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n-PERIODIC MOTIVIC STABLE HOMOTOPY THEORY OVER FIELDS

TOM BACHMANN AND MICHAEL J. HOPKINS

ABSTRACT. Over any field of characteristic # 2, we establish a 2-term resolution of the n-periodic,
2-local motivic sphere spectrum by shifts of the connective 2-local Witt K-theory spectrum. This
is curiously similar to the resolution of the K(1)-local sphere in classical stable homotopy theory.
As applications we determine the n-periodized motivic stable stems and the n-periodized algebraic
symplectic and SL-cobordism groups. Along the way we construct Adams operations on the motivic
spectrum representing Hermitian K-theory and establish new completeness results for certain motivic
spectra over fields of finite virtual 2-cohomological dimension. In an appendix, we supply a new proof
of the homotopy fixed point theorem for the Hermitian K-theory of fields.
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1. INTRODUCTION

1.1. Inverting the motivic Hopf map. Let k be a field. We are interested in studying the motivic
stable homotopy category SH(k) [Mor03, §5]. Recall that this category is obtained from the category
Smy, of smooth k-varieties by (1) freely adjoining (homotopy) colimits, (2) enforcing Nisnevich descent,
(3) making the affine line A! contractible, (4) passing to pointed objects and (5) making the operation
AP! invertible:

SH(I{?) = LAlyNiSP(Smk)*[(]Pl)_l].
Of particular relevance for us is the motivic Hopf map. Recall that the geometric Hopf map is the
morphism of pointed varieties

(1.1) A\ 0 — P!
obtained from the construction of P! as a quotient. There are Al-equivalences [MV99, §3 2.15-2.20]
P!~ S'AG,, and A*\0~P'AG,,;
here G, := (A \ 0,1). It follows in particular that all of these objects become invertible in SH (k) and
so are “spheres”. We may thus desuspend (1.1) by P! to obtain the motivic Hopf map
n: Gy — 1€ SH(E);

here we write 1 for the sphere spectrum. This is completely analogous to the classical stable Hopf map
ntP . 81 — 1 € SH. However, while classically we have n* = 0, in SH(k) no power of 7 is null-
homotopic; this is a theorem of Morel [Mor04a, Corollary 6.4.5]. In slightly more sophisticated language,
denote by

SHI)™'] € SH()

the subcategory of n-periodic spectra; in other words given E € SH (k) we have E € SH(k)[n~!] if and
only if
G ANE S 1AE

is an equivalence. The inclusion SH(k)[n~!] C SH(k) admits a left adjoint, given by the n-periodization
E— Eln Y =colim(E LGN PAEDL ).
Morel’s result shows that SH(k)[n~!] # 0; in fact he proves that
mo(Lly~']) = W(k) # 0,
where W(k) is the Witt ring of symmetric bilinear forms.

1.2. Main results. Our aim is to study the category SH(k)[n~']; for example we would like to de-
termine the higher homotopy groups m.(1[n~!]) for * > 0. It turns out (see §2.7) that the category
SH(k)[1/n,1/2] is quite easy to understand. For many purposes it thus suffices to study the category

SH(k)[n @) € SH(k)[n~'] of those n-periodic spectra E such that E 2y E is an equivalence for all
odd integers p. Our main result is the following. Here

kw = KO[n™']>0

is the spectrum of connective Balmer—Witt K -theory; see §6.3 for a more detailed definition.
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Theorem 1.1 (see Theorem 7.8). Let k be a field of characteristic # 2. In SH(k) there exists a fiber
sequence
]].[7]71](2) — kW(Q) i) E4kW(2).

Here @ is the unique (up to homotopy) map making the following diagram commute

E4kW(2)

3
M lﬂ )

S
kW(g) E— kW(g)
where ¢ is the third Adams operation and 3 is the Bott element.

It is well-known that m,kw = W(k)[5]. On the other hand the construction of well-behaved Adams
operations on kw is one of the major technical challenges of our work (see §3). We observe that this
result is curiously similar to the resolution of the K(1)-local sphere in classical stable homotopy theory
(see e.g. [Hop98, §2]); the reader is invited to speculate on the significance of this observation.

Remark 1.2. As an immediate consequence, if (for example) k = C then £ lifts to m41[n~'](2). Hornbostel
has shown [Hor18, Theorem 3.2] that in this case

Ts (COf(]].[T]il](g) — kW(Q))[ﬂil]) ~ 7T*24kW(2) [ﬂil].
Ormsby-Rondigs [OR19, p. 13] construct (still over C) a map ¥%kw — 1[n~'] () inducing
Ty (COf(]l[n_l](g) — kW(g))) ~ 7T*24kW(2).

These are weak forms of our main result. In fact Ormsby-Rondigs [OR19, Conjecture 4.11] explicitly
ask a question equivalent to our main theorem.

The following are some consequences which can be obtained by more or less immediate computation.

