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Abstract

We give a combinatorial description of the ring GfWitt vectors on a polynomial algebra
over the integers for every finite grou@. Using this description we show that the functor,
which takes a commutative ring with trivial action & to its ring of Witt vectors, coincides
with the left adjoint of the algebraic functor from the category @fTambara functors to the
category of commutative rings with an action Gf
© 2004 Elsevier Inc. All rights reserved.
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0. Introduction

In [16] Witt constructed an endofunctor on the category of commutative rings, which
takes a commutative ring\ to the ring W,(A) of p-typical Witt vectors. This con-
struction can be used to construct field extensions of gfaglic numberg[13], and
it is essential in the construction of crystalline cohomoldgy. In [7] Dress and
Siebeneicher constructed an endofundfér; on the category of commutative rings for
every pro-finite groupG. In the case wher& = C, is the prop-completion of the
infinite cyclic group the functor®, andWg agree. The functoiWs is constructed in
such a way thaW g (Z) is an appropriately completed Burnside ring for the pro-finite
groupG. For an arbitrary commutative ring, the ringWg (A) is somewhat mysterious,
even whenG = Ep. The first aim of the present paper is to give a new description of
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the ring W5 (A) whenA is a polynomial algebra over the integers. In the special case
whereG is finite our description is given in terms of Tambara’s categdfy described
in [15] and in Sectionl. The following theorem is a special case of Theor2in

Theorem A. Let G be a finite group and let X be a finite set with trivial action
of G. The ringU% (X, G/e) is the polynomial ringZ[ X over Z, with one indeterminate
for each element in Xand the ring We(UC(X,G/e)) = Wg(Z[X]) is naturally
isomorphic to a subring/% (X, G/G) of the ringU% (X, G/G).

The construction of the ringg “ (X, G/G) and ﬁG(X, G/G) is similar to the con-
struction of the Burnside ring fo®. In particular, it involves group-completion. Since
the underlying set oW (Z[X]) is a product of copies oZ[X] the above theorem
can be considered as a computation of the underlying sdf ©fX, G/G). On the
other hand, the ring-structure &f° (X, G/G) is described by a simple combinatorial
construction, and the theorem can be viewed as a combinatorial description of the
ring-structure on the ringVq(Z[X]). Our combinatorial description differs from the
ones given by Metropolis and Rofal], Graham[9] and Dress and SiebeneicHékt. It
incorporates the additional structure making the Witt ring construction into a Tambara
functor.

Our second aim is to advertise the category GfTambara functors, that is,
the category[U“, &nslp of set-valued functors ori/¢ preserving finite products.
(Tambara calls such a functor a TNR-functor, an acronym for “functor with trace,
norm and restriction”.) This category is intimately related to the Witt vectors of Dress
and Siebeneicher. In order to explain this relation we consider the full subcategory
U'C of US with free G-sets as objects and the category fGtTambara functors,
that is, the categoryU /¢, &nslp of set-valued functors ol /¢ preserving finite prod-
ucts. The functorR — R(G/e) is an equivalence between the categoryf@Tambara
functors and the category of commutative rings with an actionGofhrough ring-
automorphisms. We shall explain in Secti@nthat the categorie®/¢ and U/ are
colored theories in the sense of Boardman and Y8htAs a consequence the forgetful
functor [UC, &nslg — [U/€, énslg induced by the inclusiong : U/°cUC¢ has a left
adjoint functor, which we shall denote Wy;.

Theorem B. Let G be a finite group and let R be an fG-Tambara functor. If G
acts trivially on R(G/e) then for every subgroup H of Gthere is an isomorphism
Wh(R(G/e))=(LcR)(G/H).

We are also able to describe the ritgR)(G/H) in the case wher& acts non-
trivially on R(G/e).

Theorem C. Let G be a finite group. There is an epimorphism
1:Wh(R(G/e)) — (LcR)(G/H),

natural in the fG-Tambara functor ,Rvhose kernely (R(G/e)) is explicitly described
in Section3.
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There is a rich supply o6G-Tambara functors coming from equivariant stable homo-
topy theory. In fact, evenf,, ring G-spectrum gives rise to &-Tambara functor by
taking the zeroth homotopy groyp]. In the case wher& = ¢ is the trivial group,
the category ofc-Tambara functors is equivalent to the category of commutative rings.
It is well known that every commutative ring can be realized as the zeroth homotopy
group of anE., ring-spectrum. For an arbitrary finite group one may speculate
whether everyG-Tambara functor can be realized as the zeroth homotopy group of an
E~ ring-spectrum with an action db.

The paper is organized as follows: In Sectibmwe have collected some of the results
from the paperg$7,15] that we need in the rest of the paper. In Sectowe note that
the category of Tambara functors is the category of algebras for a colored theory. In
Section3 we construct a homomorphism relating Witt vectors and Tambara functors,
which we have chosen to call the Teichmiller homomorphism because it is similar to
the classical Teichmuller character. In Sectbwe prove the fundamental fact that the
Teichmuller homomorphism is a ring-homomorphism. In Sectiowe prove that for
free Tambara functors, the Teichmuller homomorphism is an isomorphism, and finally
in Section6 we prove TheorenC.

1. Prerequisites

In this section we fix some notation and recollect results f{@mi5]. All rings are
supposed to be both commutative and unital. Given a g@®@upe only consider left
actions ofG. A G-ring is a ring with an action of5 through ring-automorphisms.

Given a pro-finite groupgsc we let O(G) denote theG-set of open subgroups @
with action given by conjugation and we |é1(G) denote the set of conjugacy classes
of open subgroups oB. For aG-setX and a subgroupd of G we define|X’| to be
the cardinality of the seX” of H-invariant elements oK. The following is the main
result of [7].

