object of the r-fold twisted endomor-

phism category End(r)
(
C/D

L R

)
, where we take indices modulo r. The image of the class

[ f1, . . ., fr] ∈ K0 End(r)
(
C/D

L R

)
under the r-fold Dennis trace map

trc(r) : π0K End(r)
(
C/DL R

)
−→π0 THH(r)( C/DL R)

is the composite

S

∧
[ f i ]

−−−→

r∧

i=1

D(L(a i),R(a i+1)))−→
∨

(c1 ,...,cr )∈Cr

r∧

i=1

D(L(c i),R(c i+1))
0-skeleton
−−−−−−−→ THH(r)( C/DL R )

which includes the homotopy classes of the f i as 0-simplices in the cyclic bar construction.

We can use this result to identify the image under the trace of certain classes in the

K -theory of endomorphisms. Let A be a ring spectrum and let M be an (A, A)-bimodule.

Given a collection P1, . . . ,Pr of perfect left A-modules and A-module maps

f i : Pi −→ M∧A Pi+1,

where the indices are taken modulo r, we let fr ◦ · · · ◦ f1 denote the composite map

P1
f1

−→ M∧A P2
id∧ f2
−−−−→ M∧A M∧A P3

id∧ f3
−−−−→ ···

id∧ fr
−−−−→ M∧A r

∧A P1.

The bicategorical trace of fr ◦ · · · ◦ f1 is a map of spectra

tr( fr ◦ · · · ◦ f1) : S∼=THH(S)−→THH(A; M∧Ar).

On the other hand, the collection ( f1, . . ., fr) is an object of the r-fold twisted endomor-

phism category End(r)(P/M−∧A M), and thus determines a class [ f1, . . ., fr] in

K0(End(r)(P/MM)).
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Proposition 7.18. The image of the class [ f1, . . . , fr]∈ K0(End(r)(P/MM)) under the com-

posite map

(7.19)

K (End(r)(P/MM)) THH(r)(P;MM) THH(r)(A; M) THH(A; M∧Ar)
trc(r) ≃ ≃

is the homotopy class of the trace of the composite [tr( fr ◦ · · · ◦ f1)] ∈π0 THH(A; M∧A r).

Proof. The homotopy class of fr ◦ · · · ◦ f1 is encoded by the map of spectra

S∼=S
∧r

∧r
i=1

[ f i ]
−−−−−→

r∧

i=1

M(Pi, M∧A Pi+1)
◦

−→M(P1, M∧A r
∧A P1).

This fits into the following commutative diagram of inclusions and composition maps.
(7.20)

S

r∧

i=1

M(Pi,M∧A Pi+1)
∨

(Q1,...,Qr)∈obPr

M(Q1,M∧A Q2)∧·· ·∧M(Qr,M∧A Q1)

∨

Q1

∨

(Q2,...,Qr )

M(Q1,M∧A Q2)∧·· ·∧M(Qr,M∧A Q1)

M(P1,M∧A r ∧A P1)
∨

Q∈obP

M(Q,M∧A r
∧A Q)

∧r
i=1

[ f i]

[ f1◦···◦ fr ] ◦

◦

The right-hand column of the previous diagram is the 0-skeleton of the left-hand column

of the next diagram:

(7.21)

THH(r)(P;MM) THH(r)(A; M)

THH(P;M⊙r
M

) THH(A; M⊙r)

THH(P;MM∧A r ) THH(A; M∧Ar).

∼=

≃

∼=

◦

≃

≃

≃

Here the horizontal arrows come from the Morita equivalence A → P and the map of

bimodules M →MM from Example 4.5. The upper vertical maps on the left and right

are the unwinding equivalence from Proposition 7.8 and the top region commutes by

naturality of this equivalence. We use the notation M⊙− to denote the bar construction,

to distinguish it from the strict smash product M ∧A −. The lower-right vertical map

collapses this bar construction, and the bottom region commutes using ([CLM+, Lemma

3.16]).

The lower-left vertical map of (7.21) arises by applying THH to the morphism of (P,P)-

bimodules M⊙r
M

−→MM∧A r defined by iterating the composition operation

M(P, M∧A i
∧A −)⊙M(−, M∧A P ′)

id∧−
−→M(P, M∧A i

∧A −)⊙M(M∧A i
∧A −, M∧A(i+1)

∧A P ′)

◦
−→M(P, M∧A(i+1)

∧A P ′)

for i = 1, . . ., r−1. The commutativity of the bottom region of (7.21) is the fact that when

we take P = P ′ = A, the resulting composite map of (A, A)-bimodule spectra

M∧A r
−→M(A, M∧A A)⊙r ◦

−→M(A, M∧Ar
∧A A)

is adjoint to the identity of M∧A r.
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Paste the diagrams (7.20) and (7.21) together by including the 0-skeleta into the THH

terms. The composite along the top and right of the resulting diagram agrees with the

composite in the statement of the proposition, by Lemma 7.17. The bottom composite is

the inclusion of the map fr◦· · ·◦ f1 into the cyclic bar construction for THH(P;MM∧A r ), fol-

lowed by the Morita equivalence to THH(A; M∧Ar). By [CP19, 7.4], this is the homotopy

class of the bicategorical trace [tr( fr ◦ · · · ◦ f1)], and thus the proof is complete. �

8. THE TRACE TO TOPOLOGICAL RESTRICTION HOMOLOGY

Now that we have constructed an equivariant refinement of the Dennis trace, we

distill out of it a trace from the K -theory of endomorphisms to topological restriction

homology which we call the TR-trace. We then define an analog of the ghost coordinates

of Witt vectors for TR: the ghost maps gn : TR X• −→ Xn. Finally, we prove that applying

the n-th ghost map to the TR-trace encodes the trace tr( f ◦n) of the n-fold iterate of a self-

map (Theorem 8.21).

8.1. Restriction Systems. We begin by formalizing the sense in which the r-fold Den-

nis traces trc(r) fit together as r varies. The situation is a bit subtle because on the

K -theory side they are related by the categorical fixed points, and on the THH side they

are related by the geometric fixed points.

Definition 8.1. For each m, n ≥ 1, let Θn be a functor from Cmn-spectra to Cm-spectra

such that for all r, s ≥1 we have natural transformations

Θrs →Θs ◦Θr.

An Θ∗-pre-restriction system consists of the following data:

• A sequence of spectra {Xn}∞
n=1

together with an action of Cn on Xn for all n.

• A Cs-equivariant map cr : Θr(Xrs)→ Xs for all r, s ≥1 making the square

Θrs(Xrst)

��

crs // X t

Θs(Θr(Xrst))
Θs(cr )

// Θs(Xst)

cs

OO

commute for all r, s, t ≥1.

When Θn is the categorical fixed points functor (−)Cn and each cr is an isomorphism,

this is called a naive restriction system. When Θn is the geometric fixed points functor

Φ
Cn , and each cr induces a weak equivalence out of the derived geometric fixed points,

this is a genuine restriction system.

A morphism of restriction systems consists of equivariant maps Xn −→ Yn commuting

with the maps cr.

Remark 8.2. Our definition of restriction systems recalls the structures defining a p-

cyclotomic spectrum; however, instead of working with the pro-group Zp we are instead

working with the pro-group Ẑ. Restriction systems should therefore be closely related to

pro-spectra; see, for example, [Fau08].

