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The α-family in the K(2)-local sphere at the prime 2

Agnès Beaudry

Abstract. In this note, we compute the image of the α-family in the homo-
topy of the K(2)-local sphere at the prime p = 2 by locating its image in the

algebraic duality spectral sequence. This is a steppingstone for the computa-
tion of the homotopy groups of the K(2)-local sphere at the prime 2 using the
duality spectral sequences.
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and Rezk in [MR09].

1. Introduction

The first periodic family in the homotopy groups of spheres was constructed
by Adams in his study of the image of the J homomorphism, which culminated
in what is now one of the must-read articles in algebraic topology, On the Groups
J(X) – IV [Ada66]. In the last section of this paper, Adams uses self-maps of
Moore spaces to construct elements of the homotopy groups of spheres that he
denotes by α. These elements are intimately related to K-theory and are part of
what is now called the “α-family”.
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2 A. BEAUDRY

The α-family is one of the few computable families of elements in the stable
homotopy groups of spheres. It is the first of its kind and, with its successors the β
and γ-families, it now belongs to a collection of classes known as the Greek-letter
elements. In their cornerstone paper on periodicity in the Adams-Novikov Spectral
Sequence, Miller, Ravenel and Wilson [MRW77] give an intimate connection be-
tween the Greek-letter elements and the chromatic spectral sequence, and establish
the importance of the chromatic point of view for computations of the homotopy
groups of spheres.

Chromatic homotopy as it is known today comes from Morava’s insight that
there should be higher analogs of p-completed K-theory. They should carry higher
Adams operations, and detect periodic families which are generalizations of the
image of J . These cohomology theories are called the Morava E-theories En and
the associated mod p theories are called the Morava K-theories K(n). The higher
Adams operations form a group called the (extended) Morava stabilizer group,
denoted Gn. The theories En and K(n) are complex oriented ring spectra whose
construction is based on the deformation theory of height n formal groups.

The Morava E and K-theories detect periodic families of elements in the homo-
topy groups of spheres. There are various ways to make this precise. One is through
the eyes of Bousfield localization. The Chromatic Convergence Theorem of Hopkins
and Ravenel states that the p-local sphere spectrum S(p) is the (homotopy) inverse
limit of the Bousfield localizations SEn

of the sphere at the Morava E-theories.
One then studies S(p) through its images under the natural maps S(p) → SEn

. Fur-
ther, the SEn

can be inductively reassembled from the localizations at the Morava
K-theories via a homotopy pull-back

SEn
��

��

SK(n)

��
SEn−1

�� (SK(n))En−1
.

These facts highlight the importance of computing both π∗SEn
and π∗SK(n).

The standard tools for computing these homotopy groups are two closely related
spectral sequences. Note that the En-local sphere is equivalent to SE(n), where
E(n) is the Johnson-Wilson spectrum, a “thinner” version of En. The E(n)-Adams-
Novikov Spectral Sequence computes the homotopy groups of SE(n) � SEn

:

Ext∗,∗E(n)∗E(n)(E(n)∗, E(n)∗) =⇒ π∗SE(n).

The second spectral sequence is the K(n)-local En-Adams-Novikov Spectral Se-
quence, which computes the homotopy groups of SK(n) � EhGn

n . Its E2-term can
be identified with continuous cohomology groups:

H∗(Gn, (En)∗) =⇒ π∗SK(n).

We give an overview of what is known. First SK(0) and SE0
are both the

rational sphere SQ. The computation of π∗SK(1) and π∗SE1
can be obtained from

the classical computations of Adams, Atiyah and others on the image of J and
the action of the Adams operations. The computation of π∗SE2

and π∗SK(2) are
entirely different beasts. Shimomura, Wang and Yabe have done extensive work
on computing these homotopy groups at various primes. The case p ≥ 5 is treated
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THE α-FAMILY IN THE K(2)-LOCAL SPHERE AT THE PRIME 2 3

in [SY95] and is also nicely presented in [Beh12]. The case p = 3 is treated in
[SW02b,Shi00] and the case p = 2 is partially treated in [SW02a,Shi99].

The height two computations are extremely difficult and the answers contain
an enormous amount of information that is hard to interpret and analyze. Having
multiple points of view seems to have become an imperative for our understanding
of chromatic height two phenomena.

In [GHMR05], Goerss, Henn, Mahowald and Rezk establish a different ap-
proach to height two computations. It relies on resolutions of the K(2)-local sphere
called the duality resolutions, from which one obtains various spectral sequences.
For certain subgroups G of G2, the topological duality spectral sequences converge
to π∗E

hG
2 and the algebraic duality spectral sequences converge to H∗(G, (E2)∗).

The advantage of the duality spectral sequences is that they organize the com-
putations and the answers in a systematic way. For p ≥ 5, these methods are used
in [Lad13], for p = 3, in [HKM13] and for p = 2, in [Bea17b] to perform com-
putations for the K(2)-local Moore spectrum. The homotopy of π∗SK(2) at p = 3
has been analyzed by Goerss, Henn, Karamanov, Mahowald using duality methods,
but has not been fully recorded yet.

Duality spectral sequence techniques are also being used to solve other central
problems in chromatic homotopy theory. They have been crucial in the study of
the Chromatic Splitting Conjecture [GHM14,Bea17a,BGH17] at p = 2 and
p = 3. In particular, they play a central role in the disproof of the strongest form
of the conjecture at p = 2 [Bea17a,BGH17]. The computations of the K(2)-local
Picard groups and of the Gross-Hopkins dual of the sphere at the prime p = 3
rely on the duality spectral sequences [GHMR15,GH16]. These are currently
being adapted by the author and her collaborators to solve the same problems at
p = 2. Finally, Bhattacharya and Egger use the duality techniques to compute
the homotopy groups of the first example of a type 2 complex with a v12 self-map
[BE17].