Theorem 1. Let G be a pro-finite group. There exists a unique endofundtqr on
the category of rings such that for a ring A the ring/c(A) has the setA2(© of
maps from the se©(G) to A as underlying setin such a way that for every ring-
homomorphismiz : A — A’ and everyx € Wg(A) one hasWg(h)(x) = hox, while
for any subgroup U of G the family of G-maps

dp : Wg(A) - A
defined by

/
x=G@ycgr Y. G/
USV<G
provides a natural transformation from the functd¥s into the identity functor. Here
U<V means that the subgroup U of G is sub-conjugate ta.&/, there exists some
g € G withU<gVg™t, (V:U) means the index of U igV g1 which coincides with
(G:U)/(G:V) and therefore is independent of gnd the symbol'}_"" is meant to



236 M. Brun/Advances in Mathematics 193 (2005) 233-256

indicate that for each conjugacy class of subgroups V WitV exactly one summand
is taken. An element € W (A) is written on the fornu = (av)’ng, where the prime
means thatzy =dgyg-1 for g € G.

In Section4 we give a slightly modified version of Dress and Siebeneicher’s proof
of Theorem1 because it contains some of the main ingredients for our proof of
TheoremC.

The rest of this section is a recollection of the wqfls] of Tambara. We letFin
denote the category of finite sets and we f&t® denote the category of finitg-sets.
Given a finiteG-set X we denote by#in®/X the category of objects ovet in Fin®.
Given f: X — Y in AnC the pull-back functor

FnC/Yy - An/X, (B— YY) (X x yB — X)

has a right adjoint

II
my:7AnS/x > 7Ainfry, (AL x)— 1,42y,

where Il p is made fromp as follows. For each € Y, the fiber(pr)*l(y) is the

set of mapss : f~1(y) = A such thatp(s(x)) = x for all xe f~1(y). If g G

and s € (I1;p)~1(y), the map®s : f~1(gy) — A taking x to gs(g~1x) belongs to

(pr)_l(gy). The operation(g, s) — ¢s makesII;A a G-set andIll;p a G-map.
There is a commutative diagram of the form

X <2 4 ;XXnyA

/| /

IT¢A,

H.
y <L A ——

where f’ is the projection ande is the evaluation magx, s) — s(x). A diagram in
Fn® which is isomorphic to a diagram of the above form is calledexponential
diagram

We say that two diagram& < A —- B — Y andX < A’ — B’ — Y in AnY are
equivalent if there exisG-isomorphismsA — A’, B — B’ making the diagram

X A B Y
X A’ B’ Y

commutative, and we IeUf(X, Y) be the set of the equivalence clasges < A
— B — Y] of diagramsX < A — B —> Y.
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Tambara defines an operation UY (Y, Z) x US(X,Y) — US (X, Z) by
[Y <~ C—>D—>Zlo[X <« A—>B—Y]=[X < A" - D 7],

where the maps on the right are composites of the maps in the diagram
X A A A"

L

|

B B’ C

|

Y «——— C C

Lo

VA D D.

Here the three squares are pull-back diagrams and the diagram

C B c
Lo
D D D

is an exponential diagram. He verifies triaf is a category witho as composition
and givenf : X — Y in ZAin® he introduces the notation

Ry [Y<f—Xi>Xi>X],

T = x-Ly

\
Il
<
Ol
>

and

Nfz[xix—fn’in/].

Every morphism inUf is a composition of morphisms on the above form. He also
shows:

Proposition 2. Given objects X and Y iUf, there is semi-ring-structure on(X, Y)
given as follows

O0=[X<«0V—>0—>Y],

l1=[X<«0—>Y—>Y]
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[X <« A—>B—>Y]|+[X <A - B —>Y]
=[X < AUA" — BUB — Y]

and

[ X<~ A—>B—->Y][X<+~A—>B —>Y]
=[X < BxyAlUAxyB — BxyB — Y]

It is also shown in[15] that there is a unique categoty“® satisfying the following

conditions:

(i) obUS = 0bUS .

(i) The morphism set/% (X, Y) is the group completion of the underlying additive
monoid of UY (X, ).

(iiiy The group completion mapk: US (X, Y) — UY%(X, Y) and the identity on oft/¢)
form a functork : US — UC.

(iv) The functork preserves finite products.

Proposition 3. (i) If X1 —> X & X» is a sum diagram infinC, then Xllfl—lx fig X
is a product diagram inU¢ and ¢ is final in UC.

(i) Let X be a G-set and/ : XILIX — X the folding mapi : ¥ — X the unique
map. Then X has the structure of a ring objecttof with addition 7y, additive unit
T;, multiplication Ny and multiplicative unit;.

(i) If f:X — Y is a G-map then the morphism&, Ty and N, of UC preserve
the above structures of ringadditive group and multiplicative monoid on X and Y
respectively

Given a category with finite products, we shall denote the category of set-valued
functors onC preserving finite products b§C, &nslp. The morphisms inC, énslg are
given by natural transformations.

Definition 4. The category ofG-Tambara functorss the categornfU ¢, &nslo.

Given a G-Tambara functorS and [X < A — B — Y] € U%(X,Y) we obtain a
function S[X <~ A - B — Y] : S(X) — S(Y). SinceS is product-preserving, it fol-
lows from (ii) of Proposition3 that S(X) is a ring. Given a finitecG-map f : X - Y
we shall use the notatio§*(f) = S(Ry), S;(f) = S(Ty) and S,(f) = S(Ny). It
follows from (iii) of Proposition3 that $*(f) is a ring-homomorphism, thaf, (f) is
an additive homomorphism and th&§(f) is multiplicative. A G-Tamara functorS is
uniquely determined by the functior(f), S+(f) and S(f) for all f: X — Y in
FnC.

Given subgroupX < H <G we shall denote bytg : G/K — G/H the projection
induced by the inclusiok < H, and giveng € G we shall letc, : G/H — G/gHg™?t
denote conjugation by, c,(cH) = cg~ (gHg™1).
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2. Colored theories

In this section we shall explain that the categ@r{ is an O(G)-colored category
in the sense of Boardman and VJ&f.

