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Abstract

We investigate higher topological cyclic homology as an approach to studying chromatic phenomena in
homotopy theory. Higher topological cyclic homology is constructed from the fixed points of a version of
topological Hochschild homology based on the n-dimensional torus, and we propose it as a computationally
tractable cousin of n-fold iterated algebraic K-theory.

The fixed points of toral topological Hochschild homology are related to one another by restriction and
Frobenius operators. We introduce two additional families of operators on fixed points, the Verschiebung,
indexed on self-isogenies of the n-torus, and the differentials, indexed on n-vectors. We give a detailed anal-
ysis of the relations among the restriction, Frobenius, Verschiebung, and differentials, producing a higher
analog of the structure Hesselholt and Madsen described for 1-dimensional topological cyclic homology.

We calculate two important pieces of higher topological cyclic homology, namely topological restriction
homology and topological Frobenius homology, for the sphere spectrum. The latter computation allows us
to establish the Segal conjecture for the torus, which is to say to completely compute the cohomotopy type
of the classifying space of the torus.
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1. Introduction

1.1. Background and motivation

A casual glance at any chart of homotopy groups of spheres is dizzying—one gets the im-
pression that there is some not-quite discernible pattern. The chromatic viewpoint on stable
homotopy theory clarifies matters: we put on colored goggles so that we can see information
only of a particular wavelength, that is with particular periodicity properties. This organizing
principle is enormously useful both as a conceptual framework for comprehending large scale
phenomena in homotopy theory, and as a computational tool [29,30].

The traditional approach to chromatic phenomena proceeds by what Hopkins calls “designer
homotopy theory”. In this one designs, abstractly and without regard to geometry, spectra with
desired chromatic properties: Morava K-theories K(n), Lubin–Tate spectra En, higher real K-
theories EOn, and so on. This tact is extremely successful: we input the “wavelength” we are
interested in studying, by examining a height n formal group, and build colored goggles to suit
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this study. Even the magnificent and quite geometric theory of topological modular forms [20]
has the feature that the chromatic information is present at the outset—the construction of tmf

makes explicit use of the height 1 and 2 formal groups of elliptic curves.
In order to complement this designer homotopy approach to chromatic information, we would

like (1) a geometric understanding of the meaning of chromatic phenomena in homotopy theory,
and (2) a natural construction of chromatic type n spectra that doesn’t begin with the formal
group of height n, that is in which the chromatic behavior is an output rather than an input to
the theory. Regarding the first desiderata, vector bundles and topological K-theory provide an
elegant geometric description of chromatic level 1 structure. Analogous geometric frameworks
for chromatic level 2 structure are beginning to take shape: the Baas–Dundas–Rognes theory
of 2-vector bundles [3,2], and the Segal–Stolz–Teichner theory of 2-dimensional conformal field
theories [33,35] seem particularly promising. Regarding the second desiderata, Madsen and Rog-
nes’ red-shift conjecture proposes that the algebraic K-theory functor transforms appropriate
chromatic type n − 1 spectra into chromatic type n spectra. If the conjecture is correct, algebraic
K-theory fits the bill of an alchemical way to produce chromatic phenomena.

The red-shift conjecture naturally leads one to investigate the iterated algebraic K-theory
Kn(A) of a spectrum A, by way of stepping up the chromatic “spectrum”. In particular, the
n-fold iterated algebraic K-theory of the ring Fp is a natural candidate for a basic type n spec-
trum. There are two problems with this iterated algebraic K-theory approach. The first is that
it is computationally intractable. It is difficult enough to compute the effect of a single applica-
tion of algebraic K-theory, much less numerous iterates all at once; indeed already for two-fold
algebraic K-theory, the computations required considerable effort and ingenuity on the part of,
for example, Ausoni and Rognes [1]. The second problem is that it seems plausible that de-
spite exhibiting chromatic level n behavior, iterated algebraic K-theory will not have particularly
pleasant universal properties as a chromatic type n spectrum.

The present paper is part of a program to give a simple, direct construction of spectra ex-
hibiting higher chromatic behavior, based not on iterated algebraic K-theory but on forms of
higher topological cyclic homology. The topological cyclic homology TC(A) of a commutative
ring spectrum A is built out of fixed point spectra arising from a circle action on a topological
Hochschild homology spectrum THH(A) that is non-equivariantly equivalent to A ⊗ S1. More
specifically, TC(A) is the homotopy limit of the fixed points (THH(A))G, for finite subgroups G

of the circle, over certain restriction and Frobenius operators. By work of Goodwillie, McCarthy,
and the third author [14,24,12], the cyclotomic trace map from algebraic K-theory to topolog-
ical cyclic homology is a relative equivalence, and so the latter is a reasonable approximation
to the former. Higher topological cyclic homology is built from fixed point spectra associated to
a spectrum ΛTn(A) that is non-equivariantly equivalent to A ⊗ T

n—that is, we replace the cir-
cle by the n-dimensional torus, with the result being iterated topological Hochschild homology.
In detail, higher topological cyclic homology T C(n)(A) is a homotopy limit of the fixed points
(ΛTn(A))G for finite subgroups G of the torus, over a collection of restriction and Frobenius
operators associated to self-isogenies of the torus.

As yet it remains a hope that higher topological cyclic homology is an effective substitute for
iterated algebraic K-theory, but in any case we believe it has three advantages: first, it is much
more amenable to computation; second, it is both conceptually and technically much simpler;
third, it has better symmetry properties, coming from isogenies of the torus that mix the different
circle factors, and so we believe it represents a particularly natural candidate red-shift functor.
In order to obtain a clearer picture of the higher topological cyclic homology functor, we need,
quite simply, to compute examples.
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In order to approach calculational techniques for higher topological cyclic homology, we re-
call Hesselholt and Madsen’s approach to classical topological cyclic homology computations.
In this case the basic operators are the restriction Rp : THH(A)

C
pk → THH(A)

C
pk−1 and Frobe-

nius Fp : THH(A)
C

pk → THH(A)
C

pk−1 . Instead of immediately taking the homotopy limit over
the restriction and Frobenius, Hesselholt and Madsen treat the diagram of restriction operators
as a prospectrum, and observe that in addition to the Frobenius action, there are two additional
operators on this prospectrum, the Verschiebung Vp : THH(A)

C
pk−1 → THH(A)

C
pk and the dif-

ferential d1 : S1 ∧ THH(A)
C

pk → THH(A)
C

pk . They prove that in the homotopy category these
operators satisfy the key relations FpVp = p and Fpd1Vp = d1. These relations, and a detailed
understanding of the formal structure they entail, allow Hesselholt and Madsen to do extensive
calculations of topological cyclic homology, and therefore of algebraic K-theory [17–19].

One of our main tasks in the present paper is the production and analysis of analogous op-
erators for higher topological cyclic homology. We already have at our disposal restriction Rα

and Frobenius Fα operators [6], indexed by self-isogenies α of the n-torus. We introduce higher
Verschiebung operators Vα , also indexed by isogenies, and differentials dv indexed by vectors
v ∈ Zn. We then establish numerous relations among these operators, including analogues of the
classical relations for the products FαVβ and FαdvVβ .

The simplest potential computation is that of the higher topological cyclic homology TC(n)(S)

of the sphere spectrum. This spectrum TC(n)(S) is the homotopy limit over restriction and Frobe-
nius operators on fixed points of the higher topological Hochschild homology THHn(S) of the
sphere. However, the higher topological Hochschild homology of the sphere is just the sphere
spectrum itself, together with a new-found torus equivariance. We therefore find ourselves in-
vestigating fixed points of equivariant sphere spectra, a subject already of considerable classical
importance. By relating the G-fixed points and the homotopy G-fixed points of the sphere spec-
trum, the Segal conjecture for a finite group G provides a description of the homotopy type of
the homotopy G-fixed points ShG of the sphere [7]. Said another way, the conjecture computes
the cohomotopy F(BG+,S) = ShG of the classifying space of the finite group.

In the process of investigating TC(n)(S), we study an important piece of topological cyclic
homology, namely topological Frobenius homology TF(n)(S), which is the homotopy limit only
over the Frobenius maps. Leveraging the Segal conjecture for finite groups, we show that this
topological Frobenius homology is homotopy equivalent to the cohomotopy spectrum of the
classifying space of the torus. We give a detailed and complete analysis of the homotopy type of
the topological Frobenius homology of the sphere, and therefore establish the Segal conjecture
for tori.

1.2. Results and future directions

Our first main theorem is the description of the relations among the restriction, Frobenius,
Verschiebung, and differential operators on the fixed points of higher topological Hochschild
homology.

Theorem 1.1. Fix an odd prime p. Let A be a connective commutative ring spectrum. For
α ∈ Mn(Zp) ∩ GLn(Qp) an injective endomorphism of Zn

p , let Lα := α−1Zn
p/Zn

p ⊂ T
n
p be a

corresponding subgroup of the p-adic n-torus. Denote by T α := ΛTn
p
(A)Lα the Lα-fixed points

of the higher topological Hochschild homology of A based on the p-adic n-torus; this is a ring
spectrum with multiplication μ : T α ∧ T α → T α .
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There are operators in the stable homotopy category Rα : T βα → T β (restriction), Fα :
T αβ → T β (Frobenius), and Vα : T β → T αβ (Verschiebung). Moreover, for each p-adic vector
v ∈ Zn

p , there is an operator dv : S1 ∧ T α → T α (differential). The restriction and Frobenius are
ring maps, the differential is a derivation, and the restriction commutes with the other operators.
These R, F , V , and d maps satisfy the following relations.

1. μ(Vα ∧ 1) = Vαμ(1 ∧ Fα).
2. FαVβ = |gcdα,β |V[lcmα,β /α]F [lcmα,β /β].
3. dvF

α = Fαdαv ;
Vαdv = dαvVα .

4. FαdvVβ = dbezα gcd†
α,β v

V[lcmα,β /α]F [lcmα,β /β] + V[lcmα,β /α]F [lcmα,β /β]dbezβ gcd†
α,β v

.

Here, for α,β ∈ Mn(Zp) ∩ GLn(Qp), we have chosen matrices gcdα,β and “coprime” ma-
trices [α/gcdα,β ] and [β/gcdα,β ] such that α = gcdα,β [α/gcdα,β ] and β = gcdα,β [β/gcdα,β ];
matrices m and n in Mn(Zp) ∩ GLn(Qp) are called coprime if m + n : Zn

p ⊕ Zn
p → Zn

p is
surjective. We have also chosen “Bezout” matrices bezα and bezβ such that [α/gcdα,β ]bezα +
[β/gcdα,β ]bezβ = 1, and coprime matrices [lcmα,β /α] and [lcmα,β /β] such that
α[lcmα,β /α] = β[lcmα,β /β]. We denote the cardinality of the cokernel of a transformation
g : Zn

p → Zn
p by |g|, and denote by g† the unique transformation such that both g†g and gg† are

multiplication by |g|.
The notations gcdα,β , lcmα,β , and bezα , and the adjoint operation † are discussed more thor-

oughly in Section 3.3. See also Theorem 3.22 for a more explicit and complete list of relations.
By taking homotopy groups of the fixed points of higher topological Hochschild homology, we
can concisely package the structure of higher topological cyclic homology in terms of operators
on a pro multi-differential graded ring.

Corollary 1.2. Associated to a connective commutative ring spectrum A, there is a pro multi-
differential graded ring TRα

q (A;p) defined as follows. For each matrix α ∈ Mn(Zp)∩ GLn(Qp),

there are groups TRα
q (A;p) := πq(ΛTn

p
(A)Lα ), where Lα = α−1Zn

p/Zn
p . As q varies these

groups form a graded ring. For each p-adic vector v ∈ Zn
p , there is a graded differential

dv : TRα
q (A;p) → TRα

q+1(A;p); these differentials are derivations, are linear in the vector v,
and they graded commute with one another. The collection TRα∗ (A;p) is therefore a multi-
differential graded ring. As α varies these form a pro multi-differential graded ring under the
restriction maps Rα .

There is a collection of pro-graded-ring operators Fα : TRαβ∗ → TRβ∗ , and a collection of pro-
graded-module operators Vα : (Fα)∗TRβ∗ → TRαβ∗ , subject to the relations 2–4 of Theorem 1.1.

That Vα is a module map is equivalent to Frobenius reciprocity: Vα(x) · y = Vα(x · Fα(y)).
We undertake computations involving the sphere spectrum.

Proposition 1.3. The topological restriction homology of the sphere, that is the homotopy limit
of the fixed points ΛTn

p
(S)Lα along the restriction operators, is

TR(n)(S) 

∏

O⊆Zn
p

B
(
Zn

p/O
)
+

Here the product varies over the open subgroups O ⊆ Zn .
p
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Our second main theorem is the Segal conjecture for tori, which amounts to a computation of
the topological Frobenius homology of the sphere.

Theorem 1.4. The p-adic cohomotopy of the classifying space of the torus is homotopy equiva-
lent to the p-completion of topological Frobenius homology,

F
(
BT

n+,Sp

) 
 TF(n)(S)p

and the homotopy groups of TF(n)(S)p are as follows:

π∗
(
TF(n)(S)p

) =
∏
k,c

lim
l

(
Z

[
GLn(Zp)/Γl,k,c

] ⊗ π∗
(
Σ∞Sk ∧ BT

k+
)
/pl

)

Here the product is over 1 � k � n and c is a collection of unordered positive integers
{n1, . . . , nk}. The limit is over l ∈ N, and the group Γl,k,c ⊂ GLn(Zp) is the stabilizer of a chosen
subgroup K of C×n

pl of rank k and cotype c.

See Theorem 6.2 for a more complete description of the pieces of this decomposition.
We briefly mention some of the directions in which we intend to take this project. The most

important next step is explicit computations of the higher topological cyclic homology TC(n)(Fp)

of the Eilenberg–MacLane spectrum for Fp . In fact, this story is a bit more subtle than we let on
in the above background discussion, because the most interesting versions of cyclic homology
are likely to come not from equalizing all restriction and Frobenius operators (as in TC(n)), but
in carefully choosing subdiagrams of operators for the homotopy limit. We touch on the kinds
of choices we have in mind in Section 4 below, and describe another important aspect of these
sub-homotopy limits: there are systems of Adams operations that survive to act on the homotopy
limits, and it seems likely that these operations will play a central role in studying the resulting
versions of higher topological cyclic homology. We reserve, though, a more detailed discussion
for another occasion.

The computations of higher topological cyclic homology can, in part, proceed along lines
analogous to the work of Hesselholt and Madsen, namely using a collection of interrelated Tate
and spectrum cohomology spectral sequences, together with iterated applications of the norm-
cofibration sequence. Along the way in these computations, it will be convenient to formalize the
structure seen in Corollary 1.2 into a notion of Burnside–Witt complex. Such a complex will have
the given relations and will also have a compatible map from the Burnside–Witt vectors for Zn

p .
It will be particularly worthwhile to investigate an initial such complex, a “de Rham–Burnside–
Witt complex”, and to describe the analog of the Burnside–Witt structure for log-rings.

We remark on one last natural continuation of this work, namely that we hope our analysis of
the cohomotopy of the classifying space of a torus, viewed as the maximal torus of a compact Lie
group, can be used as a bootstrap to establish the Segal conjecture for all compact Lie groups.

2. Higher topological cyclic homology

2.1. Higher topological Hochschild homology

Let A be a connective commutative S-algebra. The topological Hochschild homology of A,
denoted THH(A), is the spectrum A⊗S1; here ⊗ is the tensor in the category of commutative S-
algebras. More concretely, THH(A) is the realization of the simplicial spectrum whose k-th level
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is A∧(S1)k , where (S1). is the standard simplicial circle. In this sense, THH(A) is the “S1-fold
smash power” of A.

We are interested not only in the homotopy type but in the equivariant homotopy type of
topological Hochschild homology. In particular, we will be interested in a large collection of
operations on the fixed points of topological Hochschild homology, including the restrictions,
Frobenii, Verschiebung, and differentials. The restriction maps only exist on equivariant spectra
that have a delicate property called cyclotomicity. Unfortunately, THH(A) is not cyclotomic
and so is not suitable for a detailed investigation of fixed point structures. This trouble can be
rectified by constructing, as in Hesselholt and Madsen [17], a cyclotomic spectrum T (A) that is
non-equivariantly homotopy equivalent to THH(A).

Higher topological Hochschild homology THHn(A) is by definition the spectrum A ⊗ T
n,

where T
n is the n-torus. This spectrum can again be given very concretely as the realization

of a simplicial spectrum A∧(Tn).. As in the one-dimensional case, this spectrum is equivariantly
misbehaved and requires rectification. One rectification is the Loday construction [6], which pro-
duces a spectrum ΛTn(A) that is non-equivariantly equivalent to THHn(A), but which exhibits
the desired higher analogs of cyclotomicity. Moreover, in the one-dimensional case, ΛS1(A) re-
covers the equivariant homotopy type T (A). The notation ΛX(A) is meant to suggest both the
“X-fold smash power of A”, that is

∧
X A, and also the origin of the technical aspects of the con-

struction in Loday’s work. However, the reader who is used to the Hesselholt-Madsen notation
T (A) might be advised to think of ΛX(A) as “TX(A)”, an equivariant topological Hochschild
homology based on X rather than on the circle.