Example 8.3. The definition of naive restriction system works equally well for the cat-

egory of spaces, so let us consider that case first. Let X be a space equipped with a

self-map f : X → X . There is a naive restriction system whose nth term is the twisted

free loop space of the Fuller construction LΨ
n( f )X n, consisting of all n-tuples of points

x1, . . ., xn and paths from f (xi) to xi+1 (indices modulo n) [MP18b, KW10]. The case

where all of the paths are constant gives a naive restriction system where the n-th level

is the n-periodic points Fix( f ◦n). In the case where f = id, the system assigns to each
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n ≥ 1 the free loop space LX = Map(S1, X ) with Cn acting by rotating the loops. The

structure maps are the n-power maps (LX )Cn ∼=LX .

Example 8.4. If T is a cyclotomic spectrum in the sense of [ABG+18, BM15], there is a

genuine restriction system where the nth term is T with the generator of Cn acting by

e2πi/n ∈ S1.

Example 8.5. We give a couple of examples of ways to go between different kinds of

restriction system structures. If X• is a naive restriction system of based spaces, taking

suspension spectra Σ
∞X• gives a genuine restriction system. This uses the isomorphism

Φ
CrΣ

∞X ∼=Σ
∞(X Cr ), and the fact that in this case the geometric fixed points agree with

the left-derived geometric fixed points.

Now suppose instead that X• is a genuine restriction system of fibrant orthogonal

spectra. For any G-spectrum Y there is a canonical map κ : Y G → Φ
GY from the cate-

gorical fixed points to the geometric fixed points. There are therefore maps

γr : X
Crs

rst

κCs

−→ (ΦCr Xrst)
Cs

c
Cs
r

−→ X
Cs

st .

These maps make X• into a (−)Cn -pre-restriction system.

The key examples for the purposes of the current discussion are the following:

Example 8.6. There is a naive restriction system whose n-th level is the K -theory

K (End(n)( C/D
L R

)) of the n-fold endomorphism category from Definition 7.1. The struc-

ture maps cr identify the fixed points of such a category with the same category for a

smaller value of n:

K
(
End(rs)

(
C/DL R

))Cr
∼= K

(
End(rs)

(
C/DL R

)Cr

)
∼= K End(s)

(
C/DL R

)
.

In other words, an rs-tuple of objects and morphisms that is strictly preserved by the

Cr-action must be an s-tuple of objects and morphisms that are repeated r times.

Example 8.7. When C is a pointwise cofibrant spectral category and X is a pointwise

cofibrant bimodule, the isomorphisms from Proposition 7.5 make THH•(C;X) into a gen-

uine restriction system. The proof is essentially that of [Mal17a, 4.6], but simpler be-

cause there are no subdivisions.

The r-fold Dennis trace map from Definition 7.13 assembles into a map of restriction

systems. Since the Dennis trace is a zig-zag of bispectra, the most natural statement

to make is that it defines a zig-zag of restriction systems of bispectra. The details of

this notion are in Appendix A—the important thing to know is that the geometric fixed

points of a bispectrum are taken at each symmetric spectrum level separately, so that in

the symmetric spectrum direction they behave like categorical fixed points, and in the

orthogonal direction they behave like geometric fixed points. It is this convention that

rectifies the apparent disparity between K End(r) and THH(r).

We can suspend the naive restriction system of Example 8.6 and get a genuine re-

striction system of bispectra Σ
∞K

(
End•

(
C/D

L R

))
, as in Example 8.5. Similarly, we can

suspend the genuine restriction system of Example 8.7 and get a genuine restriction sys-

tem of bispectra Σ
∞THH•

(
C; D

L R

)
. See Examples A.2 and A.3 for additional discussion.

Theorem 8.8. The r-fold Dennis trace for varying r ≥1

trc• : Σ∞K
(
End•

(
C/DL R

))
−→Σ

∞THH•
(
C; DL R

)

together define a morphism of genuine restriction systems of bispectra.
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By Propositions A.1 and A.6, we can therefore make these restriction systems cofi-

brant and then prolong them back to orthogonal spectra, giving a map in the homotopy

category of genuine restriction systems of orthogonal spectra

PΣ
∞K

(
End•

(
C/DL R

))
−→THH•

(
C; DL R

)
.

Proof. Apply Example 8.7 to the middle term

THH(r)
(
w•S(n)

• C; (w•S(n)
• D)L R

)

of the zig-zag that defines the r-fold Dennis trace (7.16). By the naturality of the con-

struction, this gives a Σ∆-diagram of restriction systems of simplicial orthogonal Cr-

spectra. Concretely, such an object consists of orthogonal spectra Xk0,k1,...,kn,r with the

structure of a Σ∆-diagram in the first (n+1) indices, and of a genuine restriction system

in the last index, that commute with each other. By naturality, the maps of the additiv-

ity theorem for THH(r) (Theorem 7.10) give a map of Σ∆-diagrams of restriction systems

of simplicial orthogonal Cr-spectra.

We next check that the inclusion of K -theory (7.14) also gives a map of Σ∆-diagrams

of restriction systems of simplicial orthogonal Cr-spectra. We already know it commutes

with most of this structure by the argument before Definition 7.13; the only new thing

to check is agreement with the maps of the restriction system. By Remark 2.21, we can

rewrite the maps of the restriction system on the left using the HHR norm diagonal, and

then the inclusion of endomorphisms commutes with the restriction system structure,

simply because the norm diagonal is natural:

Φ
CrΣ

∞ob End(rs)
(

(C/D)L R

)
// Φ

Cr
∨

a1,...,ars∈obC

rs∧

i=1

D(L(a i),R(a i+1))

Σ
∞ob End(s)

(
(C/D)L R

)

Dr

OO

//
∨

b1,...,bs∈obC

s∧

i=1

D(L(bi),R(bi+1)).

Dr

OO

Each of the desired two maps is now a map of systems of spectra Xk0,k1,...,kn,r with

both a Σ∆-action and with restriction maps. We re-interpret these as Σ∆-diagrams of

restriction systems and take their realization to get symmetric spectrum objects in pre-

restriction systems. We identify these with pre-restriction systems of bispectra by noting

that the geometric fixed point functor for bispectra is (uniquely) isomorphic to the func-

tor that takes the geometric fixed points at each symmetric spectrum level separately

([CLM+, Definition A.9]).

It remains to check that we actually have restriction systems, in other words that the

geometric fixed points agree with the left-derived geometric fixed points. We already

know this for K -theory and THH but not for the middle term of our zig-zag. To verify

this condition, it is enough if each of the Cr-bispectra Y•,• is a cofibrant orthogonal Cr-

spectrum at each symmetric spectrum level Yn,•. In other words, we must show that

the realization in the k0 through kn directions, |X•,•,...,•,r|, is a cofibrant orthogonal Cr-

spectrum.

To accomplish this we use the model structure on restriction systems of orthogonal

Cr-spectra from Proposition A.6 and then take cofibrant replacement in Σ∆-diagrams

of such objects by [CLM+, Theorem 6.4]. Then for fixed n, each system Xk0,k1,...,kn,r

is Reedy cofibrant, meaning each latching map is a cofibration of restriction systems.
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Therefore for each fixed value of r the latching map is a cofibration of orthogonal Cr-

spectra. Therefore the realization is a cofibrant orthogonal Cr-spectrum. Therefore,

after cofibrant replacement we get a zig-zag of maps of restriction systems of bispectra.

