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Abstract. In this article we study the problem of extracting an ∞-category

from a relative category. We introduce partial model categories, which are

relative categories that satisfy mild versions of the axioms of a model cate-
gory. Since these axioms involve only the weak equivalences, they are general

enough to include the vast majority of the relative categories one encounters

in practice. We show that the simplicial nerve of a partial model category
is “essentially” a complete Segal space, generalizing a result of Charles Rezk.

To prove this, we must introduce a significant generalization of a Quillen’s

Theorem B. We show also that, conversely, any complete Segal space is di-
mensionwise equivalent to the simplicial nerve of a partial model category.
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0. Introduction

Many examples of homotopy theories arise most naturally as relative categories
— that is, as categories C equipped with subcategories W ⊂ C of weak equiva-
lences [BK1]. Examples include:

(i) the category of commutative differential graded algebras over a field, equipped
with the subcategory of quasi-isomorphisms,

(ii) the category of perfect complexes of quasicoherent sheaves on a variety,
equipped with the subcategory of local quasi-isomorphisms,

(iii) the category of C∗-algebras, equipped with the subcategory of homotopy
equivalences,

(iv) the category of topological spaces and proper maps, equipped with the
subcategory of proper homotopy equivalences.

When one is presented with a homotopy theory exhibited in this way, it is natural
to seek to employ the flexible techniques of higher category theory as presented in
[HTT] and elsewhere. But how does one extract a suitable ∞-category from a
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relative category (C,W )? To obtain a quasicategory, current technology demands
that one choose between the following rather tortuous procedures.

(i) One may first form a simplicial localization L(C,W ) of (C,W ) [DK1,
DK2,DK3], a simplicial category whose spaces of morphisms can be iden-
tified with nerves of categories of zigzags of arrows in C in which the
backwards maps lie in W . One then replaces these mapping spaces with
fibrant ones and performs the nerve construction of [HTT, Df. 1.1.5.5]
or [DS].

(ii) Alternately, one may form the ordinary nerve of C and regard this sim-
plicial set as marked by the edges that correspond to morphisms of W .
Then one performs a fibrant replacement for the cartesian model structure
on the category of marked simplicial sets.

The first of these works relatively well if (C,W ) is a simplicial model category,
but for examples like those listed above, in which no natural simplicial structure is
available, neither of these processes is particularly tractable for computations. For
example, it seems difficult to describe invariants such as the moduli space of strings
of arrows of length p of the resulting quasicategory X — which may be modeled as
the maximal Kan complex contained in the quasicategory Fun(∆p, X) — in terms
of the relative category (C,W ).

The first major theorem of this article (2.2) asserts that for virtually any relative
category (C,W ) one meets in practice, there is a simpler and more direct way of
extracting an ∞-category X. In effect, we show that the moduli space of strings
of arrows of length p in X is equivalent to the nerve Np(C,W ) of the category
whose objects are of strings of arrows of length p in C, and whose morphisms are
objectwise weak equivalences. In the framework developed by Charles Rezk [R],
the resulting simplicial spaceN∗(C,W ) correctly models the∞-category associated
with (C,W ).

Charles Rezk proved this result for simplicial model categories [R, 8.3]; our gen-
eralization extends his result to examples like those of the first paragraph. Perhaps
surprisingly, the conditions we demand on the relative category (C,W ) for our re-
sult are quite mild; they are enjoyed by any relative category that can be embedded
as a homotopically full subcategory of a model category M — that is, a full
subcategory of M such that any weak equivalence whose source or target lies in C
is also a weak equivalence of C. We therefore call these relative categories partial
model categories. These include all of the examples from the first paragraph.

The proof of this result makes use of a generalization of Quillen’s Theorem B
(5.9) that is of interest in its own right. In [DKS, §6], Theorem B was generalized
to give more robust but less simple characterizations of the homotopy fibres of
the nerve of a functor. We extend this result yet further to describe more general
homotopy pullbacks.

Our second major theorem (3.1) is a converse to Rezk’s result. It asserts, in effect,
that any ∞-category is equivalent to one associated with a partial model category.
More precisely, given a relative category (C,W ), we construct a relative Yoneda
embedding

y : (C,W ) −→ SCop,W op

into a relative category of relative functors from (Cop,W op) to the model category
of simplicial sets. and note that y induces an equivalence of homotopy theories
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between (C,W ) and a homotopically full relative subcategory of the model category

SC
op

of diagrams of simplicial sets.

Organization of the paper. In §1 we introduce partial model categories and
discuss the immediate consequences of their definition. In §2 and §3 we then state
the main results of this paper — our generalization of Rezk’s result (2.2) and its
converse (3.1).