The current paper is concerned with computations of π∗SK(2) at p = 2 using
duality spectral sequence techniques and we finish the introduction by stating our
result. When computing π∗SK(2), a first and essential step is to locate the α-family
in the computation. The goal of this paper is to do this at p = 2, using the duality
techniques. The results in this paper are a steppingstone for a full computation of
π∗SK(2) using the duality spectral sequences. We will recall the precise definition of
the α-family in Section 2. We will define the algebraic duality spectral sequence and
the subgroup S12 ⊆ G2 in Section 3. Our main results (in Section 4) are summarized
in the following statement.

Theorem. Let p = 2. The elements αi/j ∈ Ext1,2iBP∗BP (BP∗, BP∗) map non-

trivially to H1(S12, (E2)2i). In the algebraic duality spectral sequence

Ep,q,t
1 = Hq(Fp, (E2)t) =⇒ Hp+q(S12, (E2)t)

the αs are detected as follows:

(a) α2/2 ∈ E0,1,4
1

(b) αi/1 ∈ E0,1,2i
1 if i ≥ 1 is odd.

(c) αi/j ∈ E1,0,2i
1 if i is even.

The maps

H1(G2, (E2)t) → H1(S12, (E2)t)
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4 A. BEAUDRY

in degrees t �= 0 are injective so that the image of the αi/j have unique lifts in

H1(G2, (E2)2i).
In the spectral sequence

H∗(G2, (E2)∗) =⇒ π∗SK(2)

the α-family supports the standard pattern of differentials and the family of elements

detected by the αs in π∗S maps non-trivially to π∗SK(2). The same holds in π∗E
hS12
2

and the associated homotopy fixed point spectral sequence.

2. The α-family in the Adams-Novikov Spectral Sequence

In this section, we review the construction of the α-family and fix notation.
There are many references for these results: See, for example, Section 4 of
[MRW77] and Section 4 of [Rav78]. We let S = S(2) and BP be the 2-local
Brown-Peterson spectrum. For a spectrum X, the Adams-Novikov Spectral Se-
quence (ANSS) is given by

Es,t
2 = Exts,tBP∗BP (BP∗, BP∗X) =⇒ πt−sX(2).

The α-family is a collection of elements αi/j ∈ Ext1,∗BP∗BP (BP∗, BP∗) which we
construct below.

Remark 2.1. We also call the collection of non-trivial elements of π∗S detected
by the αs the α-family, or the topological α-family when we wish to make the
distinction clear.

To define the α-family, one first shows that there is an isomorphism

Ext0,∗BP∗BP (BP∗, BP∗/2) ∼= F2[v1].

See for example Theorem 4.3.2 of [Rav86]. The α-family is defined by taking

the image in Ext1,∗BP∗BP (BP∗, BP∗) of the powers of v1 under various Bockstein

homomorphisms. Define x1,n ∈ v−1
1 BP2n+1 by

x1,n =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
v1 n = 0

v21 − 4v−1
1 v2 n = 1

v41 − 8v1v2 n = 2

x2
1,n−1 n ≥ 3.

Let s ≥ 1 be an odd integer. The reduction of xs
1,n modulo 2 is an element of

BP2n+1s/2 congruent to v2
ns

1 . Furthermore,

xs
1,n ∈

⎧⎪⎨⎪⎩
BP2/2 n = 0 and s ≥ 1

BP4/4 n = 1 and s = 1

BP2n+1s/2
n+2 n ≥ 2, or n = 1 and s ≥ 3

are comodule primitives. See, for example, Lemma 4.12 of [MRW77].
Let

δ(n) : Ext0,tBP∗BP (BP∗, BP∗/2
n) → Ext1,tBP∗BP (BP∗, BP∗)

be the connecting Bockstein homomorphism associated to the short exact sequence

0 �� BP∗
×2n �� BP∗ �� BP∗/2

n �� 0 .
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Figure 1. The α-family in the E2 (top) and E∞ (bottom) pages
of the Adams-Novikov Spectral Sequence. Here, a � denotes a
copy of Z2, a • denotes a copy of Z/2, a • a copy of Z/4 and so
on. Dashed lines denote exotic multiplications by 2.

Keeping the convention that s ≥ 1 is an odd integer, there are classes

αi/j ∈ Ext1,2iBP∗BP (BP∗, BP∗)

of order 2j defined by

αs/1 = δ(1)(xs
1,0),

α2/2 = δ(2)(x1,1),

and

α2ns/(n+2) = δ(n+2)(xs
1,n)

for n ≥ 2 and s ≥ 1, or for n = 1 and s ≥ 3. We usually abbreviate αi = αi/1.
Note that α1α2/2 = 0 and otherwise

αk
1αi/j �= 0

for all k ≥ 0.
The αi/js are classes in the E2-term of the ANSS for the sphere spectrum. This

spectral sequence has no d2 differentials for degree reasons, so the E2 and E3-terms
are equal. Further, there are d3 differentials

d3(αi/j) =

⎧⎪⎨⎪⎩
α4
1 i = j = 1

α3
1α4k+1 i = 4k + 3 and j = 1

α3
1α2ns/n+2 i = 2ns+ 2 and j = 3.

We obtain the pattern in Figure 1, which is also in Table 2 of [Rav78].
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6 A. BEAUDRY

3. Subgroups of G2 and the algebraic duality spectral sequence

Before turning to the computation of the α-family in the K(2)-local sphere, we
recall some of the tools used in the computation. This will be brief, but we refer
the reader to [Bea15,Bea17b,BGH17] where these techniques were explained in
great detail.

We let K(2) refer to the 2-periodic Morava K-theory spectrum whose formal
group law is that of the super-singular elliptic curve defined over F4 withWeierstrass
equation

C0 : y2 + y = x3.

