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ALGEBRAIC GEOMETRY IN MIXED CHARACTERISTIC

BHARGAV BHATT

Abstract. Fix a prime number p. We report on some recent developments in algebraic ge-
ometry (broadly construed) over p-adically complete commutative rings. These developments
include foundational advances within the subject as well as external applications.
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Introduction

Fix a prime number p. The last decade has witnessed multiple conceptual advances in algebraic
geometry over mixed characteristic rings (which, in this article, we take to mean commutative
rings that are p-adically complete). These advances have led to the resolution of longstanding
questions in different areas of mathematics where p-adic completions appear. Moreover, entirely
new and fascinating domains of inquiry have been uncovered. The goal of this survey is to discuss
some of these developments, especially in topics close to the author’s expertise.

A highlight of the last decade of activity in the area has been its seat as an exchange of ideas
across different fields of mathematics. For instance, a central topic of this survey is prismatic
cohomology, which is a new cohomology theory for mixed characteristic rings (§1 and §2); its
discovery was inspired in part by calculations in homotopy theory and in part by developments
in Galois representation theory (Remark 3.5). Prismatic cohomology in turn played a prominent
role in the proof of a mixed characteristic analog of the Kodaira vanishing theorem (Theorem 4.7),
which then helped develop the minimal model program in the birational geometry of arithmetic
threefolds (Theorem 4.10). In the reverse direction, an important flatness lemma discovered
in the solution [3] of a longstanding question in commutative algebra facilitated, via prismatic
cohomology again, the proof of an analog of Bott’s vanishing theorem for algebraic K-theory
(Theorem 3.8). The author hopes this survey can convey some of the excitement surrounding
this interplay of ideas.

We emphasize right away that the topics covered are chosen somewhat idiosyncratically, and
we have not attempted to be comprehensive even in the topics we do cover; to make partial
amends, a number of references have been included to help the reader navigate the subject.
Moreover, the level of the exposition is uneven across sections; for instance, we have taken a
macroscopic view of topics that are reasonably well documented elsewhere, but have gone into
more detail and depth while covering very recent ideas that seem promising.
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2 BHARGAV BHATT

This survey is organized as follows. In §1, we discuss relative prismatic cohomology and
related developments. The absolute version of this story, which is comparatively new, is the
subject of §2. We then present applications, covering algebraic K-theory in §3 and commutative
algebra and birational geometry in §4. We end in §5 with some relatively recent work on p-adic
Riemann–Hilbert problems and their algebro-geometric implications.

All rings that appear are assumed commutative unless otherwise specified.

1. Prisms and relative prismatic cohomology

In the last century, especially following the work of Grothendieck, cohomology theories have
emerged as extremely important tools in algebraic geometry and number theory: they lie at
the heart of some of the deepest theorems and conjectures in both subjects. For example,
classical Hodge theory, which studies the singular cohomology with real/complex coefficients for
complex varieties, is a central topic in modern algebraic geometry, with applications throughout
the subject and beyond. Likewise, p-adic Hodge theory, which studies the p-adic cohomology
of p-adic varieties, is an equally fundamental notion in arithmetic geometry: it provides one of
the best known tools for understanding Galois representations of the absolute Galois group of
Q. Moreover, unlike in the complex setting, there is a large number of cohomology theories in
the p-adic world: étale, de Rham, Hodge, crystalline, de Rham–Witt, etc. In this section, we
will report on work from the last few years dedicated to finding an organizational framework
to better understand p-adic cohomology theories in p-adic arithmetic geometry, especially their
relationships with each other.

Remark 1.1 (Why do derived objects appear repeatedly?). Before embarking on our journey,
let us explain one reason derived notions (i.e., those with a homological/homotopical flavor) often
appear in recent work in the area and consequently also in our exposition.

In classical algebraic geometry, the fundamental objects are smooth algebraic varieties over an
algebraically closed field. Similarly, in mixed characteristic algebraic geometry, the basic geomet-
ric objects are (p-adic formal1) smooth schemes over the ring of integers OC of a complete alge-
braically closed nonarchimedean field C/Qp. In particular, unlike the classical setting, the rings
of functions that appear in mixed characteristic algebraic geometry are often not noetherian: in-
deed, the ring OC is a non-noetherian valuation ring as its value group is divisible. Replacing OC

with a discrete valuation ring like Zp, while quite tempting and important for applications, leads
to arithmetic subtleties that one would like to avoid, at least at first pass, in a purely geometric
study. Even more exotic non-noetherian rings are critical to several recent innovations in the
area, such as perfectoid geometry [202, 143], descent techniques for extremely fine Grothendieck
topologies such as the pro-étale, quasi-syntomic, v and arc topologies [40, 205, 41, 37, 39], the
theory of δ-rings [138], etc.

In the non-classical situations described above, derived notions often have better stability
properties than their classical counterparts. For instance, given a commutative ring R with
a finitely generated ideal I, the category of derived I-complete R-modules forms an abelian
subcategory (e.g., it is closed under kernels and cokernels) of the category of all R-modules,
unlike the subcategory of classically I-adically complete R-modules; moreover, the assignment
carrying R to the ∞-category DI−comp(R) of derived I-complete R-complexes forms a stack for
the flat topology (or even a suitably defined I-completely flat topology), unlike the corresponding
assignment at the triangulated category level. For such reasons, the language of higher category
theory and derived algebraic geometry [169, 170, 171, 223, 224] has played an important role in
the developments discussed in this paper.

1A p-adic formal scheme is a formal scheme whose affine opens are given by formal spectra of p-adically
complete rings equipped with the p-adic topology
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The work described in this section began with the goal to enhance Fontaine’s perspective [93]
on p-adic Hodge theory to work well with integral coefficients. A concrete goal was to understand
how the torsion in the Zp-étale cohomology of the geometric generic fibre of a smooth projective
scheme over a mixed characteristic discrete valuation ring relates to the torsion in the crystalline
cohomology of its special fibre; this question was already stressed by Grothendieck in his Algerian
letter to Deligne in 1965 (see [60] for a survey on the status of this question 20 years ago, and §2
in loc. cit. for history). After initial attempts [38, 39] that worked well in important examples,
a satisfactory theory was found via the notion of a prism, recalled next. The definition relies on
the notion of a δ-ring, which is roughly a commutative ring A equipped with a map ϕ : A→ A
lifting the Frobenius endomorphism f 7→ fp of A/p (interpreted in a derived sense when A has
p-torsion); see [138, 61]. The importance of this notion in arithmetic geometry has long been
stressed by Borger, see [57].

Definition 1.2 (Prisms, [42]). A prism is a pair (A, I), where A is a δ-ring and I ⊂ A is an
invertible ideal such that A is derived (p, I)-complete and p ∈ (I, ϕ(I)). Write A := A/I.

In practice, we restrict to bounded prisms, i.e., those prisms (A, I) where the p-power torsion
in A is annihilated by pn for some n ≥ 0; this restriction allows us to avoid certain derived
technicalities without sacrificing the key examples. Two important examples are discussed next;
see Remark 1.9 for another key example.

Example 1.3 (Crystalline prisms). If A is any p-complete p-torsionfree δ-ring, then (A, (p)) is
a bounded prism. For instance, given a reduced Fp-algebra R, we could take A = W (R) to be
the ring of p-typical Witt vectors of ring with its natural Frobenius lift.

Example 1.4 (Perfect prisms). A prism (A, I) is called perfect if the Frobenius ϕ : A → A
is an isomorphism; any such prism is bounded and the ring A is perfectoid as in [101, 38]. In
fact, the construction (A, I) 7→ A yields an equivalence of categories between perfect prisms and
perfectoid rings; thus, the notion of a prism may be viewed as a “deperfection” of the notion
of a perfectoid ring. An important example is the perfect prism (A, I) corresponding to the
perfectoid ring A = OC , where C/Qp is a complete and algebraically closed extension; we call
this a Fontaine prism, in homage to its discovery [92, §5].

Given a bounded prism (A, I) as well as an A-scheme X, the following key definition allows
us to extract an A-linear cohomology theory for X.

Definition 1.5 (The relative prismatic site). Fix a bounded prism (A, I) and a p-adic formal
A-scheme X. The relative prismatic site (X/A)∆ is the category of all bounded prisms (B, J)

over (A, I) equipped with an A-map Spf(B/J) → X, topologized via the flat topology; write
O∆, I∆ and O∆ for the sheaves obtained by remembering B, J or B/J respectively, so there is
a natural ϕ-action on O∆ and O∆ = O∆/I∆. Write RΓ∆(X/A) := RΓ((X/A)∆,O∆) � ϕ for the
resulting cohomology theory.

The main comparison theorems for RΓ∆(X/A) are informally summarized next:

Theorem 1.6 (Relative prismatic cohomology, [38, 42]). Fix a bounded prism (A, I) and let X
be a smooth p-adic formal A-scheme. The relative prismatic cohomology theory RΓ∆(X/A) � ϕ
recovers the standard integral p-adic cohomology theories for X/A with their extra structures
(e.g., étale, de Rham, Hodge, crystalline, de Rham–Witt) via a specialization procedure, thereby
giving new relationships between them.

For instance, if (A, I) is crystalline, Theorem 1.6 leads to a canonical Frobenius descent of
crystalline cohomology [17]; this descent was previously observed on cohomology groups in [189,
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210]. On the other hand, the Ainf -cohomology of [38] is recovered by specializing to a Fontaine
prism; we refer to the surveys [183, 24] for more precise assertions (with pictures!) about the
comparisons in this case. An early concrete application of the latter was the following result
relating étale and de Rham cohomology integrally; via classical comparisons, this gives a new
technique to bound the p-torsion in singular cohomology of complex algebraic varieties via the
geometry of their mod p reductions.

