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Let 𝑘 denote a field, and let 𝐸 ⊇ 𝑘 be a finite Galois extension thereof with Galois
group 𝐺. The algebraic𝐾-groups𝐾𝑛(𝑘) and 𝐾𝑛(𝐸), as defined by Quillen, together exhibit
some interesting structure. Since these groups are defined in terms of the categories of
finite-dimensional vector spaces (along with their additive structure), the forgetful functor
Vect(𝐸) Vect(𝑘) and the functor Vect(𝑘) Vect(𝐸) given by 𝑋 𝑋 ⊗𝑘 𝐸 give rise
to homomorphisms

𝑉 ∶ 𝐾𝑛(𝐸) 𝐾𝑛(𝑘) and 𝐹 ∶ 𝐾𝑛(𝑘) 𝐾𝑛(𝐸).

Ordinary Galois theory shows that the composite functor Vect(𝐸) Vect(𝐸) given by
𝑌 𝑌 ⊗𝑘 𝐸 can be described as the direct sum

⨁
𝑔∈𝐺
𝑔 ∶ Vect(𝐸) Vect(𝐸),

where𝐺 acts in the obviousmanner. Accordingly, we have an action of𝐺 on𝐾𝑛(𝐸) for which
both 𝑉 and 𝐹 are equivariant, and a formula

𝐹𝑉 = ∑
𝑔∈𝐺
𝑔.

Note that the equivariance of𝑉 implies that it factors through the orbits𝐾𝑛(𝐸)𝐺, and the
equivariance of 𝐹 implies that it factors through the fixed points𝐾𝑛(𝐸)𝐺, but these maps do
not typically identify 𝐾𝑛(𝑘) with either the orbits or the fixed points. The data of 𝐾𝑛(𝑘) is
an added piece of structure; that is, 𝐾𝑛(𝑘) cannot in general be recovered from 𝐾𝑛(𝐸) as a
𝐺-module.

But the problem is even deeper than this. Even if one considers all the𝐾-groups together
as a single entity (by thinking of these groups as the homotopy groups of a space or spectrum),
one can construct a descent spectral sequence

𝐸2𝑝,𝑞 = 𝐻−𝑝(𝐺,𝐾𝑞(𝐸)),

but this will not, as a rule, converge to the groups 𝐾𝑝+𝑞(𝑘). In other words, the space or
spectrum 𝐾(𝑘) is not the homotopy fixed point space/spectrum of the action of 𝐺 on the
space/spectrum𝐾(𝐸). Consequently, even knowing the homotopy type𝐾(𝐸) with its action
of 𝐺 is insufficient to recover the groups 𝐾𝑛(𝑘). This is the descent problem in algebraic
𝐾-theory.

There is, of course, no need to consider the 𝐾-theories of 𝐸 and 𝑘 in isolation. One can
also include the information of the𝐾-groups of all the various subextensions 𝐸 ⊇ 𝐿 ⊇ 𝑘. In
other words, for any subgroup 𝐻 ≤ 𝐺, one can contemplate the 𝐾-groups 𝐾𝑛(𝐸𝐻) of the
fixed field 𝐸𝐻. These abelian groups each have conjugation homomorphisms

𝑐𝑔 ∶ 𝐾𝑛(𝐸𝐻) 𝐾𝑛(𝐸𝑔𝐻𝑔
−1
)
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for any 𝑔 ∈ 𝐺. Additionally, for subgroups𝐾, 𝐿 ≤ 𝐻 ≤ 𝐺, one again has the forgetful functor
Vect(𝐸𝐾) Vect(𝐸𝐻) and the functor Vect(𝐸𝐻) Vect(𝐸𝐿) given by 𝑌 𝑌 ⊗𝐸𝐻 𝐸𝐿,
so again one has homomorphisms

𝑉𝐻𝐾 ∶ 𝐾𝑛(𝐸𝐾) 𝐾𝑛(𝐸𝐻) and 𝐹𝐻𝐿 ∶ 𝐾𝑛(𝐸𝐻) 𝐾𝑛(𝐸𝐿).