The homotopy groups of K(2) are given by

K(2)∗ = F4[u
±1]

for u in degree −2. We let E = E2 be the associated Morava E-theory constructed
in [Bea17b, Section 2], chosen so that the formal group law of E is that of the
universal deformation of C0 with Weierstrass equation

C : y2 + 3u1xy + (u3
1 − 1)y = x3.

Its homotopy groups are

E∗ = W[[u1]][u
±1]

where u1 is in E0 and u is in E−2. HereW = W (F4) is the ring of Witt vectors on F4.
We choose a primitive third root of unity ω and note that W ∼= Z2[ω]/(1+ω+ω2).
This is a complete local ring with residue field F4. In fact, it is the ring of integers
in an unramified extension of degree 2 of Q2. The Galois group Gal = Gal(F4/F2),
whose generator we denote by σ, acts on W by the Z2-linear map determined by
ωσ = ω2. Further, the Teichmüller lifts give a natural embedding of F×

4 ⊆ W×.
We let S2 be the group of automorphisms of the formal group law of K(2). The

group S2 is isomorphic to the units in a maximal order O of a division algebra of
dimension 4 over Q2 and Hasse invariant 1/2. A presentation for O is given by

O ∼= W〈T 〉/(T 2 = −2, aT = Taσ), a ∈ W.

It follows that an element of γ ∈ S2 can be written as power series

γ =
∑
i≥0

ai(γ)T
i

where the elements ai(γ) ∈ W satisfy ai(γ)
4 − ai(γ) = 0 and a0(γ) �= 0. The group

Gal acts on O via its action on W, fixing T . We let G2 be the extension of S2 by
Gal, so that

G2 = S2 �Gal .

The right action of S2 on O gives rise to a representation S2 → GL2(W) whose
determinant restricts to a homomorphism

det : S2 → Z×
2 .

We can extend the determinant to G2 by det(x, σ) = det(x). The determinant
composed with the projection to Z×

2 /(±1) ∼= Z2 defines a homomorphism of G2

onto Z2. For any subgroup G ⊆ G2, we let G1 be the kernel of this composite. If
G is S2 or G2, this is a split surjection so that

S2 ∼= S12 � Z2 G2
∼= G1

2 � Z2(3.1)
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THE α-FAMILY IN THE K(2)-LOCAL SPHERE AT THE PRIME 2 7

We will use the map Z2 → G2 which sends a chosen generator of Z2 to π = 1+2ω ∈
W× as a preferred splitting.

The group S2 has the following important subgroups. First, it has a unique
conjugacy class of maximal finite subgroups. A representative can be chosen to be
the image of the automorphisms of the super-singular curve Aut(C0), which we will
denote by G24. It is the semi-direct product of a quaternion group with the natural
copy of F×

4 in S2. The group C6 = (±1)× F×
4 is a subgroup of G24. Note that the

torsion is contained in S12 as Z2 is torsion free. So these are in fact subgroups of S12.
However, we note that in S12 the groups G24 and G′

24 = πG24π
−1 are not conjugate

(π �∈ S12). Finally, the Galois group acts on these finite subgroups and they can all
be extended to corresponding subgroups of G2. The maximal finite subgroup of G2

is denoted by

G48
∼= G24 �Gal .

Next, we turn to the computational tools. For finite spectra X,

XK(2) � EhG2 ∧X � (E ∧X)hG2

and there is a spectral sequence

(3.2) Es,t
2 = Hs(G2, EtX) =⇒ πt−sXK(2)

where, here and everywhere, we mean the continuous cohomology groups. Analyz-
ing the E2-term of this spectral sequence is difficult, so we often start by studying
the cohomology of the subgroup S12. We have an extremely concrete tool to com-
pute the group cohomology of S12, a spectral sequence called the algebraic duality
spectral sequence (ADSS), which we describe here.

For a graded profinite Z2[[S
1
2]]-module M (a typical example is M = E∗X), the

algebraic duality spectral sequence for M is a first quadrant spectral sequence:

Ep,q,t
1 = Ep,q,t

1 (M) ∼= Hq(Fp,Mt) =⇒ Hp+q(S12,Mt)(3.3)

with differentials dr : E
p,q,t
r → Ep+r,q−r+1,t

r , where F0 = G24, F1 = F2 = C6 and
F3 = G′

24. We may omit the internal grading t from the notation.
The spectral sequence has an edge homomorphism

Hp(H0(F•,Mt), d1) → Hp(S12,Mt),

where Hp(H0(F•,Mt), d1) is the cohomology of the complex

(3.4) 0 �� H0(F0,Mt)
d1 �� H0(F1,Mt)

d1 �� H0(F2,Mt)
d1 �� H0(F3,Mt) �� 0,

and H0(Fp,Mt) = Ep,0,t
1

∼= M
Fp

t .
Central to the computations of this paper is the differential

d1 : E
0,0,t
1 → E1,0,t

1 ,

which we describe here. There is an element α ∈ W× ⊆ S2 which is defined so that
α = 1+ 2ω mod (4) and det(α) = −1.1 It is shown in Theorem 1.1.1 of [Bea17b]
that the differential is given by the action of 1− α:

d1 = 1− α : H0(F0, E∗) → H0(F1, E∗).

1At this point, we run into a conflict of notation. In the current trend of K(2)-local com-
putations at p = 2, the element named α plays a crucial and well-established role. We will keep
the name, as any element of the α-family has a subscript and this should make it easy to avoid
confusion.

Licensed to Univ of Rochester.  Prepared on Mon Aug 16 07:01:30 EDT 2021for download from IP 128.151.13.206.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



8 A. BEAUDRY

To compute with this spectral sequence, we will also need information about the
cohomology H∗(G24, E∗) (which is isomorphic to H∗(G′

24, E∗)) and of H∗(C6, E∗).
This is all well-known, but nicely presented in Section 2 of [BG18]. So we refer to
that paper for the information we need.