Corollary 1.7 (Torsion inequality, [38]). Let C/Qp be a complete and algebraically closed field

with residue field k (e.g., we may take C = Cp = Q̂p, so k = Fp). Let X/OC be a proper smooth
p-adic formal scheme. Then

dimFp H
i
et(XC ,Fp) ≤ dimk H

i
dR(Xk) for all i ≥ 0.

More generally, a similar inequality bounds the length of the torsion subgroup of H i
et(XC ,Zp) in

terms of that of H i
crys

(Xk). In particular, if the latter is torsionfree, so is the former.

Since its discovery, the prismatic theory in [38, 42] has found several applications, some of
which are discussed below and elsewhere in this paper. Other results featuring this theory
include: Hodge theory of classifying spaces of reductive groups [154, 28], vanishing theorems for
the cohomology of the moduli space of curves with level structures [196], essential dimension
calculations [89], Poincaré duality for Z/pn-coefficients in rigid geometry [232], calculation of the
Zp-cohomology of Drinfeld’s p-adic symmetric spaces [67], a fairly optimal form of Dieudonné
theory in mixed characteristic [8], better understanding of the moduli stacks of Breuil-Kisin-
Fargues modules [81], and several improvements to known comparisons in integral p-adic Hodge
theory [182, 160, 161].

Remark 1.8 (Rational comparison theorems). Specializing part of Theorem 1.6 to a Fontaine
prism (A, I) gives a generalization of Fontaine’s crystalline comparison conjecture Ccrys to proper
smooth formal schemes X/A; variants of both this result and its proof have a long history in
p-adic Hodge theory, including [95, 50, 83, 85, 226, 187, 15, 68].

Remark 1.9 (q-de Rham cohomology, [42]). Given a smooth Z-algebra R equipped with a choice
of étale co-ordinates (which we call a framing and indicate by �), one can define a complex
qΩ•

(R,�) of ZJq − 1K-modules by q-deforming the differential of the de Rham complex Ω∗
R/Z (see

[12, 204]); this complex strongly depends on the framing �. Nevertheless, motivated by some
local calculations from [38], Scholze had conjectured in [204] that qΩ•

(R,�) is independent of the
framing � up to canonical quasi-isomorphism. This conjecture was deduced from the existence
of prismatic cohomology in [42], as explained next; prior partial progress was made by Pridham
[192], also using δ-rings.

By a patching procedure, Scholze’s co-ordinate independence conjecture reduces to its analog
when all objects are p-completed. The latter follows from the existence of prismatic cohomology
relative to the q-de Rham prism (A, I) := (ZpJq − 1K, ( q

p−1
q−1 )) where ϕ(q) = qp: given a formally

smooth p-complete Zp-algebra R equipped with a framing � as before, the relative prismatic
complex RΓ∆(Spf(R ⊗Zp A)/A) (which is visibly independent of the framing �) is naturally
quasi-isomorphic to the q-dR complex qΩ•

(R,�).
The preceding perspective on q-de Rham cohomology also yields a formalism for more sys-

tematically discussing related notions such as, e.g., Gauss-Manin q-connections; we refer to
[64, 107, 108, 184] for more on these and related developments.

Remark 1.10 (Perfections in mixed characteristic, [42]). The theory of perfectoid rings can be
regarded as a mixed characteristic analog of the theory of perfect Fp-algebras i.e., Fp-algebras
where the Frobenius is bijective. The utility of this analogy is enhanced by Theorem 1.6: by
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attaching objects with Frobenius actions to rings in mixed characteristic, this result yields a
notion of “perfectoidization” for a large class of mixed characteristic rings. Indeed, given any
perfect prism (A, I) and an A-algebra R, one can naturally construct a “(derived) perfectoidiza-
tion” R → Rperfd with excellent formal properties. For instance, if R is integral over A, then
R→ Rperfd is in fact the universal map to a perfectoid ring. This construction has several appli-
cations. For instance, [42] uses these to prove an optimal generalization of the Faltings’ almost
purity theorem (extending versions from [83, 86, 202, 143, 4]) as well as the result that “Zariski
closed = strongly Zariski closed” for affinoid perfectoid spaces; the latter plays an important
role in aspects of [90]. The perfectoidization functor also powers the construction of the p-adic
Riemann–Hilbert functor in §5.

Remark 1.11 (A new perspective on de Rham–Witt complexes, [34]). The de Rham-Witt
complex of Bloch–Deligne–Illusie [47, 135] is a fundamental object in characteristic p algebraic
geometry with applications transcending algebra (e.g., [119]). Its construction traditionally relied
on somewhat laborious calculations. The paper [34], inspired by structures on relative prismatic
cohomology, offered a new homological perspective on this object.

To explain this, we first recall the isogeny theorem for prismatic cohomology. In the setup of
Theorem 1.6, when X = Spf(R) is affine, one often writes ∆R/A = RΓ∆(X/A), regarded as an
object of the derived category of A. There is then a natural quasi-isomorphism

ϕ̃R/A : ϕ∗
∆R/A ≃ LηI∆R/A (Isog)

induced by the relative Frobenius, where LηI is a variant of the Berthelot-Ogus-Deligne décalage
functor (see [38, §6]); the isomorphism ϕ̃R/A, which is a prismatic avatar of the Berthelot-Ogus
isogeny theorem [18], plays a critical organizational role in capturing the additional structures
on ∆R/A (such as the Nygaard filtration).

The paper [34] shows that when (A, I) is a perfect crystalline prism (e.g., (Zp, (p))), one can
reconstruct the de Rham–Witt complex WΩ•

R from the pair (∆R/A, ϕ̃R/A) by a pure homological
algebra construction dubbed “saturation”. Moreover, this construction has the potential to offer
a better behaved alternative to the de Rham complex for singular varieties in characteristic p,
analogous to the du Bois complex in characteristic 0; we refer to [136, 188] for more on these
developments.

Remark 1.12 (Logarithmic analogs). The smoothness assumption on X in Theorem 1.6 is a
“good reduction” hypothesis. While adequate for several purposes, this is often too restrictive for
studying the generic fibre: not every proper smooth scheme Xη/C admits such a smooth model
X/OC . A more natural assumption — one that is conjecturally always satisfied, up to replacing
models — would be a form of logarithmic smoothness of X/OC (e.g., semistability) in the sense
of log geometry [139]. Thus, one wants a version of [38, 42] in the logarithmic setting. This has
been accomplished in [62, 150, 151]; it is also possible to approach this problem by reduction to
the smooth case using the language of infinite root stacks, following ideas of Olsson [190] (work
in progress with Mathew).

Remark 1.13 (Non-abelian p-adic Hodge theory). Fix a bounded prism (A, I) and a smooth
p-adic formal A-scheme X. Motivated by the precise form of Theorem 1.6, define a prismatic F -
crystal on (X/A) to be a vector bundle E on ((X/A)∆,O∆) equipped with a Frobenius structure
ϕE : ϕ∗E [ 1

I∆
] ≃ E [ 1

I∆
]; see Definition 2.2 for a more explicit description in a variant context.

Prismatic F -crystals provide a viable notion of “coefficients” in the theory, somewhat analogous
to the role played by harmonic bundles in complex non-abelian Hodge theory [212, 213]. In
particular, given such an F -crystal (E , ϕE ), the specialization functors used in Theorem 1.6 yield
a Zp-local system T (E) on the rigid generic fibre Xη when A is perfect, a vector bundle EdR
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with flat connection on X/A, an F -crystal Ecrys on X ⊗A (A/p)perf , and (under certain auxiliary
lifting data) a Higgs bundle EHiggs on X/A. The relationship realized by these functors is rather
close and has been investigated by various authors (such as [184, 222, 29]). When (A, I) is
a Fontaine prism, this relationship is part of the p-adic Simpson correspondence pioneered by
Faltings [87, 88, 1]. On the other hand, if (A, I) is a perfect crystalline prism, this relationship
yields an alternative perspective on (at least the local aspects of) the non-abelian Hodge theory
of [189].

Remark 1.14 (Extension to the singular case via animation). For several applications including
most results discussed in this paper, it is important to extend the prismatic cohomology con-
struction R 7→ ∆R/A (see Remark 1.11) to possibly singular A-algebras R. Directly imitating
Definition 1.5 does not produce a computable or useable result. Instead, inspired by the con-
struction of the cotangent complex and derived de Rham cohomology [133, 134] as well as their
utility in a wide variety of problems [14, 19, 21, 26, 132, 111], one extends the functor ∆−/A to ar-
bitrary p-complete A-algebras by Quillen’s non-abelian derived functor machinery [194] (dubbed
animation by Clausen [63]) as reformulated in [169]. The resulting complex ∆R/A can be fairly
efficiently controlled using the cotangent complex LR/A thanks to the animated Hodge–Tate
comparison, which makes this extension quite useable.

2. Absolute prismatic cohomology

In §1, we fixed a base prism (A, I) and discussed results about the relative prismatic cohomol-
ogy of a smooth p-adic formal A-scheme X. In this section, we describe the picture that arises
if one does not fix a base prism (A, I). This distinction is analogous to that between geometric
and absolute étale cohomology in arithmetic, or that between singular cohomology and Deligne-
Beilinson cohomology in Hodge theory. The objects considered here are newer than those in §1;
consequently, some results are surely not optimal, and we have tried to indicate some natural
further directions in the exposition.

2.1. Definition and key examples. To begin, let us recall the definition of the absolute pris-
matic site (obtained roughly from Definition 1.5 by discarding (A, I)).