In §3, we also give a proof of (3.1), modulo a partial modelization lemma (3.3),
which we will deal with in §7.

Our proof of (2.2), which will be given in §6, relies upon our generalization of
Quillen’s Theorem B (5.9). In order to formulate this result, we discuss in §4 various
Grothendieck constructions and give a precise formulation of what we call Quillen’s
lemma. Then (§5), we recall the properties Bn and Cn and prove the Theorems Bn
for homotopy fibres and for homotopy pullbacks.

1. Partial model categories

It was noted in [DK2, DK3] that in a simplicial model category M , if X is
cofibrant and Y is fibrant, then the function complex M∗(X,Y ) has the same
homotopy type as the mapping space L(M ,W )(X,Y ) of the simplicial localization
L(M ,W ) where W ⊂M denotes its category of weak equivalences. A key step in
the proof of this result was the observation that if a relative category (C,U) with
the two out of three property admits a 3-arrow calculus — that is, if there exists
subcategories U c and Uf ⊂ U that enjoy some of the properties of the categories of
the trivial cofibrations and trivial fibrations in a model category —, then for every
pair of objects X,Y ∈ C, the homotopy type of L(C,U)(X,Y ) admits a rather
simple description in terms of 3-arrow zigzags

X ←− · −→ · ←− Y

in which the outside maps are weak equivalences.
On the other hand, it was noted in [DHKS] that if a relative category (C,U) has

the two out of six property — a strengthening of the more usual two out of three
property —, then one can make sense of homotopy limit and colimit functors that
enjoy many of the expected properties. Better still, if (C,U) also admits a 3-arrow
calculus, then the relative category (C,U) is saturated in the sense that a map in
C is a weak equivalence iff its image in Ho(C,U) is an isomorphism. This allows
one to formulate very simple conditions that ensure the existence of such homotopy
limit and colimit functors.

This suggests that the notion of a relative category that has the two out of six
property and admits a 3-arrow calculus is a particularly useful one that deserves
further investigation. This leads us to the following definition.

1.1. Partial model categories. A partial model category will be a pair (C,W )
consisting of a category C and a subcategory W ⊂ C (the maps of which will be
called weak equivalences) which, roughly speaking, satisfies those parts of the
model category axioms (as for instance reformulated in [DHKS, 9.1]) which involve
only the weak equivalences. More precisely we require that

A. (C,W ) be a relative category — that is, that W contains all the objects
of C (and hence also their identity maps),
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B. (C,W ) has the two out of six property — that is, if r, s and t are
maps in C such that the two compositions sr and ts exists and are in W ,
then the four maps r, s, t and tsr are also in W (which together with A)
readily implies that (C,W ) has the two out of three property and that W
contains all the isomorphisms.

C. (C,W ) admits a 3-arrow calculus, i.e. there exists subcategories U ,V ⊂
W which have the property that

(i) for every map u ∈ U , its pushouts in C exist and are again in U ,
(ii) for every map v ∈ V , it’ pullbacks in C exist and are again in V , and
(iii) the maps w ∈W admit a functorial factorization w = vu with u ∈ U

and v ∈ V (which implies that U and V contain all the objects).

It should be noted that conditions (i) and (ii) are stronger than the ones that
were used in [DK2] and [DHKS]. However we prefer them as they are cleaner and
easier to work with and are likely to be usually automatically satisfied.

1.2. Examples of partial model categories.

(i) Any model category is a partial model category. In particular the relative
category S of simplicial sets is a partial model category.

(ii) If (C,W ) is a partial model category, then so is any homotopically full
relative subcategory — that is any relative subcategory of the form
(C ′,C ′ ∩W ) where C ′ is a full subcategory of C with the property that,
for every object C ′ ∈ C ′, any object of C that is weakly equivalent to C ′

lies in C ′.
(iii) If (C,W ) is a partial model category, then for every relative category

(A,X), the relative category (C,W )A,X of relative functors (A,X) →
(C,W ) is a partial model category as well.

(iv) If (C, ) is a partial model category, then so is (W ,W ).

1.3. Saturation [DHKS, 36.4]. Every partial model category (C,W ) is saturated
in the sense that a map of C is in W iff it goes to an isomorphism in the homotopy
category Ho(C,W ), i.e. the category obtained from C by “formally inverting” the
weak equivalences.

2. A generalization of a result of Rezk

We now aim to state a strengthening of a result of Rezk on simplicial model
categories [R, 8.3], which applies for partial model categories. The proof will appear
in §6. First, we recall Rezk’s model for ∞-categories.

