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Algebraic chromatic homotopy theory for BP∗BP -comodules

Tobias Barthel and Drew Heard

Abstract

In this paper, we study the global structure of an algebraic avatar of the derived category of
ind-coherent sheaves on the moduli stack of formal groups. In analogy with the stable homotopy
category, we prove a version of the nilpotence theorem as well as the chromatic convergence
theorem, and construct a generalized chromatic spectral sequence. Furthermore, we discuss
analogs of the telescope conjecture and chromatic splitting conjecture in this setting, using
the local duality techniques established earlier in joint work with Valenzuela.
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1. Introduction

The chromatic approach to stable homotopy theory is a powerful tool both for understanding
the local and global structure of the stable homotopy as well as for making explicit
computations. The goal of this paper is to study an algebraic version of this theory, based
on the category of BP∗BP -comodules. As such, it is deeply intertwined with recent efforts to
implement the chromatic perspective in motivic homotopy theory as well as in more algebraic
contexts.

More specifically, we work with a suitable version StableBP∗BP of the derived category of
BP∗BP -comodules, which is an algebraic avatar of the category of ind-coherent sheaves on the
moduli stack of formal groups. This category was introduced by Hovey [26, 27] and in related
work of Palmieri [55], and then further studied by the authors and Valenzuela [8, Section 8].
From an axiomatic point of view, StableBP∗BP is a prominent example of a non-Noetherian
stable homotopy theory in the sense of [28], so that many of the standard techniques do not
apply. The importance of this category is due to the fact that it sits at the intersection of three
different areas, so that its local and global structure provides new insights in each of them:

(1) Stable homotopy theory: As an approximation to the category of spectra. Many
structural patterns of the stable homotopy category are visible through the lens of the Adams–
Novikov spectral sequence (ANSS). The E2-term of this spectral sequence for the sphere
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spectrum is isomorphic to π∗BP∗ in StableBP∗BP , so that this category is a very close algebraic
approximation to the category of spectra. In particular, the chromatic filtration in stable
homotopy theory provides a filtration of StableBP∗BP by full subcategories StableE(n)∗E(n),
whose suitably defined limit over p is essentially equivalent to the limit of the category of
E(n)-local spectra [9].

(2) Algebraic geometry: The relationship to ind-coherent sheaves on the moduli stack of
formal groups Mfg. By work of Quillen [58] there is a close connection between stable
homotopy theory and the theory of formal groups. More specifically, our results can be
translated into properties of the category of ind-coherent sheaves over a certain moduli stack
Mfg of formal groups. The stack Mfg is stratified by height, and this height filtration
corresponds to the chromatic filtration in stable homotopy. Thus, studying the category
StableE(n)∗E(n) corresponds to geometrically studying ind-coherent sheaves on open substacks
of Mfg. One may therefore consider StableBP∗BP as a toy example of a category of ind-coherent
sheaves on stratified stacks, which are for instance relevant in the geometric Langlands program
[19].

(3) Motivic homotopy theory: Motivic module spectra over the cofiber of τ . Via work of
Isaksen [34], Ext∗BP∗BP (BP∗, BP∗) also appears naturally in motivic homotopy theory as the
homotopy groups of Cτ , the motivic cofiber of τ over Spec(C).† Joint work of Gheorghe–Xu–
Wang (a forthcoming paper) shows that this isomorphism extends to an equivalence between
StableBP∗BP and a category closely related to the category Modcell

Cτ of cellular motivic Cτ -
modules. Thus, our results about StableBP∗BP can be translated to results in the stable motivic
homotopy category.

This exhibits StableBP∗BP as an important test case for the more in-depth study of related
categories in these areas.

Main results

In [52] Miller, Ravenel and Wilson introduced the chromatic spectral sequence, which converges
to the E2-term of the ANSS. Based on systematic algebraic patterns seen in this work, Ravenel
was lead to his famous nilpotence and periodicity conjectures [59], later proved by Devinatz,
Hopkins and Smith [14, 23], giving rise to the field of chromatic homotopy theory. In this
paper we develop and prove algebraic analogs of Ravenel’s conjectures in the category of
BP∗BP -comodules.

As noted previously we work with the category StableBP∗BP instead of the usual derived
category DBP∗BP . As is already clear from work of Hovey [26], the usual derived category
is homotopically poorly behaved; for example, the tensor unit BP∗ is not compact, and this
necessitates working with the more complicated category StableBP∗BP .

In order to construct StableBP∗BP we must first study the abelian category of BP∗BP -
comodules. We do this in more generality in Section 2, by recalling some basic properties
of the abelian category of comodules over a flat Hopf algebroid. We quickly specialize to
the case of BP∗BP and E(n)∗E(n), giving a classification of hereditary torsion theories
for ComodE(n)∗E(n). In Section 3 we recall the construction of the stable category StableΨ

associated to a flat Hopf algebroid, and give a change of rings theorem for Hopf algebroids
associated to faithfully flat extensions.

With the stable category associated to a flat Hopf algebroid defined, we move on to the study
of the global structure of StableBP∗BP and StableE(n)∗E(n). On the abelian level, the structure
of the category of E(n)∗E(n)-comodules is known to be much simpler when the prime is large
compared to n. For example, π∗E(n)∗ ∼= ExtsE(n)∗E(n)(E(n)∗, E(n)∗) vanishes for s > n2 + n,

†Recall that, working in the p-complete setting, the motivic cohomology of a point over Spec(C) is isomorphic
to Fp[τ ], where τ has bidegree (0,1), and that this gives rise to an essential map τ : S0,−1 → S0,0.
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whenever p > n + 1. This is reflected in Theorem 4.11, where we prove the following; here we
denote by (K(n)∗,Σ(n)) the Hopf algebroid studied extensively by Miller, Ravenel and Wilson.

Theorem. If p > n + 1, then there is an equivalence StableE(n)∗E(n) � DE(n)∗E(n), between
the stable category of E(n)∗E(n)-comodules and the usual derived category of E(n)∗E(n)-
comodules. Similarly, if n does not divide p− 1, then there is an equivalence StableΣ(n) �
DΣ(n).

In stable homotopy theory, the Morava K-theories K(n) detect nilpotence. In our algebraic
setting we use the BP∗BP -comodule Tel(n)∗ = v−1

n BP∗/In as our detecting family for
nilpotence, proving the following version of the nilpotence theorem in Section 5. This result
crucially relies on the use of the category StableBP∗BP instead of the derived category, as here
BP∗ is compact.

Theorem (Algebraic nilpotence theorem — weak version).

(1) Suppose F,X ∈ StableBP∗BP with F compact, then a map f : F → X is smash nilpotent,
that is, f (m) = 0 for some m � 0, if Tel(n)∗ ⊗BP∗ f = 0 for all 0 � n � ∞.

(2) A self-map f : ΣiF → F for F compact in StableBP∗BP is nilpotent, in the sense that
f j : ΣijF → F is null for some j � 0, if and only if Tel(n)∗ ⊗BP∗ f is nilpotent for all 0 � n �
∞.

(3) Suppose X ∈ StableBP∗BP , then a map f : BP∗ → X is smash nilpotent if
π∗(Tel(n)∗ ⊗BP∗ f) = 0 for all 0 � n � ∞.

(4) Let R be a ring object in StableBP∗BP . Then an element α ∈ π∗R ∼= ExtBP∗BP (BP∗, R)
is nilpotent if and only if π∗(Tel(n)∗ ⊗BP∗ α) is nilpotent for all 0 � n � ∞.

We call this a weak version of the algebraic nilpotence theorem, because the results are not
as strong as those in [23]. Indeed, they do not account for all periodic elements in π∗BP∗,
but only those appearing in Adams–Novikov filtration 0, which is a reflection of the fact that
Tel(n)∗ is not a field object. Indeed, the nilpotence theorem implies that there is a vanishing
curve on the E∞-page of the ANSS for the sphere that has slope tending to zero as t− s
approaches ∞. However, this vanishing curve is not present on the E2-page and in fact there
are non-nilpotent elements of positive Adams–Novikov filtration. It follows that there are many
more non-nilpotent elements in StableBP∗BP than in stable homotopy theory. This complicates
the structure of StableBP∗BP ; there appear to be many more thick subcategories than in stable
homotopy theory. We will return to the systematic study of self-maps and thick subcategories
of StableBP∗BP in forthcoming work with Achim Krause.

One formulation of the telescope conjecture in stable homotopy is that 〈Tel(m)〉 = 〈K(m)〉
[24], where 〈Tel(m)〉 denotes the Bousfield class of the telescope of a finite spectrum of type
m. Since K(n)∗ is not a BP∗BP -comodule, strictly speaking this question does not make sense
in StableBP∗BP . Nonetheless, it is a BP∗-module, and so one can formulate a variant of the
telescope conjecture, which we show in Theorem 5.13 does hold. This gives some explanation
for the use of Tel(n)∗ in the nilpotence theorem above.

Theorem. For all n � 0, there is an identity of Bousfield classes 〈K(n)∗〉 = 〈Tel(n)∗〉.

In Section 6 we move on to the study of the local structure of StableBP∗BP . We begin by
constructing localization functors Ln for 0 � n � ∞ which in particular define an exhaustive
filtration of the full subcategory of compact objects. Their essential images Ln StableBP∗BP are
algebraic counterparts of the categories of E(n)-local spectra, which in turn form the building
blocks of chromatic homotopy theory. In geometric terms, Ln corresponds to the restriction to



1138 TOBIAS BARTHEL AND DREW HEARD

an open substack of Mfg. Such functors have previously been studied by Hovey and Strickland
[27, 31, 32], who proved that there is an equivalence of categories between Ln StableBP∗BP and
StableE(n)∗E(n). As Hovey points out in [27, p. 171] an alternative formulation of the telescope
conjecture, namely that Ln is the same as the Bousfield localization with the homology theory
associated with E(n)∗, is false in general in StableBP∗BP , however we note that this holds
when n < p− 1, see Remark 6.9.

The algebraic localization functors Ln assemble into the algebraic chromatic tower

. . . −−−→ L2 −−−→ L1 −−−→ L0,

precisely as in stable homotopy theory. Hopkins and Ravenel have shown [61] that a compact
spectrum is the limit of its chromatic tower. We prove the following variant of this in Section 7.

Theorem (Chromatic convergence). If M ∈ StableBP∗BP has finite projective dimension,
then there is a natural equivalence M � limn LnM .

In particular, this implies that all compact objects of StableBP∗BP satisfy chromatic
convergence. The strength of this algebraic chromatic convergence theorem is akin to that of the
first author’s generalization of the chromatic convergence theorem in stable homotopy theory
[5]. We also show that limn Ln � L∞ where the latter is the localization functor associated to
BP∗/I∞ ∼= Z/p.

The Bousfield–Kan spectral sequence associated to the chromatic tower in stable homotopy
leads to a spectral sequence of the form E1 = πkMnS

0 ⇒ πkS
0, where Mn is the fiber of

Ln → Ln−1. Associated to the algebraic chromatic tower, we can similarly construct a spectral
sequence. This recovers, and indeed generalizes, the classical chromatic spectral sequence, which
is obtained by setting X = Y = S0.

Theorem (The chromatic spectral sequence). For any spectra X,Y , there is a natural
convergent spectral sequence

En,s,t
1 = Exts,tBP∗BP (BP∗X,MnBP∗Y ) ⇒ Exts,tBP∗BP (BP∗X,L∞BP∗Y ).

Furthermore, if BP∗Y satisfies the conditions of Section 1, then the spectral sequence converges
to ExtBP∗BP (BP∗X,BP∗Y ).

By truncating the chromatic tower, we can also build a height n analog of the chromatic
spectral sequence which, as a special case, recovers the truncated chromatic spectral sequence
constructed by Hovey and Sadofsky [29, Theorem 5.1].

As a concrete application of our results, we obtain the following transchromatic comparison
between the E2-terms of the BP -Adams spectral sequence and the E-Adams spectral sequence
at height n, see Corollary 7.19.

Corollary. If X is a p-local bounded below spectrum such that BP∗X has projective
BP∗-dimension pdim(BP∗X) � r, then the natural map

ExtsBP∗BP (BP∗, BP∗X) −−−→ ExtsE∗E(E∗, E∗X)

is an isomorphism if s < n− r − 1 and injective for s = n− r − 1.

A related result can be found in work of Goerss [20, Theorem 8.24], however the authors are
unaware of a result of this generality in the literature.
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Relation to other work

The present paper is a natural continuation of work of Hovey and Strickland [27, 31, 32] as well
as unpublished work of Goerss [20]. In contrast to our algebraic approach, Goerss works more
geometrically, studying the derived category of quasi-coherent sheaves on the moduli stack of
p-typical formal group laws. However, both approaches are equivalent and consequently some
of our results are equivalent to those obtained by Goerss. For example, Goerss’ chromatic
convergence theorem [20, Theorem 8.22] translates into a special case of Theorem 7.12. Similar
geometric approaches have been studied by Hollander [22], Naumann [53], Pribble [57], Sitte
[64] and Smithling [65].

Conventions

In this paper we work with stable ∞-categories in the quasi-categorical setting developed by
Joyal [38] and Lurie [44, 45]. For simplicity, we will refer to a quasi-category as an ∞-category
throughout this paper.

Unless otherwise noted, all categorical constructions are implicitly considered derived. For
example, the tensor product ⊗ usually refers to the derived tensor product, and limits and
colimits mean homotopy limits and homotopy colimits, respectively. The symbol � is reserved
for the underived tensor product.

If C is a closed symmetric monoidal stable ∞-category, the internal function object will be
denoted by HomC to distinguish it from the merely spectrally enriched categorical mapping
object HomC . This is related to the usual mapping space via a natural weak equivalence
Ω∞ HomC(X,Y ) � MapC(X,Y ). If no confusion is likely to arise, the subscript C will be omitted
from the notation.

When dealing with chain complexes, we will always employ homological grading, that is,
complexes are written as

. . .
d−−−−→ X1

d−−−−→ X0
d−−−−→ X−1

d−−−−→ . . .

with the differential d lowering degree by 1. As usual, taking cohomology of a chain complex
X reverses the sign of the homology, that is H∗(X) = H−∗(X).

We work with Hopf algebroids (A,Ψ) over a commutative ring K throughout; that is, A and
Ψ are both commutative K-algebras. We will always assume that Ψ is a flat A-module, and
we call such Hopf algebroids flat.

2. Hopf algebroids and the structure of ComodBP∗BP

In this section we will prove some basic results about the abelian category ComodΨ of
comodules over a flat Hopf algebroid (A,Ψ). We assume the reader is familiar with the notion of
comodules over a Hopf algebroid, for which good references include [26; 60, Appendix A]. We
finish with a classification of the hereditary torsion theories for Landweber exact BP∗-algebras
of height n, extending work of Hovey and Strickland [31].

We note that since we work with abelian categories in this section, all functors are assumed
to be underived.

2.1. Recollections on Hopf algebroids and comodules

Given a flat Hopf algebroid (A,Ψ) over a commutative ring K (that is, A and Ψ are
commutative K-algebras), we will write ComodΨ for the abelian category of Ψ-comodules.
The following proposition, which is essentially a compendium of results in [26, Section 1],
establishes the basic properties of the category ComodΨ.
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Proposition 2.1. The abelian category ComodΨ of comodules over a flat Hopf algebroid
(A,Ψ) is a complete and cocomplete locally presentable Grothendieck abelian category with a
closed symmetric monoidal structure. A Ψ-comodule is compact or dualizable if and only if the
underlying A-module is finitely presented or finitely presented and projective, respectively.†

Moreover, the forgetful functor

ε∗ : ComodΨ −−−→ ModA

is exact, faithful, symmetric monoidal and preserves all colimits. The corresponding right
adjoint ε∗, which sends an A-module M to the cofree Ψ-comodule Ψ ⊗M , is exact as well.