Definition 5 (Boardman and Vog[3,2.3]). (i) Let O be a finite set. AnO-colored
theoryis a category® together with a faithful functorg : (Fin/O)°P — O such that
firstly oo preserves finite products and secondly every objec®oais isomorphic to
an object in the image ofg.

(i) The category of algebra®ver a theory® is the category®, &nslp of product-
preserving set-valued functors @.

(iii) A morphismy : ® — ¥ of colored theories is a functor preserving finite products
together with a functionf : © — O’ such thatyoog = oy o fs.

Other authors, e.d1,2], use the name “sorted theory” for a colored theory.
Given a finite groupG, choosing representatives/H for the objects ofO(G), we
can construct a functor

G FinGyop © (FIN/O(G)®P — (FIn®)*P,

@:Z—0@Gnr ] G/Hxz"HG/HD.
[G/H]1eO(G)

This way we give (Fin®)°P the structure of an®(G)-colored theory. Composing
T (FinGyor With the functor R : (Fin%)? — UY, f+> Ry we obtain a functors,¢ :
(FAn/O(G))°P — U preserving finite products by (i) of Propositi® making U¢
an O(G)-colored theory andRk a morphism ofO(G)-colored theories.

Let V9cUY denote the subcategory &f° with the same class of objects &' and
with V¢ (X, Y)CUC% (X, Y) the subgroup generated by morphisms of the f¢am<«
A— A — Y]. The inclusionV® Cc U¢ preserves finite products, and we have mor-
phisms(Fin%)°? — V¢ — UC of O(G)-colored theories. The categoW is strongly
related to the categorgpansconsidered by Lindner ifil0], and, in fact, the category
of Mackey functors in the sense of Drd&§ is equal to the category df “-algebras.

Let Fin/C denote the full subcategory ofin® with finite free G-sets as objects.
The functor

O'(]:InfG)op . .7:in0p — (ﬂnfG)Op,
Z+— Glex Z

gives (Fin/G)°P the structure of a theory. Similarly the full subcategorl@$é®cu¢
and V/GcvC with finite free G-sets as objects are colored theories. We have the
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following diagram of morphisms of colored theories:

(FinfGyop v/G Uure
(j:inG)Op VG UG,

where the vertical functors are inclusions of full subcategories.

Lemma 6. (i) The category{U/¢, &nslp of fG-Tambara functors is equivalent to the
category of G-rings

(i) The category{V /Y, &nslp of V/C-algebras is equivalent to the category of left
Z[G]-modules

(iii) The categony(Fin/©)°P, &ngly of (Fin/¢)°P-algebras is equivalent to the cate-
gory of G-sets

Proof. Since the statements have similar proofs we only give the proof of (i). Given
an fG-Tambara functoiR, we construct as-ring-structure onA = R(G/e). Indeed by
(i) of Proposition3 R(G/e) is a ring, and giveng € G the right multiplicationg :
G/e — G /e, x — xg, induces a ring-automorphisi®i*(g—1) of A = R(G/e). From the
functoriality of R we obtain thatA is a G-ring. Conversely, given &-ring A’ we shall
construct anfG-Tambara functorR’. We defineR’(X) to be the set ofG-maps from

Xto A’ Given[X < AL B-5 v] e US(X. Y), we defineR’[X <-4 L5 B -5, v -

R'(X) — R/(Y) by the formula

RxLalpLripm= Y | J] é@@)

beg=(y) \acf1()

for ¢ € R’(X) andy € Y. We leave it to the reader to check that— A and A’ — R’
are inverse functors up to isomorphism.]

We refer to[12, Propositions 4.3 and 4.7pr a proof of the following two results.
Alternatively, the reader may modify the proofs given[# 3.4.5 and 3.7.7for their
monochrome versions.

Proposition 7. Let @ be anO-colored theory. The category @-algebras is complete
and cocomplete

Proposition 8. Given a morphismy : ® — ¥ of colored theoriesthe functory* :
[V, énslo — [O, énslp, A — Aoy has a left adjointy, : [©, &nslp — [V, Englo.

Definition 9. The categorfU/ ¢, &ns|g of U/C-algebras is the category &B-Tambara
functors.
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We let Lg = jg« : [USC, Enslo — [UC, &nslp denote the left adjoint of the functor
j& UC, énslo — [UTG, énsl induced by the inclusioni : U/ CUC. Note thatLg
can be constructed as the left Kan extension algngand that forR € [U/Y, &nslo,
we have an isomorphisifLg R)(X) >~ R(X) for every finite freeG-setX because/ /¢
is a full subcategory ot/¢.

3. The Teichmuller homomorphism

We shall now give a connection between the categonGeéfambara functors and
the category of rings with an action of a finite gro@ Throughout this section we
fix a G-Tambara functolS
Definition 10. We call the ring-homomorphism

!/
t: We(S(Gle)) — S(G/G), (x)ycgr> Y. S+@HSe(m!)(xy)
ULG

the unrestricted Teichmuller homomorphism

We shall prove the following proposition in the next section.

Proposition 11. The unrestricted Teichmdiller homomorphism
t:Wg(S(G/e)) — S(G/G)

is a ring-homomorphism

In generalt will neither be injective nor surjective. However, in certain cases we can
describe its kernel explicitly.

Definition 12. Let A be a commutativés-ring. We letlg(A)CSWg(A) denote the ideal
generated by elements of the form— b, wherea = (aK)/KgG andb = (bK)/KgG
satisfy the following condition: For evernk <G there existgik,...gs.x In the
normalizer Nk (G) of K in G, anda1 k, ...,anx € A, n>1, such that

(1) g1k K =---=gun kK,
(2) ag = al,K' *dp K
(3) bk = (g1,ka1,k) - (&n,kan,K)-

Let V:[ |1 G/e — G/e denote the fold map. Far, » andK as above we have

S+(mH)Se (B k) = 547 Se(nE ) (g1.xa1 K g0 K aANK)
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_s|T16 e 6™ 6k ™ 66
=S||[6/e < []Gle— G/k—=G/G |k, ... ank)
1 1

" - Kov ¢
=S|[[G/e<]]Gle— G/K—=G/G |(ark. ... ank)
L1 1

= S+ () Se(mEY (a1 - -an k) = S+ (%) S (1K) (ak),

and therefore the unrestricted Teichmuller homomorphisiWs (S(G/e)) — S(G/G)
maps the ideals(S(G/e)) to zero.