We use the symmetric monoidal category of Γ -spaces as a model for connective spectra;
throughout “spectra” will be objects of this category, and “commutative ring spectra” or “com-
mutative S-algebras” will be symmetric monoids in this category. Given a commutative S-algebra
A, the Loday construction is a functor X → ΛX(A) from spaces to spectra; see Section 4 of [6]
for a detailed description of the rather technical construction of this functor. By functoriality, each
spectrum ΛX(A) comes equipped with an action of the entire space of endomorphisms of X; that
is, ΛX(A) is a naive End(X)-spectrum. Though we restrict attention to naive equivariant stable
homotopy theory throughout, the reader may refer to the survey [9] for a broader context and
discussion. The endomorphism action on ΛX(A) leads to a particularly rich structure when X

is a group G, for example the n-torus T
n. To isogenies of G (that is surjective homomorphisms

with finite kernel) one can associate so-called restriction and Frobenius maps relating the fixed
point spectra ΛG(A)H , for varying subgroups H of G. The homotopy limit over these restriction
and Frobenius maps is a kind of “topological G-cyclic homology” of A.

Instead of considering all isogenies of G, we can focus attention on a particular class P of
isogenies and consider only the restriction and Frobenius maps coming from these isogenies.
The homotopy limit over these maps is called the P -covering homology of A and is denoted
TCP (A). These versions of G-cyclic homology will be described in more detail in Section 2.3
and particular examples of interest discussed in Section 4.3.

When the group G is the circle, and the class P is the finite orientation-preserving self-
coverings of the circle, the P -covering homology is the ordinary topological cyclic homology
TC(A) of Bökstedt, Hsiang, and Madsen [5]. Notice that this class P is generated by the stan-
dard p-fold covers of the circle, for all p, and so the only operators in the homotopy limit are the
traditional restriction Rp (called Φ in [5]) and Frobenius Fp (called D in [5]).

In the next section, we describe the restriction and Frobenius operators on the fixed points
ΛG(A)H for a general group G, and discuss the specialization to our preferred group, the p-adic
n-torus.
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2.2. Restriction and Frobenius operators

As before, consider a connective commutative S-algebra A, and a group G. The restriction and
Frobenius are maps between fixed points of higher topological Hochschild homology ΛG(A):

RH
K : ΛG(A)H → ΛG/K(A)H/K

FH
K : ΛG(A)H → ΛG(A)K

Here H is a finite subgroup of G, and K is a normal subgroup of H . The Frobenius has a
concise description as the inclusion of fixed points. The restriction by contrast is a more involved
operation and we only brush against its definition—technical details can be found in Section 1
of [17] and in Section 5.2 of [6]. Roughly speaking, the spectrum ΛG(A)H can be described in
terms of mapping spaces out of the union

⋃
J⊂H SJ of fixed points by subgroups of H ; here

the S are certain finite H -sets. When we restrict the source of these mapping spaces to the union⋃
K⊂J⊂H SJ of fixed point by subgroups containing K , the resulting spectrum is ΛG/K(A)H/K .
The restriction map has inconveniently landed in the fixed points of the higher topological

Hochschild homology based no longer on G but on G/K . We avoid this problem by considering
only situations where G/K is itself isomorphic to G. In particular, this is true provided K is the
kernel of a surjective homomorphism a : G → G with finite kernel. We identify G/K with G

by the induced isomorphism, and thereby H/K with a subgroup of G. The restriction then maps
between fixed points of the single spectrum ΛG(A).

The whole situation is more conveniently and directly indexed in terms of the self-
homomorphisms of G, as follows. Let a, b : G → G be surjective homomorphisms with finite
kernels. Let La denote the kernel of a. Denote by φa : G/La → G the natural isomorphism,

and let φ∗
aG be G considered as a G-space with the G-action G × G

a×1−→ G × G
μ→ G. Note

that φa gives a G-isomorphism φa : G/La

∼=→ φ∗
aG. Throughout the paper we will refer to both

φa : G/La → G and φ−1
a : G → G/La as φa , and also, when convenient for notational reasons,

as φa . This isomorphism φa gives us control over the G-structures on the various quotients
G/La ; we need a similarly careful view of the equivariance of the fixed point spectra ΛG(A)La .
A priori, the spectrum ΛG(A)La is a module over S[G/La] = Σ∞(G/La)+, but we can give it
an S[G]-module structure by the composite

S[G] ∧ ΛG(A)La
φa∧1−−−−−→ S[G/La] ∧ ΛG(A)La

μ−→ ΛG(A)La

We will often abbreviate this composite action itself by μ, as we think of it as the unambiguous
natural action of G on ΛG(A)La .

In the description of the restriction map above, replace H by the kernel Lba and replace the
subgroup K by La . Note that the quotient H/K = Lba/La is isomorphic to Lb . With the given
S[G]-module structure, the restriction is now an S[G]-module map:

Ra := R
Lba

La
: ΛG(A)Lba → ΛG(A)Lb

This is the form in which we will use the restriction map throughout this paper. In these terms,
the Frobenius is a map

Fb := F
Lba

La
: ΛG(A)Lba → ΛG(A)La

The relation of the restriction and Frobenius [6] is pleasantly straightforward: RaF
b = FbRa .
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We briefly specialize the above discussion of restrictions and Frobenii to our case of special
interest, namely when the group is the p-adic n-torus T

n
p := Rn

p/Zn
p . The relevant subgroups

Lα ⊂ T
n
p arise as kernels of isogenies (surjective finite-kernel homomorphisms) α : T

n
p → T

n
p .

We view the monoid Mn := Mn(Zp) ∩ GLn(Qp) of injective linear endomorphisms of Zn
p

as a monoid of isogenies of the torus; the matrix α over Zp corresponds to the covering
α/Zn

p : Rn
p/Zn

p → Rn
p/Zn

p . The kernel of this map α : T
n
p → T

n
p is Lα = α−1Zn

p/Zn
p ⊂ Qn

p/Zn
p =

C×n
p∞ ⊂ T

n
p . For convenience we now abbreviate the Loday construction of topological Hochs-

child homology as T (n)(A) := ΛTn
p
(A) and the fixed point spectra as T α := T (n)(A)Lα . Note

that the fixed point spectrum only depends on the kernel Lα and not on the covering map
α—however, as a (naive) T

n
p-equivariant spectrum, with T

n
p-action μ(φ−1

α ∧ 1) described above,
T α does depend on the particular covering, and this justifies the notation. In this context we
think of the isomorphism φα : T

n
p/Lα → T

n
p as “multiplication by α”, and note that it restricts to

isomorphisms C×n
p∞/Lα

∼= C×n
p∞ and Lβα/Lα

∼= Lβ .
For a covering α ∈ Mn, the restriction now has the form of a map (really a family of maps)

Rα : T βα → T β

This map depends, even non-equivariantly, on the particular covering α and so we see again that
it is essential that we keep track of the coverings and not just the corresponding subgroups of the
torus. The Frobenius now has the form

Fα : T αβ → T β

As it is derived from the inclusion of fixed points, the Frobenius really depends only on the
subgroups Lα . However, as we are interested in the interaction of the Frobenius, Restriction, and
other operators, it is convenient to keep them all indexed in one place, namely on the coverings
of the torus.

2.3. Covering homology

We are interested in homotopy limits over classes of restriction and Frobenius operators—
these limits are called covering homology and represent versions of cyclic homology. The re-
strictions and Frobenii are both indexed on coverings of the p-adic n-torus, but with opposite
variance composition rules. We need an indexing diagram encoding this mixed-variance dou-
bling of the category of coverings, and we do this bookkeeping using a “twisted arrow category”,
described below.

Let G be a group. Consider a collection of surjective homomorphisms a : G � G, and let C
be the monoid generated by these. This monoid C can be viewed as a category, also denoted C ,
with one object. Our desired “doubling” of C is encoded as follows.

Definition 2.1. Let C be a category. The twisted arrow category ArC of C has objects the arrows
of C ; a morphism from d : v → y to b : w → x is a diagram

v

d

c
w

b

y x
a
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in C . That is, there is a morphism from d to b for every equation d = abc. We write (a∗, c∗) for
this morphism and note that the composition rule reads (a∗

0 , c0∗)(a∗
1 , c1∗) = ((a1a0)

∗, (c0c1)∗).

Definition 2.2. Define FrobC , respectively ResC , to be the subcategory of the twisted arrow cat-
egory ArC with all objects, but only the morphisms of the form a∗ := (a∗, id), respectively
c∗ := (id, c∗).

The basic structure of covering homology [6] is encoded in a functor ArC → Spec. The ho-
momorphism a : G → G maps to the spectrum ΛG(A)La . The image of the map c∗ : bc → b

is the restriction map Rc : ΛG(A)Lbc → ΛG(A)Lb and the image of the map a∗ : ab → b is the
Frobenius Fa : ΛG(A)Lab → ΛG(A)Lb .

There are three important limits associated to this functor, namely over the restriction subcat-
egory, the Frobenius subcategory, and over the whole twisted arrow category.

Definition 2.3.

TRC (A) := holim
a∈ResC

ΛG(A)kera

TFC (A) := holim
a∈FrobC

ΛG(A)kera

TCC (A) := holim
a∈ArC

ΛG(A)kera

The last of these is called the C -covering homology of A.
We often restrict attention to coverings of the p-adic n-torus, which as before are encoded in

the monoid Mn of injective endomorphisms of Zn
p . In this case we abbreviate TR, TF, and TC

as follows:

TR(n)(A) := TRMn(A) = holim
α∈ResMn

T (n)(A)Lα

TF(n)(A) := TFMn(A) = holim
α∈FrobMn

T (n)(A)Lα

TC(n)(A) := TCMn(A) = holim
α∈ArMn

T (n)(A)Lα

Note that TC(1)(A) is not precisely ordinary topological cyclic homology TC1(A), because
TC(1) takes into account, in addition to the usual p-fold coverings, all automorphism isogenies
of the p-adic circle. More specifically, as described in section 4 below, TC1 admits an action of
the units in the p-adic integers by “Adams operations”; we expect that TC(1) is the homotopy
fixed points of that Z

×
p -action on TC1. The natural toral analog of TC(1) is TC(n) as defined

above; by contrast there are various possible toral analogs of TC1. One such is the “topological
diagonal cyclic homology” TC
, which equalizes only the Frobenius and restriction operators
associated to the p-power map on the torus. This topological diagonal cyclic homology admits a
GLn(Zp)-action of Adams operations—see again Section 4. However, even the homotopy fixed
points of that action fails to equalize the operations associated to diagonal isogenies of the torus
that are not p-power multiples of the identity. All this considered, we refer to TC(n)(A) as the
higher topological cyclic homology of A.
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2.4. Transfer maps

The restriction and Frobenius operators by no means exhaust the structure of the fixed points
of topological Hochschild homology. Our next stop is the Verschiebung operator, which is de-
rived from the transfer maps associated to the projections G/Lb → G/Lab .

Assume G is a compact abelian Lie group—henceforth we also, without mention, allow G to
be the p-completion of a compact abelian Lie group. Consider as before a monoid C of linear
self-coverings of G, that is of surjective homomorphisms a : G → G with finite kernel La . For
a, b ∈ C , choose a G-representation W and an open G-embedding i : W ×G/Lb ↪→ W ×G/Lab

over the projection pra : G/Lb → G/Lab . The one-point compactification of this embedding,
that is the Thom construction, is a G-map

trLa : SW ∧ (G/Lab)+ → SW ∧ (G/Lb)+

called the La-transfer. The transfer is independent of the choice of embedding in the following
sense. Choose a complete universe of G-representations, and for any G-space X, let QG(X) =
colimW Map∗(SW ,SW ∧ X) where the colimit is taken over the universe. Then two different
choices of embeddings give homotopic transfers tra : QG(G/Lab) → QG(G/Lb).

For instance, if G is the circle and a is multiplication by the positive integer n (or rather the
n-th power operation, as we are writing G multiplicatively), we have an embedding

C ×G ↪→ C ×φ∗
nG

1×φn−→ C ×G/Ln where C is the complex plane with the usual circle action—
the embedding can be given explicitly by, for example, (w, z) → (nz + 1

1+|w|w,zn). As a result

we have the desired transfer trn : SC ∧ (G/Ln)+ → SC ∧ G+.
The properties of the transfer we will need are the following. (Here 
 means “homotopic after

applying QG”, and similarly for commutativity claims.)

Proposition 2.4. For a, b : G → G surjective finite-kernel homomorphisms of compact abelian
Lie groups, the transfers tra of the projections pra : G → G/La and pra : G/Lb → G/Lab

and the transfers trb of the projections prb : G → G/Lb and prb : G/La → G/Lba satisfy the
following relations.

1. tra trb 
 trba . If f : G → G′ is an isomorphism of groups and a′ = f af −1, then tra′ 

f traf

−1. If a is an isomorphism, then tra 
 id.
2. The transfer is a G-module map; that is the following diagram commutes:

G+ ∧ (SW ∧ (G/Lb)+)

μτ

G+ ∧ (SW ∧ (G/Lab)+)
1∧tra

μτ

SW ∧ (G/Lb)+ SW ∧ (G/Lab)+
tra

Here τ is the twist G+ ∧ SW ∼= SW ∧ G+, and μ abbreviates the composite

G+ ∧ (G/Lb)+
φb∧1−→ (G/Lb)+ ∧ (G/Lb)+

μ→ (G/Lb)+.
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3. Frobenius reciprocity. The transfer is a comodule map: the diagram

SW ∧ (G/Lb)+ ∧ (G/Lab)+ SW ∧ (G/Lab)+ ∧ (G/Lab)+
tra∧1

SW ∧ (G/Lb)+ ∧ (G/Lb)+

1∧(pra)+

SW ∧ (G/Lb)+

1∧
+

SW ∧ (G/Lab)+
tra

1∧
+

commutes, where 
 is the diagonal.
4. The double coset formula. Assume G is connected, and consider a commuting diagram of

self-coverings

G

a

G
b̃

ã

G G
b

with Lã ∩ L
b̃
= {1}. Then

G/L
b̃

pra

∐
L

b̃
\L

ab̃
/Lã

G
pr

b̃

prã

G/L
ab̃

= G/Lbã G/Lã

prb

is cartesian and

trbpra 
 |L
b̃
\ L

ab̃
/Lã| · prã tr

b̃

These properties are standard. The second and third properties follow from the naturality of the
transfer, which along with the first composition property appears already in Kahn and Priddy’s
original paper [21]; the double coset formula predates even the definition of the transfer. Lest
these formulas seem askew, the reader should keep in mind that, despite the notation, tra is the
transfer for the projection map pra and not for the map a itself.

2.5. The Verschiebung

Our first new operator on the fixed points of topological Hochschild homology, the Ver-
schiebung, is induced by transfer maps for projections associated to coverings.

As before let G be a compact abelian Lie group, W a real G-representation, and a a finite
self-covering of G. In order to define the Verschiebung, we will need a version of the Loday
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construction that has been stabilized by the representation W . Recall that the Loday construc-
tion ΛG(A) is, a priori, a Γ -space, and so associates to a finite set a space, or more generally
to a simplicial set a simplicial space, therefore by realization a space. (In general we will not
distinguish between spaces and their singular complexes or between simplicial spaces and their
realizations.) The stabilized Loday construction ΛW

G (A) is the Γ -space associating to the based
finite set P the space Map∗(SW ,ΛG(A)(SW ∧ P)). There is a natural equivariant stabilization
map from the Loday construction to the W -stabilized Loday construction, and this map preserves
the weak homotopy type of the fixed point spectra:

Lemma 2.5. The stabilization map ΛG(A)La → ΛW
G (A)La is a weak homotopy equivalence of

spectra.