Given Ψ-comodules M and N , we write M ⊗A N for the monoidal product, and
HomΨ(M,N) for the internal Hom object. We will often omit the subscript if it is clear from
context. No confusion should arise with the use of M ⊗A N ; for example, given a Ψ-comodule
M , Ψ ⊗A M could be interpreted as the extended comodule on M or as the symmetric monoidal
product of the comodules Ψ and M , but these turn out to be the naturally isomorphic, see
[26, Lemma 1.1.5].

We say that a Ψ-comodule I is relatively injective if HomΨ(−, I) takes A-split short exact
sequences to short exact sequences.

Lemma 2.2. A Ψ-comodule M is injective if and only if it is a retract of an extended
comodule Ψ ⊗ I on an injective A-module I. A comodule M is relatively injective if and only
if it is a retract of an extended comodule.

Proof. See, for example, [32, Lemma 2.1] for the first statement, and [26, Lemma 3.1.2] for
the latter. �

The link between Hopf algebroids and topology arises from the observation that if F is a
ring spectrum with F∗F flat over F∗, then (F,F∗F ) is a flat Hopf algebroid, and F∗X is an
F∗F -comodule for any spectrum X. We will be particularly interested in Hopf algebroids that
are Landweber exact over BP∗ in the following sense, see [31, Definitions 2.1 and 4.1]

Definition 2.3. Suppose f : BP∗ → E∗ is a ring homomorphism, then E∗ is said to be a
Landweber exact BP∗-algebra of height n ∈ N ∪ {∞} if the following conditions are satisfied.

(1) The BP∗-module E∗/In is non-zero, and E∗/Ik ∼= 0 for all k > n. If E∗/In is non-zero
for all n, then the height is set to be ∞.

(2) The functor from BP∗BP -comodules to E∗-modules induced by M �→ E∗ ⊗BP∗ M is
exact.

Typical examples include Johnson–Wilson theories E(n)∗, Morava E-theory (En)∗ and
v−1
n BP∗, all of which have height n, see also Section 2.4. Given such an E∗, we can

associate a Hopf algebroid (E∗, E∗E) = (E∗, E∗ ⊗BP∗ BP∗BP ⊗BP∗ E∗). By [31, Theorem C]
any two Landweber exact BP∗-algebras of the same height have equivalent categories of
comodules.

Recall that a flat Hopf algebroid (A,Ψ) is an Adams Hopf algebroid if Ψ is a filtered colimit
of comodules Ψi that are finitely generated and projective as A-modules. By a theorem of
Schäppi [62, Theorem 1.3.1], the Adams condition is equivalent to the statement that ComodΨ

is generated by dualizable comodules. The following result is due to Hovey [26, Section 1.4].

†Recall that a projective A-module is finitely generated if and only if it is finitely presented.
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Proposition 2.4 (Hovey). The Hopf algebroids (BP∗, BP∗BP ) and (E∗, E∗E), where E∗
is any height n Landweber exact BP∗-algebra, are Adams Hopf algebroids, so the corresponding
category of comodules is generated by the dualizable comodules.

2.2. The cotensor product and Cotor

In this section we recall some basic facts about the cotensor product and its derived functor
Cotor. Our approach is slightly non-standard, in that we prefer to work with a relative version
of Cotor, which agrees with the one defined using standard homological algebra only when the
first variable is flat.

To begin, recall that given a right Ψ-comodule M and a left Ψ-comodule N , the cotensor
product M�ΨN is defined as the equalizer

Note that this only inherits the structure of a K-module.

Lemma 2.5. If N = Ψ ⊗A N ′ is an extended comodule, then M�ΨN ∼= M ⊗A N ′.

Proof. It is easy to check that the map M ⊗A N ′ ΨM⊗1−−−−→ M ⊗A Ψ ⊗A N ′ is the kernel of
ψM ⊗ 1 − 1 ⊗ ψN . �

The following definition naturally arises when using the methods of relative homological
algebra, see [7, Section 2; 15, p. 15].

Definition 2.6. A proper injective resolution of a comodule M is a resolution of M by
relative injectives such that each map in the resolution is split as map of A-modules.

Such resolutions always exist; indeed, for a comodule M , the standard cobar resolution

is a resolution by relative injectives, which is split using the map ε : Ψ → A. Moreover, such
resolutions are unique up to chain homotopy [33, Theorem 2.2].

Definition 2.7. Given Ψ-comodules M and N , let 0 → M
i−→ J• and 0 → N

i′−→ L• be
proper injective resolutions. We define

CotornΨ(M,N) = Hn(Tot⊕(J•�ΨL
•)),

where Tot⊕ is the totalization of the bicomplex with respect to the direct sum.

The next result says that it is enough to take a resolution of either of the variables.

Lemma 2.8. The maps

J•�ΨN
1�i′−−−−→ J•�ΨL

• i�1←−−− M�ΨJ
•

induce isomorphisms on homology.
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Proof. This is proved in the context of comodules over a coalgebra in [16]. By Lemma 2.2
each J i is a retract of an extended comodule J̃ i ⊗A Ψ, so we have J i�ΨN ∼= J̃ i ⊗A N by
Lemma 2.5. It follows that J i�Ψ(−) preserves A-split exact sequences.

Filter J• by Fn(J•) = J�n, which induces filtrations on J•�ΨN and J•�ΨL
•. One checks,

using the fact that J i�Ψ(−) preserves A-split exact sequences, that in the associated spectral

sequence the map J•�ΨN
1�i−−→ J•�ΨL

• induces an isomorphism on E1-terms, and so is an
isomorphism on homology. The argument for i�1 is similar. �

Remark 2.9. Note that this result implies that Cotor∗Ψ(M,N) is independent of the choice
of resolution of M or N .

Since ComodΨ has enough injectives, it is more customary to define Cotor∗Ψ(M,N) by taking
an injective resolution I∗ of N to construct the derived functors of M�Ψ−. Let us temporarily
write C̃otorΨ(M,N) for this functor.

Lemma 2.10. For M,N ∈ ComodΨ with M flat, then there is an isomorphism

Comod∗
Ψ(M,N) ∼= C̃omod

∗
Ψ(M,N).

Proof. This is proved in [60, Lemma A1.2.8]: Ravenel assumes M projective, but it is clear
from the proof that M flat is sufficient. �

We prefer to use the relative version of Cotor since it allows us to dispense with flatness
hypothesis in certain results, such as Lemma 2.12.

Given a left (respectively, right) Ψ-comodule, we can always turn it into a right (respectively,
left) Ψ-comodule, by conjugating the action by the antipode χ of Ψ. We use that implicitly in
the next result.

Lemma 2.11. Suppose given two comodules M,N ∈ ComodΨ, then there is a natural
isomorphism

M�ΨN
∼−→ A�Ψ(M ⊗A N)

of K-modules.

Proof. This follows by comparing the coequalizers defining the two cotensor products, and a
careful diagram chase. We note that if we write ψM (m) = Σimi ⊗ xi and ψN (n) = Σjyj ⊗ nj ,
then the comodule structure map on M ⊗A N is given by ψM⊗AN (m⊗ n) = Σi,j(χ(xi)yj ⊗
mi ⊗ nj). �

This leads to the following.

Lemma 2.12. Suppose given two comodules M,N ∈ ComodΨ, then there is a natural
isomorphism

Cotor∗Ψ(M,N) ∼−−−→ Cotor∗Ψ(A,M ⊗A N)

of K-modules.

Proof. As noted above, given a comodule X, the Ψ-cobar complex C∗
Ψ(X) is a

proper injective resolution, and so can be used to compute Cotor. The isomorphism
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M ⊗A N ∼= M�Ψ(Ψ ⊗A N) of Lemma 2.5, along with Lemma 2.11 shows that

M�ΨC
k
Ψ(N) = M�Ψ(Ψ ⊗A Ψ⊗k ⊗A N)

∼= M ⊗A Ψ⊗k ⊗A N

∼= Ψ�Ψ(M ⊗A Ψ⊗k ⊗A N)

∼= A�Ψ(M ⊗A Ψ⊗(k+1) ⊗A N).

for all k. This leads to a quasi-isomorphism

M�ΨC
∗
Ψ(N) � A�ΨC

∗
Ψ(M ⊗A N),

hence the desired isomorphism of Cotor groups. �

Remark 2.13. If we were to use C̃otor
∗
Ψ(M,N) instead of Cotor∗Ψ(M,N), then we only

know how to prove this when M is a flat A-module.

2.3. Hereditary torsion theories

In this subsection we give a brief introduction to hereditary torsion theories, and prove a
result relating hereditary torsion theories under certain localizations of categories. We use the
terminology of hereditary torsion theories in order to distinguish it from the notion of localizing
subcategory used in the context of stable ∞-categories in later sections.

Definition 2.14. Let A be a cocomplete abelian category. A full subcategory T of A is said
to be a hereditary torsion theory if it is closed under subobjects, quotient objects, extensions
and arbitrary coproducts in A.

We recall that given a class of maps E in a category A, we say that an object M ∈ A is
E-local if HomA(f,M) is an isomorphism for all f ∈ E , and we denote the full subcategory of
E-local objects by LE A. Given such a class of maps it is known (for example, by [66]) that
there exists a localization functor L : A → A such that for each M ∈ A we have LM ∈ LE A.

Given a hereditary torsion theory T , we let ET denote the class of T -equivalences, that is,
those maps whose kernel and cokernel are in T .

Definition 2.15. Let A be an abelian category and T a hereditary torsion theory in A,
then the Gabriel localization LT : A → A is the localization functor associated to the class ET
of T -equivalences.

Theorem 2.16. Suppose A is a Grothendieck abelian category. There is a natural bijection
between hereditary torsion theories of A and Gabriel localizations of A:

Her(A) ←→ LocG(A)

T �−→ LT

ker(L) ←−� L.

This bijection is realized by sending a hereditary torsion theory T to the localization LT
defined above; conversely, a Gabriel localization functor L determines a hereditary torsion
theory TL = ker(L).

Proof. See [11, Theorem 1.13.5]. �
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Proposition 2.17. Suppose T ⊆ A is a hereditary torsion theory, and let A /T be the
associated local category with localization functor Φ∗ : A → A /T . If S ⊆ A /T is a hereditary
torsion theory in A /T , then there exists a hereditary torsion theory S ⊆ A with T ⊆ S and
such that S = Φ∗(S).

Proof. Write for (Φ∗,Φ∗) and (FS , GS) for the localization adjunction corresponding to T
and S, respectively, so that we have a diagram

We first claim that (ΦS
∗ ,Φ

∗
S) = (FSΦ∗,Φ∗GS) is a localization adjunction. Indeed, ΦS

∗ is exact
and there are natural isomorphisms

ΦS
∗ Φ∗

S = FSΦ∗Φ∗GS
∼−−−→ FSGS

∼−−−→ Id .

Therefore, there exists a hereditary torsion theory S ⊆ A corresponding to (ΦS
∗ ,Φ

∗
S); in

particular, T = ker(Φ∗) ⊆ ker(ΦS
∗ ) = S.

It thus remains to show that S = Φ∗(S). Clearly, FSΦ∗(S) = ΦS
∗ (S) = 0, so Φ∗(S) ⊆

ker(FS) = S. Conversely, for X ∈ S we have

0 = FSX = FSΦ∗Φ∗X = ΦS
∗ Φ∗X,

which implies Φ∗X ∈ ker(ΦS
∗ ) = S. Consequently, X = Φ∗Φ∗X ∈ Φ∗(S), hence S ⊆ Φ∗(S). �

Remark 2.18. With notation as above, A /T inherits the structure of a Grothendieck
abelian category, see [56, Corollary 4.6.2].

2.4. Height n cohomology theories and classification of hereditary torsion theories

In this section we introduce the Hopf algebroids (E(n)∗, E(n)∗E(n)) and (K(n)∗,Σ(n)) closely
related to (BP∗, BP∗BP ), and give a classification of the hereditary torsion theories of the
former.

In stable homotopy theory the geometric counterpart of the Brown–Peterson spectrum is the
moduli stack of p-typical formal group laws. If we restrict to open substacks of formal group
laws of height at most n, then the corresponding spectrum is Johnson–Wilson E-theory E(n),
with coefficient ring

E(n)∗ ∼= Z(p)[v1, . . . , vn−1, v
±1
n ],

with |vi| = 2(pi − 1). This gives rise to a flat Hopf algebroid (E(n)∗, E(n)∗E(n)) where, by
Landweber exactness of E(n), we have E(n)∗E(n) ∼= E(n)∗ ⊗BP∗BP ⊗ E(n)∗.

The geometric point associated to the open substack corresponds to Morava K-theory K(n),
whose coefficient ring is the graded field

K(n)∗ ∼= Fpn [v±1
n ].

Importantly K(n)∗ satisfies a Künneth isomorphism: for spectra X and Y there is an
isomorphism

K(n)∗(X ⊗ Y ) ∼= K(n)∗X ⊗K(n)∗ K(n)∗Y. (2.19)

Correspondingly one would expect to study the Hopf algebroid (K(n)∗,K(n)∗K(n)).
However, K(n)∗ is not Landweber exact, and it turns out to be slightly more convenient to
work with the Hopf algebroid (K(n)∗,Σ(n)) with Σ(n) = K(n)∗ ⊗BP∗ BP∗BP ⊗BP∗ K(n)∗;
note that if K(n)∗ were Landweber exact, then this would be precisely (K(n)∗,K(n)∗K(n)).
For example, it is the latter Hopf algebroid that appears in the important change of rings
theorem of Miller and Ravenel [51, Theorem 2.10].
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As noted previously, E(n)∗ is an example of a Landweber exact BP∗-algebra of height n in
the sense of Definition 2.3. Other examples include v−1

n BP∗ or E∗, where E = En denotes the
n-th Morava E-theory, with coefficient ring

E∗ ∼= W(Fpn)[[u1, . . . , un−1]][u±1],

where |ui| = 0 and |u| = −2. Geometrically this corresponds to the universal deformation of the
geometric point associated to Morava K-theory. Since the associated comodule categories are
equivalent, the hereditary torsion theories are equivalent for any Landweber exact BP∗-algebra
of height n.

The geometry of the moduli stack of formal groups is reflected in the global structure of the
associated Hopf algebroids, more precisely in the poset of their hereditary torsion theories. A
(partial) classification of hereditary torsion theories for ComodBP∗BP was proved by Hovey
and Strickland [31], following the classification of thick subcategories (or Serre classes) of
finitely presented BP∗BP -comodules by Jeanneret, Landweber and Ravenel [36]. We use
this classification of hereditary torsion theories for BP∗BP -comodules and the results of the
previous subsection to classify the hereditary torsion theories for E∗E-comodules.

In what follows, let Tn denote the full subcategory of all graded BP∗BP -comodules that are
vn-torsion, with the convention that T−1 = ComodBP∗BP . The next result is [31, Theorems B
and C].

Theorem 2.20 (Hovey–Strickland). Let T ⊆ ComodBP∗BP be a hereditary torsion theory
containing a non-trivial compact comodule, then T = Tn for some −1 � n. Moreover, if n � 0,
then the local category corresponding to Tn is naturally equivalent to ComodE∗E with E∗ a
Landweber exact BP∗-algebra of height n.

Fix −1 � n and let

ComodBP∗BP

Φ∗−−→←−−
Φ∗

ComodE∗E

be the localization adjunction corresponding to Tn.

Corollary 2.21. Let S ⊆ ComodE∗E be a hereditary torsion theory, then S = Tm for some
−1 � m � n.