2.1. Rezk’s complete Segal model structure. In [R],

A. Rezk constructed a “homotopy theory of homotopy theories” model struc-
ture on the category sS of simplicial spaces (i.e. bisimplicial sets) by means
of an appropriate left Bousfield localization of the Reedy model structure,
the fibrant objects of which he referred to as complete Segal spaces,
and

B. described a Rezk (or simplicial) nerve functor N from the category
RelCat of relative categories (1.1) and relative functors between them to
sS which sends a relative category (C,W ) to the simplicial space which
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in dimension k ≥ 0 has as its n-simplices (n ≥ 0) the commutative squares
of the form

· c1 //

w1

��

· · · · · ck // ·

��
·
...

·
...

·
wn

��

·

��
· // · · · · · // ·

in which the vertical maps are in W .

He then noted that [R, 8.3]

∗ if M is a simplicial model category, then any Reedy fibrant replacement of
the simplicial space NM is a complete Segal space.

2.2. Theorem. If (C,W ) is a partial model category (1.1), then any Reedy fibrant
replacement of N(C,W ) is a complete Segal space.

3. A converse of Rezk’s result

3.1. Theorem. Every complete Segal space is Reedy equivalent to the simplicial
nerve of a partial model category and in fact of a homotopically full relative subcat-
egory of a category of diagrams of simplicial sets.

The key to this is a partial modelization lemma which we will state in 3.3 but
prove in §7 below. Its formulation requires the following.

3.2. A relative Yoneda embedding. Let LH denote the hammock localization
of [DK2]. Given a relative category (C,U), its relative Yoneda embedding will
be the relative functor between relative categories

y = yC,U : (C,U) −→ SCop,Uop

which sends each object A ∈ C to the relative functor yA : (Cop,Uop)→ S which
sends each object B ∈ Cop to the simplicial set LH(C,U)(B,A).

We denote by Ey the essential image of the relative Yoneda embedding — that
is, Ey is the smallest homotopically full relative subcategory (1.2(ii)) of SCop,Uop

that contains all of the relative functors of the form yA.

3.3. The partial modelization. Given a relative category (C,U),

(i) the essential image Ey of the relative Yoneda embedding (3.2) is a partial
model category and in fact a homotopically full relative subcategory of a
category of diagrams of simplicial sets, and

(ii) the embedding e : (C,U)→ Ey is a DK-equivalence — that is, its sim-
plicial localization is a weak equivalence of simplicial categories [Be], or,
equivalently, [BK1, 1.8] its simplicial nerve is a Rezk (i.e. complete Segal)
equivalence of simplicial spaces.
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Using this we now can give

3.4. A proof of 3.1. First recall from [BK1, 5.3 and 4.4] the existence of

(i) an adjunction Kξ : RelCat↔ sS :Nξ of which the unit η : 1→ NξKξ is a
natural Reedy equivalence, and

(ii) a natural Reedy equivalence π∗ : N → Nξ (2.1b)

and from [R, 7.2] that

(iii) every Reedy equivalence in sS is a Rezk equivalence (3.3(ii)) and every
Rezk equivalence between two complete Segal spaces is a Reedy equiva-
lence.

Given a complete Segal space X one then can consider the zigzag

X
η
// NξKξX NKξX

e //π∗oo NEyKξ,X

in which, in view of (i) and (ii) above and 3.3(ii) respectively, the first two maps are
Reedy equivalences, while the third is a Rezk equivalence, and note that it follows
from (iii) above and 2.2 that every Reedy fibrant replacement of the partial model
category EyKξX (3.3(i)) is Reedy equivalent to X.

4. Grothendieck constructions and Quillen’s lemma

To prove our generalization of Rezk’s theorem (2.2), we will in the next section
prove a generalization of Quillen’s Theorem B. In preparation for the formulation
and the proofs of this generalization, we first briefly discuss Grothendieck construc-
tions and formulate, in terms of Grothendieck constructions, a categorical version
of the lemma that Quillen used in his proof of Theorem B.

4.1. Terminology. We will work in the category Cat of small categories with the
Thomason model structure [T2] in which a map is a weak equivalence iff its nerve
is a weak equivalence of simplicial sets and in which homotopy fibres and homotopy
pullbacks have a similar meaning.

4.2. Grothendieck constructions. Given a small category D and a functor
F : D → Cat (4.1), the Grothendieck construction on F is the category Gr F
which has

(i) as objects the pairs (D,A) consisting of objects

D ∈D and A ∈ FD ,

(ii) as maps (D1, A1)→ (D2, A2) the pairs (d, a) of maps

d : D1 → D2 ∈D and a : (Fd)A1 → A2 ∈ FD2

and

(iii) in which the composition is given by the formula

(d′, a′)(d, a) =
(
d′d, a′

(
(Fd)a

))
.