Definition 2.1 (The absolute prismatic site). Given a p-adic formal scheme X, its absolute pris-
matic site X∆ is the category of all bounded prisms (B, J) equipped with a map Spf(B/J)→ X,
topologized using the flat topology; write O∆, I∆ and O∆ for the sheaves obtained by remember-
ing B, J or B/J respectively. Write RΓ∆(X) := RΓ(X∆,O∆) � ϕ and RΓ

∆
(X) := RΓ(X∆,O∆)

for the resulting cohomology theories.

If there exists a perfect prism (A, I) and a map X → Spf(A), the natural map (X/A)∆ → X∆

is an equivalence, so Theorem 1.6 describes RΓ∆(X) in this case, e.g., RΓ∆(Spf(A)) ≃ A. At the
the other end, Spf(Zp)∆ is the opposite of the category of all bounded prisms. As this category
has no final object, the cohomology theory RΓ∆(Spf(Zp)) is potentially interesting; in fact, we
shall see in §3 that RΓ∆(Spf(Zp)) is closely related to the p-completed algebraic K-theory of Zp.

In this section, we shall be interested in the following objects on X∆:

Definition 2.2 (Crystals). Fix a p-adic formal scheme X. A prismatic crystal (resp. Hodge–Tate
crystal) E of vector bundles on X is given by an assignment

(B, J) ∈ X∆ 7→E(B) ∈ VectB := {finite projective B-modules}
(
resp. (B, J) ∈ X∆ 7→E(B) ∈ VectB/J

)
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that is compatible with base change in (B, J) ∈ X∆. A prismatic F -crystal of vector bundles on
X is given by a prismatic crystal E with an isomorphism ϕE : ϕ∗E [ 1

I
∆
] ≃ E [ 1

I
∆
] of O∆-modules.

Similarly, one has analogous notions of crystals of perfect (or just (p, I∆)-complete) complexes.

As in the relative case (Remark 1.13), there are realization functors carrying a prismatic F -
crystal E on X to a Zp-local system T (E) on the rigid generic fibre Xη, a vector bundle EdR
with flat connection on X, and an F -crystal Ecrys on X ⊗Zp Fp. The simplest examples of such
crystals are as follows:

Example 2.3 (Breuil-Kisin twists). For any prism (B, J), one has a naturally defined invertible
B-module B{1} given heuristically by

B{1} := J ⊗ ϕ∗J ⊗ ϕ2,∗J ⊗ ....

This B-module comes equipped with a natural isomorphism ϕB{1} : ϕ∗B{1} ≃ J−1⊗B{1}, so the
assignment (B, J) 7→ (B{1}, ϕB{1}) gives a prismatic F -crystal (O∆{1}, ϕO

∆
{1}) on Spf(Zp)∆

(and thus on X∆ for any X); we refer to this F -crystal as the (first) Breuil-Kisin twist. The
étale realization of O∆{1} is identified with the usual Tate twist Zp(1).

Example 2.4 (Gauss-Manin F -crystals). Fix a proper smooth map f : Y → X of p-adic
formal schemes. The formalism of relative prismatic cohomology yields an F -crystal Rf∗O∆ of
perfect complexes on X∆: its value on a prism (B, J) ∈ X∆ identifies with the relative prismatic
complex RΓ∆((Y ×X Spf(B/J))/B). Similarly, one obtains a Hodge–Tate crystal Rf∗O∆ of
perfect complexes on X∆. The formation of Rf∗O∆ (resp. Rf∗O∆) is compatible with the
aforementioned realization functors. Moreover, if Y = P1 × X, then the prismatic logarithm
[29] yields a natural isomorphism H2(Rf∗O∆) ≃ O∆{−1} of F -crystals, giving a geometric
description of the Breuil-Kisin twist.

2.2. Hodge–Tate crystals. In this subsection, we fix a perfect field k of characteristic p, and
write W (k)∆ = Spf(W (k))∆ for the absolute prismatic site of W (k). Our goal is to explicitly
describe the structure of Hodge–Tate crystals on W (k)∆; we then specialize this description to
the Gauss-Manin case to obtain geometric consequences. For the former, we have:

Proposition 2.5 (Sen theory, [76, 77, 29]). The ∞-category D̂crys(W (k)∆,O∆) of Hodge–Tate
crystals E of p-complete complexes on W (k)∆ can be identified as the ∞-category of pairs (E,Θ)
consisting of a p-complete object E ∈ D(W (k)) and an endomorphism Θ : E → E such that
Θp − Θ is locally nilpotent on H∗(E/p); we refer to such pairs (E,Θ) as Sen complexes and Θ
as the Sen operator.

The implicit functor carrying the crystal E to E ∈ D(W (k)) in Proposition 2.5 is given by
evaluating at the object of W (k)∆ obtained by base changing to W (k) the F∗

p-fixed points of the
q-de Rham prism (Remark 1.9).

Remark 2.6 (The stacky approach to prismatic crystals, [76, 29]). Proposition 2.5 is proven via
a stacky approach to prismatic cohomology, developed independently in [76] (with a precursor
in [75]) and [29]. Using a tiny amount of derived algebraic geometry [171], these works attach
a stack WCartX — the Cartier-Witt stack of X (called the prismatization X∆ in [76]) — on p-
nilpotent test rings to any p-adic formal scheme X. This stack comes equipped with an effective
Cartier divisor WCartHT

X ⊂ WCartX called the Hodge–Tate locus. These stacks are devised to
geometrize the study of crystals on the prismatic site: for quasi-syntomic X, there is a natural
⊗-identification of the ∞-category D̂crys(X∆,O∆) of crystals of (p, I∆)-complete complexes on
(X∆,O∆) with the quasi-coherent derived ∞-category Dqc(WCartX); similarly the ∞-category

D̂crys(X∆,O∆) of crystals of p-complete complexes on (X∆,O∆) identifies with the quasi-coherent
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derived∞-category Dqc(WCartHT
X ). Proposition 2.5 is then deduced from an explicit description

of WCartHT
W (k) as BG for a group scheme G/W (k) whose representations are identified with Sen

complexes.

Notation 2.7 (Diffracted Hodge cohomology). Let f : X → Spf(W (k)) be a smooth map of

p-adic formal schemes. Write (RΓ(X,Ω
/D
X),Θ) for the Sen complex corresponding to the Hodge–

Tate crystal Rf∗O∆ ∈ D̂crys(W (k)∆,O∆) via Proposition 2.5; we call RΓ(X,Ω
/D
X) the diffracted

Hodge complex of X.

The next result says that RΓ(X,Ω
/D
X) is a slightly twisted form of the Hodge cohomology

complex
⊕

iRΓ(X,Ωi
X [−i]), justifying the name “diffracted Hodge cohomology".

Theorem 2.8 (The Sen structure of Ω /D
X , [29]). Let X/W (k) be a smooth p-adic formal scheme.

Then the Sen complex (RΓ(X,Ω
/D
X),Θ) has a natural multiplicative increasing conjugate filtration

Fil•conj equipped with natural isomorphisms

griconj(RΓ(X,Ω
/D
X),Θ) ≃ (RΓ(X,Ωi

X/W (k))[−i],Θ = −i)

for all i.

Theorem 2.8 also shows that the assignment U 7→ RΓ(U,Ω
/D
U ) patches to a perfect complex

Ω
/D
X on X, justifying the notation RΓ(X,Ω

/D
X).

Remark 2.9 (Relation to classical Sen theory, [29]). Fix a proper smooth map f : X →
Spf(W (k)) of p-adic formal schemes; write K = W (k)[1/p], fix a completed algebraic closure
C/K, and write GK for the absolute Galois group of K. Classical results in p-adic Hodge theory
[209, 83] show that for each n ≥ 0, the C-semilinear GK -representation Hn(XC ,Qp) ⊗Qp C
comes equipped with a canonical semisimple endomorphism θn whose eigenvalue decomposition
yields the Hodge–Tate decomposition: we have

Hn(XC ,Qp)⊗Qp C ≃
n⊕

i=0

Hn−i(X,Ωi
X/W (k))⊗W (k) C(−i),

with θn acting by −i on the i-th summand on the right. Using the comparison isomorphisms
in Theorem 1.6, one can roughly regard Theorem 2.8 as an integral lift of this assertion: the
value of Rf∗O∆ on the Fontaine prism for OC recovers RΓ(XC ,Qp) ⊗Qp C on inverting p, the
Sen operator Θ from Theorem 2.8 induces the Sen operator θn on each Hn with the conjugate
filtration from Theorem 2.8 yielding the Hodge–Tate decomposition. It was a pleasant surprise
to the author that the Sen operator admits a nice integral form.

Remark 2.10 (Drinfeld’s refinement of Deligne-Illusie, [76, 29]). In the setup of Theorem 2.8,

there is a natural identification RΓ(X,Ω
/D
X)/p ≃ RΓdR(Xk) compatible with the conjugate fil-

tration via Theorem 1.6. Drinfeld observed that the Sen operator then yields interesting conse-
quences for RΓdR(Xk). More precisely, there is a Z/p-grading on RΓdR(Xk) corresponding to
the generalized eigenspace decomposition for the Sen operator Θ, and the i-th conjugate graded
piece grconji ≃ RΓ(Xk,Ω

i
Xk

)[−i] contributes only to the generalized eigenspace for Θ = −i by
Theorem 2.8. In particular, if dim(Xk) < p, the conjugate filtration on RΓdR(Xk) splits canoni-
cally. This gives a conceptual new proof — in fact a refinement — of the seminal Deligne-Illusie
result [73] on Hodge-to-de Rham degeneration (itself inspired by [141, 95, 83]). As in [73], one
only needs a W2(k)-lift of Xk to obtain the Sen operator — and thus the Z/p-grading — on
RΓdR(Xk); this follows from an analysis of WCartHT

W2(k)
similar to Proposition 2.5. The results
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discussed in this paragraph refine those in [2] by one cohomological degree; another stacky proof
was recently found in [162].