Again, a small amount of Galois theory reveals that these two homomorphisms compose in
the following manner:

𝐹𝐻𝐿 𝑉𝐻𝐾 = ∑
𝑥∈𝐿\𝐻/𝐾
𝑉𝐿𝐿∩(𝑥𝐾𝑥−1)𝑐𝑥𝐹

𝐾
(𝑥−1𝐿𝑥)∩𝐾 ∶ 𝐾𝑛(𝐸

𝐾) 𝐾𝑛(𝐸𝐿).

And again, of course, the groups𝐾𝑛(𝐸𝐻) cannot be recovered from the 𝐺-module𝐾𝑛(𝐸) or
the homotopy type 𝐾(𝐸) with its action of 𝐺.

Combined, this structure on the assignment𝐻 𝐾𝑛(𝐸𝐻) makes up what is called a
Mackey functor for 𝐺. As we see, this is strictly more structure than a 𝐺-module. Similarly,
the assignment 𝐻 𝐾(𝐸𝐻) is a spectral Mackey functor for 𝐺 in the sense of the first
author [2]. This is strictly more structure than a spectrum with a 𝐺-action. We call this
object the 𝐺-equivariant 𝐾-theory of 𝐸 over 𝑘.

In this monograph, we tease out the kind of structure on the categories Vect(𝐸𝐻) that
provides their 𝐾-theory with the structure of a spectral Mackey functor for 𝐺. As a first
approximation, we note that, because the category of subextensions of 𝐸 is equivalent to the
category of transitive 𝐺-sets, the functors 𝑌 𝑌 ⊗𝐸𝐻 𝐸𝐿 together define what we call a
𝐺-category – a diagram of categories indexed on the opposite of the orbit category O𝐺 of 𝐺.
Let us write Vect𝐸⊇𝑘 for this 𝐺-category.

Of course, the 𝐺-categoryVect𝐸⊇𝑘 is relatively simple: after all, if one thinks of the action
of𝐺 onVect(𝐸), thenVect(𝐸𝐻) is the category of𝐸-vector spaces equippedwith a semilinear
action of 𝐻. In other words, Vect(𝐸𝐻) is simply the homotopy fixed point category for
the action of 𝐻 on Vect(𝐸). So we might at first contemplate Vect(𝐸) with its 𝐺-action.
However, the adjoints to the functors in this 𝐺-category – the forgetful functors – contain
extra information that compels us to contemplate entire 𝐺-category structure.

For example, the forgetful functor Vect(𝐸) Vect(𝑘) is a kind of generalized product
of vector spaces: we regard it as indexed, not over a mere set, but over the 𝐺-set 𝐺/𝑒. To see
why this is appropriate, first note that by the normal basis theorem, if 𝑌 is an 𝐸-vector space
with basis {𝑣𝑖}1≤𝑖≤𝑛, then there is an element 𝜃 ∈ 𝐸 such that 𝑌 has basis {𝑔𝜃𝑣𝑖}1≤𝑖≤𝑛,𝑔∈𝐺 over
𝑘. But without choosing this element, we would still be entitled to write

∏
𝛼∈𝐺/𝑒
𝑌

for this 𝑘-vector space. In the same manner, the presence of all the other right adjoints
Vect(𝐸𝐻) Vect(𝐸𝐾) in this diagram of categories can be regarded as the existence of
various indexed products

∏
𝛼∈𝐾/𝐻
𝑍

on this 𝐺-category. At the same time, since our field extensions are separable, these right
adjoints are all also left adjoints, and so we even think of this as endowing our 𝐺-category
with indexed direct sums

⨁
𝛼∈𝐾/𝐻
𝑍.