Note that after this replacement, the backwards map of the zig-zag is an equivalence

of bispectra at level 1 of the restriction system. By Proposition 2.19, it is therefore an

equivalence of Cr-bispectra at level r for every r ≥1. This finishes the proof. �

8.2. Topological restriction homology.

Definition 8.9. For any Θ∗-pre-restriction system, the spectra Θn(Xn) assemble into a

diagram indexed by the category I with one object for each n ≥ 1, one morphism n → m

when m|n, and no other morphisms (as in [Mad94, §2.5]). For any Θ∗-pre-restriction

system, the spaces Θn(Xn) assemble into a diagram indexed by the category I.

Let X• be a genuine restriction system. Define maps

(8.10) X
Crs
rs

∼= (X
Cr
rs )Cs

κCs
// (ΦCr Xrs)Cs

(γr )Cs

// X
Cs
s

by first composing the canonical map κ from categorical fixed points to geometric fixed

points and the structure map γr. Then apply categorical Cs-fixed points. As above,

this makes the spectra X
Cn
n into a diagram indexed by I. We define the underived

topological restriction homology of X• by

TRun(X•)= lim
I

X
Cn
n .

If in addition each Xr is fibrant as an orthogonal Cr-spectrum, we define the topo-

logical restriction homology of X• as the homotopy limit

TR(X•)= holim
I

X
Cn
n .

To define TR for an arbitrary genuine restriction system, we first take a fibrant replace-

ment in the model structure from Proposition A.6, and then take the homotopy limit as

above. There is a canonical map TRun → TR that takes fibrant replacement and passes

to the homotopy limit.

Definition 8.11. For any pointwise cofibrant spectral category C and pointwise cofibrant

(C,C) bimodule X, we write TR(C;X) for the TR of the restriction system THH•(C;X) from

Example 8.7.

When C= A is a ring spectrum and X= A, this is the classical definition of topological

restriction homology. On the other hand, if we take a general (A, A)-bimodule spectrum

M, this is a spectral version of Lindenstrauss–McCarthy’s W(A; M) [LM12].

Before defining the TR-trace we need one more technical result.

Lemma 8.12 (Example A.2). Let X• be a naive restriction system of symmetric spectra.

Then PΣ
∞X• is a genuine restriction system of orthogonal spectra and there is an isomor-

phism

TRun(PΣ∞X•)
∼=PΣ

∞X1
∼=PX1.

We are now ready to define the TR-trace.

Definition 8.13. The TR-trace is the map trc: K (End( C/DL R)) → TR(C; D
L R

) defined

as the composition

K (End( C/DL R))∼=TRun(PΣ∞K (End•( C/DL R )))−→TR(PΣ∞K (End•( C/DL R )))

−→TR(THH•(C; DL R ))=TR(C; DL R).(8.14)
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Example 8.15. Taking C= PA for a ring spectrum A, and twisting by an (A, A)-bimodule

M, the TR-trace gives a map

(8.16) trc: K (A; M)= K End(P/MM)−→TR(P;MM)
∼

←−TR(A; M).

As before, the TR-trace is identically zero on the zero endomorphisms, so induces a map

out of cyclic K -theory

(8.17) trc: K cyc(A; M)= K̃(A; M)−→TR(A; M).

Remark 8.18. We briefly discuss two compatibility statements with the existing litera-

ture. One is that when M = A and we restrict to identity morphisms, we recover the

usual trace K ( PA ) → TR( PA ) as in e.g. [BHM93]. Recall that the more common def-

inition arises by using the fact that the inclusion of identity morphisms into THH(C)

lands in the categorical fixed points THH(C)S1

, and then constructing a natural map

THH(C)S1

→TR(C) out of r-fold subdivision and the restriction maps in equivariant sta-

ble homotopy theory. However, the r-fold subdivision applied to the inclusion of identity

morphisms (6.8) agrees with the equivariant inclusion of identity morphisms in (7.14),

so our construction produces the same map to TR.

The other statement is that our trace agrees with the trace to W(A; M) as defined by

Lindenstrauss and McCarthy for discrete rings [LM12]. The comparison can be sketched

just as in Remark 6.22, only the equivalences are Cr-equivariant and we compare the

r-fold inclusion of endomorphisms map (7.14) with the one in [LM12, 9.1].

8.3. The ghost map.

Definition 8.19. Let X• be a genuine restriction system. The ghost map

g = (gn) : TR(X•)→
∏

n≥1

Xn

is defined by the composites

gn : TR(X•) X
Cn
n Xn,

Fn

where Fn denotes the inclusion of fixed points.

The ghost map is defined in the same way for underived TR. It is natural with respect

to maps of restriction systems, and with respect to the inclusion of underived TR into

TR, and this naturality makes it easy to compute.

Proposition 8.20. Let C be a spectral Waldhausen category and let LC/DR be a twisting

of C. Then the following diagram commutes

K End
(
C/D

L R

)

∆n

��

trc // TR
(
C; D

L R

)

gn

��

K End(n)
(
C/D

L R

) trc(n)
// THH(n)

(
C; D

L R

)
,

where ∆n is the duplication functor from Definition 7.2. Setting n = 1, we conclude that

the TR-trace is a lift of the Dennis trace along the first ghost map g1:

K End
(
C/D

L R

)

trc(1)

((◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗

trc // TR
(
C; D

L R

)

g1

��

THH
(
C; D

L R

)
.
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Proof. By Lemma 8.12, the underived TR of the genuine restriction system

PΣ
∞K End•

(
C/DL R

)

is the K -theory of endomorphisms K End
(
C/D

L R

)
. Using the naturality of the ghost

map, it suffices to prove that under this identification, the nth ghost map

gn : TRun
PΣ

∞K End•
(
C/DL R

)
−→ K End(n)

(
C/DL R

)

agrees with the map induced by ∆n.

The nth ghost map for the restriction system applies the inverse of the structural

isomorphisms γn (see Example A.2) to get to the Cn-fixed points of the nth term, then

includes the Cn-fixed points into the entire K -theory spectrum

K End(1)
(
C/DL R

) γ−1
n

−→ K
(
End(n)

(
C/DL R

))Cn Fn

−→ K End(n)
(
C/DL R

)
.

It follows from the definition of γn that this composite is the map induced by the dupli-

cation functor ∆n. �

Using the ghost map, we can extend the result of Proposition 7.18.

Theorem 8.21. Let A be a ring spectrum, let P be a perfect A-module, and let M be an

(A, A)-bimodule. The image of the class [ f ]∈ K0(A; M) determined by a twisted endomor-

phism f : P → M∧A P under the composite

(8.22) K (A; M) TR(A; M) THH(n)(A; M) THH(A; M∧An)
trc gn ≃

is the homotopy class of the trace of the iterate [tr( f ◦n)] ∈ π0 THH(A; M∧An).

Proof. By naturality of the ghost map, we may apply gn before simplifying from P to

A. This gives the top route in the commutative square of Proposition 8.20 followed by

the equivalence THH(n)(P;MM) ≃ THH(A; M∧An). The composite then agrees with the

bottom route of Proposition 8.20 composed with this equivalence, and thus, by Proposi-

tion 7.18 with each f i = f , takes [ f ] to [tr( f ◦n)] ∈π0 THH(A; M∧An). �

9. CHARACTERISTIC POLYNOMIALS, ZETA FUNCTIONS, AND THE REIDEMEISTER

TRACE

In this section we explain how the characteristic polynomial, the Reidemeister trace,

and the Lefschetz zeta function are all encoded by the TR-trace. The first result is that

when A is a commutative Eilenberg–Maclane spectrum, the TR-trace

K0 End(A)→ π0 TR(A)∼=W(A)∼= (1+ tA[[t]])×

takes each endomorphism [ f ]∈ K0 End(A) to its characteristic polynomial (Theorem 9.9).