For X/W (k) a smooth formal scheme without any constraints on dim(Xk), one now obtains
a residual nilpotent operator Θ + i on the generalized Θ-eigenspace RΓdR(Xk)i ⊂ RΓdR(Xk)
corresponding to the eigenvalue −i; this operator seems to be a new piece of structure that
awaits further investigation.

2.3. The Nygaard filtration. The absolute prismatic cohomology2 RΓ∆(X) of a p-adic for-
mal scheme X carries an important filtration Fil•N , called the Nygaard filtration. This filtration
plays roughly the same role for prismatic cohomology as the Hodge filtration does for de Rham
cohomology. Moreover, for applications to algebraic topology (such as Theorem 3.8 below), it
is critical to understand this filtration. Its defining feature is that the Frobenius ϕ on RΓ∆(X)

carries FiliNRΓ∆(X) to RΓ(X∆, I
i
∆
) for all i. The relative version of this filtration is well under-

stood, at least on graded pieces, thanks to the isomorphism (Isog) and the Beilinson t-structure
(see [39, Proposition 5.8]). For the absolute version, one has a similar description:

Theorem 2.11 (The Nygaard fibre sequence, [29]). For any p-adic formal scheme X and any
integer i ≥ 0, there are natural fibre sequences

griNRΓ∆(X)→ Filconji RΓ(X,Ω
/D
X)

Θ+i
−−→ Filconji−1RΓ(X,Ω

/D
X) (Nyg)

and

RΓ
∆
(X){i} := RΓ(X∆,O∆{i})→ RΓ(X,Ω

/D
X)

Θ+i
−−→ RΓ(X,Ω

/D
X) (HT)

with the convention that Filconj<0 = 0.

Remark 2.12 (Calculations via the Nygaard fibre sequence). The sequence (Nyg) is quite useful
for calculations of the Nygaard filtration. For instance, in conjunction with the THH(−) variant
of Theorem 3.2 below (see Remark 3.3 as well), one may use (Nyg) to calculate π∗THH(R;Zp)
for a p-completely smooth OK -algebra R, where K is a discretely valued extension of Qp with
perfect residue field; this recovers calculations of [54, 163]. Comparing (Nyg) and (HT) also
quantifies the failure of the Frobenius map ϕ : griNRΓ∆(X)→ RΓ

∆
(X){i} to be an isomorphism

in terms of coherent cohomology, thus giving a new mechanism to study the so-called Segal
conjecture for THH.

Remark 2.13 (View Spec(Z) as a curve). Several results in mathematics have been inspired
by the seemingly nonsensical idea that Spec(Z) is a curve over some non-existent base F. In
p-adic arithmetic geometry, this idea can sometimes lead to useful (and testable!) predictions in
conjunction with the following related heuristics:

• Perfectoid rings (e.g., finite fields) are formally étale over F.
• Topologically finite type regular p-complete Zp-algebras R are smooth over F of relative

dimension dim(R) (the Krull dimension).

We briefly discuss some examples of such predictions. First, if R is a perfectoid ring, then
the p-completion of LR/Zp

identifies with R[1], which is consistent with the prediction of a
transitivity triangle of cotangent complexes for F → Z → R and the heuristics above; this was
already essentially observed in [84].

Next, Theorem 2.11 was partially conceived based on these heuristics: the fibre sequence
(Nyg) is obtained as the associated graded of a fibre sequence of filtered complexes allowing one

2The complex RΓ∆(X) as defined in Definition 2.1 works well under mild assumptions on the singularities
of X (e.g., for lci X). In general, one modifies the definition of RΓ

∆
(X) by a categorical procedure involving

quasi-syntomic descent and animation; we do not elaborate on this further in this survey and refer to [11, 29] for
more.
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to compute the absolute Nygaard filtration in terms of the relative one; the underlying fibre
sequence of complexes for the latter was guessed based on the analogy between Z and a smooth
curve over a perfectoid ring.

Next, if one views the Hodge–Tate locus WCartHT
X ⊂ WCartX of the Cartier-Witt stack

(Remark 2.6) as a version of the Hodge stack (i.e., the classifying stack of the tangent bundle)
over F, then the second heuristic above predicts that WCartHT

X is well behaved if X is regular,
e.g., the map π : WCartHT

X → X should be a gerbe, and Rπ∗ must have coherent cohomological
dimension at most dim(X); the first of these predictions is true, while the second is true at least
in dimension 1 ([29]). Relatedly, there are some recently defined candidate notions of differential
forms relative to F ([198, 128, 80]); it would be interesting to find a direct connection between
the stack WCartHT

X and these objects.
Finally, let us remark that the philosophy discussed in this remark also featured in Scholze’s

report for the previous ICM [206], and has paid amazing dividends in geometrizing the local
Langlands correspondence in recent years [207, 205, 90].

Remark 2.14 (p-adic Tate twists, [39, 42]). An early observable extracted from absolute pris-
matic cohomology was a good notion of p-adic Tate twists Zp(i)(−) in mixed characteristic: these
are functors on p-adic formal schemes X defined by a fibre sequence

Zp(i)(X)→ FiliNRΓ∆(X){i}
ϕ−1
−−→ RΓ∆(X){i} (Syn)

for all i ≥ 0. These functors are often called syntomic complexes for mixed characteristic rings
as they extend those in characteristic p considered in [181, 140]. One can also regard Zp(i)(−)
as as a form of étale motivic cohomology in weight i (see the forthcoming Remark 3.6). In fact,
for formally smooth OK-schemes with K/Qp finite, the syntomic complexes Zp(i)(−) agree with
the p-adic étale Tate twists of Geisser-Sato-Schneider [103, 200, 199] defined by glueing motivic
complexes on the generic and special fibres [36]. We refer the reader to [39, 11, 42, 29] for more
on these syntomic complexes.

Remark 2.15 (p-adic Picard and Brauer groups via coherent cohomology). The syntomic com-
plex from Remark 2.14 in weight 1 has the following relationship with Gm ([39, Proposition
7.17]), as motivic intuition predicts: for any p-adic formal scheme X, we have

Zp(1)(X) ≃ RΓ(Xet,Gm)∧[−1],

where the completion is p-adic. Plugging this into the sequence (Syn) gives a fibre sequence

RΓ(Xet,Gm)∧[−1]→ Fil1NRΓ∆(X){1}
ϕ−1
−−→ RΓ∆(X){1} (Lef)

that can be regarded as a weak p-adic analog of the Lefschetz (1, 1)-theorem, e.g., it enables one
to compute the p-completion of Pic(X) or Br(X) in terms of absolute prismatic cohomology, and
thus ultimately via coherent cohomology.

The idea described in the previous paragraph inspired the eventual proof of (a generalization
of) Gabber’s purity conjectures for Picard and Brauer groups in [63]. In a global direction, Cotner
and Zavyalov have recently used (Lef) to prove the vanishing of Picτ (X) for complete intersection
surfaces X ⊂ PN in characteristic p (in progress), settling a question left open since [109]. In
a different direction, the sequence (Lef) can be used to prove that R 7→ RΓ(Spf(R)et,Gm)∧

commutes with sifted colimits in R (in the p-complete world); this allows one to reduce general
questions about RΓ(Spf(R)et,Gm)∧ to particularly nice rings, and played an important role in
Bragg and Olsson’s work [58] on finiteness results for higher direct images of finite flat group
schemes along projective morphisms in characteristic p.
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2.4. Galois representations. In this subsection, fix a discretely valued field K/Qp with perfect
residue field k. We discuss the relationship of prismatic F -crystals over X = Spf(OK) and Galois
representations of GK = Gal(K/K).

For a prime ℓ 6= p, the notion of unramifiedness for Zℓ- or Qℓ-representations of GK is a Galois-
theoretic analog of the property of having “good reduction” for varieties over K: viewed as an
ℓ-adic local system on Spec(K), an unramified GK -representation is exactly one that extends
to a local system over Spf(OK). In contrast, for Zp- or Qp-representations, unramifiedness
is too restrictive: even the cyclotomic character — or any nonzero H i(YK ,Qp) with Y/OK

smooth projective and i > 0 — is not unramified. To remedy this, Fontaine invented [93]
the notion of crystalline GK-representations; it has been stunningly successful at capturing the
desired “good reduction” intuition. On the other hand, any prismatic F -crystal E on Spf(OK)
gives rise to a GK -representation T (E) as well an F -crystal Ecrys on k (see Definition 2.2 and
following discussion); these have the same rank, so one may view Ecrys as “a special fibre” of
T (E), suggesting that the prismatic F -crystal E itself should be viewed as a witness for a “good
reduction” of T (E). The following theorem shows that these two perspectives on good reduction
for p-adic representations coincide:

Theorem 2.16 (Prismatic F -crystals and crystalline GK -representations, [43]). The étale real-
ization functor E 7→ T (E) gives an equivalence of the category of prismatic F -crystals on Spf(OK)
with the category of Zp-lattices in crystalline Qp-representations of GK .

Thus, prismatic F -crystals on Spf(OK) provide a reasonable notion for “local systems on
Spf(OK) with Zp-coefficients”.