The point here is that the transfer structure on the equivariant algebraic𝐾-groups arises
from the additional structure of indexed products or coproducts on the 𝐺-category Vect𝐸⊇𝑘.
And this example refects a general principle: to get the full structure of a Mackey functor
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on equivariant algebraic 𝐾-theory of 𝐸 over 𝑘, one must work not only with the diagram of
categories indexed by Oop

𝐺 , but also the 𝐺-direct sums thereupon.
The 𝐺-category Vect𝐸⊇𝑘 also carries a sophisticated multiplicative structure. Of course,

the tensor product over 𝑘 provides an external product

Vect(𝐸𝐾) × Vect(𝐸𝐿) Proj fg(𝐸𝐾 ⊗𝑘 𝐸𝐿) ≃ ∏
𝑥∈𝐿\𝐺/𝐾

Vect(𝐸(𝑥
−1𝐿𝑥)∩𝐾).

In [9], we demonstrated that the external products provide the equivariant algebraic 𝐾-
groups with the structure of a graded Green functor, and, even better, they provide the
equivariant algebraic 𝐾-theory spectra with the structure of a spectral Green functor.

However, there is a still richer multiplicative structure, whose impact on equivariant
𝐾-theory is studied here for the first time. Just as the usual norm of an element of 𝐸 is
automatically Galois-invariant, we see that for any finite-dimensional 𝐸-vector space 𝑉, the
tensor power 𝑉⊗𝐺 comes with canonical descent data. We call the resulting 𝑘-vector space
𝑁𝑘𝐸(𝑉) the multiplicative norm from 𝐸 to 𝑘. Quite simply, 𝑁𝑘𝐸(𝑉) is the 𝑘-vector space (of
dimension (dim𝑉)#𝐺) such that the set Hom𝑘(𝑁𝑘𝐸(𝑉),𝑊) is in bijection with the set of
norm forms 𝑉×𝐺 𝑊 ⊗𝑘 𝐸 for 𝐸/𝑘 – i.e., 𝑘-multilinear maps

𝛷 ∶ 𝑉×𝐺 𝑊 ⊗𝑘 𝐸

such that for any element (𝑣ℎ)ℎ∈𝐺 ∈ 𝑉×𝐺, any element 𝑔 ∈ 𝐺, and any element 𝜆 ∈ 𝐸,

𝛷((𝑣′ℎ)ℎ∈𝐺) = (𝑔𝜆)𝛷((𝑣ℎ)ℎ∈𝐺),

where

𝑣′ℎ = {
𝜆𝑣𝑔 if ℎ = 𝑔;
𝑣ℎ if ℎ ≠ 𝑔,

and
𝑔𝛷((𝑣ℎ)ℎ∈𝐺) = 𝛷((𝑣𝑔ℎ)ℎ∈𝐺.

So,𝑁𝑘𝐸(𝑉) is the dual of the 𝑘-vector space of norm forms 𝑉×𝐺 𝐸 for 𝐸/𝑘. In particular,
when 𝑘 = R and 𝐸 = C, then 𝑁R

C(𝑉) is precisely the dual space of the R-vector space of
hermitian forms on 𝑉.

More generally, there are multiplicative norms for any subgroups 𝐾 ≤ 𝐿 ≤ 𝐺. Together
with the external products, these multiplicative norms furnish Vect𝐸⊇𝑘 with a 𝐺-symmetric
monoidal structure. In effect, this provides tensor products indexed over any finite 𝐺-set
𝑈 = ∐𝑖∈𝐼(𝐺/𝐻𝑖), which amount to functors

⨂
𝑢∈𝑈
∶ ∏
𝑖∈𝐼

Vect(𝐸𝐻𝑖 ) Vect(𝑘),

which are suitably associative and commutative.
This additional structure on Vect𝐸⊇𝑘 descends to an analogous structure on the equivari-

ant algebraic 𝐾-theory of 𝐸 over 𝑘. These provide the equivariant algebraic 𝐾-theory of 𝐸
over 𝑘 with the full structure of a 𝐺-𝐸∞-algebra.

Hill’s program

To tell this story, we pursue here the general theory of 𝐺-∞-categories. But we are by no
means the first to contemplate this possibility.

In their landmark solution of the Kervaire Invariant Problem [25], Mike Hill, Mike Hop-
kins, and Doug Ravenel developed a perspective on equivariant stable homotopy thery that
centered on the study of indexed products, indexed coproducts, and indexed symmetric
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monoidal structures (incorporating their multiplicative norms). They argued that these
structures were fundamental to the basic structure of equivariant stable homotopy theory.

