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On the Tate spectrum oftmf at the prime 2

SCOTT M. BAILEY

NICOLAS RICKA

Computations involving the root invariant prompted Mahowald and Shick to de-
velop the slogan: “the root invariantofvn-periodichomotopy isvn-torsion.” While
neither a proof, nor a precise statement, of this slogan appears in the literature,
numerous authors have offered computational evidence in support of its funda-
mental idea. The root invariant is closely related to Mahowald’s inverse limit
description of the Tate spectrum, and computations have shown the Tate spectrum
of vn-periodic cohomology theories to bevn-torsion. The purpose of this paper is
to split the Tate spectrum of tmf as a wedge of suspensions of kO, providing yet
another example in support of the slogan to the existing literature.

55P42; 55T15

1 Introduction

Let λ denote the canonical line bundle overRP∞ = B(Z/2Z). For ℓ ∈ Z, definePℓ

to be the Thom spectrum ofℓλ. Induced maps on the level of Thom spectra give a
naturally defined inverse system of projective spaces

(1) · · · → Pn−1
n−1
−−→ Pn

n
−→ Pn+1→ . . .

W.H. Lin [8] demonstrated that the homotopy limit of (1) has the homotopy type of a
desuspended 2-complete sphere, i.e.,

(2) lim
←−

Pn ≃ Ŝ−1

SupposeX is a finite complex and consider a cohomotopy classα ∈ [X,S0] j . The
equivalence (2) guarantees the existence of a largestℓ ∈ Z such that the composite
Σj−1X

α
−→ S−1 → Pℓ is nontrivial. In particular, this induces a mapR(α) : Σj−1X →

Sℓ , the homotopy class of which is called the root invariant ofα. Computations inside

http://arxiv.org/abs/0904.3687v3
http://www.ams.org/mathscinet/search/mscdoc.html?code=55P42,(55T15)
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the EHP sequence led Mahowald and Ravenel [13] to conjecture that the root invariant
of a vn-periodic element isvn+1-periodic. This prompted Mahowald and Shick [14] to
discuss the related slogan: “The root invariant ofvn-periodic homotopy isvn-torsion.”
They show, for a finite complexX having avn-self map, that

(3) lim
←−

(
[X,Pℓ](v

−1
n )

)
= 0

In particular, Mahowald and Shick point out that ifα ∈ [X,S0] is vn-periodic then its
root invariant, at least when considered as an element of [X,Pℓ], is vn-torsion.

Let X be a spectrum. Mahowald’s description of the Tate spectrum of X is the homotopy
inverse limit

(4) t(X) = Σ lim
←−

(Pℓ ∧ X)

If X is a finite spectrum, then (4) implies the Tate spectrum functor corresponds to
completion at the prime 2. This is certainly not the case for all spectra since homotopy
limits do not commute with the smash product.

While neither a proof, nor even a precise statement of the phenomenon suggested by
the slogan has appeared in the literature, many authors havedemonstrated the Tate
spectrum functor sendsvn-periodic cohomology theories tovn−1-periodic theories:

1984: Davis and Mahowald [5], for p = 2, showt(kO)≃
∨

j∈Z Σ
4jĤZ;

1986: Davis, Johnson, Klippenstein, Mahowald, and Wegmann [4] demonstrate that,
if p any prime andq = 2(p−1), then there are equivalences ofp-complete spec-
tra t(BP〈2〉) ≃

∏
j∈Z Σ

qjB̂P〈1〉, and conjecture a similar splitting oft(BP〈n〉);

1998: Ando, Morava, and Sadofsky [1] prove the existence of a ring isomorphism
(tE(n)∗)∧In−1

∼= E(n− 1)∗((x))∧In−1
whereIn−1 = (p, v1, . . . , vn−2) and construct

a map of spectra
∨

j∈Z Σ
2jE(n− 1)→ tE(n)∧In−1

which, after completion atIn−1

(or equivalently after localization with respect to the (n−1)st MoravaK -theory)
induces the isomorphism of homotopy groups.

