arXiv:0904.3687v3 [math.AT] 5 Jan 2017

On the Tate spectrum oftmf at the prime 2
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Computations involving the root invariant prompted Mahtwhend Shick to de-
velop the slogan: “the rootinvariantaf-periodic homotopy is;, -torsion.” While
neither a proof, nor a precise statement, of this sloganappe the literature,
numerous authors have offered computational evidenceppast of its funda-
mental idea. The root invariant is closely related to MaHdigainverse limit
description of the Tate spectrum, and computations hawerstite Tate spectrum
of v,-periodic cohomology theories to lwg-torsion. The purpose of this paper is
to split the Tate spectrum of tmf as a wedge of suspension®ofkoviding yet
another example in support of the slogan to the existintalitee.

55P42; 55T15

1 Introduction

Let A denote the canonical line bundle ouRP> = B(Z/2Z). For ¢ € Z, defineP,
to be the Thom spectrum d@f\. Induced maps on the level of Thom spectra give a
naturally defined inverse system of projective spaces

(1) o P 2 P B P &

W.H. Lin [8] demonstrated that the homotopy limit df) (has the homotopy type of a
desuspended 2-complete sphere, i.e.,

2) fim Py ~ Sy

SupposeX is a finite complex and consider a cohomotopy class [X, So]j. The
equivalence 4) guarantees the existence of a largést Z such that the composite
Y-1X % s — P, is nontrivial. In particular, this induces a m&ga) : I—1X —
S, the homotopy class of which is called the root invariantofComputations inside
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the EHP sequence led Mahowald and Raveh@|lto conjecture that the root invariant
of a vy-periodic element isy,. 1-periodic. This prompted Mahowald and Shidl] to
discuss the related slogan: “The root invariantgiperiodic homotopy is,-torsion.”
They show, for a finite compleX having av,-self map, that

(3) lim ([X, Pel(v; ) =0

In particular, Mahowald and Shick point out thatife [X, ] is v,-periodic then its
root invariant, at least when considered as an elemerX d?, is v,-torsion.

Let X be aspectrum. Mahowald’s description of the Tate spectfuxiisthe homotopy
inverse limit

(4) t(X) = B lim(P¢ A X)

If X is a finite spectrum, the) implies the Tate spectrum functor corresponds to
completion at the prime 2. This is certainly not the case li@ectra since homotopy
limits do not commute with the smash product.

While neither a proof, nor even a precise statement of theghenon suggested by
the slogan has appeared in the literature, many authors deawenstrated the Tate
spectrum functor sends,-periodic cohomology theories 6,_1-periodic theories:

1984: Davis and Mahowaldd], for p = 2, showt(kO) ~ vjeZ E“jH/\Z;

1986: Davis, Johnson, Klippenstein, Mahowald, and Wegmaha¢monstrate that,
if pany prime andy = 2(p—1), then there are equivalencegmtomplete spec-
tra t(BP(2)) ~ HjeZ quETD(1>, and conjecture a similar splitting ofBP(n));

1998: Ando, Morava, and Sadofskyi] prove the existence of a ring isomorphism
(tE().)p , = E(n— 1).(09)_, whereln_1 = (p, V1, ..., Vn_2) and construct
a map of spectré\/jeZ YIE(N—1) — tE(n)/;i1 which, after completion at, 1
(or equivalently after localization with respect to thne{(1) st MoravaK -theory)
induces the isomorphism of homotopy groups.

The purpose of this paper is to provide yet another exampieetditerature. Let tmf
denote the connective ring spectrum of topological modidemns (see 2, 6, 10)) at
the prime 2. The main theorem is:

Theorem 1.1 There is a weak equivalence of spectra

(5) t(tmf) ~ [ [ ¥kO,
i€Z
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In the context of the above machinery, computations inmgi\the homotopy of(tmf)
greatly benefit from Mahowald’s inverse limit descriptioftioe Tate spectrum. How-
ever, the Tate spectrum functor conserves other propesieh as ring structure, of
the spectrum. This fact, however, is not immediately cleamnfthe inverse limit point
of view. On the other hand, such a structure is clear whereglat the framework
established by Greenlees and M@} [In their notation: letG be a compact Lie group,
EG a free contractibleG-space ancEG the cofiber of the mafEG, — . If kg
is a G-spectrum, theri(kg) = F(EG,, ks) A EG, whereF(EG,, kg) is the function
G-spectrum of map&G, — kg, is the Tate spectrum d&;. SinceEG, is equipped
with a coproduct, ifkg is a ring spectrum thek(EG,, kg) is also a ring spectrum.
Combining this with the product 0BG, t(kg) is also a ring. Lewis-May fixed points
give a lax monoidal functor, st{kg)® also has a ring structure.