Definition 13. The Teichmiller homomorphismis the ring-homomorphism z:
Weg(S(G/e))/16(S(G/e)) — S(G/G) induced byt.

The following theorem, proved in Sectiod, implies the caseH =G of
TheoremC.

Theorem 14. For every fG-Tambara functor R the Teichmdiller homomorphism
We((LGR)(G/e))/lg((LGR)(G/e)) — (LgR)(G/G) is an isomorphism. In particu-
lar, if G acts trivially on R(G/e) then t is an isomorphism of the form:
Wa((LgR)(G/e)) — (LcR)(G/G)

Recall that there is an isomorphisthg R)(G/e) ~ R(G/e).

4. Witt polynomials

Theorem 15. Let G be a finite group
(1) There exist unique familie§v)y, <, (Pv)y < Of integral polynomials

su=s5, pu=rpgellxv,yy | USV<G]

in two times as many variables,, yy (USV < G) as there are conjugacy classes
of subgroupsV < G which contain a conjugate of U such that for every G-Tambara
functor S

©(x) + 1(y) = t(Gu @y, yv [lUSV <Gy <)
t(x)-7(y) = t((pu(xv, yv |USV LGy <)
for everyx = (XU)/UgG and y = (yU)/U<G in Wg(S(G/e)).

2) There exist polynomialsny =m% € Z[ay |U<V <G] such that for every G-
U ~
ambara functor S

—t(x) = ©((my (xv [lUSV<Gu<a)

for everyx = (xU)bgG in Wg(S(G/e)).



M. Brun/Advances in Mathematics 193 (2005) 233-256 243

(3) For every subgroup H of G and every ring A we have

Do)+ dH() = e (Guy, yw IUSV <Gy <),

() = dH(puxy, yw IUSV <SGy <)

for everyx = (XU)bgc and y = (YU)’Ugc in Wg(A).
We shall call the polynomialsy, py and my the Witt polynomials.

Theorem15 is a version of[7, Theorem 3.2.1]

Proof of Theorem 1. We first consider the case whe@is finite. Given a ringA, we
define operationst and - on W (A) by

(ay<c+G)y<g = (ulav, by [USV<G)y<g-

(aU)bgc'(bU)/UgG = (pylay, by | U§V<G))/U<G~

In the case wheré has no torsion, the map : Wg(A) — H/L,<GA with U'th com-
ponent¢,, is injective, and henc&Vs(A) is a sub-ring of]'[’USGA. In the case where
A has torsion, we can choose a surjective ring-homomorphism> A from a torsion
free ring A’. We obtain a surjectioiVg(A") — W (A) respecting the operations
and-. SinceWg (A’) is a ring we can conclude tha¥/';(A) is a ring, and by the above
considerations it is uniquely determined. Given a surjective homomorphigm— G’
of finite groups we obtain a ring-homomorphism rgstrWG(A) — W (A) with
restlg,((au)/UgG) =((bv))v<ag), Whereby = ay-1(yy- (See[7, (3.3.11)]) The easiest
way to see that regfr is a ring-homomorphism is to note thgt*H :y~U) = (H : U)
and thatd)rlH(G/y*lU) = ¢y (G'/H). For the case wher& is a pro-finite group
we note that for the ringWs(A) has to be the limit liny Ws,n(A) taken over all
finite factor groupsG/N, with respect maps on the form regtr U

Proof of Proposition 11. Proposition 11 follows from the first part of Theorem
15 because we use the Witt polynomials to define the ring-structure on the Witt
vectors. [

We now turn to the proof of Theorer5, and we fix a finite groupG for the
rest of this section. For the uniqueness of the Witt polynomials we consider the
representableG-Tambara functorQ := U% (@, —) with Q(G/e) = Z and Q(G/G)
the Burnside ring forG. In [7, Theorem 2.12.7Jit is shown thatz : 1—[/U<GZ =
We(Q(G/e)) — Q(G/G) is a bijection. Hence the Witt polynomials are unique. The
following four lemmas establish the existence of Witt polynomials with the properties
required in Theoreni5.
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Lemma 16. For a subset A of Glet U4 :={g € G| Ag = A} denote its stabilizer group
and letiy := |A/U4| denote the number df 4-orbits in A. If the set/(G) of subsets
of G is considered as a G-set via x U(G) — U(G): (g, A) — Ag~1, then for any
s,t € S(G/e) one has

S'(ng)(s +1) = Z S+(7IgA)S.(7tgA)(siA.[iG*A).
G-AcG\U(G)

Proof. We leti1,ip : G/e — G/ellG/e denote the two natural inclusions. We have
an exponential diagram

Gle «Y— GleliGJe <% — GJe x UG)
| |
G/G «—— UG) —— U(G),
whered(g, A)=i1(g) if g1 € A andd(g, A)=ix(g) if g7 ¢ A. Let Z=G/e x
A/UsUG/e x (G — A)/Uy. Sinceld(G) = [[g.4cc\u()CG A, we have that
Se(md)(s +1)
= S (m)S(V)(s, 1)
— S[G/ellG /e & GJe x U(G) —> U(G) — G/G](s, 1)

= Y S[G/eiG/e £ GJe x GA — GA - G/Gl(s.1)
G-AeG\U(G)

= Y SIG/elUGle«Z — G/Us — G/GI(s.1)
G-AeG\U(G)
= nUA ﬂgA .
= Z S[G/e —GJe <> G/Up —> G/G](s'A1'6-4)
G-AeG\U(G)
= Y S@f)S.@I (s,

G-AeG\U(G)

where the maps without labels are natural projections.