Remark 2.17. Theorem 2.16 can be viewed as a refinement of Kisin’s classification of crys-
talline GK -representations [146]; in particular, this refinement attaches prismatic meaning to
the integrality properties of a somewhat mysterious connection in [146]. An alternative proof of
Theorem 2.16 was since given in [78], relying on the theory in [166]; see also [230].

Various results in the deformation theory of GK -representations (e.g., [147, 81]) indicate it
would be fruitful to extend the notion of crystalline GK -representations to torsion coefficients
or even to the derived category. However, as the property of being crystalline is essentially a
rational concept, it is not clear how to proceed. Theorem 2.16 points to a way forward, e.g.,
perhaps prismatic F -crystals with O∆/p

n-coefficients are a reasonable candidate for crystalline
Z/pn-representations? While satisfactory for describing Zp-local systems, this approach does
not quite lead to a reasonable derived theory as the definition of a prismatic F -crystal (E , ϕE )
is not quantitative enough: the isomorphism ϕE does not come equipped with bounds on its
poles/zeroes, leading to certain poorly behaved Ext-groups. Instead, the correct objects seem
to be perfect complexes on an enlargement of the Cartier-Witt stack WCartOK

(Remark 2.6)
constructed by Drinfeld [76]; we describe one piece of evidence for this correctness assertion in
the rest of the subsection.

Write Dϕ
perf(WCart+OK

) for the ∞-category of perfect complexes on the stack Spf(OK)∆
′′

from [76, §1.8]; let us call such objects prismatic F -gauges on OK
3. Given such an F -gauge

E , write RΓϕ(WCart+OK
, E) for its global sections. To a first approximation, a prismatic F -

gauge E consists of a prismatic F -crystal E of perfect complexes on WCartOK
equipped with the

additional datum of a Nygaard-style filtration on RΓ(WCartOK
, E); in fact, this can be made

precise if OK is replaced by a qrsp ring (work in progress with Lurie). The prismatic F -crystals
from Examples 2.3 and 2.4 have natural lifts to prismatic F -gauges. The promised piece of
evidence is the following result:

3The definition of WCart+
OK

in [76] (denoted Σ′

OK
there) is inspired by the Fontaine–Jansen theory [94] of

F -gauges in crystalline cohomology.
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Theorem 2.18 (A Lagrangian property, [30]). Assume K is unramified. Let E ∈ Dϕ
perf(WCart+OK

)

be a prismatic F -gauge with O-linear dual D(E) and étale realization T (E) in an appropriate de-
rived category of continuous Zp-representations of GK . Then the natural map

RΓϕ(WCart+OK
, E)→ RΓ(GK , T (E))

is the exact annihilator of the corresponding map of local Tate duals, i.e., there is a natural fibre
sequence

RΓϕ(WCart+OK
, E)→ RΓ(GK , T (E))→

(
RΓϕ(WCart+OK

,D(E){1}[2])
)∨

(Lag)

where (−)∨ = RHomZp(−,Zp) on the rightmost term.

Theorem 2.18 is work in progress with Lurie [30]; the statement is likely not quite optimal yet
(e.g., we hope to show it for ramified K as well).

Remark 2.19 (The crystalline part of Galois cohomology). Given a Qp-representation V of
GK , Bloch–Kato constructed [51, §3] the “crystalline part” H1

f (GK , V ) ⊂ H1(GK , V ) of the
Galois cohomology of V , and proved that the crystalline parts for V and V ∨(1) are orthogonal
complements under the Tate duality pairing. When V is crystalline, Theorem 2.18 may be viewed
as an integral and cochain-level variant of this statement. Such integral refinements have been
formulated previously in special cases (e.g., [102]); it would be interesting to compare them to
Theorem 2.18.

Remark 2.20 (The analogy with 3-manifolds). In the Mazur(-Mumford) analogy between num-
ber rings and 3-manifolds [180, 158], the scheme Spec(K) corresponds to a Riemann surface Σ
while Spf(OK) corresponds to a 3-manifold M with boundary ∂M = Σ. A standard topological
result states that the space Loc(Σ) of local systems on Σ has a symplectic structure induced by
Poincaré duality on Σ, and the restriction map Loc(M)→ Loc(Σ) is Lagrangian (see [96, Propo-
sition 3.27]). The sequence (Lag) may be viewed as an arithmetic analogue of the infinitesimal
form of this result, with the role of a local system on Spf(OK) played by prismatic F -gauges; in
fact, this picture motivated the discovery of Theorem 2.18.

Remark 2.21 (Lichtenbaum-Quillen for OK). The Breuil-Kisin prismatic F -gauges O{i} com-
pute the p-adic Tate twists from Remark 2.14, i.e, we have natural identifications RΓϕ(WCart+OK

,O{i}) ≃

Zp(i)(OK). Using the vanishing of Zp(i)(−) for i < 0, the sequence (Lag) then implies that the
natural map

Zp(i)(OK)→ RΓ(GK ,Zp(i))

is an equivalence for i ≥ 2. Under the relationship of either side to the étale K-theory of OK

and K as well as the localization sequence in K-theory, this result was essentially known ([119]);
nevertheless, Theorem 2.18 provides a different conceptual explanation.

3. Algebraic K-theory

Quillen’s algebraic K-theory [193] functor attaches a space (in fact, a spectrum) K(X) to a
scheme X, generalizing the construction of the Grothendieck group K0(X); the study of these
invariants and their generalizations is an important pursuit in modern algebraic topology. In
fact, its impact extends far beyond algebraic topology: the higher K-groups Ki(X) feature
prominently in some of the deepest conjectures in arithmetic geometry. In this section, we report
on some recent progress in understanding the structural features of the p-completed algebraic K-
theory spectrum K(R;Zp) of a p-complete ring R, with an emphasis on connections to prismatic
cohomology; the case of ℓ-adic completions for ℓ 6= p is classical, going back to work of Thomason
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[221], Suslin [217] and Gabber [98]. More complete recent surveys of material covered in this
section include [120, 121, 179].

In classical algebraic topology, combining the Atiyah-Hirzeburch spectral sequence with Bott
periodicity gives the following structure on the complex K-theory Ktop(X) of a (reasonable)
topological space X:

The K-theory spectrum Ktop(X) admits a natural filtration
with gri identified with the shifted singular cohomology complex
RΓ(X,Z)[2i].

(FiltK)

In recent work, motivated in part by conjectures of Beilinson [13] and Hesselholt, a p-adic ana-
log of (FiltK) for (étale sheafified) algebraic K-theory of p-complete rings has been established,
with the role of singular cohomology now played by prismatic cohomology. To explain this bet-
ter, recall that algebraic topologists often study algebraic K-theory through a “cyclotomic trace”
map

Tr : K(−)→ TC(−),

where TC(−) is the topological cyclic homology functor; this invariant of rings was invented by
contemplating Hochschild homology over the sphere spectrum, goes back to [55], and was recently
given a simple ∞-categorical definition in [186]. The trace map is a powerful calculational tool
(see [117, 118, 119, 104] for some successes), and there are two main reasons for this. First, TC(−)
is built, via a rather elaborate homotopical procedure, from objects of coherent cohomology
(namely, differential forms) and is thus potentially more computable than K-theory. Secondly,
the trace map turns out to yield a very good approximation of K-theory in various situations;
in our p-adic context, the state of the art is the following:

Theorem 3.1 (p-adic étale K-theory is TC, [66, 65]). For p-complete rings R, the trace map
K(R;Zp)→ TC(R;Zp) identifies the target with the p-completed étale sheafified K-theory of R.
Moreover, the étale sheafification is not necessary in sufficiently large degrees if R satisfies mild
finiteness conditions.

Via Theorem 3.1, the following result can be viewed as a p-adic analog of the Atiyah-Hirzebuch
part of (FiltK):

Theorem 3.2 (The motivic filtration on étale K-theory, [39, 11]). As a functor on p-complete
rings, there is a natural “motivic” filtration on TC(−;Zp) with grimotTC(−;Zp) naturally identi-
fied with the shifted syntomic complex Zp(i)(−)[2i] from Remark 2.14.

Remark 3.3 (Variants for THH and cousins). Let us briefly recall the [186] approach to cal-
culating TC. For a commutative ring R, the p-completed topological Hochschild homology
spectrum THH(R;Zp) comes equipped with a natural action of the circle S1 and a certain
Frobenius map. One can then define auxiliary invariants TC−(R;Zp) := THH(R;Zp)

hS1

and
TP(R;Zp) := THH(R;Zp)

tS1

together with two natural maps can, ϕ : TC−(R;Zp)→ TP(R;Zp).
The paper [186] then proves there is a natural fibre sequence

TC(R;Zp)→ TC−(R;Zp)
ϕ−can
−−−−→ TP(R;Zp), (TC)

thereby yielding a clean modern construction of TC(R;Zp).
The construction of the motivic filtration on TC(−;Zp) in Theorem 3.2 is sufficiently flexi-

ble to ensure that similar ideas also yield compatible “motivic filtrations” on TC−(R;Zp) and
TP(R;Zp). In fact, [39] lifts the sequence (TC) to a filtered fibre sequence that recovers the se-
quence (Syn) on associated graded pieces, up to Nygaard completions. In particular, one recovers
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(Nygaard completed) absolute prismatic cohomology as the associated graded of a filtration on
TP.

Note that while THH(−) and cousins are non-commutative invariants (i.e., can be defined for
arbitrary stable ∞-categories), the construction of the motivic filtration crucially uses algebraic
geometry; it is unclear if analogous filtrations exist even in slightly more general settings, e.g.,
for TC(C) for a symmetric monoidal stable ∞-category C.

