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1. Infinity Categories

1.1. Intuition. Let Cat be the category of all small categories. This had the following
data:

small categories objects
functors morphisms
natural transformations morphisms between morphisms.

If we consider natural transformations as part of the data of Cat, we have considerably more
data than an ordinary category (often called a 1-category). Here we call Cat a 2-category,
and we can call the natural transformations 2-morphisms.

1.2. Enrichment. The reason we were able to reasonably talk about 2-morphisms in Cat

is due to the following observation:

For any C ,D ∈ Cat, we have that Fun(C ,D) is a 1-category, whose objects are functors
and whose morphisms are natural transformations.
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This leads to the following ad hoc definition: a 2-category is any category whose homs are
1-categories.

To make this more explicit we would need the notion of enriched categories, which we won’t
discuss here. However to soup this up to a legitimate definition, we would say a 2-category
is any category enriched in a category of 1-categories.

1.3. Infinity categories. Inductively, we think about n-categories as being any cate-
gory enriched in a category of (n − 1)-categories. That means homs in an n-category are
(n− 1)-categories, and we think about n-morphisms as being morphisms between (n− 1)-
morphisms.

If we have n-morphisms for every n, then we say that we have an ∞-category. We remark
though that we can always view any category as an ∞-category by just letting all the
higher morphisms be the identity.

An (n, r)-category is a category for which all k-morphisms with k > n are trivial, and all
k-morphisms with k > r are equivalences (will come back to a definition of this).

We could inductively define an (n + 1, r + 1)-category to be any category enriched in a
category of (n, r)-categories. In particular an (∞, 1)-category is any category enriched in
a category of (∞, 0)-categories.

Examples 1.1.

• a (1, 1)-category is an ordinary category
• a (1, 0)-category is a groupoid
• an “∞-category” generally refers to an (∞, 1)-category, that is a category with

higher morphisms above degree n invertible.

1.4. Spaces are ∞-groupoids.

Definition 1.2. An ∞-groupoid is an (∞, 0)-category.

For example, any topological space canonically determines an (∞, 0)-groupoid as follows:

0-morphisms (objects) points
1-morphisms directed paths between points
2-morphisms homotopies of paths
3-morphisms homotopies of homotopies
...

...

1.5. Various models. Referring to something as an “infinity-category” is a bit loaded.
In order to get a good handle on infinity categories, we should have some type of model of
what a good theory of infinity categories should look like.
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In particular a model should be a home for infinity categories, i.e. a category whose objects
are infinity categories. In our previous example, for instance, we saw that Top was a good
model for ∞-groupoids.

Here are a few models of (∞, 1)-categories:

• quasi-categories
• simplicially enriched categories
• topologically enriched categories
• Segal categories
• complete Segal spaces

These are all “equivalent” in the sense that they have model structures and Quillen equiv-
alences between them.

For the remainder of this talk, an (∞, 1)-category will mean a quasi-category.

1.6. Quasi-categories. Recall that we have a standard n-simplex ∆n ∈ sSet. Its bound-
ary is denoted by ∂∆n.

Definition 1.3. The ith horn, denoted Λni , is the boundary ∂∆n minus the face opposite
the ith vertex.

{1}

Λ2
0

{0} {2}

{1}

Λ2
1

{0} {2}

{1}

Λ2
2

{0} {2}

Definition 1.4. We say that a simplicial set X is a quasicategory if any inclusion of a
horn Λni , with 0 < i < n, extends to an inclusion of the n-simplex:

Λni X

∆n

We denote by qCat the full subcategory of sSet containing all quasi-categories.
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1.7. Horn filling. Morally, what does it mean for the dashed arrow to exist:

Λni X

∆n

Consider the smallest example: Λ2
1.

{1}

Λ2
1

{0} {2}

The inclusion of this into the simplicial set X corresponds to the selection of three 0-
cells (which we consider to be objects) and two composable 1-cells (which we consider to
be morphisms). The existence of a “filling” of this horn (an extension to the 2-simplex)
means that you can compose these 1-cells in a way that maybe doesn’t commute strictly,
but commutes up to some 2-cell.