This has generated a flurry of interest in these structures. Indeed, the notion of𝐺-1-category
already appears in work of Emanuele Dotto and Kristian Moi [20] as well as in work of An-
drew Blumberg and Mike Hill [16].

In 2012, Hill presented (partly jointly with Hopkins) a sketch of a program to rewire huge
swaths of higher category theory in order to embed these structures into the very fabric of
the homotopy theory of homotopy theories. Hill sought a theory of 𝐺-∞-categories and
𝐺-functors, along with a concomitant theory of internal homs, 𝐺-limits, 𝐺-colimits, 𝐺-Kan
extensions, etc. He furthermore conjectured that, equipped with this technology, one could
prove the following, which is an analogue of the universal property of the∞-category Top
of spaces.

Theorem A. The 𝐺-∞-category Top
𝐺
of 𝐺-spaces – whose value on an orbit 𝐺/𝐻 is the∞-

category of𝐻-spaces – is freely generated under 𝐺-colimits by the contractible 𝐺-space; that is,
for any𝐺-∞-category𝐷with all𝐺-colimits, evaluation on the generator defines an equivalence
of 𝐺-∞-categories

Fun𝐿𝐺 (Top𝐺,𝐷)
∼ 𝐷.

Here Fun𝐿𝐺 is the 𝐺-∞-category of 𝐺-colimit-preserving functors.

In this text, we develop all this machinery, and this is the first main theorem.
Recall that one may speak of semiadditive∞-categories, in which finite products and

finite coproducts exist and coincide. In the samemanner, Hill expected that onemay speak of
𝐺-semiadditive∞-categories, in which finite 𝐺-products and finite 𝐺-coproducts exist and
coincide. Furthermore, the effective Burnside∞-category 𝐴eff(F) of finite sets is equivalent
to the∞-category of finitely generated free 𝐸∞-spaces, whence it is the free semiadditive
∞-category on one generator. Accordingly, in equivariant higher category theory, we have
the following.

TheoremB. The𝐺-∞-category𝐴eff(𝐺) –whose value on𝐺/𝐻 is the effective Burnside∞-cate-
gory of finite𝐻-sets – is equivalent to the𝐺-∞-category of finitely generated free𝐺-𝐸∞-spaces.
In other words, it is the free 𝐺-semiadditive 𝐺-∞-category on one generator; that is, for
any 𝐺-semiadditive 𝐺-∞-category 𝐴, evaluation on the generator defines an equivalence of
𝐺-∞-categories

Fun⊕𝐺 (𝐴
eff(𝐺),𝐴) ∼ 𝐴.

Here Fun⊕𝐺 is the 𝐺-∞-category of 𝐺-coproduct-preserving functors.

As suggested by work of Andrew Blumberg [14], the 𝐺-stability of a 𝐺-∞-category can
be defined as ordinary stability along with𝐺-semiadditivity. Consequently, the two previous
theorems, with some effort, together provide the following, also conjectured by Hill:

Theorem C. The 𝐺-∞-category Sp𝐺 of 𝐺-spectra – whose value on an orbit 𝐺/𝐻 is the∞-
category Sp𝐻 of genuine𝐻-spectra – is the free 𝐺-stable 𝐺-∞-category with all 𝐺-colimit on
one generator; that is, for any 𝐺-stable 𝐺-∞-category 𝐸, evaluation on the generator defines
an equivalence of 𝐺-∞-categories

Fun𝐿𝐺 (Sp
𝐺,𝐴) ∼ 𝐴.