Here W(A) ∼= (1+ tA[[t]])× is the ring of big Witt vectors of A, and the isomorphism

π0 TR(A)∼=W(A) is a result of Hesselholt and Madsen [HM97], see also [Hes97, DKNP20].

As a result, the TR-trace of this paper is a generalization of the characteristic polynomial

map K0 End(A)→ (1+ tA[[t]])× studied by Almkvist and others [Alm74].

The second result is that when A = Σ
∞
+ ΩX is a spherical group ring with X finitely

dominated and path-connected, each based map f : X → X defines a class

[ f ]∈ K0(Σ∞
+ ΩX ;Σ∞

+ Ω
f X )

whose image in TR records the Reidemeister traces R( f n) for all n ≥ 1. Using [MP18b],

this implies that the trace to TR takes [ f ] to its Fuller trace R(Ψn f )Cn for all n ≥ 1

(Theorem 9.33). On the other hand, if we map forward to TR(Z) ∼= W(Z) then this class

becomes the Lefschetz zeta function of f (Theorem 9.22).
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In each of the above two cases there is a splitting of π0 TR into an infinite product,

but the splittings arise for very different reasons. We refer to the splitting of TR(Σ∞
+ ΩX )

as tom Dieck coordinates and the splitting of TR(HA) for a commutative ring A as

Witt coordinates. These should not be confused with each other, nor should they be

confused with the image under the ghost map, which we call ghost coordinates. When

we apply the ring homomorphism S→ Z to move between the above two examples, all

three of these coordinate systems come into play (Proposition 9.24). The distinction

between them is needed to fully comprehend how the Lefschetz zeta function of a map

f : X → X is related to the Fuller trace R(Ψn f )Cn .

9.1. The case of commutative Eilenberg–MacLane spectra. The case of commu-

tative Eilenberg–MacLane spectra is intimately tied with the Witt vectors. There is a

conceptual reason for this: by Theorem 8.21, the TR-trace records the traces tr( f ◦n) of

the iterates of an endomorphism f . The structure of the Witt vectors collates this infor-

mation into a single class in π0 TR(A) which corresponds to the characteristic polynomial

χ f (t)= det(1− t f ).

In this section, A is a discrete commutative ring. We abuse notation and make the

abbreviations TR(A) = TR(HA), etc., so that we have no need to explicitly refer to the

associated Eilenberg–MacLane spectrum.

We briefly recall the basic facts regarding the ring of (big) Witt vectors W(A) of

A, referring the reader to [Alm74, Gra78, Hes03, Cam19] for more details. As a set,

W(A) = AZ+ consists of collections a = (an) of ring elements an ∈ A indexed by the posi-

tive integers n ≥ 1. We equip W(A) with the addition and multiplication uniquely deter-

mined by the requirement that the ghost coordinates map

(9.1) w= (wn) : W(A)−→ AZ+ , wn(a)=
∑

d|n

dan/d
d

is a natural transformation of functors from commutative rings to commutative rings,

where the ring structure on AZ+ is defined componentwise. There is a natural isomor-

phism of abelian groups

(9.2) W(A)∼= (1+ tA[[t]])× defined by a 7−→
∏

n≥1

(1−antn),

and the group of invertible power series can be given an additional binary operation for

which this is an isomorphism of rings. The relevance of the ring structure on W(A) ∼=

(1+ tA[[t]])×, for our purposes, is that the characteristic polynomial map

K0(End(A))
χ

−→ (1+ tA[[t]])×

[ f : P → P] 7−→ det(1− t f )

is a ring homomorphism. In fact:

Theorem 9.3 ([Alm74]). For any discrete commutative ring A, χ induces an injective

ring homomorphism

K̃0(End(A)) := K0(End(A)) / ι1K0(A)
χ

−→ (1+ tA[[t]])×

and the image consists of precisely those power series that are quotients of polynomials.

Corollary 9.4. A surjective ring homomorphism A → B induces a surjection

K̃0(End(A))→ K̃0(End(B)).

In order to state Hesselholt–Madsen’s isomorphism W(A) ∼=π0 TR(A) in a useful way,

we will also need the Witt vectors W〈n〉(A)= A〈n〉 indexed on the truncation set

〈n〉 = {d ∈Z+ : d | n}.
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The set W〈n〉(A) is made into a commutative ring by declaring that the ghost coordi-

nates map w : W〈n〉(A) −→ A〈n〉, defined as in (9.1), is a ring homomorphism. The re-

striction maps Rn/d : W〈n〉(A) −→W〈d〉(A), which forget the elements indexed by divisors

of n that do not divide d, are also ring homomorphisms. We make the identification

W(A)∼= limn W〈n〉(A), where the limit is taken over the restriction maps.

We now recall the result of Hesselholt–Madsen, expressed in terms of the restriction

system THH•(A) from §8.1.

Theorem 9.5. [HM97, Add. 3.3] There is a natural isomorphism of rings

In : W〈n〉(A)
∼=
−→π0 THH(n)(A)Cn

defined by

In(a)=
∑

d|n

V d(∆n/d(ad)).

Here

∆r : A ∼=π0 THH(A)−→π0 THH(r)(A)Cr

is the duplication map induced by the map a 7→ a∧r on 0-skeleta, and

V d : π0 THH(r)(A)Cr −→π0 THH(dr)(A)Cdr

is the Verschiebung map on THH, defined in terms of the equivariant transfer for the

subgroup Cr < Cdr. The isomorphism I respects the ghost coordinate maps on its doman

and codomain, in the sense that gd ◦ In = wd for every d | n, where

gd : π0 THH(n)(A)Cn
Rn/d

−−−→π0 THH(d)(A)Cd
Fd

−−→π0 THH(d)(A)∼= A

is the d-th ghost coordinate map on π0 THH(n)(A)Cn .

Proof. Since our conventions are different from those of Hesselholt–Madsen, it’s worth

saying something about the proof. The main point is that under the equivalence

THH(n)(A)≃THH(A)

of Proposition 7.8 (see also Remark 7.6), our definitions of the restriction map Rn, in

terms of the restriction system structure map, and the Frobenius map Fn, in terms

of the inclusion of fixed-points, agree with Displays (1) and (16) of [HM97]. It follows

that on the n-th component THH(n)(A)Cn of the restriction system, our ghost map g (see

Definition 8.19) agrees with theirs (denoted by w). The statement of the theorem then

follows as in [HM97, Add. 3.3]. �

Lemma 9.6. There is a natural isomorphism of rings I : W(A)
∼=

−→π0 TR(A) that respects

the ghost coordinate maps, meaning that g ◦ I = w.

Proof. The map we want is essentially I = limn In, the limit over the restriction maps R

of the isomorphisms In. Technically, this produces an isomorphism to limnπ0 THH(A)Cn ,

but it lifts to an isomorphism to π0 limn THH(A)Cn because lim1π1 THH(A)Cn = 0. This

last claim follows from the surjectivity of R in the proof of [HM97, Prop 3.3], which

generalizes from the p-typical case by the discussion on [HM97, p. 55]. �

Let f : P → P be an endomorphism of a finitely generated projective A-module, with

associated K -theory class [ f ]∈ K0(End(A)). By Theorem 8.21, the image of [ f ] under the

TR-trace and the ghost map is

(tr( f ), tr( f ◦2), tr( f ◦3), . . .) ∈
∏

n≥1

π0 THH(n)(A; A)∼=
∏

n≥1

A.
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As explained in [Hes03, Cam19], along the isomorphism W(A) ∼= (1+ tA[[t]])× of (9.2),

the ghost map of W(A) is identified with the negative logarithmic derivative

(1+ tA[[t]])×
−t d

dt
log

// tA[[t]]∼=
∏

n≥1

A.

