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I. Introduction 

In [2] we constructed homological localizations of spaces, groups, and 17"- 
modules; here we generalize those constructions to give "factorization systems" 
and "homotopy factorization systems" for maps in categories. 

In Section 2 we recall the definition and basic properties of factorization systems, 
and in Section 3 we give our first existence theorem (3.1)for such systems. It can be 
viewed as a generalization of Deleanu's existence theorem [5] for localizations, and 
is best possible although it involves a hard-to-verify "solution set" condition. In 
Section 4 we give a second existence theorem (4.1) which is more specialized than the 
first, but is often easier to apply since it avoids the "solution set" condition. In 
Section 5 we use our existence theorems to construct various examples of 
factorization systems, and we consider the associated (co)localizations. As special 
cases, we obtain the Stone-Cech compactification for topological spaces, the 
homological localizations of groups and w-modules [2, Section 5], the Ext- 
completions for abelian groups [4, p. 171], and many new (co)localizations. I n  
Section 6 we generalize the theory of factorization systems to the context of 
homotopical algebra [9]. Among the "homotopy factorization systems" in the 
category of simplicial sets are the Mo0re-Postnikov systems and the homological 
factorization systems of [2, Appendix]. In Section 7 we generalize 4.1 to give an 
existence theorem for homotopy factorization systems. This leads to "Anderson- 
like" localizations (7.3) and p-completions (7.4) in the pointed simplicial or CW 
homotopy category. It also leads to "colocalizations of spaces with respect to 
homotopy theories" (see 7.5). 

We will use the language of Godel-Bernays set theory, distinguishing between 
"sets" and "classes". The objects of a category C will form a class, but C(X, Y) is 
"required to be a set for each X, Y ~ C. 
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208 A.K. Bousfield / Factorization systems in categories 

2. Factorization systems in a category 

We now give a brief account of factorization systems in a category C, cf. [6], [8]. 
For ~o : A ---> B and/x  : X ----> Y in C, we say ~o has the unique left lifting property 

(the ULLP) for Ix, or equivalently ~ has the unique right lifting property (the URLP) 
for q~, if for each commutative diagram 

o t  

A > X  

~o /.L 

4`./ ~ 4, 
B ~ Y  

in C thereexis t s  a unique map ~/ such that ~Ao = a and/z 'y =/3. For a class S of 

maps in C, we let 

(S) = {~o ]~0 has the ULLP for each /x ~ S} 

(S) = {/z I/.t has the URLP for each q~ E S}. 

2.1 Definition. A factorization system (E, M) in C consists of classes of maps E and 

M such that: 

(i) E = ~g(M) and M = ~ ( E ) .  

(ii) For every map f in C, there exist f ,  ~ M and f, E E such that [ = fmf,. 

The factorization in 2.1 (ii) is clearly unique up to canonical isomorphism and is 

natural. To recognize factorization systems, one can use 

2.2 Lemma.  Two classes (E, M) of maps in C form a factorization system if and 
only if the following hold: 

(i) Every isomorphism is in both E and M. 
(ii) Both E and M are closed under composition. 

(iii) I f  ~o E E and tz E M, then ~o has the ULLP for i~. 
(iv) For every map f in C, there exist fm E M and f, E E such that f = fmf,. 

Proof. Assuming (£, M)  satisfy (i)-(iv), we will show * ( M ) C E .  For f E ~(M),  
choose f, ~ E and f,,, C M such that f = f,,f,. Then there exists a lifting u such that 

uf = f, and fmu = 1. Moreover, uf,, = 1 since f, has the ULLP for f=. Thus f= is iso 
and f is in E. The rest of the proof is obvious. 

Note that 2.2 remains valid if (i) and (ii) are replaced by the condition: 
If f is a retract of g (in the category of maps) and g is in E or M, then so is f. 