Moreover

(iv) Gr F comes with a projection functor π : Gr F → D which sends an
object (D,A) (resp. a map (d, a)) in Gr F to the object D (resp. the map
d) in D.

The usefulness of Grothendieck constructions is due to the following property,
which was noticed by Bob Thomason [T1, 1.2]:
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4.3. Proposition.

(i) The Grothendieck construction is a homotopy colimit construction on the
category Cat,

and hence

(ii) it is homotopy invariant in the sense that every natural weak equivalence
(4.1) between two functors F1, F2 : D → Cat induces a weak equivalence
Gr F1 → Gr F2.

Next we note that Quillen’s key observation in the lemma that he used to prove
Theorem B was that certain functors D → Cat had what we will call

4.4. Property Q. Given a small category D, a functor F : D → Cat will be said
to have property Q if it sends all maps of D to weak equivalences in Cat.

A categorical version of the lemma that Quillen used in the proof of Theorem
B (a proof of which can be found in [GJ, IV, 5.7]) then becomes in view of 4.3(i)
above

4.5. Quillen’s lemma. If, given a small category D, a functor F : D → Cat has
property Q, then, for every object D ∈D, the fibre

π−1D = FD

of π (4.2(iv)) over D is a homotopy fibre.

5. A Quillen Theorem Bn for homotopy pullbacks

In [Q, §1] Quillen proved his Theorem B which gave a simple description of the
homotopy fibres of a functor f : X → Y if f had a certain property B1. This was
generalized in [DKS, §6] where it was shown that increasingly weaker properties Bn
(n > 1) allowed for increasingly less simple descriptions of these homotopy fibres.
Moreover it was noted that a sufficient condition for a functor f : X → Y to have
property Bn (n > 1) was that the category Y has a certain property Cn.

The main result of this section (5.9) asserts that for a zigzag f : X → Y ← Z : g
in which f has property Bn (and in particular if Y has property Cn), its homotopy
pullback admits a description rather similar to the ones that appear in [DKS, §6].
Moreover, the pullback X×Y Z of this zigzag comes with a monomorphism into this
homotopy pullback and hence is itself a homotopy pullback if the monomorphism
is a weak equivalence.

The homotopy fibre results of [DKS, §6]. were obtained by an induction on n
which at each stage used Quillen’s Theorem B. To prove our homotopy pullback
results, it turns out to be convenient to go one step further back to the lemma that
Quillen used to prove his Theorem B:

• If F : D → Cat is a D-diagram of categories and weak equivalences be-
tween them, Gr F its Grothendieck construction and π : Gr F → D the
associated projection functor, then, for every object D ∈D, the fibre

π−1D = FD

of π over D is also a homotopy fibre.

Using this result we first give a different non-inductive proof of the results of [DKS,
§6] and then note that this proof almost effortlessly extends to a proof of our
homotopy pullback result (5.9).
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5.1. Two Grothendieck constructions associated with a functor X → Y .
Given an integer n ≥ 1 and a functor f : X → Y between small categories, we
denote by (fX ↓n Y ) the category of which

(i) an object consists of a pair of objects

X ∈X and Y ∈ Y

together with an alternating zigzag

fX = Yn · · · Y2 ←− Y1 −→ gZ in Y

and of which

(ii) a map consists of a pair of maps

x : X → X ′ ∈X and y : Y → Y ′ ∈ Y

together with a commutative diagram

fX = Yn · · ·

fx

��

Y2

��

Y1
oo //

��

Y

y

��

fX ′ = Y ′n · · · Y ′2 Y ′1oo // Y ′

in Y

(iii) This category comes with a monomorphism

h : X −→ (fX ↓n Y )

which sends each object X ∈X to the zigzag of identity maps which starts
at fX.

Furthermore

(iv) let, for every object Y ∈ Y

(fX ↓n Y ) ⊂ (fX ↓n Y )

denote the subcategory consisting of the objects which end at Y and the
maps which end at !Y

and similarly

(v) let, for every object X ∈X

(fX ↓n Y ) ⊂ (fX ↓n Y )

denote the subcategory consisting of the objects which start at fX and
the maps which start at 1fX .