Lemma 9.7. The element of
∏

n≥1 A given by the iterated traces (tr( f ◦n)) is the negative

logarithmic derivative of the characteristic polynomial

χ f (t)= det(id− t f )∈ (1+ tA[[t]])×.

In other words, the following diagram commutes.

(9.8) K̃0(End(A))
trc

vv❧❧
❧❧
❧❧
❧❧
❧ χ

))❙❙
❙❙

❙❙
❙❙

❙❙

π0 TR(A)
∏

gn
��

(1+ tA[[t]])×

−t d
dt

log
��∏∞

n=1 A oo // tA[[t]]

Proof. When A is an algebraically closed field, this follows by induction on the eigenval-

ues. It therefore holds for any integral domain, by passing to the algebraic closure of the

fraction field. In particular, it holds for any polynomial ring over Z. If A is a general

commutative ring, then there is a surjection from a polynomial ring to A. Using Corol-

lary 9.4, the statement therefore holds for A as well. See [Cam19, 4.24] for a different

derivation. �

Theorem 9.9. Let A be a commutative ring. Then the following triangle commutes.

(9.10) K̃0(End(A))

trc

ww♣♣
♣♣
♣♣
♣♣
♣♣
♣

χ

''P
PP

PP
PP

PP
PP

P

π0 TR(A)
∼=

I−1

// W(A)
∼=

(9.2)
// (1+ tA[[t]])×

In other words, as invariants underneath the K-theory of endomorphisms, the trace to

π0 TR(A) is isomorphic to the characteristic polynomial.

Proof. Pasting the diagrams in Displays (9.8) and (9.10) together gives the diagram

K̃0(End(A))

trc

ww♣♣
♣♣
♣♣
♣♣
♣♣
♣

χ

''P
PP

PP
PP

PP
PP

P

π0 TR(A)

∏
gn

��

W(A)
∼=

I
oo

∏
wnww♣♣

♣♣
♣♣
♣♣
♣♣
♣♣

∼= // (1+ tA[[t]])×

−t d
dt

log

��∏∞
n=1 A oo // tA[[t]].

The maps along the outside edge commute by the previous discussion, as does the trape-

zoid and the small triangle on the left (Lemma 9.6). If A is torsion-free, the two vertical

maps are injective and therefore the triangle at the top commutes as well.

To extend to the case where A is any commutative ring we use a standard trick (see

e.g. [Gra78, p. 6]). Pick a surjective ring homomorphism A′ → A with A′ torsion-free,
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and observe that the diagram is natural in ring homomorphisms. This gives a map from

the diagram for A′ to the diagram for A, that is surjective on the terms

π0 TR(A)∼=W(A)∼= (1+ tA[[t]])×

and on K̃0(End(A)) by Corollary 9.4. Therefore the desired triangle for A can be deduced

from the same triangle for A′. �

Corollary 9.11. Let A be a commutative ring. Then the TR-trace K̃(End(A))→ TR(A) is

injective on π0.

9.2. The case of spherical group rings and fixed-point theory. As in the case of

Eilenberg–MacLane spectra, the computation of π0 TR(A) for A =Σ
∞
+ G a spherical group

ring hinges on the interplay between the ghost coordinates and a set of splitting coordi-

nates for π0 TR(A). However the splitting here arises for a very different reason, namely

the tom Dieck splitting from equivariant stable homotopy theory.

Proposition 9.12. If X• is a naive restriction system of spaces, then the TR of its suspen-

sion genuine restriction system Σ
∞X• from Example 8.5 has a tom Dieck splitting

TR(Σ∞X•)≃
∏

j≥1

(Σ∞X j)hC j
.

Proof. We interpret the naive restriction system as a Z-space X with no free orbits, so

that Xn = X nZ. Under the identification Cn =Z/nZ, the generator of the cyclic group Cn

acts on Xn = X nZ by 1 ∈Z, and the generator of the subgroup Cn/ j < Cn acts by j ∈Z for

each positive divisor j | n.

The proposition is a consequence of the classical tom Dieck splitting theorem, which

tells us that the derived fixed point spectrum of the suspension spectrum of Xn splits as

a wedge of homotopy orbits

(Σ∞Xn)Cn = (Σ∞X nZ)Cn ≃
∨

j|n

Σ
∞(X jZ)hC j

=
∨

j|n

Σ
∞(X j)hC j

.

Here all of the fixed points labeled by cyclic groups Ci are genuine fixed points, i.e.

they are implicitly right-derived. We also need the standard fact that the restriction

(Σ∞X nZ)Cn → (Σ∞X kZ)Ck for k|n corresponds along this splitting to the map that re-

stricts to the summands where j|k.

These statements only apply in the homotopy category, so they do not directly imply

anything about the homotopy limit defining TR. However, the map from jth summand

is described more concretely as a transfer followed by a splitting of the restriction map:

Σ
∞(X jZ)hC j

tr f
−−→

(
Σ
∞X jZ

)C j

−→

((
Σ
∞X nZ

)Cn/ j
)C j

= (Σ∞X nZ)Cn .

Therefore, if we pick a representative for the splitting tn : (Σ∞Xn)Cn → (Σ∞Xn)hCn
for

each n ≥1, the jth term of the splitting in the homotopy category is given by the formula

(Σ∞Xn)Cn =

((
Σ
∞Xn

)Cn/ j

)C j κ
−→

(
Σ
∞X j

)C j
t j
−→Σ

∞(X j)hC j
.

This defines a map of homotopy limit systems from (Σ∞X•)
C• to a product of homotopy

limit systems over j ≥ 1, the jth system having nth term Σ
∞(X j)hC j

when j|n and ∗

when j ∤ n, with all identity maps between them. On each term this map of homotopy

limit systems is an equivalence by the above discussion, so it induces an equivalence of

homotopy limits. This gives the desired tom Dieck splitting of TR. �
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Remark 9.13. There is a generalization of the tom Dieck splitting theorem due to Gaunce

Lewis [Lew00] that applies to the orthogonal Cr-spectrum PΣ
∞K

(
End(r)

(
C/D

L R

))
. We

could use this together with the argument in Proposition 9.12 below to identify the mid-

dle term of (8.14) as the infinite product

(9.14)
∏

n≥1

K
(
End(n)

(
C/DL R

))
hCn

.

The inclusion of underived TR is then just the first term in this product. Note that the

map to the TR system described in Proposition 9.12 does not respect this splitting.

Example 9.15. Along the tom Dieck splitting, the ghost map is a map of products

g :
∏

j≥1

(Σ∞X j)hC j
−→

∏

n≥1

Σ
∞Xn.

To compute its nth coordinate we use the product system from the proof of Proposi-

tion 9.12:

TR(Σ∞X•)

≃

��

// (Σ∞Xn)Cn

≃

��

F // Σ
∞Xn

∏

j≥1

(Σ∞X j)hC j
//
∏

j|n

(Σ∞X j)hC j

77♦
♦

♦
♦

♦

We then use [Mal17b, 4.4] to compute the dashed composite as the sum over all j|n of

the transfers and inclusions

(9.16) (Σ∞X j)hC j

trf
−→Σ

∞X j
∼=Σ

∞(Xn)Cn/ j −→Σ
∞Xn.