Going further, Hill also expected that the multiplicative norms of Hill–Hopkins–Ravenel
would be part of a new type of structure – a 𝐺-symmetric monoidal 𝐺-∞-category. In effect,
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a 𝐺-symmetric monoidal 𝐺-∞-category is a 𝐺-∞-category 𝐶 along with tensor product
functors over finite 𝐺-sets. In particular, one has a functor

𝑁𝐺 ∶ 𝐶(𝐺/𝑒) 𝐶(𝐺/𝐺),

which is exactly the desired multiplicative norm.
Work of Hill and Hopkins [24] has already laid out the idea of 𝐺-symmetric monoidal

ordinary categories, but incorporating homotopy coherence into this sort of structure is a
taller order. The situation is roughly analogous to the situation with the smash product in
model categories of spectra: there are genuine obstructions to making a 𝐺-symmetric mon-
oidal structure maximally compatible with a model category of genuine𝐺-spectra. However,
when we pass to the world of∞-categories as in [26], the situation becomes much cleaner:
not only can one give an explicit, homotopy invariant construction of the smash product
on the∞-category Sp of spectra, but this smash product enjoys a universal property that
characterizes it up to a contractible space of choices.

We bring exactly this kind of conceptual clarity (and technical power) to the study
of homotopy coherent 𝐺-commutative structures in this text. We define the notions of
𝐺-∞-operad and 𝐺-symmetric monoidal 𝐺-∞-category. We find that 𝐺-products define
𝐺-symmetric monoidal structures on the 𝐺-∞-category Cat∞,𝐺 of 𝐺-∞-categories and the
𝐺-∞-category Top

𝐺
of 𝐺-spaces. The 𝐺-commutative algebra objects of Cat∞,𝐺 are pre-

cisely the 𝐺-symmetric monoidal∞-categories, and the 𝐺-commutative algebra objects of
Cat∞,𝐺 are precisely the 𝐺-𝐸∞-spaces.

Similarly, there is a 𝐺-subcategory Pr𝐿𝐺 ⊂ Cat∞,𝐺 of 𝐺-presentable 𝐺-∞-categories and
𝐺-left adjoints. This too has a 𝐺-symmetric monoidal structure, but it is not given by 𝐺-
products; rather, the 𝐺-commutative algebra objects of Pr𝐿𝐺 are precisely the 𝐺-symmetric
monoidal∞-categories that are presentable and in which the tensor product preserves 𝐺-
colimits separately in each variable.

TheoremD. The𝐺-∞-categoryTop
𝐺
is the unit in the𝐺-symmetric monoidal𝐺-∞-category

Pr𝐿𝐺. In particular, it admits an essentially unique 𝐺-symmetric monoidal structure in which
the tensor product preserves 𝐺-colimits separately in each variable, which is given by the 𝐺-
products.

Even further, the full 𝐺-subcategory Pr𝐿𝐺,st ⊂ Pr
𝐿
𝐺 spanned by the 𝐺-stable 𝐺-presentable

𝐺-∞-categories inherits the 𝐺-symmetric monoidal structure, and we have the following.

TheoremE. The𝐺-∞-category Sp𝐺 is the unit object in the𝐺-symmetric monoidal𝐺-∞-cate-
gory Pr𝐿𝐺,st. In particular, it admits an essentially unique 𝐺-symmetric monoidal structure in
which the tensor product preserves 𝐺-colimits separately in each variable.

In particular, this provides a universal description of the Hill–Hopkins–Ravenel mul-
tiplicative norm. With some work, this even provides a universal characterization of an
individual norm functor.

Theorem F. The norm functor𝑁𝐺 ∶ Sp Sp𝐺 is the inital object of the∞-category

Fun⊗(Sp, Sp𝐺) ×Fun⊗(Top,Sp𝐺) Fun⊗(Top, Sp𝐺)𝛴𝐺,∞+ ∘𝛱𝐺/,

where𝛱𝐺 ∶ Top Top𝐺 is the 𝐺-product, and Fun⊗ denotes the∞-category of symmetric
monoidal functors.

In this text, we completely realize Hill’s vision, and we prove Theorems A–F.
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Taking the 𝐺 out of Genuine

Formally, one may now note that the orbit categoryO𝐺 of the group𝐺 plays a much more
significant role in these results than does𝐺 itself. In particular, although the∞-category Sp𝐺
can be obtained by taking the∞-category Top𝐺 and inverting the representation spheres,
our viewpoint regards the role of representation spheres as incidental.