Corollary 1.3 (see Theorems 8.1, 8.7 and 8.8). Let k be a field of characteristic # 2.
(1)

W(k)@) x =0
_ coker(8n : W(k) ) — W(k x=4n—-1>0
(L) = 4 OFTEn Wikl = Wk)@)  +=
0 else
(2) 7.MSp[n~1] =~ W(Kk)[y1,y2,...], where |y;| = 2i

(3) mMSL[n~Y ~ W(k)[y2, V4, - - -]
Here MSp and MSL denote the algebraic symplectic and special linear cobordism spectra [PW10a], re-
spectively.

Result (1) above (i.e. the computation of 7.(1[p~1])) has attracted substantial attention before; see
§8.1 for a review of previous work. To the best of our knowledge, results (2) and (3) are new in all cases.
As another application, we obtain the following cellularity results.

Corollary 1.4 (see Proposition 8.12). Let k have exponential characteristic e # 2. Then the spectra
ko[l/e], HZ[1/e] € SH(k) are cellular.

See §8 for further applications, among them the determination of the HW (3)-cooperations and kwz)-
operations.

1.3. Proof sketch. To orient the reader, we provide a rapid sketch of our proof of Theorem 1.1. Granting
the construction of ¢, we proceed as follows. Write F' for the fiber of ¢. By a connectivity argument,
it suffices to show that the canonical map HW ) < F AHW is an equivalence, where HW = 1[n~!]<
is the n-periodic Eilenberg-MacLane spectrum. By base change, it suffices to prove the result for prime
fields; in particular we may assume that veda(k) < oco. It suffices to show that «[1/2] and «/2 are
equivalences, and since we are working over an arbitrary field (of veds < oo and characteristic # 2) it
suffices to check that we have an isomorphism on homotopy groups. The homotopy groups of kw are
given by W(k)[3], where W (k) is the Witt ring and 8 € mskw is the Bott element.

For afl/2] we are dealing with a rational problem; in particular HW ® Q ~ 1[n~!] ® Q and so
. (HW A kw) @ Q ~ W(k)[3] ® Q. Tt follows that for n > 0 we have ¢(8") = a,B" ! for some
an € W(k) ® Q, which we need to show is a unit. One of the basic properties of the construction of ¢
(related to (1.2) below) is that ¢(8") = (9" — 1)3"1, so a[1/2] is indeed an equivalence.



4 TOM BACHMANN AND MICHAEL J. HOPKINS

The case of a/2 is more difficult. We may prove the result for the 2-adic completion of instead.
Note that under our assumption that veda(k) < oo we have W(k)y ~ W(k){, where I C W(k) is the
fundamental ideal. Our major intermediate result is as follows.

Lemma 1.5 (see Theorem 6.1). We have

W(k) 0<*=0 (mod4)

Y

me((kw A HW)S) ~
0 else

moreover the generators z; € mq;((kw AHW)2) are compatible with base change.

Consequently for n > 0 we have ¢(z,) = byx,_1 for some b, € W(k){, which we need to show

is a unit. Since W(k){ is a local ring with residue field Fo independent of k, and the generators are
compatible with base change, we may extend k arbitrarily. We may thus assume that k is quadratically
closed, so that W(k) = Fa.

We now employ the motivic special linear cobordism spectrum MSL. Since kw is SL-oriented and
n-periodic, by work of Ananyveskiy [Anal5] (see also §4) we have

7 (kw A MSL) ~ kw.[p1,p2,...],
with [p;| = 44. In the case when W(k) = Fa, we have partial information on the action of ¢ on kw,MSL.
Lemma 1.6 (see Lemma 7.6). Suppose that W(k) = Fa. Then ¢°(p;) = 1.
Now consider the canonical ring map v : 7. (kw A MSL) — .. ((kw A HW)3). We get

¢y (pi) = (9% (pi)) = (1) = 1 #£0.
This implies that ¢(y(p;)) # 0, and so b; # 0 as needed.

1.4. Organization. We begin in §2 by recalling well-known results and setting out notation. It can
probably be skipped and referred to only as needed.

§63-6 contain preparations for the proof of our main theorem. They all begin with a subsection called
“summary”, in which the main results of that section are listed. Other sections will only refer to the
results stated in the summary subsections. The reader willing to take on trust the results stated in the
summary subsection may thus immediately skip to the next section.

In §3 we construct Adams operations for the motivic ring spectrum KO, and we prove the important
formula

(1.2) Y™ (8) = n*np.
We construct the Adams operations as Eyo-ring maps
Y™ : KO[1/n] — KO[1/n] € SH(S),

for n odd. Our construction begins by making the Adams operations on KGL into Cs-equivariant maps
of Ex-rings, by using the Gepner—Snaith theorem [GS09]. Then we take 2-adically completed homotopy
fixed points which, by the homotopy fixed point theorem for Hermitian K-theory, gives us operations on
KOj5.! By means of a fracture square, we combine this with a more naive operation on KO[1/2n] to yield
the Adams operation on KO[1/n]. Since our definition is rather indirect, establishing (1.2) is a fairly
delicate problem. Our proof eventually boils down to discreteness of the space of £s-endomorphisms
of the classical spectrum ku, which is a well-known consequence of Goerss—Hopkins obstruction theory
[GHO4].