Finally, for any closed subgroup G of G2 and finite 2-local spectrum X, the
complex orientation of Morava E-theory and the fact that the homotopy fixed point
spectral sequence (3.2) is isomorphic to the K(2)-local E-based Adams Spectral
Sequence (see Appendix A of [DH04]) gives a comparison diagram

Ext∗,∗BP∗BP (BP∗, BP∗X) �� π∗X

Ext∗,∗MU∗MU (MU∗,MU∗X)

∼=

��

��

�� π∗X

��

∼=

��

H∗(G2, E∗X)

��

�� π∗XK(2)

��
H∗(G,E∗X) �� π∗(E

hG ∧X).

To detect the α-family in π∗E
hG, one studies the fate of the α-family in

Ext∗,∗BP∗BP (BP∗, BP∗) under the vertical maps when X = S(2).

4. The α-family in the K(2)-local sphere

We finally turn to the computation of the α-family in the K(2)-local sphere.
The approach is as follows. We will identify the image of the α-family under the
map

Ext∗,∗BP∗BP (BP∗, BP∗) → H∗(G2, E∗).

In particular, we will show that all of the non-trivial classes αk
1αi/j map non-

trivially. For filtration reasons, this will imply that any class from the topological
α-family in π∗S maps non-trivially to π∗E

hG2 .
We will need the following generalization of [BGH17, Proposition 3.2.2], which

allows us to identify classes detecting the α-family in the cohomology of certain
closed subgroups of Gn. Its proof is completely analogous and is omitted here.

Proposition 4.1. Let E = En and H ⊆ Gn be a closed subgroup. Let R =
H0(H,E0). Fix i > 0 and suppose that

(1) H0(H,E2i/2) is a cyclic R-module generated by vi1.

Let yi/j ∈ E2i/2
j be a class so that

(2) yi/j ≡ vi1 modulo 2, and
(3) yi/j is invariant under the action of H.

Then, up to multiplication by a unit in R, the image of αi/j ∈ π2i−1E
hH is detected

in the spectral sequence

Hs(H,Et) =⇒ πt−sE
hH

by the class δ(j)(yi/j) ∈ H1(H,E2i).

One of the consequences of Theorem 1.2.2 of [Bea17b] is the following lemma.
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THE α-FAMILY IN THE K(2)-LOCAL SPHERE AT THE PRIME 2 9

Lemma 4.2. Let H be a closed subgroup of G2 which contains S12. Then

H0(H,E∗/2) ∼= F4[v1].

In particular, any closed subgroup H of G2 which contains S12 satisfies condition
(1) of Proposition 4.1 for any i > 0. So, to apply Proposition 4.1, we must identify
candidates for the classes yi/j .

To construct these classes, recall that there are classical G48-invariants in E0

associated to the curve C, which play a key role in computations at n = p = 2.
Specifically, letting v1 = u1u

−1 and v2 = u−3 the following are invariant for the
action of G48:

Δ = 27v2(v
3
1 − v2)

3

c4 = 9(v41 + 8v1v2)

c6 = 27
(
v61 − 20v31v2 − 8v22

)
j = c34Δ

−1.

A few elements in the higher cohomology H∗(G48, E∗) will also appear in the
computation. Namely, there are elements

η ∈ H1(G48, E2) ν ∈ H1(G48, E4) μ ∈ H1(G48, E6).

The classes η and ν are chosen to be the images of α1 and α2/2 under the map

Ext∗,∗BP∗BP (BP∗, BP∗) → H∗(G48, E∗).

We choose the class μ to be the image of α3. This will be discussed in the proof
of Theorem 4.12. It has the property that μ = ηv21 modulo (2) and ηΔ−1c6c

2
4 is a

unit multiple of jμ.
Note that H∗(G24, E∗) ∼= H∗(G48, E∗)⊗Zp

W. The restriction

H∗(G48, E∗) → H∗(G24, E∗)

is the inclusion of fixed point under the action of the Galois group on the right
factor of W. For any element in the cohomology of G48, we denote its restriction
in the cohomology of G24 by the same name.

We will prove the following result.

Proposition 4.3. Let s ≥ 1 be odd. Then, for the action of G2,

(a) vs1 ∈ E2 is an invariant modulo 2,
(b) v21 ∈ E4 is an invariant modulo 4,
(c) cn4 ∈ E8n is an invariant modulo 2k+4 for n = 2ks where k ≥ 0, and
(d) c6c

n
4 ∈ E8n+12 is invariant modulo 8 for n ≥ 0.

This motivates the following definition, where s ≥ 1 is odd,

yi/j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
vs1 i = s, j = 1,

v21 i = j = 2,

c2
ks

4 i = 2k+2s, j = k + 4,

c6c
(s−3)/2
4 i = 2s, j = 3, s �= 1.

(4.1)

Note that in the last two cases of (4.1) (for i = 2k+2s and j = k + 4, or i = 2s,
j = 3, and s �= 1), the element yi/j ∈ H0(F0, E2i) since F0 = G24 ⊆ G48 and both
c4 and c6 are invariant for the action of G48.

Licensed to Univ of Rochester.  Prepared on Mon Aug 16 07:01:30 EDT 2021for download from IP 128.151.13.206.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



10 A. BEAUDRY

Following the outline of Proposition 4.1, we must compute δ(j)(yi/j). We get

specific and do this for the group S12 defined in (3.1) by using the algebraic duality
spectral sequence (ADSS) of (3.3). The part of the ADSS relevant for our com-
putations is depicted in Figure 2. Lemma 7.1.2 of [BGH17] gives a method for
computing the Bockstein δ(n) of certain elements for the spectral sequence of a dou-
ble complex which is particularly suited to the ADSS. Combined with Proposition
4.1, it has the following immediate consequence.