Proof. By Theorem 2.20 and Proposition 2.17, there exists a hereditary torsion theory S ⊆
ComodBP∗BP such that T BP

n ⊆ S and S = Φ∗(S). The first property implies that S contains
a non-zero compact BP∗BP -comodule, hence Theorem 2.20 shows that there exists an m with
S = T BP

m . By definition, Φ∗T BP
m = T E

m , so the claim follows. �

We note that, in contrast to Theorem 2.20, we do not require that S contains a non-trivial
compact comodule; instead, this condition is automatically satisfied in this case.

3. The Stable category of comodules

In this section we study the stable category of Ψ-comodules, previously introduced in [8, 26].
In particular, we use a derived version of the cotensor product considered in the last section
to derive Ravenel’s base-change spectral sequence for Cotor [60, Appendix A.1.3.11], as well
as a variant of a change of rings theorem of Hovey and Sadofsky [29, Theorem 3.3].
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3.1. The definition of StableΨ

As noted by Hovey [26], the category of chain complexes of comodules should be thought of
as like topological spaces, in the sense that there is both a notion of homology and homotopy,
and to form the ‘correct’ version of the derived category we should invert the homotopy, not
homology, isomorphisms. In [26] Hovey constructed such a category StableΨ associated to a
Hopf algebroid† (A,Ψ). In [8, Section 4] we gave an alternative construction, which agrees with
Hovey’s model under some very mild conditions on the Hopf algebroid. We give a brief review
of our construction here, referring the reader to [8] for the details.

For some motivation, we start with an observation of Hovey [27, Section 3]: in the derived
category of BP∗BP -comodules the tensor unit BP∗ is not compact (essentially due to the
existence of non-nilpotent elements in ExtBP∗(BP∗, BP∗)). The idea of the following definition
is to force the tensor unit (and indeed, all dualizable comodules) to be compact. Thus, let
(A,Ψ) be a flat Hopf algebroid, and write G = GΨ for the set of dualizable Ψ-comodules and
DΨ for the usual derived category of comodules.

Definition 3.1. We define the stable ∞-category of Ψ-comodules as the ind-category of
the thick subcategory of DΨ generated by G viewed as complexes concentrated in degree 0,
that is,

StableΨ = Ind(ThickΨ(G)).

The next proposition summarizes some basic properties of StableΨ. Proofs are given in
[8, Section 4].

Proposition 3.2. Let (A,Ψ) be a flat amenable Hopf algebroid.

(1) StableΨ is a presentable stable ∞-category compactly generated by G, equipped with a
closed symmetric monoidal product preserving colimits in both variables.

(2) There is a cocontinuous functor ω : StableΨ → DΨ to the ordinary derived category,
which is a (symmetric monoidal) equivalence when (A,A) is a discrete Hopf algebroid.

(3) The functor ω is given by Bousfield localization at the homology isomorphisms, that is,
those morphisms which induce an isomorphism on H∗.

(4) For a Hopf algebroid (A,Ψ) there is a canonical equivalence between StableΨ and the
underlying ∞-category of the model category constructed by Hovey in [26].

(5) There is an adjunction of stable categories

extending the adjunction from Proposition 2.1.

Since Point (3) is perhaps not clearly outlined in [8], we note that it follows from Hovey’s
construction of StableΨ and Point (4) above.

As noted in Proposition 3.2, StableΨ is compactly generated by the set of (isomorphism
classes of) dualizable Ψ-comodules. We will say that it is monogenic if it is compactly generated
by A itself. The following implies that many of the categories we study in this paper are
monogenic; in particular StableBP∗BP itself is.

Proposition 3.3 [26, Corollary 6.7]. If E is a ring spectrum that is Landweber exact over
MU or BP and E∗E is commutative, then StableE∗E is monogenic.

†Actually, Hovey constructed StableΨ for amenable Hopf algebroids, see [26, Definition 2.3.2], but all the
Hopf algebroids we consider in this paper are amenable.
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Given M,N ∈ StableΨ we will again write M ⊗A N for the monoidal product, and
HomΨ(M,N) for the internal Hom object (sometimes we will omit the subscripts if the context
is clear). Because of Proposition 3.2, we always assume our Hopf algebroids are amenable.

For technical reasons, it is sometimes useful to restrict to a certain subclass of Hopf
algebroids.

Definition 3.4 [8, Definition 4.14]. Let (A,Ψ) be a flat Hopf algebroid, and write
Comodω

Ψ[0] for the image of the nerve of the abelian category of compact comodules in DΨ.
We call (A,Ψ) a Landweber Hopf algebroid if Comodω

Ψ[0] is contained in ThickΨ(A).

This definition includes all the commonly used Hopf algebroids in stable homotopy theory,
see [8, Section 4.3]. The next result was mentioned without proof in [8, Remark 4.30].

Lemma 3.5. If (A,Ψ) is a Landweber Hopf algebroid, then StableΨ is monogenic.

Proof. It suffices to show that ThickΨ(A) = ThickΨ(G); we always have ThickΨ(A) ⊆
ThickΨ(G), and so we must show the other inclusion. Let D0 ⊂ DΨ be the full subcategory of
complexes Q with homology concentrated in finitely many degrees such that Hd(Q) ∈ ComodΨ

is compact. In [8, Lemma 4.16] we showed that D0 = ThickΨ(A). But since G ∈ D0 for each
G ∈ G there is an inclusion ThickΨ(G) → D0 = ThickΨ(A), completing the lemma. �

Landweber Hopf algebroids have another important property, which rests on a theorem due
to Krause [39].

Proposition 3.6. Assume (A,Ψ) is a Landweber Hopf algebroid with A coherent. There
is a natural t-structure on StableΨ such that the inclusion functor ι : DΨ → StableΨ is t-exact
and induces natural equivalences

D�k
Ψ

∼−−−→ Stable�k
Ψ

on the full subcategories of k-coconnective objects for all k ∈ Z. The inverse equivalence is
given by inverting the homology isomorphisms.

Proof. This is the content of [8, Proposition 4.17], where we proved this under the hypothesis
that A is Noetherian. This can be generalized to the case that A is coherent using the work of
Krause [39], as extended to the ∞-categorical setting by Lurie [46, Appendix C.5.8]. �

Definition 3.7. Let Stable<∞
Ψ be the full subcategory of those M ∈ StableΨ for which

there exists some k such that M ∈ Stable�k
Ψ .

Since StableΨ is a stable ∞-category, HomΨ(A,M) canonically has the structure of a
spectrum. To avoid confusion in the following definition, we write πst

∗ for the homotopy groups
of a spectrum.

Definition 3.8. For M ∈ StableΨ, we define the homotopy groups of M as π∗M =
πst
∗ HomΨ(A,M).

Remark 3.9. By [26, Proposition 6.10], π∗A ∼= Ext∗Ψ(A,A), so that π∗M is always a graded
module over the graded-commutative ring Ext∗Ψ(A,A). More generally given any discrete
Ψ-comodule M , thought of as an object of StableΨ, Hovey’s result shows that π∗M ∼=
Ext∗Ψ(A,M). By [60, A1.1.6] this is in turn isomorphic to Cotor∗Ψ(A,M).
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The relation between homology and homotopy in StableΨ is given by the following:

Lemma 3.10. For any M ∈ StableΨ we have π∗(Ψ ⊗M) ∼= H∗M .

Proof. This follows easily by the adjunction between StableΨ and DA stated in Proposi-
tion 3.2(5); indeed, we have

HomΨ(N,Ψ ⊗M) � HomDA
(ε∗N,M)

for N ∈ StableΨ and M ∈ DA, so that in particular π∗(Ψ ⊗M) ∼= H∗M . �

3.2. Some derived functors

Given a morphism Φ: (A,Ψ) → (B,Σ) of Hopf algebroids, there exists a functor
Φ∗ : ComodΨ → ComodΣ induced by M �→ B ⊗A M , with a right adjoint Φ∗. We shall see
in the next lemma that both of these exist in the associated stable categories and that,
interestingly, there is a third adjoint.

Lemma 3.11. If Φ: (A,Ψ) → (B,Σ) is a map of Hopf algebroids, then there exist adjoint
functors

where Φ∗ is left adjoint to Φ∗, which in turn is left adjoint to Φ!.

Proof. If M is finitely generated and projective over A (and hence dualizable in ComodΨ,
see Proposition 2.1), then B ⊗A M is finitely generated and projective over B, so that

B ⊗A − : ComodΨ −−→ ComodΣ

preserves dualizable comodules. Using Hovey’s model structure as in [26], it follows that
there is an induced exact functor Φ∗ : ThickΨ (GΨ) → ThickΨ (GΣ). Applying Ind, we get a
functor Φ∗ : StableΨ → StableΣ that preserves all colimits and compact objects. Thus, by
[4, Theorem 1.7; 44, Proposition 5.3.5.13], Φ∗ has a right adjoint Φ∗, which has a further right
adjoint Φ!. �

The canonical map from the initial Hopf algebroid (K,K) to any Hopf algebroid (A,Ψ) will
always be denoted by γΨ : (K,K) → (A,Ψ); if the Hopf algebroid is clear from context, the
subscript Ψ will be omitted. We now give a simple proof of the fact that γ∗

Ψ is the functor of
derived primitives.

Lemma 3.12. For M ∈ StableΨ there is a natural equivalence

γ∗
ΨM � HomΨ(A,M).

Proof. By Proposition 3.2(2) there is a symmetric monoidal equivalence of ∞-categories
StableK � DK . Let M ∈ StableΨ, then

γ∗
ΨM � HomDK

(K, γ∗
ΨM) � HomΨ((γΨ)∗K,M) � HomΨ(A,M). �
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Note that by definition we have π∗M = πst
∗ (γ∗

ΨM). Moreover, given a map Φ: (A,Ψ) →
(B,Σ) there is a commutative diagram of Hopf algebroids

so that γ∗
Σ � γ∗

ΨΦ∗.
The next result is known as the projection formula.

Lemma 3.13 (Projection formula). For M ∈ StableΣ and N ∈ StableΨ, there is a natural
equivalence

(Φ∗M) ⊗A N
∼−−−→ Φ∗(M ⊗B Φ∗(N)).

Proof. The map is constructed as the adjoint of the natural transformation

Φ∗(Φ∗(M) ⊗A N) ∼←−−− Φ∗Φ∗(M) ⊗B Φ∗N
ε⊗Id−−−→ M ⊗B Φ∗N,

where ε is the counit of the adjunction (Φ∗,Φ∗). Since all functors involved preserve colimits,
it suffices to verify the claim for M = B and N = A, for which it is clear. �

We can give an explicit formula for the right adjoint Φ∗.

Lemma 3.14. For Φ: (A,Ψ) → (B,Σ) a map of Hopf algebroids, the right adjoint Φ∗ of Φ∗
can be identified as the derived primitives of the extended Ψ-comodule functor, that is,

Φ∗M � HomΣ(B,M ⊗A Ψ),

for any M ∈ StableΣ.

Proof. We first note that the statement makes sense: M ⊗A Ψ obtains the structure
of a Σ-comodule via the comodule structure on M . It is also clearly a Ψ-comodule, and
HomΣ(B,M ⊗A Ψ) obtains a Σ-comodule structure by an argument similar to [60, 1.3.11(a)].

There are natural equivalences

γ∗
Σ(M ⊗A Ψ) � γ∗

Σ(M ⊗B Φ∗(Ψ)) (since Φ∗(Ψ) � B ⊗A Ψ)

� γ∗
ΨΦ∗(M ⊗B Φ∗(Ψ)) (since γ∗

Σ � γ∗
ΨΦ∗)

� γ∗
Ψ(Φ∗(M) ⊗A Ψ) (by Lemma 3.13)

� γ∗
Ψε

∗(Φ∗(M)) (since ε∗(−) = Ψ ⊗A −)

� Φ∗(M)

where ε∗ is as in Proposition 3.2(5). The same argument as in [60, 1.3.11(a)] shows that these
equivalences are compatible with the comodule structures. �

In virtue of Lemma 2.12, the following definition is a natural generalization of the classical
construction of the Cotor groups of discrete comodules.
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Definition 3.15. We define the derived cotensor product of any two objects M,N ∈
StableΨ as the derived primitives of their tensor product,

CotorΨ(M,N) = γ∗
Ψ(M ⊗A N),

viewed as an object of StableK .

We then define CotoriΨ(M,N) = πst
i CotorΨ(M,N) = πi(M ⊗A N). If M and N are discrete

comodules then, by Remark 3.9 and Lemma 2.12, this agrees with the definition of Cotor given
in Definition 2.7. Furthermore,

Lemma 3.16. If (A,Ψ) is a Landweber Hopf algebroid with A coherent, then for
M,N ∈ Stable<∞

Ψ we have π∗HomΨ(M,N) ∼= Ext∗Ψ(ωM,ωN), where ω is the functor from
Proposition 3.2(2).

Proof. By adjunction π∗HomΨ(M,N) ∼= πst
∗ HomΨ(M,N). Now apply [8, Corollary 4.19],

using Proposition 3.6. �

As an easy application of the results of this section, we can reinterpret the base-change
spectral sequence for Cotor constructed by Ravenel in [60, Appendix A.1.3.11]. Note that we
can dispense of the hypothesis that M is flat by our use of the relative Cotor functor.

Corollary 3.17. Let f : (A,Ψ) → (B,Σ) be a map of Hopf algebroids. If M is a discrete
(right) Ψ-comodule and N is a discrete (left) Σ-comodule, then there is a natural convergent
spectral sequence

CotorsΨ(M,CotortΣ(B ⊗A Ψ, N)) ⇒ Cotors+t
Σ (M ⊗A B,N)

with differentials dr : Es,t
r → Es+r,t−r+1

r .

Proof. First, using Lemma 3.12 and Lemma 3.14, we obtain equivalences

γ∗
Σ((B ⊗A Ψ) ⊗B N) � HomΣ(B, (B ⊗A Ψ) ⊗B N) � HomΣ(B,N ⊗A Ψ) � f∗N.

The projection formula Lemma 3.13 then gives natural equivalences

γ∗
Σ(f∗(M) ⊗B N) � γ∗

Ψf
∗(f∗(M) ⊗B N)

� γ∗
Ψ(M ⊗A f∗(N))

� γ∗
Ψ(M ⊗A (γ∗

Σ((B ⊗A Ψ) ⊗B N))).

By testing on extended Σ-comodules as in [7, Section 6], the Grothendieck spectral sequence
associated to the two functors

γ∗
Ψ(M ⊗A −) and γ∗

Σ((B ⊗A Ψ) ⊗B −)

exists and converges [67, Theorem 5.8.3]. By construction and Lemma 2.12, the resulting
spectral sequence recovers the Cotor spectral sequence. �

Remark 3.18 (Geometric interpretation). We recall from [53] that to a flat Hopf algebroid
(A,Ψ) we can associate an algebraic stack X with a fixed presentation Spec(A) → X, and that
this gives rise to an equivalence of 2-categories between flat Hopf algebroids and rigidified
algebraic stacks [53, Theorem 8]. Moreover, there is an equivalence of abelian categories
between QCoh(X), the category of quasi-coherent sheaves on X and ComodΨ. Using this we
can define the category Ind CohX of ind-coherent sheaves on X, and show that it is equivalent
to StableΨ, see [8, Proposition 5.40]. This equivalence is symmetric monoidal. Geometrically,
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this means that Cotor as defined in Definition 3.15 corresponds to the derived global sections
of the tensor product of ind-coherent sheaves.

3.3. Change of rings

As another application, we will prove a change of rings theorem for Hopf algebroids associated
to faithfully flat extensions. For precursors of this result, see [2, Proposition 3.2; 25, Theorem D;
29, Theorem 3.3; 31, Theorem 6.2].

Given a Hopf algebroid (A,Ψ) and morphism Φ: A → B of K-algebras, let ΣΦ = B �A Ψ �A

B, where we use the symbol � to denote the underived tensor product. Note that (B,ΣΦ) forms
a Hopf algebroid, and there is a natural morphism of Hopf algebroids Φ: (A,Ψ) → (B,ΣΦ). In
general (B,ΣΦ) need not be a flat Hopf algebroid, even when (A,Ψ) is. It is, however, when
B �A Ψ is a flat A-module.