In §4 we collect some results about the motivic cobordism spectra MSL and MSp. Firstly we dualize
the well-known computations of the A-cohomology of MSL and MSp if A is SL-oriented and n-periodic,
to obtain the A-homology of MSL and MSp. Secondly, under the additional assumption that W(k) = Fy,
we obtain some information about the action of 13 on kw,MSL and kw.,MSp.

In §5 we establish some new completeness results. Specifically, if veda (k) < co and E € SH(k)"*f, then
we show that E% is n-complete. This is deduced from an improved version of Levine’s slice convergence
theorem, which was recently established [BE®20, §5].

We leverage this in §6 to compute 7. ((kw A HW)3), i.e. prove Lemma 1.5. This employs the equiva-
lences

(kw AHW)3 = (ko A K") [~ '3 = (ko A )3 [0~ 1]5 = (ko A ) ol

LAt least under some finiteness assumptions, which we ignore for the purposes of this introduction.
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Here the most important (and nontrivial) step is the last one, which uses our new completeness result
(and the fact that 2! K" € SH(k)"*f, which was essentially established in [Bac17]). Using that

K" /n~ k" ~ (HZ/2)/,

we compute T.x(ko A K W)Q by employing a Bockstein spectral sequence, together with the known
computation of HZ/2,.ko [ARD17].

With all this preparation out of the way, in §7 we prove our main result, following essentially the
argument sketched above. Finally in §8 we establish various applications.

In appendix §A we provide an alternative proof of the homotopy fixed point theorem for Hermitian K-
theory. It utilizes the improved version of Levine’s slice convergence theorem mentioned above, together
with the computation by Réndigs—Ostvaer of the slice spectral sequence for KW [R(16].

1.5. Acknowledgements. It is our pleasure to thank Robert Burklund and Zhouli Xu for extensive
discussions about the homotopy groups of MSL[p~!] over C. We would further like to thank Alexey
Ananyevskiy, Marc Hoyois, Dan Isaksen, Tyler Lawson, Denis Nardin, Oliver Réndigs and Dylan Wilson
for helpful comments.

1.6. Conventions. All our statements directly or indirectly involving hermitian K-theory require the
assumption that 2 is invertible in the base scheme. We may omit specifying this explicitly to avoid
tedious repetition.

Given a map of spectra « : E — F', we denote by « also the induced map w.F — 7, F.

We denote the category of motivic spectra over a scheme S by SH(S), and assume basic familiarity
with its construction and properties. See e.g. [BH17, §§2.2/4.1]. We view this as a presentably symmetric
monoidal, stable co-category [Lurl6, Lur09], and we assume some familiarity with the theory of such
categories (in particular in §3).

2 2-adic valuation

veda (k) 2-étale cohomological dimension of k[v/—1]

Alp™] p"-torsion in abelian group A

Ag classical p-completion of abelian group

LyA derived p-completion of abelian group 2.2
Eg p-completion of spectrum §2.5
E[1/n], E) localization of spectrum §2.5
1 motivic sphere spectrum

KO, KGL hermitian and algebraic K-theory motivic spectra 83.2
KW, kw, ko variants of the above §6.3
KOtP classical orthogonal K-theory spectrum

K° rank 0 summand of K-theory space

B, PraL Bott element in KO, KGL §3.2
P Adams operation 83
Végs Yhas Adams operations §3.3
%) modified Adams operation 87
KM homotopy module of Milnor K-theory

M homotopy module of mod 2 Milnor K-theory

KV homotopy module of Witt K-theory §6.3.3
HZ motivic cohomology spectrum §6.2
T Bott element in HZ/2

HW n-periodic Witt cohomology spectrum 86.3.2
MSL, MSp algebraic SL-, Sp-cobordism motivic spectra 84
HIP>® infinite quaternionic projective space

HGr, SGr, Gr quaternionic, special linear, and ordinary Grassmannians 84.2
B8 external product of vector bundles (on a product of varieties)
Th(V) Thom space of a vector bundle, V/V '\ 0

n motivic Hopf map 81
P standard endomorphisms of motivic sphere spectrum §2.7
Ne Milnor-Witt integer 1+ (—1) 4 --- + (£1)

W, 1 Witt ring and fundamental ideal §2.3
w, 1" sheaf of Witt rings and fundamental ideals

E[1/2]*,E[1/2]~ plus and minus part of a 2-periodic spectrum §2.7.3



Et E-

i (E), mi(E);
T ;(E), 1 (E);
Ezo, Ego
SPya

P,q
SH(S)
SH(IC)VEH
Spc(S)

fi

54

fi

54

TR

P(C)
Map(—, _)
map(—, —)
[7a 7]