2.3 Examples. The following easy examples of factorization systems can be verified 
using 2.2. 
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(I) In the category of sets, groups, or modules over a ring: E = surjections and 

M = injections. 
(II) In any category: E = isos and M = all maps; or vice versa. 

Using the following Iemma, it is easy to show that (I) and (II) are the only 
factorization systems in the category of sets or of vector spaces over a field. 

2.4 Lemma. If  (E, M)  is a factorization system in C (or more generally i r e  = ~g(S) 
for some class S in C), then: 

(A1) 

(A2) 
(A3) 
(A4) 

Every isomorphism is in 17,. 
E, is closed under composition. 
I f  g l E E  and f E E ,  then g ~ E. 

i f  

V >X 

W > Y  

is a push-out  diagram in C and i E E, then j ~ E. 
(A5) E is closed under small colimits, i.e. if J is a small index category and 

{X(j)--> Y0")}J~s is a diagram of  maps in E, then the induced map 

Colim X(j)  , Colim Y(j) 
: i 

is in 17, (provided those colimits exist). 

The proof is easy and there is an obvious dual result for a class M. A factorization 
system (E, M )  in a category C gives rise to 

2.5 Localizations and colocalizations. If C has a terminal object t, there is a functor 

T : C---> C and transformation r / :  1 --> T where X-2> TX---> t is " the"  (E, M)- 
factorization of X--~ t. Call (T, ~7) the (E, M)-localization on C, and note that it is 
idempotent. Moreover, it provides a left adjoint to the inclusion function Loc- 
C S.> C where Loc-C denotes the full subcategory given by all X E C with X---> t in 
M. Note also, for X E C, that r I : X--> T X  is the universal (terminal) example of a 

map in E with domain X. Dually, if C has initial object, one obtains an 
(E, M)-colocalization on C. 

Finally, note that the factorization system (E, M )  on C gives rise to obvious 
factorization systems on C/c and c/C for c E C. There are, of course, associated 

-localizations and colocalizations on these categories. 
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3. An ex i s tence  t h e o r e m  for  factor izat ion systems 

We now give our first existence theorem for factorization systems in cocomplete 
categories, i.e. those with colimits over arbitrary small index categories. 

3.1 Theorem. Let C be a cocomplete category and let E be a class of maps in C. 
Then (E, ~ (E)) is a factorization system in C if and only if E satisfies the conditions 
(A1)-(A5) of 2.4 together with the solution set condition" 

(SSC) Each map f X---> Y in C has a set of factorizations {X ~* oa • ~-B~ > Y }  

with u~ ~ E for all a and such that any factorization, X -~ B -~ Y with u E E, can be 
mapped (in the category Fr below) to some member of this set. 

Proot. For a map / "  X---> Y in C, let Fs be the category whose objects are 

factorizations X---~ B---> Y of f with u ~ E, and whose maps are commutative 
diagrams 

U 1 O l 

X >B1 ~-Y 

~ 2  02  

X ~B2 -~Y. 

The "only if" part of 3.1 is obvious, and we now prove the "if" part. Using 
(A1)-(A5) it is straightforward to show that FI is cocomplete. Since (SSC) holds, the 
existence theorem of [7, p. 116] now shows that FI has a terminal object 

X-~->B^---> Y. Clearly ~ E E and we claim that t3 E M(E).  For this it suffices by a 

push-out argument to show that a unique lifting exists in each commutative diagram 

I 

B ^ ) B  ^ 

C * > Y  

with u E E. This follows because the map 

t3 

X >B ^ >Y 

u "~ g 

X >C ~-Y 

in F~ has a unique left inverse since its domain is terminal. 
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In practice it is easy to obtain 

3.2 Classes E satisfying (A1)-(A5). Some general examples in a category C are: 

(i) For any class S of maps in C, let E = ~(S).  
(if) Given a class of factorization systems {(E~,M,)} in C, let E = n ~E,. 

(iii) Given a factorization system (E', M')  in a category C', and given a functor 
T : C --> C' which preserves colimits, let E be the class of maps f in C with Tf E E'.  

