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Abstract

We give a combinatorial description of the ring ofG-Witt vectors on a polynomial algebra
over the integers for every finite groupG. Using this description we show that the functor,
which takes a commutative ring with trivial action ofG to its ring of Witt vectors, coincides
with the left adjoint of the algebraic functor from the category ofG-Tambara functors to the
category of commutative rings with an action ofG.
© 2004 Elsevier Inc. All rights reserved.
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0. Introduction

In [16] Witt constructed an endofunctor on the category of commutative rings, which
takes a commutative ringA to the ringWp(A) of p-typical Witt vectors. This con-
struction can be used to construct field extensions of thep-adic numbers[13], and
it is essential in the construction of crystalline cohomology[2]. In [7] Dress and
Siebeneicher constructed an endofunctorWG on the category of commutative rings for
every pro-finite groupG. In the case whereG = Ĉp is the pro-p-completion of the
infinite cyclic group the functorsWp andWG agree. The functorWG is constructed in
such a way thatWG(Z) is an appropriately completed Burnside ring for the pro-finite
groupG. For an arbitrary commutative ringA, the ringWG(A) is somewhat mysterious,
even whenG = Ĉp. The first aim of the present paper is to give a new description of
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the ringWG(A) whenA is a polynomial algebra over the integers. In the special case
whereG is finite our description is given in terms of Tambara’s categoryUG described
in [15] and in Section1. The following theorem is a special case of Theorem23.

Theorem A. Let G be a finite group and let X be a finite set with trivial action
of G. The ringUG(X,G/e) is the polynomial ringZ[X] overZ, with one indeterminate
for each element in X, and the ringWG(U

G(X,G/e)) = WG(Z[X]) is naturally
isomorphic to a subring̃UG(X,G/G) of the ringUG(X,G/G).

The construction of the ringsUG(X,G/G) and ŨG(X,G/G) is similar to the con-
struction of the Burnside ring forG. In particular, it involves group-completion. Since
the underlying set ofWG(Z[X]) is a product of copies ofZ[X] the above theorem
can be considered as a computation of the underlying set ofŨG(X,G/G). On the
other hand, the ring-structure of̃UG(X,G/G) is described by a simple combinatorial
construction, and the theorem can be viewed as a combinatorial description of the
ring-structure on the ringWG(Z[X]). Our combinatorial description differs from the
ones given by Metropolis and Rota[11], Graham[9] and Dress and Siebeneicher[8]. It
incorporates the additional structure making the Witt ring construction into a Tambara
functor.
Our second aim is to advertise the category ofG-Tambara functors, that is,

the category[UG, Ens]0 of set-valued functors onUG preserving finite products.
(Tambara calls such a functor a TNR-functor, an acronym for “functor with trace,
norm and restriction”.) This category is intimately related to the Witt vectors of Dress
and Siebeneicher. In order to explain this relation we consider the full subcategory
UfG of UG with free G-sets as objects and the category offG-Tambara functors,
that is, the category[UfG, Ens]0 of set-valued functors onUfG preserving finite prod-
ucts. The functorR �→ R(G/e) is an equivalence between the category offG-Tambara
functors and the category of commutative rings with an action ofG through ring-
automorphisms. We shall explain in Section2 that the categoriesUG and UfG are
colored theories in the sense of Boardman and Vogt[3]. As a consequence the forgetful
functor [UG, Ens]0→ [UfG, Ens]0 induced by the inclusionjG : UfG⊆UG has a left
adjoint functor, which we shall denote byLG.

Theorem B. Let G be a finite group and let R be an fG-Tambara functor. If G
acts trivially on R(G/e) then, for every subgroup H of G, there is an isomorphism
WH (R(G/e))�(LGR)(G/H).

We are also able to describe the ring(LGR)(G/H) in the case whereG acts non-
trivially on R(G/e).

Theorem C. Let G be a finite group. There is an epimorphism

t : WH (R(G/e))→ (LGR)(G/H),

natural in the fG-Tambara functor R, whose kernelIH (R(G/e)) is explicitly described
in Section3.
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There is a rich supply ofG-Tambara functors coming from equivariant stable homo-
topy theory. In fact, everyE∞ ring G-spectrum gives rise to aG-Tambara functor by
taking the zeroth homotopy group[5]. In the case whereG = e is the trivial group,
the category ofG-Tambara functors is equivalent to the category of commutative rings.
It is well known that every commutative ring can be realized as the zeroth homotopy
group of anE∞ ring-spectrum. For an arbitrary finite groupG one may speculate
whether everyG-Tambara functor can be realized as the zeroth homotopy group of an
E∞ ring-spectrum with an action ofG.
The paper is organized as follows: In Section1 we have collected some of the results

from the papers[7,15] that we need in the rest of the paper. In Section2 we note that
the category of Tambara functors is the category of algebras for a colored theory. In
Section3 we construct a homomorphism relating Witt vectors and Tambara functors,
which we have chosen to call the Teichmüller homomorphism because it is similar to
the classical Teichmüller character. In Section4 we prove the fundamental fact that the
Teichmüller homomorphism is a ring-homomorphism. In Section5 we prove that for
free Tambara functors, the Teichmüller homomorphism is an isomorphism, and finally
in Section6 we prove TheoremC.

1. Prerequisites

In this section we fix some notation and recollect results from[7,15]. All rings are
supposed to be both commutative and unital. Given a groupG we only consider left
actions ofG. A G-ring is a ring with an action ofG through ring-automorphisms.
Given a pro-finite groupG we let O(G) denote theG-set of open subgroups ofG

with action given by conjugation and we letO(G) denote the set of conjugacy classes
of open subgroups ofG. For aG-setX and a subgroupH of G we define|XH | to be
the cardinality of the setXH of H-invariant elements ofX. The following is the main
result of [7].

Theorem 1. Let G be a pro-finite group. There exists a unique endofunctorWG on
the category of rings such that for a ring A the ringWG(A) has the setAO(G) of
maps from the setO(G) to A as underlying set, in such a way that for every ring-
homomorphismh :A→ A′ and everyx ∈ WG(A) one hasWG(h)(x) = h◦x, while
for any subgroup U of G the family of G-maps

�AU : WG(A)→ A

defined by

x = (xV )′V �G �→
′∑

U�V �G
|(G/V )U |·x(V :U)V

provides a natural transformation from the functorWG into the identity functor. Here
U�V means that the subgroup U of G is sub-conjugate to V, i.e., there exists some
g ∈ G with U�gVg−1, (V :U) means the index of U ingVg−1 which coincides with
(G :U)/(G :V ) and therefore is independent of g, and the symbol“

∑′” is meant to
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indicate that for each conjugacy class of subgroups V withU�V exactly one summand
is taken. An elementa ∈ WG(A) is written on the forma= (aV )′V �G, where the prime
means thataV = agVg−1 for g ∈ G.