Spc

SH

Grpd

Sch, Schg
Smg
Vectg
Perfs

1.7. Table of notation.

In this section we collect various well-known results which will be used throughout the sequel. About
half of them are specific to motivic homotopy theory (bigraded homotopy sheaves §2.4, completion and
localization of motivic spectra §2.5, very effective spectra §2.6, and the relationship between inverting
p and real realization §2.7), whereas the other half is about more general algebra and homotopy theory
(filtered modules §2.1, derived completion of abelian groups §2.2, and Witt groups §2.3). We encourage
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generalized plus and minus part

bigraded homotopy groups

bigraded homotopy sheaves

truncations in the homotopy t-structure
motivic sphere SP~9 A G4

bigraded suspension (smashing with S?:7)
category of motivic spectra over S
category of very effective spectra
category of motivic spaces over S
effective cover functor

slice functor

very effective cover functor

generalized slice functor

real realization functor

category of presheaves of spaces on C
mapping space in an oo-category
mapping spectrum in a stable co-category
homotopy classes of maps, i.e. moMap(—,—)
category of spaces

category of spectra

category of co-groupoids (so Grpd ~ Spc)
category of qeqgs schemes (over S)
category of smooth, qcgs schemes over S
1-groupoid of vector bundles on S
category of perfect complexes on S

2. PRELIMINARIES AND RECOLLECTIONS

the reader to skip this section and refer back as needed.

2.1. Filtered modules.

§3.5
§2.4
§2.4
§2.4

§2.6

Voe02
Voe02
Bacl7
Bacl7
§2.7

2.1.1. We follow [Boa99, §2]. Thus by a filtered abelian group G we mean a family of subgroups

We denote by

the associated graded.

Definition 2.1 ([Boa99], Proposition 2.2). Let F*G be a filtered abelian group.

GD---DFGDFTGo---.

gr"(G) = F*"G/F"* G

(1) The filtration is ezhaustive if G = colimg F*G.
(2) The filtration is Hausdorff if 0 = lim, F'*G.
(3) The filtration is complete if 0 = lim} F*G.

More generally, we may be working with ((bi)graded) filtered modules over a ((bi)graded) filtered
ring. Since the forgetful functor from modules to abelian groups preserves limits and colimits, there is
no ambiguity in the definition of exhaustive/Hausdorff/complete. When working with graded objects
this is no longer the case, and the definitions have to be applied degreewise.
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2.1.2.

Lemma 2.2 ([Boa99], Theorem 2.6). Let o : G — G’ be a morphism of filtered groups. Assume that
both filtrations are Hausdorff and exhaustive, and that the filtration on G is complete. Then « is an
isomorphism of filtered groups (i.e. « induces G ~ G' and F°G ~ F*G') if and only if gr*(a) an
isomorphism.

Corollary 2.3. Let R be a graded filtered ring. Assume that R is concentrated in non-negative degrees
and that the filtration is exhaustive, Hausdorff and complete.

(1) Let M be a graded filtered R-module, such that the filtration is exhaustive and Hausdorff. If
gr*(M) is a free (bigraded) gr®(R)-module with only finitely many generators in external degrees
(i.e. degree coming from the grading on M) < n for every n, then M is a free R-module on
corresponding generators.

(2) Let A be a graded filtered R-algebra, such that the filtration is exhaustive and Hausdorff. If gr®(A)
is a polynomial gr®(R)-algebra on generators in positive external degrees, only finitely many of
which lie in any degree, then A is a polynomial R-algebra on corresponding generators.

Proof. (1) Choose generators {Z; };cs of gr®(M) in bidegree (s;,t;), where t; corresponds to the original
grading on M and s; to the filtration. Lift them to x; € F'**M;,. Consider

M = @ Rltil{si},

where R[t;]{s;} denotes a free R-module on a generator in degree ¢; and filtration s;. There is thus
a canonical map M’ — M inducing an isomorphism on gr®. It remains to show that M’ is complete,
exhaustive and Hausdorff. By assumption, for each n,

M;z = @ Rn*ti{si}
:t;<n
is a finite sum of complete exhaustive and Hausdorff filtered abelian groups, and so has the same prop-
erties.

(2) Choose polynomial generators {7;};cr of gr*(A) in bidegree (s;,t;). Lift them to y; € F*% A,.
Then monomials in the §; are module generators of gr*(A4) and our assumption implies that there are
only finitely many monomials in degrees < n for any n. Thus (1) applies and A is the free R-algebra on
monomials in the y;. Let A’ be the polynomial R-algebra on generators {y;}. There is a canonical ring
map A" — A, and it is an isomorphism since the underlying module map is. O

Lemma 2.4. Let o : G — G’ be a morphism of filtered (possibly graded) groups. Suppose that the
filtration on G’ is exhaustive and Hausdorff, and the filtration on G is complete. Suppose furthermore
that gre(«)) is surjective. Then « is surjective, and also each FP« is surjective.
Moreover in this situation
gr® ker(a) ~ ker(gr®(«)).

Proof. By applying the argument degreewise, we may assume that we are in the ungraded situation.