Analogously, filling a horn Λni for 0 < i < n means that for any composable collection of
(n − 1)-morphisms in a quasi-category X, there is a way to compose them weakly in X,
where the composition is witnessed by some n-cell.

1.8. Nerves of categories: Λ2
1. Suppose X = N(C ) is the simplicial set obtained as the

nerve of some small category C (remember the nerve had as n-cells strings of n-composable
morphisms in C ).

For any inclusion Λ2
1 → NC , this specifies two morphisms f and g in C which are com-

posable. We remark that this horn can be filled uniquely by the composite g ◦ f , and the
2-cell witnessing this composition is the identity.

1.9. Nerves of categories: Λ3
2. The image of Λ3

2 → NC looks like:
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where the back face is missing. The bottom face exists, so the back unlabelled arrow must
be equal to the composite of h and gf , giving the arrow h ◦ (gf). In order to fill the back
face, we must see that the back arrow commutes up to some higher cell, that is, there is a
2-cell witnessing the composite (hg) ◦ f ⇒ h ◦ (gf).

However because C was a category, we have associativity of morphisms. Thus the back face
fills, and the entire 3-cell in the center fills, corresponding to the fact that the following
composites are equal:

h ◦ g ◦ f = h ◦ (g ◦ f) = (h ◦ g) ◦ f.

1.10. Nerves of categories: higher horns. As you might imagine, filling other horns in
NC has analogous interpretations, corresponding to various ways to compose n-composable
morphisms. Moreover since the composition is strict (higher cells witnessing this composi-
tion are the identity) we have the following result.

Proposition 1.5. The nerve of any small 1-category is a quasi-category; moreover, horns
fill uniquely: for 0 < i < n we have a unique dashed map

Λni X

∆n

∃!

This condition is actually sufficient to recognize when a simplicial set arises as the nerve
of a category.

Proposition 1.6. We have that a simplicial set X is the nerve of a category C if and only
if for all 0 < i < n, the inclusion of any horn Λni → X extends uniquely to the inclusion of
an n-simplex.

1.11. Outer horns. For quasi-categories, we said that we wanted filling for horns Λni
where 0 < i < n. Why shouldn’t we expect filling for i = 0, n? Consider the following
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example:

{1}

{0} {2} .

f

g

Say we were mapping Λ2
0 → NC to the nerve of a category. In order for the dashed map

to exist, it must be equal to gf−1, that is, f must be an isomorphism in the category C .
In general there is no way to guarantee this. However if all maps in C were isomorphisms,
then we would have this filling.

Proposition 1.7. The nerve of a groupoid admits horn filling for all Λni , where 0 ≤ i ≤ n.

Definition 1.8. If a simplicial set X admits horn filling for all Λni for 0 ≤ i ≤ n, we say
it is a Kan complex.

The category Kan of Kan complexes serves as a model for (∞, 0)-categories.

1.12. Hom-sets. The full subcategory qCat ⊆ sSet serves as a model for (∞, 1)-categories.
In particular for C,D ∈ qCat, we define an∞-functor F : C → D to just be any morphism
in the ambient category of simplicial sets.

Let X ∈ qCat, then for two vertices a, b ∈ X0 (remember these are supposed to be objects)
we should describe HomX(a, b) =: X(a, b). By our discussion of enrichment, we should
expect this object to be a Kan complex.

Consider the source and target maps

(s, t) : HomqCat(∆
1, X)→ HomqCat(∆

0 q∆0, X) = X ×X,
and let X(a, b) denote the fiber of this map over the pair (a, b). We define this to be the
hom-object HomX(a, b).

Proposition 1.9. [Lur09, p. 1.2.2.3] If X ∈ qCat then X(a, b) ∈ Kan for any a, b ∈ X0.

1.13. Adjunctions. Let C and D be quasi-categories, and let a ∈ C and b ∈ D . We
say that ∞-functors F : C → D and G : D → C are adjoint if we have a natural weak
equivalence of Kan complexes

HomD(Fa, b)
∼−→ HomC (a,Gb).