In Section4 we give a slightly modified version of Dress and Siebeneicher’s proof
of Theorem1 because it contains some of the main ingredients for our proof of
TheoremC.
The rest of this section is a recollection of the work[15] of Tambara. We letFin

denote the category of finite sets and we letFinG denote the category of finiteG-sets.
Given a finiteG-setX we denote byFinG/X the category of objects overX in FinG.
Given f :X → Y in FinG the pull-back functor

FinG/Y → FinG/X, (B → Y ) �→ (X × YB → X)

has a right adjoint

�f : FinG/X→ FinG/Y, (A
p−→X) �→ (�f A

�f p−→ Y ),

where�f p is made fromp as follows. For eachy ∈ Y , the fiber(�f p)
−1(y) is the

set of mapss : f−1(y)→ A such thatp(s(x)) = x for all x ∈ f−1(y). If g ∈ G
and s ∈ (�f p)

−1(y), the mapgs : f−1(gy)→ A taking x to gs(g−1x) belongs to
(�f p)

−1(gy). The operation(g, s) �→ gs makes�f A a G-set and�f p a G-map.
There is a commutative diagram of the form

X
p←−−−− A

e←−−−− X × Y�f A

f

� f ′
�

Y
�f p←−−−− �f A �f A,

where f ′ is the projection ande is the evaluation map(x, s) �→ s(x). A diagram in
FinG which is isomorphic to a diagram of the above form is called anexponential
diagram.
We say that two diagramsX← A→ B → Y andX← A′ → B ′ → Y in FinG are

equivalent if there existG-isomorphismsA→ A′, B → B ′ making the diagram

X ←−−−− A −−−−→ B −−−−→ Y∥∥∥ � � ∥∥∥
X ←−−−− A′ −−−−→ B ′ −−−−→ Y

commutative, and we letUG+ (X, Y ) be the set of the equivalence classes[X ← A

→ B → Y ] of diagramsX← A→ B → Y .
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Tambara defines an operation◦ : UG+ (Y, Z)× UG+ (X, Y )→ UG+ (X,Z) by

[Y ← C → D→ Z]◦[X← A→ B → Y ] = [X← A′′ → D̃→ Z],
where the maps on the right are composites of the maps in the diagram

X ←−−−− A ←−−−− A′ ←−−−− A′′� � �
B ←−−−− B ′ ←−−−− C̃� � ∥∥∥
Y ←−−−− C C̃� �
Z ←−−−− D ←−−−− D̃.

Here the three squares are pull-back diagrams and the diagram

C ←−−−− B ′ ←−−−− C̃� �
D ←−−−− D̃ D̃

is an exponential diagram. He verifies thatUG+ is a category with◦ as composition
and givenf : X→ Y in FinG he introduces the notation

Rf = [Y f←X
=−→X

=−→X],

Tf = [X =←X
=−→X

f−→Y ]

and

Nf = [X =←X
f−→Y

=−→Y ].

Every morphism inUG+ is a composition of morphisms on the above form. He also
shows:

Proposition 2. Given objects X and Y inUG+ , there is semi-ring-structure onUG+ (X, Y )
given as follows:

0 = [X← ∅→ ∅→ Y ],

1 = [X← ∅→ Y → Y ],
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[X← A→ B → Y ] + [X← A′ → B ′ → Y ]
= [X← A�A′ → B�B ′ → Y ]

and

[X← A→ B → Y ]·[X← A′ → B ′ → Y ]
= [X← B × YA

′�A× YB
′ → B × YB

′ → Y ].

It is also shown in[15] that there is a unique categoryUG satisfying the following
conditions:
(i) obUG = obUG+ .
(ii) The morphism setUG(X, Y ) is the group completion of the underlying additive

monoid ofUG+ (X, Y ).
(iii) The group completion mapsk :UG+ (X, Y ) → UG(X, Y ) and the identity on ob(UG+ )

form a functork : UG+ → UG.
(iv) The functork preserves finite products.

Proposition 3. (i) If X1
i1−→X

i2←X2 is a sum diagram inFinG, thenX1
Ri1←X

Ri2−→X2
is a product diagram inUG and ∅ is final in UG.
(ii) Let X be a G-set and∇ : X�X → X the folding map, i : ∅ → X the unique

map. Then X has the structure of a ring object ofUG with addition T∇ , additive unit
Ti , multiplication N∇ and multiplicative unitNi .
(iii) If f : X→ Y is a G-map, then the morphismsRf , Tf andNf of UG preserve

the above structures of ring, additive group and multiplicative monoid on X and Y,
respectively.

Given a categoryC with finite products, we shall denote the category of set-valued
functors onC preserving finite products by[C, Ens]0. The morphisms in[C, Ens]0 are
given by natural transformations.

Definition 4. The category ofG-Tambara functorsis the category[UG, Ens]0.

Given aG-Tambara functorS and [X ← A→ B → Y ] ∈ UG(X, Y ) we obtain a
function S[X ← A→ B → Y ] : S(X)→ S(Y ). SinceS is product-preserving, it fol-
lows from (ii) of Proposition3 that S(X) is a ring. Given a finiteG-map f : X→ Y

we shall use the notationS∗(f ) = S(Rf ), S+(f ) = S(Tf ) and S•(f ) = S(Nf ). It
follows from (iii) of Proposition3 that S∗(f ) is a ring-homomorphism, thatS+(f ) is
an additive homomorphism and thatS•(f ) is multiplicative. AG-Tamara functorS is
uniquely determined by the functionsS∗(f ), S+(f ) and S•(f ) for all f : X→ Y in
FinG.
Given subgroupsK�H�G we shall denote by�HK : G/K → G/H the projection

induced by the inclusionK�H , and giveng ∈ G we shall letcg : G/H → G/gHg−1
denote conjugation byg, cg(�H) = �g−1(gHg−1).
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2. Colored theories

In this section we shall explain that the categoryUG is anO(G)-colored category
in the sense of Boardman and Vogt[3].

Definition 5 (Boardman and Vogt[3,2.3]). (i) Let O be a finite set. AnO-colored
theory is a category� together with a faithful functor�� : (Fin/O)op→ � such that
firstly �� preserves finite products and secondly every object of� is isomorphic to
an object in the image of��.
(ii) The category of algebrasover a theory� is the category[�, Ens]0 of product-

preserving set-valued functors on�.
(iii) A morphism � : �→ � of colored theories is a functor preserving finite products

together with a functionf : O → O′ such that� ◦�� = �� ◦ f∗.