Lemma 3.19. Suppose (A,Ψ) is a Landweber Hopf algebroid with A coherent. If T is a
faithfully flat A-module, then the composite

Stable<∞
Ψ

ε∗−−−→ Stable<∞
A

T⊗A−−−−−→ DA

is conservative.

Proof. By Proposition 3.6 there is an equivalence of categories Stable<∞
Ψ � D<∞

Ψ , so ε∗
restricted to Stable<∞

Ψ is conservative. Now let f : M → N be a morphism in Stable<∞
A �

D<∞
A such that T ⊗A f is an equivalence. The morphism f gives rise to a cofiber sequence

M
f−→ N → cofib(f) where, by assumption, T ⊗A cofib(f) � 0. Since T is faithfully flat over A,

this implies that cofib(f) � 0, so that f was an equivalence to begin with. �

For the following compare [31, Theorem 6.2].

Proposition 3.20. Let Φ: A → B be as above, and suppose that (A,Ψ) is a Landweber
Hopf algebroid with A coherent. Suppose the composite

A
ηR−−→ Ψ 1⊗Φ−−−→ Ψ ⊗A B

is a faithfully flat extension of A, then Φ∗ induces an equivalence

StableΣΦ

∼−−−→ StableΨ .

Proof. For this proof, we use the notation M �N to denote the underived tensor product
between two modules M and N .

We will first show that the unit u : id → Φ∗Φ∗ is an equivalence. Since Φ∗ and Φ∗ preserve
all colimits and StableΨ is monogenic by Lemma 3.5, the unit u is a natural equivalence if and
only if it is so when evaluated on A. Moreover, uA : A → Φ∗Φ∗A is a map between objects in
Stable�0

Ψ and so by Lemma 3.19 it suffices to show that (Ψ ⊗A B) ⊗A uA is an equivalence. To
see this, first observe that the projection formula Lemma 3.13 together with Lemma 3.14 give

(Ψ ⊗A B) ⊗A Φ∗Φ∗A � Φ∗(Φ∗(Ψ ⊗A B) ⊗B Φ∗A)

� Φ∗Φ∗(Ψ ⊗A B)

� HomΣΦ(B,Ψ ⊗A (B ⊗A Ψ ⊗A B)).

Note that B ⊗A Ψ � B �A Ψ since Ψ is flat over A. Then, since B �A Ψ is assumed to be flat
over A, we deduce an equivalence B ⊗A Ψ ⊗A B � B �A Ψ �A B = ΣΦ. Thus, we have
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(Ψ ⊗A B) ⊗A Φ∗Φ∗A � HomΣΦ(B,Ψ ⊗A ΣΦ)

� HomΣΦ(B, (Ψ ⊗A B) ⊗B ΣΦ)

� HomB(B,Ψ ⊗A B)

� Ψ ⊗A B.

It is standard to verify that this equivalence is induced by uA, that is, (Ψ ⊗A B) ⊗A uA is an
equivalence, as required.

Let c denote the counit of the adjunction (Φ∗,Φ∗) and suppose Y ∈ StableΣΦ . In order to
show that c : Φ∗Φ∗Y → Y is an equivalence, it suffices to prove that the top morphism in the
following commutative diagram is an equivalence

since B = Φ∗A is a compact generator of StableΣΦ . Because the unit of the adjunction is an
equivalence, the triangle identity implies that the bottom horizontal map is an equivalence as
well, and the claim follows. �

Remark 3.21. This demonstrates how working systematically on the derived level can help
to considerably simplify arguments, cf. the proof of [25, Theorem D].

4. Morava theories and generic primes

In this section we study the stable categories StableΣ(n) and StableE∗E associated to the Hopf
algebroids (K(n)∗,Σ(n)) and (E∗, E∗E) introduced in Section 2.4, proving that for certain
primes they are equivalent to their respective derived categories. In particular, we show that
this is true whenever p is large with respect to n. This implies that in these cases the stable
category of comodules is much simpler, an algebraic manifestation of the well-known fact that
chromatic homotopy at height n simplifies when the prime p is much larger than n.

Recall that the homology theory E∗ is complex-oriented and the associated formal group
law over E∗ is the universal deformation of the Honda formal group, the formal group law
associated to Morava K-theory. We define the Morava stabilizer group Sn to be the group
of automorphisms of the Honda formal group law of height n. If n is not divisible by p− 1,
then Sn is of finite cohomological dimension n2, which implies that Exts,tΣ(n)(K(n)∗,K(n)∗) is
zero for s > n2. This leads to the following definition, where as usual E∗ denotes any height n
Landweber exact BP∗-algebra.

Definition 4.1. For any n, the set of K(n)-generic primes is the set of primes p for which
n is not divisible by p− 1, and the set of E-generic primes is the intersection of the sets of
K(i)-generic primes for 0 � i � n.

In the case of Morava E-theory, the E-based chromatic spectral sequence can be used to show
that if p is an E-generic prime, then Exts,tE∗E(E∗, E∗) = 0 for s > n2 + n [29, Theorem 5.1].
The main result of this section is that the natural functors

StableΣ(n) → DΣ(n) and StableE∗E → DE∗E

are equivalences for the set of K(n)-generic and E-generic primes, respectively. Note that such
a statement is not true for StableBP∗BP since, for example, BP∗ is compact in StableBP∗BP
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but not in DBP∗BP . This is shown by Hovey [27, Section 3] using the existence of non-nilpotent
elements in Exts,tBP∗BP (BP∗, BP∗) of positive cohomological degree.

4.1. Field theories

Let (K,Υ) be a Hopf algebroid over a field K, so that Υ is in fact a Hopf algebra over K. There
are two important types of examples. First, for any finite group G, the group ring of G over the
field k has the structure of a Hopf algebra, so that (k, kG) is a Hopf algebroid. Second, for any
field object K in the category of spectra, (K∗,K∗K) is a Hopf algebroid over K∗. In particular,
we can consider the Steenrod algebra (Fp,A∗) and (K(n)∗,Σ(n)) corresponding to HFp and
Morava K-theory K(n) for a given prime p and height n � 0, respectively. As a consequence
of the nilpotence theorem, these are essentially all fields of the stable homotopy category
[23, Proposition 1.9].

The following two lemmata generalize [55, Corollary 1.2.10 and Lemma 1.3.9]. As is standard,
we define the homology theory associated to E ∈ StableΥ via the assignment X �→ π∗(E ⊗X)
for any X ∈ StableΥ.

Lemma 4.2. Let (K,Υ) be a Hopf algebroid over a field K.

(1) The homology theory represented by Υ is ordinary (chain) homology H∗, and this
satisfies the Künneth formula.

(2) For any M ∈ StableΥ, Υ ⊗M decomposes as a direct sum of suspensions of Υ.

Proof. That Υ represents homology is a special case of Lemma 3.10. Since π∗(Υ ⊗M) ∼=
H∗M is a free graded K-module, it satisfies the Künneth formula, and so (1) holds. Moreover,
we can construct a map

⊕
b∈H∗M

Σ|b|Υ −−−→ Υ ⊗M

in StableΥ, where the direct sum is indexed by a K-basis of H∗M . By construction, this map
is an equivalence, and (2) follows. �

Lemma 4.3. Assume that StableΥ is monogenic and suppose that D is a localizing
subcategory of StableΥ containing a non-acyclic object M0, then Loc(Υ) ⊆ D.

Proof. Because StableΥ is monogenic, the localizing ideals coincide with the localizing
subcategories. Since 0 �� Υ ⊗M0 ∈ D, we get Υ ∈ D by Lemma 4.2. �

In order to apply this to the examples of interest, we need the following.

Proposition 4.4. The category StableΣ(n) is monogenic.

Proof. In this proof we will again use the symbol � to denote the underived tensor product.
Let N ∈ StableΣ(n) be compact. By construction of StableΣ(n), N is in the thick subcategory

generated by the dualizable Σ(n)-comodules. We will show that it is in the thick subcategory
generated by K(n)∗. We note that by Proposition 2.1 each dualizable discrete Σ(n)-comodule is
finitely generated and projective as a K(n)∗-module, that is, as a K(n)∗-module it is isomorphic
to a finite direct sum of copies of K(n)∗, up to suspension.

Let E be the Landweber exact cohomology theory with E∗ ∼= W(Fpn)[v1, . . . , vn−1, v
±1
n ],

where W(Fpn) denotes the ring of Witt vectors on Fpn . It follows that E∗/In ∼= K(n)∗ and
E∗E/In ∼= K(n)∗E ∼= Σ(n) [30, p. 15]. Let f : (E∗, E∗E) → (K(n)∗,Σ(n)) denote the quotient



1154 TOBIAS BARTHEL AND DREW HEARD

morphism of Hopf algebroids. Then, for a Σ(n)-comodule M there are equivalences

Σ(n) �K(n)∗ M ∼= E∗E �E∗ K(n)∗ �K(n)∗ M

∼= E∗E �E∗ M.

In particular, M is also an E∗E-comodule, with comodule structure map given by the
composite

M
ψM−−→ Σ(n) �K(n)∗ M ∼= E∗E �E∗ M.

We will write M � when we think of M as an E∗E-comodule.
For arbitrary M ∈ Stable<∞

Σ(n), Lemma 3.14 gives equivalences

f∗M � HomΣ(n)(K(n)∗,M ⊗E∗ E∗E) � HomΣ(n)(K(n)∗,M �E∗ E∗E)

� HomΣ(n)(K(n)∗,M �K(n)∗ Σ(n))

� HomΣ(n)(K(n)∗,M ⊗K(n)∗ Σ(n))

� M,

with E∗E-comodule structure given as above, where we have used that our Hopf algebroids
are flat.

It follows that f∗M � M �, and in particular that f∗(K(n)∗) � K(n)�∗ � (E∗/In)�. Since In
is a finitely generated invariant ideal of E∗, it follows that E∗/In is a finitely presentable E∗-
module, and hence so is f∗(P ) � P � for any dualizable Σ(n)-comodule P . We have shown in
[8, Section 4.3] that this implies that f∗P is compact and hence dualizable in StableE∗E .

Since f∗ is exact, this implies that if N ∈ Stable<∞
Σ(n) is in the thick subcategory generated

by the dualizable Σ(n)-comodules, then f∗N � N � is in the thick subcategory generated by
the dualizable E∗E-comodules, that is, N � is compact in StableE∗E . Again, using the fact that
StableE∗E is monogenic, we see that N � is in the thick subcategory generated by E∗. It follows
that f∗f

∗N is in the thick subcategory generated by K(n)∗. Now we have cofiber sequences

E∗/Ik ⊗K(n)∗
·vk−−→ E∗/Ik ⊗K(n)∗ −→ E∗/Ik+1 ⊗K(n)∗,

and since K(n)∗ is killed by In, these give rise to equivalences

E∗/Ik ⊗K(n)∗ � (E∗/Ik−1 ⊗K(n)∗) ⊕ (E∗/Ik−1 ⊗ ΣK(n)∗)

for all 0 � k � n, hence

K(n)∗ ⊗E∗ K(n)∗ ∼= E∗/In ⊗E∗ K(n)∗ ∼=
⊕

0�j�n

ΣjK(n)λn(j)
∗ ,

where λn(j) =
(
n
j

)
. Therefore,

f∗f
∗N � K(n)∗ ⊗E∗ N � K(n)∗ ⊗E∗ K(n)∗ ⊗K(n)∗ N

� N ⊕
⊕

1�j�n

ΣjN⊕λn(j)

is in the thick subcategory generated by K(n)∗. It follows that N ∈ Thick(K(n)∗) as
required. �

4.2. Generic primes

We now focus on the behavior of StableΣ(n) and StableE∗E at the set of K(n)-generic and
E-generic primes, respectively. We start with StableΣ(n).
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Lemma 4.5. If p− 1 � n, then K(n)∗ ∈ ThickΣ(n)(Σ(n)).

Proof. If p− 1 � n, the cohomological p-dimension of the Morava stabilizer group Sn is n2,
so there exists a length n2 projective resolution

0 −−−→ P• −−−→ Zp −−−→ 0

of the trivial Zp�Sn�-module Zp, see [21, Theorem 4]. As shown in [21], this resolution can
be lifted to a finite resolution of K(n)∗ as a Σ(n)-comodule, such that each term is a direct
summand of a finite wedge of copies of Σ(n). In the usual way, we can split the long exact
sequence into short exact sequences. Starting from the final term and working our way back
to K(n)∗, the claim follows inductively. �

Remark 4.6. For p− 1 | n, while Sn has infinite cohomological p-dimension, it is still of
virtual cohomological dimension n2. In stable homotopy theory, this fact manifests itself in the
existence of a finite spectrum Xp,n of type 0 such that K(n)∗Xp,n has projective dimension
n2 over Σ(n)∗, see [30, proof of Theorem 8.9]. Such complexes were constructed by Hopkins,
Ravenel and Smith as explained in [61, Section 8.3]; note, however, that Xp,n cannot be taken
to be S0 if p− 1 | n.

Proposition 4.7. Suppose p is a K(n)-generic prime, that is p− 1 � n, then the natural
functor

ω : StableΣ(n)
∼−−−→ DΣ(n)

is an equivalence of symmetric monoidal stable ∞-categories.

Proof. The functor ω exhibits DΣ(n) as the localization of StableΣ(n) at the quasi-
isomorphisms, that is, it is localization at the localizing subcategory of all M ∈ StableΣ(n)

such that π∗(Σ(n) ⊗M) ∼= H∗M = 0, see Proposition 3.2. It follows from Lemma 4.5 that
π∗(M) ∼= π∗(K(n)∗ ⊗M) = 0, hence M � 0 since StableΣ(n) is monogenic by Proposition 4.4.
Therefore, ω is localization at (0). �

Remark 4.8. Combining the proof of Proposition 4.7 with Remark 4.6, we see that, for
any prime p, M ∈ StableΣ(n) being acyclic implies π∗(K(n)∗Xp,n ⊗M) = 0.

For the following we let Spc(StableΣ(n)) denote the Balmer spectrum associated to
StableΣ(n), see [3].

Corollary 4.9. Suppose p− 1 � n. If D ⊆ StableΣ(n) is a localizing subcategory containing
a non-zero object M0, then D = StableΣ(n). In particular, there are no non-trivial proper thick
subcategories in StableωΣ(n), that is, Spc(StableΣ(n)) = {∗}.

Proof. By Proposition 4.7 such an M0 corresponds to a non-acyclic object of StableΣ(n).
Hence, combining Lemma 4.3, Proposition 4.4 and Lemma 4.5, we get

StableΣ(n) = Loc(K(n)∗) ⊆ Loc(Σ(n)) ⊆ D,

so StableΣ(n) = D.
In order to prove the second claim, consider a non-trivial thick subcategory T ⊆ StableωΣ(n)

and write L = Loc(T ) for the corresponding localizing subcategory of StableΣ(n). It fol-
lows from the first part that L = StableΣ(n) and therefore, by [54, Theorem 2.1(3)], that
T = Loc(T )ω = StableωΣ(n). �
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Question 4.10. Is it possible to classify the thick subcategories of StableΣ(n) for p− 1 | n?

Let E∗ be any height n Landweber exact BP∗-algebra. As noted previously these give rise to
a category of comodules (E∗, E∗E), and the comodule categories of any two such BP∗-algebras
are equivalent. Thinking of E∗ as the coefficient ring of Morava E-theory, the following result
gives a lift of Proposition 4.7 from Morava K-theory to Morava E-theory.

Theorem 4.11. If p is an E-generic prime, that is p > n + 1, then the localization functor
ω : StableE∗E

∼−−−→ DE∗E is an equivalence of symmetric monoidal stable ∞-categories.