Proof. The argument relies on the family version ΛG(A)(F ) of the Loday construction—the
reader should see Section 5.1 of [6] for definitions and details—and the analogous family version
ΛW

G (A)(F ) of the stabilized Loday construction. Let F0 ⊂ F1 ⊂ · · · ⊂ Fk be a tower of families
of subgroups of La such that (1) each family is closed in the sense that if H ∈ Fi and H ⊂
K ⊂ La then K ∈ Fi , (2) the inclusion Fi−1 ⊂ Fi is adjacent in the sense that the complement
Fi \ Fi−1 consists of exactly one subgroup Ki of La , and (3) F0 is empty and Fk contains all
subgroups of La . There is a commutative diagram of restriction maps between fixed point spectra

ΛG(A)(F0)
La∗ = r1

ΛG(A)(F1)
La

r2 · · · rk
ΛG(A)(Fk)

La = ΛG(A)La

ΛW
G (A)(F0)

La∗ = rW
1

ΛW
G (A)(F1)

La

rW
2 · · · rW

k

ΛW
G (A)(Fk)

La = ΛW
G (A)La

Lemma 5.1.3 of [6] shows that the homotopy fiber of the restriction map ri is weakly equivalent
to the homotopy orbit spectrum [ΛG/Ki

(A)]h(G/Ki). The proof of that lemma applies mutatis
mutandis to show that the homotopy fiber of the restriction rW

i is also [ΛG/Ki
(A)]h(G/Ki), and

that the map of homotopy fibers is a weak equivalence. It follows that all the vertical maps in the
diagram are weak equivalences. �

The Γ -space ΛW
G (A)La associates to the based finite set P the space

Map∗
(
SW ,ΛG(A)

(
SW ∧ P

))La ∼= Map∗
(
SW ∧ (G/La)+,ΛG(A)

(
SW ∧ P

))G

The transfer map trLa : SW ∧ (G/Lab)+ → SW ∧ (G/Lb)+ therefore induces a pullback tr∗
La

:

ΛW
G (A)Lb → ΛW

G (A)Lab . Using the above lemma, we can define a map in the stable homotopy
category, the Verschiebung,

Va : ΛG(A)Lb → ΛG(A)Lab

as the composite ΛG(A)Lb
∼→ ΛW

G (A)Lb
tr∗

La−→ ΛW
G (A)Lab

∼← ΛG(A)Lab .
By construction the Verschiebung commutes with restriction operators, that is RaVb = VbRa ,

and is variously related to the Frobenius as follows:
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Proposition 2.6. Let A be a commutative connective S-algebra, G a compact connected abelian
Lie group, and a and b finite self-coverings of G. Let T a := ΛG(A)La .

1. Frobenius reciprocity. Vb is a module map in the sense that the following diagram commutes:

T b ∧ T ab
Va∧1

1∧Fa

T ab ∧ T ab

μT b ∧ T b

μ

T b
Va

T ab

In particular VaF
a = Va(1)·.

2. The double coset formula. FaVb = |L
b̃
\ L

ab̃
/Lã| · Vb̃

F ã where ã and b̃ are self-coverings

such that ab̃ = bã and Lã ∩ L
b̃
= 1.

3. Faμ(a+ ∧ 1) = μ(1 ∧ Fa) : G+ ∧ T ab → T b and Vaμ = μ(a+ ∧ Va) : G+ ∧ T b → T ab .
4. If

G

a

G
b̃

ã

G G
b

is a cartesian square of finite self-coverings, then

Faμ(1 ∧ Vb)γ = μ
(
1 ∧ FaVb

) + FaVbμ

where γ : G+ ∧T ã
∐

G+∧T ã G+ ∧T ã → G+ ∧T ã is the map induced by (a+ ∧1)+ (b+ ∧1)

and the maps in the pushout are b̃+ ∧ 1 and ã+ ∧ 1. Otherwise said, the diagram

G+ ∧ T ã

a+∧1

μ(1∧FaVb)

G+ ∧ T ã

b̃+∧1

ã+∧1

G+ ∧ T ã
Faμ(1∧Vb)

T b̃

G+ ∧ T ã

b+∧1

FaVbμ

commutes up to homotopy.

Frobenius reciprocity and the double coset formula follow from the corresponding properties
of the transfer. Property 3 simply records the equivariance properties of the Frobenius and Ver-
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schiebung, and property 4 is a combination of the two parts of property 3. The phrasing of
the proposition is meant to suggest a potential generalization to the p-completions of arbitrary
compact connected Lie groups.

3. Differentials and higher Witt relations

3.1. The one-dimensional Witt relations

The fixed points T (A)
C

pk of ordinary topological Hochschild homology are related by the
operators restriction R : T (A)

C
pk → T (A)

C
pk−1 and Frobenius F : T (A)

C
pk → T (A)

C
pk−1 . By

definition topological cyclic homology TC(A) is the homotopy limit of the collection {T (A)
C

pk }
over these two series of operators. We can break this homotopy limit into two stages by con-
sidering either only the Restriction or only the Frobenius operators. The homotopy limit over
the restriction maps is called TR(A); topological cyclic homology TC(A) can then be obtained

as the homotopy equalizer of TR(A)
F

⇒
id

TR(A). Alternately, the homotopy limit over the Frobe-

nius maps is called TF(A); topological cyclic homology can then be recovered as the homotopy

equalizer of TF(A)
R

⇒
id

TF(A).

In order to compute the homotopy groups of topological cyclic homology, it is useful to ex-
ploit two additional operations on the homotopy groups of the fixed point spectra. The first of
these we have already discussed, the Verschiebung V : π∗(T (A)

C
pk−1 ) → π∗(T (A)

C
pk ). As the

Verschiebung arises from a transfer map, it is only well defined at the level of homotopy. The
second operation is a differential d : π∗(T (A)

C
pk ) → π∗+1(T (A)

C
pk ); the differential is, roughly

speaking, multiplication by the fundamental class of S1 on the S1-spectrum T (A)
C

pk .
The collection R,F,V,d satisfies certain fundamental relations: RF = FR, RV = V R,

Rd = dR, FV = p, V F = V (1)·, FdV = d . Moreover d is a differential and a graded deriva-
tion. Hesselholt and Madsen [19] proposed viewing the groups π∗(T (A)

C
pk ) as a prosystem with

respect to the maps R, and viewing F , V , and d as operators on this prosystem. They formalized
this structure in the notion of a Witt complex, and constructed an initial object in the category
of Witt complexes. This universal Witt complex is called the de Rham–Witt complex, in part
because it receives a canonical surjective map from the de Rham complex on Witt vectors. By
studying the structure of the de Rham–Witt complexes of rings and also of log-rings, Hesselholt
and Madsen were able to do extensive calculations of topological cyclic homology; they applied
these calculations with great success to, among other problems, the analysis of the algebraic
K-theory of local fields [18].

In the following sections we begin the investigation of similar structures on higher topological
Hochschild homology, focusing on establishing the basic relations among the higher restriction,
Frobenius, Verschiebung, and differentials. Though we do not claim to have determined all pos-
sible relations among these operators, we have established higher analogs of all the classical
relations—in particular, we describe an intriguing splitting that occurs in the fundamental higher
FdV relation.

3.2. Higher differentials

We now introduce the differentials in our higher analog of the Witt structure. These maps are
derived from the T

n -action on T (n)(A)Lα by means of a stable splitting of the torus, and as such
p
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are dependent on the matrix α and not—as the Frobenius and Verschiebung maps are—only on
the group Lα .

The transfer map for the projection T
1 → ∗ is a stable map S1 → T

1+ which produces a
stable splitting T

1+ 
 S0 ∨ S1. In particular the stable homotopy of the torus is πS∗ (T1+) ∼=
πS∗ (S0)⊕πS∗ (S1). Here T

1 is the unbased circle, T
1+ has its disjoint basepoint, and S1 is the circle

based at the identity. Note well that the obvious homeomorphism T
1+ ∼= S0 ∨ S1 does not pre-

serve the basepoint and so does not provide a stable splitting of T
1+. Indeed, there is no nontrivial

unstable based map from S1 to T
1+, so the splitting can only exist after stabilization. The transfer

of the map T
1 → ∗ may be given explicitly by the projection σ : SC = S2 → S2/S1 ∼= S1 ∧ T

1+
sending a point z ∈ SC to |z|

1+|z| ∧ z
|z| ∈ R/Z ∧ T

1+. By smashing this map with itself k times, we

get a map σ : SkC → Sk ∧ T
k+. Concretely, this k-fold product of the transfer is the Thom con-

struction on the embedding Rk × T
k ↪→ Ck of a tubular neighborhood of the standard inclusion

T
k ⊂ Ck . Altogether we get a stable splitting

T
k+ 


∨
T ⊆{1,...,k}

S|T | ∼=
k∨

j=0

(
Sj

)∨(k
j)

We will often write maps between T
k+’s as matrices in terms of this last basis.

Lemma 3.1. With respect to the stable splitting T
n+ 
 ∨k

j=0(S
j )

∨(k
j) the multiplication μ :

T
2+ → T

1+ is homotopic to the map

[
1 0 0 0
0 1 1 η

]
:
S0

S1

S1

S2

→ S0

S1

Proof. It is enough to verify that the S2 → S1 component is given by η, and this follows from
the diagram

S2C
σ∧1

S1 ∧ T
1+ ∧ SC

1∧σ

1∧μ

S1 ∧ SC

1∧σ

S1 ∧ T
1+ ∧ S1 ∧ T

1+
(1∧μ)τ

S1 ∧ S1 ∧ T
1+

The top μ refers to the natural action of T
1 on SC. The square is strictly commutative, and the

top horizontal composite is homotopic to η [16, p. 12]. �
Remark 3.2. For α ∈ MnZp , we have an induced stable map α+ : (Tn

p)+ → (Tn
p)+. From the

above description of the multiplication μ we can describe α+ in terms of the stable splitting. If
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n = 1 and α = a ∈ Zp then the map α+ is given by
[ 1 0

0 a

]
. If n = 2 and α = [

a b
c d

]
then α+ is

given by

⎡
⎢⎣

1 0 0 0
0 a b abη

0 c d cdη

0 0 0 ad − bc

⎤
⎥⎦ :

S0

S1

S1

S2

→
S0

S1

S1

S2

For general α = [aij ] ∈ Mk×nZp the stable map α+ is given by the matrix indexed by the subsets
of {1, . . . , k} and {1, . . . , n} with S–T -entry

MS,T =
( ∑

f :T �S

sign(f )
∏
j∈T

af (j)j

)
η|T |−|S| : S|T |

p → S|S|
p

where the sum is over all surjective f : T � S and the sign is with respect to the ordering given
by the fact that we are considering sets of natural numbers.

If p is an odd prime, multiplication by η is nullhomotopic, and these formulae simplify con-
siderably. In particular we have that if α ∈ MnZp , then

SnC
p

det(α)

σ
(Sn ∧ T

n
p+)p

1∧α+

SnC
p

σ
(Sn ∧ T

n
p+)p

commutes up to stable homotopy.

Definition 3.3. Let X be a spectrum with T
n
p-action and � ∈ Mk×nZp . Define the �-th differential

as the stable map

d� : Sk ∧ X → X

given by the composite

SkC ∧ X
σ∧1

Sk ∧ T
k
p+ ∧ X

1∧�+∧1
Sk ∧ T

n
p+ ∧ X

μ

Sk ∧ X

Proposition 3.4. If �′ ∈ Mn×k′Zp and �′′ ∈ Mn×k′′Zp , then

d�′d�′′ 
 d�

where � is the n × (k′ + k′′) matrix obtained by placing the columns of �′ before those of �′′.
For p an odd prime, � ∈ Mn×kZp , and γ ∈ MkZp , we have

d�γ 
 det(γ ) · d�

In particular, if � ∈ MnZp , then d� 
 det(�) ·d1. If � ∈ Mn×kZp has rank less than k, then d� 
 0.
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Proof. The first statement follows from the commutativity of

T
k′
p × T

k′′
p

∼=

�′×�′′
T

n
p × T

n
p

μ

T
k
p

�
T

n
p

The second statement follows from the observation in Remark 3.2 that if γ ∈ MnZp and η = 0
then (1 ∧ γ+)σ 
 σ det(γ ). Finally, if � has less than maximal rank, then � = �′γ where γ ∈
MkZp has zero determinant. �
Note that the equivalence d�γ 
 det(γ ) · d� implicitly depends on a p-completion; of course, this
completion is unnecessary if the matrix γ is integral.

Remark 3.5. The first part of this proposition says that all differentials can be described as
composites of “one-dimensional” differentials, that is by composites of d�’s with � : Zp → Zn

p .
For p = 2 the second part of the proposition becomes a bit more complicated:

d�γ 
 det(γ ) · d� +
∑

∅�=T �{1,...,k}
M{1,...,k},T d�iT

where iT is the matrix of the inclusion of T in {1, . . . , k}, and MS,T , as in Remark 3.2, consists
of products of minors and powers of η.

As an example, let n = 1 and � = 1. Then d2
1 
 d[1,1] = d[1,0]·[ 1 1

0 0
]. This differential is homo-

topic to 0 · d[1,0] + 1 · 1 · d1η + 0 · 0 · d0η = d1η, recovering Hesselholt’s formula d2 
 dη for the
one-dimensional case.

Lemma 3.6. Let �1, �2 ∈ Mn×1Zp . Then d�1+�2 
 d�1 + d�2 .

Proof. The differential d�1+�2 and the sum d�1 + d�2 are the upper and lower composites of the
diagram

S1 ∧ X
σ

T
1+ ∧ X

(�1+�2)+
T

n+ ∧ X X

(S1 ∨ S1) ∧ X
σ∨σ

(T1+ ∨ T
1+) ∧ X

�1+∨�2+
(Tn+ ∨ T

n+) ∧ X X ∨ X

The right-hand square commutes. The stable transfer map σ : S1 → T
1+ can be realized unstably

by the weak based map S1 ∧ S1 ∼← ΣS1 ↪→ ΣT
1 ∼→ S1 ∧ T

1 ; here Σ refers to unreduced
+ +
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suspension. The left-hand rectangle commutes in stable homotopy because the following diagram
homotopy commutes:

S1 ∧ S1

σ

ΣS1
∼

ΣT1+
∼

S1 ∧ T1+
�1+�2

S1 ∧ Tn+

S1 ∧ (S1 × S1) Σ(S1 × S1)
∼

Σ(T1 × T1)+
∼

S1 ∧ (T1 × T1)+
�1×�2

S1 ∧ (Tn × Tn)+

+

S1 ∧ S1 ∨ S1 ∧ S1

σ∨σ

ΣS1 ∨ ΣS1
∼

ΣT1+ ∨ ΣT1+
∼

S1 ∧ T1+ ∨ S1 ∧ T1+
�1∨�2

S1 ∧ Tn+ ∨ S1 ∧ Tn+

Here each downward vertical map is induced by the diagonal map, and each unlabeled upward
vertical map is induced by the wedge of the inclusions of the two factors of the product. �
3.3. Gcd’s and Lcm’s of matrices

In order to calculate the relations among the Frobenius, the differential, and the Verschiebung,
it is convenient to develop some technology describing how various matrices (which index the
F , d , and V operators) interact. We do so in a bit of (we hope entertaining) generality.

Definition 3.7. Let f : A → B be an injection of abelian groups. The volume |f | of f is defined
to be the cardinality of the cokernel of f . The adjoint f † of f is the unique lifting f † in the
diagram

0 A
f

|f |

B

|f |f †

B/f (A)

0

0

0 A
f

B B/f (A) 0

Here |f | denotes the map given by multiplication by the volume.

If A = B = Zn, then the volume |f | is the absolute value of the determinant of the matrix
defining f , and the adjoint f † is given by plus or minus the cofactor adjoint matrix of elementary
linear algebra; note this cofactor adjoint is not to be confused with the adjoint of the linear
transformation associated to the matrix of f . In Zp there are more units, and so potentially a
greater distance between our adjoint f † and the classical cofactor adjoint defined by explicit
formulae involving determinants of minors.

In the following, Λ will be a principal ideal domain, and Q a finitely generated free Λ-module.

Definition 3.8. Define MΛ(Q) ⊂ EndΛ(Q) to be the submonoid consisting of the injective
endomorphisms of Q. In the situation Λ = Zp and Q = Zn

p we simply write Mn := MZp
(Zn

p).
Given f,g ∈ MΛ(Q), we say that f and g are coprime if f + g : Q ⊕ Q → Q is surjec-

tive. The greatest common divisor of f and g is a map gcd(f, g) : Q → Q for which there are
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coprime f̄ and ḡ such that the composite Q ⊕ Q
f̄ +ḡ−→ Q

gcd(f,g)−→ Q is equal to Q ⊕ Q
f +g−→ Q;

more specifically, the greatest common divisor is the equivalence class in MΛ(Q)/AutΛ(Q)

consisting of those d ∈ MΛ(Q) such that f + g = d(f̄ + ḡ) for some coprime f̄ and ḡ.

Alternately, the greatest common divisor can be viewed as the collection of all maps Q → Q

that factor into an isomorphism Q ∼= (f + g)(Q ⊕ Q) followed by the inclusion (f + g)(Q ⊕
Q) ⊆ Q. Note that such factorizations exist because (f + g)(Q ⊕ Q) is a free module of rank
equal to the rank of Q—this follows because f is injective and submodules of the free module
Q over the PID Λ are free.

Note that |gcd(f, g)| = 1 and gcd(f, g) = AutΛ(Q) are just other ways of saying that f and
g are coprime.

A simple diagram chase gives the following lemma.

Lemma 3.9. If f,g ∈ MΛ(Q) then |f ||g|
|Q/(f (Q)∩g(Q))| = |gcd(f, g)|.