Here a weak equivalence of Kan complexes means a weak equivalence after geometric
realization.

1.14. Terminal objects. Let C ∈ qCat.

Definition 1.10. We say that x ∈ C0 is terminal if, for every a ∈ C0, the Kan complex
C (a, x) is contractible (meaning its geometric realization is contractible). Similarly, x ∈ C0

is initial if C (x, a) is contractible for all a ∈ C0.
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We say C is pointed if it has a zero object, which is an object that is both initial and
terminal.

In general limits and colimits are hard to construct, see Higher Topos Theory Chapter 4
for more detail.

1.15. Cofibers. Suppose that C is a quasi-category which has a zero object, denoted ∗,
and pushouts.

Definition 1.11. The cofiber of a morphism f : X → Y in C is define to be the pushout

X Y

∗ cofib(f)

f

!
p

We refer to a sequence X
f−→ Y → cofib(f) as a cofiber sequence.

Definition 1.12. The suspension of X is defined to be the cofiber of the unique map

X
!−→ ∗:

X ∗

∗ ΣX.
p

2. K0 for infinity categories

2.1. K0(C ). Let C be a pointed ∞-category admitting pushouts. Then define K0(C ) to
be the free abelian group [X] on objects of C modulo that a cofiber sequence

Z → X → Y

gives the relation [Z] + [Y ] = [X].

Exercise 2.1. K0(C ) is abelian.

Exercise 2.2. We have that [∗] = 0.

Exercise 2.3. We have that [ΣX] = −[X].

Warning: If C admits infinite coproducts, then any object X fits into a cofiber sequence

qn≥1X → qn≥0X → X,

for which we see [X] = 0.
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2.2. Functoriality of K0(C ). Suppose C and D are pointed∞-categories with pushouts.
What conditions do we need on a functor F : C → D to induce a group homomorphism
K0(C )→ K0(D)?

Clearly we need F to preserve the zero object. Moreover we need that [F (X q Y )] =
[F (X)] + F [Y ], that is, since X → X q Y → Y is a cofiber diagram, so must be F (X)→
F (X q Y )→ F (Y ). Therefore we should require F to preserve cofiber sequences as well.

Example 2.4. We remark that Σ was a colimit itself, thus it preserves all finite colimits.
The functor Σ : C → C induces the multiplication by (−1) map on K0(C ).

2.3. Stable ∞-categories.

Definition 2.5. We say an ∞-category C is stable if it is pointed, has pushouts, and so
that the endofunctor Σ : C → C is an equivalence of categories.

Properties of stable ∞-categories:

(1) C has all finite limits and colimits
(2) A square in C is a pullback square if and only it is a pushout square
(3) A functor between stable∞-categories preserves the zero object and cofibers if and

only if it preserves all finite colimits.

Example 2.6. The ∞-category of spectra is stable.

For any category, it admits a stabilization, that is a functor to a stable infinity category,
initial among such functors. This is given by the Spanier-Whitehead category SW(C ),
defined as the colimit:

SW(C ) := colim
(
C

Σ−→ C
C−→ Σ−→ · · ·

)
.

Remark 2.7. We see that Σ preserves all colimits, therefore

K0(C ) ' K0(SW(C )).

So without loss of generality, forK0, we can assume we are working with stable∞-categories
(this will be true in general).

3. Constructing higher K-theory

3.1. Reminder: K-theory of a Waldhausen category. Briefly, we had a category C
with cofibrations and weak equivalences.

• we built categories SnC , whose objects were these “inverted staircase” diagrams of
pushouts
• this gave a bisimplicial set S•C , for which we could take any type of geometric

realization, which all yielded equivalent spaces
• the fundamental group of this space was K0(C ), which is shifted from what we

want, so we loop the space to define K(C ).
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3.2. Waldhausen K-theory of ∞-categories. Goal: to replicate the construction of
Waldhausen K-theory for ∞-categories in order to define the higher K-theory of ∞-
categories.