Although the solution set condition (SSC) is automatic in a small category, it is 
often difficult to verify in practice. We conclude with a general example where 3.1 
does apply. This involves a category C satisfying: 

(3.3) For each object M E C, there exists a set of maps {ia : L,~ ---> M} such that each 
map g:K----> M can be factored as g = i~s for some o~ and some epimorphism 

s:K---->L~. 

Note that (3.3) holds when C is the category of sets, groups, modules over a ring, 
topological spaces, etc.; in these categories, {i,~ : L,, ---> M} can consist of inclusion 
maps from subobjects of M. 

3.4 Theorem. Let C be a cocomplete category satisfying (3.3) and having products 
over arbitrary index sets; let {B, } be a set of objects in C; and let E consist of all 
u : V----> W in C such that 

u* :C(W, Ba) ~ C(V, Ba) 

for all ~. Then (E, ~l (E)) is a factorization system in C. 

Proof. Since E clearly satisfies (A1)-(A5), it suffices by 3.1 to verify (SSC). E 

consists of all u : V---> W such that 

u * : C ( W , D ) = C ( V , D )  

for D = 1-[~B~. For f : X---> Y in C let {D~} be copies of D indexed by the elements 

3/E C(X, D ), and let 

be a set of maps given by (3.3) for M = Y x 1-L,D.,. Let R be the set of factorizations 

pi,, 
X '>L. ~ Y  

of f such that a ~ J, r ~ E, and p : Y x I I ,D ,  ---> Y is the projection. Thus R is a set 

of objects of Fr, and it suffices to show that each object X-2> B _2> y of F I maps to 
some member of R. First factor v as 

w 

B > YXI- ID~,  P ~ Y 
.y 



212 A.K. Bousfield / Factorization systems in categories 

where w is induced by v • B --~ Y and by the unique maps 37 • B ~ D,  

that 37u = y for 3' E C(X, D) ~ C(B, D). Then factor w as 

B " ~L~ i° > Y x  I-ID~ 
,y  

where s is epi and a ~ J. Since 

s*(i,,)* = w * ' C ( Y  × ][ D , D ) - - . C ( B , D )  
.y 

is onto and since s is epi, it follows that 

s * ' C ( L , . D ) ~ - C ( B , D ) .  

Thus s E E and we have found a map 

X 

t' 
$11 

X 

u 

*B ~--Y [, , 

~ L . - - - - - - ~ Y  

in Fr with target in R. 

= D such 

4. A second existence theorem for factorization systems 

We will derive a second existence theorem (4.1) which avoids the solution set 
condition (SSC), and will then prove a technical lemma needed for applications. 

The theorem involves a cocomplete category C whose objects are "s-definite" (see 
4.2); it applies, for instance, when C is the category of groups or modules over a 
ring. 

4.1 Theorem. Let C be a cocomplete category whose objects are s-definite, and let S 
be a set of maps in C. Then (6e(S), rill (S)) is a factorization system in C, where 6e (S) 
is the smallest class of maps in C containing S and satisfying (A1)-(A5). 

This will be proved in 4.5, and will be generalized in 7.1. We first explain our 
terminology. 

4.2 s-definite objects. Roughly speaking, an object X of a cocomplete category C 
is "s-defini te"  if the functor C(X, ) preserves colimits of sufficiently long sequences. 
To b e  precise, for an infinite cardinal number/3,  let Ord[/3] denote the smallest 
ordinal number  of cardinality /3, and let Seq[/3] denote the well-ordered set of 
ordinals less than Ord[/3]. We regard Seq[/3] as a category in the usual way, i.e. 
Seq[/3] (s, t) has one element  if s ~< t and is empty otherwise. Now an object X E C 
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is called s-definite if there exists an infinite cardinal a such that for each cardinal 