Lemma 17. With the notation of Lemméa6, we have for every subgroup U of G and
for everys,t € S(G/e):

s+ = 3" [(G/UY|(sHrie-a)UaD),
G-AcG\U(G)
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Proof. We compute

(s+0@V = 3 JALGIUIHAIZ SN JA/UIIG-aU
ACG/U AeU(G), U< Uy

Z |(G/UA)U|-(siA.tiG—A)(UA:U). 0
G-AeG\U(G)

The following lemma is a variation ofv, Lemma 3.2.5] and the proof essentially
identical to the one given ifir]. We include it for the reader’s convenience.

Lemma 18. LetV1, ..., Vi, <G be subgroups of G-or every subgrouf/ < G and every
€1, ..., & € {+1} there exists a polynomiaf, = f<GU;v1 ..... Veeer,ner) € ZIx1, < oy xi]
satisfying

(1) for every G-Tambara functor S and all, ..., sy € S(G/e):
k ’
Y aS (m)Se(m ) = Y Se@H)Sem ) (Eysn, .., s1)).
i=1 UG
(2) for every ring A every H<G and all 51, ..., s; € A:
k I
Y &l G v s = 3 Gy Gsa s D,
i=1 U<G

Proof. We first prove (1). Ifey =¢e2 =--- =& =1 and if V; is not conjugate td/;
for i # j, then

k
D EiSe @S D) =Y Se(@)Se(S))sw),
i=1 =

with sy = s; if U is conjugate toV; and sy =0 if U is not conjugate to any of the
Vi,..., Vk. So in this case we are don&;(ss, ..., sx) = sy. We prove the lemma by
using triple induction. First with respect 01 = m1(V1, ..., Vi; €1, ..., &) given by

my :=max{|V;|| & = —1 or there exists somg # i with V; conjugate toV;},
then with respect to
m3 = |{i ||V;| = my and there exists somg# i with V; conjugate toV;}|

and then with respect ta, := |{i | |V;| = m1 andg; = —1}].
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We have just verified that the lemma holds in the cage= 0. In casemi > 0 we

have eithern, > 0 or mz > 0. In casemy > 0, say|Vi| =my ande; = —1, we may
use Lemmal6 with G = V3, s = —s1, t = s1 to conclude that
0=S(@mMHO) = Y Spmh)Se@/H((—Dias o).

Vi-AeVi\U(V1)

Therefore, considering the two special summamds- and A=V; and putting
Up(V1) :={A elU(V1)|A # @ and A # V1}, one gets

—Se(m(s1) = Se@D(=sD) + Y S )Se(@lN (D) As ),
Vi-AeVi\Uo(V1)

Hence, if Agt1, Akt2, ..., Ay € Up(V1) denote representatives of thg-orbits ViAC
Up(V1) and we letViir := Uays ..., Vo i= Uys, then Vi<Vy and V # Vg for
izk+1. If we putggyy = =g =1 andsiy1 = (—1)iAk+1s§V1:V"*1), S =

(—1)iAk’s§V1:V"’), then the polynomial

G ._ #G
‘f(U;Vl Vk;fl,sz,...,sk)(sl’ s SE) = é(U;Vl,...,Vk/;l,sz,...,ek/)(_Sl’ 82, -, Sg)

.....

makes the statement of the lemma hold. We can conclude that if the lemma holds for
every (n1, nz, n3) with eitherny < my or (n1 = m1, n2 < mp and nz<mgs), then it
also holds for(m1, mo, m3).

Similarly, if ma = 0, butmg > 0, say V1 is conjugate toV», then we may use
Lemmal6 once more withG = V1, s = s1, andt = s to conclude that

V- ix ivi—A
SemMG1+52) = Y S )Sem ) (s syt
Vi-AeVi\U(V1)
— Vi Vi
= Se(m,1)(s1) + Se(m,1)(52)
V. ix iVi—A
Y Semp)S @My s,
Vi-AeVi\Up(V1)
so with V41, ..., Vo as above, but withey11 = - = e = —1 and withsgy1 :=
; . iA, ivioa, .
s ey T s =5, Vs, © W, the polynomial
G ._ G
5([];\/1 ,,,,, Viiet, o, 5,()(51» ce 8K) = ‘f(U;Vz ,,,,, VyiLlea...., gk/)(sl + 52,53, ..., 85k)

makes the statement of the lemma hold. We can conclude that if the lemma holds for
every (n1, n2, n3) with eitherni < m1 or (n1 = m1, np = mp = 0 andngz < m3), then
it also holds for(mi, 0, m3). The statement of the lemma now follows by induction
first on m1, then onms and finally onm,.

The proof of (2) is similar to the proof of (1), the only difference being that we use
Lemmal? instead of Lemmadl6. O
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Lemma 19. For subgroupsV, W < G one has the following modified Mackey formulas
(1) For every G-Tambara functor S and allz € S(G/e):

S+ (m$)Se(m) )(5)-S4(n5) Se(m) ) (1)

G VNgWe ™ty (V:VngWe L) L (Wig~lvgnw
= D Sy 0)Se(me ST VYN (Wi e,
VgWeV\G/W

(2) For every ring A everys,t € A and H <G:
G/ V)10 G W) (VD

_ Z |(G/Vmgwgfl)H|(S(V:VﬂgWg_1)_t(W:g‘lVgﬂW))(VﬁgWg_l:H).
VeWeV\G/W

Proof. Statement (2) i§7,3.2.13] To prove (1) consider the diagram

pry Lpr;
G/ellG/e <—— G/ex G/WLG/V x GJe

n;/LInXVl ln;/ xidLlidx

G117G

Ty Uy, priUpry
G/GUG/G «——— G/VUG/W <— G/V xG/WUG/V xG/W

v| 7|
G/G ——— G/VXG/W —— G/V x G/ W,

where V is the fold map, the upper square is a pull-back and the lower rectangle is
an exponential diagram. Concatenating with the diagram