One is thus led to ask whether one might untether equivariant homotopy theory from
dependence upon a group. (We thank Haynes Miller for the pun of the section heading.)
That is, first, do Theorems A–F hold more generally? And, second, is there any value in
proving them in greater generality? The answer to both questions turns out to be yes.

Indeed, when one examines the proofs of the results above, one finds that the unstable
results continue to hold whenO𝐺 is replaced with any base∞-category 𝑇. The stable results
require only very mild conditions on 𝑇; in effect, one requires the analogue of the Mackey
decomposition theorem in 𝑇 (“𝑇 is orbital”) and a condition that no nontrivial retracts exist
(“𝑇 is atomic”). We can even extend this further, and define an incompleteness class 𝑅 on the
orbital∞-category 𝑇; in effect, this serves to place limits on the classes of transfers that exist
in the corresponding∞-category of spectra.

As it happens, there are many examples that make this generality worthwhile. Here are a
few.
1. As a mild extension of the example O𝐺, consider a family ℱ of subgroups of 𝐺 such that

if 𝐾 ≤ 𝐿 lie in ℱ, then any subgroup 𝐻 ≤ 𝐺 that is conjugate to a subgroup 𝐻′ such
that 𝐾 ≤ 𝐻′ ≤ 𝐿 also lies in ℱ. Then the full subcategory O𝐺,ℱ ⊆ O𝐺 is also an atomic
orbital category. Such categories (along with various inclusions of “closed” and “open”
subcategories) appear naturally when we contemplate the isotropy separation sequence
in equivariant stable homotopy theory.

2. Following Blumberg and Hill [15], any incomplete 𝐺-universe 𝑈 gives rise to an incom-
pleteness class 𝑅𝑈 on O𝐺, and this permits us to model 𝐺-spectra relative to 𝑈.

3. Furthermore, one can also work with orbit categories of profinite groups (where the stabi-
lizers are required to be open) and locally finite groups (where the stabilizers are required
to be finite).This provides extensions of equivariant stable and unstable homotopy theory
to these contexts.

4. Any∞-groupoid (= Kan complex)𝑋 is atomic orbital. The corresponding∞-category
of 𝑋-spaces is equivalent to the ∞-category of functors 𝑋 Top; likewise, the ∞-
category of 𝑋-spectra is equivalent to the∞-category of functors 𝑋 Sp. In other
words, 𝑋-spaces are local systems of spaces over 𝑋, and 𝑋-spectra are local systems of
spectra over 𝑋. Consequently, this example actually recovers parametrized homotopy
theory as studied by Peter May and Johann Sigurdsson [27]; in fact, this example was the
inspiration for our title.

5. Combining the previous example with the ur-example, for any 𝐺-space𝑋, one can con-
struct the total orbital∞-category X. One sees that𝑋-spaces are local systems of𝐺-spaces
over𝑋, and𝑋-spectra are local systems of 𝐺-spectra over𝑋.

6. The cyclonic orbit 2-category OⒸ, whose objects are Q/Z-sets with finite stabilizers,
whose 1-morphisms are equivariant maps, and whose 2-morphisms are certain inter-
twiners, is an orbital∞-category [8]. The corresponding homotopy theory of 𝐵-spectra
is the homotopy theory of 𝑆1-equivariant spectra relative to the family of finite subgroups.
This is precisely the sort of equivariance that one sees on topological Hochschild homol-
ogy [6]. To construct the homotopy category of cyclotomic spectra, one forms the fixed
points of this homotopy theory relative to the action of the monoid of open immersions
from OⒸ into itself.
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7. Generalizing the previous example are themulti-cyclonic orbit 2-categories which control
torus-equivariance and multi-cyclotomic structures, which appear naturally on higher
forms of topological Hochschild homology [5].

8. The 2-category 𝛤 of finite connected groupoids and covering maps is atomic orbital.
The corresponding homotopy theory of 𝛤-spectra is a variant of Stefan Schwede’s global
equivariant homotopy theory [29]. To get exactly Schwede’s global equivariant homotopy
theory (for finite groups) in our framework requires a larger orbital∞-category of finite
connected groupoids equipped with an incompletness class.