Other authors, e.g.[1,2], use the name “sorted theory” for a colored theory.
Given a finite groupG, choosing representativesG/H for the objects ofO(G), we

can construct a functor

�(FinG)op : (Fin/O(G))op→ (FinG)op,

(z : Z→ O(G)) �→
∐

[G/H ]∈O(G)
G/H × z−1([G/H ]).

This way we give (FinG)op the structure of anO(G)-colored theory. Composing
�(FinG)op with the functorR : (FinG)op→ UG, f �→ Rf we obtain a functor�UG :
(Fin/O(G))op→ UG preserving finite products by (i) of Proposition3, making UG

an O(G)-colored theory andR a morphism ofO(G)-colored theories.
Let VG⊆UG denote the subcategory ofUG with the same class of objects asUG and

with VG(X, Y )⊆UG(X, Y ) the subgroup generated by morphisms of the form[X ←
A

=−→A→ Y ]. The inclusionVG⊆UG preserves finite products, and we have mor-
phisms(FinG)op→ VG→ UG of O(G)-colored theories. The categoryVG is strongly
related to the categoryspansconsidered by Lindner in[10], and, in fact, the category
of Mackey functors in the sense of Dress[6] is equal to the category ofVG-algebras.
Let FinfG denote the full subcategory ofFinG with finite free G-sets as objects.

The functor

�(FinfG)op : Finop→ (FinfG)op,

Z �→ G/e × Z

gives (FinfG)op the structure of a theory. Similarly the full subcategoriesUfG⊆UG
and V fG⊆VG with finite free G-sets as objects are colored theories. We have the
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following diagram of morphisms of colored theories:

(FinfG)op −−−−→ V fG −−−−→ UfG� � �
(FinG)op −−−−→ VG −−−−→ UG,

where the vertical functors are inclusions of full subcategories.

Lemma 6. (i) The category[UfG, Ens]0 of fG-Tambara functors is equivalent to the
category of G-rings.
(ii) The category[V fG, Ens]0 of V fG-algebras is equivalent to the category of left

Z[G]-modules.
(iii) The category[(FinfG)op, Ens]0 of (FinfG)op-algebras is equivalent to the cate-

gory of G-sets.

Proof. Since the statements have similar proofs we only give the proof of (i). Given
an fG-Tambara functorR, we construct aG-ring-structure onA=R(G/e). Indeed by
(ii) of Proposition 3 R(G/e) is a ring, and giveng ∈ G the right multiplicationg :
G/e→ G/e, x �→ xg, induces a ring-automorphismR∗(g−1) of A = R(G/e). From the
functoriality of R we obtain thatA is aG-ring. Conversely, given aG-ring A′ we shall
construct anfG-Tambara functorR′. We defineR′(X) to be the set ofG-maps from

X to A′. Given [X d←A
f−→B

g−→Y ] ∈ UG(X, Y ), we defineR′[X d←A
f−→B

g−→Y ] :
R′(X) → R′(Y ) by the formula

R′[X d←A
f−→B

g−→Y ](�)(y) =
∑

b∈g−1(y)

 ∏
a∈f−1(b)

�(d(a))


for � ∈ R′(X) andy ∈ Y . We leave it to the reader to check thatR �→ A andA′ �→ R′
are inverse functors up to isomorphism.�
We refer to[12, Propositions 4.3 and 4.7]for a proof of the following two results.

Alternatively, the reader may modify the proofs given in[4, 3.4.5 and 3.7.7]for their
monochrome versions.

Proposition 7. Let� be anO-colored theory. The category of�-algebras is complete
and cocomplete.

Proposition 8. Given a morphism� : �→ � of colored theories, the functor �∗ :
[�, Ens]0→ [�, Ens]0, A �→ A ◦ � has a left adjoint�∗ : [�, Ens]0→ [�, Ens]0.

Definition 9. The category[UfG, Ens]0 of UfG-algebras is the category offG-Tambara
functors.
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We let LG= jG∗ : [UfG, Ens]0→ [UG, Ens]0 denote the left adjoint of the functor
j∗G : [UG, Ens]0→ [UfG, Ens]0 induced by the inclusionjG : UfG⊆UG. Note thatLG
can be constructed as the left Kan extension alongjG, and that forR ∈ [UfG, Ens]0,
we have an isomorphism(LGR)(X)�R(X) for every finite freeG-setX becauseUfG

is a full subcategory ofUG.

3. The Teichmüller homomorphism

We shall now give a connection between the category ofG-Tambara functors and
the category of rings with an action of a finite groupG. Throughout this section we
fix a G-Tambara functorS.

Definition 10. We call the ring-homomorphism

t : WG(S(G/e))→ S(G/G), (xU )
′
U�G �→

′∑
U�G

S+(�GU)S•(�
U
e )(xU )

the unrestricted Teichmüller homomorphism.

We shall prove the following proposition in the next section.

Proposition 11. The unrestricted Teichmüller homomorphism

t : WG(S(G/e))→ S(G/G)

is a ring-homomorphism.

In generalt will neither be injective nor surjective. However, in certain cases we can
describe its kernel explicitly.

Definition 12. Let A be a commutativeG-ring. We letIG(A)⊆WG(A) denote the ideal
generated by elements of the forma − b, where a = (aK)

′
K�G and b = (bK)

′
K�G

satisfy the following condition: For everyK�G there existg1,K, . . . gn,K in the
normalizerNK(G) of K in G, anda1,K, . . . , an,K ∈ A, n�1, such that

(1) g1,KK = · · · = gn,KK,
(2) aK = a1,K · · ·an,K ,
(3) bK = (g1,Ka1,K)· · ·(gn,Kan,K).

Let ∇:∐n
1G/e→ G/e denote the fold map. Fora, b andK as above we have

S+(�GK)S•(�
K
e )(bK) = S+(�GK)S•(�Ke )(g1,Ka1,K · · ·gn,Kan,K)
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= S

 n∐
1

G/e

n∐
i=1
gi

←
n∐
1

G/e
�Ke ◦∇−→ G/K

�GK−→G/G

 (a1,K, . . . , an,K)
= S

[
n∐
1

G/e
=←

n∐
1

G/e
�Ke ◦∇−→ G/K

�GK−→G/G

]
(a1,K, . . . , an,K)

= S+(�GK)S•(�
K
e )(a1,K · · ·an,K) = S+(�GK)S•(�Ke )(aK),

and therefore the unrestricted Teichmüller homomorphismt : WG(S(G/e))→ S(G/G)

maps the idealIG(S(G/e)) to zero.

Definition 13. The Teichmüller homomorphismis the ring-homomorphism �:
WG(S(G/e))/IG(S(G/e))→ S(G/G) induced byt.