Theorem 4.4. Let (H0(F•, Et), d1) be the complex of (3.4). Let s ≥ 1 be an
odd integer. Let

(a) i = 2k+2s and j = k + 4, or
(b) i = 2s, j = 3, and s �= 1.

Then, up to multiplication by a unit in W, αi/j ∈ H1(S12, E2i) is detected by the
image of the class [d1(yi/j)

2j

]
∈ H1(H0(F1, E2i), d1)

under the edge homomorphism

H0(Fp, E2i) −→ Ep,0,2i
∞ ⊆ Hp(S12, E2i).

To prove Proposition 4.3 and thus apply Proposition 4.4, we will need some
information about the action of S2 on c4 and c6 which we record now.

Proposition 4.5. Let γ = 1 + a2(γ)T
2 mod T 3 in S2. Then

γ∗(c4) ≡ c4 + 16(a2(γ) + a2(γ)
2)v1v2 mod (32, 16u2

1)

and

γ∗(c6) ≡ c6 + 8(a2(γ) + a2(γ)
2)v31v2 mod (16, 8u4

1).

Proof. The first claim is Lemma 5.2.2 of [Bea17b]. To prove the second
claim, we proceed as in the proof of this lemma. From (3.3.1) of [Bea17b], we
have that

γ∗(u) = t0(γ)u γ∗(u1) = t0(γ)u1 +
2

3

t1(γ)

t0(γ)
(4.2)

where

t0(γ) ≡ 1 + 2a2(γ) mod (2, u1)
2, t1 ≡ a2(γ)

2u1 mod (2, u2
1).(4.3)

We abbreviate by letting ti = ti(γ) for i = 0, 1 and a2 = a2(γ).
From (4.2), we deduce that, modulo (16)

c6 − γ∗(c6)

≡ 4u−6t−6
0

(
u3
1t

6
0 + u3

1t
2
0(3t0 + 3u1t

2
1 + u2

1t1t
2
0) + 2(u2

1t1t0 + t60 + 1)
)
.

By Proposition 6.3.3 of [Bea17b],

t40 ≡ t0 + u1t
2
1 + u2

1t1t
2
0 mod (2)

so that

c6 − γ∗(c6) ≡ 0 mod (8).
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THE α-FAMILY IN THE K(2)-LOCAL SPHERE AT THE PRIME 2 11

To compute the leading term, we consider c6−γ∗(c6) modulo (16, u4
1). Using (4.3),

we have that, modulo (16, u4
1)

c6 − γ∗(c6) ≡ 4u−6t−6
0

(
u3
1(t

6
0 + 3t30) + 2u2

1t1t0 + 2(t60 + 1)
)

≡ 8u3
1u

−6
(
a2 + a22

)
.

In the last line, we used the fact that t60 ≡ 1 mod (2, u4
1) and also modulo (4, u1).

�

Proof of Proposition 4.3. Since v1 is invariant modulo 2, (a) and (b) are
immediate. Proposition 4.5 shows that c4 and c6 are invariant under the action of
α and π modulo 16 and 8 respectively. Since c4 and c6 are already invariant under
the action of G48 and G2 is topologically generated by G48, α and π, parts (c) and
(d) follow by taking appropriate powers. �

To apply Proposition 4.4, we will prove something slightly more general: We
will completely compute the differential

d1 : E
0,0,∗
1 → E1,0,∗

1 .

We first identify E0,0,∗
1

∼= EG24
∗

∼= H0(G24, E∗) and E1,0,∗
1

∼= EC6
∗

∼= H0(C6, E∗)
more explicitly than we have done so far.

For example, from Section 2 and 3 of [BG18], we have isomorphisms

H0(G24, E∗) ∼= W[[j]][c4, c6,Δ
±1]/(c34 − c26 = (12)3Δ, c34 = Δj).

It follows that the elements

{cε6cm4 Δn | m ≥ 0, ε = 0, 1, n ∈ Z}

form a set of topological W-module generators, so that, in the category of profinite
graded W-modules,

H0(G24, E∗) ∼=
∏

n,m∈Z,m≥0
ε=0,1

W{cε6cm4 Δn}.

There is also an isomorphim

H0(C6, E∗) ∼= W[[u3
1]][v

2
1 , v1v2, v

±2
2 ]/ ∼

where ∼ is the ideal

((v21)
3 − (v22)(u

3
1)

2, (v1v2)
2 − (v21)(v

2
2), (v

2
1)(v1v2)− (u3

1)(v
2
2)).

Therefore, a basis of topological W-module generators for H0(C6, E∗) is given by

{(v1v2)ε(v21)m(v22)
n | m ≥ 0, ε = 0, 1, n ∈ Z}

and, in the category of profinite graded W-modules,

H0(C6, E∗) ∼=
∏

n,m∈Z,m≥0
ε=0,1

W{(v1v2)ε(v21)m(v22)
n}.

We are now ready to compute d1 explicitly. We note that this result is inti-
mately related to Propositions 8.1 and 8.2 [MR09].
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12 A. BEAUDRY

Proposition 4.6. The differential d1 : E
0,0
1 → E1,0

1 is determined by the fol-
lowing information:

(a) For n,m ∈ Z of the form n = 2k(2t+ 1), m ≥ 0 and for ε = 0, 1,

d1(c
ε
6c

m
4 Δn) ≡ (v21)

3·2k+2m+3ε(v22)
2k(1+4t) mod (2, v9·2

k+4m+6ε
1 )

and d1(Δ
0) = 0.

(b) For n ∈ Z of the form n = 2k(2t+ 1), n ≥ 1,

d1(c
n
4 ) ≡ 2k+4(v1v2)(v

2
1)

2(n−1) mod (2k+5, 2k+4v
4(n−1)+2
1 ).