The purpose of this paper is to provide yet another example tothe literature. Let tmf
denote the connective ring spectrum of topological modularforms (see [2, 6, 10]) at
the prime 2. The main theorem is:

Theorem 1.1 There is a weak equivalence of spectra

(5) t(tmf) ≃
∏

i∈Z

Σ
8ikO,
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In the context of the above machinery, computations involving the homotopy oft(tmf)
greatly benefit from Mahowald’s inverse limit description of the Tate spectrum. How-
ever, the Tate spectrum functor conserves other properties, such as ring structure, of
the spectrum. This fact, however, is not immediately clear from the inverse limit point
of view. On the other hand, such a structure is clear when placed in the framework
established by Greenlees and May [7]. In their notation: letG be a compact Lie group,
EG a free contractibleG-space and̃EG the cofiber of the mapEG+ → S0. If kG

is a G-spectrum, thent(kG) = F(EG+, kG) ∧ ẼG, whereF(EG+, kG) is the function
G-spectrum of mapsEG+ → kG, is the Tate spectrum ofkG. SinceEG+ is equipped
with a coproduct, ifkG is a ring spectrum thenF(EG+, kG) is also a ring spectrum.
Combining this with the product oñEG, t(kG) is also a ring. Lewis-May fixed points
give a lax monoidal functor, sot(kG)G also has a ring structure.

The link to Mahowald’s inverse limit description is as follows [7]: If G is cyclic of
order 2 andkG is the equivariantG-spectrum associated to a non-equivariant spectrum
k, then there is a homotopy equivalencet(kG)G ≃ Σ lim

←−
(Pℓ ∧ k) = t(k).

With the above correspondence in mind, we can restate Theorem 1.1as

Theorem 1.2 There is a weak equivalence of ring spectra

(6) t(tmf) ≃ kO[x±1]

wherex is degree 8.

2 Some particularA(2)-modules

Let A denote the mod-2 Steenrod algebra generated by the squaringoperations
{Sq2i

}i≥0. Let M be anA-module, and consider theA-modulesA//A(n) ⊗ M
via the diagonal action andA⊗A(n) M via left action onA. There is an isomorphism

(7) Φ : A//A(n) ⊗M → A⊗A(n) M

defined byΦ(a⊗m) =
∑

a′ ⊗ a′′m whereψ(a) =
∑

a′ ⊗ a′′ is the coproduct onA.
This isomorphism induces a change-of-rings isomorphism onthe level of Ext-groups

(8) Exts,tA (A//A(n) ⊗M,N) ∼= Exts,tA (A⊗A(n) M,N) ∼= Exts,tA(n)(M,N)
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which is often invoked to simplify computations within the Adams sepctral sequence
E2-term. For instance, sinceH∗(tmf) ∼= A//A(2) [15, 12], to compute the homotopy
groups ofPi ∧ tmf it suffices to understand the leftA(2)-module structure ofH∗Pi .

The following two propositions are results of Lin, Davis, Mahowald, and Adams [9].

Proposition 2.1 As aF2-vector space,H∗Pi = xi
F2[x] , wherex is in degree 1. The

action ofA on H∗Pi is determined by

(9) Sqjxk
=

(
k
j

)
xj+k

Denote byF2[x±1] the colimit of theseA-modules. Note that this is certainly not the
cohomology of the limit given by (2). A consequence is the following interpretation
of theA(2)-module structure of some quotients ofF2[x±1]:

Proposition 2.2 Let Fℓ be the sub-A(2)-module ofF2[x±1] generated by the classes
in degree less thanℓ. Then there is an isomorphism ofA(2)-modules

(10) F2[x±1]/Fℓ
∼=

⊕

j≥ ℓ+1
8

Σ
8j−1A(2)//A(1)

Definition 2.3 Let L0 denote the spectrum (S1 ∪2 e2 ∪η e4 ∪ν e8)+ . By construction,
H∗L0 = F2{1, x,Sq1x,Sq2Sq1x,Sq4Sq2Sq1x}, with the action ofA indicated by the
names of the elements.

Proposition 2.4 There is a filtration ofA(2)-modules ofH∗P−1 with associated
gradedH∗L0⊕

⊕
j≥0 Σ

8j−1A(2)//A(1).