Gle x G/WLUG/V x GJe <72

ewec/wG/eU]lyeey\gGle
nyxiduidxnf/l H
G/V x G/WUG/V x G/W Hgwee)wG/eULlyper6G/e

Vl (51,52)‘L

G/V xG/W — HvewevioywG/(VNgWeg™)

with maps defined by

o1(gW,0) = (0,08W),

02(Vg,0) = (a8~ V, 0),

51(gW.0) = (VgW,a(VNgWg™h),
52(Vg, 0) = (VgW, a8~ H(VNgWg™h)
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y(VeW,a(VNgWe™) = (aV, agW),
and using the notatioX := ]_[VgWEV\G/WG/(VmgWg‘l) we get that

St () Su (1) )(5)-S1 (1§ Se () (0)

= S[G/ellG/e < ]_[ G/ell ]_[ G/e - Z — G/G](s,1)

gWeG/W VgeV\G
vngwg 1 : -1 o1
— Z S-‘r(ngmgwg—l)so(ne gWE )(S(V.VﬂgWg )'t(W.g VgﬁW))' 0
VeWeV\G/W
Proof of Theorem 15. Let G = Vi1, Vo, ..., V;, = U be a system of representatives of
subgroups ofG containing a conjugate dfl. We define
Sg(a‘/]_’b‘/l’ "aVkvak) = éf;U;VlaVl _____ Vi, Vi 1,..., 1)(aV19bV17 'aaVkvak)
and
G . G
mU(aV;U . ,Clvk) = é(U;Vl ,,,,, Vk;_l,_,_,_l)(avl, o aVk)~

By Lemmal8 these are integral polynomials with the desired properties. For example
we have:

k
@ + o by = Y 1G/ VoV 1@V + bV
i=1

A
= oy Cw.vpvi.. v vied..n(@vy, by, ..., ay, by,))
A
= d)U(SU(aVl’ bV]_v cees AV, ka))-
To constructpy = pg we first choose a systemy, x», ..., x; Of representatives of

the G-orbits in )
x:=[] 6/vixG/v;
i,j=1
Next we putW, := G,, and
W) o (VW)
Pr = Pr(avl, bvl, cees AV, ka) = al'(v W )b/ !
in casex, = (g-Vi, &.V;) € G/V; x G/V,CX. Using these conventions, we define

G
p[cj;(an_stlv"'saVkvak) = é(U;W]_ Wil 1)(P1’7Pr)

...........

Using the Lemmal9 we see thatpy has the desired properties]
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5. Free Tambara functors

In this section we prove Theoretd. On the way we shall give a combinatorial
description of the Witt vectors of a polynomié-ring, that is, aG-ring of the form
U%(X, G/e) for a finite G-set X. Recall from Lemmab that the functorR — R(G/e)
from the categonfU /¢, &nsly of fG-Tambara functors to the category Gfrings is an

equivalence of categories, and that there are morph'(sﬁmfG)Opg(]-‘lnG)OPL U°
of colored theories. We leF : éns® ~ [(FAn/G)°P, &nslo — [UC, énslg denote the left
adjoint of the forgetful functor induced by the above composition of morphisms of
colored theories. _

Given finite G-setsX andY we let US (X, Y)CUY (X, Y) denote those elements of
the form [X < A — B — Y], where G acts freely onA, and we IetﬁG(X, Y)C
UY(X,Y) denote the abelian subgroup generatedbl;g/(X, Y). The composition

UCw,z) x US(X, Y)UUC (Y, Z) x U (X, Y)
cuSwy,z) xU%X,Y)->U%X, 2)

factors through the inclusiotl % (X, Z)CU% (X, Z). We obtain a functot/¢ : Ain® —
[UY, &nslp with UC(f : Y — X) = U%(Ry, -).

Lemma 20. Given a G-Tambara functor S and a finite free G-setitfere is an iso-
morphisméns® (A, S(G/e)) — S*(A), which is natural in A

Proof. Choosing an isomorphisnp : A = G/e x Ag we obtain an isomorphism
—1*
EnsC (A, S(G/e)) N & (G /e x Ag, S(G/e))
S*(¢)

~ &ns(Ao, S(G/e) = S(G/e x Ag) — S(A).

This isomorphism is independent of the choicedof O
Lemma 21. FX~U%(X, —) for finite G-sets X

Proof. For everyG-Tambara functoiS we shall construct a bijection
& (X, S(G/e) =[UC, énslo(UC (X, -), S).
Given f : X — S(G/e) € &P (X, S(G/e)) we let

O(f) € [UC, &nslo(UC (X, -), S)

take x = [XLALBSY1elUSX,Y) to ¢(f)x)eSY¥) constructed
as follows: by Lemma20 we obtain an element € S(A), and we let¢(f)(x) =



250 M. Brun/Advances in Mathematics 193 (2005) 233-256

S4(c)S+(b)(a). Conversely, giverg € [UC, &nslo(UC (X, —), S), we construct)(g) €

s (X, S(G/e)) by letting y(g)(x) = g([X < G/e — G/e — G/e]), where the map
pointing left takese € G to x € X and where the maps pointing right are identity maps.
We leave it to the reader to check thatand s are inverse bijections. [J

Corollary 22. For every finite G-set X the functo}G(X, —): U% — &nsis isomorphic
to LoU%(X, jg(—)), where jg : U/6CUS is the inclusion

Theorem 23. Let X be a finite G-set and leR = U%(X, jg(—)). The Teichmiiller
homomaorphism

©: W6 ((LGR)(G/) /16 (LRY(G/e)) — (LGR)(G/G) = U (X, G/G)

is an isomorphism

Proof of Theorem 14. Let A= R(G/e). Givenoa=[W < C — D — X] € U/S (W, X)
we have anfG-Tambara mapx* : U%(X,—) — U%(W, —) and we have the map
R(2) : R(W) — R(X). Hence we obtain maps
U%(X,G/G) x R(X) <~ U%(X,G/G) x R(W) — U%(W, G/G) x R(W).
The value(LgR)(G/G) at G/G of the left Kan extensionLsR of R along js is
isomorphic to the coequalizer of the diagram
[ v&x.6/6)xr)> ] U%X.G/G) x R(X),
X,YeobU /G XeobU /G
induced by the above maps. We shall construct a map

p:(L6cR)(G/G) — Wg(A)/Ig(A)

by specifying explicit mapspy : U%(X,G/G) x R(X) — Wg(A)/lg(A). Given
r € R(X), we have anfG-Tambara morphism ev: U/%(X,—) — R. SinceG acts
freely on X we haveU%(X, G/G) = U%(X, G/G) and by Theoren23 we get an
induced ring-homomorphism

US(X,G/G)=Ws U (X, -)/1cUTC (X, ) — W5(A)/1G(A).
By adjunction we obtain a map
px : U%(X,G/G) x R(X) - Wg(A)/IG(A).