/3 I> a and for each functor F "  Seq [/3]--~ C the canonical map 

Colim C (X, F(s ))----> C (X, Colim F(s )) 

is a bijection. 
To obtain examples we need 

4.3 Lemma. The s-definite objects of a cocomplete category C are closed under 
colimits (over small index categories). 

Proof. The s-definite objects of C are closed under finite colimits because, in the 
category of sets, finite limits commute with small filtered colimits [7, p. 211]. Thus, 
by [7, p. 109] it remains to show that Hj~j X~ is s-definite whenever {Xj}~j is a set of 
s-definite objects of C. This is easily proved using the following fact: If the 
cardinality of J is less than/3, then each set of objects of Seq [/3] indexed by J has an 

upper bound in Seq[/3]. 

4.4 Examples. In the category Grp of groups, all objects are s-definite by 4.3, 

because every group can be built from infinite cyclic groups by using successive 
colimits. Similarly, in the category R-Mod of left modules over a ring R, all objects 

are s-definite. However, in the category Top of topological spaces, only the discrete 

spaces are s-definite. 

4.5  Proof  of  4 .1 .  For  m a p s  q~ " A  ---> B and ~ • X ----> Y, w e  s a y / z  has the right lifting 
property (the RLP) for q~ if for each commutative diagram 

0 

A >X 

I :1 . /  
T 

B > Y  

there exists a map A such that Aq~ = 0 and ~A = z. For a map q~ • A ---> B in C, let 
q~"/3 IIAB-->/3 denote the map induced by the commutative square 

q~ 

A >B 

1 

B > B .  

Then a map/.~ • X--> Y in C has the URLP for ~p if and only if/~ has the RLP for 
both q~ and ~p'. Let or" M--> N denote the coproduct of all the maps in S t3 $ ' ,  
where $ '  = {u'[ u E S}. Then or ~ 5"(8); moreover, a map w is in ~ (S) if and only 
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if w has the RLP for or. Since M is s-definite, we can choose an infinite cardinal/3 

such that 

ColimC(M,F(s)) = >C(M, ColimF(s))  
S $ 

for each functor F "  Seq[/3]----> C. We now proceed to construct an (~ (S ) ,  d~ (S))- 

factorization of f "  X - o  y E C. By transfinite induction, we form a ladder 

X = X o  

Y 

i 0 i t  

> X l  

IA I 

1 I 

> y 

> . . .  , X ,  >X,÷, > . - -  

>. . .  > y  >Y ~ . . .  

in C for t E Seq [/3] as follows. Given u, let K be the set of maps from or to u,. Using 

the obvious diagram 

LI Mk ~. x ,  
k E K  

Up 

LINk ->Y 
k E K  

where Mk ~ Nk equals or:M---> N, let X,÷1 be the push-out of the top and left 
i t 

maps, and define the maps X,-------~X,÷I "÷'~ Y in the obvious way. If 
A C Seq[/3] is a limit ordinal and the ladder is given for all t < A ,  let X~ = 

Colim,<~ X, and u~ = Colim,<~ u,. This completes the construction of the ladder, and 

we let X 2.~ X^._% y be the associated factorization of f with X ^ = Colim,~s,.qia] X,. 

It is straightforward to show f E 6e(S), t~ U d~(S), and thus (5e(B), d~(s))  is a 

factorization system in C. 

4.6 Remark.  The "s-defini te"  hypothesis in 4.1 is actually needed only for the 

domains and codomains of maps in S. 

We conclude with a technical lemma needed for certain applications of 4.1. It will 

involve the notion of a small filtered colimit, i.e. a colimit whose index category is a 

small filtered category (see [7, p. 207]). 

4.7 Lemma.  Let D be a cocomplete category, let T : D--~ Set, ( -- the category of sets 
with basepoint *) be a functor which preserves small filtered colimits, and let S Cob D 

denote the class of  objects X E D with T X  = *. Suppose there exists a set K Cob D 

such that each object in D is a small filtered colimit of  objects in K. Then there exists a 
set L C S such that each object in S is a small filtered colimit of objects in L. 