Proof Note that there is an isomorphism ofA(2)-modulesF2[x±1] ∼=
(
F2[x±1]/F−1

)
⊕

F−1 so thatH∗P−1
∼=

(
F2[x±1]/F−1

)
⊕ (F−1 ∩ H∗P−1). By constructionH∗L0

∼=

F−1 ∩ H∗P−1, hence Proposition2.2yields the result.

Proposition 2.5 There is atmf -module mapι : tmf ∧ P−1→ tmf ∧ L0 realizing the
inclusion ι : H∗L0→ H∗P−1 of A(2)-modules. Explicitly,

H∗ι : A//A(2)⊗ H∗L0→ A//A(2)⊗ H∗P−1

is A//A(2)⊗ ι.
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Proof By adjunction, it suffices to show that the corresponding mapof spectraP−1→

tmf ∧ L0 survives the Adams spectral sequence. By the change-of-rings isomorphism
(8) the AdamsE2-page computing the desired homotopy classes is

(11) E2
∼= Exts,tA(2)(H

∗L0, x
−1

F2[x])

One concludes the argument by observing that the relevant extension group vanishes
whenevert − s= −1. Indeed, there is a spectral sequence

(12) E1
∼= Exts,tA(2)(H

∗L0,H
∗L0)⊕

⊕

j≥0

Exts,tA(2)(H
∗L0,Σ

8j−1A(2)//A(1))

which abuts to theE2-term (11). It then suffices to check there is nothing in degree
t − s= −1 in (12).

The first summand, Exts,t
A(2)(H

∗L0,H∗L0), requires a direct computation. The relevant
Ext chart is displayed in Figure1 clearly has no classes in stemt − s= −1.

The observant reader will note that, as anA(2)-module, the vector space dual of
A(2)//A(1) is Σ−17A(2)//A(1). In particular, by adjunction and change-of-rings,
the second summand is isomorphic to

⊕
j≥0 Exts,tA(1)(Σ

−8(j+2)H∗L0,F2). This is a
straightforward computation inA(1)-modules, sinceH∗L0 = F2 ⊕ ΣQM ⊕ Σ8

F2

whereQM is the question mark complex, yielding theE2-term of kO∨kO〈1〉∨Σ8kO
which are all 8-periodic. Figure2 displays Exts,tA(1)(H

∗L0,F2), and shows there cannot
be a class in stemt − s= −1 for degree reasons.

Definition 2.6 Choose a tmf -module mapπ satisfying the hypothesis of Proposi-
tion 2.5. Let t(tmf)−1 be the fiber ofπ .

3 The Tate spectrum oftmf

The proof of Theorem1.1 is decomposed into a series of lemmas. The argument
presented here is similar to that given for the splitting oft(kO) [5]. In what follows, we
denoteΣt(tmf)−1 by t(tmf). We will show thatt(tmf) splits as a wedge of copies of
kO. This is done in two steps: first, we show that the cohomology of t(tmf) splits as a
module overA in Lemma3.2; second, we compute theE2-page of the Adams spectral
sequence converging to [t(tmf), kO] to show that there are classes in [t(tmf),Σ8jkO]
for all j ∈ Z that realize the splitting (this is done in Lemma3.4). The main result we
need is the following computation of Mahowald [11]:
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Lemma 3.1 The stableA(1)-moduleA//A(1) splits (in the stable category ofA(1)-
modules) as

⊕

ℓ≥0

Σ
12ℓ+σ(ℓ)

Ω
4ℓ−σ(ℓ)

F2⊕
⊕

ℓ≥0

Σ
12ℓ+σ(ℓ)+4

Ω
4ℓ−σ(ℓ)

Λ(Sq2).

Note that, in particular, this gives that

Exts,tA(1)(F2,A//A(1)) ∼=
⊕

ℓ≥0

Exts+4ℓ−σ(ℓ),t+12ℓ−σ(ℓ)
A(1) (F2,F2)⊕

⊕

ℓ≥0

Exts+4ℓ−σ(ℓ),t+12ℓ−σ(ℓ)+4
E(1) (F2,F2)

for s> 0, and these groups are zero as soon ast − s≡ 3 mod 4.

Lemma 3.2 There is an isomorphism ofA-modulesH∗t(tmf) ∼= A//A(1)[x8] where
x8 is in degree 8.