On π0, the composite takes every path component of (X j)hC j
to the weighted sum of its

preimage components in X j (weighted evenly so that the total weight is j), then maps

forward to the corresponding components of Xn. Here is a useful consequence of this

description in the case j = n.

Proposition 9.17. For a suspension spectrum restriction system, the ghost map on π0

g = (gn) : π0 TR(Σ∞X•)−→
∏

n≥1

π0Σ
∞
+ Xn

∼=
∏

n≥1

H0(Xn)

is injective.

We now apply the tom Dieck splitting to TR of a spherical group ring. Let G be a

topological group or grouplike topological monoid and write S[G] =Σ
∞
+ G for its suspen-

sion spectrum. Let A be a topological space with commuting left and right G-actions.

Assume that G and A are cofibrant as topological spaces. Then the restriction system

THH•(S[G];S[A]) from Example 8.7 is the suspension spectrum of a naive restriction

system whose nth level is the bar construction in unbased spaces B(G×n; A×n
ρ ). Proposi-

tion 9.12 therefore gives a splitting (where the C j
denotes coinvariants)

TR(S[G];S[A])≃
∏

j≥1

Σ
∞
+ B(G× j; A

× j
ρ )hC j

,

π0 TR(S[G];S[A])∼=
∏

j≥1

HH0(Z[π0G]⊗ j;Z[π0 A]
⊗ j
ρ )C j

,

π0 TR(S[G])∼=
∏

j≥1

HH0(Z[π0G])

For a based connected CW complex X , we take G =ΩX to be any well-based topologi-

cal group modeling the loop space of X . Let f : X → X be a basepoint preserving self-map
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of X . We let A =Ω
f X be ΩX with the usual right action, and left action twisted by f ,

i.e. given by the composite

ΩX ×ΩX
Ω f×id
−−−−→ΩX ×ΩX

mult
−−−→ΩX .

The tom Dieck coordinates can then be described as

π0 TR(S[ΩX ];S[Ω f X ])∼=
∏

j≥1

HH0(Z[π1X ];Z[π1X ] f ◦ j ) f∗

where (−) f∗ denotes coinvariants under the action of f∗ on each copy of π1X .

The above is true in general, but if X is finitely dominated, then S is perfect as a left

S[ΩX ]-module, and we can pick out a distinguished class

[ f ]∈ K0(End(S[ΩX ];S[Ω f X ])).

It is the twisted endomorphism of (S[ΩX ],S)-bimodule spectra

(9.18) S
≃

−→S[Ω f X ]∧S[ΩX ] S

that is homotopy inverse to the map that collapses the bar construction on the right back

to S. This is the suspension of the canonical isomorphism

∗
ΩX

∼=
−→ ΩXf ⊙ ∗

ΩX

arising from the fact that f and the identity agree after composing with X → ∗. By

[Pon10], its bicategorical trace is the Reidemeister trace

R( f ) : S→THH(S[ΩX ];S[Ω f X ]).

Theorem 9.19. For any finitely dominated space X and basepoint preserving self map

f : X → X, the image of the class [ f ] from (9.18) under the composite

K0(S[ΩX ];S[Ω f X ])
trc // π0 TR(S[ΩX ];S[Ω f X ])

g
//
∏

n≥1

HH0(Z[π1X ];Z[π1X ] f ◦n )

is the Reidemeister series (R( f ),R( f ◦2),R( f ◦3), . . .).

Proof. By Theorem 8.21, the nth factor of this map is the trace of the composite

S∼=S[Ω f X ]∧S[ΩX ] S
∼=S[Ω f X ]∧S[ΩX ] S[Ω f X ]∧S[ΩX ] S

∼= ·· · ∼=S[Ω f X ]∧S[ΩX ](n)
∧S[ΩX ] S.

Collapsing the copies of S[Ω f X ] together gives the bimodule S[Ω f ◦n

X ] and the twisted

endomorphism (9.18) with f replaced by f ◦n. Therefore, along the resulting isomorphism

(9.20) THH(S[ΩX ];S[Ω f X ]∧S[ΩX ]n)∼=THH(S[ΩX ];S[Ω f ◦n

X ])

this trace is taken to the Reidemeister trace of f ◦n. �

Remark 9.21. The TR-trace without coefficients A(X ) ≃ K (S[ΩX ]) → TR(S[ΩX ]) there-

fore gives traces of the identity map, as in [Lyd95].

The ring map π : S[ΩX ] → S that collapses ΩX to a point and the corresponding bi-

module map S[Ω f X ]→S induce a map on topological restriction homology

TR(S[ΩX ];S[Ω f X ])
π // TR(S).

We may further compose with the ring map S→ HZ to land in TR(Z).
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Theorem 9.22. The composite

K0(S[ΩX ],S[Ω f X ])
trc
−−→π0 TR(S[ΩX ];S[Ω f X ])

π
−→π0 TR(S)−→π0 TR(Z)∼= (1+ tZ[[t]])×

maps the twisted module endomorphism [ f ] from (9.18) to the Lefschetz zeta function

exp

(∫
1

t

(
∞∑

n=1

L( f ◦n)tn

))
= exp

(
∞∑

n=1

L( f ◦n)

n
tn

)
.

Proof. Naturality of the ghost map implies that the following diagram commutes, where

the vertical maps are ghost maps:

(9.23) π0 TR(S[ΩX ];S[Ω f X ])

g

��

// π0 TR(S)

g

��

// (1+Z[[t]])×

−t d
dt

log

��∏

n≥1

HH0(Z[π1X ];Z[π1X ] f ◦n ) //
∏

n≥1

Z oo
∼=

// tZ[[t]]

By Theorem 9.19, the class [ f ] in the upper-left goes to the Reidemeister traces R( f ◦n)

in the lower-left. The augmentation sends these to the Lefschetz numbers L( f ◦n) in

the lower-middle. This agrees with the image of the Lefschetz zeta function along the

logarithmic derivative. Since the logarithmic derivative is injective, we conclude that

the image of [ f ] in the upper-right is the Lefschetz zeta function. �

In fact, the passage from S to Z in Theorem 9.22 has no effect on π0 TR:

Proposition 9.24. The ring map S→ HZ induces an isomorphism

π0 TR(S)∼=π0 TR(Z)∼= (1+ tZ[[t]])×.

Proof. Expanding the right-hand square of (9.23) using the tom Dieck splitting and Witt

coordinates, we get the commuting square

∏

j≥1

Z

g
��

//
∏

i≥1

Z

g
��

(b j)
∞
j=1

❴

��

✤ // (a i)
∞
i=1
❴

��∏

n≥1

Z

∏

n≥1

Z (wn)∞
n=1

(wn)∞
n=1

.

The ghost coordinates wn are given by the formulas

∑

d|n

dbd = wn =
∑

d|n

dan/d
d ,

the first arising from Example 9.15 and the second from Display (9.1). It is an easy

observation that both of these maps are injective. Therefore the top horizontal map is

injective.

To prove it is surjective, we reverse-engineer the second formula to write an as 1
n

wn

plus a rational polynomial in the ad for d|n, d < n. Inductively, this implies that an

is expressed as a rational polynomial in the bd for d|n, whose bn-term is 1
n

(nbn) = bn.