(c) For n ∈ Z, n ≥ 1 of the form n = 2k(2t+ 1) or for n = 0,

d1(c6c
n
4 ) ≡ 8(v1v2)(v

2
1)

2n+1 mod (16, 8v4n+4
1 ).

Proof. This differential is given by the action of 1−α. Further, α ≡ 1+ωT 2

modulo T 4 for ω a primitive third root of unity. Hence, a2(α) + a2(α)
2 = −1.

The claim (a) is an immediate consequence of Proposition 5.1.1 of [Bea17b],
which states that

α∗(Δ
n) ≡ Δn + v6·2

k

1 v
2k+1(4t+1)
2 mod (2, u9·2k

1 ),

using the fact that c4 ≡ v41 and c6 ≡ v61 modulo 2.
To prove (b), from Proposition 4.5, using the fact that c4 ≡ v41 modulo 2, we

deduce that

α∗(c
2k

4 ) ≡ (c2
k

4 + 2k+4v
4(2k−1)
1 v1v2) mod (2k+5, 2k+4u

4(2k−1)+2
1 ).

Hence,

α∗(c
n
4 ) ≡ cn4 + 2k+4v

4(n−1)
1 v1v2 mod (2k+5, 2k+4u

4(n−1)+2
1 ).

Similarly, to prove (c), using that α∗(c4) ≡ c4 modulo (16) we have

α∗(c6c
n
4 ) ≡ α∗(c6)c

n
4 mod (16)

≡ c6c
n
4 + 8v4n+3

1 v2 mod (16, 8v4n+4
1 ). �

Remark 4.7. For (ε, a, b) such that ε = 0, 1, a ≥ 0, and b ∈ Z, we define

elements bε,a,b in E1,0,t
1

∼= H0(C6, Et) for t = 8ε+ 4a+ 12b that satisfy

bε,a,b = (v1v2)
ε(v21)

a(v22)
b + . . .

as follows:

(a) For n,m ∈ Z of the form n = 2k(2t+ 1), m ≥ 0 and for ε = 0, 1,

b0,3·2k+2m+3ε,2k(1+4t) = d1(c
ε
6c

m
4 Δn)

(b) For n ∈ Z of the form n = 2k(2t+ 1), n ≥ 1,

b1,2(n−1),0 =
d1(c

n
4 )

2k+4
.

(c) For n ∈ Z, n ≥ 1 of the form n = 2k(2t+ 1) or for n = 0,

b1,2n+1,0 =
d1(c6c

n
4 )

8
.

(d) In all other cases,

bε,a,b = (v1v2)
ε(v21)

a(v22)
b.
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THE α-FAMILY IN THE K(2)-LOCAL SPHERE AT THE PRIME 2 13

Although we will not refer to all of the elements bε,a,b defined above, it will be
useful to have a fixed name for them in future computations.

We now give some consequences of Proposition 4.6. We start with an immediate
corollary:

Theorem 4.8. In the ADSS

Ep,q,t
1

∼= Hq(Fp, Et) =⇒ Hp+q(S12, Et)

there is an isomorphism

E0,0,0
2

∼= E0,0,0
∞

∼= W{Δ0}

where Δ0 is the unit in E0,0,0
1

∼= H0(G24, E0). Further, E0,0,t
2 = 0 if t �= 0. For

r ≥ 0, the classes b1,r,0 are in the kernel of d1 : E
1,0,t
1 → E2,0,t

1 and detect classes
in E1,0,t

∞ of degree t = 8 + 4r. These classes have order 8 if r = 2n+ 1 and n ≥ 0.
They have order 2k+4 if r = 2n for n = 2ks− 1, s ≥ 1 odd, and k ≥ 0.

Remark 4.9. Since the edge homomorphism of the ADSS has the form

H0(Fp, E∗) −→ Ep,0,∗
∞ ⊆ Hp(S12, E∗),

even if the generators b1,n,0 are strictly speaking elements of Ep,0,∗
∞ , they repre-

sent unique elements in the cohomology of S12, and hence, we can write b1,n,0 ∈
H∗(S12, E∗) without any ambiguity.

As an immediate consequence of Theorem 4.8, we have the following result,
which was already proved in [BGH17]:

Corollary 4.10. The inclusion Z2 → E0 induces an isomorphism

H0(S12, E∗) ∼= H0(S12, E0) ∼= W

H0(G1
2, E∗) ∼= H0(G1

2, E0) ∼= Z2

H0(G2, E∗) ∼= H0(G2, E0) ∼= Z2.

Proof. Theorem 4.8 implies that H0(S12, E∗) ∼= W. The result follows for G1
2

since H0(S12, E∗) ∼= H0(G1
2, E∗) ⊗Z2

W with the natural action of Gal on W (see
[BG18, Lemma 1.24]). The fixed points for G2 include in those for G1

2 and contain
the image of Z2 ⊆ E0. �

The next three results are depicted in Figure 3.

Corollary 4.11. Up to multiplication by a unit in W,

(a) b1,2n+1,0 for n ≥ 0 detects α(4n+6)/3, and

(b) b1,2n,0 for n = 2ks− 1, s ≥ 1 odd, k ≥ 0 detects α2k+2s/(k+4).

Proof. This follows from Proposition 4.4, using Theorem 4.8 and Corollary
4.10. �

We turn to the elements αs = αs/1 where s ≥ 1 is odd.

Theorem 4.12. Let s ≥ 1 be an odd integer. In the ADSS

Ep,q,t
1

∼= Hq(Fp, Et) =⇒ Hp+q(S12, Et)
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14 A. BEAUDRY

there are isomorphisms

E0,1,2s
2

∼= E0,1,2s
∞

∼=
{
F4{ηcε6cm4 } s �= 3, s = 1 + 6ε+ 4m

F4{μ} s = 3.