The link to Mahowald’s inverse limit description is as falle [7]: If G is cyclic of
order 2 andkg is the equivarianG-spectrum associated to a non-equivariant spectrum
k, then there is a homotopy equivaleri¢ks)® ~ > I'ﬂ(Pe AK) = t(K).

With the above correspondence in mind, we can restate Timebikeas

Theorem 1.2 There is a weak equivalence of ring spectra
(6) t(tmf) ~ kO[x*]

wherex is degree 8.

2 Some particular A(2)-modules

Let A denote the mod-2 Steenrod algebra generated by the squapergtions
{Sq }i0. Let M be an.A-module, and consider thel-modules.A//A(n) @ M
via the diagonal action and ® 4n) M via left action on.A. There is an isomorphism
@) P:A/ANM)OM = AR M

defined by®(a®@ m) = > & ® a’mwherey(a) = > a ® &’ is the coproduct om.

This isomorphism induces a change-of-rings isomorphisrherevel of Ext-groups

(8) ExE{(A//AN) ® M, N) = EXt{(A @40 M, N) = Exty, (M, N)
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which is often invoked to simplify computations within thaldms sepctral sequence
E,-term. For instance, sindd*(tmf) = A// A(2) [15, 12], to compute the homotopy
groups ofP; A tmf it suffices to understand the left(2)-module structure of*P;.

The following two propositions are results of Lin, Davis, Mavald, and Adam<9].

Proposition 2.1 As aF,-vector spaceH*P; = XF,[x], wherex is in degree 1. The
action of A on H*P; is determined by

9) Sdxk = (:_(>xi+k

Denote byF,[x*1] the colimit of theseA-modules. Note that this is certainly not the
cohomology of the limit given by2). A consequence is the following interpretation
of the .A(2)-module structure of some quotientsIBfx1]:

Proposition 2.2 LetF, be the suhA(2)-module ofF,[x™1] generated by the classes
in degree less thaf. Then there is an isomorphism @f(2)-modules

(10) Falx*]/F, = @ £971A(2)//A1)

i~ 0+1
125

Definition 2.3 Let Lo denote the spectrun®{U, € U, €* U, €%).. By construction,
H*Lo = F2{1,x, Sctx, S¢Sdx, SdFSEScix}, with the action of A indicated by the
names of the elements.

Proposition 2.4 There is a filtration ofA(2)-modules ofH*P_1 with associated
gradedH*Lo @ @5, X3 1 A(2)// A(2).

Proof Note thatthere is anisomorphism.d{2)-modulesFa[x™] = (F[x*]/F_1)®
F_1 so thatH*P_1 = (Fo[x*1]/F_1) @ (F_1 N H*P_1). By constructionH*Lo =
F_1 nH*P_4, hence Propositio.2 yields the result. O

Proposition 2.5 There is amf-module map. : tmf A P_1 — tmf A Lg realizing the
inclusiont : H*Lg — H*P_1 of A(2)-modules. Explicitly,

H*.: A//A2)®@ H'Lo — A//A(2) @ H*P_1
isA//AQR)®T.
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Proof By adjunction, it suffices to show that the corresponding ofapectraP_; —
tmf A L survives the Adams spectral sequence. By the changegs-igomorphism
(8) the AdamsE,-page computing the desired homotopy classes is

(12) Ep = ExCy(p)(H*Lo, X F2[X)

One concludes the argument by observing that the relevashgirn group vanishes
whenevert — s= —1. Indeed, there is a spectral sequence

(12)  E1 = Extl,(H Lo, HLo) © @) Extp)(H Lo, B¥ 1 A(2)//A(1))

j>0
which abuts to thée,-term (L1). It then suffices to check there is nothing in degree
t—s=-1in(12).

The first summand, Eth)(H*Lo, H*Lo), requires a direct computation. The relevant
Ext chart is displayed in Figurgclearly has no classes in stdm- s= —1.

The observant reader will note that, as &r2)-module, the vector space dual of
A2)//AQ) is ¥~ A(2)//A(1). In particular, by adjunction and change-of-rings,
the second summand is isomorphic @ Extfgf(l)(z—s(i”)H*Lo,IE‘z). This is a
straightforward computation itd(1)-modules, sinceH*Ly = Fo & XQM @ X8F,
whereQM is the question mark complex, yielding tEe-term of kOv kO(1) v $8kO
which are all 8-periodic. Figur2displays Ex}lt(l)(H*Lo, F5), and shows there cannot
be a class in sterh— s= —1 for degree reasons. O

Definition 2.6 Choose a tmf-module map satisfying the hypothesis of Proposi-
tion 2.5. Let t(tmf)_, be the fiber ofr.