We need to check that thegg, induce a map on the coequalizgt; R)(G/G) of the
above coequalizer diagram, that is, foras above we need to show that the diagram

o* xid

U%X,G/G) x R(W) —— UY%(W,G/G) x R(W)

ide(a)l Pwl

US(X.G/G) x R(X) We(A)/16(A)
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commutes. For this we note that the diagram

Wg(US (X, Gle)) —— U%(X,G/G)

a*l 1*l
We(UC W, GJe)) —— US(W,G/G)
commutes, and therefore it will suffice to show that the diagram

o* xid

We(U% (X, G/e)) x R(W) —— Wg(U% (W, G/e)) x R(W)

idx R(oz)l l

We (U (X, G/e)) x R(X) —— We (A)

commutes, where the arrows without labels are constructed using the homomorphisms
We(ev.(G/e)) for r an element of eitheR(X) or R(W). Using diagonal inclusions
of the form

Weo(T) x Z > We(T) x [[ 2z~ [[ @ x 2)
USG U<G
we see that it suffices to note that the diagram

/ H/ < (o" xid) /
[Ty<cUPX, G/le) x R(W)) ELUET A v<g(U%(W,G/e) x R(W))

n/KG(idew))l l
[My<cWUCX.G/e) x R(X)) ——> [Ty<c R(G/e)xWe(A)

commutes. This ends the constructionwf (LgR)(G/G) — Wg(A)/Ig(A).
We leave it to the reader to check thatand ¢ are inverse bijections. For this it
might be helpful to note that

/ _ i
Y (1G/e =Gle—>G/U — G/GlolY < Ay — By — G/e])
ULG

—| [[6/e< []6le—~ [[6/v— a6/

U<G U<G U<G

o| Y « ]_[/AU—> ]_[/BU—> ]_[/G/e . (]

U<G U<G U<G

For the proof of Theoren23 we need to introduce filtrations of both sides.

Definition 24. Let A be a ring and letU <G be a subgroup ofs. We let Iy (A)C
Wea(A) denote the ideal generated by thoge= (aK)}(gc € Wg(A) for which
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ag #0 implies that K<U. We let Ty (A)SIy(A) denote the sub-idealy(A) =
ngu Iy (A)ZIy(A).

Definition 25. Given aG-setX andU < G, we let JJgﬁG(X, G/G) denote the subset
of elements of the form

[X <~ A— B— G/Gle US(X,G/G)CU%(X,G/G),

for which BX = ¢ when U is a conjugate to a proper subgroup Kf We let
JuCU%(X,G/G) denote the ideal generated by, and we letJyCJy denote the

sub-idealJy = Y,y JvSJu.

Lemma 26. (i) Any element in/y is of the formx — y for x, y € J{;.
(i) Every element x in the image of the ma@ — Jy/Jy is of the form

n¥x f

x=XLGlex A" S 6uxBL G661+ Ty,
with f : A — B a map of (non-equivariant sets ad d a G-map where q is the
G
compositionG/U x B2 6/u 2% 6/G.
(iii) If
d ¢ x f q ~
x=[X<G/exA — G/UxB—G/G]+ Jy,
and
’ d’ /néjxf/ ;4 T
X' =[X<G/exA — G/Ux B — G/G]+ Jy,
thenx = x’ if and only if there exist bijectiong: A — A’ and f : B — B’ and for
everya € A there existsg, € Ng(U) such that

(@ fla=Bf,
(b) d'(e, 0a) = d(gs,a) and

(c) 8arU = 8a,U if f(a1) = f(az).

Proof. A straightforward verification yields that the multiplication Iﬁf(X, G/G)
induces a map/;; x ﬁf(X, G/G) — J; and thatJ;; is closed under sum. It follows
that Jy is the abelian subgroup df% (X, G/G) generated bylz,r. Statement (i) is a
direct consequence of this. For (ii) we note that for every element

r=x<4 D% ELG/G
in ﬁf(X, G/G), we have a decompositioE;]_[’KgGEK, where Ex ~2G/K x Bg
for some Bg. This decomposition induces an isomorphism
U°(x,G6/G)= @k /Tx
K<G
of abelian groups. Given an elemenbf the form

x=x<L<Dp S G6uxBLG/G1+ Ty,
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we can choose &-bijection of the forme™1(G/U x {b}) =G /e x A, for everyb € B.
It follows that x is represented by an element of the form

x=xLGlex AL G6/UxB-LG/G1+ Ty
We leave the straightforward verification of part (iii) to the readeér

Lemma 27. Let U be a subgroup of G and let= (av)’ng € IU(INJG(X, G/e)) with

1
av =X AxGle 3 B xGle s Gel.

Then

d fxng 7
1@)=[X £ AxGle’ 5 BxG/U - G/G] modJy.

Proof. The lemma follows from the diagram:
d

X — AXxGle w Gle x A
f><idl l l
GJe DL G/e x B Z G/e x B
U
G/U «—— ]_[gUeG/UmaF(ng B) Y G/U x B,

where the lower rectangle is an exponential diagram and the squares are pull-backs. We
use that the mags/U x B — Y which takes(gU, b) to the constant magU — B
with valueb is an isomorphism oiG;/ U-parts and that ¥ = @ for USH andU # H.