Proof. We will first show that E∗ ∈ Thick⊗(E∗E), the thick tensor ideal in DE∗E
generated by E∗E. To this end, let E∗ → I• be a resolution of E∗ by injective E∗E-
comodules. The assumption that n < p− 1 implies that there exists some N � 0 such that
ExtsE∗E(E∗, E∗) = 0 for all s > N , see the [59, proof of Theorem 10.9]. Induction on k then
shows that N can be chosen large enough so that ExtsE∗E(E∗/Ik, E∗) = 0 for all s > N and
all 0 � k � n as well. Since every dualizable discrete comodule P is finitely presented and
projective by Proposition 2.1, it thus follows from the Landweber filtration theorem [31,
Theorem D] and the long exact sequence in Ext that

ExtsE∗E(P,E∗) = 0 (4.12)

for all s > N . Now consider the exact sequence

0 −−−→ E∗
f0

−−−→ I0 f1

−−−→ I1 f2

−−−→ . . .
fN

−−−→ IN
g−−→ coker(fN ) −−−→ 0. (4.13)

Recall from Proposition 2.4 that the dualizable discrete comodules generate ComodE∗E , so
(4.12) forces the map g to be split, as is carefully proven, for example, in [17, Section 3.4,
Lemma 2]. Therefore, coker(fN ) is a retract of an injective comodule and hence itself injective.
But every injective comodule is a retract of an extended comodule by Lemma 2.2, so the
resolution (4.13) is spliced together from short exact sequences involving only extended
comodules. Because short exact sequences induce fiber sequences in DE∗E , this yields
E∗ ∈ Thick⊗(E∗E).

To finish the argument, recall from Proposition 3.2 that ω : StableE∗E → DE∗E is the
localization with respect to the homology isomorphisms. Since StableE∗E is stable, it suffices
to show that any M ∈ StableE∗E with H∗M = 0 must be trivial. Suppose M ∈ StableE∗E with
H∗M = 0. Define a full subcategory C(M) ⊆ StableE∗E consisting of those X ∈ StableE∗E with
π∗(X ⊗M) = 0; note that C(M) is a thick tensor ideal. Since E∗E represents homology, that
is, there is a natural equivalence H∗(−) ∼= π∗(E∗E ⊗−), we get E∗E ∈ C(M), hence

E∗ ∈ Thick⊗(E∗E) ⊆ C(M).

This means that π∗M = 0, thus M � 0, and the claim follows. �

Remark 4.14. More conceptually, the fact that E∗ is contained in the thick tensor ideal
generated by E∗E is equivalent to the morphism E∗ → E∗E being descendable in the language
of [48]. The latter statement, in turn, can be shown to be equivalent to the existence of a
horizontal vanishing line in the (collapsing) Adams spectral sequence, see [48, Section 4], that
is, to the finite cohomological dimension of E∗ ∈ ComodE∗E .

5. The nilpotence theorem

In this section we present an algebraic version of the nilpotence theorem in StableBP∗BP .
Our results are not as strong as the nilpotence theorem in stable homotopy theory given by
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Devinatz, Hopkins and Smith [14, 23], principally due to the fact that the detecting family we
use does not consist of field objects in StableBP∗BP .

5.1. Equivalent statements of the algebraic nilpotence theorem

In [23] Hopkins and Smith prove that the Morava K-theories K(n) can be used to detect
nilpotence: a map f : F → X from a finite spectrum to a p-local spectrum X is smash nilpotent,
that is, f (m) = 0 for some m � 0, if and only if K(n)∗f = 0 for all 0 � n � ∞.

In this section we prove a StableBP∗BP variant of this. Our results are more like the nilpotence
theorems given in [28, Section 5], although we note that they do not follow automatically from
their work, since (5.1.2) of [28] is not satisfied in our case.

Recall that, for 0 � n � ∞, In denotes the ideal (p, v1, . . . , vn−1) ⊂ BP∗ (with the convention
that I0 = (0)); by [40] these are the only invariant prime ideals in BP∗. In analogy with the
notation for a type n complex in stable homotopy theory, we let F (n)∗ = BP∗/In.† We then
define Tel(n)∗ as the localization v−1

n F (n)∗ (by convention we set Tel(0)∗ = Q and Tel(∞)∗ =
Fp). These play the role of the detecting theories in this context (see also Theorem 5.13).

Our version of the nilpotence theorem takes the following form.

Theorem 5.1 (Algebraic nilpotence Theorem I — weak version).

(1) Suppose F,X ∈ StableBP∗BP with F compact, then a map f : F → X is smash nilpotent,
that is, f (m) = 0 for some m � 0, if Tel(n)∗ ⊗BP∗ f = 0 for all 0 � n � ∞.

(2) A self-map f : ΣiF → F for F ∈ StableωBP∗BP is nilpotent, in the sense that f j : ΣijF →
F is null for some j � 0, if and only if Tel(n)∗ ⊗BP∗ f is nilpotent for all 0 � n � ∞.

Theorem 5.2 (Algebraic nilpotence Theorem II — weak version).

(1) Suppose X ∈ StableBP∗BP , then a map f : BP∗ → X is smash nilpotent, that is, f (m) =
0 for some m � 0, if π∗(Tel(n)∗ ⊗BP∗ f) = 0 for all 0 � n � ∞.

(2) Let R be a ring object in StableBP∗BP . Then an element α ∈ π∗R ∼= ExtBP∗BP (BP∗, R)
is nilpotent if and only if π∗(Tel(n)∗ ⊗BP∗ α) is nilpotent for all 0 � n � ∞.

We will prove these in Section 5.2. Our proof follows closely the ideas of the original proof
of Hopkins and Smith, and we start by building a Bousfield decomposition similar to that seen
in the ordinary stable homotopy category.

Remark 5.3. We refer to these theorems as weak versions of the nilpotence theorem because
they do not account for all periodic elements in π∗BP∗, but only those of Adams–Novikov
filtration 0, which in turn correspond to the classical periodic elements vn in ordinary stable
homotopy theory. This manifests itself in the fact that the telescopes Tel(n)∗ are not field
objects, and we thus cannot deduce a description of the Balmer spectrum of StableBP∗BP .

However, in forthcoming work with A. Krause, we will study the global structure of
StableBP∗BP in more detail. In particular, we will establish a much more refined description
of the thick subcategories of compact objects by constructing a more sophisticated detecting
family.

5.2. The proof of the algebraic nilpotence theorem

We start by recalling the basic definition of a Bousfield class, specialized to the category
StableBP∗BP .

†This often appears in the literature as P (n)∗.
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Definition 5.4. Let M,N ∈ StableBP∗BP . We say that M and N are Bousfield equivalent
if, given any X ∈ StableBP∗BP , we have M ⊗BP∗ X � 0 if and only if N ⊗BP∗ X � 0. We write
〈M〉 for the Bousfield class of M .

Lemma 5.5. There is an equivalence colimm F (m)∗ � Fp in StableBP∗BP .

Proof. There is a natural map colimm F (m)∗ → Fp. Since this map is in Stable�0
BP∗BP , it

suffices to check that it is a quasi-isomorphism, which is clear: Indeed, this map is even an
isomorphism in ComodBP∗BP . �

Recall that we denote Tel(n)∗ = v−1
n F (n)∗.

Lemma 5.6. For any m � 0, we have an identity of Bousfield classes

〈BP∗〉 = 〈F (m + 1)∗〉 ⊕
m⊕
i=0

〈Tel(i)∗〉.

Proof. By virtue of the general formula 〈M〉 = 〈M/v〉 ⊕ 〈v−1M〉 for any self-map v : ΣdM →
M , see [28, Proposition 3.6.9(d); 59, Lemma 1.34], we see that 〈F (m)∗〉 = 〈F (m + 1)∗〉 ⊕
〈Tel(m)∗〉. Since F (0)∗ = BP∗, the result then follows inductively. �

Remark 5.7. This result also appears in the proof of [27, Lemma 4.10].

For the remainder of this subsection, we will omit all suspensions from the notation. Let
f : BP∗ → X be a map in StableBP∗BP . We write

Tf = colim(BP∗
f−→ X � BP∗ ⊗X

f⊗1−−−→ X ⊗X
f⊗1⊗1−−−−→ . . .)

for the corresponding telescope and f (∞) : BP∗ → Tf for the canonical map.

Lemma 5.8. Let R ∈ StableBP∗BP be a ring object with unit ι : BP∗ → R and f : BP∗ → X
some map in StableBP∗BP . The following statements are equivalent:

(1) R⊗ Tf � 0;
(2) ι⊗ f (∞) : BP∗ → R⊗ Tf is zero;
(3) ι⊗ f (n) : BP∗ → R⊗X(n) is zero for n � 0;
(4) 1R ⊗ f (n) : R → R⊗X(n) is zero for n � 0.

Proof. This is proven as in [23, Lemma 2.4]. �

Remark 5.9. The proof of this result uses the compactness of BP∗, and hence it is crucial
that we work in StableBP∗BP , and not just DBP∗BP .

We now prove the first algebraic nilpotence theorem.

Proof of Theorem 5.1. The ‘only if’ direction of Part (2) is clear, and we note that the
other direction follows from Part (1). Indeed, this is the same argument as in [23], namely
we replace f : ΣiF → F with its adjoint f# : ΣiBP∗ → DF ⊗ F . To prove part (1) we can
similarly replace f : F → X with its adjoint f# : BP∗ → DF ⊗X, and so reduce to the case†

where F = BP∗.

†In particular, the claim follows from Theorem 5.2(2). However, the proof of the latter relies on Theorem 5.1,
so we cannot apply it here.
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Let Tf be the telescope associated to f . We first start by assuming that 1Tel(n)∗ ⊗ f = 0
for all 0 � n � ∞, so that Tel(n)∗ ⊗ Tf � 0 for all n. By Lemma 5.8 we have to show BP∗ ⊗
Tf � Tf � 0. By the Bousfield decomposition of Lemma 5.6, it then suffices to prove that
F (n)∗ ⊗ Tf � 0 for n � 0. Using Theorem 5.8 again, this will follow from BP∗ → F (n)∗ ⊗ Tf

being null for sufficiently large n. To this end, compactness of BP∗ gives a factorization

where the right vertical equivalence was established in Lemma 5.5. By assumption, the top
horizontal map is zero, so the claim follows. �

The proof of the second nilpotence theorem follows closely the one given in
[28, Theorem 5.1.3].

Proof of Theorem 5.2. Once again it suffices to prove part (1). To see this, consider the
commutative diagram

If (1) holds, then αtm is null for m � 0, so that α is nilpotent. The other direction of (2) is
clear.

The proof of (1) is identical to [28, Theorem 5.1.3], which we repeat for the conve-
nience of the reader. Namely, Tel(n)∗ is a ring object in StableBP∗BP , so there exist
maps η : BP∗ → Tel(n)∗ and μ : Tel(n)∗ ⊗BP∗ Tel(n)∗ → Tel(n)∗ satisfying the usual rela-
tions. Suppose f : BP∗ → X is such that π∗(Tel(n)∗ ⊗BP∗ f) is zero, so that the composite

BP∗
η−→ Tel(n)∗

1⊗f−−−→ Tel(n)∗ ⊗BP∗ X is null. But 1 ⊗ f factors as Tel(n)∗
(1⊗f)◦η−−−−−→

Tel(n)∗ ⊗BP∗ Tel(n) ⊗BP∗ X
μ⊗1−−−→ Tel(n)∗ ⊗BP∗ X so that 1 ⊗ f is null. We now apply

Theorem 5.1(1). �

5.3. Base-change and the algebraic telescope conjecture

The goal of this subsection is to generalize the main structural results of [8, Section 8] to
the Hopf algebroid (F (m)∗, F (m)∗F (m)). In particular, we deduce an algebraic version of the
telescope conjecture for StableBP∗BP , which is analogous to Ravenel’s theorem that Lf

nBP �
LnBP for all n � 0.

There are Landweber exact F (m)∗-algebras E(m,n)∗ = Tel(m)∗/(vn+1, vn+2, . . .) for all m �
n, giving rise to Hopf algebroids (E(m,n)∗, E(m,n)∗E(m,n)). These theories come with a
natural base-change functor

Φ(m,n)∗ : StableF (m)∗F (m) −−−→ StableE(m,n)∗E(m,n),
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defined by Φ(m,n)∗(M) = E(m,n)∗ ⊗F (m)∗ M for any M ∈ StableF (m)∗F (m). This functor
clearly preserves arbitrary colimits and thus admits a right adjoint Φ(m,n)∗.

For a fixed integer n � m, we will write (E∗, E∗E) for (E(m,n)∗, E(m,n)∗E(m,n)) and
similarly (Φ∗,Φ∗) for the base-change adjunction just constructed.

Proposition 5.10. The functor Φ∗ : StableE∗E → StableF (m)∗F (m) is bimonadic, in the
sense that it satisfies the following properties:

(1) Φ∗ has a left adjoint Φ∗;
(2) Φ∗ has a right adjoint Φ!;
(3) the counit map Φ∗Φ∗ → Id is an equivalence, so Φ∗ is conservative.

In particular, the pairs (Φ∗ � Φ∗) and (Φ∗ � Φ!) are monadic and comonadic, respectively.

Proof. The proof is the same as [8, Proposition 8.13]. �

Let m � k and consider the compact object F (m)∗/Ik ∈ StableF (m)∗F (m). In the terminology
of [8], the pair (StableF (m)∗F (m), F (m)∗/Ik) forms a local duality context.

Theorem 5.11. Let E∗ be a Landweber exact F (m)∗-algebra of height n � m, then the
ring map F (m)∗ → E∗ induces a natural equivalence

StableIk−loc
F (m)∗F (m)

∼−−−→ StableIk−loc
E∗E

for any m � k � n + 1.

Proof. The same as [8, Theorem 8.19]. �

Corollary 5.12. For any n and m � k � n + 1 and E∗ as above, there is a natural
equivalence of stable categories

StableIk−loc
E∗E

∼−−−→ StableF∗F

for any Landweber exact F (m)∗-algebra F∗ of height k − 1. Furthermore, there is a natural

equivalence Φ∗L
F (m)
Ik

� LE
Ik

Φ∗, that is, the following diagram commutes:

Proof. The first claim follows from the theorem since StableIk−loc
F∗F � StableF∗F , while for

the second claim argues as in [8, Corollary 8.23]. �

Recall that the telescope conjecture in stable homotopy theory is equivalent to the statement
that there is an equivalence of Bousfield classes of spectra 〈Tel(m)〉 = 〈K(m)〉 [24], where
〈Tel(m)〉 denotes the Bousfield class of the telescope of a finite spectrum of type m.

One can ask the same question here: Is 〈Tel(m)∗〉 = 〈K(m)∗〉?† The main problem in asking
this question is that K(m)∗ is not an object of StableBP∗BP . If one modifies the definition

†However, note that Tel(m)∗ is not isomorphic to π∗ Tel(m), but rather BP∗ Tel(m) in case the corresponding
Smith–Toda complex exists.
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of Bousfield class so that −⊗BP∗ − refers to the tensor product in the derived category of
BP∗-modules only, then one can show that the algebraic telescope conjecture holds.

Theorem 5.13 (The algebraic telescope conjecture). With the above definition, there is
an identity of Bousfield classes 〈K(m)∗〉 = 〈Tel(m)∗〉 for all m � 0.

Proof. Both Tel(m)∗ and K(m)∗ are Landweber exact F (m)∗-algebras, so Corollary 5.12
for m = k = n + 1 provides a commutative diagram

It follows that Tel(m)∗ ⊗F (m)∗ N = 0 if and only if K(m)∗ ⊗F (m)∗ N = 0 for all
N ∈ StableF (m)∗F (m). Because K(m)∗ ⊗BP∗ M � K(m)∗ ⊗F (m)∗ F (m)∗ ⊗BP∗ M for any M ∈
StableBP∗BP , we do indeed have the claimed equivalence 〈Tel(m)∗〉 = 〈K(m)∗〉. �

Remark 5.14. For an alternative formulation of the algebraic telescope conjecture, see
Remark 6.9.