Definition 3.10. For each coprime pair f,g ∈ MΛ(Q), choose a section (bezf ⊕bezg) : Q →
Q⊕ Q of f + g. The maps bezf and bezg such that f bezf +g bezg = 1 are the analogs of clas-
sical Bezout numbers. In this coprime case, choose the representative 1 for the greatest common
divisor of f and g.

If f and g are not coprime choose a representative in MΛ(Q) for the greatest common
divisor and call it gcd(f, g), by abuse of notation. Let f̄ , ḡ ∈ MΛ(Q) be the coprime pair given
uniquely by f + g = gcd(f, g)(f̄ + ḡ) and let bezf ⊕bezg be equal to bezf̄ ⊕bezḡ , so that
f bezf +g bezg = gcd(f, g).

Note that the diagram
Q

g

Q
f̃

g̃

Q Q
f

is cartesian if and only if the diagram
Q

ḡ

Q
f̃

g̃

Q Q
f̄

is

cartesian. When these diagrams are cartesian, denote the composite gf̃ = f g̃ by lcm(f, g), giv-
ing the pleasant equation |f ||g| = |gcd(f, g)||lcm(f, g)|. For each pair f and g, we in fact
choose a specific pullback of f and g, therefore specific maps f̃ and g̃; this in turn pins down a
particular map lcm(f, g).

Remark 3.11. We summarize the above discussion and introduce some notation clarifying the
relationship of {f̄ , ḡ, f̃ , g̃} to {f,g}. Given natural numbers m and n, there are numbers

〈m〉 := m/gcd(m,n) = lcm(m,n)/n

〈n〉 := n/gcd(m,n) = lcm(m,n)/m

In our noncommutative generalization, there is not one notion here but two, according to
whether we generalize the expression “m/gcd(m,n)” or “lcm(m,n)/n”. The generaliza-
tions are denoted, respectively f̄ and f̃ . We sometimes use the expression [f/gcd(f, g)] to
mean f̄ , and the expression [lcm(f, g)/g] to mean f̃ . To reiterate then, the endomorphisms
[f/gcd(f, g)] and [g/gcd(f, g)] are defined to be coprime endomorphisms for which there is a
morphisms gcd(f, g) such that f = gcd(f, g)[f/gcd(f, g)] and g = gcd(f, g)[g/gcd(f, g)].
Similarly, the endomorphisms [lcm(f, g)/g] and [lcm(f, g)/f ] are defined to be coprime
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endomorphisms such that f [lcm(f, g)/f ] = g[lcm(f, g)/g]; that common product is called
lcm(f, g). Notice that with the above definitions of Bezout endomorphisms, we have the re-
lation [f/gcd(f, g)]bezf +[g/gcd(f, g)]bezg = 1. We sometimes write gcd(f, g) as gcdf,g and
similarly lcm(f, g) as lcmf,g .

Example 3.12. Propositions 2.4.4 and 2.6.2 describe relations for transfer maps and the Ver-
schiebung. When the group G in question is the torus T

n
p , the order of the double coset

|L
b̃

\ L
ab̃

/Lã| appearing in those formulae is precisely the volume |gcd(a, b)|. Here La =
a−1Zn

p/Zn
p ⊂ T

n
p is the kernel of the covering associated to the matrix a.

Let K be a field containing Λ, and set bΛ = K/Λ. This quotient bΛ should be thought of as
the classifying space of Λ; for example, for the inclusion Z ⊂ R, the classifying space is bZ =
R/Z, the circle. When as before Q is a finitely generated free Λ-module, let bQ = bΛ ⊗Λ Q.
When f ∈ MΛ(Q) there is an induced surjection bf : bQ → bQ with kernel lf ∼= Q/f (Q) and
an isomorphism φf : bQ/lf → bQ induced by multiplication by f , as illustrated by the diagram

0 Q

f

K ⊗Λ Q

f ∼=

bQ

bf

0

0 Q K ⊗Λ Q bQ 0

(Here the middle map is an isomorphism by Cramer’s rule, since det(f ) is invertible in K .) As an
example, let Λ = Z ⊂ R = K , Q = Z and let f be multiplication by m ∈ Z. Then bf : bQ → bQ

is the m-fold covering of the circle bQ = R/Z.

Lemma 3.13. Let f,g ∈ MΛ(Q). There is an h ∈ MΛ(Q) such that g = hf if and only if
lf ⊆ lg ⊂ bQ. In particular, there is an h ∈ AutΛ(Q) such that g = hf if and only if lf = lg .

Proof. This follows by a diagram chase involving

0 Q K ⊗Λ Q bQ 0

0 Q

g

f

K ⊗Λ Q

f ∼=

g ∼=

bQ

bf

bg

0

0 Q K ⊗Λ Q bQ 0 �
Lemma 3.14. If f : Λk → Λn is an injection, then there are γ ∈ GLn(Λ), γ ′ ∈ GLk(Λ) such that
γ ′f γ is represented by a diagonal k × k-matrix followed by the standard inclusion Λk ⊆ Λn.

Proof. The fundamental theorem for finitely generated modules over a PID gives us an isomor-
phism Λn/f (Λk) ∼= Λn−k ⊕ ⊕k

i=1 Λ/λiΛ, for some λi ∈ Λ. Lifting this isomorphism gives the
result. �
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If in addition Λ is local number ring with maximal ideal generated by π , then the diagonal matrix
in question can be chosen to have powers of π on the diagonal.

3.4. Stable splitting of the transfer

In the last section we analyzed the interactions of endomorphisms of modules over a PID. We
are of course most interested in the case of the PID Λ = Zp and the module Q = Zn

p . Associated
to a matrix α ∈ Mn = Mn(Zp) ∩ GLn(Qp), there is a self-covering of the p-complete n-torus.
The Verschiebung map for α is by definition the Verschiebung map for that induced self-covering.
This Verschiebung was defined in Section 2.5 in terms of the transfer map for the projection
associated to the covering.

The higher differentials introduced in Section 3.2 were built using the stable splitting of the
n-torus. In order to determine how the differentials and the Verschiebung interact, we must there-
fore describe the relationship of the stable splitting of the n-torus to the transfers associated to
projections of the torus—giving such a description is the purpose of this section.

Choose once and for all an equivariant transfer map

trp : (T/Lp)+ → T+

We will need the following fact from Hesselholt [16, p.17].

Lemma 3.15. With respect to the stable equivalence T+ 
 S0 ∨ S1 the composite

T+
φ

p
+

(T/Lp)+
trp

T+

is given by the matrix

τp =
[

p (p − 1)η

0 1

]

For α,β ∈ Mn we analyze the transfer maps trβ
αβ : (Tn/Lαβ)+ → (Tn/Lβ)+ as follows.

Factor α = γ ′δγ where γ ′, γ ∈ GLn(Zp) and δ is a diagonal matrix with diagonal entries powers
of p. The diagram

T
n/Lβ

proj.

T
n

φγβ

proj.

T
n/Lαβ T

n/Lδ

φγβ

is a pullback. (In fact the horizontal maps are isomorphisms. Note the absence of γ ′ from the
diagram—it was absorbed in an implicit equality in the lower right corner between T

n/Lδ and
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T
n/Lγ ′δ . There is a second implicit equality in the upper right corner between T

n and T
n/Lγ −1 .)

The transfers trβ
αβ and trδ are therefore related by the diagram

(Tn/Lβ)+ (Tn)+
φ

γβ
+

(Tn/Lαβ)+

trβ
αβ

(Tn/Lδ)+
φ

γβ
+

trδ

Moreover, the diagonal transfer trδ : (Tn
p/Lδ)+ → (Tn

p)+ can be described explicitly as the p-
completion of smashes of powers of trp .

Note that if η acts trivially, and we view p+ as given by the matrix
[ 1 0

0 p

] : S0

S1 → S0

S1 , the

composite trpφ
p
+ is given by the adjoint (p+)† = [

p 0
0 1

]
. This continues to be true more generally:

if α ∈ Mn then α+ can be viewed as a 2n × 2n-matrix through the n-fold smash of the stable
equivalence T+ 
 S0 ∨ S1, and (if η acts trivially) the transfer is given in this basis by (α+)†.
We will in the future occasionally write (α+)† for trαφα+ even if η does not act trivially.

Corollary 3.16. Let δ ∈ MnZ be a diagonal matrix with p-power entries. Then, under the stable
equivalence T+ 
 S0 ∨ S1 the transfer (δ+)† : (Tn

p)+ → (Tn
p)+ is given by the matrix

τδ =
⊗

1�j�n

[
δjj (δjj − 1)η

0 1

]

If α ∈ Mn then S1 ∨ · · · ∨ S1 inc−→ (Tn
p)+

(α+)†

−→ (Tn
p)+

proj−→ S1 ∨ · · · ∨ S1 is given by α†. If η acts
trivially then

S1 ∨ · · · ∨ S1

inc

inc
(Tn

p)+

(α+)†

(Tn
p)+

(α†)+
(Tn

p)+

commutes in the stable homotopy category.

3.5. Relations among the Frobenius, differential, and Verschiebung

In the one-dimensional case, the Verschiebung is related to the Frobenius and differential by
the relations FV = p, V F = V (1)·, and FdV = d . In Proposition 2.6, we established multi-
dimensional analogs of the first two relations, namely FαVβ = |gcdα,β |Vβ̃F α̃ and VαFα =
Vα(1)·; (here we have made use of the observation in Example 3.12). It remains to analyze
the composite Fαd�Vβ .

Lemma 3.17. Let α,β ∈ Mn and let � ∈ Mn×kZp . Then

Fαd�Vα : Sk ∧ T (n)(A)Lβ → T (n)(A)Lβ
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is homotopic to the composite

Sk ∧ T β
σ∧1

(Tk
p)+ ∧ T β

�+∧1
(Tn

p)+ ∧ T β
(α+)†∧1

(Tn
p)+ ∧ T β

φβ∧1
(Tn

p/Lβ)+ ∧ T β
μ

T β

where (α+)† := trαφα+, the map trα : (Tn
p/Lα)+ → (Tn

p)+ is the transfer, and as before T β is

shorthand for T (n)(A)Lβ .

Proof. If we show the stable commutativity of

(Tn
p)+ ∧ T β

φ
β
+∧1

(Tn
p/Lβ)+ ∧ T β

μ

T β

(Tn
p/Lα)+ ∧ T β

trα∧1

(Tn
p)+ ∧ T β

φα+∧1 φ
αβ
+ ∧1

1∧Vα

(Tn
p/Lαβ)+ ∧ T β

trα∧1

1∧Vα

(Tn
p)+ ∧ T αβ

φ
αβ
+ ∧1

(Tn
p/Lαβ)+ ∧ T αβ

μ

T αβ

Fα

then we are done: the two maps in question can be obtained by precomposing this diagram with

the sequence Sk ∧ T β
σ∧1

(Tk
p)+ ∧ T β

�+∧1
(Tn

p)+ ∧ T β .

The square obviously commutes. The upper left pentagon commutes because

T
n
p

proj

φβ

T
n
p/Lβ

proj

T
n
p/Lα T

n
p

φα φαβ

T
n
p/Lαβ

is a pullback—here of course the horizontal maps are isomorphisms. The right pentagon com-
mutes by the corresponding argument in the proof of the one-dimensional FdV relation, given
in Hesselholt [16, pp. 17–18], specifically by splitting the top map μ of the pentagon, writing the
resulting hexagon in terms of a composite of two squares, a la diagram 1.5.2 of Hesselholt, and
observing that each square is a transfer pullback square for products of tori. �
Corollary 3.18. In the situation of the lemma, if α ∈ GLnZp then

Fαd�Vα = dα−1�

Proof. We need only understand (α+)† := trαφα+. Here φα is simply α−1 : T
n
p → T

n
p/Lα = T

n
p

and trα is the identity. �
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This formula may seem surprising, given that Fα : T αβ → T β and Vα are the identity of spectra
when α is an isomorphism, but follows from the fact that they are not equivariant, and d� is
sensitive to the T

n
p-action.

Lemma 3.17 can more elegantly be rephrased in terms of a less useful variant of the dif-

ferential: for a stable map v : (Tk
p)+ → (Tn

p)+ let Dv be the composite (Tk
p)+ ∧ X

v∧1−→
(Tn

p)+ ∧ X
μ→ X, so that d� = D(�+)(σ ∧ 1). Then we get that

FαDvVα = D(α+)†v

Corollary 3.19. Let α ∈ MnZ. Assume multiplication by η is nullhomotopic on T β ( for example
if T β is an Eilenberg–MacLane spectrum or if p is odd). If � ∈ Mn×1Zp , then

Fαd�Vα = dα†�

and

Fαd1Vα = |α|
det(α)

· d1

Proof. The first part follows by Corollary 3.16 and Lemma 3.17. For the second part, note that,
if η = 0, the “n-dimensional part” of (α+)† is a column of zeros except for the first entry which
is the unit |α|/det(α). �

For differentials d�, with � an n × k matrix for 1 < k < n, we see that Fαd�Vα is given by
intermediate matrices of minors. Note also that the number |α|

det(α)
∈ Zp appearing in the above

formula is invertible.

Lemma 3.20. Let � : Zk
p → Zn

p and α ∈ Mn. Then

1. d�F
α = Fαdα�

2. Vαd� = dα�Vα

Proof. The first equation holds because the diagram

(Tn
p)+ ∧ T αβ

proj∧1

φ
β
+∧1

(Tn
p/Lα)+ ∧ T αβ

φ
β
+∧1

(Tn
p/Lβ)+ ∧ T αβ

proj∧1

1∧inc

(Tn
p/Lαβ)+ ∧ T αβ

μ

T αβ

inc

(Tn
p/Lβ)+ ∧ T β

μ

T β
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commutes, and the two sides of the equation can be obtained by precomposing with

Sk ∧ XLαβ
σ∧1

T
k
p ∧ XLαβ

�+∧1
T

n
p ∧ XLαβ

The second equation is similar. �
Piecing together our accumulated understanding of the interactions among these operations,

we can establish the final relation:

Theorem 3.21. Let p be an odd prime, and let α,β ∈ Mn, � : Zp → Zn
p . Choose a representative

D of gcdα,β and coprime ᾱ, β̄ ∈ Mn with α = Dᾱ and β = Dβ̄ . Furthermore, choose a splitting
(s, t) to ᾱ + β̄ , so that ᾱs + β̄t = 1. Then

Fαd�Vβ = dsD†�F
ᾱVβ̄ + F ᾱVβ̄dtD†�

Proof. From Corollary 3.19 and Lemma 3.20, we have

Fαd�Vβ = F ᾱFDd�VDVβ̄

= F ᾱdD†�Vβ̄

= F ᾱdᾱsD†�+β̄tD†�Vβ̄

= F ᾱ(dᾱsD†� + dβ̄tD†�)Vβ̄

= F ᾱdᾱsD†�Vβ̄ + F ᾱdβ̄tD†�Vβ̄

= dsD†�F
ᾱVβ̄ + F ᾱVβ̄dtD†� �

Note that by Proposition 2.6.2, F ᾱVβ̄ = Vβ̃F α̃ , where α̃ and β̃ are coprime matrices with αβ̃ =
βα̃. The right hand side of this FdV relation could thereby be rewritten in terms of dV F and
V Fd .

We summarize the structure of the fixed point spectra T (n)(A)Lα in the following omnibus
theorem. We state the results in the homotopy category, though those relations only involving the
restriction and Frobenius may be lifted to spectra.

Theorem 3.22. Fix an odd prime p. Let A be a connective commutative ring spectrum. For
α ∈ Mn(Zp) ∩ GLn(Qp) an injective endomorphism of Zn

p , let Lα := α−1Zn
p/Zn

p ⊂ T
n
p be the

corresponding subgroup of the p-adic n-torus. Denote by T α := ΛTn
p
(A)Lα the fixed points of the

n-dimensional topological Hochschild homology of A; this is a ring spectrum with multiplication
denoted μ : T α ∧ T α → T α .

There are operators in the stable homotopy category Rα : T βα → T β (restriction), Fα :
T αβ → T β (Frobenius), and Vα : T β → T αβ (Verschiebung). Moreover, for each p-adic vec-
tor v ∈ Zn

p , there is an operator dv : S1 ∧ T α → T α (differential). These R, F , V , and d maps
satisfy the following relations.
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1. Rαμ = μRα ;
Fαμ = μFα ;
dv(1 ∧ μ) = μ(dv ∧ 1) + μ(1 ∧ dv)(τ ∧ 1);
if α ∈ GLnZp then Fα = id and Vα = id.

2. RαRβ = Rαβ ;
FαFβ = Fβα ;
VαVβ = Vαβ ;
dv+w = dv + dw;
dv(1 ∧ dw) = dwτ(dv ∧ 1)τ .

3. RαFβ = FβRα ;
RαVβ = VβRα ;
Rαdv = dvRα .

4. μ(Vα ∧ 1) = Vαμ(1 ∧ Fα);
FαVβ = |gcdα,β |V[lcmα,β /α]F [lcmα,β /β].