Proof. Let a be an infinite cardinal which is an upper bound for the cardinalities of 
the sets { T X  ] X ~ K}. Let L '  C S  be the class of all objects W ~ S such that W is a 
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colimit of objects in K over a filtered index category J with ¢ /J  ~< tx (where # J is 
the number  of maps in J). Let L C L '  be a set of representatives of the isomorphism 
classes in L'.  It remains to express an object X ~ S as a small filtered colimit of 
objects in L. We may suppose X -- Colim,~F(i)  where I is a small filtered category 
and F(i) ~ K for all i ~ L We claim that for each set G of maps in I with # G ~< or, 
there exists a filtered sub-category H C l  such that: (i) each g ~ G is a map in H, (ii) 
# H ~  < c~, and (iii) Colimh~uTF(h)= *. This follows by taking H = I,.Jn H. where 

H1 C. • • CH,  CH,+~ C. • • is a sequence of filtered sub-categories of I constructed so 

that G is in H1, # H .  ~< a, and the maps 

Colimh En. TF(h ) ~ Colimh ~n..l TF(h ) 

are trivial. Now let ~' be the partially ordered set of filtered sub-categories H C I 
such that # H ~ a and Colimh~n TF(h) = *. By the above claim, ~ is filtered and 

X ~ C o l i m x ~  (Colimh ~n F(h )). 

Thus X can be expressed as a small filtered colimit of objects in L. 

5. Examples of factorization systems 

We now give examples which illustrate the use of our existence theorems. 

5.1 Example. In the category Top of topological spaces, let El be the class of all 
maps X--> Y inducing a bijection Top(Y, I) ~ Top(X, I)  where I is the closed unit 
interval. Then (El, ~ (El)) is a factorization system in Top by 3.4. One can show 
that the (E~, ~t (E~))-localization (2.5) on Top is just the Stone-Cech compactifica- 
tion (cf. [7, p. 127]). 

5.2 Example. In the category Top Grp of topological groups, let E2 be the class of 
all maps X--> Y inducing a bijection 

Top Grp(Y, G ) ~  Top Grp(X,  G) 

for each finite discrete group G. Then (E2, ~t (E2)) is a factorization system in 
Top Grp by 3.4. One can show that the (E2, ~ (E2))-localization on Top Grp is just 
the profinite completion. 

5.3 Example. In the category Grp of groups, let E3 be the class of all maps X --> Y 
inducing a bijection G r p ( Y , G ) ~  G r p ( X , G )  for each finite group G. Then 

(E3, ~ (E3)) is a factorization system in Grp by 3.4. The (E3, M3)-localization is a 
discrete analogue of the profinite completion. 

5.4 Example. For an abelian group G, let E4 be the class of all maps [ : X---> Y in 
Grp with HI(X; G)---> H, (Y;  G) epi (using simple coefficients). Then (E4, d,/(E4)) is 
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a factorization system in Grp by 3.1, where (SSC) holds because a factorization 

X --~ B --~ Y in Ff maps to the factorization X ~ v (B) ~ Y in Ff. If G is a cyclic 
ring or subring of the rationals, one can show that ~ (E4) consists of all injections 
i : X---> Y in Grp such that i(X) is "HM-closed"  in Y in the sense of [3]. 