The following theorem, proved in Section5, implies the caseH =G of
TheoremC.

Theorem 14. For every fG-Tambara functor R the Teichmüller homomorphism� :
WG((LGR)(G/e))/IG((LGR)(G/e)) → (LGR)(G/G) is an isomorphism. In particu-
lar, if G acts trivially on R(G/e) then � is an isomorphism of the form�:
WG((LGR)(G/e))→ (LGR)(G/G)

Recall that there is an isomorphism(LGR)(G/e)�R(G/e).

4. Witt polynomials

Theorem 15. Let G be a finite group.
(1) There exist unique families(sU )′U�G, (pU )

′
U�G of integral polynomials

sU = sGU , pU = pGU ∈ Z[xV , yV |U�V �G]
in two times as many variablesxV , yV (U�V �G) as there are conjugacy classes
of subgroupsV �G which contain a conjugate of U such that for every G-Tambara
functor S:

�(x)+ �(y) = �((sU (xV , yV |U�V �G))′U�G),

�(x)·�(y) = �((pU (xV , yV |U�V �G))′U�G)

for everyx = (xU )′U�G and y = (yU )′U�G in WG(S(G/e)).

(2) There exist polynomialsmU =mGU ∈ Z[aV |U�V �G] such that for every G-
Tambara functor S:

−�(x) = �((mU(xV |U�V �G′)U�G)

for everyx = (xU )′U�G in WG(S(G/e)).
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(3) For every subgroup H of G and every ring A we have

�AH (x)+ �AH (y) = �AH ((sU (xV , yV |U�V �G))′U�G),

�AH (x)·�AH (y) = �AH ((pU(xV , yV |U�V �G))′U�G)

for everyx = (xU )′U�G and y = (yU )′U�G in WG(A).
We shall call the polynomialssU , pU andmU theWitt polynomials.

Theorem15 is a version of[7, Theorem 3.2.1].

Proof of Theorem 1. We first consider the case whereG is finite. Given a ringA, we
define operations+ and · on WG(A) by

(aU )
′
U�G + (bU )′U�G = (sU (aV , bV |U�V �G))′U�G,

(aU )
′
U�G·(bU )′U�G = (pU (aV , bV |U�V �G))′U�G.

In the case whereA has no torsion, the map� : WG(A)→∏′
U�GA with U’th com-

ponent�U is injective, and henceWG(A) is a sub-ring of
∏′
U�GA. In the case where

A has torsion, we can choose a surjective ring-homomorphismA′ → A from a torsion
free ringA′. We obtain a surjectionWG(A

′)→ WG(A) respecting the operations+
and ·. SinceWG(A

′) is a ring we can conclude thatWG(A) is a ring, and by the above
considerations it is uniquely determined. Given a surjective homomorphism� :G → G′
of finite groups we obtain a ring-homomorphism restrG

G′ :WG(A) → WG′(A) with
restrG

G′((aU )
′
U�G)= ((bV )′)V �G′), wherebV = a�−1(V ). (See[7, (3.3.11)].) The easiest

way to see that restrG
G′ is a ring-homomorphism is to note that(�−1H : �−1U)= (H :U)

and that��−1H (G/�
−1U) = �H (G

′/H). For the case whereG is a pro-finite group
we note that for the ringWG(A) has to be the limit limN WG/N(A) taken over all
finite factor groupsG/N , with respect maps on the form restrG

G′ . �

Proof of Proposition 11. Proposition 11 follows from the first part of Theorem
15 because we use the Witt polynomials to define the ring-structure on the Witt
vectors. �

We now turn to the proof of Theorem15, and we fix a finite groupG for the
rest of this section. For the uniqueness of the Witt polynomials we consider the
representableG-Tambara functor	 := UG(∅,−) with 	(G/e) = Z and 	(G/G)
the Burnside ring forG. In [7, Theorem 2.12.7]it is shown that� : ∏′

U�G Z =
WG(	(G/e)) → 	(G/G) is a bijection. Hence the Witt polynomials are unique. The
following four lemmas establish the existence of Witt polynomials with the properties
required in Theorem15.
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Lemma 16. For a subset A of G, let UA := {g ∈ G |Ag=A} denote its stabilizer group
and let iA := |A/UA| denote the number ofUA-orbits in A. If the setU(G) of subsets
of G is considered as a G-set viaG× U(G)→ U(G): (g,A) �→ Ag−1, then for any
s, t ∈ S(G/e) one has

S•(�Ge )(s + t) =
∑

G·A∈G\U(G)
S+(�GUA)S•(�

UA
e )(s

iA ·t iG−A).

Proof. We let i1, i2 : G/e→ G/e�G/e denote the two natural inclusions. We have
an exponential diagram

G/e
∇←−−−− G/e�G/e d←−−−− G/e × U(G)

�Ge

� pr
�

G/G ←−−−− U(G) U(G),

where d(g,A)= i1(g) if g−1 ∈ A and d(g,A)= i2(g) if g−1 /∈ A. Let Z=G/e ×
A/UA�G/e × (G− A)/UA. SinceU(G)�∐

G·A∈G\U(G)G·A, we have that

S•(�Ge )(s + t)
= S•(�Ge )S+(∇)(s, t)

= S[G/e�G/e d←G/e × U(G)−→U(G)→ G/G](s, t)
=

∑
G·A∈G\U(G)

S[G/e�G/e d←G/e ×GA→ GA→ G/G](s, t)

=
∑

G·A∈G\U(G)
S[G/e�G/e←Z→ G/UA→ G/G](s, t)

=
∑

G·A∈G\U(G)
S[G/e =←G/e

�
UA
e−→G/UA

�GUA−→G/G](siA t iG−A)

=
∑

G·A∈G\U(G)
S+(�GUA)S•(�

UA
e )(s

iA t iG−A),

where the maps without labels are natural projections.�

Lemma 17.With the notation of Lemma16, we have for every subgroup U of G and
for every s, t ∈ S(G/e):

(s + t)(G:U) =
∑

G·A∈G\U(G)
|(G/UA)U |·(siA ·t iG−A)(UA:U).
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Proof. We compute

(s + t)(G:U) =
∑

A⊆G/U
s|A|t |G/U |−|A| =

∑
A∈U(G),U�UA

s|A/U |t |(G−A)/U |

=
∑

G·A∈G\U(G)
|(G/UA)U |·(siA ·t iG−A)(UA:U). �

The following lemma is a variation on[7, Lemma 3.2.5], and the proof essentially
identical to the one given in[7]. We include it for the reader’s convenience.