3 The Tate spectrum oftmf

The proof of Theoreml.1 is decomposed into a series of lemmas. The argument
presented here is similar to that given for the splitting(k©) [5]. In what follows, we
denoteXt(tmf)_1 by t(tmf). We will show thatt(tmf) splits as a wedge of copies of
kO. This is done in two steps: first, we show that the cohomptifg(tmf) splits as a
module overA4 in Lemma3.2, second, we compute thH& -page of the Adams spectral
sequence converging t&(fmf), kO] to show that there are classes tftmf), ¥kO]

for all j € Z that realize the splitting (this is done in Lemi®&). The main result we
need is the following computation of Mahowaltl]:
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Lemma 3.1 The stableA(1)-module A// A(1) splits (in the stable category of(1)-
modules) as

@ 12400 -0 (O, g @ y12+o(O+40at—o A (SP).
>0 £>0

Note that, in particular, this gives that

EXCly (F2 A//AL) = @D ExCLa 0O 1200, Fy)e
>0

@ EXtSE-H;Z—J(Z),t+12€—a(€)+4(F2, FZ)
>0

for s > 0, and these groups are zero as sooh-as =3 mod 4.

Lemma 3.2 There is an isomorphism of -modulesH*t(tmf) = A// A(1)[x¢] where
X8 is in degree 8.

Proof By Proposition2.4, Proposition2.5, and Definition2.6 there is a filtration of
H*t(tmf) whose associated graded@;i20 »8-14(2)//A(1). To conclude, we show
inductively that there are no non-trivial extensions

EXt;” (@ S8A//AQ), A//A(l)) = Extii (F2, A/ AQ)E] /()

j=0

By Lemmaa3.], this Ext vanishes whenever-s= —1 mod 4. The degrees in which
we are looking for non-trivial extensions are of the formg). The result follows. O

Note that, in particular, the Adams spectral sequence ctingpur, (t(tmf)) gives
homotopy classes® ¢ mg(t(tmf). Indeed, theE;-page of this spectral sequence is
given by

(13) Ep = Exta(H*T(tmf), F2) 2 Exta)(F2[X], F2)

and LemmaB.1 ensures that the elements)5f survive the Adams spectral sequence
for degree reasons.

Lemma 3.3 We can arrange the cofiber sequences

(14) S8t(tmf)_1 — tmf A P_1_gc — X %tmf A Lo
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in a commutative diagram

»-8ttmf) —— StmfAP_1_gq —— S mfALg

® ! 1

N8Bt tmf) —— StmfAP7_g —— 2 H%tmf A Lo
Moreover,t(tmf) is the limit of both the leftmost and middle terms.

Proof The existence of the left commutative squarelis) comes from the identifica-
tion 28mf A P, ~ tmf A Pg for all n € Z [3]. This gives the asserted compatibility
between the cofiber sequences.

We now take the inverse limit on the three terms. By definjttbe limit of the middle
term is ©~1t(tmf). We need to show that the mgglmTltmf A P_1_gx — t(tmf) is
a weak equivalence. Note that the composite of the righttmergical maps in 15)
is zero, since it belongs td_§, tmf A Lg] _16 = 0, by adjunction. Thus the limit is
contractible. ]

In light of Lemma3.3, we reduce our analysis ¢tmf) to t(tmf). This, in turn, reduces
to a simple Adams spectral sequence computation.

Lemma 3.4 There is a weak equivalenda@mf) ~ kO[x®]. Moreover, the maps
»-8kt(tmf) — X —8+8t(tmf) coincide with multiplication byx8.

Proof We argue as follows: we build a mayp : t(tmf) — »8kO forallj > 0, which
realizes the injection : X8.4//A(1) — A//A(1)®]. Then the coproduct of the
will be the desired weak equivalence.

First, fixj > 0 and build the mag;. To this end, we compute the Adams spectral se-
quence converging td(fmf), S8kO]. Its E-pageis EX} ¥ (A//A(L), A//AL))XHE].

In particular, Lemma.1 guarantees an element ig {+ 8j) = (0, §) cannot be the
source of a differential for degree reasons. This precisegns that anyd-module
map X8H*kO — H*t(tmf) comes from a map(tmf) — %8kO. Choose one map
corresponding to the inclusion &f%.4//.A(1) into A//A(1)[x*8] and call it .

Let ¢ : t(tmf) — KO[x®] be the wedge of the abowg for j > 0. By construction,
it induces an isomorphism in cohomology between connespestra, and thus it is a
(2-local) equivalence.

The assertion about the maps &t(tmf) — £ ~8+8t(tmf) follows from its compati-
bility with the decomposition Ext(A//.A(1) ® A//A(1), F2)[x8]. O
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Figure 1: Ext{,)(H*Lo, H*Lo)

Proof of Theorem 1.1 ByLemma3.3 t(tmf) ~ Igm »—8kt(tmf) which, by Lemma.4,
is weakly equivalent tglnz‘gkkO[xS] ~ kO[x*%]. O
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