5.5 Example. For an abelian group G, let Es be the class of all maps f :  X--~ Y 
E Grp such that f .  : Hi(X; G)---~ Hi(Y; G) is iso for i = 1 and epi for i = 2. We will 
apply 4.1 to show that (Es, JR(Es)) is a factorization system in Grp. First let D be the 

category of maps in Grp, and let T:D---~Set, be the functor carrying the map 
f :  X----> Y E Grp to the underlying pointed set of kerl@cokerl~coker2 where kern 
is the kernel of f . :  Hn(X; G)---~Hn(Y; G) and cokern is the cokernel. Then 4.7 
shows the existence of a set L C E5 such that each member  of Es is a small filtered 
colimit of members  of L. Thus (,5"(L), ~t(L))  is a factorization system by 4.1. It is 

straightforward to show ~ ( L ) = E 5  and ~ ( L ) = ~ t ( E s ) ,  and consequently 
(E, ~t (Es)) is a factorization system in Grp. If G is a cyclic ring or a subring of the 
rationals, then the (Es, ~t (Es))-localization on Grp is the HG-localization studied in 
[2] and [3]. 

5.6 Example. In the category R-Mod of left modules over a ring R, let E6 be the 
class of all maps f : X - - ~  Y UR-Mod such that G®~X---~G®RY is iso and 
Tor~(G,X)--->Tor~(G, Y) is epi, where G is a fixed right R-module.  Then 

(E6, ~(E6))  is a factorization system in R-Mod by an argument like that in 5.5. If 
R = Z and G = Z/p for p prime, then the (E6, ~(E6))-localization in Z-Mod is just 
the Ext completion X---~Ext(Zp~,X) as in [4, p. 171], and the (E6,~(E6))- 
colocalization is given by Homz(Z[1/p],X)--->X. If ~r is a group, R = ZTr (the 
group ring), and G = Z with trivial ~--action, then the (E6, ~ (E6))-localization in 
Z'tr-Mod is just the HZ-localization introduced in [2, Section 8]. 

5.7 Example. For some G ER-Mod,  let .847 be the class of all maps 

f 'X - - -~Y~R.Mod  such that f. 'HomR(G,X)---~HomR(G,Y) is iso and 

f . "  Ext,(G, X)---~ Ext,(G, Y) is morio. We will show that (~(MT), MT) is a factoriza- 

tion system in R-Mad. Choose a short exact sequence O--,W-~P---~G---~O in 
R-Mod with P projective. For a map f"  X---~ Y E R-Mod, we have: 

(i) fEMT.  
< ~- ( i i ) H o m D ( t , f ) = 0 =  Ext~,(t,f) where t'G---~O and D is the abelian 

category of maps in R-Mod. 

-,~ ;- (iii) The map HomD(l~,,f)---~Hom,(i,f) is iso, i.e. f E  ~({i}). 
These equivalences follow using the ExtD(, f)-sequences of 0----~ u ~ lc  ~ t--* 0 
(with u" 0----~G) and 0---~ i - *  lp----~ t - * 0 .  We have shown M7 = ~({i}), and thus 
(~'(MT),MT) is a factorization system by 4.1. When R is a group ring and G = Z, the 
(~g(M7),MT)-colocalization is a cohomological analogue of the HZ-localization 
mentioned in 5.6. 
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6. Homotopy factorization systems 

We will introduce a homotopy theoretic notion of factorization system which 
generalizes the ordinary notion. It is convenient to use Quillen's framework of 
homotopical algebra [9], and we assume familiarity with 

6.1 Closed simplicial model categories. These are defined in [9, II Section 2]. For a 
closed simplicial model category C, let hoC denote the associated homotopy 
category whose objects are the fibrant-cofibrant objects of C and whose maps are 
simplicial homotopy classes of maps in C. Some basic examples are: 

(i) The categories S of simplicial sets and S, of pointed simplicial sets have 
standard closed simplicial model category structures [9]. Moreover, ho S and ho S,  
are respectively equivalent to the homotopy categories of C W  complexes and 
pointed C W  complexes. 

(ii) Any category B with finite limits and colimits has a "discrete" closed 
simplicial model category structure: fibrations = all maps; cofibrations = all maps; 
weak equivalences = isomorphisms; for X, Y E B, Horn(X, Y) = the discrete (i.e. 
constant) simplicial set on B(X, Y); for X E B and finite K U S, X ® K  (resp. X K) is 
a coproduct (resp. product) of copies of X indexed by rr0K. Clearly hoB-~ B. 