5. dvF
α = Fαdαv ;

Vαdv = dαvVα ;
FαdvVβ = dbezα gcd†

α,β v
V[lcmα,β /α]F [lcmα,β /β] + V[lcmα,β /α]F [lcmα,β /β]dbezβ gcd†

α,β v
.

Notation: In the above, we have abbreviated for example 1 ∧ V as V and R ∧ R as R

and the like, when no confusion is possible. In item (1), τ is a twist, and the equations
record the facts that R and F are ring maps, dv is a derivation, and Fα and Vα only de-
pend on the group Lα . The terms in items (4) and (5) are defined as follows. Choose matri-
ces gcdα,β and coprime [α/gcdα,β ] and [β/gcdα,β ] such that α = gcdα,β [α/gcdα,β ] and β =
gcdα,β [β/gcdα,β ]. Next choose “Bezout” matrices bezα and bezβ such that [α/gcdα,β ]bezα +
[β/gcdα,β ]bezβ = 1. Finally choose coprime matrices [lcmα,β /α] and [lcmα,β /β] such that
α[lcmα,β /α] = β[lcmα,β /β]; that common product is by definition lcmα,β .

At the risk of repetition, we follow the lead of Hesselholt and Madsen in taking homotopy
groups and repackaging some of this data into a particular kind of pro differential ring. In the
following p is again an odd prime.

Corollary 3.23. Associated to a connective commutative ring spectrum A, there is a pro
multi-differential graded ring denoted TRα

q (A;p) and defined as follows. For each matrix

α ∈ Mn(Zp)∩GLn(Qp), we have a group TRα
q (A;p) := πq(ΛTn

p
(A)Lα ); here Lα = α−1Zn

p/Zn
p .

As q varies these groups form a graded ring. For each p-adic vector v ∈ Zn
p , there is a graded

differential dv : TRα
q (A;p) → TRα

q+1(A;p); these differentials are derivations, are linear in the
vector v, and they graded commute with one another. The collection TRα∗ (A;p) is therefore a
multi-differential graded ring. As α varies these form a pro multi-differential graded ring under
the restriction maps Rα .

There is a collection of pro-graded-ring operators Fα : TRαβ∗ → TRβ∗ , and a collection of pro-
graded-module operators Vα : (Fα)∗TRβ∗ → TRαβ∗ . Both Fα and Vα depend only on the group
Lα . Here (Fα)∗TRβ∗ denotes TRβ∗ with the TRαβ∗ -module structure determined by precomposition
with Fα . Note that the fact that Vα is a module map is equivalent to Frobenius reciprocity:
Vα(x) · y = Vα(x · Fα(y)).

These operators are subject to the relations
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1. FαVβ = |gcdα,β |V[lcmα,β /α]F [lcmα,β /β].
2. dvF

α = Fαdαv; Vαdv = dαvVα .
3. FαdvVβ = dbezα gcd†

α,β v
V[lcmα,β /α]F [lcmα,β /β] + V[lcmα,β /α]F [lcmα,β /β]dbezβ gcd†

α,β v
.

It may be that this list of relations, together with a few discussed earlier concerning higher
differentials, is in a useful sense complete. In this case, it is clear how to utilize and abstract the
structure seen in the corollary: add a map (compatible with the operators) from the Burnside–
Witt vectors [11,15] into the degree zero part of the pro multi-differential graded ring—we would
call the resulting structure a Burnside–Witt complex. (Compare Hesselholt and Madsen [19].) It
would be worth studying the initial such complex, which serves the role of a higher analog of
the de Rham–Witt complex. In future work we will make precise and investigate these notions
of Burnside–Witt complex and “de Rham–Burnside–Witt” complex.

4. Adams operations on covering homology

Recall that in the end we are interested in covering homologies TCJ (A), that is in versions
of higher topological cyclic homology—these are homotopy limits of the fixed points T (n)(A)Lα

under collections of restriction and Frobenius operators associated to submonoids J of the self-
isogenies of the p-adic n-torus. There are groups of Adams operations acting on the fixed points
T (n)(A)Lα , and for appropriate choices of submonoids J , these operations survive the homotopy
limit to produce interesting actions on the covering homology TCJ (A). Indeed, these actions
will play a crucial role in our future investigation of chromatic phenomena arising from higher
topological cyclic homology.

4.1. Identification of the Frobenius and restriction categories

We begin by explicitly identifying the structure of the indexing categories for Frobenius and
restriction operators, in the case of higher topological Hochschild homology based on the p-adic
n-torus. Recall from Section 2.3 that Mn := Mn(Zp) ∩ GLn(Qp) and FrobMn

and ResMn
are

the subcategories of the twisted arrow category ArMn
consisting respectively of the maps α∗

and α∗.

Lemma 4.1. Two objects in FrobMn
are connected by at most one morphism; similarly for

ResMn
. The group GLn(Zp) acts both on the left and the right of both FrobMn

and ResMn
.

Proof. Note that since the matrices in Mn are invertible over Qp we have cancellation: fgh =
fg′h ⇒ g = g′. Hence, in both ResMn

and FrobMn
there is at most one arrow between two

objects. If a∗ : ab → b ∈ FrobMn
and g ∈ GLn(Zp) we set g · a∗ = (gag−1)∗ : gab → gb and

a∗ · g = a∗ : abg → bg. The other action is similar. �
Notice that whereas there is at most one map between two objects in ResMn

or FrobMn
, in the

“amalgamation” ArMn
there can be many.

We can quotient the category FrobMn
by the left GLn(Zp)-action, as follows. The objects

of the quotient category GLn(Zp) \ FrobMn
are the orbits of the left GLn(Zp)-action on the

objects of FrobMn
. There is exactly one morphism from the orbit O1 to the orbit O2 when there

is a morphism in FrobMn
from a representative of O1 to a representative of O2; note that the

existence of such a morphism is independent of the choice of representatives. Similarly, we can
quotient the category ResM by the right GLn(Zp)-action.
n
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Lemma 4.2. For α ∈ Mn, the assignment α → Lα = α−1Zn
p/Zn

p defines an equivalence of cat-
egories

FrobMn

 GLn(Zp) \ FrobMn

∼= Subop
Tn

p

from FrobMn
to the opposite of the category SubTn

p
of finite subgroups of T

n
p = Rn

p/Zn
p and

inclusions, and induces an isomorphism between GLn(Zp) \ FrobMn
and Subop

Tn
p
.

Dually, the assignment β → βZn
p defines an equivalence

ResMn

 ResMn

/GLn(Zp) ∼= OpZn
p

between ResMn
and the category OpZn

p
of open subgroups of Zn

p and inclusions, and induces an
isomorphism between the orbit category ResMn

/GLn(Zp) and OpZn
p
.

Proof. Since all finite subgroups of T
n
p are of the form Lα for some α, Lemma 3.13 is just

another way of stating that α → Lα induces an isomorphism between GLn(Zp) \ FrobMn
and

Subop
Tn

p
.

Choose a section σ of the projection p : Mn → GLn(Zp) \ Mn. For every β ∈ Mn

there is a unique γβ ∈ GLn(Zp) such that σ(p(β)) = γββ . Let Σ : GLn(Zp) \ FrobMn
→

FrobMn
be defined by Σ(p(β)) = σ(p(β)) = γββ and Σ(p(β) → p(αβ)) = (γββ → γαβαβ =

(γαβαγ −1
β )γββ), giving a section to the projection to the orbit category, with γ as the natural

isomorphism establishing the equivalence.
The last statement is dual. The analog of Lemma 3.13 for ResMn

is the statement that two
open subgroups αZn

p and βZn
p of Zn

p are equal if and only if β−1α ∈ GLn(Zp), and more gener-

ally αZn
p ⊆ βZn

p if and only if β−1α ∈ Mn. �
Henceforth we abbreviate Subop

Tn
p

by Sub. In our later computation of topological Frobenius

homology, we will need the following result concerning the orbit structure of this category of
subgroups.

Corollary 4.3. Let K ∈ Sub. The orbit of K under the GLn(Zp)-action on Sub consists of the
subgroups that are abstractly group-isomorphic to K .

The stabilizer of K has finite index in GLn(Zp), and if K ⊆ Lpl idn
for some l, then the entire

orbit will consist of subgroups of Lpl idn
.

Proof. Clearly, all elements in the orbit of K are abstractly isomorphic to K . Conversely, assume
K ′ ∈ Sub and given a group isomorphism x : K ∼= K ′. Choose matrices α,α′ ∈ Mn such that
K = Lα and K ′ = Lα′ and consider the diagram

0 Zn
p

γ

α−1Zn
p K

x∼=

0

0 Zn
p (α′)−1Zn

p K ′ 0
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By Nakayama’s lemma the dotted middle vertical map exists and is an isomorphism, and so
the dotted left vertical map exists, and is represented by a matrix, say γ . This means that K ′ =
Lαγ −1 = γ · K .

Lemma 3.13 implies that Lα ⊆ Lpl idn
if and only if plα−1 ∈ Mn, and so certainly such an l

exists. Furthermore, since plγ α−1 = γ · plα−1 we also have that Lαγ −1 ⊆ Lpl idn
. The stabilizer

has finite index because there are only finitely many subgroups of Lpl idn
. �

Remark 4.4. Occasionally we will be exclusively interested in homotopy limits over subcat-
egories of FrobMn

, and for those purposes we can avoid the p-adic integers, as follows. Let
FrobMnZ be the full subcategory of FrobMn

with objects integral matrices with determinants a
power of p. The inclusion FrobMnZ ⊂ FrobMn

is an equivalence of categories, and the assign-
ment α → Lα induces an isomorphism between GLn(Z) \ FrobMnZ and the category Subop

C×n
p∞

of

finite subgroups of C×n
p∞ .

4.2. Actions on inverse systems

In this section, we describe actions by groups I ⊆ GLn(Zp) on the covering homology
TCJ (A), for submonoids J ⊆ Mn of isogenies of the torus.

Proposition 4.5. Let I ⊆ GLn(Zp) be a subgroup and J ⊆ Mn a submonoid such that if γ ∈ I

and β ∈ J then γβγ −1 ∈ J . In this case the group I acts on TCJ (A) := holimβ∈ArJ T (n)(A)Lβ

by sending γ ∈ I to the operator Rγ Fγ −1
.

Proof. Observe that if γ ∈ I and α,β ∈ J then

T γαβγ −1

Fγαγ−1

Fγ−1

= T γαβ

Fα

Rγ

T αβ

Fα

T γβγ−1
Fγ−1

= T γβ
Rγ

T β

and

T γαβγ −1

R
γβγ−1

Fγ−1

= T γαβ

R
γβγ−1

Rγ

T αβ

Rβ

T γαγ −1 Fγ−1

= T γα
Rγ

T α

commute. �
The question is how to choose appropriate I and J . The intersection between I and J should

be kept as small as possible, since any element in the intersection will already be in the indexing
category of the homotopy limit, and so the action will be trivial. The minimal J of interest is the
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free submonoid generated by p, which consists of the matrices pkidn for k ∈ N. Any α ∈ Mn

commutes with these matrices, so in this case we may let I = GLn(Zp):

Corollary 4.6. Let 
 ⊂ Mn be the free submonoid generated by p · idn. The group GLn(Zp)

acts on the “topological diagonal cyclic homology”

TC
(A) = holim
pk idn∈Ar


T (n)(A)
L

pk idn .

Remark 4.7. When β ∈ GLnZp , the restriction map Rβ is an isomorphism of T
n
p-spectra, which

can be rather confusing. In keeping track of the action, the reader may find consolation in the
fact that the diagram

T
n
p × T

n
p/Lαβ

1×φβ

T
n
p/Lαβ × T

n
p/Lαβ

φαβ×1 μ

φβ×φβ

T
n
p/Lαβ

φβ

T
n
p × T

n
p/Lα T

n
p/Lα × T

n
p/Lα

φα×1 μ
T

n
p/Lα

commutes, where the solid vertical maps keep track of the reindexing implemented by the
restriction map, while the horizontal maps keep track of the actions. At root, the restriction
map for an invertible β is equal to the functorial action by β : T

n
p → T

n
p , namely the map

Tβ : TTn
p
(A) → TTn

p
(A), and it is this action that survives to TC
(A). Note that the target TTn

p
(A)

of the map Tβ has its T
n
p-action twisted by φβ , so that Tβ remains equivariant.

In the case of a one-dimensional torus, the maps Tβ : TT1
p
(A) → TT1

p
(A) provide an action

of Z
×
p on ordinary topological Hochschild homology. This action descends, as noted, to the topo-

logical diagonal cyclic homology, which in this case is simply the ordinary topological cyclic
homology. This Z

×
p -action is by Adams operations, as mentioned in Section 4.6.3 of [6]. We

therefore conceive generally of actions of subgroups of GLn(Zp) on covering homology as ac-
tions by Adams operations.

4.3. Examples of group actions on covering homology

An interesting class of examples arises as follows. Let B be a Zp-algebra that is free and
finitely generated of rank n as a Zp-module. Choose a basis for B and let MB = B ∩ (B ⊗ Q)∗,
that is the elements of B that are invertible over Q. Using the basis, the monoid MB is naturally
identified as a submonoid of Mn. We may then consider

TCB(A) := TCMB (A) = holim
β∈ArMB

T (n)(A)Lβ

Example 4.8. Consider the 2-adic Gaussian integers B = Z2[i]. Up to multiplication by
units of B , any element of MB is a power of 1 + i ∈ MB . Let 
[1 + i] ⊂ MB denote
the free submonoid generated by that element 1 + i ∈ MB . The corresponding restriction
and cyclic homologies are respectively TR
[1+i](A) := holim(1+i)k∈Res
[1+i] T

(2)(A)
L

(1+i)k and

TC
[1+i](A) := holim(1+i)k∈Ar
[1+i] T
(2)(A)

L
(1+i)k . The full cyclic homology TCB(A) is the ho-

motopy equalizer of the restriction action of the units B∗ on TC
[1+i](A). This latter cyclic
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homology TC
[1+i](A) is in turn the homotopy limit of TR
[1+i](A)
F 1+i

⇒
id

TR
[1+i](A). Note

that π0TR
[1+i](A) = WB(π0A), where WB(π0A) is the Burnside–Witt vectors for π0A over
the group B ∼= Z×2

2 [6]. As a result, we have π−1TC
[1+i](A) = WB(π0A)F 1+i ; this last expres-
sion denotes the Frobenius coinvariants of the Burnside–Witt ring. Contrast this example with the
diagonal cyclic homology TC
(A) of Corollary 4.6. Both examples come from fixed points of
the 2-adic 2-toral topological Hochschild homology, and in both examples the indexing category
is “linear” in the sense that it is generated by a single pair of Frobenius and restriction operators.
However, in the diagonal cyclic case, π−1TC
(A) = WZ×2

2
(π0A)F 2·id2 . In the Gaussian integers

example, F 2 = F 2i = (F 1+i )2—the two coequalizers of WZ×2
2

(π0A), with respect to F 1+i and

with respect to F 2·id2 , are not in general the same. Other imaginary quadratic orders provide
similarly interesting examples.

We get an action of the group AutZp-algebra(B) of Zp-algebra automorphisms of B as follows.
Using the chosen basis of B , view AutZp-algebra(B) as a submonoid of GLn(Zp); an automor-
phism g corresponds to a matrix denoted xg . As above, identify MB with the corresponding
submonoid of Mn. The automorphism g ∈ AutZp-algebra(B) acts on the submonoid MB by
g(β) = xgβx−1

g , where β ∈ MB ⊂ Mn. The diagram

T (n)(A)Lg(αβγ )

F gγ Rgα

Fxg R
x
−1
g

T (n)(A)Lαβγ

F γ Rα

T (n)(A)Lg(β)

F xg R
x
−1
g

T (n)(A)Lβ

commutes (because the diagram

B

β·

b →gb

B

g(β)·

B
b →gb

B

commutes). Hence we have a natural transformation

ArMB β →T (n)(A)
Lβ

g
RFg

Spec

ArMB
β →T (n)(A)

Lβ

where RFg := RxgF
x−1
g . The automorphism group AutZp-algebra(B) therefore acts on TCB(A).

Example 4.9.

1. Let G be a group of order n and B = Zp[G]. In this case G acts on TCB(A).
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2. Let OK be the ring of integers in the degree n extension K of Qp . The Galois group
G = Gal(K/Qp) acts on TCOK (A). For instance, if n = 2 and p �= 1 mod 4, then we have
“complex conjugation” on TCOK (A).

3. Let O be a maximal order in a division algebra of rank n2 over Qp . The algebra automor-
phisms of O—and in particular the units O∗—act on TCO(A). The reader who may wonder
at the curious appearance of the n2-fold iterated topological Hochschild homology in this
example is invited to compare with the origin of n2-fold abelian varieties in the chromatic
level n version of Behrens and Lawson’s topological automorphic forms [4]. We will give a
detailed study of this example in particular in future work.