First observe that if # € FNG’ then there exists yo € FNG with a(yy) € x + FNTLG; this is just
surjectivity of gr’¥(a). Applying this to z — a(yo) € FNT1G’ we obtain y; € FNT2G with a(yo + 1) €
x4+ FN*2G'. Tterating we find y; € FNFG (for all i > 0) with a(yo+- -+ +yn) € x4+ FNtTLIG’ (for any
n > 0). By completeness of G, the series Y, y; converges to (a possibly non-unique element) y € FNG
with a(y) —x € FNT"F1G’ for every n; hence by Hausdorffness of G’ we get a(y) = . Thus FNa is
surjective.

Since F*G’ is exhaustive, every x € G’ satisfies x € FNG’ for some N; hence the above argument
shows that x is in the image of o and hence « is surjective.

For the claim about kernels, apply the snake lemma [Wei95, Lemma 1.3.2] to the diagram of exact
sequences

0 —— FPtlker(a) —— FPHIG —— FPFIGY —— 0

! ! !

0 —— FPkerla) —— FPG —— FPG' —— 0
to get the exact sequence
0 = ker(FPT'G' — FPG’) — grf ker(a) — gr’ G LN gr’G' — 0.

This is the desired result. (]
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Lemma 2.5. Let o : G — G’ be a morphisms of filtered (possibly graded) groups. Assume that G is
Hausdorff and exhaustive and gr®(«) is injective. Then « is injective.

Proof. By applying the argument degreewise, we may assume that we are in the ungraded situation.
Let 0 # 2 € G. By Hausdorffness and exhaustiveness there exists n with x € F*"G \ F*"*"'G, whence
0 # [z] € gr"G. Tt follows that a(x) € F"G’ and 0 # [a(z)] = a([z]) € gr" G, and so a(z) # 0. O

2.1.3. Given filtered R-modules M, M’, we can put a filtration on M ® M’ by
FiMeM)= Y (F'M)(F'M)cMeM.
atb=i
Lemma 2.6. Let R =k be a field. Then
gr*(M @ M') ~ gr*(M) ® gr®(M’).

Proof. We may assume that M, N are exhaustively filtered. If M = k(i) and M’ = k(j) (i.e. F°M =k
ifa <iand F*M = 0 else), then gr*(M) = k[i] and M ® M’ = k(i + j); the result in this case follows. If
M, N are finite dimensional we can write M = @ ; k(ia) (e.g. use Corollary 2.3(1)) and similarly for
M'. The result follows since ® and gr? commute with sums. In general write M, N as filtered colimits of
their finite dimensional subspaces; the result follows since ® and gr® commute with filtered colimits. [

2.1.4. Given any (graded) ring R and (homogeneous) ideal J, we can give R the filtration by powers
of J, ie. F"R = J". In particular if S is a (possibly infinite) set of variables (possibly with some
assigned degrees) and A is a base ring, we can consider the polynomial ring R = A[S] or the exterior
algebra R = A 4[S] (which is graded if the variables are), and filter it by powers of the augmentation
ideal ker(R — A). In this case gr'(R) is called the indecomposable quotient.

Lemma 2.7. (1) Let S, A as above. The natural maps A — gr® and (gr')®™ — gr™ induce canonical
isomorphisms

gr" (A[S]) = Sym’j(gr'(S)) and g (Aa[S]) = A%(gr'(S)).

Here gr'(A[S]) is a free A-module on a basis in bijection with S.

(2) Let o : Ry — Ry be a morphism of graded A-algebras, where R; are either both polynomial or both
exterior algebras, on generators in positive degrees. If grl(a) : gr'(Ry) — gr!(Ra) is surjective
(respectively split injective, e.g. injective and A a field, respectively an isomorphism) then so is
Q.

Proof. (1) Let R = A[S] or R = A4[S], respectively. We can give R the grading where all variables have
degree 1; then J" = R>,. This implies that gr"™(R) ~ R,,. All claims are checked easily.

(2) If B: M — N is a surjective (respectively split injective, respectively bijective) morphism of A-
modules, then so are Sym" () and A™(5). Hence under our assumption gr®(«) is surjective (respectively
injective, respectively an isomorphism) by (1). The filtrations are complete, exhaustive and Hausdorff
for degree reasons. The claim thus follows from Lemmas 2.5 and 2.4. O

2.2. Derived completion of abelian groups. For an abelian group A, we write
A o pn,
L,A= 1171;11 cof(A — A) € D(AD)
for the derived p-completion. Then there is a short exact sequence
0 — lim" A[p"] — moLy A ~ Ext(Z/p>, A) — A} :=lim A/p" — 0.
Moreover
mLyA~1lim A[p"] and m; Ly, A = 0 for i #0,1.
See [Stal8, Tag 0BKG].

Lemma 2.8. If the p-torsion in A is of bounded order, then A ~ LA (so in particular m1 L, A =0).