Remark 5.15. There is an algebraic analog of Freyd’s generating hypothesis [18] for
StableBP∗BP ; to wit, the algebraic generating hypothesis asks whether the functor

π∗ : StableωBP∗BP → Modπ∗BP∗

is faithful. As a special case of Lockridge’s result [43, Proposition 2.2.1], the algebraic
generating hypothesis holds if and only if the E2-page of the ANSS for the sphere, π∗BP∗, is
totally incoherent as a ring. However, we are not aware of any results about the ring structure
of π∗BP∗.

Similarly, one can consider the local algebraic generating hypothesis as in [6]. Using an
algebraic version of Brown–Comenetz duality, we suspect that this local version fails for all
positive heights, but we will leave the details to the interested reader.

6. Local duality and chromatic splitting for StableBP∗BP

In this section, we introduce the algebraic analogs of Bousfield localization at Morava
K-theories and Morava E-theories, which play a fundamental role in chromatic homotopy
theory. Combined with the local duality theory developed in [8], this provides a convenient
framework in which we can study the local structure of StableBP∗BP . As one instance of this,
we discuss an algebraic version of the chromatic splitting conjecture.

6.1. Local cohomology and local homology at height n

We begin with some recollections from [8, Section 8]. Recall from the previous section that,
for 0 � n < ∞, we let In denote the ideal (p, v1, . . . , vn−1) ⊂ BP∗; in particular, I0 = (0). If
n = ∞, we define I∞ = (p, v1, . . .) =

⋃
n In. We refer to [8, Section 2] for background material

on localization and colocalization functors.

Definition 6.1. Let StableIn+1−tors
BP∗BP be the localizing subcategory of StableBP∗BP generated

by BP∗/In+1. The associated colocalization and localization functors will be denoted by Γn

and Ln, respectively.
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We can represent the categories and functors constructed via the following diagram:

(6.2)

Remark 6.3. In [8, Theorem 2.21] we denoted Γn and Ln by ΓIn+1 and LIn+1 . In order to
emphasize the structural similarity with the stable homotopy category and as no confusion is
likely to arise, we have changed the notation to Γn and Ln.

For all n � 0 we have morphisms Φ: BP∗ → E(n)∗, which give rise to adjoint pairs

Φ∗ = Φ(n)∗ : StableBP∗BP
−−−→←−−− StableE(n)∗E(n) : Φ(n)∗ = Φ∗.

The next result summarizes some of the main results of [8, Section 8; cf. Theorem 5.11].

Theorem 6.4. Let n be a non-negative integer.

(1) There is a natural equivalence of functors Ln
∼−→ Φ∗Φ∗ and Φ∗Φ∗ ∼−→ Id.

(2) For any k � n + 1, the maps BP∗ → E(n)∗ → v−1
k−1E(n)∗ induce symmetric monoidal

equivalences

StableIk−loc
BP∗BP

∼−−−→ StableIk−loc
E(n)∗E(n)

∼−−−→ Stablev−1
k−1E(n)∗E(n)

and there is an equivalence Stablev−1
k−1E(n)∗E(n) � StableE(k−1)∗E(k−1).

In geometric terms, the localization functor Ln corresponds to the restriction of a sheaf to
the open substack of Mfg of formal groups of height at most n. The second part of Theorem 6.4
can thus be interpreted as giving a presentation of this open substack in terms of the Johnson–
Wilson theories E(n).

The inclusions Loc(BP∗/In+1) ⊂ Loc(BP∗/In) give rise to an algebraic chromatic tower

L∞ −−−→ . . . −−−→ L2 −−−→ L1 −−−→ L0, (6.5)

which is the algebraic analog of the chromatic tower in stable homotopy theory. Our next goal
is to study the layers of this tower in more detail. Recall that we can inductively construct
objects BP∗/I

∞
n ∈ StableBP∗BP for n � 0 via cofiber sequences

BP∗/I
∞
n → v−1

n BP∗/I
∞
n → BP∗/I

∞
n+1, (6.6)

under the usual convention v0 = p.

Proposition 6.7. For any M ∈ StableBP∗BP , we have LnM � M ⊗ LnBP∗, and LnBP∗
can be computed inductively by L0BP∗ � p−1BP∗ and cofiber sequences

Σ−(n+1)v−1
n+1BP∗/I

∞
n+1 → Ln+1BP∗ → LnBP∗

for all n � 0.

Proof. The first statement is just that Ln is smashing, which follows from the fact that
Ln is a finite localization, see [28, Lemma 3.3.1]. By [8, Corollary 8.9] we have Γ0BP∗ �
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Σ−1BP∗/p
∞. By definition, L0BP∗ fits in a cofiber sequence Γ0BP∗ → BP∗ → L0BP∗.

Comparison with (6.6) shows that L0BP∗ � p−1BP∗ as claimed. In order to prove the final
claim, consider the following commutative diagram

in which all rows and columns are cofiber sequences. The fiber of gn can be iden-
tified with Σ−(n+2)v−1

n+1BP∗/I
∞
n+1 by [8, Corollary 8.9] and (6.6). Therefore, fib(ln) �

Σ−(n+1)v−1
n+1BP∗/I

∞
n+1 and the claim follows. �

As is standard, we denote the fiber of LnM → Ln−1M by MnX, and call this the nth
(algebraic) monochromatic layer.

Corollary 6.8. The nth monochromatic layer satisfies the formula MnBP∗ �
Σ−nv−1

n BP∗/I
∞
n and is smashing, that is, for any X ∈ StableBP∗BP there is an equivalence

MnX � Σ−nv−1
n BP∗/I

∞
n ⊗X.

In particular, MnE(n)∗ � Σ−nE(n)∗/I∞n .

Proof. Since Mn is a fiber of smashing functors, it is smashing as well. The stated formula
follows directly from Proposition 6.7, and the rest is clear. �

Remark 6.9 (The algebraic telescope conjecture revisited). With the introduction of the
functor Ln we can give another version of the algebraic telescope conjecture Theorem 5.13.
Recall that in stable homotopy an equivalent formulation of the telescope conjecture is that
finite localization with respect to a finite type n-spectrum, denoted Lf

n, is equivalent to
Bousfield localization with respect to E(n), denoted Ln, see [24, 47]. Here we formulate an
algebraic version of this conjecture.

We say that X ∈ StableBP∗BP is E(n)∗-local if, for any T ∈ StableBP∗BP with E(n)∗ ⊗BP∗
T � 0, the space of maps HomBP∗BP (T,X) is contractible. These form a colocalizing
subcategory of StableBP∗BP and by the ∞-categorical version of Bousfield localization
[44, Section 5.5.4] the inclusion of this full subcategory has a left adjoint, which we denote by
LE(n)∗ . An alternative formulation of the algebraic telescope conjecture is that Ln � LE(n)∗ .

It follows from Theorem 6.4 that E(n)∗ ⊗BP∗ X � 0 if and only if LnX � LnBP∗ ⊗BP∗
X � 0, or equivalently that 〈LnBP∗〉 = 〈E(n)∗〉. But by [50, Corollary 11] Ln is Bousfield
localization with respect to LnBP∗, and hence Ln � LE(n)∗ . It follows that this version of the
algebraic telescope conjecture holds in StableBP∗BP .

In [27] Hovey considers yet another version of the algebraic telescope conjecture, comparing
Ln with the functor given by Bousfield localization at the homology theory correspond-
ing to E(n)∗. By [27, Proposition 3.11] this functor is given by H∗(E(n)∗ ⊗BP∗ X) for
X ∈ StableBP∗BP . Hovey proves that this cannot agree in general with Ln, as the former
has essential image DBP∗BP , while the latter has essential image StableBP∗BP . Nonetheless,
the proof of Theorem 4.11 shows that when n < p− 1, so that StableE∗E � DE∗E , these two
localizations do agree.
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Similar to the case of BP∗BP above, we can consider the localizing subcategory of
StableE(n)∗E(n) generated by E(n)∗/In. There is an associated localization functor LE

n−1 which
by [8, Corollary 8.23] has the property that Φ∗Ln−1 � LE

n−1Φ∗. We let Δn denote the functor
that is right adjoint to LE

n−1, viewed as endofunctors of StableE(n)∗E(n), which exists by
[8, Theorem 2.21]; in particular, there is a local duality equivalence

HomE(n)∗E(n)(L
E
n−1E(n)∗,M) � ΔnM (6.10)

for M ∈ StableE(n)∗E(n).

6.2. Local cohomology at height ∞
We now turn to the height ∞ analog of the theory presented above.

Definition 6.11. Let StableI∞−tors
BP∗BP be the localizing subcategory of StableBP∗BP generated

by BP∗/I∞ ∼= Z/p. The associated colocalization and localization functors will be denoted by
Γ∞ and L∞, respectively.

Note that BP∗/I∞ ∈ StableBP∗BP is not compact, but we still have a diagram of adjunctions

where the left adjoints are displayed on top. Recall from (6.5) the algebraic chromatic tower

. . . −−−→ L2 −−−→ L1 −−−→ L0.

The next result identifies the limit of this tower.

Proposition 6.12. There is a natural equivalence of functors L∞
∼−−−→ limn Ln.

Proof. First we note that BP∗/I∞ � colimn BP∗/In, where the colimit is taking along
the canonical quotient maps. The inclusion Loc(BP∗/I∞) ⊆ Loc(BP∗/In) induces natural
transformations L∞ → Ln for all n. Therefore, we have a natural morphism of cofiber sequences
of functors

so it suffices to show that φ is an equivalence. We will show that limn Γn is right adjoint to the
inclusion functor ι∞. To this end, let M ∈ StableI∞−tors

BP∗BP and N ∈ StableBP∗BP ; we get

Hom(M, lim
n

ΓnN) � lim
n

Hom(M,ΓnN)

� lim
n

Hom(ιnM,N)

� Hom(colimn ιnM,N)

� Hom(ι∞M,N),
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where the last equivalence from the construction, using the commutative triangle

The claim follows. �

We will see in Section 7 that L∞ is equivalent to the identity functor on a large subcategory of
StableBP∗BP , that is, we will prove an algebraic version of the chromatic convergence theorem
of Hopkins and Ravenel [61].

6.3. The algebraic chromatic splitting conjecture

The goal of this section is to explore an algebraic version of Hopkins’ chromatic splitting
conjecture for StableBP∗BP . To this end, we recall that we let F (n)∗ denote the quotient
BP∗/In. Note that since Ln is smashing, LnF (n)∗ is a compact object of StableIn+1−loc

BP∗BP .

Definition 6.13. We define the functor LK(n) to be the composite ΛLnF (n)∗Ln,
where ΛLnF (n)∗ is the completion functor associated to the local duality context
(StableIn+1−loc

BP∗BP , LnF (n)∗). This definition makes sense because Ln takes essential image in
StableIn+1−loc

BP∗BP .

Of course, LnF (n)∗ is also an object of StableBP∗BP via the canonical inclusion, and we
have the following.

Lemma 6.14. LK(n) is Bousfield localization on StableBP∗BP with respect to the theory
LnF (n)∗.

Proof. The argument is similar to the proof of [8, Proposition 2.31]. It is easy to
verify that LK(n) = ΛLnF (n)∗Ln is a localization functor, so it suffices to identify the
corresponding category of acyclics. For X ∈ StableBP∗BP , we have LK(n)X � 0 if and only
if LnF (n)∗ ⊗BP∗ LnX � 0, because LnF (n) ∈ StableIn+1−loc

BP∗BP is compact. This in turn is
equivalent to LnF (n)∗ ⊗BP∗ X � 0, and the claim follows. �

Proposition 6.15. For any X ∈ StableBP∗BP there is a pullback square

with horizontal fibers equivalent to HomBP∗BP (Ln−1BP∗, LnX) � Δn(Φ∗X).

Proof. Applying the fracture square [8, Corollary 2.26] associated to the local duality
context (StableIn+1−loc

BP∗BP , LnF (n)∗) to LnX we get a pullback square
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(6.16)

for any X ∈ StableBP∗BP . Since LK(n)X = ΛLnF (n)∗LnX by definition, we must show that
LLnF (n)∗LnX � Ln−1X. To see this, let us denote by Mn the essential image of the functor
ΓLnF (n)∗Ln on StableIn+1−loc

BP∗BP . The same argument as in the first part of [8, Lemma 7.14] shows
that there is a commutative diagram of adjunctions

We have a fiber sequence

ΓLnF (n)∗LnX −−−→ LnX −−−→ LLnF (n)∗LnX

which, using the diagram above, is equivalent to the fiber sequence

LnΓn−1X −−−→ LnX −−−→ LLnF (n)∗LnX.

By comparing with the defining cofiber sequence Γn−1X → X → Ln−1X, we deduce that there
are equivalences LLnF (n)∗LnX � LnLn−1X � Ln−1X.

To compute the fiber, we work with the fiber sequence associated to the top map in (6.16).
By [8, Theorem 2.21] there is a right adjoint ΔBP∗

LnF (n)∗
to LLnF (n)∗ on StableBP∗BP , fitting

into a fiber sequence

ΔBP∗
LnF (n)∗

−−−→ id −−−→ ΛLnF (n)∗
BP∗ .

Moreover, Δ satisfies the local duality formula ΔBP∗
LnF (n)∗

(−) � HomBP∗BP (LLnF (n)∗BP∗,−).
Therefore, the fiber is equivalent to

ΔBP∗
LnF (n)∗

(LnX) � HomBP∗BP (LLnF (n)∗BP∗, LnX)

� HomBP∗BP (LLnF (n)∗LnBP∗, LnX)

� HomBP∗BP (Ln−1BP∗, LnX)

by the previous paragraph.
For the final equivalence of the statement, note that HomBP∗BP (−,−) is equivalent to the

internal Hom in StableIn+1−loc
BP∗BP . Indeed, if M,N ∈ StableIn+1−loc

BP∗BP , then

HomBP∗BP (X,HomBP∗BP (M,N)) � HomBP∗BP (X ⊗M,N) � 0,

for all X ∈ Loc(BP∗/In), since StableBP∗BP is monogenic and N ∈ StableIn+1−loc
BP∗BP . This implies

that HomBP∗BP (M,N) is In+1-local, from which the claim easily follows.
By the equivalence of categories of Theorem 6.4 and using (6.10), we thus see that, via the

natural inclusion, the fiber in question is equivalent to

HomE∗E(Φ∗Ln−1BP∗,Φ∗LnX) � HomE∗E(LE
n−1E∗,Φ∗X) � Δn(Φ∗X),

where we have used the fact that Φ∗LnX � Φ∗X, see Theorem 6.4(1). �
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The algebraic chromatic fracture square of Proposition 6.15 describes how objects in
StableBP∗BP are assembled from their local pieces LK(n)X. In analogy to Hopkins’ chromatic
splitting conjecture [24, Conjecture 4.2], one can ask if the map ιX is split for compact X and,
if so, how to further decompose its cofiber.

In fact, there are various versions of the algebraic chromatic splitting conjecture, corre-
sponding to the analogous statements in chromatic homotopy theory. The most conceptual
form asks whether ιX is a split monomorphism for any X ∈ StableωBP∗BP .† However, we are
interested in the more refined statement that also describes the other summand in the splitting.
Furthermore, we will focus on the so-called edge case of the algebraic chromatic splitting
conjecture corresponding to Hopkins’ chromatic splitting conjecture at height n for a type
n− 1 complex.