Clearly changing the value of bn then allows us to attain any integer value of an, so by

induction this collection of polynomials defines a surjective map to
∏

i≥1Z. �
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Remark 9.25. The isomorphism π0 TR(S)
∼=

−→ π0 TR(Z) is given from tom Dieck coordi-

nates to Witt coordinates by the following polynomials in the first few degrees:

a1 = b1 b1 = a1

a2 = b2 −
b2

1−b1

2
b2 = a2+

a2
1−a1

2

a3 = b3 −
b3

1
−b3

1

3
b3 = a3+

a3
1
−a1

3

The polynomials for a4 and b4 have many more terms, for instance

a4 = b4 +
1

4

(
2b2−b2

2 +2b2
1b2−2b1b2 −

3

2
b4

1+b3
1 −

1

2
b2

1 +b1

)
.

Though it is not directly apparent from the formula, this polynomial is integer valued

on integer inputs.

9.3. The relation to the free loop space and periodic-point theory. For a space X

and self-map f : X → X , let L f X denote the twisted free loop space

L f X = {γ : [0,1]→ X |γ(0)= f (γ(1))}.

In this final subsection we describe how the work of the previous subsection is related to

[MP18b], which investigated the Reidemeister traces R( f ◦n) as elements of

π0(Σ∞
+ L f ◦n

X )∼= H0(L f ◦n

X ),

rather than HH0(Z[π1X ];Z[π1X ] f ◦n ). When X is path-connected and f preserves a cho-

sen basepoint, the two definitions of the Reidemeister trace agree along the equivalence

(see [LM18, 6.5], [CP19, Cor A.14], [Mal19, 8.2.8])

(9.26) THH(S[ΩX ];S[Ω f X ])≃Σ
∞
+ L f X .

We first lift this equivalence to an equivalence of restriction systems. Let Ψ
n( f ) =

f ×n ◦ρ−1 denote the nth Fuller construction of f as in [KW10, MP18b]:

X ×·· ·×X
Ψ

n( f )
// X ×·· ·×X

(x1, x2, . . . , xn)
✤ // ( f (xn), f (x1), . . . , f (xn−1))

An element of the twisted free loop space LΨ
n( f )X n consists of an n-tuple of points

x1, . . ., xn ∈ X and paths γi from f (xi) to xi+1, indices modulo n. As n varies, the sus-

pension spectra Σ
∞
+ LΨ

n( f )X n form a naive restriction system (Example 8.3.8.3). Follow-

ing [MP18b] and the precedent set by [BHM93], we denote its topological restriction

homology by TR(X ; f ).

Proposition 9.27. For any path-connected X and basepoint-preserving f : X → X, there

is an equivalence of restriction systems

THH(r)(S[ΩX ];S[Ω f X ])≃Σ
∞
+ LΨ

r ( f )X r

and therefore an equivalence on TR

TR(S[ΩX ];S[Ω f X ])≃TR(X ; f ).

To prove the proposition, note that both sides of the equivalence are homotopy invari-

ant, and so we may without loss of generality assume that X = BG for a cofibrant topo-

logical group G, and use G as the model for ΩX . We may also assume that f : BG → BG

arises by applying the classifying space functor to a group homomorphism, which by

abuse of notation we also denote f : G →G.

The first step is to identify

(9.28) THH(r)(S[G];S[ Gf ])=THH(S[G×r];S[ G×r
f ×r ρ])∼=THH(S[G×r];S[ G×r

Ψr ( f ) ])
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by applying ρ−1 once to the bimodule coordinate. This gives an isomorphism of restric-

tion systems where the one on the right arises from the isomorphisms (Ψrs( f ))Cr ∼=Ψ
s( f ).

The proposition then follows from the next lemma by passage to suspension spectra.

Lemma 9.29. There is a natural equivalence of restriction systems of spaces

Bcy(G×r; G×r
Ψr ( f ) )

≃
−→LΨ

r ( f )BG×r.

Proof. We start by constructing two equivalences of spaces

(9.30) Bcy(G; Gf )
≃

−→ EG×G Gad
f

≃
−→L f BG

where Gad
f

denotes G with the left G-action g · a = f (g)ag−1. The first equivalence is

actually an isomorphism, and is defined on k-simplices by

(g1, . . . , gk; g) 7−→ [g1 | · · · | gk]gg1 · · · gk.

To define the second, we compare two different fibrant models for the base change 1-cell

BG
id f

= [BG
f

−→ BG] in the bicategory of parametrized spaces over varying base spaces.

The first is the fibrant approximation of the parametrized space (id, f ) : BG −→ BG2

given by the space of paths (ev0, f ◦ ev1) : BG I −→ BG2. The second is EG2×G2 G
f

, where

G
f

is given the left G2-action (g, h)a = f (g)ah−1, and the map to BG2 arises from the

projection (p1, p2) : EG2 → BG2. The equivalence

(9.31) BG −→ EG2
×G2 Gf , [g1 | · · · | gk] 7−→ [(g1, f (g1)) | · · · | (gk, f (gk))]e

of spaces over BG2 is the fibrant approximation map. We form a commuting square of

spaces over BG2 where the horizontal maps are induced by (9.31) and the vertical maps

are inclusion of constant paths:

BG

∼

��

∼ // EG2×G2 G
f

∼
��

BG I
∼

// (EG2×G2 G
f

)I

The final space projects to BG2 by (p1◦ev0, p2◦ev1). If we remove the upper left instance

of BG, the other three spaces are fibrant over BG2, hence we can pull them back along

the diagonal ∆ : BG → BG2 to get a zig-zag of equivalences of spaces over BG

L f BG
∼

−→∆
∗
[
(EG2

×G2 Gf )I
]

∼
←− EG×G Gad

f .

The second equivalence in (9.30) is this zig-zag.

Applying the construction (9.30) to the group G×r and the map Ψ
r( f ) : G×r −→ G×r,

we have a composite equivalence

Bcy(G×r; G×r
Ψr ( f ) )

≃
−→ EG×r

×G×r Gad×r
Ψr ( f )

≃
−→LΨ

r( f )BG×r,

which defines each level of the equivalence of restriction systems in the statement of the

lemma. Since both of the maps are Cr-equivariant, and taking fixed points with respect

to a subgroup of Cr gives the same maps for a smaller value of r, the desired equivalence

of restriction systems follows. �

Remark 9.32. The map (9.30) is the canonical equivalence between two different mod-

els for r!∆
∗( BG

id f
) that are computed by deriving the base change functor ∆

∗ in two

different ways. It follows that each level of the equivalence of restriction systems in

Proposition 9.27 is a point set model for the comparison map of shadows induced by

the equivalence of symmetric monoidal bifibrations from [Mal19, §8.2] (see also [MP18a,

§14]).
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Recall from [MP18b] that the Fuller trace R(Ψn( f ))Cn is defined as the Cn-equivariant

Reidemeister trace of the map Ψ
n( f ). By the main theorem of [MP18b], these assemble

to define a class

R(Ψ∞( f )) ∈π0 TR(X ; f )

called the infinite Fuller trace.

Theorem 9.33. The composite

K0(S[ΩX ],S[Ω f X ])
trc
−−→π0 TR(S[ΩX ];S[Ω f X ])∼=π0 TR(X ; f )

of the TR-trace and the equivalence from Proposition 9.27 takes the class of the twisted

module endomorphism [ f ] from (9.18) to the infinite Fuller trace R(Ψ∞( f )).