9. The category Surj≤𝑛 of finite sets of cardinality ≤ 𝑛 and surjective maps is an atomic
orbital category. This one is extremely strange, however, as it doesn’t have much at all to
do with any groups. Nevertheless, the third author shows in [23] that the corresponding
homotopy theory of FS≤𝑛-spectra is equivalent to the homotopy theory of 𝑛-excisive func-
tors Sp Sp, generalizing Tom Goodwillie’s classification of homogeneous functors.
Indeed, it is the inclusion of Surj≤𝑛−1 into Surj≤𝑛, combinedwith the complmentary inclu-
sion of 𝐵𝛴𝑛 into Surj≤𝑛, that together reconstruct the recollement of 𝑛-excisive functors
by (𝑛 − 1)-excisive functors and 𝑛-homogeneous functors.

10. The∞-categories Surj(R)≤𝑛 and Surj(C)≤𝑛 obtained from the topological categories of
finite-dimensional inner product spaces (over R and C, respectively) of dimension ≤ 𝑛
and orthogonal projections are atomic orbital as well. Just as stable homotopy theory
parametrized on the orbital categories Surj≤𝑛 “controls” the Goodwillie tower, so the
stable homotopy theory parametrized on the orbital categories Surj(R)≤𝑛 “controls” the
Weiss orthogonal calculus [31]. Likewise, stable homotopy theory parametrized on the
orbital categories Surj(C)≤𝑛 “controls” the unitary calculus. We hope to return to this
point in future work.

11. Our framework also covers and extends a setting previously defined in work of Bill Dwyer
and Dan Kan, Emanuel Dror Farjoun, and Boris Chorny and Bill Dwyer. In [21], Farjoun
builds on work of [22] and defines a model structure on the category of diagrams of
spaces indexed on a small category 𝐼, called the 𝐼-equivariant model structure, which
depends on the “𝐼-orbits”: the diagrams 𝐼 Top whose strict (= 1-categorical) colimit
is equal to a point. In particular if 𝐼 = 𝐺 is a group these are precisely the𝐺-orbits, and the
resulting homotopy theory is the fixed-points model structure on 𝐺-spaces. Moreover
Farjoun’s construction admits an Elmendorf–McClure theorem, in the sense that the
𝐼-equivariant model structure is Quillen-equivalent to a presheaf category (on the orbit
category when the orbits are either small or complete). This result was proved in dif-
ferent levels of generality in [22] and [18], and in full generality in the more recent [17].
The category of 𝐼-orbits O𝐼 is an atomic orbital category, and by the above mentioned
Elmendorf–McClure theorem, Farjoun’s 𝐼-equivariantmodel category is equivalent to our
homotopy theory of O𝐼-spaces. Our construction exhibits the 𝐼-equivariant homotopy
theory as a fiber of a full-fledgedO𝐼-category, thus enabling one to exploit the full theory
of O𝐼-equivariant limits and colimits.
Such a wealth of examples compels us to prove Theorems A–F in the generality atomic

orbital∞-categories, and, where possible, we develop elements of the theory in even greater
generality.

Plan

This text consists of nine Exposés:
I. We introduce the basic elements of the theory of parametrized∞-categories and func-

tors between them. Following the lessons of [13], these notions are defined as suitable
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fibrations of∞-categories and functors between them. We give as many examples as
we are able at this stage. Simple operations, such as the formation of opposites and the
formation of functor∞-categories, become slightly more involved in the parametrized
setting, but we explain precisely how to perform these constructions. All of these con-
structions can be performed explicitly, without resorting to such acts of desperation as
straightening. The key results of this Exposé are: (1) a universal characterization of the
𝑇-∞-category of 𝑇-objects in any∞-category, (2) the existence of an internal Hom
for 𝑇-∞-categories, and (3) a parametrized Yoneda lemma. [3]