The naturality of (fX ↓n Y ) and (fX ↓n Y ) in respectively Y and X then readily
implies

5.2. Proposition. For every integer n ≥ 1 and functor f : X → Y between small
categories (4.2)

(i) (fX ↓n Y ) = Gr
(
(fX ↓n −) : Y → Cat

)
and

(ii) (fX ↓n Y ) =


Gr
(
(f− ↓n Y ) : X → Cat

)
or

Gr
(
(f− ↓n Y ) : Xop → Cat

)
depending on whether n is even or odd.
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5.3. A Grothendieck construction associated with a zigzag X → Y ← Z.
Given an integer n ≥ 1 and a zigzag f : X → Y ← Z :g between small categories,
we denote by (fX ↓n gZ) the category of which

(i) an object consists of a pair of objects

X ∈X and Z ∈ Z ,

together with an alternating zigzag

fX = Yn · · · Y2 ←− Y1 −→ gZ in Y

and of which

(ii) a map consists of a pair of maps

x : X → X ′ ∈X and z : Z → Z ′ ∈ Z ,

together with a commutative diagram

fX = Yn · · ·

fx

��

Y2

��

Y1
oo //

��

gZ

gz

��

fX ′ = Y ′n · · · Y ′2 Y ′1oo // gZ ′

in Y .

(iii) This category comes with a monomorphism

K : (X ×Y Z) −→ (fX ↓n gZ)

which sends each object (X,Z) ∈ X ×Y Z to a zigzag of identity maps
starting at fX and ending at gZ.

Furthermore

(iv) we denote, for every object Z ∈ Z, by

(fX ↓n gZ) ⊂ (fX ↓n gZ)

the subcategory consisting of the objects which end at gZ and the maps
which end at 1gZ .

The naturality of (fX ↓n gZ) with respect to Z then readily implies

5.4. Proposition. For every integer n ≥ 1 and zigzag f : X → Y ← Z : g between
small categories (4.2)

(fX ↓n gZ) = Gr
(
(fX ↓n g−) : Z → Cat

)
.

We now proceed to the main results.

5.5. Property Bn. Given an integer n ≥ 1, a functor f : X → Y between small
categories is said to have property Bn if the functor (5.2(i))

(fX ↓n −) : Y −→ Cat

has property Q (4.4).
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5.6. Theorem Bn. If a functor f : X → Y between small categories has property
Bn (n ≥ 1), then, for every object Y ∈ Y , the category (fX ↓n Y ) (5.1(iv)) is a
homotopy fibre of f over Y .

Proof. Given an object Y ∈ Y , it follows from 4.5 and 5.2(i) that

(i) (fX ↓n Y ) is the fibre as well as a homotopy fibre over Y of the projection
functor

π : Gr(fX ↓n −) = (fX ↓n Y ) −→ Y .

That it is also a homotopy fibre over Y of the functor f : X → Y therefore is a
consequence of

(ii) the commutativity of the diagram

X
h //

f
  

(fX ↓n Y )

π
yy

Y

in which h is as in 5.1(iii)

and the readily verifiable fact that

(iii) h is a weak equivalence. �

5.7. Property Cn. Let O denote the category consisting of a single object and its
identity map and let n be an integer ≥ 1. Then a small category Y is said to have
property Cn if

(i) every functor e : O → Y has property Bn, i.e.
(ii) every functor e : O → Y gives rise to a functor (eO ↓n −) : Y → Cat

which has property Q (4.4).

The usefulness of this notion is due to the fact that, in view of 4.3(ii), 5.2(ii) and
5.7(ii), one has

5.8. Theorem Cn. If f : X → Y is a functor between small categories and Y has
property Cn (n ≥ 1), then f has property Bn.

5.9. Theorem Bn for homotopy pullbacks. Let n be an integer ≥ 1 and let
f : X → Y ← Z : g be a zigzag between small categories. If f has property Bn (5.5)
(and in particular if Y has property Cn (5.7)), then

(i) the category (fX ↓n gZ) (5.3) is a homotopy pullback of this zigzag.

Moreover if in addition the monomorphism (5.3(iii))

k : (X ×Y Z) −→ (fX ↓n gZ)

is a weak equivalence, then

(ii) the pullback (X ×Y Z) of this zigzag is also a homotopy pullback.

Proof. As the functor f : X → Y has property Bn, i.e.

• the functor (fX ↓n −) : Y → Cat has property Q (4.4)

it readily follows that

• the functor (fX ↓n g−) : Z → Cat (5.4) also has property Q.

Consequently (4.5 and 5.4)
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(i) for every object Z ∈ Z, (fX ↓n gZ) is the fibre as well as the homotopy
fibre over Z of the projection functor

Gr
(
fX ↓n g−

)
= (fX ↓n gZ) −→ Z

Now consider the commutative square

(fX ↓n Y )

π

��

(fX ↓n gZ)

π

��

g′
oo

Y Z
g

oo

in which g′ is induced by g.