Lemma 18. LetV1, . . . , Vk�G be subgroups of G. For every subgroupU�G and every
ε1, . . . , εk ∈ {±1} there exists a polynomial
U = 
G(U ;V1,...,Vk;ε1,...,εk) ∈ Z[x1, . . . , xk]
satisfying:

(1) for every G-Tambara functor S and alls1, . . . , sk ∈ S(G/e):
k∑
i=1
εiS+(�GVi )S•(�

Vi
e )(si) =

′∑
U�G

S+(�GU)S•(�
U
e )(
U(s1, . . . , sk)).

(2) for every ring A, everyH�G and all s1, . . . , sk ∈ A:
k∑
i=1
εi |(G/Vi)H |s(Vi :H)i =

′∑
U�G

|(G/U)H |(
U(s1, . . . , sk))(U :H).

Proof. We first prove (1). Ifε1 = ε2 = · · · = εk = 1 and if Vi is not conjugate toVj
for i �= j , then

k∑
i=1
εiS+(�GVi )S•(�

Vi
e )(si) =

∑′
U�G

S+(�GU)S•(S
U
e )(sU ),

with sU = si if U is conjugate toVi and sU =0 if U is not conjugate to any of the
V1, . . . , Vk. So in this case we are done:
U(s1, . . . , sk) = sU . We prove the lemma by
using triple induction. First with respect tom1 = m1(V1, . . . , Vk; ε1, . . . , εk) given by

m1 := max{|Vi | | εi = −1 or there exists somej �= i with Vj conjugate toVi},

then with respect to

m3 := |{i | |Vi | = m1 and there exists somej �= i with Vj conjugate toVi}|

and then with respect tom2 := |{i | |Vi | = m1 and εi = −1}|.
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We have just verified that the lemma holds in the casem1 = 0. In casem1 > 0 we
have eitherm2 > 0 or m3 > 0. In casem2 > 0, say |V1| = m1 and ε1 = −1, we may
use Lemma16 with G = V1, s = −s1, t = s1 to conclude that

0= S•(�V1e )(0) =
∑

V1·A∈V1\U(V1)
S+(�V1UA)S•(�

UA
e )((−1)iAs(V1:UA)1 ).

Therefore, considering the two special summandsA=∅ and A=V1 and putting
U0(V1) := {A ∈ U(V1) |A �= ∅ andA �= V1}, one gets

−S•(�V1e )(s1) = S•(�V1e )(−s1)+
∑

V1·A∈V1\U0(V1)

S+(�V1UA)S•(�
UA
e )((−1)iAs(V1:UA)1 ).

Hence, ifAk+1, Ak+2, . . . , Ak′ ∈ U0(V1) denote representatives of theV1-orbits V1A⊆
U0(V1) and we letVk+1 := UAk+1, . . . , Vk′ := UAk′ then Vi�V1 and V �= V1 for

i�k + 1. If we put εk+1 = · · · = εk′ = 1 and sk+1 := (−1)iAk+1s(V1:Vk+1)1 , . . . , sk′ =
(−1)iAk′ s(V1:Vk′ )1 , then the polynomial


G(U ;V1,...,Vk;−1,ε2,...,εk)(s1, . . . , sk) := 
G(U ;V1,...,Vk′ ;1,ε2,...,εk′ )(−s1, s2, . . . , sk′)
makes the statement of the lemma hold. We can conclude that if the lemma holds for
every (n1, n2, n3) with either n1 < m1 or (n1 = m1, n2 < m2 and n3�m3), then it
also holds for(m1,m2,m3).
Similarly, if m2 = 0, but m3 > 0, say V1 is conjugate toV2, then we may use

Lemma16 once more withG = V1, s = s1, and t = s2 to conclude that

S•(�V1e )(s1+ s2) =
∑

V1·A∈V1\U(V1)
S+(�V1UA)S•(�

UA
e )(s

iA
1 s

iV1−A
2 )

= S•(�V1e )(s1)+ S•(�V1e )(s2)
+

∑
V1·A∈V1\U0(V1)

S+(�V1UA)S•(�
UA
e )(s

iA
1 s

iV1−A
2 ),

so with Vk+1, . . . , Vk′ as above, but withεk+1 = · · · = εk′ = −1 and with sk+1 :=
s
iAk+1
1 s

iV1−Ak+1
2 , . . . , sk′ := s

iA
k′

1 s
iV1−Ak′
2 , the polynomial


G(U ;V1,...,Vk;ε1,...,εk)(s1, . . . , sk) := 
G(U ;V2,...,Vk′ ;1,ε2,...,εk′ )(s1+ s2, s3, . . . , sk′)
makes the statement of the lemma hold. We can conclude that if the lemma holds for
every (n1, n2, n3) with either n1 < m1 or (n1 = m1, n2 = m2 = 0 andn3 < m3), then
it also holds for(m1,0,m3). The statement of the lemma now follows by induction
first onm1, then onm3 and finally onm2.
The proof of (2) is similar to the proof of (1), the only difference being that we use

Lemma17 instead of Lemma16. �
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Lemma 19. For subgroupsV,W�G one has the following modified Mackey formulas:
(1) For every G-Tambara functor S and alls, t ∈ S(G/e):

S+(�GV )S•(�
V
e )(s)·S+(�GW)S•(�We )(t)

=
∑

VgW∈V \G/W
S+(�GV∩gWg−1)S•(�

V∩gWg−1
e )(s(V :V∩gWg−1)·t (W :g−1Vg∩W)).

(2) For every ring A, every s, t ∈ A andH�G:

|(G/V )H |s(V :H)|(G/W)H |t (W :H)

=
∑

VgW∈V \G/W
|(G/V∩gWg−1)H |(s(V :V∩gWg−1)·t (W :g−1Vg∩W))(V∩gWg−1:H).

Proof. Statement (2) is[7,3.2.13]. To prove (1) consider the diagram

G/e�G/e pr1�pr2←−−−−− G/e ×G/W�G/V ×G/e
�Ve ��We

� ��Ve ×id�id×�We

G/G�G/G �GV��GW←−−−− G/V�G/W pr1�pr2←−−−− G/V ×G/W�G/V ×G/W
∇
� ∇

�
G/G ←−−−− G/V ×G/W G/V ×G/W,

where∇ is the fold map, the upper square is a pull-back and the lower rectangle is
an exponential diagram. Concatenating with the diagram

G/e ×G/W�G/V ×G/e �1��2←−−−−
�

∐
gW∈G/WG/e�

∐
Vg∈V \GG/e

�Ve ×id�id×�We

� ∥∥∥
G/V ×G/W�G/V ×G/W ∐

gW∈G/WG/e�
∐
Vg∈V \GG/e

∇
� (�1,�2)