This will proceed as follows:

• starting with an ∞-category C , we get the abelian group K0(C )
• build categories SnC , which under the nerve functor are considered as∞-categories
• take the geometric realization of this bisimplicial set
• again, take the loop space to arrive at K(C )

3.3. Objects as paths: 2-simplices. As in the Waldhausen construction for Waldhausen
categories, we want to build a based space W , where each [X] ∈ K0(C ) corresponds to a
path pX in W beginning and ending at the base point ∗.
For a cofiber sequence X ′ → X → X ′′ we want the paths pX′ ◦pX′′ and pX to be homotopic,
in order to encode the relations on K0(C ) as relations in π1(W ). That is, we need a 2-
simplex:

∗

∗ ∗

pX′pX′′

pX

3.4. 3-simplices. What can we say for an arbitrary pair of maps X
f−→ Y and Y

g−→ Z,
not necessarily forming a cofiber diagram?

Proposition 3.1. We have that

[Z] = [X] + [Y/X] + [Z/Y ].

Proof 1. Use the cofiber diagrams

X → Z → Z/X  [Z] = [X] + [Z/X]

(Y/X)→ (Z/X)→ (Z/Y )  [Z/X] = [Y/X] + [Z/Y ].

�

Proof 2. Use the cofiber diagrams

Y → Z → Z/Y  [Z] = [Y ] + [Z/Y ]

X → Y → Y/X  [Y ] = [X] + [Y/X].

�
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We can compile all of this into the following 3-simplex:

∗

∗

∗ ∗

pY

pY/X

pX

pZ

pZ/X

pZ/Y

Analogous information is available for any string of composable morphisms — how do we
encode this information simplicially?

3.5. 3-simplices, continued.

∗

∗

∗ ∗

pY

pY/X

pX

pZ

pZ/X

pZ/Y

We could also encode this information via the following diagram, where we stipulate that
all rectangles in sight are pushout diagrams:

∗ X Y Z

∗ Y/X Z/X

∗ Z/Y

∗

f g

When looking for higher analogs for how to encode the cofiber relations induced by a
composite X1 → X2 → · · · → Xn of maps, we obtain the correct notion by generalizing
this diagram above.
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3.6. Higher simplices. Thus when building our space W , we should adjoin an n-simplex
for every diagram of the form

∗ X1 · · · Xn

∗ · · · Xn/X1

· · · · · ·

∗

Let’s formalize this— let [n] be the ordered set {0 < 1 < · · · < n}, and let

[n](2) := {(i, j) ∈ [n]× [n] : i ≤ j} .

Then, by associating [n](2) with its nerve, which is an ∞-category, we should view our
n-simplices as objects of the ∞-functor category

Fun(N([n](2)),C ).

3.7. Gapped objects. Explicitly we define an [n]-gapped object of C to be a functor

X : N([n](2))→ C so that

(1) for each i ∈ [n] we have that X(i, i) ∼= ∗ in C is the zero object
(2) for each i ≤ j ≤ k we have a pushout diagram

X(i, j) X(i, k)

X(j, j) X(j, k),

equivalently using the previous condition, we have a cofiber sequence

X(i, j)→ X(i, k)→ X(j, k).

We denote by Gap[n](C ) the collection of all [n]-gapped objects. This forms an∞-category.

Proposition 3.2. The inclusion functor Kan→ qCat admits a right adjoint, which provides
the largest Kan complex contained in a quasicategory.

We denote by Sn(C ) the largest Kan complex contained in Gap[n](C ).
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3.8. Face and degeneracy maps. For S2(C ) ⊆ Gap[n](C ), we provide the face maps:

∗ X Y Z

∗ Y/X Z/X

∗ Z/Y

∗

f g

∗ X Y

∗ Y/X

∗

f

∗ X Z

∗ Z/X

∗

g◦f

∗ Y Z

∗ Z/Y

∗

g

∗ Y/X Z/X

∗ Z/Y

∗

d0

d1

d2

d3

3.9. Degeneracy maps. Degeneracy maps are less interesting, we simply add in an iden-
tity along the top row and add in identities horizontally going down.