Proof. We need to prove that lim A[p"] = 0 = lim* A[p"]. By assumption the sequence of sets A[p"] is
eventually stationary, and a sufficiently high composite of the transition maps is zero (since the transition
maps are given by multiplication by p). The result follows since (derived) limits can be computed by
restriction to final subcategories of the indexing category. [
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2.3. Witt groups. For a ring A, we denote by GW(A) (respectively W(A)) its Grothendieck—Witt ring
(respectively its Witt ring) [Kne77, §§1.4, 1.5]. We write I(4) C W(A) for the fundamental ideal, i.e. the
kernel of the rank homomorphism [Kne77, §1.7]

Lemma 2.9. Let A be a Dedekind domain with Pic(A) =0. Write K for the fraction field of A. Then
in the following commutative diagram, all maps are injective

GW(4) —— GW(K)

| l

W(A) x Z —— W(K) x Z.

Proof. Since W(A) — W(K) [MH73, Corollary IV.3.3], it suffices to show that GW(A) — W(A) xZ. By
[Kne77, §1.5, Proposition] the kernel of GW(A) — W(A) is generated by “metabolic spaces” of the form
H(V) for V a vector bundle on A. By [Kne77, §1.4, Proposition 2] the map H factors through Ky(A),

and so it suffices to show that Ky(A) 2%, 7 is injective. But Ko(A) ~ Z & Pic(A) [Mil71, Corollary
1.11], whence the claim. O

Lemma 2.10. Let A be a Dedekind domain with veda(Frac(A)) < oo and Pic(A) = 0. Then all torsion
in GW(A) and W(A) is 2-primary, and of bounded order.

Proof. Tt follows from Lemma 2.9 that it suffices to establish the claims about W(k), where k is a field.
For this case see e.g. [Bacl8e, Lemma 29]. O

Corollary 2.11. Assumptions as in Lemma 2.10. The map GW(A) — GW(A)S is injective, and
similarly for W(A).

Proof. For any abelian group G, elements in the kernel of G — G% must be in the kernel of G — G /2"
for all n, and hence be infinitely 2-divisible. We show the only such element in GW(A), W(A) is 0. Since
Z has no infinitely 2-divisible elements (other than 0), it suffices to prove the claim about W(A). As
above we may assume that A = k is a field. Since 2 € I(k), any infinitely 2-divisible element lies in
N,I(k)™. This group is zero [MHT73, Theorem IIL.5.1], whence the result. O

Lemma 2.12. Let veda(k) < oo. Then the I-adic and 2-adic filtrations on W(k) induce the same
topology. In particular W (k)5 ~ W(k)}.

Proof. We have 2W(k) C I(k) and I(k)vd2(F+1 ¢ 2W(k) [EL99, last Theorem|, which implies the
claim. g

Lemma 2.13. Let k be a field. Then W(k)q) is a local ring with mazimal ideal 1. In particular
x € W(k)(2) is a unit if and only if rk(z) # 0.

Proof. There is a certain (possibly empty, possibly infinite) set  and a homomorphism o : W(k) —
78 inducing Spec(W(k)) ~ (9 x Spec(Z))/Q x {(2)} [MH73, Remark after Lemma II1.3.5]. Since
Spec(W(k)(2)) identifies with the subspace of prime ideals not containing an odd integer it is given by
(€2 x Spec(Z2))) /2 x {(2)}. This has [ x {(2)}] as unique maximal element, whence the result. O

2.4. The homotopy t-structure.

2.4.1. The category SH (k) admits a t-structure with non-negative part generated [Lurl6, Proposition
1.4.4.11] by spectra of the form
X AGL,
for X € Smy and n € Z. We denote by
FE— EZn and F— Egn

the truncation functors.
2.4.2. For E € SH(k), denote by m;(E), the Nisnevich sheaf on Smy, associated with the presheaf
X = [E2PX, EAG).
One may prove that [Hoy15, Theorem 2.3
SH(k)>o ={E € SH(k) | m;(E); =0 for all i < 0,5 € Z},

and similarly
SH(k)<o ={E € SH(k) | m;(E); =0 for all i > 0,5 € Z}.
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2.4.3. The homotopy t-structure is non-degenerate [Hoy15, Corollary 2.4, Remark 2.5], i.e.
NiSH(k)>; =0 =N;SH(k)<;.

2.44. Each m;(E); =: F is an unramified sheaf [Mor05b, Lemma 6.4.4]. This means in particular that
F =0 if and only if for every finitely generated separable field extension K/k, which we may view as the
fraction field of a smooth k-variety, the generic stalk F(K) is zero.

2.4.5. The heart SH(k)¥ can be identified with the category of homotopy modules [Mor03, Theorem
5.2.6]. Namely for E € SH(k)Y there are canonical isomorphism
mo(E)j-1 ~ (m(E);) -1,

where on the right hand side the (—)_; means Voevodsky’s contraction operation [Mor03, Definition
4.3.10]. Moreover, any sequence of Nisnevich sheaves F; together with isomorphisms F;_; ~ (F;)_1 such
that the cohomology of each F; is homotopy invariant (i.e. F; is “strictly homotopy invariant”) gives rise
to an object of SH(k)", and this is an equivalence of categories.

2.4.6. It turns out that [Mor04a, Theorem 6.2.1]
mo(L)s ~ KXW
This implies that [Mor12, Lemma 3.10]
mo(Ln ™) = W™,

Here KMW is the homotopy module of Milnor-Witt K -theory [Morl2, §3.2] and W is the sheaf of
unramified Witt rings, i.e. the Zariski sheafification of X — W(X).