5. Calculation of TR(n) for the sphere

Recall that TR(n)(A) is the homotopy limit over the restriction operators acting on fixed points
of higher topological Hochschild homology T (n)(A). This “topological restriction homology” is
an important way-station en route to computations of topological cyclic homology. In this section
we calculate topological restriction homology for the sphere spectrum:

Proposition 5.1. There is an equivalence

TR(n)(S) 

∏

O⊆Zn
p

B
(
Zn

p/O
)
+

where the product varies over the open subgroups O ⊆ Zn
p .

Our computation of TR(n)(S), as well as our computation of TF(n)(S) in Section 6, will be
based on a comparison of the fixed points of topological Hochschild homology with the K-
theory of equivariant finite sets. Below we give a detailed account of the homotopy type and
the functorial properties of these K-theory spectra. Then we relate the K-theory of equivariant
sets to the fixed points of the equivariant sphere spectrum. Finally we note that the topological
Hochschild homology of the sphere is the equivariant sphere spectrum, and thereby complete the
description of TR(n)(S).

5.1. The K-theory of finite G-sets

For G a finite group, let SetsG denote the category whose objects are finite G-sets and whose
morphisms are G-equivariant isomorphisms. We begin by reviewing the structure of the K-
theory spectra K(SetsG) as described in Segal [31] or Carlsson [9]; see also Shimakawa [34]
for a general framework for constructing the K-theory of equivariant finite sets.

Note that any transitive G-set X is isomorphic to one of the form G/K , where K is a sub-
group of G. The conjugacy class of K is determined by X, and conversely determines X up to
isomorphism. Any finite G-set X has a decomposition X ∼= ∐s

i=1 G/Ki , and s and the collection
of conjugacy classes of subgroups (with multiplicities) are determined uniquely by X and in turn
determine X up to isomorphism of G-sets. It follows that there is an equivalence of categories

SetsG ∼=
∏

S[K]

[K]



1856 G. Carlsson et al. / Advances in Mathematics 226 (2011) 1823–1874
where the product is over the conjugacy classes of subgroups of G, and where S[K] denotes the
full subcategory of SetsG on G-sets X for which the stabilizer of every x ∈ X is in the conjugacy
class [K]. Each S[K] is a symmetric monoidal subcategory of SetsG. The automorphism group of
the object (G/K)n is the wreath product Σn �WG(K); here the Weyl group WG(K) is the quotient
NG(K)/K , with NG(K) the normalizer of K in G. It is now an easy consequence of the Barratt–
Priddy–Quillen theorem [27] that the spectrum associated to the symmetric monoidal category
S[K] is the suspension spectrum Σ∞BWG(K)+. There is a corresponding decomposition of
spectra

K
(
SetsG

) ∼=
∨
[K]

BWG(K)+

where again the wedge sum is over the conjugacy classes of subgroups of G. We now restrict our
attention to finite abelian G, in which case the K-theory is simply

K
(
SetsG

) 

∨

K⊆G

B(G/K)+

We will need to understand the functorial behavior of this decomposition under group homo-
morphisms. Let i : G′ ↪→ G be the inclusion of a subgroup. A quotient G/K , regarded as a G′-set
by restriction of the action along i, decomposes as G/K ∼= ∐

G/K·G′ G′/K ∩ G′. This decompo-

sition is reflected in K-theory as follows. The induced map i∗ : K(SetsG) → K(SetsG′
) sends the

K-theory factor K(S[K]) corresponding to the subgroup K to the factor K(S[K ∩ G′]) corre-
sponding to the subgroup K ∩ G′. Moreover, the map on that factor is the transfer B(G/K)+ →
B(G′/K ∩ G′)+ associated to the inclusion G′/K ∩ G′ ↪→ G/K .

The K-theory of finite sets is functorial not only for inclusions of groups, but also for surjec-
tive homomorphisms of groups. If f : G � G′ is a surjection with kernel H there is a “restriction
map” f! : SetsG → SetsG′

sending the finite G-set X to its fixed points XH . In particular f! sends
the G-set G/K to the empty set if H �⊆ K and to G′/f (K) if H ⊆ K . Under the equivalence
above, this map f! corresponds to the projection

∨
K⊆G B(G/K)+ → ∨

J⊆G′ B(G′/J )+ in-
duced by the isomorphism G/K ∼= G′/f (K) if H ⊆ K , and the trivial map if not.

For those as perplexed as the authors by the classical conflict of terminology, we offer the
following dictionary between the language of the Burnside ring and that of the Witt structure on
topological Hochschild homology. Here i : H ⊆ G is the inclusion of a subgroup, and f : G →
G/H is the projection.

G-sets Topological Hochschild homology
Restriction to action by subgroup Frobenius = inclusion of fixed points

i∗ : SetsG → SetsH F : T (n)(A)G → T (n)(A)H

Inducing up action X → G ×H X Verschiebung = transfer
i∗ : SetsH → SetsG V : T (n)(A)H → T (n)(A)G

Taking fixed points X → XH Restriction
f! : SetsG → SetsG/H R : TTn

p
(A)G → TTn

p/H (A)G/H

5.2. K-theory and the equivariant sphere spectrum

When G is a finite group, there is an equivalence between the K-theory of the category of
finite G-sets and the G-fixed points of the equivariant sphere spectrum—this is the equivariant
Barratt–Priddy–Quillen theorem. The topological restriction homology TR(n)(S) is a homotopy
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limit of G-fixed points of the sphere for varying G. To express TR(n)(S) in terms of K-theory,
we need an equivalence between the fixed points of the sphere and the K-theory of finite sets
that intertwines the restriction operation on the sphere with a fixed point operation on sets. In
this section we construct an explicit chain of equivalences that has the necessary functoriality
properties:

SG 
→ NTG

← NBG


→ NCG

← NDG


→ K
(
SetsG

)

The intermediate spectra NTG, NBG, NCG, and NDG are described below.
We use Γ -spaces as our model of spectra, and generally follow the configuration space

viewpoint Segal developed in his proof of the non-equivariant Barratt–Priddy–Quillen theo-
rem [32]. Let SG denote the Γ -space taking a finite based set F to the space hocolimV MapG(SV ,

F ∧ SV )—this is the G-fixed point spectrum of the sphere. As before SetsG is the symmetric
monoidal category of finite G-sets, and let K̄(SetsG) denote the associated Γ -category; that is,
the category K̄(SetsG)(F ) has objects the equivariantly (F \ ∗)-labeled finite G-sets, with mor-
phisms the equivariant label-preserving maps. Recall that the K-theory spectrum K(SetsG) is
the Γ -space defined by the levelwise nerve of K̄(SetsG).

The Γ -category K̄(SetsG) encodes abstract finite G-sets. The topological Γ -category CG

will encode configurations of finite G-sets in G-representations, and the topological Γ -category
TG will encode the self-maps of G-spheres determined by the Thom construction on the normal
bundles of those configurations of G-sets. The topological Γ -categories BG and DG will provide
technical bridges between the Thom category, the configuration category, and the abstract G-set
category.

We proceed directly to the definitions. Fix a complete universe U of orthogonal G-
representations.

Definition 5.2. The objects of the category DG(F) consist of triples (X,V,φ), where X is an
equivariantly (F \ ∗)-labeled finite G-set, V is a subrepresentation of U , and φ : X → V is
an equivariant embedding. A morphism of DG(F) from (X,V,φ) to (Y,W,ψ) is an inclusion
V ⊂ W of subrepresentations of U and a label-preserving equivariant isomorphism γ : X → Y

such that ψγ = φ.

The map DG → K̄(SetsG) of topological Γ -categories takes DG(F) to K̄(SetsG)(F ) by sending
the triple (X,V,φ) to the labeled G-set X. The resulting map NDG → K(SetsG) of Γ -spaces is
a levelwise equivalence: the homotopy fiber of DG(F) → K̄(SetsG)(F ) is a contractible equiv-
ariant embedding category, and the equivalence follows by topological Quillen Theorem A [25,
p. 63].

Next we define the configuration category CG.

Definition 5.3. The objects of CG(F) are pairs (C,V ), where V is a subrepresentation of U and
C is an equivariantly (F \∗)-labeled finite G-subset of V . A morphism of CG(F) from (C,V ) to
(D,W) is an inclusion V ⊂ W of subrepresentations taking C label-preservingly isomorphically
onto D.

The equivalence CG(F) ← DG(F) takes the triple (X,V,φ) to the pair (φ(X),V ).
The category BG is an enlargement of CG that includes balls around the configurations.
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Definition 5.4. The objects of BG(F) are pairs (A,V ), where again V is a subrepresentation
of U , and A is an equivariant collection of disjoint open metric balls in V whose components
are equivariantly (F \ ∗)-labeled. A morphism from (A,V ) to (B,W) is an inclusion V ⊂ W of
subrepresentations taking A into B by a proper map and inducing a label-preserving isomorphism
of the set of centers of the A-balls to the set of centers of the B-balls.

The equivalence BG(F) → CG(F) takes the pair (A,V ) to the pair (Acent,V ), where Acent

denotes the set of centers of the balls of A.
The topological Γ -category TG is defined as follows.

Definition 5.5. The objects of TG(F ) consist of pairs (V ,f ), where V is a subrepresentation
of U , and f : SV → F ∧ SV is an equivariant map. A morphism from (V ,f ) to (W,g) is an
inclusion V ⊂ W of subrepresentations such that: g restricted to V is f ; g preserves the comple-
ment of V in SW ; and for all v ∈ V such that g(v) ∈ W , the differential of g, at v, restricted to
V ⊥W ⊂ TvW , is the identity.

The map TG(F ) ← BG(F) takes a pair (A,V ), where A is a labeled collection of balls in V ,
to the pair (V ,f ), where f is the Pontryagin–Thom construction on the open inclusion A ⊂ V ,
modified so that each ball of A maps by a standard linear isomorphism to V and so that a ball
of A labeled by p ∈ F maps to the p-component of the target F ∧ SV . A morphism of BG(F)

from (A,V ) to (B,W) maps to the morphism of TG(F ) given by the inclusion V ⊂ W . Unlike
the equivalences between NBG, NCG, NDG and K(SetsG), the map NTG ← NBG is not a
levelwise equivalence, but it is a stable equivalence of Γ -spaces; indeed this map is at root the
equivariant analog of the classical group completion map from the configuration space of points
in Euclidean space to the endomorphisms of the sphere, and as such is an equivalence only after
delooping the source [32].

The last map SG → NTG does not come from a map of Γ -categories, but is a levelwise
equivalence. Chose the standard model for the homotopy colimit of a functor X from a diagram
I to spaces, namely

hocolimX = colim

( ∐
i→j

X(i) ⊗ N(j/I)op ⇒
∐
i

X(i) ⊗ N(i/I)op
)

The functor in question is XSG(F)(V ) = MapG(SV ,F ∧ SV ), defined on the diagram of
subrepresentations of U . The map SG(F) → NTG(F) sends the simplex {(V ,f ) ⊗ (V ⊂
V1 ⊂ · · · ⊂ Vk)} of MapG(SV ,F ∧ SV ) ⊗ N(V/I)op to the ‘suspension’ simplex {(V ,f ) →
(V1,Σ

V1−V f ) → ·· · → (Vk,Σ
Vk−V f )} of NTG(F); it is a levelwise equivalence because ev-

ery simplex of NTG(F) is canonically homotopic to such a suspension simplex.
All the above constructions are functorial with respect to changing the group G. That is, for

i : H → G an inclusion of finite groups, and for f : G → G′ a surjection of finite groups, each
of the equivalences commutes with the maps i∗, i∗, and f!.

5.3. The homotopy limit over the restrictions

We now have all the ingredients to express the restriction system of fixed points of topological
Hochschild homology in terms of a system of K-theory functors of categories of G-sets, and
thereby to compute topological restriction homology.
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Proposition 5.6. Let G be a finite group and S a free G-space. There is a weak equivalence
TS(S)G 
 SG. When f : G � G′ is a surjection the following diagram commutes:

TS(S)G



R

SG



f!

K(SetsG)

f!

TS(S)G
′ 


SG′ 

K(SetsG′

)

When i : G ↪→ G′ is an injection, the diagram commutes with (R,f!) replaced by (F, i∗) or
by (V , i∗).

Proof. It remains only to establish the first equivalence, and the compatibility of that equivalence
with f!, i∗, and i∗.

Without loss of generality we may assume S is finite. In this case a cofinality argument shows
that TS(S) is equivalent to hocolimV Map∗(SV ,SV ), where the homotopy colimit occurs over

G-representations. The equivalence TS(S)G

→ SG follows and this map obviously respects the

restriction, the inclusion of fixed points, and the transfer. �
Corollary 5.7. There are equivalences

TR(n)(S) 
 holim
O⊆Zn

p

K
(
SetsZn

p/O) 

∏

O⊆Zn
p

B
(
Zn

p/O
)
+

where the O’s vary over the open subgroups of Zn
p .

Proof. The first equivalence is immediate from Proposition 5.6, using Lemma 4.2 to express
the restriction homotopy limit in terms of open subgroups of Zn

p . In Section 5.1, we noted that

K(SetsG) 
 ∨
K⊆G B(G/K)+ for finite abelian G. Moreover we observed that for a surjec-

tion f : G → G′, the restriction map f! : K(SetsG) → K(SetsG′
) corresponds to the projection∨

K⊆G B(G/K)+ → ∨
J⊆G′ B(G′/J )+ that induces an isomorphism between the B(G/K) and

B(G′/f (K)) factors whenever kerf ⊆ K . The second equivalence in the corollary follows. �
Notice that the homotopy limit here is deceivingly complicated: it is enough to take the ho-

motopy limit over the final subcategory · · · ⊂ pk+1Zn
p ⊂ pkZn

p ⊂ · · · ⊂ Zn
p corresponding to the

restrictions in T R along the inclusions Lpk idn
⊂ Lpk+1idn

.

6. TF(n) for the sphere and the Segal conjecture for tori

In this section, we calculate the “topological Frobenius homology” TF(n)(S) of the sphere
spectrum; recall that this is the homotopy limit over the Frobenius operators acting on the
fixed points of higher topological Hochschild homology. On the one hand, this calculation is
closely related to the problem of understanding the higher topological cyclic homology of the
sphere—indeed in Appendix A we prove that topological cyclic homology is a homotopy limit
of restriction operators on topological Frobenius homology, and we use our computation of the
Frobenius homology of the sphere to investigate the diagonal cyclic homology of the sphere. On
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the other hand, the function spectrum F(BT
n+,Sp) is homotopy equivalent to TF(n)(S)p . Our

evaluation of topological Frobenius homology therefore gives a precise description of the homo-
topy type of F(BT

n+,Sp), that is of the p-adic cohomotopy of the classifying space of the torus.
The description of F(BG+,Sp) for finite G is known as the Segal conjecture for G, and was car-
ried out in the 1980s. Around the same time, Ravenel [28] and Nishida [26] established the Segal
conjecture for the circle. There were partial results for G compact Lie [13,23], but they focused
on the analysis of π0 of the function spectrum. In particular, a complete analysis of the case of
a torus was not obtained. We give such an analysis below. We hope the result can moreover be
used to complete our understanding of the compact Lie group version of the Segal conjecture.

We begin by relating the cohomotopy spectrum of the classifying space of the torus to topo-
logical Frobenius homology, and by summarizing our computation of the latter.

Proposition 6.1. There is an equivalence

F
(
BT

n+,Sp

) 
 TF(n)(S)p

Proof. The cohomotopy of the classifying space of the torus is equivalent to a homotopy limit
of cohomotopy spectra of classifying spaces of finite groups, which spectra are in turn related to
fixed points of equivariant sphere spectra and thereby to Frobenius homology:

F
(
BT

n+,Sp

) 
 holimF(BG+,Sp) 
 holim SG
p


 holimTTn
p
(S)Gp 
 (

holimTTn
p
(S)G

)
p

= TF(n)(S)p

Here all the homotopy limits may occur over either the finite subgroups of T
n
p or over the final

subcategory of diagonal subgroups C×n

pl . The first equivalence is established by direct calcula-
tion [8], and the second is the Segal conjecture for finite groups [7]. The third equivalence is
Proposition 5.6 and the fourth is immediate. �
Theorem 6.2. The homotopy groups of the higher topological Frobenius homology of the sphere
spectrum are as follows:

π∗
(
TF(n)(S)p

) =
∏
k,α

lim
l

(
Z

[
GLn(Zp)/Γl,k,α

] ⊗ π∗
(
Σ∞Sk ∧ BT

k+
)
/pl

)

Here the product is over 1 � k � n and α is a collection of unordered positive integers
{n1, . . . , nk}. The limit is over l ∈ N, and the group Γl,k,α ⊂ GLn(Zp) is determined as fol-
lows. Consider subgroups K of C×n

pl such that the minimal number of generators of the quotient

group C×n

pl /K is exactly k (we say that K has rank k), and the collection of exponents of p in

the standard cyclic p-group decomposition of C×n

pl /K is {l − n1, . . . , l − nk} (we say that K has

cotype α). The group GLn(Zp) acts on the set of subgroups K of C×n

pl with rank k and cotype α,

and Γl,k,α is the stabilizer of any chosen K under this GLn(Zp)-action.