3.10. The simplicial Kan complex. We now have a simplicial Kan complex S•C . Re-
garding this as a bisimplicial set, we can take its geometric realization. We then define the
K-theory space:

K(C ) := Ω |S•C | .

Properties:

• if F : C → D preserves finite colimits, it induces a continuous map K(C )→ K(D)
• the projection functors C ×D → C and C ×D → D preserve finite colimits. These

maps induce a homotopy equivalence

K(C ×D)
∼−→ K(C )×K(D)
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• the coproduct functor

q : C × C → C

(X,Y ) 7→ X q Y

preserves colimits, and therefore ascends to a monoidal structure

K(C )×K(C )→ K(C ).

This turns K(C ) into a grouplike E∞-space, that is, an infinite loop space.
• The map C → SW(C ) induces an equivalence

K(C )
∼−→ K(SW(C )).

3.11. Examples.

(1) If R is a ring, we can take Db(R), the derived category of the ring, which can be
viewed as a stable ∞-category. We have that

K(Db(R)) ∼= K(R) ∼= BGL(R)+,

therefore we recover the algebraic K-theory of the ring.
(2) Given a scheme X, we can take its category Perf(X) of perfect complexes, which has

the structure of a stable ∞-category. Taking its K-theory we recover Thomason-
Trobaugh K-theory

(3) Given a topological space X, its singular chains Sing(X) is a Kan complex, and
therefore an∞-category. Let C ⊆ Fun(Sing(X), Sp) be the subcategory on compact
objects (see nLab). Then K(C ) ' A(X) is the A-theory of the space X.

4. Additivity

4.1. Additivity theorem (classically). Let E(C ) be the category whose objects are
exact sequences (A → B → C) in a Waldhausen category C . Then there are three
functors, s, t, q : E(C )→ C respectively picking out each of the three objects in any exact
sequence.

Theorem 4.1. (Additivity) If F ′ → F → F ′′ is an exact sequence of functors between
Waldhausen categories C → D , then Kn(F ) = Kn(F ′) +Kn(F ′′).

Proof. We remark that giving such an exact sequence of functors is equivalent to giving
a functor C → E(D), so we can reduce to proving the statement for the triple (s, t, q) :
E(D)→ D . We prove that the functor

D ×D → E(D)

(A,B) 7→ (A→ AqB → B)

is a homotopy equivalence at the level of K-theory, and the result follows. �



Thomas Brazelton K-theory of infinity categories April 29th, 2020

4.2. Additivity for ∞-categories. To generalize E(C ) for infinity categories, we want a
category whose objects are cofiber sequences. As we can see, this is given by Gap[2](C ),
whose objects we recall are diagrams

∗ X Y

∗ Z

∗

where X → Y → Z is a cofiber sequence. Since a cofiber sequence is determined up to
equivalence by the map f : X → Y , we have an equivalence of ∞-categories

Fun(∆1,C ) ' Gap[2](C ).

Let F : Fun(∆1,C )→ C × C denote the map sending a functor ∆1 → C , whose image is

an arrow X
α−→ Y , to the pair (X, cofib(α)).

Theorem 4.2. (Additivity) We have that F induces a homotopy equivalence

K(Fun(∆1,C ))
∼−→ K(C × C ) ' K(C )×K(C ).

At the level of quasi-categories, we have that F admits a right homotopy inverse, given by

C × C → Fun(∆1,C )

(X,Y ) 7→ (X → X q Y ).

This gives the homotopy inverse at the level of K-spaces.

4.3. Corollaries of additivity.

Corollary 4.3. Given a cofiber sequence of functors F ′ → F → F ′′ between pointed
∞-categories admitting finite colimits C → D , we have that K(F ) = K(F ′) +K(F ′′).

Proof. We have three functors s, t, q : Fun(∆1,D) → D given by taking X → Y to X, Y ,
and Y/X, respectively. One can easily see that K(t) = K(s) +K(q).