Proof. We examine the image of the class [ f ] under the TR-trace and the routes in the

commutative diagram

π0 TR(S[ΩX ];S[Ω f X ]) π0 TR(X ; f )

π0 THH(S[ΩX ];S[ΩΨ
n( f )X ]) π0Σ

∞
+ LΨ

n( f ) X×n

π0 THH(S[ΩX ];S[Ω f ◦n

X ]),

∼=

gn gn

∼=

∼=

where the upper square commutes by the naturality of the ghost maps for the equiv-

alence of restriction systems from Proposition 9.27, and the lower-left vertical map is

the composition of (9.28) and (9.20). Theorem 9.19 states that the image in the lower

left corner is the Reidemeister trace R( f ◦n) of the iterate. By the unwinding argument

of [MP18b, Thm. 1.1], it follows that the image in the middle-left is the Fuller trace

R(Ψn( f )). Therefore the image in the middle-right is R(Ψn( f )) as computed in parame-

trized spectra. By Proposition 9.17 the upper vertical maps are jointly injective, hence

the image of [ f ] in π0 TR(X ; f ) is the infinite Fuller trace R(Ψ∞( f )). �

Since the infinite Fuller trace capture the behavior of n-periodic points for every n ≥1,

the theorem suggests that K -theory might capture deeper dynamical information. We

plan to continue this investigation in future work.

APPENDIX A. MODEL CATEGORIES OF RESTRICTION SYSTEMS

Recall that in §8 we introduced the notion of a “restriction system” to link the equi-

variant Dennis traces together and define the TR-trace. A restriction system is like a

cyclotomic spectrum, but more general. In this appendix, we show how to move these

restriction systems between different models of spectra, and we establish a model struc-

ture for pre-restriction systems in the spirit of [BM15].

Recall the notion of an equivariant bispectrum from [CLM+, Appendix A]. We define

genuine restriction systems of these bispectra by using the geometric fixed point functor

from [CLM+, Definition A.9].

Proposition A.1. If X• is a genuine (pre-)restriction system of bispectra and each Xn is

cofibrant as a Cn-bispectrum then the prolongation PX• to orthogonal spectra is naturally

a genuine (pre-)restriction system of orthogonal spectra.

Proof. We define the structure maps by

Φ
CrPXrs PΦ

Cr Xrs

∼=oo
Pcr // PXs.
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By [CLM+, Proposition A.7], P preserves equivalences of cofibrant spectra, so if the maps

cr are stable equivalences then so are these new maps. To check these form a pre-

restriction system it suffices to show the diagram below commutes. The top-right region

commutes because the bispectra X• form a restriction system. The bottom-right region

commutes by naturality and the left-hand region commutes by [CLM+, Lemma A.13].

Φ
CrsPXrst

it

��

PΦ
Crs Xrst

∼=oo

it
��

Pcrs // PX t

PΦ
CsΦ

Cr Xrst

∼=
��

PΦ
Cs cr // PΦ

Cs Xst

Pcs

OO

∼=
��

Φ
CsΦ

CrPXrst Φ
CsPΦ

Cr Xrst

∼=oo
Φ

CsPcr // Φ
CsPXst

�

Example A.2. For every termwise cofibrant naive restriction system of symmetric spec-

tra X•, the orthogonal suspension spectra Σ
∞X• form a genuine restriction system of

bispectra. In fact, the restriction map from the categorical fixed points

κ :
(
Σ
∞Xrs

)Cr
−→Φ

CrΣ
∞Xrs

is an isomorphism, so we define the maps of the genuine restriction system using the

inverse of the naive restriction system maps:

Φ
CrΣ

∞Xrs
∼=

(
Σ
∞Xrs

)Cr ∼=Σ
∞(X

Cr
rs )

∼=
←−Σ

∞Xs.

Their compatibility follows immediately from rigidity.

Example A.3. Similarly, for every genuine restriction system of orthogonal spectra X•,

the symmetric suspension spectra Σ
∞X• form a genuine restriction system of bispectra

with structure maps

Φ
CrΣ

∞Xrs
∼=Σ

∞
Φ

Cr Xrs
Σ
∞cr
−→ Σ

∞Xs.

Next we place model structures on the various categories of restriction systems. It is

simple enough to do this for naive restriction systems {Xn} because they are equivalent

to spectra with a Z-action and no free Z-orbits. The weak equivalences and fibrations

are measured on each term Xn separately, and the cofibrations are generated by the

maps of naive restriction systems that are ∗ at all levels n not divisible by a, and the

shift-desuspensions of the canonical inclusions

Fm(Sk−1
×Z/aZ)+ −→ Fm(Dk

×Z/aZ)+

at all levels n where a | n.

Proposition A.4. This defines a model structure on naive restriction systems of symmet-

ric spectra.

Next we turn to the model structure on genuine restriction systems. The idea, as in

[BM15, §5], is to build a model structure on genuine pre-restriction systems by thinking

of them as algebras over a monad C. As in that paper, this is not completely correct

because C is only a monad on cofibrant inputs, but we can still use it to create free

pre-restriction systems, which is enough to build the model structure.

Consider the category of sequences {Xn}n≥0 in which the nth term Xn is a Cn-equivariant

orthogonal spectrum or bispectrum. Such a sequence is termwise cofibrant if each Xn

is cofibrant in the stable model structure. We define C{X•} to be the sequence with nth

term

C{X•}n =
∨

m≥1

Φ
Cm Xmn.
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If the sequence {X•} is termwise cofibrant then we make C{X•} into a genuine pre-

restriction system by defining cr to be the composite

Φ
CrC{X•}rs C{X•}s

Φ
Cr

( ∨
m≥1

Φ
Cm Xmrs

) ∨
m≥1

Φ
CrΦ

Cm Xmrs
//

∼= ∨
m≥1

Φ
Cmr Xmrs.//

∼=

OO

Note that the final map is an inclusion of some but not all of the summands of C{X•}s.

Hence this is a not a restriction system, only a pre-restriction system. The compatibility

check for the structure maps cr can be done on each summand of the source separately,

where it follows from rigidity.

Lemma A.5. On cofibrant inputs, C is the left adjoint of the forgetful functor from pre-

restriction systems to sequences of equivariant spectra.

Proof. A map of pre-restriction systems CX −→Y is given by maps of Cn-spectra

fm,n : ΦCm Xmn −→Yn

for all m, n ≥1 that are compatible along the structure maps cr. In the case of r = m, one

finds that the compatibility condition implies that the maps f1,n : Xn →Yn determine all

of the others. �

The generating cofibrations for the model structure on pre-restriction systems are

constructed using the sets In of generating cofibrations for Cn-spectra, for all n ≥ 1, by

considering each map as a morphism of equivariant sequences that is only nontrivial at

the nth term, and then applying C to get a map of pre-restriction systems. Concretely,

these are the maps of pre-restriction systems that are trivial on the kth term unless

k | n, in which case they are given by the maps of Ck-spectra

Φ
Cn/k F(m,V )

(
Cn/Ca ×Sk−1

)
+
−→Φ

Cn/k F(m,V )

(
Cn/Ca ×Dk

)
+

.

Call the collection of such maps CI. By the preservation properties of geometric fixed

points detailed in [CLM+, Lemma A.10], any CI-cell complex is at the nth term of the

restriction system an In-cell complex.

We perform the same construction to the generating acyclic cofibrations, and in the

case of bispectra to the generating cofibrations for the model structure on Cn-equivariant

bispectra from [CLM+, Proposition A.5]. Verifying that our definitions define a model

structure is now straightforward by checking the properties termwise.

Proposition A.6. These generating cofibrations and acyclic cofibrations, together with

the termwise stable equivalences, define a stable model structure on pre-restriction sys-

tems of orthogonal spectra or of bispectra.
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