To this end, fix n � 0 and note that the algebraic chromatic fracture square of Proposi-
tion 6.15 remains unchanged when X is localized at E∗ = (En)∗. Therefore, by base-change we
may assume without loss of generality that we are working in StableE∗E with, and we write
Ln for what was previously denoted LE

n . In [13, Theorem 6], Devinatz, Hopkins and Miller
construct a class ζ ∈ π−1LK(n)S

0 by lifting the determinant class det ∈ Homcts(Gn, E∗), the set
of continuous functions from the (extended) Morava stabilizer group Gn = Sn � Gal(Fpn/Fp)
to E∗. If X is a finite spectrum of type n− 1, then Hopkins’ chromatic splitting conjecture
stipulates that there is an equivalence

Ln−1X ⊕ Σ−1Ln−1X
∼−−−→ Ln−1LK(n)X

induced by the natural inclusion and ζ. This conjecture is known to hold for n = 1 as well
as n = 2 and p � 3, but needs to be modified for n = 2 and p = 2 by work of Beaudry [10].
Therefore, we will assume that p is large with respect to n for the remainder of this section.

In work in progress of the first author with Beaudry and Peterson, we explain how
to construct an algebraic class ζ ∈ HomE∗E(E∗, lim1

i E∗/I
i
n) associated to det ∈ E∨

∗ E =
π∗LK(n)(E ⊗ E) ∼= Homcts(Gn, E∗).‡ In order to lift this class to an analog in StableE∗E of
the topological class ζ, we need the following lemma, which was proven in [8, Theorem 8.31].

Lemma 6.17. For a finitely presented E∗E-comodule M and any s � 0, there is a canonical
isomorphism HsLK(n)M ∼= lims

i M/Iin of E∗E-comodules.

Therefore, the convergent hyperext spectral sequence yields a (potentially trivial) class
ζ ∈ Ext1E∗E(E∗, LK(n)E∗), that is, a map

ζE∗ : Σ−1E∗ −−−→ LK(n)E∗

in StableE∗E . Note that, since p is assumed to be large with respect to n, Theorem 4.11 implies
that StableE∗E � DE∗E . It follows that there are corresponding maps ζM : Σ−1Ln−1M →
Ln−1LK(n)M for any M ∈ StableωE∗E . We may thus state an algebraic version of the chromatic
splitting conjecture.

Conjecture 6.18 (Algebraic chromatic splitting conjecture). For any M ∈
Thick(E∗/In−1) there is an equivalence

Ln−1M ⊕ Σ−1Ln−1M
∼−−−→ Ln−1LK(n)M

induced by the maps ιM and ζM .

†Similar but inequivalent questions have been investigated by Hovey [24] and Devinatz [12].
‡The skeptical reader may consider the existence of this class as being part of the conjecture throughout this

section.
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Note that a thick subcategory argument reduces this conjecture to the case M = E∗/In−1.
We will therefore restrict attention to the case that M is a finitely presented In−1-torsion
E∗E-comodule viewed as an object of StableE∗E concentrated in degree 0. There are then
two other equivalent formulations of this conjecture, in particular relating it to the version
of the algebraic chromatic splitting conjecture proposed in unpublished work by Hopkins and
Sadofsky. Combining the following result with a forthcoming paper by Barthel, Beaudry and
Peterson, this would show that Conjecture 6.18 is equivalent to the topological chromatic
splitting conjecture.

Proposition 6.19. For a finitely presented In−1-torsion E∗E-comodule M the following
three statements are equivalent.

(1) The algebraic chromatic splitting conjecture holds for M .
(2) The maps ιM and ζM induce isomorphisms

lims
iM/vin−1

∼=

⎧⎨
⎩
M if s = 0
v−1
n−1M if s = 1

0 otherwise.

(3) The class ζM induces an equivalence D(Ln−1E∗) ⊗M � Σ−2Ln−1M , where D denotes
internal duality in the stable category StableE∗E .

Proof. Let M ∈ Thick(E∗/In−1) and consider the fiber sequence

ΔnM −−−→ Ln−1M
ιM−−−→ Ln−1LK(n)M,

which follows from Proposition 6.15 (recall that we assume that M ∈ StableE∗E). On the one
hand, if the algebraic chromatic splitting conjecture holds for M , then we obtain an equivalence

ΣΔnM � Σ−1Ln−1M.

On the other hand, (6.10) provides a natural equivalence ΔnM � Hom(Ln−1E∗,M), hence
ΔnM � D(Ln−1E∗) ⊗M by compactness of M . This shows that (1) implies (3).

Now assume Statement (3), which is equivalent to ΔnM � Σ−2Ln−1M as just shown. From
the long exact sequence in cohomology associated to the fiber sequence ΔnM → M → LK(n)M
we thus obtain

HsLK(n)M ∼=

⎧⎨
⎩
M if s = 0
Ln−1M if s = 1
0 otherwise.

The isomorphisms in (2) follow from this by virtue of Lemma 6.17 and Proposition 6.7, because
M is In−1-torsion.

Finally, Condition (2) implies that the map

(ιM , ζM ) : Ln−1M ⊕ Σ−1Ln−1M
∼−−−→ Ln−1LK(n)M

is a quasi-isomorphism. Since StableE∗E � DE∗E for large p by Theorem 4.11, this gives the
algebraic chromatic splitting conjecture for M . �

Remark 6.20. Statement (3) of the previous proposition says in particular that
Ln−1(E∗/In−1) is reflexive (or weakly dualizable) as an object in the derived category
of (E∗/In−1, E∗E/In−1)-comodules, that is, that Ln−1E∗/In−1 � D2

In−1
(Ln−1E∗/In−1) via

the canonical map, where DIn−1 = HomE∗E/In−1
(−, E∗/In−1). This is remarkable, since

Ln−1E∗/In−1 ∈ StableE∗E/In−1 is not compact and hence not dualizable.
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Remark 6.21. There is also a version of Proposition 6.19 that is independent of the existence
of the algebraic analog of ζ. In this case, the proof still gives the implications (1) ⇒ (3) ⇒ (2).

7. The algebraic chromatic convergence theorem

The chromatic convergence theorem shows that a finite spectrum F can be recovered from its
chromatic localizations LnF . The goal of this section to establish an algebraic analog of this
result for StableBP∗BP .

7.1. The theory of algebraic n-buds and comodules

In this section, we present an analog of the parts of the theory of n-buds of formal groups as
developed by Goerss [20, Section 3.3] to the setting of BP∗BP -comodules, and then generalize
it to StableBP∗BP . This will provide an appropriate setting for the first version of our algebraic
chromatic convergence theorem, see Theorem 7.8.

Definition 7.1. For any 0 � n � ∞ let (Bn,Wn) be the Hopf algebroid representing
(n + 1)-buds of formal groups. Explicitly, Bn = Z(p)[v1, . . . , vn] and Wn = Bn[a1, . . . , an];
viewing (Bn,Wn) as a sub-Hopf algebroid of (BP∗, BP∗BP ) via the natural inclusion map

qn : (Bn,Wn) −−−→ (BP∗, BP∗BP )

determines the structure maps. These functors induce a natural isomorphism

colimn(Bn,Wn) ∼= (BP∗, BP∗BP ) (7.2)

of Hopf algebroids, which motivates to write (B∞,W∞) = (B,W ) = (BP∗, BP∗BP ).

The map qn gives rise to functors of abelian categories

where the left adjoint is given by (qn)∗M = BP∗ ⊗Bn
M with its natural comodule structure.

As BP∗ is flat as a Bn-module, qn is exact. Note that in Goerss’ algebro-geometric language
[20], the left adjoint is denoted by (qn)∗, whereas our choice of notation is consistent with
the one in Section 6. The next result relates two important properties of a comodule to
the categories ComodWn

. Recall that a BP∗BP -comodule M is said to have projective
BP∗-dimension n � 0 if the underlying BP∗-module ε∗(M) has projective dimension n.

Lemma 7.3. For a comodule M ∈ ComodBP∗BP , consider the following conditions.

(1) M is in the essential image of (qr)∗.
(2) The projective BP∗-dimension of M is at most r + 1.
(3) M is vr+2-torsion free. Equivalently, M is vi-torsion free for all i � r + 2.

Then Condition (1) implies the Condition (2). If M is additionally bounded below, then
Condition (2) implies Condition (3).

Proof. Suppose first that M is in the essential image of (qr)∗, say M ∼= (qr)∗N . Since the
homological dimension of Br is r + 1, N admits a projective resolution by Br-modules of length
at most r + 1. Since (qr)∗ preserves projective objects, it follows that (1) implies (2).

As shown in [37, Proposition 2.5], a BP∗BP -comodule M is vr+1-torsion free if and only
if it is vm-torsion free for all m > r, which gives the last claim in Condition (3). Moreover,
Johnson and Yosimura prove that for bounded below M , this condition follows from M having
homological BP∗-dimension � r + 1, see [37, Proposition 3.7], hence (2) implies (3). �
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In an earlier version of Goerss’ manuscript [20], he uses the functors qn to compare
ComodBP∗BP to an appropriately defined colimit of the categories ComodWn

, see also [65]. In
order to prove the algebraic chromatic convergence theorem, we will use a derived version of
this theory. To this end, let StableWn

for 0 � n < ∞ denote the stable category associated to
ComodWn

.

Lemma 7.4. The stable category StableWn
is monogenic for all n.

Proof. By Lemma 3.5 it suffices to show that (Bn,Wn) is a Landweber Hopf algebroid, and
by the argument given in [26, Theorem 6.6] this will follow if we can show that every finitely
presented Wn-comodule has a Landweber filtration. The proof for this is similar to that for
BP∗BP -comodules; in fact, it is simpler because Bn is Noetherian. First, the invariant radical
ideals in Wn are given by Ik ∩Bn for k � n [22, Ex. 5.10]. We then apply [41, Theorem 3.3]
with R = Bn

∼= Z(p)[v1, . . . , vn], S ∼= Z(p)[a1, . . . , an] (so that R⊗ S ∼= Bn[a1, . . . , an] = Wn),
and Ψ: Bn → Wn given by the right unit of the Hopf algebroid (Bn,Wn). �

Proposition 7.5. The maps qn introduced above induce an exact functor
q∗ : colimn StableWn

→ StableBP∗BP , which restricts to an equivalence

qω∗ : colimn StableωWn

∼−−−→ StableωBP∗BP

of stable ∞-categories.

Proof. For any pair (m,n) with 0 � m � n � ∞, the map qm,n : (Bm,Wm) → (Bn,Wn) of
Hopf algebroids induces a functor

(qm,n)∗ : StableWm
−−−→ StableWn

which preserves colimits and compact objects. These functors are compatible with each other,
hence we obtain a commutative diagram

where the vertical equivalences follow from derived Morita theory and the previous lemma,
see [45, Theorem 7.1.2.1; 63, Theorem 3.1.1]. Passing to compact objects and using that the
functor Modω

− : AlgE∞ → Cat∞ preserves filtered colimits, as is shown, for example, in the
proof of [49, Proposition 2.4.1], this gives a functor

qω∗ : Modω
colimn EndWn (Bn) � colimn Modω

EndWn (Bn) −−−→ Modω
EndBP∗BP (BP∗) .

Unraveling the construction, note that qω∗ is induced by the natural map

φ : colimn EndWn
(Bn) → EndBP∗BP (BP∗),

so it suffices to prove that φ is an equivalence. To this end, let C∗(Bn) be the cobar construction
on Bn in ComodWn

. Using (7.2) and exactness of q∗, we compute

colimn Ext∗Wn
(Bn, Bn) ∼= colimn H

∗(HomWn
(Bn, C

∗(Bn)))

∼= H∗(Homcolimn Wn
(colimn Bn, C

∗(colimn Bn)))

∼= H∗(HomBP∗BP (BP∗, C
∗(BP∗)))

∼= Ext∗BP∗BP (BP∗, BP∗),

hence φ is an equivalence. �
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7.2. Chromatic convergence

Before we can come to the proof of the algebraic chromatic convergence theorem, we need a
technical lemma regarding the vanishing of derived functors of inverse limits of comodules. We
remind the reader about our grading conventions, see Section 1.

Lemma 7.6. Suppose d ∈ Z and M = (Mn, φn)n ∈ (Stable�d
BP∗BP )N

op
is an inverse system

with structure maps φn : Mn+1 → Mn. If for any q ∈ Z there exists m(q) such that the induced
map Hq(φn) is zero for all n > m(q), then limn Mn � 0.

Proof. Since Stable�d
BP∗BP � D�d

BP∗BP , it suffices to show that Hk lim(Mn) = 0 for all k. To
this end, note that the convergent hypercohomology spectral sequence takes the form

Ep,q
2

∼= lim pHq(Mn) ⇒ lim p+qMn,

where the derived limits on the E2-page are computed with respect to the structure maps
Hq(φn). By assumption, these morphisms are zero for all n > m(q), so it follows from [35,
Lemma 1.11] that Ep,q

2 = 0 for all p and q. Therefore, Hk lim(Mn) ∼= limk Mn = 0 for all
k ∈ Z. �

Lemma 7.7. If X ∈ DBr
for some r � 0, then the natural map

H∗ΓnBP∗ ⊗Br
X −−−→ H∗Γn−1BP∗ ⊗Br

X

of BP∗-modules is zero for all n > r.

Proof. Consider the following segment of the long exact sequence in homology corresponding
to the cofiber sequence BP∗/I

∞
n → BP∗/I

∞
n [v−1

n ] → BP∗/I
∞
n+1:

H∗(BP∗/I
∞
n+1 ⊗Br

X) δn−−−→ H∗−1(BP∗/I
∞
n ⊗Br

X) −−−→ H∗−1(BP∗/I
∞
n ⊗Br

X)[v−1
n ].

By [8, Corollary 8.10], Γn−1Y � Σ−nBP∗/I
∞
n ⊗ Y for all n and Y ∈ DBP∗ . Applying this to

Y = BP∗ ⊗Br
X, we need to show that δn is zero. But H∗(BP∗/I

∞
n ⊗Br

X) is vn-torsion free
as X ∈ DBr

and n > r, hence the second map in the above diagram is injective. �

Theorem 7.8. If M � q∗N for some N ∈ Stable<∞
Wr

, then there is a natural equivalence

M
∼−−−→ limLnM.

Proof. The natural cofiber sequences Γn → Id → Ln of functors induce a cofiber sequence

limn ΓnM −−−→ M −−−→ limn LnM

for any M ∈ StableBP∗BP . Therefore, the claim is equivalent to the statement that
limn ΓnM � 0 whenever M satisfies the assumptions of the theorem. Because ΓnM ∈
Stable<∞

BP∗BP for all n � 0, this will follow from Lemma 7.6 once we have shown that the
morphism

H∗Γn(q∗N) −−−→ H∗Γn−1(q∗N)

is zero for all n > r. Since ε∗ is faithful, it suffices to show that the left vertical map in the
following commutative diagram
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(7.9)

is zero for n > r. The commutativity of the first square is clear, while the second square
commutes by [8, Lemma 5.20]; here, the superscript BP∗ in ΓBP∗ indicates that those local
cohomology functors are taken in DBP∗ . Finally, the rightmost square commutes because Γn

is smashing together with the commutative diagram

It therefore remains to show that the right vertical map in (7.9) is zero, which is the content
of Lemma 7.7. �

Corollary 7.10. If M ∈ StableBP∗BP is compact, then there is a natural equivalence

M
∼−−−→ limLnM.

Proof. By Proposition 7.5, every compact object in StableBP∗BP is given by (qr)∗N for
some r and N ∈ Stable<∞

Wr
. The result thus follows from Theorem 7.8. �

In fact, the algebraic chromatic convergence theorem, Theorem 7.8, can be generalized to
comodules with finite projective BP∗-dimension, by reducing the statement to its analog for
BP∗-modules. This argument is essentially due to Hollander; since it has not appeared in print
yet, we sketch the argument.