The conceptual origin of this decomposition of the homotopy of TF(n)(S) and a more detailed
description of the terms involved in the decomposition are given in the following sections.
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6.1. The rank filtration of the equivariant sphere spectrum functor

We express topological Frobenius homology as a homotopy limit of equivariant sphere spec-
tra, and then describe a rank filtration of these spectra.

By definition TF(n)(S) is the homotopy limit holimFrobMn
T (n)(S)Lα . In Section 4.1, we saw

that the Frobenius indexing category is equivalent to the category Sub := Subop
Tn

p
of finite sub-

groups of T
n
p . By Proposition 5.6, the fixed points of topological Hochschild homology are

equivalent to the fixed points of the equivariant sphere spectrum. In particular, topological Frobe-
nius homology can be expressed as TF(n)(S)p 
 holimG∈Sub(SG)p . Throughout this section we
will abbreviate the functor in this homotopy limit by Φ : Sub → Spec; that is Φ(G) = (SG)p and
Φ(i : H ↪→ G) = i∗. Moreover, in light of the results of Section 5.2 and by abuse of notation,
we will not distinguish between the equivariant sphere spectrum SG and the K-theory of G-sets
K(SetsG)—indeed most of our analysis will occur in the world of G-sets—and we will generally
let p-completion be implicit.

The rank filtration of the equivariant sphere spectrum functor Φ is obtained by filtering the
symmetric monoidal category SetsG. For any transitive G-set X ∼= G/K , we define the rank of X

to be the minimal number of generators required to generate G/K . We then define CG[k] to be
the full subcategory of SetsG of those G-sets all of whose orbits have rank less than or equal to k.
These subcategories have the following properties.

• CG[0] is equivalent to the category of finite sets with trivial G-action, hence is equivalent to
the sphere spectrum. CG[n] is all of SetsG.

• CG[k] is a symmetric monoidal subcategory of SetsG, whose associated spectrum we will
denote by SG[k]. We have an increasing sequence of spectra

SG[0] ⊂ SG[1] ⊂ · · · ⊂ SG[n] = SG

• The subcategories CG[k] are preserved under the map Φ(i), where i : H ↪→ G, and so they
will create their own spectrum-valued diagrams Φ[k], with Φ[k](G) := K(CG[k]).

We now have a filtration of holimSub Φ by

holim
Sub

Φ[0] ⊂ holim
Sub

Φ[1] ⊂ . . . ⊂ holim
Sub

Φ[n] = holim
Sub

Φ

The relative terms in this filtration are the spectra holimSub Φ[k]/Φ[k − 1], in view of the fol-
lowing general result about spectrum homotopy limits.

Proposition 6.3. Let C denote a small category, and suppose that we have two spectrum-valued
functors F and G on C , together with a natural transformation ϕ : F → G. Let C(ϕ) denote
the functor with C(ϕ)(x) equal to the mapping cone of F(x) → G(x). There is a cofibration
sequence of spectra holimC F → holimC G → holimC C(ϕ).

Our next task is to evaluate the subquotients holimSub Φ[k]/Φ[k − 1] of the rank filtration.
Toward that end, we express the quotients SG[k]/SG[k − 1] themselves as K-theory spectra
of symmetric monoidal categories. Define the symmetric monoidal category CG〈k〉 to be the
category of finite G-sets all of whose orbits have rank equal to k. Given an inclusion of abelian
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groups i : H ↪→ G, define a functor i∗ : CG〈k〉 → CH 〈k〉 as follows. For a finite G-set X, all of
whose orbits have rank k, decompose X as X = X′ ∐X′′, where X′ is the union of all H -orbits
of X that have rank k. The functor i∗ takes X to X′. Altogether the construction CG〈k〉 gives
a contravariant functor I from the category of finite subgroups of T

n to the category of small
categories.

Proposition 6.4. The quotient SG[k]/SG[k − 1] is the K-theory spectrum associated to the sym-
metric monoidal category CG〈k〉 of finite G-sets whose orbits all have rank k. For i : H ↪→ G

an inclusion of abelian groups, the map K(I(i∗)) : SG[k]/SG[k − 1] → SH [k]/SH [k − 1] is
induced by the natural restriction map i∗ : SG[k] → SH [k].

From now on, we will write SG〈k〉 for the subquotient SG[k]/SG[k − 1].

6.2. The cotype decomposition of the sphere and a splitting of the rank filtration

We can simplify the homotopy limit in topological Frobenius homology as follows. The
full subcategory Dn of Sub on the diagonal subgroups C×n

pl of T
n
p is final, and so TF(n)(S) 


holiml∈Dn
Φ|Dn

. Restricting to the subcategory Dn will allow us to produce a decomposition
of the subquotients of the rank filtration, which in turn will force the rank filtration to split:
holimSub Φ 
 ∨n

k=0 holimSub Φ[k]/Φ[k − 1].
For any subgroup K ⊆ C×n

pl ⊂ T
n, we will let the type of K denote the collection of exponents

of p occurring in the decomposition of C×n

pl /K into a direct sum of finite cyclic p-groups. That
is, if the type of K is the set {e1, e2, . . . , et }, then we have

C×n

pl /K ∼=
t⊕

i=1

Cpei

We observe that (i) 1 � ei � l and (ii) t � n. By the cotype of K , we mean the collection {l − e1,

l − e2, . . . , l − et }, and we denote it by ctl(K), to emphasize that it depends on l. We will need
the following result regarding this invariant.

Proposition 6.5. Let K ⊆ C×n

pl , and suppose that

rk
(
C×n

pl /K
) = rk

(
C×n

pl−1/K ∩ C×n

pl−1

)

Then

ctl(K) = ctl−1
(
K ∩ C×n

pl−1

)

Proof. We first reinterpret ctl(K). Since K is a subgroup of C×n

pl , it can be decomposed as

K ∼= (Cpl )s ⊕
n−s⊕

Cpfi
i=1
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where 0 � fi � l−1. The numbers s and the collection of numbers fi are unique, up to a possible
reordering of the fi ’s. The corresponding decomposition for K ∩ C×n

pl−1 is of the form

K ∩ C×n

pl−1
∼= Cs+t

pl−1 ⊕
n−s−t⊕
i=1

Cpfi

where t is the number of values of i for which fi = l − 1. It is clear from the definitions that
the rank of C×n

pl /K is n − s, and that the rank of C×n

pl−1/K ∩ C×n

pl−1 is n − s − t . Since we are

assuming that rk(C×n

pl /K) = rk(C×n

pl−1/K ∩ C×n

pl−1), it follows that in our case t = 0, so in fact
we have fi � l − 2 for all i. Finally, we now have

ctl
(
C×n

pl /K
) = {f1, f2, . . . , fn−s} = ctl−1

(
C×n

pl−1/K ∩ C×n

pl−1

)

as required. �
We next consider the symmetric monoidal category CC×n

pl 〈k〉 whose objects are the finite C×n

pl -

sets all of whose orbits have rank k. Note that k � n. Any orbit in a finite C×n

pl -set has the form

C×n

pl /K , where K is a subgroup. By the cotype of the orbit, we will mean ctl(K). Any finite

C×n

pl -set X whose orbits all have rank k has a canonical decomposition

X ∼=
∐
α

Xα

Here Xα denotes the union of all orbits whose cotype is equal to α. Further, α ranges over
unordered families {n1, n2, . . . , nk}, where the ni ’s are positive integers. It follows that the sym-

metric monoidal category CC×n

pl 〈k〉 has a decomposition

CC×n

pl 〈k〉 ∼=
∏
α

CC×n

pl 〈k,α〉

where CC×n

pl 〈k,α〉 is the symmetric monoidal category of finite C×n

pl -sets all of whose orbits have

rank k and all of whose cotypes are α. We will write S
C×n

pl 〈k,α〉 for the corresponding spectrum;
we now have a decomposition of spectra

S
C×n

pl 〈k〉 

∨
α

S
C×n

pl 〈k,α〉

Proposition 6.6. The restriction maps S
C×n

pl 〈k〉 → S
C×n

pl−1 〈k〉 respect the cotype decomposition.

This result is a consequence of Proposition 6.5: as long as the ranks stay constant, so do the
types.
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We can define functors Φ[k,α] on Dn by Φ[k,α](C×n

pl ) = S
C×n

pl〈k,α〉. Observe that for any

fixed l, the set of possible cotypes for C×n

pl -orbits is finite, since the integers ni involved must be
less than or equal to l. Consequently, we have a decomposition of Φ[k]/Φ[k − 1] into a product
of functors Φ[k,α].

Corollary 6.7. There are equivalences

holim
Sub

Φ[k]/holim
Sub

Φ[k − 1] 
 holim
Sub

Φ[k]/Φ[k − 1]


 holim
Dn

Φ[k]/Φ[k − 1] 

∏
α

holim
Dn

Φ[k,α]

We can bootstrap this decomposition into a splitting of the rank filtration:

Theorem 6.8. The projection

holim
l∈Dn

Φ[k](l) → holim
l∈Dn

Φ[k](l)/Φ[k − 1](l)

splits in the homotopy category. (Here Φ[k](l) is shorthand for Φ[k](C×n

pl ).) More precisely, the
diagram

holim
l

∏
α Φ[k,α](l)




holim
l

Φ[k](l)

∏
α holim

l
Φ[k,α](l)

∼=

holim
l

Φ[k](l)/Φ[k − 1](l)

commutes, where the horizontal map is induced by inclusion of categories, the diagonal map is
induced from the equivalence of Corollary 6.7, the left vertical map is the canonical isomorphism,
and the right vertical map is the projection.

Proof. When l is fixed, the upper triangle is exactly the identification of the filtration quotient
Φ[k](l)/Φ[k − 1](l) with the finite product over the cotypes. Considering the homotopy limit
over l, Corollary 6.7 shows that the diagonal map becomes an equivalence. �
Corollary 6.9. 0 There is an equivalence

TF(n)(S)p 
 holim
Sub

Φ 

∏
k,α

holim
Dn

Φ[k,α]

Proof. The first equivalence was mentioned at the beginning of Section 6.1. The second is a com-
bination of Theorem 6.8, which splits the rank filtration into its subquotients, and Corollary 6.7,
which decomposes the subquotients by cotype. �
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6.3. The homotopy type of the fixed rank-cotype factors of TF(n)

The next stage is to evaluate the homotopy of the individual rank-cotype factors
holimDn

Φ[k,α].
Before directly confronting the rank-cotype computation, we record a few necessary general-

ities about group actions on spectra. Consider a group G, a subgroup K ⊆ G, and a basepoint-
preserving action of K on a based space X. The based space G+ ∧K X is the quotient of G+ ∧X

by the equivalence relation gk ∧ x 
 g ∧ kx. We extend this notion to spectra, for a naive ac-
tion of K on a spectrum X, by letting G+ ∧K X be the spectrum associated to the prespectrum
G+ ∧K X(−). This construction has the following universal property.

Proposition 6.10. Given a spectrum Y with G-action, a subgroup K ⊆ G, a spectrum X with
K-action, and a K-equivariant map ψ : X → Y , there is a unique G-equivariant extension
ψ : G+ ∧K X → Y that agrees with ψ on X = K+ ∧K X ⊆ G+ ∧K X.

The non-equivariant homotopy type of G+ ∧K X can be described as follows.

Lemma 6.11. Let K be a subgroup of G, and let X be a spectrum with a K-action. Let {gα}α∈A

denote a set of coset representatives for G/K , so that the cosets are given by {[gα]}α∈A. The map

θ : G/K+ ∧ X → G+ ∧K X,

defined levelwise by [gα] ∧ x → gα ∧K x, is an isomorphism of spectra.

The naturality properties of this construction are as follows. Suppose we have a group G,
subgroups K ′ ⊆ K ⊆ G, group actions of K and K ′ on spectra X and X′ respectively, and an
equivariant map f : X′ → X. There is a naturally defined map η : G ∧K ′ X′ → G ∧K X induced
by the levelwise map η(g∧K ′ x′) = g∧K f (x′). Choose families of coset representatives {gα}α∈A

and {g′
β}β∈B for G/K and G/K ′ respectively. The coset [g′

β ] determines a K-coset, which can
be written in the form [gα] for a unique value of α. This means that there is a distinguished
element kβ ∈ K so that g′

β = gαkβ .

Lemma 6.12. The diagram

G/K ′+ ∧ X′

λ

θ
G ∧K ′ X′

η

G/K+ ∧ X
θ

G ∧K X

commutes, where λ is the map induced by the levelwise equation λ([g′
β ]∧x′) = [gα]∧kβf (x′)—

here α is chosen so that the K-coset [g′
β ] is equal to [gα].

We now introduce some terminology concerning the collection of groups of a fixed cotype. For
each k and α, let M[k,α](l) denote the based set obtained by adjoining a disjoint basepoint to the
set of subgroups K ⊆ C×n

l such that C×n
l /K has rank k and K has cotype α. We note that there
p p
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are maps θ(l, l′) : M[k,α](l) → M[k,α](l′) whenever l � l′, defined by θ(l, l′)(K) = K ∩C×n

pl′

when C×n

pl′ /K ∩ C×n

pl′ has rank k and K ∩ C×n

pl′ has cotype α, and θ(l, l′)(K) = ∗ otherwise. We

now describe this set M[k,α](l) as a quotient of GLn(Zp).

Lemma 6.13. The group GLn(Zp) acts on the based set M[k,α](l). The action is transitive
on non-basepoint elements, and the stabilizer of each non-basepoint element is a finite index
subgroup. Therefore, M[k,α](l) can be described as (GLn(Zp)/Γl)+, where Γl is the stabilizer
of an element in M[k,α](l).

Proof. Since fixing rank and cotype fixes the abstract isomorphism type of the subgroup, this is
Corollary 4.3. �

We proceed to analyze K(CC×n

pl 〈k,α〉), where as before CC×n

pl 〈k,α〉 is the symmetric monoidal
category of finite C×n

pl -sets all of whose orbits have rank k and all of whose cotypes are α. Choose

any subgroup K ⊆ C×n

pl for which the orbit C×n

pl /K has rank k and such that K has cotype α.
Let Γ denote the stabilizer of K under the action of GLn(Zp) on M[k,α](l). Let

CC×n

pl 〈K〉 ⊆ CC×n

pl 〈k,α〉

denote the symmetric monoidal subcategory on those C×n

pl -sets all of whose points have K as

their stabilizer. On the one hand, the group Γ clearly acts on this category CC×n

pl 〈K〉 via its
action on the quotient group C×n

pl /K , and consequently acts on the corresponding spectrum. On

the other hand, the full group GLn(Zp) acts on the category CC×n

pl 〈k,α〉 because it acts on the

group C×n

pl . The inclusion CC×n

pl 〈K〉 ⊆ CC×n

pl 〈k,α〉 is clearly Γ -equivariant, so Proposition 6.10

yields a map of spectra ρ : GLn(Zp)+ ∧Γ K(CC×n

pl 〈K〉) → K(CC×n

pl 〈k,α〉).

Proposition 6.14. The map ρ : GLn(Zp)+ ∧Γ K(CC×n

pl 〈K〉) → K(CC×n

pl 〈k,α〉) is an equivalence.