We see that the natural transformation F ′ → F determines a functor H : C → Fun(∆1,D),
and we can rewrite K(F ′) = K(s) ◦ K(H), K(F ) = K(t) ◦ K(H), and K(F ′′) = K(q) ◦
K(H). �

Corollary 4.4. We have that suspension induces a group homomorphismK(Σ) : Kn(C )→
Kn(C ) which is multiplication by −1 for every n.

Proof. Apply additivity to the cofiber sequence of morphisms id→ ∗ → Σ. �
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5. Universality (Blumberg, Gepner, Tabuada)

5.1. Overview and related results. Results in this section are from [BGT13].

We will attempt to get a handle on what type of enlightening universal property the K-
theory of ∞-categories satisfies.

For example given a category C with some notion of short exact sequences (exact category,
triangulated category, Waldhausen category), we can say that an Euler characteristic val-
ued in an abelian group A is an assignment of group elements for each isomorphism class
in C which splits short exact sequences, that is:

0→ X ′ → X → X ′′ → 0  χ(X) = χ(X ′) + χ(X ′′).

In this sense, K0(C ) is the universal target group for Euler characteristics. We would
ideally like to extend this universality results to higher K-theory.

5.2. Definitions and notation. Denote by Cat∞ the category of small∞-categories (e.g.
quasi-categories).

Denote by Catex
∞ the (pointed) category of small stable ∞-categories and exact functors

(functors which preserve finite limits and colimits).

An ∞-category C is called idempotent-complete if its image under the Yoneda embedding
(here the Yoneda embedding is into functors valued in spaces) is closed under retracts. We

denote by Cat
perf
∞ the category of small idempotent-complete stable ∞-categories, so we

have an inclusion

Catperf
∞ ⊆ Catex

∞.

This inclusion admits a left adjoint (Higher Topos Theory, 5.1.4.2), which we denote by

Idem : Catex
∞ → Cat

perf
∞ .

5.3. Morita equivalence. Two rings R and S are Morita equivalent if the categories
ModR and ModS are equivalent. This is a weaker notion than ring isomorphism, but it is
enough to guarantee that the algebraic K-theory of R and S coincide:

K(R) ∼= K(S).

We say two small stable ∞-categories C ,D ∈ Catex
∞ are Morita equivalent if Idem(C ) and

Idem(D) are equivalent, and a morphism C → D is a Morita equivalence if it induces an

equivalence of categories Idem(C )
∼−→ Idem(D).

5.4. Exact sequences. A sequence A → B → C in Cat
perf
∞ (of small stable idempotent-

complete infinity categories) is exact if:

• the composite is zero
• A → B is fully faithful
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• the induced map B/A → C is an equivalence.

A sequence is split exact if it is exact and there exist appropriate adjoint splitting maps.

A sequenceA → B → C in Catex
∞ (small stable∞-categories) is (split) exact if the associated

sequence

Idem(A)→ Idem(B)→ Idem(C)

is (split) exact in Cat
perf
∞ .

5.5. Additive and localizing invariants. Let E : Catex
∞ → D be a functor to a stable

presentable* ∞-category D . We say E is an additive invariant if it:

• inverts Morita equivalences
• preserves filtered colimits
• sends split exact sequences to cofiber sequences.

We say E is a localizing invariant if it sends all exact sequences to cofiber sequences.

Localizing invariants are additive, but the converse does not hold; a counterexample is
THH, topological Hochschild homology.

5.6. Some more notation (sorry). Let Funadd (Catex
∞,D) denote the functor category

of additive invariants valued in D .

Let FunL(C ,D) be the ∞-category of colimit-preserving functors.

Let S∞ denote the ∞-category of spectra.

5.7. The universal additive invariant. Let Uadd : Catex
∞ →Madd denote the following

composite, where Madd denotes the resulting category:

• apply Idem : Catex
∞ → Cat

perf
∞

• take the Yoneda embedding y where presheaves are valued in the ∞-category of
spectra S∞
• restrict to the subcategory of compact objects
• if A → B → C is a split exact sequence, localize at maps of the form y(B)/y(A )→
y(C )
• stabilize.