As in the proof of the previous theorem, let ΓBP∗
n and LBP∗

n denote the local cohomology
functors on DBP∗ and write limBP∗ for the total derived functor of inverse limit in this category.

Lemma 7.11. Suppose M ∈ DBP∗ has finite projective dimension, then
M � limBP∗

n LBP∗
n M .

Proof. To simplify the notation, in this proof only we write lim for limBP∗ . Without loss of
generality, assume that M is represented by a complex of projective BP∗-modules concentrated
in degrees between 0 and −k for some k � 0. By [8, Lemma 5.33],

ΓBP∗
n M � Σ−nM ⊗BP∗/I

∞
n+1

is then concentrated in degrees between n and n− k. Consequently, Hs(ΓBP∗
n M) = 0 for all

s < n− k, that is, whenever n > s + k. The Milnor sequence

0 −−−→ lim1
n H

s−1(ΓBP∗
n M) −−−→ Hs(limn ΓBP∗

n M) −−−→ lim0
n H

s(ΓBP∗
n M) −−−→ 0

thus implies limn ΓBP∗
n M � 0 and the claim follows from the usual fiber sequence relating ΓBP∗

n

and LBP∗
n . �

Theorem 7.12. If M ∈ StableBP∗BP has finite projective BP∗-dimension, then there is a
natural equivalence M � limn LnM .
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Proof. Consider the cosimplicial Amitsur complex

of M . By [8, Theorem 4.29; 26, Corollary 5.2.4], the canonical map M → Tot(C•(M)) is
an equivalence in StableBP∗BP . Note that the Amitsur complex is functorial in M and that
Cs(M) = BP∗BP⊗s+1 ⊗M � (ε∗ε∗)s+1M , where (ε∗, ε∗) is the forgetful-cofree adjunction
between StableBP∗BP and DBP∗ . Moreover, if M is of finite projective BP∗-dimension, then
so is Cs(M) for all s � 0 as BP∗BP is free over BP∗.

Recall that we denote the total derived limit in StableBP∗BP and DBP∗ by lim and limBP∗ ,
respectively. Using the fact that ε∗ is a right adjoint as well as [8, Proposition 5.22], we obtain
a sequence of natural equivalences

limnLnM � limn Tot(C•(LnM))

� Tot limn((ε∗ε∗)•+1LnM)

� Tot ε∗limBP∗
n (ε∗(ε∗ε∗)•LnM)

� Tot ε∗limBP∗
n Ln(ε∗(ε∗ε∗)•M)

� Tot ε∗ε∗(ε∗ε∗)•M

� TotC•(M)

� M,

where the fifth equivalence comes from Lemma 7.11. It is straightforward to verify that the
composite of these natural maps are compatible with the canonical map M → limn M . �

Remark 7.13. Theorem 7.12 generalizes the algebraic chromatic convergence theorems of
Goerss [20] and Sitte [64]. The generality of the theorem is analogous to the generalized
(topological) chromatic convergence theorem of [5]. However, the topological chromatic
convergence theorem does not follow formally from the algebraic version, due to the potential
non-convergence of the corresponding inverse limit spectral sequence.

Corollary 7.14. Suppose that either

(1) M is a bounded below BP∗BP -comodule which is flat as a BP∗-module; or
(2) X is a finite complex.

Then, with M = BP∗X in (2), there is a natural equivalence M � limn LnM .

Proof. The previous theorem reduces the claim to showing that M has finite projective
dimension. This follows from [68, Theorem 4.5] in the case of (1), and [42, Corollary 7] in the
case of (2). �

7.3. Further results

In this subsection, we prove a vanishing result for local cohomology in StableBP∗BP and then
deduce a comparison theorem for the E2-terms of the Adams–Novikov and E-based Adams
spectral sequence. Similar, but inequivalent results were originally proven by Goerss in the
setting of quasi-coherent sheaves on the moduli of formal groups Mfg.
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Proposition 7.15. Suppose N ∈ Stable�d
Wr

for some d ∈ Z, then for all s > r − n + d we
have

Hs(Γn−1BP∗ ⊗Br
N) = 0.

Proof. As in the proof of Theorem 7.8, this is readily reduced to the analogous statement
in DBP∗ , namely

Hs(Γn−1BP∗ ⊗Br
X) = 0

for X ∈ DBr
and s > r − n + d. In order to prove this, we distinguish two cases. First, assume

that n � r. The hypertor spectral sequence [67, 5.7.9 and Theorem 10.6.3] takes the form

Ep,q
2

∼=
⊕

i+j=q

TorBP∗
p (Hi(Γn−1BP∗), Hj(BP∗ ⊗Br

X)) ⇒ Hp+q(Γn−1BP∗ ⊗Br
X).

Since H∗(Γn−1BP∗) ∼= Σ−nBP∗/I
∞
n has flat dimension n, then Ep,q

2 �= 0 only if p �
n and q � −n + d. Therefore, Hp+q(Γn−1BP∗ ⊗Br

X) = 0 if p + q > d, so certainly
Hs(Γn−1BP∗ ⊗Br

X) = 0 for s > r − n + d � d.
For the second case, let n > r, and consider the exact sequence

Hs(Γn−1BP∗ ⊗X) −−−→ Hs(Γn−1BP∗ ⊗X)[v−1
n ] −−−→ Hs(ΣΓnBP∗ ⊗X) δn−−−→ . . . .

By Lemma 7.7, δn = 0. Inductively, we know that Hs(Γn−1BP∗ ⊗X) = 0 if s > r − n + d, so
it follows that Hs(ΣΓnBP∗ ⊗X) = 0 in the same range. In other words,

Hs(ΓnBP∗ ⊗X) = 0

for s > r − (n + 1) + d. �

Proposition 7.16. Let E = En be Morava E-theory of height n. If M ∈ StableBP∗BP

satisfies one of the following two conditions:

(1) there exists N ∈ Stable�d
Wr

such that M � q∗N , or
(2) M ∈ ComodBP∗BP (so d = 0) is of finite projective dimension at most r − 1,

then the natural localization morphism

ExtsBP∗BP (BP∗,M) ls−−−→ ExtsE∗E(E∗, E∗ ⊗BP∗ M)

is an isomorphism for s < n− r − d and injective for s = n− r − d.

Proof. Throughout this proof, we will write ExtΨ(−) for the derived primitives ExtΨ(A,−)
of a Hopf algebroid (A,Ψ). We also use the notation of Section 6.1; in particular, (Φ∗,Φ∗)
denotes the base-change adjunction corresponding to BP∗ → E∗.

The morphism ls is part of an exact sequence

ExtsBP∗BP (ΓnM) −−−→ ExtsBP∗BP (M) −−−→ ExtsBP∗BP (LnM), (7.17)

which is induced by the cofiber sequence ΓnM → M → LnM . Indeed, since LnM = Φ∗Φ∗M
by Theorem 6.4, the last term can be rewritten as

ExtsBP∗BP (LnM) ∼= ExtsE∗E(E∗ ⊗BP∗ M),

so that the second map in (7.17) can be identified with ls. By Proposition 7.15, Condition (1) on
M implies that HqΓnM = H−qΓnM = 0 if −q > r − (n + 1) + d, that is, for q � n− r − d. If
M satisfies the second condition instead, then the same argument as in the proof of Lemma 7.11
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shows that HqΓnM = 0 if q < n− (r − 1), that is, q � n− r. Plugging these computations into
the hyperext spectral sequence

ExtpBP∗BP (HqΓnM) ⇒ Extp+q
BP∗BP (ΓnM),

we see that ExtsBP∗BP (ΓnM) = 0 for s � n− r − d, so the claim follows. �

Remark 7.18. For discrete comodules, the first condition in Proposition 7.16 is weaker
than the second condition, in the following sense: Suppose M = q∗N for some N ∈ ComodWr

,
so d = 0. By Lemma 7.3, M has projective dimension at most r + 1, so Condition (2) gives an
isomorphism ls for all s < n− r − 2, while appealing to Condition (1) gives it for s < n− r.

As an immediate consequence, we obtain

Corollary 7.19. If X is a p-local bounded below spectrum such that BP∗X has projective
BP∗-dimension pdim(BP∗X) � r, then the natural map

ExtsBP∗BP (BP∗, BP∗(X)) −−−→ ExtsE∗E(E∗, E∗(X))

is an isomorphism if s < n− r − 1 and injective for s = n− r − 1.

8. The chromatic spectral sequence

The chromatic spectral sequence was introduced by Miller, Ravenel and Wilson [52] as a tool
for computing and organizing the E2-term of the Adams–Novikov spectral for the sphere.
Splicing together short exact sequences gives the chromatic resolution

and the resulting spectral sequence is the chromatic spectral sequence. As remarked, for
example, in [1, 60], one can proceed similarly for any bounded below spectrum X with BP∗X
flat.

In this section, we will provide a different construction of the chromatic spectral sequence
which works for an arbitrary object M ∈ Stable<∞

BP∗BP , hence in particular for the BP -
homology of any spectrum X ∈ Sp. In the case that M is a bounded below flat comodule
concentrated in a single degree, our spectral sequence recovers the classical one. However, our
approach has several advantages over the classical one, as we will see shortly.

8.1. The construction

We will construct our generalization of the chromatic spectral sequence as the Bousfield–Kan
spectral sequence associated to the algebraic chromatic tower (6.5).

Theorem 8.1. For any M,N ∈ Stable<∞
BP∗BP , there is a natural convergent spectral

sequence

En,s,t
1

∼= Exts,tBP∗BP (M,MnN) ⇒ Exts,tBP∗BP (M,L∞N).

Furthermore, if N satisfies the conditions of Theorem 7.8 or Theorem 7.12, then the spectral
sequence converges to ExtBP∗BP (M,N).
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Proof. Applying the functor Hom(M,−) to the chromatic tower (6.5) of N yields a tower

The Bousfield–Kan spectral sequence associated to this diagram, for example, in the form
constructed by Lurie in [45, Proposition 1.2.2.14], thus takes the form

E1 = π∗Hom(M,MnN) ⇒ π∗Hom(M, lim
n

LnN).

We claim that both MnN and L∞N are in Stable<∞
BP∗BP . The first claim follows from the

fact MnN � MnBP∗ ⊗BP∗ N and Corollary 6.8. For the second claim it suffices by [45,
Corollary 1.2.1.6] and Proposition 6.12 to show that LnN ∈ Stable<∞

BP∗BP . Using the fiber
sequence ΓnN → N → LnN we can in turn reduce to showing that ΓnN ∈ Stable<∞

BP∗BP , which
follows from the formula ΓnN � Σ−nBP∗/I

∞
n ⊗BP∗ N , see [8, Proposition 8.9].

Then, using Lemma 3.16 and Proposition 6.12, we can rewrite this spectral sequence as

E1
∼= ExtBP∗BP (M,MnN) ⇒ ExtBP∗BP (M,L∞N).

To see the last part of the claim, it remains to note that L∞N � limn LnN � N by
Proposition 6.12 and Theorem 7.8. �

Remark 8.2. Presented in this form, it becomes transparent that the chromatic spectral
sequence is completely analogous to the Bousfield–Kan spectral sequence associated to the
topological chromatic tower in Sp:

Evaluated on X ∈ Sp, this spectral sequence takes the form

π∗MnX ⇒ π∗ lim
n

LnX, (8.3)

where Mn denotes the nth monochromatic functor and Ln is Bousfield localization at Johnson–
Wilson theory E(n). If X is chromatically complete [5], then the abutment is equivalent to
π∗X. We will refer to this spectral sequence as the topological chromatic spectral sequence
(TCSS).

When specialized to the BP -homology of the sphere, we recover the classical chromatic
spectral sequence.

Corollary 8.4. Suppose M = N = BP∗, then the spectral sequence of Theorem 8.1 takes
the form

E1 = Exts,tBP∗BP (BP∗, v
−1
n BP∗/I

∞
n ) ⇒ Exts+n,t

BP∗BP (BP∗, BP∗)

Proof. By Corollary 6.8 there is an equivalence MnBP∗ � Σ−nv−1
n BP∗/I

∞
n . The result then

follows from Theorem 8.1 and Corollary 7.10. �
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Remark 8.5. More generally, since Mn is smashing, for any BP∗BP -comodule N there is
a spectral sequence of the form

Es,t
1 = Exts,tBP∗BP (BP∗, v

−1
n BP∗/I

∞
n ⊗N) ⇒ Exts+n,t

BP∗BP (BP∗, L∞N).

Here the tensor product must be considered in the derived sense. Suppose that X is
a spectrum such that N = BP∗X is a bounded below flat BP∗-module, then the tensor
product is automatically derived, and by Corollary 7.14 the spectral sequence abuts to
Ext∗,∗BP∗BP (BP∗, BP∗X).

Suppose now that X is a spectrum such that BP∗(MnX) ∼= Σ−nv−1
n BP∗/I

∞
n ⊗BP∗X; for

example, by [61, Chapter 8] this is true for the sphere, and hence also whenever BP∗X is a
flat BP∗-module. If additionally L∞BP∗X � BP∗X (for example, if X is a finite complex, or
if BP∗X is bounded below and flat), then it follows that there is a commutative diagram of
spectral sequences

relating the chromatic spectral sequence (CSS) with the ANSS and the TCSS.

8.2. The finite height chromatic spectral sequence

It is easy to derive a finite height analog of the CSS from Theorem 8.1. First, we need a
base-change lemma. We use the notation of Section 6.1; in particular, (Φ∗,Φ∗) denotes the
base-change adjunction corresponding to BP∗ → E(n)∗.

Lemma 8.6. For any X,Y ∈ StableBP∗BP , there is a natural equivalence

HomBP∗BP (X,MnY ) � HomE(n)∗E(n)(E(n) ⊗X,E(n)∗/I∞n ⊗ Y ),

with E(n)∗/I∞n ⊗ Y � ΓE(n)∗
n−1 Φ∗Y .

Proof. There are natural equivalences

Mn = LBP∗
n ΓBP∗

n−1 � Φ∗Φ∗ΓBP∗
n−1 � Φ∗ΓE(n)∗

n−1 Φ∗,

the last one resulting from the equivalence E(n)∗ ⊗BP∗BP∗/I
∞
n � E(n)∗/I∞n . Consequently,

by adjunction we obtain

HomBP∗BP (X,MnY ) � HomE(n)∗E(n)(Φ∗X,ΓE(n)∗
n−1 Φ∗Y ),

and the claim follows. �

Proposition 8.7. Fix an integer n � 0. For any X,Y ∈ Stable<∞
BP∗BP , there is a natural

strongly convergent spectral sequence of the form

Ek,s,t
1 =

{
Exts,tE(k)∗E(k)(E(k)∗ ⊗X,E(k)∗/I∞k ⊗ Y ) k � n

0 k > n

converging to Exts,tBP∗BP (X,LnY ) ∼= Exts,tE(n)∗E(n)(E(n)∗ ⊗BP∗ X,E(n)∗ ⊗BP∗ Y ).
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Proof. Truncating the chromatic tower at height n and using the same argument as in the
proof of Theorem 8.1, we obtain a strongly convergent spectral sequence

Ek�n
1 = ExtBP∗BP (X,MkY ) ⇒ ExtBP∗BP (X,LnY ).

Applying Lemma 8.6 to this, we obtain the desired E1-term. The identification of the abutment
follows a similar argument. �

We thus recover [29, Theorem 5.1]:

Corollary 8.8. The CSS converging to Exts,tE(n)∗E(n)(E(n)∗, E(n)∗) has E1-term

Ek,s,t
1 =

{
Exts,tE(k)∗E(k)(E(k)∗, E(k)∗/I∞k ) k � n

0 k > n.

This spectral sequence was used by Hovey and Sadofsky in their calculations of the E(n)-local
Picard group, see [29].
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