Remark 3.4 (Comparison with the Hodge filtration on classical Hochschild homology). The
topological Hochschild homology of a commutative ring R is defined as THH(R) := HH(R/S),
i.e., it is the Hochschild homology relative to the sphere spectrum S. From this optic, Theorem 3.2
and the variants in Remark 3.3 are analogs of known constructions in the Hochschild homology
of ordinary rings. For instance, given a smooth algebra R over a commutative ring k, there is
a natural filtration on HC−(R/k) := HH(R/k)hS

1

with gri identified with the Hodge filtration
level FiliHodgeΩ

•
R/k[2i] (see [167, §5.1.2] and [228] for characteristic 0, and [39, §5.2] and [9] in

general). Specializing to k = A for a Fontaine prism (A, I), this allows one to recover crystalline
and de Rham cohomology — but not étale cohomology of the generic fibre — as graded pieces
of a natural filtration on classical Hochschild homology and its variants. Theorem 3.2 and the
variants in Remark 3.3 thus contain the surprise that working relative to the sphere spectrum
permits one to see the étale cohomology of the generic fibre as well: one can in fact recover
prismatic cohomology.

Remark 3.5 (Origin story). Let (A, I) be a Fontaine prism (Example 1.4). Write Acrys for
the ring obtained by formally adjoining divided powers of I to A in the p-complete setting.
Given a smooth proper scheme X over OC = A, its absolute crystalline cohomology RΓcrys(X)
is a perfect complex of Acrys-modules with a Frobenius structure. The relation between the
theory of Breuil modules [59] and Breuil-Kisin modules [146] in Galois representation theory
strongly suggested that RΓcrys(X) ought to descend naturally along A → Acrys. Separately,
Hesselholt had calculated [116] that π0TP(OC ;Zp) equals A. Comparing this to the known fact
that π0HP(OC ;Zp) equals Acrys (up to a completion), it was natural to speculate that for any
X/OC as above, one could find a filtration on TP(X;Zp) whose graded pieces realize the desired
descent of RΓcrys(X) along A→ Acrys; this eventually led to the TP(−)-variant of Theorem 3.2
and gave a construction of prismatic cohomology over the Fontaine and Breuil-Kisin prisms [39,
§11]. In fact, as TP(−;Zp) is independent of the base OC , this also gave the first construction
of absolute prismatic cohomology [39, §7.3].

Remark 3.6 (Étale motivic cohomology). We briefly explain why Theorem 3.2 can be viewed
as a p-completed and étale sheafified analog of the filtration of algebraic K-theory by motivic
cohomology (defined via Bloch’s higher Chow groups [48]). Recall that the latter geometric
motivic filtration was conjectured to exist in [13], and established in many cases, including most
smooth cases, in [52, 97, 227, 159]; see [129] for a clean construction. It is thus natural to
conjecture that the p-completed étale sheafification of this geometric motivic filtration identifies
with the one in Theorem 3.2. For smooth varieties over a perfect field k of characteristic p,
this is indeed the case by combining [106] and [39]. In mixed characteristic, while we do not
know the full story, a positive answer at the associated graded level follows from the comparison
result from [36] mentioned in Remark 2.14. Let us also remark that [168] has established the
expected relationship of Milnor K-theory (extended as in [145]) and the (i, i)-part of the syntomic
complexes, giving a p-adic analog of [185, 225].

The above discussion raises a natural question: as Theorem 3.2 applies to any p-complete ring,
can the domain of definition of the geometric motivic filtration of the previous paragraph also be
extended to all p-complete rings? In particular, is there a meaningful geometric motivic filtration
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on K(R) for a non-reduced p-complete ring R? Thanks to a forthcoming result of Mathew on
glueing the filtration from Theorem 3.2 with the étale sheafified Postnikov filtration on K(1)-
local K-theory, there is a variant of Theorem 3.2 for any ring, so one may even reasonably ask
these questions for all rings.

Remark 3.7 (Constructing the motivic filtration via quasisyntomic descent). The construction
of the motivic filtration in Theorem 3.2 is quite different from that of the geometric motivic
filtration mentioned in Remark 3.6. Indeed, the general case of Theorem 3.2 is proven in [11] (see
also [29]) by reducing (via animation as in Remark 1.14) to the quasisyntomic case treated in [39].
The latter has two essential ingredients. The topological ingredient is Bökstedt’s fundamental
periodicity result [53] that π∗THH(Fp) = Fp[u] for a degree 2 class u; see [153] for a quick modern
proof based on properties of the dual Steenrod algebra, [91] for an overview of other approaches,
and [120] for a deduction of Bott periodicity from Bökstedt periodicity. The new algebraic input
is the flat descent property ([19, 39]) of the cotangent complex, used in conjunction with the
very perfectoid idea (going back in spirit to [95]) that working with certain infinitely ramified
covers can “discretize” constructions involving differential forms in the p-adic world.

As Remark 3.5 explains, the first construction of absolute prismatic cohomology was through
Theorem 3.2 and variants. However, thanks to the alternative and more direct construction
via the prismatic site, one can now use Theorem 3.2 as a tool to study K-theory via prismatic
cohomology. For instance, this approach gives the following result:

Theorem 3.8 (The odd vanishing theorem, [42]). For odd i, the functor πiK(−;Zp) is quasi-
syntomic locally 0 on the category of quasi-syntomic rings.

Theorem 3.8 can be regarded as a variant of the Bott periodicity part of (FiltK) in the
algebraic setting: while periodicity is known to be false due to geometric phenomena, we still
have vanishing in odd degrees. The proof in [42] relies on André’s flatness lemma [3], and it
would be interesting to find a more explicit description of the necessary covers.

Remark 3.9 (Further relations to p-adic arithmetic geometry). Another application of prismatic
cohomology to K-theory was proving that LK(1)K(R) ≃ LK(1)K(R[1/p]) for any associative ring
R ([27]). This equality is a K-theoretic avatar of the étale comparison from [42] and was proved in
[27] via explicit calculations in prismatic cohomology; it has since been reproved and significantly
extended using purely homotopy-theoretic methods in [156].

In the reverse direction (and preceding most of the developments reported in this paper),
[49] used results from topological cyclic homology [105] to prove the infinitesimal portion of
the p-adic variational Hodge conjecture in the unramified case. The extension to the ramified
case was recently obtained in [11] as a consequence of a purely K-theoretic assertion called the
Beilinson fibre square. Using this square and Theorem 3.2, [11] also gave a simple description
of the rationalized syntomic complexes Zp(i)(−)[1/p] via derived de Rham cohomology. This
description is quite useful as derived de Rham cohomology is more computable in practice than
prismatic cohomology; in fact, this description formed an essential ingredient in the classification
of crystalline representations given in Theorem 2.16.

The connections discussed above have mostly concerned relative prismatic cohomology. It
seems likely that a better understanding of absolute prismatic cohomology (as in §2) will lead to
more refined applications. For instance, [164] recovers rather conceptually the highly non-trivial
calculation [119] of the K-theory of local fields K/Qp by exploiting certain covers of the final
object in the absolute prismatic topos of OK coming from Breuil-Kisin prisms. Other related
observations are discussed in Remark 2.12 and Remark 2.21.
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4. Commutative algebra and birational geometry

The Kodaira vanishing theorem (as well as the generalization by Kawamata–Viehweg) is one
of the most important foundational results in complex algebraic geometry; it is especially useful
in birational geometry. Its (original) proof relies crucially on Hodge theory, and thus no longer
applies in positive/mixed characteristic. In fact, the result is known to be false in those settings
[195]; alongside the non-availability of resolution of singularities in dimensions ≥ 4, this is a ma-
jor obstacle to progress in birational geometry in postive/mixed characteristic. About a decade
ago, Schwede observed [208] that methods from F -singularity theory in positive characteristic
commutative algebra can sometimes be used as a substitute for the use of vanishing theorems in
positive characteristic algebraic geometry; this eventually led to significant progress in birational
geometry in positive characteristic in dimension ≤ 3, such as [113]. In recent years, input from
p-adic Hodge theory has made it possible to prove similar vanishing theorems in mixed charac-
teristic algebraic geometry; this has led to solutions of longstanding questions in commutative
algebra and also to progress in the minimal model program in mixed characteristic.

4.1. Vanishing theorems in commutative algebra. F -singularity theory is the study of
singularities in positive characteristic via the behaviour of the Frobenius endomorphism. It was
born with a classical theorem of Kunz [155] proving that a noetherian Fp-algebra is regular
exactly when its Frobenius endomorphism is flat. This subject was systematically developed by
Hochster–Huneke and several others over many decades; see [125] as well as the survey [218].
An important landmark in the subject was a Cohen–Macaulayness result of Hochster–Huneke
[126]; see [130] for a fairly recent survey. The following recent result extends this to mixed
characteristic:

Theorem 4.1 (Cohen–Macaulayness of R+, [25, 35]). Let R be an excellent noetherian domain.
Let R+ be the integral closure of R in an algebraic closure of its fraction field. Then the p-adic

completion R̂+ is Cohen–Macaulay over R.

Remark 4.2 (A concrete formulation). Despite involving the large ring R+, Theorem 4.1 is a
finitistic statement whose essential content is the following: if R is local and x := {p, x1, ..., xd}
is a system of parameters, then any relation on x becomes a linear combination of the trivial
Koszul relations in a finite extension S of R. This formulation explains why Theorem 4.1 can
be viewed as a “vanishing theorem up to finite covers”: it says that the local cohomology classes
on R coming from the potentially non-trivial relations can be annihilated by passing to finite
extensions R→ S. Moreover, it also highlights the essential difficulty: one must construct finite
extensions of R from the unwanted relations.