Proof By Proposition2.4, Proposition2.5, and Definition2.6 there is a filtration of
H∗t(tmf) whose associated graded is

⊕
j≥0 Σ

8j−1A(2)//A(1). To conclude, we show
inductively that there are no non-trivial extensions

Ext1,0A




n⊕

j=0

Σ
8jA//A(1),A//A(1)


 = Ext1,t+8

A(1) (F2,A//A(1)[x8]/(xn))

By Lemma3.1, this Ext vanishes whenevert−s≡ −1 mod 4. The degrees in which
we are looking for non-trivial extensions are of the form (1,8j). The result follows.

Note that, in particular, the Adams spectral sequence computing π∗(t(tmf)) gives
homotopy classesx8j ∈ π8j(t(tmf). Indeed, theE2-page of this spectral sequence is
given by

(13) E2 = ExtA(H∗t(tmf),F2) ∼= ExtA(1)(F2[x8],F2)

and Lemma3.1ensures that the elements ofx8j survive the Adams spectral sequence
for degree reasons.

Lemma 3.3 We can arrange the cofiber sequences

(14) Σ
−8kt(tmf)−1→ tmf ∧ P−1−8k→ Σ

−8ktmf ∧ L0
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in a commutative diagram

(15)

Σ−8kt(tmf) −−−−→ Σtmf ∧ P−1−8k −−−−→ Σ−8k+1tmf ∧ L0y
y

y
Σ−8k+8t(tmf) −−−−→ Σtmf ∧ P7−8k −−−−→ Σ−8k+9tmf ∧ L0

Moreover,t(tmf) is the limit of both the leftmost and middle terms.

Proof The existence of the left commutative square in (15) comes from the identifica-
tion Σ8tmf ∧Pn ≃ tmf ∧Pn+8 for all n ∈ Z [3]. This gives the asserted compatibility
between the cofiber sequences.

We now take the inverse limit on the three terms. By definition, the limit of the middle
term isΣ−1t(tmf). We need to show that the map lim

←−
Σ−1tmf ∧ P−1−8k → t(tmf) is

a weak equivalence. Note that the composite of the right-most vertical maps in (15)
is zero, since it belongs to [L0, tmf ∧ L0]−16 = 0, by adjunction. Thus the limit is
contractible.

In light of Lemma3.3, we reduce our analysis oft(tmf) to t(tmf). This, in turn, reduces
to a simple Adams spectral sequence computation.

Lemma 3.4 There is a weak equivalencet(tmf) ≃ kO[x8] . Moreover, the maps
Σ−8kt(tmf)→ Σ−8k+8t(tmf) coincide with multiplication byx8.

Proof We argue as follows: we build a mapφj : t(tmf)→ Σ8jkO for all j ≥ 0, which
realizes the injectionφ∗j : Σ8jA//A(1)→ A//A(1)[x8]. Then the coproduct of theφj

will be the desired weak equivalence.

First, fix j ≥ 0 and build the mapφj . To this end, we compute the Adams spectral se-
quence converging to [t(tmf),Σ8jkO]. Its E2-page is Exts,t+8j

A (A//A(1),A//A(1))[x±8].
In particular, Lemma3.1 guarantees an element in (s, t + 8j) = (0,8j) cannot be the
source of a differential for degree reasons. This preciselymeans that anyA-module
mapΣ8jH∗kO → H∗t(tmf) comes from a mapt(tmf) → Σ8jkO. Choose one map
corresponding to the inclusion ofΣ8jA//A(1) intoA//A(1)[x±8] and call itφj .

Let φ : t(tmf) → kO[x8] be the wedge of the aboveφj for j ≥ 0. By construction,
it induces an isomorphism in cohomology between connectivespectra, and thus it is a
(2-local) equivalence.

The assertion about the mapsΣ−8kt(tmf) → Σ−8k+8t(tmf) follows from its compati-
bility with the decomposition ExtA(A//A(1)⊗A//A(1),F2)[x8].
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Figure 1: Exts,t
A(2)(H

∗L0,H∗L0)

Proof of Theorem 1.1 By Lemma3.3, t(tmf) ≃ lim
←−

Σ−8kt(tmf) which, by Lemma3.4,
is weakly equivalent to lim

←−
Σ−8kkO[x8] ≃ kO[x±8].
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