II. We dive deep into the fundamentals of parametrized∞-category theory in the second
Exposé. In particular, we construct parametrized versions of join and slice, and use
these to define parametrized colimits and limits as well as parametrized left and right Kan
extensions. At the heart of this is the difficult but technically powerful result that, just as
onemay decompose colimits into coproducts and geometric realizations in∞-category
theory, similarly one may decompose parametrized colimits into parametrized coprod-
ucts and geometric realizations in the ordinary sense. This has the effect of elevating
parametrized coproducts and products to a special status within the theory. Theorem
A is proved (and generalized) here. [30]

III. We next introduce orbital∞-categories, along with a host of examples. There are actu-
ally different sorts of functor between orbital∞-categories, and we taxonomize these
according to certain algebro-geometric intuitions. For any orbital∞-category 𝑇, we
have a corresponding∞-category Sp𝑇 (even𝑇-∞-category) of𝑇-spectra, which under
our algebro-geometric analogy corresponds roughly to an∞-category of “quasicoher-
ent sheaves on 𝑇.” The different sorts of functors between orbital∞-categories induce
suitable functors between the∞-categories of𝑇-spectra, and these behave as the names
suggest. Perhaps most importantly, closed immersions of orbital∞-categories admit
open complements, and these two functors induce a recollement of the corresponding
∞-category of spectra; this is how one obtains the isotropy separation sequence and
generalizations thereof. With a little care, we are able to extend all this to the context
of an orbital∞-category equipped with an incompleteness class. [7]

IV. In the fourth Exposé, we define semiadditive parametrized∞-categories, and we prove
Theorem B. Then we use the work of Exposé II to show that parametrized stability can
be expressed as ordinary stability combined with parametrized semiadditivity. This
now makes it possible to prove Theorem C. [28]

V. Next, we introduce the notion of parametrizedWaldhausen∞-categories.We show that
the algebraic𝐾-theory of a Waldhausen 𝑇-∞-category naturally carries the structure
of a 𝑇-spectrum. [1]

VI. From here, we move toward the algebraic structures in parametrized higher cate-
gory theory. We introduce the notions of 𝑇-∞-operad and 𝑇-symmetric monoidal
∞-category for an orbital∞-category 𝑇, and we offer up numerous examples. Per-
haps most importantly, parametrized∞-categories with all 𝑇-coproducts (or, dually,
𝑇-products) inherit canonical 𝑇-symmetric monoidal structures. [4]

VII. In the seventh Exposé, we prove that when 𝑇 is an atomic orbital ∞-category, the
𝑇-∞-category Pr𝐿𝑇 of 𝑇-presentable 𝑇-∞-categories admits a 𝑇-symmetric monoidal
structure analogous to the symmetric monoidal structure on presentable∞-categories.
Theorem A then implies, more or less directly, Theorem D. Moreover, 𝑇-stable 𝑇-
presentable 𝑇-∞-categories form a symmetric monoidal localization of Pr𝐿𝑇, and the
localization is given by tensoring with Sp𝑇. Theorem E follows immediately. More-
over, one deduces a different universal property of Sp𝑇, which is that it is, in effect,
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the result of inverting the analogues of the permutation representation spheres in the
𝑇-symmetric monoidal 𝑇-∞-category Top

𝐺
. From this, we are able to deduce the

universal property of the norm (Theorem F). [12]
VIII. In the penultimate Exposé, we introduce the 𝑇-∞-categoryMod(𝐴) of modules over a
𝑇-𝐸∞-algebra𝐴 (for an atomic orbital∞-category 𝑇). We show that it is 𝑇-symmetric
monoidal, and we describe how it transforms in both 𝐴 and 𝑇. [11]

IX. Finally, we return to the subject of equivariant algebraic𝐾-theory, where we show that
the equivariant algebraic𝐾-theory of a𝑇-symmetric monoidalWaldhausen𝑇-∞-cate-
gory admits the natural structure of a 𝑇-𝐸∞ ring spectrum. This applies not only in the
field case of the beginning of this introduction, but also to those forms of equivariant
algebraic 𝐾-theory that arise in the work of Dustin Clausen, Akhil Mathew, Niko
Naumann, and Justin Noel [19] as well as the nascent subject of equivariant (derived)
algebraic geometry. [10]
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