O

Corollary 28. Let X be a G-set and leR = I7G(X, jc(=)). The map
1: We(UY (X, G/e) — (LgR)(G/G) = U% (X, G/G)
satisfies thatr(Iy (R(G/e)))SJy and thatt(Iy (R(G/e))SJy.
Proposition 29. Let X be a G-setlet R = ﬁG(X, jc(=)) and let A = R(G/e). For

everyU <G the mapt: Wg(A)/Ig(A) — (LgR)(G/G) = QG(X, G/G) induces an
isomorphismey : (Ig(A) + Iy (A)/(1g(A) + Iy (A) — Jy/Jy.

. 1
Proof. Let x € Iy with xy = [X <d—A x G/e f—x> B x G/eﬂ> G/e]. Then by Lemma

U ~
27 t(x)=[X Lax GJe S xge B x G/U - G/G] mod Jy, with the notation intro-
duced there, and it follows from Lemm26 that ty is onto. On the other hand, to
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prove injectivity, we pickxy, x2 € Iy with t(x1)=1(x2) mode. Suppose that; y has
the form

xiv =124 A x GJe"3 B x Gle =5 G el
fori =1,2. Let

d; fixn q
=[Z<A; xG/e" =" B xG/U— G/G]

fori =1,2. Then by Lemm&7 y;=7(x;) modJy for i = 1, 2. It follows from Lemma
26 that there exist bijections; : A7 — A2 and f : By — B2 with fora = 1 and
for everya € A; there existsg, € Ng(U) such that firstlyd;(za) = g,d(a) and sec-
ondly, if a1, ap € A satisfy thatf(a1) = f(a2), theng,, U = g,,U. Givena € A;, let
zia € US(X,G/e) denote the elemerity 2 G /e > GJe => G Je], whered; 4(e) =
di(a, e). TheNz2 4(a) = ga21.a ANAX; U = ) pep. (l_[aefi—l(b) ziq) fori = 1,2, where an
empty product is 1 and an empty sum is 0. We can concludexthat-x2 v € IG(R),
and hencex; — x2 € Ig(R) + Iy. In the general case(x; — x7)=t(x2 — x3) modJy
we easily obtain thaty; — xj=x2 — x; modlg(R) + Tu by collecting the positive
terms. O

Proof of Theorem 23. We start by noting thalv = ZUCV Iy =colimycyIy<Sly and
that JV = ZUCV Ju =colimycy JyCSJy. The result now follows by induction on the

cardinality ofV using the above proposition and the five lemma on the following map
of short exact sequences:

I6(R(G/e) + Iy —— I6(R(G/e) + Iy R

| | |

Jv  — Jy  — Jv/jv. O

6. The Witt Tambara-functor

In this section we finally prove Theore@. Given a subgroupd <G and anH-
set X, we can construct & x H-set G/e x X, where G acts by multiplication on
the left on G/e, and whereh-(g, x) := (gh™1, hx). We let ind; X denote theG-set
G xygX=H\(G/e x X).

Lemma 30. Let H be a subgroup of G. The functdmdf, : Finfl — 7in® induces
functorsind, : U — U°, and indjig UH 5 Ufo,

Proof. Since the functor in@ : FAnfl — FAnY preserves pull-back diagrams and expo-
nential diagrams it induces a functor fad U — U that takesX < A — B —> Y
to ind% X < ind%A — ind%B — indjy. O
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Given aG-Tambara functoS we construct arH-Tambara functor résS = S oind%.
Similarly, given anfG-Tambara functorR we can construct arfiH-Tambara functor

res;gs =So indf;g.

Theorem 31. Given an fG-Tambara functor,Rhe Teichmdiller homomorphism
T Wy (res,g R(H/e)) /11 (res)y R(H [e)) — res Lg R(H/H)

is an isomorphism

Proof of Theorem C. If we considerA = R(G/e) as anH-ring, then
Wi (es]y; R(H /e))/ 1 (resy; R(H /€)= Wi (4) /11 (A),

and (reﬁLGR)(H/H) = (LgR)(G/H). Combining these observations with Theorem
31 we obtain the statement of Theoretn [

Lemma 32. Let H be a subgroup of G. The forgetful funciér: An® — Finf' which
takes a G-set Y to the same set considered as an H-set induces furictét§ — U
and i} : Uf6 - yfH,

Lemma 33. Let H be a subgroup of G. The functet: U¢ — U is left adjoint to
the functorind? : U# — UY and the functori’ : U/Y — U/ is left adjoint to the

functor ind}cg UM - Uylo,
Proof. We prove only the first part of the lemma. Givéh < A — B — G x gY

in U%(X, G x yY) we construct an element i (i*X, Y) by the following diagram
where the two squares furthest to the right are pull-back squares:

i*X Ay By —— H x gY
X A B —— G xpgyY.

Conversely, giveni*X < E — F — Y in U (i*X, Y) we construct the elemenf «
GxpE—GxpyF— GxpyYinUS%X,G x yY). Here the arrow pointing to the
left is the compositeG x yE — G x gi*X — X. We leave it to the reader to check
that the maps are inverse bijections in an adjunctidn.

We have the following commutative diagram of categories:

%

ure U, yrH

l l

P%
ve —— UH,
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where the vertical functors are the natural inclusions. Sinc% iredright adjoint toi*,
reﬁ is left adjoint to [i*, &nslo (see for exampld14,Proposition 16.6.3] Similarly
res;f, is left adjoint to [ij;, &nslp. From the commutative diagram of functor categories

[i%,&nslo
U6, énslo <—— [U/H, &nslo

I [

(UG, englo 28 [yH | gng,

where the vertical maps are the forgetful functors induced by the inclusigns
U6cU% and jy : UTHcCUH we can conclude that there is a natural isomorphism

regLg ;LHresjfpg.

Proof of Theorem 31 By Theorem14 we have an isomorphism
Wi (res}y; R(H /€)1 (resy; R(H [e))

i>LHrestgR(H/H);reﬁLGR(H/H). O
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