Theorem 5.1. [BGT13, pp. 6.7, 6.10] The functor Uadd is an additive invariant, and
moreover is the universal additive invariant, in the sense that, for any stable presentable
∞-category D we have an equivalence of ∞-categories:

FunL(Madd,D)
∼−→ Funadd(Catex

∞,D).

That is, every additive invariant factors through Madd.
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5.8. The application for K-theory. We should view Madd as some category of non-
commutative motives which is the receptacle for all information about additive invariants.
This turns out to be enriched in spectra.

We claim that Sω∞, the ∞-category of compact spectra, is a stable idempotent-complete

∞-category, that is, it is an element in Cat
perf
∞ . Let A be any other element of Catperf

∞ .

Theorem 5.2. [BGT13, p. 1.3] There is an equivalence of spectra

K(A ) ' MapMadd
(Uadd(Sω∞),Uadd(A )).

In particular for n ∈ Z we have an isomorphism of abelian groups

Kn(A ) ∼= Hom
(
Uadd(Sω∞),Σ−nUadd(A)

)
.

The suspension functor Σ : Madd →Madd turns out to agree with S• (BGT, 7.17).

5.9. The universal localizing invariant. An analogous construction may be made to
obtain a universal localizing invariant

Uloc : Catex
∞ →Mloc.

This category Mloc is analogously some category of non-commutative motives which re-
ceives all information about localizing invariants. Its suspension is also given by S•.

Analogous results to those above can be used to describe the non-connective K-theory of
idempotent-complete stable ∞-categories.

5.10. Why do we care? Algebraic K-theory of ∞-categories was not defined in terms
of universal constructions of presheaves and localizations for infinity categories, so this
provides a more universal construction.

The previous result with the Yoneda lemma provides a total classification of natural trans-
formations from K-theory to other additive (or localizing) invariants.

This construction provides a tractable formulation of other interesting invariants, for ex-
ample topological Hochschild homology, which is an additive invariant. Via the previous
classification we can understand and characterize the trace map K → THH, an active area
of research (see [BGT13, §10]).

Even though topological cyclic homology TC is not an additive or localizing invariant (it
doesn’t preserve filtered colimits) one can still get a better handle on the cyclotomic trace
map K → TC (see [BGT13, p. 10.3]).

6. Universality (a la Barwick)

Results in this section are from [Bar16].
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6.1. Slogan.

Algebraic K-theory is “a universal homology theory, which takes suitable higher
categories as input and produces either spaces or spectra as output.”

6.2. Definitions and notation. For any ∞-category C , we denote by ιC its maximal
Kan subcomplex.

A pair of ∞-categories (C ,C†) is an ∞-category C along with an ∞-subcategory C† so
that

ιC ⊆ C† ⊆ C .

A morphism of C† is called an ingressive morphism.

A functor of pairs (C ,C†)→ (D ,D†) is a functor C → D sending ingressive morphisms to
ingressive morphisms.

6.3. Examples of pairs. For any ∞-category C , there are two trivial pairs:

(1) the minimal pair, denoted C [, which is the pair (C , ιC ), where we recall ιC is the
maximal Kan subcomplex

(2) the maximal pair, denoted C ], which is the pair (C ,C ).

6.4. Waldhausen ∞-categories. We say a pair (C ,C†) is a Waldhausen ∞-category if
the following axioms hold:

(1) C is pointed, and the map 0→ X is ingressive for any X
(2) pushouts of ingressive morphisms exist and are ingressive.

We define a morphism of Waldhausen ∞-categories to be any exact functor, by which we
mean it:

• preserves zero objects
• sends pushouts along an ingressive morphism to pushouts along an ingressive mor-

phism.

We think (roughly) as the ∞-categorical structure encoding and generalizing weak equiv-
alences, and ingressive morphisms as encoding cofibrations.

We denote by Wald∞ the ∞-category of Waldhausen ∞-categories (Barwick, §2 ).

6.5. Examples of Waldhausen ∞-categories. Equipped with the minimal pair struc-
ture C [ = (C , ιC ), we have a Waldhausen ∞-category if and only if C is a contractible
Kan complex.