Then clearly

(ii) this square is a pullback square and hence, for every object Z ∈ Z, g′

maps the fibre over Z isomorphically onto the fibre over gZ ∈ Y .

Therefore, in view of (i) and 5.6(i)

(iii) this pullback square is a homotopy pullback square.

With other words (fX ↓n gZ) is a homotopy pullback of the zigzag

π : (fX ↓n Y ) −→ Y ←− Z :g

That it is also a homotopy pullback of the zigzag

f : X −→ Y ←− Z :g

now follows from 5.6(ii) and 5.6(iii). �

6. A proof of our generalization of Rezk’s theorem (2.2)

The proof consists of two parts, a Segal part and a completion part.

6.1. The Segal part. To deal with the Segal part

(i) let for every integer k ≥ 0, Ak denote the category which has as its objects
the sequences

· a1 // · · · · · ak // · in C

and as its maps the commutative diagrams of the form

· a1 //

��

·

��

· · · · ak //

��

·

��
·

a′1 // · · · · ·
a′k // ·

in C

in which the vertical maps are in W .

Then we have to show that, for every integer k ≥ 2, the pullback square

Ak
//

��

Ak−1

��

A1
// A0 = W

is a homotopy pullback square.
To do this
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(ii) for every integer k ≥ 2, denote by Bk the category which has as its objects
the zigzags

· b1 // · x // · ·woo
y
// · b2 // · · · · · bk // · in C

in which x, y and w are in W and as its maps the commutative diagrams
of the form

· b1 //

��

· x //

��

·

��

·woo
y
//

��

· b2 //

��

· · · ·

��

· bk //

��

·

��
·

b′1 // · x′ // · ·w′oo
y′
// ·

b′2 // · · · · ·
b′k // ·

in C

in which the vertical maps are in W , and
(iii) for every integer k ≥ 2, denote by

hk : Ak −→ Bk

the monomorphism which between the first two maps inserts three identity
maps, and denote by

A′k ⊂ Bk

the image of Ak under hk.

In view of the Quillen Theorem B3 for homotopy pullbacks (5.9) and the fact
that, in view of 1.2(iv), A0 = W has property C3, it then suffices to show that,
for every integer k ≥ 2, the inclusion i : A′k → Bk is a homotopy equivalence, i.e.
that there exists a retraction r : Bk → A′k such that the compositions ir and ri are
naturally weakly equivalent to the identity functor of Bk and A′k respectively.

Such a retraction, together with a zigzag of natural weak equivalences connect-
ing the functors ir and 1Bk

can be obtained by means of the following (natural)
commutative diagram in C

· b1 //

��

· x //

x

��

·

��

·woo
y
//

��

· b2 //

��

· · · ·

��

· bk //

��

·

��
· xb1 // · // · ·woo

y
// · b2 // · · · · · bk // ·

· xb1 //

OO

��

· //

OO

��

·

OO

��

·woo //

OO

u1

��

·
b2y //

y

OO

u1

��

· · · ·

OO

u2

��

· bk //

OO

uk−1

��

·

OO

uk

��
· xb1 // · // · ·v1oo // ·

b2y // · · · · · bk // ·

· xb1 //

v1

OO

· //

v1

OO

·

v1

OO

·oo //

OO

·
b2y //

OO

· · · ·

OO

· bk //

OO

·

OO

in which all the unmarked arrows are identity maps, w = v1u1 with u1 ∈ U and
v1 ∈ V (1.1c) and the squares involving two u’s are pushout squares and those
involving two v’s are pullback squares.
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On A′k this zigzag reduces to the zigzag

· b1 //

��

· //

��

·

��

·oo //

u1

��

· b2 //

u1

��

· · · ·
u2

��

· bk //

uk−1

��

·
uk

��
· b1 // · // · ·v1oo // · b̄2 // · · · · · b̄k // ·

· b̄1 //

v̄1

OO

· //

v1

OO

·

v1

OO

·oo //

OO

· b̄2 //

OO

· · · ·

OO

· b̄k //

OO

·

OO

which does not completely lie inside A′k. To remedy this, i.e. to get a natural weak
equivalence connecting the top with the bottom inside A′k we note the existence of
the zigzag

· b1 //

��

· //

��

·

��

·oo //

u1

��

· b2 //

u1

��

· · · ·
u2

��

· bk //

uk−1

��

·
uk

��
· b1 //

��

· //

��

·

��

·v1oo //

v1

��

· b̄2 //

v1

��

· · · ·
v2

��

· b̄k //

vk−1

��

·
vk

��
· b1 // · // · ·oo // · b2 // · · · · · bk // ·

in which the bottom row is obtained from the top row by pushing out along v1u1

which is an identity map. Combining the bottom halves of the last two diagrams
we now get two composable natural weak equivalences