In the rest of Section 6, let C be a closed simplicial model category. For a 
cofibration ~ : A --> B and a fibration IX : X --> Y in C, we say q~ has the HLLPfor  Ix, 
or equivalently IX has the H R L P  for ~, if the Kan fibration 

Hom (B, X) ~ Hom (A, X)  × Ho,,¢A.Y) Horn (B, Y) 

is a weak equivalence. For a class T of cofibrations and class U of fibrations let 
~¢~(T) = {q~ [q~ is a cofibration with the HLLP for each IX E T} 
.//~H(U) = {/1. [IX is a fibration with the HRLP for each q~ E U}. 

6.2 Definition. A homotopy factorization system (E, M )  in C consists of classes E of 
cofibrations and M of fibrations such that: 

(i) E = SH(M) and M = ~ , ( E ) .  
(ii) For every map f in C, there exist f,,, ~ M and f, E E such that f = fro f,. 
The factorization in (ii) is unique up to a simplicial homotopy equivalence and is 

homotopically natural (i.e. in a commutative diagram 

A .~ V .~X 

I ' 1 u I~ h v 

$ 
ge gm 

B >W ; Y  

in C with f,, g, ~ E and Ira, gm ~ M, there exists a lifting h unique up to simplicial 
homotopy). 
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6.3 Examples. (i) A homotopy factorization system in a "discrete" closed simpli- 
cial model category is just a factorization system in the underlying category. 

(ii) In the category S (of simplicial sets) and for n ~> 0, let E be the class of 
n-connected cofibrations, and let M be the class of fibrations whose fibres have 
vanishing ith homotopy groups for all i t> n. Then (E, M)  is a (Moore-Postnikov) 
homotopy factorization system. 

(iii) Let h ,  be an additive generalized homology theory on S, let E be the class 
of cofibrations which are h ,-equivalences, and let M be the class of h ,-fibrations 
([2, 10.1]). Then (E, M) is a homotopy factorization system by [2]. 

Other examples are in Section 7, where we will need 

6.4 Lemma. I f  (E, M )  is a homotopy factorization system in C (or more generally if 

E = ~gn(T) for a class T offibrations), then: 
(B1) Every trivial cofibration is in E. 
(B2) E is closed under composition. 
(B3) I f  gf  ~ E, f ~ E, and g is a cofibration, then g ~ E. 

(B4) I f  

V ~ X  

W > Y  

is a push-out  diagram in C and i ~ E, then j ~ E. 
(B5) E is closed under coproducts (when they exist). 
(B6) For Seq[/3] as in 4.2, let F:Seq[ f l ] - ->C be a functor such that 

Colim,<sF(t) = F(s)  for each limit ordinal s ~ Seq [/3]. I f  F(s)---> F(s + 1) is in E for 
each s E Seq[/3], then F(0)---> ColimF is in E (when Col imF exists). 

(B7) E is closed under retracts. 
(B8) I f  f : X--> Y is in E and K C L E S are finite, then the map 

f ® ( L , K ) : ( X ® L ) I _ I t x ® r ) ( Y ® K ) - - >  Y ® L  

is in E. 

The proof is not hard. Of course, there is an obvious dual result for a class M. A 
homotopy factorization system (E, M) in C gives rise to 

6.5 Localizations and colocalizations. As  in 2.5 there is an idempotent (E, M)- 
localization, T : ho C--> ho C and 7/: 1 --o T. Moreover,  T provides a left adjoint to 

c 
the inclusion functor Loc-hoC--> hoC, where Loc-hoC denotes the full subcate- 
gory given by all X E hoC such that the map from X to the terminal object is in M. 
Note also, for X E h o C ,  that 7 / : X - - ~ T X E h o C  is the universal (terminal) 
example of a homotopy class of a map in E with domain X. Dually, there is an 
(E, M)-colocalization on hoC. 
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Finally, note that a homotopy factorization system (E, M) on C gives rise to 
obvious homotopy factorization systems on C/c and c/C for c E C (see [9, II 2.8]). 
There are, of course, associated localizations and colocalizations on ho(C/c) and 

ho(c/C). 