�
G/V ×G/W �←−−−−

�

∐
VgW∈V \G/WG/(V∩gWg−1)

with maps defined by

�1(gW,�) = (�,�gW),

�2(Vg,�) = (�g−1V,�),

�1(gW,�) = (VgW,�(V∩gWg−1)),
�2(Vg,�) = (VgW,�g−1(V∩gWg−1))
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and

�(VgW,�(V∩gWg−1)) = (�V,�gW),

and using the notationZ :=∐
VgW∈V \G/WG/(V∩gWg−1) we get that

S+(�GV )S•(�
V
e )(s)·S+(�GW)S•(�We )(t)

= S[G/e�G/e←
∐

gW∈G/W
G/e�

∐
Vg∈V \G

G/e→ Z→ G/G](s, t)

=
∑

VgW∈V \G/W
S+(�GV∩gWg−1)S•(�

V∩gWg−1
e )(s(V :V∩gWg−1)·t (W :g−1Vg∩W)). �

Proof of Theorem 15. Let G = V1, V2, . . . , Vk = U be a system of representatives of
subgroups ofG containing a conjugate ofU. We define

sGU (aV1, bV1, . . . , aVk , bVk ) := 
G(U ;V1,V1,...,Vk,Vk;1,...,1)(aV1, bV1, . . . , aVk , bVk )

and
mGU(aV1, . . . , aVk ) := 
G(U ;V1,...,Vk;−1,...,−1)(aV1, . . . , aVk ).

By Lemma18 these are integral polynomials with the desired properties. For example
we have:

�AU(a)+ �AU(b) =
k∑
i=1
|(G/Vi)U |(a(Vi :U)Vi

+ b(Vi :U)Vi
)

= �AU(
(U ;V1,V1,...,Vk,Vk;1,...,1)(aV1, bV1, . . . , aVk , bVk ))

= �AU(sU (aV1, bV1, . . . , aVk , bVk )).

To constructpU = pGU we first choose a systemx1, x2, . . . , xh of representatives of
theG-orbits in

X :=
k∐

i,j=1
G/Vi ×G/Vj .

Next we putWr := Gxr and
pr = pr(aV1, bV1, . . . , aVk , bVk ) := a(Vi :Wr)i ·b(Vj :Wr)j

in casexr = (grVi, g′rVj ) ∈ G/Vi ×G/Vj⊆X. Using these conventions, we define

pGU (aV1, bV1, . . . , aVk , bVk ) := 
G(U ;W1,...,Wh;1,...,1)(p1, . . . , pr).

Using the Lemma19 we see thatpU has the desired properties.�
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5. Free Tambara functors

In this section we prove Theorem14. On the way we shall give a combinatorial
description of the Witt vectors of a polynomialG-ring, that is, aG-ring of the form
UG(X,G/e) for a finiteG-setX. Recall from Lemma6 that the functorR �→ R(G/e)

from the category[UfG, Ens]0 of fG-Tambara functors to the category ofG-rings is an

equivalence of categories, and that there are morphisms(FinfG)op⊆(FinG)op R−→UG

of colored theories. We letF : EnsG � [(FinfG)op, Ens]0→ [UG, Ens]0 denote the left
adjoint of the forgetful functor induced by the above composition of morphisms of
colored theories.
Given finiteG-setsX andY we let ŨG+ (X, Y )⊆UG+ (X, Y ) denote those elements of

the form [X ← A→ B → Y ], whereG acts freely onA, and we letŨG(X, Y )⊆
UG(X, Y ) denote the abelian subgroup generated byŨG+ (X, Y ). The composition

UG(Y,Z)× ŨG(X, Y )∪ ŨG(Y, Z)× UG(X, Y )
⊆UG(Y,Z)× UG(X, Y ) ◦−→UG(X,Z)

factors through the inclusioñUG(X,Z)⊆UG(X,Z). We obtain a functor̃UG : FinG→
[UG, Ens]0 with ŨG(f : Y → X) = ŨG(Rf ,−).
Lemma 20. Given a G-Tambara functor S and a finite free G-set A, there is an iso-

morphismEnsG(A, S(G/e)) �−→ S∗(A), which is natural in A.

Proof. Choosing an isomorphism� : A �−→G/e × A0 we obtain an isomorphism

EnsG(A, S(G/e)) �−1∗−→ EnsG(G/e × A0, S(G/e))

� Ens(A0, S(G/e))�S(G/e × A0)
S∗(�)−→ S(A).

This isomorphism is independent of the choice of�. �

Lemma 21. FX�ŨG(X,−) for finite G-sets X.
Proof. For everyG-Tambara functorS we shall construct a bijection

EnsG(X, S(G/e))�[UG, Ens]0(ŨG(X,−), S).

Given f : X→ S(G/e) ∈ EnsG(X, S(G/e)) we let

�(f ) ∈ [UG, Ens]0(ŨG(X,−), S)

take x = [X d←A
b−→B

c−→Y ] ∈ ŨG(X, Y ) to �(f )(x) ∈ S(Y ) constructed
as follows: by Lemma20 we obtain an elementa ∈ S(A), and we let�(f )(x) =
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S+(c)S•(b)(a). Conversely, giveng ∈ [UG, Ens]0(ŨG(X,−), S), we construct
(g) ∈
EnsG(X, S(G/e)) by letting
(g)(x) = g([X← G/e→ G/e→ G/e]), where the map
pointing left takese ∈ G to x ∈ X and where the maps pointing right are identity maps.
We leave it to the reader to check that� and
 are inverse bijections. �

Corollary 22. For every finite G-set X the functor̃UG(X,−) : UG→ Ens is isomorphic
to LGUG(X, jG(−)), wherejG : UfG⊆UG is the inclusion.

Theorem 23. Let X be a finite G-set and letR = UG(X, jG(−)). The Teichmüller
homomorphism

� : WG((LGR)(G/e))/IG((LGR)(G/e))→ (LGR)(G/G) = ŨG(X,G/G)

is an isomorphism.

Proof of Theorem 14. Let A=R(G/e). Given�= [W←C→D→X] ∈ UfG(W,X)
we have anfG-Tambara map�∗ : UG(X,−)→ UG(W,−) and we have the map
R(�) : R(W)→ R(X). Hence we obtain maps

UG(X,G/G)× R(X)← UG(X,G/G)× R(W)→ UG(W,G/G)× R(W).
The value(LGR)(G/G) at G/G of the left Kan extensionLGR of R along jG is
isomorphic to the coequalizer of the diagram∐

X,Y∈obUfG
UG(X,G/G)× R(Y ) →→

∐
X∈obUfG

UG(X,G/G)× R(X),

induced by the above maps. We shall construct a map

� : (LGR)(G/G)→ WG(A)/IG(A)

by specifying explicit maps�X : UG(X,G/G)× R(X)→ WG(A)/IG(A). Given
r ∈ R(X), we have anfG-Tambara morphism evr : UfG(X,−)→ R. SinceG acts
freely on X we haveUG(X,G/G) = ŨG(X,G/G) and by Theorem23 we get an
induced ring-homomorphism

UG(X,G/G)�WG(U
fG(X,−))/IG(UfG(X,−))→ WG(A)/IG(A).