Further αs = αs/1 ∈ H1(S12, E2s) is non-trivial. The edge homomorphisms

H1(S12, E2s) → E0,1,2s
∞ ⊆ H1(F0, E2s)

are isomorphisms and αs can be identified with its image in H1(F0, E2s). The
element α1 is detected by η, α3 is detected by μ. If s ≥ 5, then s = 1+ 6ε+ 4m for
some ε = 0, 1 and m ≥ 0. In this case, αs is detected by ηcε6c

m
4 .

Proof. The associated graded of the ADSS for H1(S1, E2s) consists of E
0,1,2s
∞

and E1,0,2s
∞ . The latter is a subquotient of E1,0,2s

2
∼= EC6

2s , which is trivial when
s is odd. Therefore, H1(S12, E2s) ∼= E0,1,2s

∞ and the edge homomorphism is an
isomorphism.

Now, note that the reduction modulo 2 induces isomorphisms

H1(Fp, E2s) ∼= H1(Fp, E2s/2)

for p = 0, 1. Further, this isomorphism maps ηcε6c
m
4 to ηv6ε+4m

1 . So, to compute
E0,1,2s

∞ we can use the commutative diagram

0 �� H1(F0, E2s)
d1 ��

∼=
��

H1(F1, E2s)

∼=
��

0 �� H1(F0, E2s/2)
d1 �� H1(F1, E2s/2)

The kernel of d1 for the top row is isomorphic to the kernel of d1 for the bottom
row, which was computed in [Bea17b] to be generated by ηvs−1

1 = ηv6ε+4m
1 if

s = 1 + 6ε+ 4m. Therefore, E0,1,2s
2

∼= F4{ηcε6cm4 } as desired.
Also implied by the extensive computations in [Bea17b] is the fact that

H0(S12, E∗) ∼= F4[v1] with the edge homomorphism

H0(S12, E2s/2)
∼= �� E0,0,2s

∞ ⊆ H0(F0, E2s/2)

an isomorphism. Consider the commutative diagram

H0(S12, E2s/2)
δ
S1
2 ��

∼=
��

H1(S12, E2s)

∼=
��

E0,0,2s
∞

⊆
��

E0,1,2s
∞

⊆
��

H0(F0, E2s/2)
δF0 �� H1(F0, E2s)

where δG is the connecting homomorphism for the exact sequence

0 �� E∗
×2 �� E∗ �� E∗/2 �� 0.
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THE α-FAMILY IN THE K(2)-LOCAL SPHERE AT THE PRIME 2 15

Since

δF0
(vs1) =

{
ηcε6c

m
4 s ≥ 1, s �= 3, s = 1 + 6ε+ 4m

μ s = 3,

the image of αs is ηcε6c
m
4 if s �= 3 and μ if s = 3. So, the corresponding elements of

E0,1,2s
2 are permanent cycles in the ADSS. So E0,1,2s

∞
∼= E0,1,2s

2 , generated by the
image of αs for s odd. �

It remains to understand the image of α2/2.

Theorem 4.13. In the ADSS, there is an isomorphism

E0,1,4
2

∼= E0,1,4
∞

∼= W/4{ν}.

The edge homomorphism

H1(S12, E4) → E0,1,4
∞ ⊆ H1(F0, E4)

is an isomorphism and the element α2/2 can be identified with its image in

H1(F0, E4), where it is detected by ν.

Proof. The contributions to H1(S12, E4) in the ADSS consist of E0,1,4
∞ and

E1,0,4
∞ . There is an isomorphism

E0,1,4
1

∼= H1(F0, E4) ∼= H1(G24, E4) ∼= W/4{ν}

and ν is so named because it is the image of α2/2 under the homomorphism from

the ANSS E2-term Ext1,4BP∗BP (BP∗, BP∗). This map factors through H∗(S12, E∗),

so ν must be a permanent cycle in the ADSS. So, all elements of E0,1,4
1 persist to

E∞.
We turn our attention to E1,0,4

∞ and show that

E1,0,4
∞ (E∗) = E1,0,4

2 (E∗) ∼= H1(H0(F•, E4)) = 0.

This implies that the edge homomorphism is an isomorphism, and that ν lifts
uniquely to an element of H1(S12, E4) where it corresponds to the image of α2/2.

We begin with a computation modulo (2). There is a commutative diagram:

H0(F0, E4/2)
d1 �� H0(F1, E4/2)

d1 �� H0(F2, E4/2)
d1 �� H0(F3, E4/2)

H0(F0, E0/2)
d1 ��

v2
1

∼=

��

H0(F1, E0/2)
d1 ��

v2
1

∼=

��

H0(F2, E0/2)

v2
1

∼=

��

d1 �� H0(F3, E0/2)

v2
1

∼=

��

H0(F0,W/2)
d1 ��

��

H0(F1,W/2)
d1 ��

��

H0(F2,W/2)

��

d1 �� H0(F3,W/2)

��

By Theorem 5.4.1 of [BGH17], the vertical map from the bottom to the middle
row induces an isomorphism upon taking cohomology with respect to d1. The
cohomology of the bottom row gives a copy of F4 in each degree, whose generators
were called Δ0, b0, b0, Δ0 for p = 0, 1, 2, 3 respectively. It follows that

Ep,0,4
2 (E∗/2) ∼=

{
F4{v21Δ0} p = 0

F4{v21b0} p = 1.
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16 A. BEAUDRY

Let ker(d1) be the kernel of H0(F1, E4)
d1−→ H0(F2, E4) and k̃er(d1) that of

H0(F1, E4/2)
d1−→ H0(F2, E4/2). The diagram

H0(F0, E4/2)

d1

��

∼= �� F4{v21Δ0} ⊕H0(F0, E4)/2

0⊕d1

��
k̃er(d1)

∼= �� F4{v21b0} ⊕ ker(d1)/(2)

commutes. Given the cohomology of the left vertical map, it must be the case that
d1 induces an isomorphism

d1 : H
0(F0, E4)/2

∼=−→ ker(d1)/(2).