Remark 4.3 (Weakly functorial Cohen–Macaulay algebras). André’s recent resolution [3, 4] of
Hochster’s direct summand conjecture led to a lot of activity in mixed characteristic commutative
algebra, including [23, 175, 176, 114, 211, 178]; see [177] for a recent survey. In particular, André
[6] and Gabber [99] proved the existence of “weakly functorial Cohen–Macaulay algebras” in
the key remaining mixed characteristic case (via rather indirect constructions). This existence
result implies many of the “homological conjectures” in commutative algebra (a notable exception
being Serre’s intersection multiplicity conjecture); see [124, 5, 122]. Prior to André and Gabber’s
work, this existence was known ([123, 115]) only in dimension ≤ 3. Theorem 4.1 now yields
an alternative and extremely simple construction of such weakly functorial Cohen–Macaulay
algebras in mixed characteristic: we may simply use R̂+.

Remark 4.4 (What was known?). Theorem 4.1 is straightforward in dimension ≤ 2, and is the
main result of [126] in the positive characteristic case. In mixed characteristic, Theorem 4.1 is
new even in dimension 3: it was previously known [115] in dimension ≤ 3 only in the almost
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category (in the sense of Faltings’ almost mathematics [83, 100]); see [25, Remark 1.9] for an
explanation of prior expectations.

Remark 4.5 (Splinters). A noetherian commutative ring R is called a splinter if it satisfies
the conclusion of the direct summand conjecture, i.e., it splits off as a module from every finite
extension. This class of singularities, formally introduced in [172], has recently received renewed
attention (e.g., [173, 10, 70, 7]). An external reason to care about this notion is a major conjecture
in F -singularity theory ([126, page 85], [127, page 640]): splinters in characteristic p are expected
to be the same as strongly F -regular rings (see [174, end of §3] for a discussion). This conjecture
is known for Q-Gorenstein rings [214]. One consequence of this conjecture is that characteristic
p splinters are derived splinters, i.e., they satisfy a derived version of the splinter condition for
any proper surjective map and are thus analogous to rational singularities. This consequence
was proven unconditionally in [20]. Methods from [31] used in proving Theorem 4.1 give the
same result in mixed characteristic. In conjunction with Theorem 4.1 itself, one learns that that
any mixed characteristic splinter is Cohen–Macaulay and has rational singularities in the sense
of [152]; it would be interesting to prove the latter (even just after inverting p) without using
p-adic Hodge theory.

Remark 4.6 (Ingredients in the proof of Theorem 4.1). Using essentially elementary methods,
[35] reduces Theorem 4.1 to the statement that R+/p is Cohen–Macaulay over R/p, which is
proven in [25]. Despite the simple reformulation highlighted in Remark 4.2, the proof relies on
two major theoretical inputs. The first is prismatic cohomology (Theorem 1.6), which gives a
substitute for the Frobenius operator in mixed characteristic; this allows one to begin mimicking
the cohomological proof of [126] given in [131] in mixed characteristic at the cost of replacing
rings with derived rings. The second is the p-adic Riemann–Hilbert functor from Theorem 5.1
below, applied to certain perverse Fp-sheaves on the generic fibre Spec(R[1/p]) arising from finite
covers, to facilitate the induction on dimension strategy of [131]. This proof is not effective, and
it might be interesting to explicitly constructed the relevant covers in low dimensional examples,
such as cones over smooth projective curves and surfaces over a p-adic discrete valuation ring.

4.2. Birational geometry. There is a well-known analogy between projective geometry and
local algebra, e.g., the global cohomological properties of a projective variety X ⊂ Pn are
faithfully reflected in the local cohomological properties of its affine cone Y ⊂ An+1 over X near
the vertex 0 ∈ Y . This analogy suggests that Theorem 4.1 ought to have a global variant; this
is indeed the case, and the result can be summarized as follows:

Theorem 4.7 (Kodaira vanishing up to finite covers, [25]). Let V be a p-adic discrete valuation
ring (e.g., V = Zp). Let X/V be a flat proper scheme equipped with a semiample and big line
bundle L. Then any p-power torsion class in H∗(X,L−1), H∗(X,OX ), or H∗(X,L) can be
annihilated by pullback to a finite cover of X.

Analogous results hold true in the relative setting [25], and were previously known in charac-
teristic p ([126] for L ample, and [20] in general).

Remark 4.8 (Relation to Kodaira vanishing). The classical Kodaira vanishing theorem says
that

H<dim(Y )(Y,M−1) = 0

for a smooth projective variety Y/C with ample line bundle M . This assertion is false in char-
acteristic p ([195]) and mixed characteristic (by Totaro, see [35, Footnote 1]). The L−1 case of
Theorem 4.7 can be viewed as an “up to finite covers” variant of the Kodaira vanishing theorem
that is true in mixed characteristic: spurious cohomology classes — ones that should not be
there if Kodaira vanishing were true for (X,L) — can be annihilated by passing to finite covers.
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This “up to finite covers” perspective was pioneered in characteristic p by [215] in the wake of
[126].

For completeness, we remark that an “up to finite covers” version of the more general Kodaira–
Akizuki–Nakano vanishing theorem also holds true in the setting of Theorem 4.7: in fact, the
cases not covered by Theorem 4.7 are much easier as sheaves of differential forms themselves
become p-divisible on passage to finite covers.

Remark 4.9 (Relation to the p-adic Poincaré lemma). The assertion in Theorem 4.7 for H∗(X,OX ),
with finite covers weakened to alterations, was previously known by [14, 22]; in fact, it formed
the key geometric ingredient in the proof of the p-adic Poincaré lemma in [14]. Curiously, while
the p-adic Poincaré lemma was used in [14] to give a new proof of the fundamental de Rham
comparison conjecture in p-adic Hodge theory, the proof of Theorem 4.7 uses the full strength
of modern advances in p-adic Hodge theory (such as the primitive comparison theorem of [203]
for arbitrarily singular varieties).

We end this section with an application of Theorem 4.7 to birational geometry in mixed
characteristic. Briefly, it is possible to use this variant of Kodaira vanishing in a critical lifting
argument in an inductive proof of the existence of flips in dimension 3, following [113] (which
goes back to ideas of Shokurov). Combining this with Witaszek’s recent mixed characteristic
analog [229] of Keel’s semiampleness theorems [144], it became possible to emulate the ideas of
[113, 44, 45, 69] (amongst others) to show the following:

Theorem 4.10 (Minimal model program in mixed characteristic, [35, 219]). One can run the
minimal model program for arithmetic threefolds whose residue characteristics are > 5.

Theorem 4.10 uses ideas from [46, 178] and extends [220, 142]. Global geometric applications
of (the ideas going into) Theorem 4.10 can be found in [35, 219, 112, 216, 231].

Remark 4.11 (The +-stable sections). We informally discuss a new notion introduced in the
proof of Theorem 4.10 in a simple case, and state a question; see [35, §4] or [219, §3.2] for
the general notion. For reasonable mixed characteristic rings R, one can define a submodule
B0(R,ωR) ⊂ ωR of the dualizing module ωR: it is the submodule of elements that lift to all
alterations of Spec(R) under the trace maps. If R is regular, then B0(R,ωR) = ωR, so in
general B0(R,ωR) is an invariant measuring the singularities of R. Analogous invariants exist
in characteristic 0 (given by the Grauert–Riemenschneider sheaf [157, Example 4.3.12]) and
characteristic p (given by the parameter test submodule [46, §2.5 & Corollary 3.4]). Basic
properties of B0(R,ωR), such as its behaviour under alterations or restriction to divisors, play a
key role in the proof of Theorem 4.10. However, a fundamental question about these invariants
remains open: does their formation commute with localization? Due to the infinite intersection
implicit in the definition of B0(R,ωR), this question is delicate. Nevertheless, a positive answer
(which we expect) would have several geometric applications. As evidence for a positive answer,
using Theorem 5.4, one can show the claim for inverting p: the localization B0(R,ωR)[1/p] agrees
with the Grauert–Riemenschneider sheaf of Spec(R[1/p]) (work in progress as a sequel to [35]).
We refer to [112, §8] for more discussion of this question.

5. p-adic Riemann–Hilbert

The Riemann–Hilbert problem has a rich history, going back at least to Hilbert’s 21st problem.
In modern terms, it asked if any C-local system on a smooth complex algebraic curve X can
be realized as the solution system of a flat vector bundle on X with regular singularities at ∞;
this variant was (precisely formulated and) solved by Deligne in [71], which also contained a
higher dimensional analog. Soon after, this picture was significantly generalized by Kashiwara
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and Mebkhout: there is a natural equivalence of categories between topological objects (C-linear
perverse sheaves) and differential objects (regular holonomic D-modules) on any smooth complex
variety, see [56].

In this section, we discuss joint work with Lurie towards a p-adic analog of the preceding
story; our aim was to extend existing results attaching flat connections to p-adic local systems
on p-adic varieties (such as [87, 88, 1, 203, 165, 74]) to p-adic constructible complexes and in
particular, to p-adic perverse sheaves. Unlike the complex picture, there are several meanings
one can attach to “p-adic sheaves”: one can work with Z/pn, Zp or Qp-coefficients. Our theorem
for Fp-coefficients is the following (the Z/pn case is analogous):

Theorem 5.1 (Riemann–Hilbert for torsion coefficients, [31]). Let C/Qp be a complete and
algebraically closed extension. Let X/OC be a finite type scheme. Then there is a natural exact
functor

RH : Db
cons(XC ,Fp)→ Db

qc(X ⊗OC
OC/p).