With the maximal pair structure C ] = (C ,C ), we have a Waldhausen∞-category if C has
a zero object and all finite colimits.
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Any stable ∞-category equipped with the maximal pair structure is a Waldhausen ∞-
category.

If (C ,C cof) is an ordinary 1-category with cofibrations, then its nerve (NC , NC cof) is a
Waldhausen ∞-category.

6.6. Theories. A functor of ∞-categories is reduced if it sends the zero object to the
terminal object.

Let E be the category Kan of Kan complexes (or more generally, any ∞-topos). Then we
define a E-valued theory to be any reduced functor

φ : Wald∞ → E
which preserves filtered colimits. Denote by

Thy(E) ⊆ Fun(Wald∞, E)

the full subcategory spanned by E-valued theories.

6.7. Examples of theories. The easiest example of a theory ι ∈ Thy(E) is the interior
functor theory:

ι : Wald∞ → Kan

(C ,C†) 7→ ιC ,

sending a Waldhausen ∞-category to its maximal Kan subcomplex.

Give Γop, the category of finite pointed sets, a set of cofibrations given by monomorphisms
of sets with disjoint basepoints. Then NΓop ∈ Wald∞, and moreover this object corepre-
sents the interior functor in the sense that

FunWald∞(NΓop,C )
∼−→ ιC

for any C ∈Wald∞ [Bar16, Prop. 10.5].

6.8. Additive theories. A theory is additive if it sends direct sums to products, and a
few other technical axioms that are very involved to state [Bar16, pp. 7.4, 7.5]. We think
about them as the correct analog, in this setting, of functors splitting exact sequences.

In some sense we would want K-theory to be an additive theory.

Example 6.1. The interior functor ι : Wald∞ → Kan is not additive.

For theories that fail to be additive, can we provide some additive approximation to them?

Theorem 6.2. (Additivization)[Bar16, p. 7.8] Any theory φ : Wald∞ → E admits an
additivization Dφ. Moreover, it is computable as

Dφ ' colimn→∞ (Ωn
E ◦ Φ ◦ Σn ◦ y) ,

where y is the map to the derived category D(Wald∞), and Φ is the derived functor of φ.
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In the sense of Goodwillie calculus, this is the linearization of the functor ι.

6.9. Algebraic K-theory of Waldhausen∞-categories. Huge definition/theorem:
The algebraic K-theory functor

K : Wald∞ → Kan

is defined to be the additivization of the interior functor ι : Wald∞ → Kan.

This admits a canonical delooping, so we may assume that K-theory is valued in connective
spectra (see [Bar16, §7]).

6.10. Classifying transformations out of K-theory. Recall that ι was corepresented
by NΓop. Combining this fact with the universal property of additivization, we obtain a
classification of natural transformations from K-theory to any other additive theory.

Proposition 6.3. [Bar16, pp. 10.2, 10.5.1] For any additive theory φ : Wald∞ → Kan,
there is a homotopy equivalence

Map(K,φ) ' Map(ι, φ) = Map(FunWald∞(NΓop,−), φ) ' φ(NΓop).

Corollary 6.4. ([Bar16, p. 10.5.2], Barratt-Priddy-Quillen) Applying this to φ = K, we
get that the endomorphisms of algebraic K-theory are

End(K) = K(Γop) = QS0 = colimnΩnSn.

6.11. Relation to A-theory. For any ∞-topos E , we can take its ∞-category of pointed
compact objects Eω∗ . Its algebraic K-theory

K(Eω∗ )

is called the A-theory of E .

For X ∈ Kan, we have an ∞-topos Fun(X, Kan), and we have that

K(Fun(X, Kan)) = A(X)

agrees with the A-theory of X that we have seen.

7. Conclusion

7.1. Conclusion. Infinity categories are the most general setting for a study of algebraic
K-theory.

Universal constructions of algebraic K-theory provide a framework for the analysis of K-
theory and other theories like A-theory.

Representability results allow a more tangible grasp of interactions between algebraic K-
theory and other related theories like THH and TC, as well as trace maps between these.
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