By adjunction we obtain a map

�X : UG(X,G/G)× R(X)→ WG(A)/IG(A).

We need to check that these�X induce a map on the coequalizer(LGR)(G/G) of the
above coequalizer diagram, that is, for� as above we need to show that the diagram

UG(X,G/G)× R(W) �∗×id−−−−→ UG(W,G/G)× R(W)
id×R(�)

� �W

�
UG(X,G/G)× R(X) �X−−−−→ WG(A)/IG(A)
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commutes. For this we note that the diagram

WG(U
G(X,G/e))

t−−−−→ UG(X,G/G)

�∗
� �∗

�
WG(U

G(W,G/e))
t−−−−→ UG(W,G/G)

commutes, and therefore it will suffice to show that the diagram

WG(U
G(X,G/e))× R(W) �∗×id−−−−→ WG(U

G(W,G/e))× R(W)
id×R(�)

� �
WG(U

G(X,G/e))× R(X) −−−−→ WG(A)

commutes, where the arrows without labels are constructed using the homomorphisms
WG(evr (G/e)) for r an element of eitherR(X) or R(W). Using diagonal inclusions
of the form

WG(T )× Z→ WG(T )×
∏
U�G

′
Z≈

∏
U�G

′
(T × Z)

we see that it suffices to note that the diagram∏′
U�G(U

G(X,G/e)× R(W))
∏′

U �G(�
∗×id)−−−−−−−−−→ ∏′

U�G(U
G(W,G/e)× R(W))∏′

U �G(id×R(�))
� �∏′

U�G(U
G(X,G/e)× R(X)) −−−−→ ∏′

U�G R(G/e)≈WG(A)

commutes. This ends the construction of� : (LGR)(G/G)→ WG(A)/IG(A).
We leave it to the reader to check that� and � are inverse bijections. For this it

might be helpful to note that

∑
U�G

′
([G/e =←G/e

�Ue−→G/U → G/G]◦[Y ← AU → BU → G/e])

=
 ∐
U�G

′
G/e

=←
∐
U�G

′
G/e→

∐
U�G

′
G/U → G/G


◦

Y ← ∐
U�G

′
AU →

∐
U�G

′
BU →

∐
U�G

′
G/e

 . �

For the proof of Theorem23 we need to introduce filtrations of both sides.

Definition 24. Let A be a ring and letU�G be a subgroup ofG. We let IU (A)⊆
WG(A) denote the ideal generated by thosea = (aK)

′
K�G ∈ WG(A) for which
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aK �= 0 implies thatK�U . We let ĨU (A)⊆IU (A) denote the sub-ideal̃IU (A) =∑
V�U IV (A)⊆IU (A).

Definition 25. Given aG-setX andU�G, we letJ+U ⊆ŨG(X,G/G) denote the subset
of elements of the form

[X← A→ B → G/G] ∈ ŨG+ (X,G/G)⊆ŨG(X,G/G),

for which BK = ∅ when U is a conjugate to a proper subgroup ofK. We let
JU⊆UG(X,G/G) denote the ideal generated byJ+U and we let J̃U⊆JU denote the
sub-idealJ̃U =∑

V�U JV⊆JU .

Lemma 26. (i) Any element inJU is of the formx − y for x, y ∈ J+U .
(ii) Every element x in the image of the mapJ+U → JU/J̃U is of the form

x = [X d←G/e × A �Ue ×f−→ G/U × B q−→G/G] + J̃U ,
with f : A→ B a map of (non-equivariant) sets and d a G-map, where q is the

compositionG/U × B pr−→G/U
�GU−→G/G.

(iii) If

x = [X d←G/e × A �Ue ×f−→ G/U × B q−→G/G] + J̃U ,
and

x′ = [X d ′←G/e × A′ �
U
e ×f ′−→ G/U × B ′ q ′−→G/G] + J̃U ,

then x = x′ if and only if there exist bijections� : A→ A′ and � : B → B ′ and for
everya ∈ A there existsga ∈ NG(U) such that
(a) f ′� = �f ,
(b) d ′(e, �a) = d(ga, a) and
(c) ga1U = ga2U if f (a1) = f (a2).

Proof. A straightforward verification yields that the multiplication iñUG+ (X,G/G)
induces a mapJ+U × ŨG+ (X,G/G)→ J+U and thatJ+U is closed under sum. It follows
that JU is the abelian subgroup ofUG(X,G/G) generated byJ+U . Statement (i) is a
direct consequence of this. For (ii) we note that for every element

r = [X d←D
c−→E

t−→G/G]
in ŨG+ (X,G/G), we have a decompositionE�

∐′
K�GEK , whereEK�G/K × BK

for someBK . This decomposition induces an isomorphism

ŨG(X,G/G)�
⊕
K�G

′
JK/J̃K

of abelian groups. Given an elementx of the form

x = [X d←D
c−→G/U × B q−→G/G] + J̃U ,
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we can choose aG-bijection of the formc−1(G/U × {b})�G/e × Ab for everyb ∈ B.
It follows that x is represented by an element of the form

x = [X d←G/e × Ap×f−→G/U × B q−→G/G] + J̃U .
We leave the straightforward verification of part (iii) to the reader.�

Lemma 27. Let U be a subgroup of G and leta = (aV )′V �G ∈ IU (ŨG(X,G/e)) with

aU = [X d←A×G/e f×1→ B ×G/e pr−→G/e].

Then

�(a)≡[X d←A×G/e f×�Ue→ B ×G/U → G/G] modJ̃U .

Proof. The lemma follows from the diagram:

X
d←−−−− A×G/e ←−−−− W ←−−−− G/e × A

f×id
� � �

G/e
pr←−−−− G/e × B ←−−−− Z ←−−−− G/e × B

�Ue

� � �
G/U ←−−−− ∐

gU∈G/Umap(gU,B) Y ←−−−− G/U × B,
where the lower rectangle is an exponential diagram and the squares are pull-backs. We
use that the mapG/U × B → Y which takes(gU, b) to the constant mapgU → B

with valueb is an isomorphism onG/U -parts and thatYH = ∅ for U�H andU �= H .
�

Corollary 28. Let X be a G-set and letR = ŨG(X, jG(−)). The map

� : WG(U
G(X,G/e))→ (LGR)(G/G) = ŨG(X,G/G)

satisfies that�(IU (R(G/e)))⊆JU and that�(ĨU (R(G/e)))⊆J̃U .