· b1 // · // · ·oo // · b2 // · · · · · bk // ·

· b1 //

OO

· //

OO

·

OO

·v1oo //

v1

OO

· b̄2 //

v1

OO

· · · ·

v2

OO

· b̄k //

vk−1

OO

·

vk

OO

· b̄1 //

v̄1

OO

· //

v1

OO

·

v1

OO

·oo //

OO

· b̄2 //

OO

· · · ·

OO

· b̄k //

OO

·

OO

of which the composition

· b1 // · // · ·oo // · b2 // · · · · · bk // ·

· b̄1 //

v̄1

OO

· //

v

OO

·

u

OO

·oo //

v1

OO

· b̄2 //

v1

OO

· · · ·

v2

OO

· b̄k //

vk−1

OO

·

vk

OO

yields the desired natural weak equivalence between ri and 1A′ .

6.2. The completeness part. It thus remains to deal with the completeness part
of the proof. However this is essentially the same as Rezk’s proof of [R, 8.3] in view
of the fact that the partial model category (C,W ) is saturated (1.3).

7. A proof of the partial modelization lemma (3.3)

In preparation for the proof of lemma 3.3 (in 7.4 below) we first

• discuss in 7.1 relative simplicial categories and in particular relative partly
simplicial ones in which the weak equivalences form an ordinary category,
and
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• review in 7.2 and 7.3 the notions of fully faithfulness and essential sur-
jectivity and of essential image in the categories of categories, simplicial
categories, relative categories and relative simplicial categories.

7.1. Relative (partly) simplicial categories. Let S-Cat denote the category
of simplicial categories, i.e. categories enriched over simplicial sets, and let
RelSCat denote the resulting category of relative simplicial categories, i.e.
pairs consisting of a simplicial category and a sub-simplicial category (of which the
maps are called weak equivalences) that contains all the objects. Then it turns
out that, for our purposes here, it is convenient to work in the somewhat simpler
full subcategory

RelPSCat ⊂ RelSCat

spanned by what we will call the relative partly simplicial categories, i.e. the
objects of which the weak equivalences form an ordinary category.

A simplicial model category then can be considered as

• an object of RelCat consisting of the underlying model category and its
weak equivalences

or as

• an object of RelPSCat consisting of the larger simplicially enriched model
category and those same weak equivalences.

Moreover in the remainder of this paper we will consider the category S of
simplicial sets only as an object of RelPSCat.

An object L ∈ S-Cat thus gives rise to

• an object (SL,∼) ∈ RelCat in which SL denotes the (model) category
which has as objects the simplicial functors L → S and as maps the
natural transformations between them and ∼ denotes the subcategory of
the natural weak equivalences, and

• an object (SL
∗ ,∼) ∈ RelSCat in which SL

∗ denotes the simplicial (model)
category of the simplicial functors L→ S ([DK4, 1.3(v)] and [GJ, IX, 1.4])
and ∼ is as above.

We end with noting that similarly an object (L,Z) ∈ RelPSCat gives rise to

• an object (SL,Z ,∼) ∈ RelCat which is the subobject of (SL,∼) spanned
by the relative simplicial functors (L,Z)→ S

and that

(i) if Z is neglectible in L in the sense that every map in Z goes to an

isomorphism in HoL, then (SL,Z ,∼) = (SL,∼), and

(ii) for every object (C,U) ∈ RelCat, the object (SCop,Uop

,∼) ∈ RelCat is

exactly the same as the object SCop,Uop

mentioned in 3.2.

7.2. Fully faithfulness and essential surjectivity. We will denote by LH not
only the functor RelCat → S-Cat which sends each object to its hammock lo-
calization [DK2, 2.1], but also the functor RelSCat → S-Cat which sends each
object to the diagonal of the bisimplicial category obtained from it by dimensionwise
application of the hammock localization [DK2, 2.5].

Then we recall the following.
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A functor f : G → H between categories (respectively, simplicial categories) is
called fully faithful if, for every two objects G1, G2 ∈ G, it induces an isomor-
phism (resp. weak equivalence) G(G1, G2)→H(fG1, fG2), and similarly a relative
functor f : (C,U) → (D,V ) between relative categories (resp. relative simplicial
categories) is called fully faithful if, for every two objects C1, C2 ∈ C, it induces
a weak equivalence

LH(C,U)(C1, C2) −→ LH(D,V )(fC1, fC2) ∈ S

which implies that

(i) if f and g are (relative) functors such that gf is defined and g is fully
faithful, then gf is fully faithful iff f is so.