2.4.7.  Another common indexing convention is

mi(E) =m; ;(E)-;.

_i7j
We also use the common abbreviations
mi(E); =m;(E);(k) and m;(E) = m; ;(E)(k).
Note that
Wiyj(E) = [Si’j, E]
If the base S is not the spectrum of a field, we will only employ the notation ; ;(E), with the above
meaning.

2.5. Completion and localization.

2.5.1. For any set of numbers S (or more generally S C m,.(1)) and E € SH(S) there exists an initial
S-periodic spectrum E’ under E. In other words for every x € S the endomorphism of E’ induced by z is
an equivalence. See e.g. [BH17, §12.1]. For the sets S = {z} and (given a prime p) S = {n | (n,p) =1}
we respectively denote E' by E[l/x] and E(,. These localizations may be computed as the mapping
telescope of appropriate endomorphisms [BH17, Lemma 12.1], i.e. “in the expected way”. We write
E ® Q for the result of inverting all primes (i.e. S =7\ 0).

We write

SH(S)[x™] € SH(S)
for the category of z-periodic spectra.
2.5.2. Given a prime p and E € SH(S), there exists an initial p-complete spectrum Ez/)\ under E; in
other words whenever F is p-periodic (i.e. F' ~ F[1/p]) then [F, E}] = 0. Moreover
AYPUR H n
By~ hrrln E/p",
where E/p™ denotes the cofiber of the endomorphism of multiplication by p™. See e.g. [Bacl8d, §2.1].

A similar discussion holds for other graded endomorphisms of 1; e.g.

N~ 15 n
E, thrlnE/n .
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2.5.3.  We record some basic facts about these constructions. Recall the derived p-completion of abelian
groups LA € SH from §2.2.

Lemma 2.14. (1) Let E € SH(k). Then m;(Ey)); ~ (m;(E);)p)-
(2) Let E € SH(S). There is a split short exact sequence

0= moLymi(E); = mi(E)); = mLymi_1(E); — 0.
The map m;(E); — mi(E}); factors as
mi(E); — WOLQWZ-(E)]- — m-(EI/)\)j,
all maps being the canonical ones.

Beware the absence of underlines in (2)!

Proof. (1) Immediate.
(2) Since map(X%/ 1, —) preserves p-completions, this follows from the analogous statement for ordi-
nary spectra (see e.g. [BK87, Proposition VI.5.1]). For last assertion, apply the result to E>; — E. O

Corollary 2.15. Let E € SH(S). If mi;(E) — i j(E);, is injective then so is m; j(E) — m; j(E})).

Proof. By Lemma 2.14 the map m; ;(E) — m; ;(E)) factors as m; ;(E) <> moLjym; ;(E) < m;;(E)) so
it suffices to show that « is injective. As reviewed in §2.2, the injection m; ;(E) < m; ;(E), factors as
Ti,j (E) i> 7T0L$7Ti7j (E) — T (E)/; The result follows. O

2.5.4. We often employ localization and completion together, using the following well-known result.

Lemma 2.16. Let C be a presentable stable co-category, E € C and p an integer. Then E ~ 0 if and
only if E[1/p] ~ 0 and Eﬁ ~ 0 (equivalently, E/p ~ 0; a fortiori this holds if Ey ~0).

Similarly if C is presentably symmetric monoidal, L € C is invertible and x € mo(L) then E ~ 0 if and
only if 0 ~ E2 and 0 ~ E[1/z].

Proof. We give the proof of the second statement, the proof of the first one is obtained by replacing x
by p. Note that by the definition of E2 as a localization, we have E) ~ 0 if and only if E/z ~ 0, i.e.
x: E — E AL is an equivalence, i.e. F ~ E[1/x]. We thus need to show that F ~ 0 if and only if
(F ~ E[1/z] and E[1/x] ~ 0), which is clear. O
2.6. Very effective spectra. We write

SH(k)f c SH(k)

for the subcategory generated under colimits (equivalently, colimits and extensions [Bacl7, Remark after
Proposition 4]) by spectra of the form ¥°X, with X € Smg. This is the non-negative part of a t-
structure [Lurl6, Proposition 1.4.4.11]. If E € SH(k)*®, then F € SH(k)) = SH(k)"*® (respectively

E € SH(k)&) if and only if m,(E)o = 0 for i < 0 (respectively i > 0) [Bacl7, §3].
2.7. Inverting p.

2.7.1. We denote by
p:1— Gy
the map corresponding to —1 € @*. Then there is a canonical equivalence [Bac18a]
SH(S)[p"] = SH(RS),

where RS denotes the real space associated with S [Sch94, (0.4.2)] and SH(RS) means sheaves of spectra
on the topological space RS. One puts Sper(A4) := RSpec(A4).

Corollary 2.17. Let {k,/k} be the set of real closures of k. Then the canonical functor
SH(E)p™ = [[SHF) ] ~ ][ SH

s conservative.