Proposition 29. Let X be a G-set, let R = ŨG(X, jG(−)) and letA = R(G/e). For
everyU�G the map� : WG(A)/IG(A)→ (LGR)(G/G) = ŨG(X,G/G) induces an
isomorphism�U : (IG(A)+ IU (A))/(IG(A)+ ĨU (A))→ JU/J̃U .

Proof. Let x ∈ IU with xU = [X d←A×G/e f×1→ B ×G/e pr−→G/e]. Then by Lemma

27 �(x)≡[X d←A×G/e f×�Ue→ B ×G/U q−→G/G] mod J̃U , with the notation intro-
duced there, and it follows from Lemma26 that �U is onto. On the other hand, to
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prove injectivity, we pickx1, x2 ∈ IU with �(x1)≡�(x2)modJ̃U . Suppose thatxi,U has
the form

xi,U = [Z di←Ai ×G/e fi×1→ Bi ×G/e =−→G/e]
for i = 1,2. Let

yi = [Z di←Ai ×G/e fi×�Ue→ Bi ×G/U q−→G/G]
for i = 1,2. Then by Lemma27 yi≡�(xi)modJ̃U for i = 1,2. It follows from Lemma
26 that there exist bijections� : A1→ A2 and � : B1→ B2 with f2� = �f1 and
for every a ∈ A1 there existsga ∈ NG(U) such that firstlyd1(�a) = gad(a) and sec-
ondly, if a1, a2 ∈ A satisfy thatf (a1) = f (a2), then ga1U = ga2U . Given a ∈ Ai , let
zi,a ∈ ŨG(X,G/e) denote the element[X di,a←G/e

p−→G/e
=−→G/e], wheredi,a(e) =

di(a, e). Thenz2,�(a) = gaz1,a andxi,U =∑
b∈Bi (

∏
a∈f−1i (b)

zi,a) for i = 1,2, where an

empty product is 1 and an empty sum is 0. We can conclude thatx1,U −x2,U ∈ IG(R),
and hencex1 − x2 ∈ IG(R) + ĨU . In the general case�(x1 − x′1)≡�(x2 − x′2)modJ̃U
we easily obtain thatx1 − x′1≡x2 − x′2modIG(R) + ĨU by collecting the positive
terms. �

Proof of Theorem 23. We start by noting that̃IV =∑
U�V IU�colimU�V IU⊆IV and

that J̃V = ∑
U�V JU�colimU�V JU⊆JV . The result now follows by induction on the

cardinality ofV using the above proposition and the five lemma on the following map
of short exact sequences:

ĨG(R(G/e))+ IV −−−−→ IG(R(G/e))+ IV −−−−→ (IG(R(G/e))+IV )
(IG(R(G/e))+ĨV )� � �

J̃V −−−−→ JV −−−−→ JV /J̃V . �

6. The Witt Tambara-functor

In this section we finally prove TheoremC. Given a subgroupH�G and anH-
set X, we can construct aG×H -set G/e ×X, whereG acts by multiplication on
the left onG/e, and whereh·(g, x) := (gh−1, hx). We let indGHX denote theG-set
G×H X = H\(G/e ×X).

Lemma 30. Let H be a subgroup of G. The functorindGH : FinH → FinG induces

functors indGH : UH → UG, and indfGfH : UfH → UfG.

Proof. Since the functor indGH : FinH → FinG preserves pull-back diagrams and expo-
nential diagrams it induces a functor indGH : UH → UG that takesX← A→ B → Y

to indGHX← indGHA→ indGHB → indGHY . �
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Given aG-Tambara functorSwe construct anH-Tambara functor resGHS = S ◦ indGH .
Similarly, given an fG-Tambara functorR we can construct anfH-Tambara functor
resfGfHS = S ◦ indfGfH .

Theorem 31. Given an fG-Tambara functor R, the Teichmüller homomorphism

� : WH (res
fG
fHR(H/e))/IH (res

fG
fHR(H/e))→ resGHLGR(H/H)

is an isomorphism.

Proof of Theorem C. If we considerA = R(G/e) as anH-ring, then

WH (res
fG
fHR(H/e))/IH (res

fG
fHR(H/e))�WH (A)/IH (A),

and (resGHLGR)(H/H) = (LGR)(G/H). Combining these observations with Theorem
31 we obtain the statement of TheoremC. �

Lemma 32. Let H be a subgroup of G. The forgetful functori∗ : FinG→ FinH which
takes a G-set Y to the same set considered as an H-set induces functorsi∗ : UG→ UH

and i∗f : UfG→ UfH .

Lemma 33. Let H be a subgroup of G. The functori∗ : UG→ UH is left adjoint to
the functorindGH : UH → UG and the functori∗f : UfG→ UfH is left adjoint to the

functor indfGfH : UfH → UfG.

Proof. We prove only the first part of the lemma. GivenX ← A→ B → G×HY
in UG(X,G×HY) we construct an element inUH(i∗X, Y ) by the following diagram
where the two squares furthest to the right are pull-back squares:

i∗X ←−−−− AH −−−−→ BH −−−−→ H × HY� � � �
X ←−−−− A −−−−→ B −−−−→ G× HY.

Conversely, giveni∗X← E→ F → Y in UH(i∗X, Y ) we construct the elementX←
G× HE→ G× HF → G× HY in UG(X,G× HY). Here the arrow pointing to the
left is the compositeG× HE→ G× H i

∗X→ X. We leave it to the reader to check
that the maps are inverse bijections in an adjunction.�
We have the following commutative diagram of categories:

UfG
i∗f−−−−→ UfH� �

UG
i∗−−−−→ UH ,
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where the vertical functors are the natural inclusions. Since indG
H is right adjoint toi∗,

resGH is left adjoint to [i∗, Ens]0 (see for example[14,Proposition 16.6.3]). Similarly

resfGfH is left adjoint to[i∗f , Ens]0. From the commutative diagram of functor categories

[UfG, Ens]0
[i∗f ,Ens]0←−−−−− [UfH , Ens]0� �

[UG, Ens]0 [i∗,Ens]0←−−−−− [UH , Ens]0,
where the vertical maps are the forgetful functors induced by the inclusionsjG :
UfG⊆UG and jH : UfH⊆UH we can conclude that there is a natural isomorphism
resGHLG�LH res

fG
fH .

Proof of Theorem 31. By Theorem14 we have an isomorphism

WH (res
fG
fHR(H/e))/IH (res

fG
fHR(H/e))

�−→LH res
fG
fHR(H/H)�resGHLGR(H/H). �
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