Proof. Using Lemma 6.11 note that the map ρ has source

GLn(Zp)+ ∧Γ K
(

CC×n

pl 〈K〉) 
 (
GLn(Zp)/Γ

)
+ ∧ K

(
CC×n

pl 〈K〉) 

∨

ḡ∈GLn(Zp)/Γ

K
(

CC×n

pl 〈K〉)

The target of the map ρ is

K
(

CC×n

pl 〈k,α〉) 
 K

( ∏
L∈M[k,α](l)

CC×n

pl 〈L〉
)

By Lemma 6.13, we have a preferred bijection

(GLn(Zp)/Γ )+
ḡ →ḡ·K

M[k,α](l)
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Under these equivalences the map ρ takes the ḡ-summand in the wedge to the (ḡ · K)-th factor

in the K-theory product—the map is induced by the isomorphism CC×n

pl 〈K〉 ∼= CC×n

pl 〈ḡ ·K〉 given
by ḡ. Because Γ is of finite index the map from the wedge to the product is an equivalence. �

Proposition 6.14 establishes the homotopy type of the values Φ[k,α](l) = K(CC×n

pl 〈k,α〉)
of the functor Φ[k,α]. We now describe the maps between the various spectra Φ[k,α](l). We
begin by choosing for each l a subgroup Kl ⊆ C×n

pl , with Kl ∈ M[k,α](l), and Kl ∩ C×n

pl = Kl′

whenever l � l′. For example, decompose C×n

pl as C×n−k

pl ×C×k

pl , and select a subgroup E ⊆ C×k

pl

whose family of cyclic factors is α. Then the groups Kl′ = C×n−k

pl′ ×E form an appropriate family

of subgroups. We define Γl to be the stabilizer of Kl under the GLn(Zp)-action. It is clear that
Γl+1 ⊆ Γl . We now define

τl : CC×n

pl 〈Kl〉 → CC×n

pl−1 〈Kl−1〉

to be the functor obtained by restricting C×n

pl /Kl-sets along the inclusion C×n

pl−1/Kl−1 ↪→
C×n

pl /Kl . This functor is clearly Kl-equivariant, and an application of the universal property
in Proposition 6.10 yields a map of spectra

tl : GLn(Zp) ∧Γl
K

(
CC×n

pl 〈Kl〉
) → GLn(Zp) ∧Γl−1 K

(
CC×n

pl−1 〈Kl−1〉
)

Proposition 6.15. The functor Φ[k,α] is naturally equivalent to the functor Ψ given by

Ψ (C×n

pl ) = GLn(Zp) ∧Γl
K(CC×n

pl 〈Kl〉), and taking C×n

pl−1 ↪→ C×n

pl to the map tl : Ψ (C×n

pl ) →
Ψ (C×n

pl−1). In other words, the diagram

GLn(Zp) ∧Γl
K(CC×n

pl 〈Kl〉)
tl

ρ


 K(CC×n

pl 〈k,α〉) Φ[k,α](l)

Φ[k,α](“l−1↪→l”)

GLn(Zp) ∧Γl−1 K(CC×n

pl−1 〈Kl−1〉)
ρ


 K(CC×n

pl−1 〈k,α〉) Φ[k,α](l − 1)

commutes.

Next we would like to describe the homotopy groups of holimDn
Φ[k,α] in terms of the ho-

motopy limit of the factors K(CC×n

pl 〈Kl〉). The general situation we are in is as follows. Consider
a profinite group G and a sequence of finite index subgroups Γl ⊆ G, l � 0, with Γl+1 ⊆ Γl . Let
· · · → Xl → Xl−1 → ·· · → X0 be an inverse system of spectra, and suppose for all l the spec-
trum Xl has a Γl-action such that the map Xl → Xl−1 is equivariant. Proposition 6.10 provides
maps of spectra

· · · → G+ ∧Γ Xl → G+ ∧Γ Xl−1 → ·· · → G+ ∧Γ X0
l l−1 0
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and by Lemma 6.11 and Lemma 6.12 this inverse system is equivalent to the system

· · · → G/Γl+ ∧ Xl → G/Γl−1+ ∧ Xl−1 → ·· · → G/Γ0+ ∧ X0

We have equivalences

holim
l

(G/Γl+ ∧ Xl) 
 holim
l,k

(G/Γl+ ∧ Xk) 
 holim
l

(G/Γl+ ∧ holim
k

Xk)

Let X denote holimk Xk . We now need only understand the homotopy groups of homotopy limits
of inverse systems of the form G/Γl+ ∧ X.

Proposition 6.16. If πt (X) is a finitely generated Zp-module, then

πt holim
l

(G/Γl+ ∧ X) ∼= lim
l

(
Z[G/Γl] ⊗ πt (X)/pl

)

Proof. The systems πt (G/Γl+ ∧ X) are Mittag–Leffler, as the maps are surjective, and thus
the corresponding lim1 terms vanish. Thus πt holiml G/Γl+ ∧ X ∼= liml Z[G/Γl] ⊗ πt (X).
Because Z[G/Γl] is free and finitely generated, provided πt (X) is a finitely generated Zp-
module, it is moreover the case that liml Z[G/Γl] ⊗ πt (X) ∼= liml Z[G/Γl] ⊗ limk πt (X)/pk ∼=
liml Z[G/Γl] ⊗ πt (X)/pl . �

We now focus on our particular situation: take G to be GLn(Zp), and Γl to be, as before,

the stabilizer of an element of M[k,α](l). Let Xl be K(CC×n

pl 〈Kl〉)p , and let the maps in the
inverse system be restrictions along the inclusions C×n

pl /Kl ↪→ C×n

pl+1/Kl+1. From the definitions
we have an equivalence

K
(

CC×n

pl 〈Kl〉
) 
 Σ∞(BCpl−n1 × BCpl−n2 × · · · × BCpl−nk )+

where α is the family {n1, n2, . . . , nk}, and the maps in the inverse system are the transfers
obtained from the covering spaces

BCpl−n1 × BCpl−n2 × · · · × BCpl−nk → BCpl+1−n1 × BCpl+1−n2 × · · · × BCpl+1−nk

For each factor BCpl−ni , we have the S1-transfer Σ∞S1 ∧ BT+ → Σ∞(BCpl−ni )+. We may

smash k such maps together to obtain a map Σ∞Sk ∧ BT
k+ → Σ∞(BCpl−n1 × BCpl−n2 × · · · ×

BCpl−nk )+. Standard compatibility formulae for the transfer show that these maps fit together to
yield a map

Σ∞Sk ∧ BT
k+ → holim

l
Σ∞(BCpl−n1 × BCpl−n2 × · · · × BCpl−nk )+

After p-completion, this map becomes an equivalence [22], as can be checked by homologi-
cal calculations of the transfer maps. The homotopy groups of (Σ∞Sk ∧ BT

k+)p are evidently
finitely generated Zp-modules.

The following is now a consequence of Proposition 6.16 and Corollary 6.9.
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Theorem 6.17. The homotopy groups of the fixed rank-cotype piece of the topological Frobenius
homology of the sphere are

π∗
(

holim
Dn

Φ[k,α]
) ∼= lim

l

(
Z

[
GLn(Zp)/Γl

] ⊗ π∗
(
Σ∞Sk ∧ BT

k+
)
/pl

)

In concrete terms, this means that for every free generator in πt (Σ
∞Sk ∧ BT

k+), there is a sum-
mand of the form limi,j (Z/pi)[GLn(Zp)/Γj ] in πt (holimDn

Φ[k,α]), and for every finite cyclic
summand C in πt (Σ

∞Sk ∧ BT
k+), there is a summand of the form C ⊗ liml Z[GLn(Zp)/Γl].

The homotopy groups of the topological Frobenius homology TF(n)(S)p , and therefore the
cohomotopy groups of the classifying space of the torus, are given as the product of these terms
as k and α vary over the rank and cotype.
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Appendix A. Cyclic homology as a homotopy limit of Frobenius homology

Ordinary topological cyclic homology can be expressed in term of topological Frobenius ho-
mology:

TC(A) = holim
(

TF(A)
R

⇒
id

TF(A)
)

Note that this homotopy limit is equal to the homotopy limit of the diagram with a single object
TF(A) and with morphisms the self-maps Rk : TF(A) → TF(A) for 0 � k < ∞.

The purpose of this appendix is two-fold. First, we show that higher topological cyclic ho-
mology is the homotopy equalizer of the action of all restriction maps on higher topological
Frobenius homology:

Proposition A.1. There is an equivalence TC(n)(A) 
 holimMn
TF(n)(A) where Mn is, as be-

fore, the monoid of isogenies of the torus, and where the action of the elements m ∈ Mn on
TF(n)(A) is induced by the restriction operators Rm.

The proposition shows that the computation in Section 6 of TF(n)(S) is an essential ingredient in
any investigation of higher topological cyclic homology.

The second purpose of this appendix is to illustrate the power of expressing cyclic homology
in terms of Frobenius homology by applying the calculation of TF(n)(S) to describe the filtration
quotients of the rank filtration of the diagonal cyclic homology of the sphere:

Theorem A.2. The restriction maps corresponding to diagonal isogenies (those of the form
pl · idn) preserve the rank filtration of the Frobenius homology of the sphere TF(n)(S). The rank
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filtration therefore descends to diagonal cyclic homology TC
(S), and the homotopy groups of
the filtration quotients of the diagonal cyclic homology of the sphere are

π∗
((

TC
(S)[k]/TC
(S)[k − 1])
p

) ∼=
∏

α∈Ok

lim
l

(
Z

[
GLn(Zp)/Γl,k,α

] ⊗ π∗
(
Σ∞Sk ∧ BT

k+
)
/pl

)

Here Ok is the set of unordered collections of positive integers {e1, e2, . . . , ek} such that at least
one ei is equal to 1; the group Γl,k,α is, as before, the stabilizer of a subgroup of C×n

pl of rank k

and cotype α.

The attaching map of the filtration of diagonal cyclic homology is non-trivial even in the one-
dimensional case, and it remains an open problem to determine the attaching maps of the filtration
for higher diagonal cyclic homology.

We begin by developing a slight generalization of Proposition A.1. Recall that the twisted
arrow category ArM of a monoid M, where M is viewed as a category with one object μ,
has objects the elements μ

m→ μ of the monoid, and morphisms (m4
∗,m2∗) : m1 → m3 given by

diagrams

μ

m1

m2
μ

m3

μ μ
m4

Topological cyclic homology is the homotopy limit (of the fixed points of topological Hochschild
homology) over ArMn

for the monoid Mn of isogenies. Topological Frobenius homology is the
homotopy limit over the subcategory with m2 = id, and similarly topological restriction homol-
ogy for the subcategory with m4 = id. For any submonoid K ⊂ Mn, there is a construction
intermediate between topological cyclic and topological Frobenius homology. Let ArMn

[K]
denote the subcategory of ArMn

whose morphisms have m2 ∈ K, and define the K-relative
topological cyclic homology by

TC(n)

K (A) := holim
m∈ArMn [K]

T m(A)

As before T m(A) denotes the fixed points of T (A) by the kernel of the isogeny m. Proposi-
tion A.1 is a special case of the following result.

Theorem A.3. The monoid K ⊂ Mn acts on TF(n)(A) and there is an equivalence

TC(n)

K (A) 
 holim
K

TF(n)(A)

Proof. Let Ψ denote the functor from ArMn
to spectra with Ψ (m) = T m(A), that is the functor

whose homotopy limit gives topological cyclic homology. We henceforth abbreviate Mn as M.
We begin by reformulating the relative arrow category as a categorical semi-direct product:

Lemma A.4. There is an isomorphism ArM[K] ∼= K � FrobM.
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Before describing the isomorphism we recall the definition of this semi-direct product. Given a
category C and a functor F : C op → Cat, the semi-direct product C � F has objects pairs (c, x),
where c ∈ C and x ∈ F(c). A morphism of C � F from (c, x) to (c′, x′) is a pair (f : c → c′,
φ : x → F(f )(x′)). The composition of (f,φ) : (c, x) → (c′, x′) and (g,ψ) : (c′, x′) → (c′′, x′′)
is (gf,F (f )(ψ) ◦ φ). This categorical semi-direct product is a slight variant of Thomason’s
Grothendieck construction [36].

In the lemma, FrobM is viewed as a functor from Kop to Cat taking the single object μ

to FrobM and taking the morphism k to the right action functor k : FrobM → FrobM given

on objects by k · (μ
m→ μ) = μ

mk→ μ, and on morphisms by sending (id∗,m4∗) : m1 → m3
to (id∗,m4∗) : m1k → m3k. The isomorphism in the lemma is given by the functor K �

FrobM → ArM[K] taking the pair (μ,μ
m→ μ) to the arrow μ

m→ μ and taking the morphism

(μ
k→ μ, (id∗,m4∗) : m1 → m3k) : (μ,μ

m1→ μ) → (μ,μ
m3→ μ) to the morphism (k∗,m4∗):

m1 → m3.
We now need only decompose the homotopy limit over the semi-direct product:

Lemma A.5. There is a natural equivalence holimK�FrobM Ψ 
 holimK(holimFrobM Ψ ).

Here the functor Ψ on the right-hand side is implicitly restricted to the subcategory FrobM
of K � FrobM. This equivalence has nothing to do with the particular categories in question
and occurs for any categorical semi-direct product—the result is usually called the Thomason
theorem for homotopy limits and is discussed for example in Chachólski and Scherer [10]. �

We use the theorem to express diagonal cyclic homology in terms of Frobenius homology.

Corollary A.6. There is an equivalence TC
(A) 
 holim
 TF(n)(A).

Proof. The chain of equivalences is the following

TC
(A) = holim
Ar


T m(A) 
 holim



(
holim
Frob


T m(A)
)


 holim



(
holim
FrobM

T m(A)
)

= holim



TF(n)(A)

The first equivalence follows from the theorem, and the second because Frob
 is final in
FrobM. �
Because the monoid 
 is generated by p · idn, we can reexpress this homotopy limit as

holim



TF(n)(A) 
 holim
(
TF(n)(A)

φ

⇒
id

TF(n)(A)
)

where φ is the action of p · idn on TF(n)(A) induced by the restriction operator for that matrix.
Now we specialize to studying the diagonal cyclic homology of the sphere, and show that the

operator φ preserves the rank filtration of TF(n)(S). Recall that the rank filtration on the equiv-
ariant sphere spectrum, described in Section 6.1, induces a filtration of topological Frobenius
homology, and we denote this filtration by TF(n)(S)[k].

Proposition A.7. The restriction operator φ on TF(n)(S) preserves the rank filtration TF(n)(S)[k].
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This proposition follows by directly checking that the filtered equivariant sphere spectrum func-
tors Φ[k](G) := K(CG[k]) described in Section 6.1, namely the functors whose homotopy limits
are TF(n)(S)[k], extend from functors on FrobM to functors on ArM[
].

Because the restriction respects the filtration, we have an induced filtration, denoted
TC
(S)[k], on diagonal cyclic homology. The filtration quotients here can be described as a
homotopy equalizer on the filtration quotients of Frobenius homology:

TC
(S)[k]/TC
(S)[k − 1]


 holim
(

TF(n)(S)[k]/TF(n)(S)[k − 1]
φ

⇒
id

TF(n)(S)[k]/TF(n)(S)[k − 1]
)

It remains only to determine the action of φ on the filtration quotients of Frobenius homology,
and for this we utilize the cotype decomposition of Section 6.2. Recall the decomposition

TF(n)(S)[k]/TF(n)(S)[k − 1] 

∏
α

holim
l

Φ[k,α]

where Φ[k,α] is the rank k, cotype α part of the equivariant sphere spectrum functor, and where
α varies over collections of unordered positive integers {e1, e2, . . . , ek}. Let Pk denote the set
of such collections, and define a map θ : Pk → Pk by θ({e1, e2, . . . , ek}) = {e1 + 1, e2 + 1, . . . ,

ek + 1}. Roughly speaking, the operator φ shifts the factors in the cotype decomposition along
the map “θ−1”:

Proposition A.8. The operator φ : ∏
α holiml Φ[k,α] → ∏

α holiml Φ[k,α] maps the cotype
factor holiml Φ[k, θ(α)] by a homotopy equivalence to the cotype factor holiml Φ[k,α], and for
any α0 containing some ei = 1, the operator φ maps the factor holiml Φ[k,α0] to the basepoint.

More specifically, there is an identification

∏
α∈Pk

holim
l

Φ[k,α] 

∏

α0∈Ok

F
(({

θj (α0)
}
j�0

)
+,holim

l
Φ[k,α0]

)

where Ok is the set of collections {e1, e2, . . . , ek} with at least one ei equal to 1, and the right-
hand side of this equivalence is a product of function spectra with discrete sources. With respect
to this identification, the operator φ is equal to

∏
α0∈Ok

F (θ,holiml Φ[k,α0]).

Proof. The identification is seen as follows. For α = {e1, e2, . . . , ek}, choose an
l > maxi (ei + 1). The restriction associated to the inclusion C×n

pl ↪→ C×n

pl+1 induces a bijection
from M[k, θ(α)](l + 1) to M[k,α](l), where, as in Section 6.3, the expression M[k,α](l) de-
notes the result of adjoining a disjoint basepoint to the set of subgroups K ⊆ C×n

pl with C×n

pl /K of
rank k and K of cotype α. This bijection yields a distinguished equivalence of holiml Φ[k, θ(α)]
and holiml Φ[k,α] and the identification in the proposition follows. That the operator φ corre-
sponds to F(θ,−) in this identification is seen by directly tracing its action through the given
equivalences. �
The homotopy equalizer of φ and the identity evidently has a single factor for each primitive
cotype α = {e1, e2, . . . , ek}, that is for those cotypes with some ei = 1, and the computation of
the rank-cotype factors from Section 6.3 yields our desired result:
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Corollary A.9. The homotopy groups of the filtration quotients of the rank filtration of the diag-
onal cyclic homology of the sphere are as follows:

π∗
((

TC
(S)[k]/TC
(S)[k − 1])
p

) ∼=
∏

α∈Ok

lim
l

(
Z

[
GLn(Zp)/Γl,k,α

] ⊗ π∗
(
Σ∞Sk ∧ BT

k+
)
/pl

)
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