7. Construction of homotopy factorization systems 

We will generalize 4.1 to give an existence theorem for homotopy factorization 
systems. Let C be a closed simplicial model category such that: 

(i) C is cocomplete. 
(ii) The objects of C are s-definite (see 4.2). 

(iii) There is a set K of trivial cofibrations in C such that a map is a fibration if it 
has the RLP for all members of K. 
Note that (i)-(iii) hold for the category of simplicial sets, and that (iii) holds for any 
"discrete" closed simplicial model category (see 6.1 (ii)). 

7.1 Theorem. I f  T is a set of cofibrations in C, then (6ell(T), ~tH(T)) is a homotopy 
factorization system in C, where 6ell(T) is the smallest class of cofibrations in C 
containing T and satisfying the conditions (B1)-(B8) of 6.5. 

Proof. Let T' be the set of cofibrations 

T ' = K t . J { f ® ( A " , / i n ) [ f E T  and nt>0} 

where A n is the standard n-simplex, zi" is its "boundary",  and f®(A ", zi ") is as in 
(B8). Then T' C Sen(T), and a map is in ~H(T)  iff it has the RLP for each member 
of T'. The proof now proceeds as in 4.5 using T' in place of S U S'. 

The hypothesis that the objects of C be s-definite is somewhat stronger than 
necessary (cf. 4.6). 

c 
7.2 Corollary. For a set T of cofibrations in C, the inclusion functor Loc-hoC--> 
hoC has a left adjoint, where Loc-hoC is the full subcategory given by all X ~ hoC 
"such that 

Hom (j, X)" Hom (B, X) ~ Hom (A, X) 

is a weak equivalence for each j" A ----> B in T. 

We illustrate 7.2 by two examples. 

7.3 Example. In the category S,  and for a set J of primes, let 

T =  {K(p, 1) • K(Z,  1)--~ K(Z, 1)}pE, 
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i.e. T contains a cofibration of degree p between "circles" for each p E Jr. Then 
Loc-hoS, is given by all X ~ hoS ,  such that 7r, X is uniquely p-divisible for all 
p E J and n I> 1. The left adjoint functor hoS,---> Loc-hoS, is essentially Ander- 
son's localization [1]. 

7.4 Example. In the category S, and for p prime, let T consist of a cofibration 
corresponding to 

K(f, 1): K(F, 1)--* K(F, 1) 

where F is the free group on generators Xo, Xl, X2, . . .  and f : F - - - > F  is the 
homomorphism with fx, = x~(x,+l) -p for i~>0. Then Loc-hoS, is given by all 
X E hoS, such that ¢r,X, for n/> 1, satisfies the Exp-p-completeness condition of 
[4, p. 175], i.e. the function 

L : (¢r,X × ¢r.X x ¢r.X x . . .  )---> (Tr.X x 7r, X × ¢r.X × . . .  ) 

is a bijection where 

L(uo, u,, u2, . . . )  = (u0(u,) -p, u,(u2) u2(u3)-",...). 

The left adjoint functor hoS,--->Loc-hoS, is an Anderson-like p-completion 
functor which reduces to the p-profinite completion on simply connected spaces 
with finitely generated homotopy groups. 

We conclude with another easy corollary of 7.1. 

7.5 Corollary. For a set {A~ } o f  cofibrant objects in C and for X ~ ho C, there is a 
terminal example,  UX--> X E hoC, among the maps  W--> X in hoC which induce a 

weak equivalence Hom (A., W)--> Hom (A , ,  X )  for each A~. 

One can regard UX---> X E hoC as a "colocalization of X with respect to 
homotopy". 
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