This functor commutes with proper pushforward, intertwines Verdier and Grothendieck duality
in the almost category [83, 100], and interacts well with the perverse t-structure.

The functor RH above also almost commutes with tensor products and pullbacks provided
the target is refined to RH(Fp)-modules. In fact, it is possible to refine the target further to
Frobenius modules over the tilt RH(Fp)

♭; the resulting functor is fully faithful, and agrees with
the construction in [33] (which was a dual form of [82] that works for all characteristic p schemes)
when X has characteristic p.

Remark 5.2 (Relation to existing work in p-adic geometry). Theorem 5.1 appears to be the
first general construction attaching coherent objects to constructible Fp-sheaves on algebraic
varieties in characteristic 0. On the other hand, several ingredients that go into the proof have
appeared before in p-adic arithmetic geometry. Indeed, the functor RH can be regarded as
a generalization of a perfectoidization functor from Remark 1.10 to non-constant coefficients:
one can almost identify RH(Fp) with OX,perfd/p. Moreover, the compatibility with duality with
constant coefficients is closely related to the Gabber–Zavyalov approach [232] to Poincaré duality
for the Fp-cohomology of rigid spaces. Nevertheless, the flexibility of applying RH(−) to non-
constant perverse coefficients is immensely useful in applications including Theorems 4.1 and 4.7
or the localization result mentioned in Remark 4.11. Relatedly, let us mention that Theorem 5.1
itself suffices to prove Theorem 4.1 in the almost category, extending Heitmann’s almost vanishing
theorem [115] to arbitrary dimensions.

Prima facie, Theorem 5.1 looks quite different from the complex Riemann–Hilbert corre-
spondence: the output is a quasicoherent (and in fact almost coherent) complex rather than
a D-module. In fact, the functor in Theorem 5.1 is better understood as a p-adic analog of a
construction from Saito’s fundamental work [197] on mixed Hodge modules. Recall that this
theory gives a filtered refinement of the classical Riemann–Hilbert functor for many constructible
sheaves, including those that are “of geometric origin”. More precisely, given a smooth proper
complex variety X, any mixed Hodge module on X has an underlying DX-module equipped
with a Hodge filtration as well as an underlying perverse sheaf; the picture relating them can be
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summarized in the following commutative diagram:

MHM(X)
forget

ww♣♣
♣♣
♣♣
♣♣
♣♣
♣

forget

''◆
◆◆

◆◆
◆◆

◆◆
◆◆

Db
cons(X,C)

RHcl

''◆
◆◆

◆◆
◆◆

◆◆
◆◆

DFcoh(DX)
gr∗(−)

//

forget

xx♣♣
♣♣
♣♣
♣♣
♣♣
♣

Db
coh,gr(T

∗X)
Ω∗(−)

// Db
coh,gr(X)

Db(DX),

where MHM(X) is Saito’s category of mixed Hodge modules, DFcoh(DX) is a suitable derived
category of DX-modules equipped with a “good” filtration, the functor RHcl is the classical
Riemann–Hilbert functor, the functor gr∗(−) is the associated graded construction carrying a
filtered D-module to a graded OX-module with an action of gr∗DX = Sym∗(TX) (i.e., a Higgs
module), and the functor Ω∗(−) is the graded Higgs complex construction. Heuristically, the
functor in Theorem 5.1 is an analog of the composite correspondence

Db
cons(X,C)

forget
←−−− MHM(X)

Ω∗(−)◦gr∗(−)◦forget
−−−−−−−−−−−−−→ Db

coh,gr(X) (R̃H)

for Fp-coefficients. Slightly surprisingly, unlike in the complex story, we get an honest functor
instead of a correspondence in the p-adic setting. (On the other hand, objects of MHM(X) also
have a weight filtration, which we ignore in our discussion.)

Remark 5.3 (Why is there no grading?). In comparison with the correspondence (R̃H), there
is no grading in the target of Theorem 5.1. But this is to be expected: the grading on the
target of (R̃H) reflects the fact that objects in MHM(X) are fairly motivic in nature, e.g., they
give variations of Hodge structures on an open subset of X. In contrast, in Theorem 5.1 we
are working with all constructible sheaves over the algebraically closed field C, so there is no
motivicity or even a Galois action.

The previous discussion suggests it might be useful to lift Theorem 5.1 to Qp-coefficients and
restrict to sheaves defined over a discretely valued field (so there is a Galois action) in order to
obtain a p-adic variant of (R̃H). This can indeed be done, and the resulting structure seems
slightly cleaner than (R̃H):

Theorem 5.4 (Riemann–Hilbert for Qp-coefficients, [32]). Let K/Qp be a finite extension. Let
X/K be a smooth proper variety. Then there is a natural exact functor

RHD : Db
wHT(X,Qp)→ DFcoh(DX),

where the source is a full subcategory of Db
cons(X,Qp) spanned by what we call “weakly Hodge–

Tate sheaves” (including all sheaves of geometric origin). This functor commutes with proper
pushforward, intertwines Verdier and Grothendieck duality, and interacts well with the perverse
t-structure.

Theorem 5.4 represents ongoing work in progress with Lurie, and the statement above is not
quite optimal (e.g., there is a variant for singular X).

Remark 5.5 (The case of local systems). The functor RHD from Theorem 5.4 is not really new
for local systems: up to a certain nilpotent operator encoding that a weakly Hodge–Tate local
system is not quite de Rham, it coincides with the one appearing in [165, Theorem 1.5] (and is
thus related to constructions from [203]; see also [87, 1, 74]). However, for geometric applications
such as Example 5.7 below, it is critical to apply RHD to constructible complexes that are not
local systems.
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Remark 5.6 (Why is the Hodge filtration automatic?). Theorem 5.4 implies that constructible
Qp-sheaves F of geometric origin on a variety X/K as above have a functorially attached filtered
DX -module M := RHD(F ), i.e., the Hodge filtration on the DX -module M is actually deter-
mined by F , unlike in the correspondence (R̃H). This discrepancy is ultimately because the con-
structible sheaves in Theorem 5.4 carry Galois symmetries as they are defined over K. Moreover,
this is perfectly consistent with known phenomena in p-adic Hodge theory that stem ultimately
from the richness of the absolute Galois group GK of K. For instance, when X = Spec(K)
and F = Rf∗Qp for a smooth proper map f : Y → X, we are simply observing that the GK -
representation H∗(YK ,Qp) knows the de Rham cohomology of H∗

dR(Y/K) as a filtered vector
space (and in particular knows the Hodge numbers of X) via the de Rham comparison; see [137]
for a purely geometric application of this fact.

As Theorem 5.4 gives an honest functor, one can now directly apply RHD to deep theorems on
the constructible side, such as the BBDG decomposition theorem [16], to obtain highly nontrivial
results on the coherent side. This mechanism appears robust enough to yield some results in
birational geometry that are traditionally best understood via mixed Hodge module theory, e.g.,
Kollár’s vanishing theorems [148, 149] (see [201, §25] for the Hodge module proof); we sketch the
argument for vanishing next to illustrate this idea.

Example 5.7 (Recovering Kollár vanishing, p-adically). Fix a finite extension K/Qp. Say
f : Y → X is a projective surjective morphism of proper K-varieties of dimensions dY and dX
respectively with Y smooth. Consider the functor

RH : Db
wHT(Y,Qp)→ Db

coh,gr(Y )

obtained by composing the functor RHD from Theorem 5.4 with Ω∗(−) ◦ gr∗(−), as in (R̃H).
Essentially by the local Hodge–Tate decomposition of [203], we have

RH(Qp[dY ]) =
⊕

i

Ωi
Y/K [dY − i]

with its natural grading, so i-forms have weight i. (If Y were singular, one would have a similar
formula with the Deligne–Du Bois variants Ωi

Y/K of differential forms, as in [79] and [191, §7.3],
on the right by [110].) Pushing forward along f , using the proper pushforward compatibility of
RH, and extracting the weight dY summand gives

RH(Rf∗Qp[dY ])wt=dY = Rf∗ωY .

On the other hand, the decomposition theorem [16, 72] shows that

Rf∗Qp[dY ] ≃




dY −dX⊕

i=−(dY −dX)

pHi[−i]


⊕N

where each pHi is perverse and N is a summand of Rg∗Qp[dY ] with g : YZ → Z ⊂ X being the
restriction of f over the closed subvariety Z ( X where f is not smooth. The singular variant
of the reasoning just used for f applied to g then shows that

RH(Rg∗Qp[dY ])wt=dY = Rg∗Ω
dY
YZ
≃ 0,

where the last vanishing follows as ΩdY
YZ

= 0 since dY > dim(YZ) (see [110] for a purely p-adic
proof of this property of Deligne-Du Bois complexes). But then the same vanishing is also true
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for the summand N of Rg∗Qp[dY ], so we learn that

Rf∗ωY = RH(Rf∗Qp[dY ])wt=dY =

dY −dX⊕

i=−(dY −dX)

RH(Hi[−i])wt=dY .

The perverse exactness properties of RH now imply that the i-th summand on the right lies in
D≤i whence Rf∗ωY ∈ D≤dY −dX as i ≤ dY − dX , i.e.,

Rjf∗ωY = 0 for j > dY − dX ,

proving the Kollár vanishing theorem [148, Theorem 2.1]. From this perspective, one answer
to Kollár’s question “Why is ωY better behaved than OY ?" [149] could be the following: as ωY

is the highest Hodge–Tate weight summand of RH(Qp[dY ]), it does not see interference from
smaller dimensional varieties when moved around via operations such as Rf∗.
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