So, we have a commutative diagram

(4.4) H0(F0, E4)
d1 ��

×2

��

ker(d1)

×2

��

�� H1(H0(F•, E4))

×2

��
H0(F0, E4)

d1 ��

��

ker(d1) ��

��

H1(H0(F•, E4))

��
H0(F0, E4)/2

d1

∼=
�� ker(d1)/(2) �� 0.

The left two columns of (4.4) are short exact by definition. By Theorem 4.8 E0,0,4
2 =

0, so the map d1 : H
0(F0, E4) → H0(F1, E4) is injective. So the rows of (4.4) are

short exact. It follows that the third column is short exact. So multiplication by 2
is an isomorphism on H1(H0(F•, E4)). Since this is a complete Z2-module, it must
be trivial. �

We now identify the α-family in H∗(G2, E∗). We begin with an observation.

Remark 4.14. Recall once more that H∗(S12, E∗) ∼= H∗(G1
2, E∗) ⊗Z2

W and
that the restriction

H∗(G1
2, E∗) ∼= H∗(S12, E∗)

Gal ⊆ �� H∗(S12, E∗)

is an inclusion. Further, the map from the E2-term of the ANSS to H∗(S12, E∗)
factors through this inclusion. We have identified the W-submodule W/2j{αi/j} ⊆
H1(S12, E2i). Choose a Galois invariant W-module generator of W/2j{αi/j} and

call it αi/j . Then Z/2j{αi/j} ⊆ H∗(G1
2, E∗).

On the other hand, the restriction

res : H∗(G2, E∗) → H∗(G1
2, E∗)

is not injective. So one must proceed with care. Recall that there is a split exact
sequence

1 �� G1
2

�� G2
�� Z×

2 /(±1) �� 1.

Using the fact that Z×
2 /(±1) ∼= Z2, we have G2

∼= G1
2 � Z2. We choose π to be

a topological generator for Z2
∼= G2/G

1
2, which acts on H∗(G1

2, E∗). From the
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η
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Figure 2. A part of the E1-term of the algebraic duality spectral
sequence, Ep,q,t

1 = Hq(Fp, Et). The top is E1,q,t
1 for 0 ≤ q ≤ 3,

drawn in the (t− q− 1, q)-plane. The bottom is E0,q,t
1 in the same

range, drawn in the (t− q, q)-plane. A � denotes a copy of W[[j]] if
p = 0 and W[[u3

1]] if p = 1. A ◦ denotes a copy of F4[[j]] if p = 0 and
F4[[u

3
1]] if p = 1. A • is a copy of F4 and • a copy ofW/4. The labels

denote the generators as W[[j]]-modules on the p = 0-line and as
W[[u3

1]]-modules on the p = 1-line. The lines denote multiplication
by η and ν. The dashed line indicates that ηΔ−1c6c

2
4 = jμ.

Lyndon-Hochschild-Serre Spectral Sequence for the group extension, one obtains a
long exact sequence

(4.5) . . . �� H∗(G1
2, E∗)

π−1 �� H∗(G1
2, E∗)

δ ��

H∗+1(G2, E∗)
res �� H∗+1(G1

2, E∗)
π−1 �� . . .

To fully analyze the long exact sequence (4.5), we would need a full computation of
H∗(G1

2, E∗), and control over the action of π on the cohomology groups H∗(G1
2, E∗).

Neither is available to us at this point. However, in the range of interest for com-
puting the α-family, we get lucky.

Proposition 4.15. The restriction H1(G2, Et) → H1(G1
2, Et) is injective if

t �= 0.

Proof. By Corollary 4.10, H0(G1
2, E∗) ∼= Z2 and the restrictionH0(G2, E∗) →

H0(G1
2, E∗) is an isomorphism. This is the first map in (4.5), so we get an exact

sequence

0 �� H0(G1
2, E∗)

δ �� H1(G2, E∗) �� H1(G1
2, E∗)

π−1 �� H1(G1
2, E∗)

The claim follows from the fact that H0(G1
2, Et) = 0 if t �= 0. �

Corollary 4.16. There are unique classes αi/j ∈ H1(G2, E2i) which map to

the same named classes in H1(S12, E2i) as described in Remark 4.14. These are the
images of the α-family elements under the map from the E2-term of the BP -based
Adams-Novikov Spectral Sequence.
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− 4 − 2 0 2 4 6 8 10 12 14 16 18 20 22 24

�
α1 α2/2

α4/4 α6/3 α8/5 α10/3 α12/4

α3 α5 α7 α9 α11/1

Figure 3. The contribution to the α-family in the algebraic
duality spectral sequence. The differentials indicate differen-
tials that occur in the homotopy fixed points spectral sequence

H∗(S12, E∗) =⇒ π∗E
hS12 and the dashed arrows indicate exotic ex-

tensions on the E∞-term of that spectral sequence.

Corollary 4.17. The topological α-family maps non-trivially in π∗SK(2), and

in π∗E
hS12. The α-family is detected in H∗(G2, E∗) by the classes αk

1αi/j which
support the standard pattern of differentials in the spectral sequence

(4.6) Hs(G2, Et) =⇒ πt−sE
hG2 .

Proof. The only thing to justify is that there are no differentials killing non-
trivial elements of the image of the topological α-family. However, the ANSS filtra-
tion of the α-elements detecting non-trivial elements in homotopy is at most 3. The
first differential in (4.6) and the analogue for S12 is a d3, and the zero line of (4.6)
consists of the permanent cycles H0(G2, E∗) ∼= Z2, respectively H0(S12, E∗) ∼= W.
That the latter are all permanent cycles follows from Section 1.2 of [BG18]. �
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