A functor f : G → H between categories (respectively, simplicial categories)
is called essentially surjective if every object in H is isomorphic in H (resp.
HoH) to an object in the image of f (resp. Ho f), and similarly a relative functor
f : (C,U) → (D,V ) between relative categories (resp. relative simplicial cate-
gories) is called essentially surjective if the induced functor

LHf : LH(C,U) −→ LH(D,V )

is so, which implies that

(ii) if f and g are (relative) functors such that gf is defined and f is essentially
surjective, then gf is essentially surjective iff g is so.

Then

(iii) a map in Cat is an equivalence of categories iff it is fully faithful and
essentially surjective, and

(iv) a map in RelCat, S-Cat or RelSCat is a DK-equivalence iff it is fully
faithful and essentially surjective.

7.3. Essential images. The essential image Ef of a functor f : G → H be-
tween categories (respectively, simplicial categories) is the full subcategory (resp.
full simplicial subcategory) of H spanned by the objects which are isomorphic in H
(resp. HoH) to objects in the image of f (resp. Ho f) and similarly the essential
image Ef of a relative functor f : (C,U) → (D,V ) between relative categories
(resp. relative simplicial categories) is defined by the pullback diagram

Ef //

��

(D,V )

��

ELHf // LH(D,V )

which implies that

(i) the resulting maps

G −→ Ef and (C,U) −→ Ef

and

Ef −→H and Ef −→ (D,V )

are respectively essentially surjective and fully faithful.

We end with noting that

(ii) the essential image defined in ?? is a special case of the ones defined above.
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Now we are finally ready for

7.4. A proof of the relative modelization lemma (3.3). It follows from 7.3(i)
and (ii) that the map e : (C,U)→ Ef is essentially surjective and it thus (7.2(iv))
remains to prove that it is also fully faithful. To do this it suffices, in view of 7.3(ii)
and 7.2(i), to show that, in the notation of 7.1(ii),

(i) the Yoneda embedding y : (C,U)→ (SCop,Uop

,∼) is fully faithful.

For this we note that y admits a factorization (7.1)

(C,U)
y′−→ (SL

H(Cop,Uop),∼)
7.1(i)
= (SL

H(Cop,Uop),Uop

,∼)
(cop)∗−−−−→ (SCop,Uop

,∼)

in which y′ sends each object A ∈ C to the simplicial functor LH(Cop,Uop) → S
which sends each object B ∈ LH(Cop,Uop) to LH(B,A) ∈ S, and c : (Cop,Uop)→
LH(Cop,Uop),Uop is the obvious inclusion [DK2, 3.1]. The latter is a DK-equivalence
[BK1, 3.2] and hence [DK4, 2.2] so is the map (cop)∗. Hence, in view of 7.2(iv) and
7.2(i), the condition (i) above is equivalent to condition

(ii) the map y′ : (C,U)→ (SL
H(Cop,Uop),∼) is fully faithful.

To prove this we embed this map in the commutative diagram

(C,U)
y′

//

c

��

(SL
H(Cop,Uop),∼)

incl.
��(

LH(C,U),U
) r′ // (SL

H(Cop,Uop)
∗ ,∼)

in which the map in the right is as in 7.1 and r′ is induced by the simplicial Yoneda
embedding of [DK4, 1.3(vi)]

r : LH(C,U) −→ SL
H(Cop,Uop)
∗ ∈ S-Cat

which sends each objectA ∈ LH(C,U) to the simplicial functor LH(Cop,Uop)→ S
which sends each object B ∈ LH(Cop,Uop) to LH(B,A) ∈ S. The map on the
left is (see above) a DK-equivalence and so is, in view of [DK3, 4.8] the map on
the right and hence, to prove (ii), it suffices to show that the bottom map is fully
faithful.

For this we embed this map in the following diagram

LH
(
LH(C,U),U

) LHr′ // LH(SL
H(Cop,Uop)
∗ ,∼)

LH(C,U)

OO

r // SL
H(Cop,Uop)
∗

OO

in which the vertical maps are the obvious inclusions [DK2, 3.1]. As both categories
of weak equivalences are neglectible 7.1(i), it follows from [DK1, 6.4] that both
vertical maps are DK-equivalences. Moreover it was noted in [DK4, 1.3(vi)] that
the map r is fully faithful (and in fact so in the strong sense that the required weak
equivalences are actually isomorphisms). All this implies that LHr′ is fully faithful
and so is therefore the map r′ itself.
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