Proof. Immediate from knowing the stalks of the small real étale site of k [Sch94, Proposition 3.7.2].
The last equivalence comes from Sper(k) ~ {x} for k real closed. O

Given topological spaces X,Y, write C(X,Y") for the set of continuous maps from X to Y.
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Corollary 2.18. For a local ring k, we have
T 1 [p '] ~ C(Sper(k), ) ~ C(Sper(k),Z) @ *.
Here Z and 75 are given the discrete topologies.
Proof. We need to compute [X*1, 1]s3(sper(k))- We can do this using the descent spectral sequence
HY, (kaﬂ-;;) = [Eq_p]la H]SH(Sper(k))-

Trét
Since the real étale cohomological dimension of local rings is 0 [Sch94, Theorem 7.6], the spectral sequence
collapses and yields

rét

(21, U swsperthy) = Hiw (k,m5) ~ C(Sper(k), m5).
This proves the first equivalence. For the second, it suffices to prove that if X is a topological space
and A is a finitely generated abelian group, then C(X, A) ~ C(X,Z) ® A. For this it is enough to show
that the functor C'(X, —) is exact. Since finite sums of abelian groups are products, their preservation is

clear. Given an exact sequence
0—+-A—B—-C-—=0

of abelian groups, exactness of
0—-C(X,A) —-C(X,B)—C(X,C)—=0

is clear at all but the last place; i.e. we need to show that C (X, —) preserves surjections. This is true since
if « : A — B is asurjection of abelian groups, then there exists a set-theoretic (and so continuous) section
s: B — A, and then C(X,s) is a set-theoretic section of C'(X, «), whence the latter is surjective. O

2.7.2. If RS = {*} (such as if S = Spec(R), with R = Z,Z[1/2],Q, R, and so on) then SH(S)[p~!] ~
SH. In this situation we denote by rg the composite

re : SH(S) = SH(S)[p~] ~ SH(RS) ~ SH.

By construction, the equivalence is given by taking global sections. If S = Spec(R), then rg is equivalent
to the functor induced from the one sending a smooth variety X /R to its topological space of real points
[Bac18a, §10].

2.7.3. The above will arise for us mainly as follows. For E € SH(k) there is a functorial splitting
E[1/2] ~ E[1/2,1/n] Vv E[1/2]) =: E[1/2]” v E[1/2]*.
Equivalently, the ring GW (k)[1/2] ~ [1[1/2], 1[1/2]]s3(x) splits as
GW (k)[1/2] ~ W(k)[1/2] x Z[1/2].
We obtain a splitting at the level of categories
SH(k)[1/2) ~ SH(k)[1/2]” x SH(k)[1/2]T.

For any E € SH(k), n acts as an isomorphism on E[1/2]~ and as zero on E[1/2]T. On the other hand
(2.1) np=—2on SH(k)[n™'],
and p is nilpotent on E[1/2]*. See [Bacl8a, Lemma 39| for all of this. We deduce the following.
Corollary 2.19. Let k be uniquely orderable. Then

SH(K)[1/2,1/n] 2 SH[1/2]

is an equivalence.
For any field k, with set of real closures {kqo}, the functor

SH(k)[1/2,1/n) L2 T] sm(1/2]

s conservative.

Proof. The first claim is clear from the above discussion. The second is an immediate consequence of
Corollary 2.17. O

One easily deduces the motivic Serre finiteness theorem [ALP17]
(2:2) .1 ) eQ=2WeQ.

Remark 2.20. Since 7 is the geometric Hopf map, rg(n) comes from the Hopf map S! — P}(R) ~ St.
This is just the squaring map, and so rg(n) = 2. This observation is closely related to (2.1).
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3. ADAMS OPERATIONS FOR THE MOTIVIC SPECTRUM KO

Throughout this section we will work with base schemes S such that 1/2 € S.

3.1. Summary. See §3.2 for the definition of the motivic spectra KO, KGL and the Bott element 5 (and
the table of notation in §1.7 for the meaning of n.).

Theorem 3.1. Let n be odd. For every scheme with 1/2 € S we construct a map ¢¥™ : KOg[l/n] —
KOg[1/n] € SH(S). These maps satisfy the following properties.

(1) They are compatible with base change (up to homotopy).

(2) We have ¢"™(3) =n?-n? - j.

(8) Y™ is a morphism of Exo-ring spectra.

(4) The following diagram commutes (up to homotopy)

KO[1/n] —— KGL[1/n]

o | o|
KO[1/n] — KGL[1/n],

where Y™ : KGL[1/n] — KGL[1/n] is the usual Adams operation; see e.g. [Riol0, Definition
5.3.2 and sentences thereafter].

Remark 3.2. Shortly after this article was written, Fasel-Haution supplied a much simpler construction
of operations Yy : KO[1/n] — KO[1/n] [FH20]. These operations satisfy (1) and (4) by construction,
and (2) is an immediate consequence of the construction (see Lemma 3.36 for details). Their operations
are only constructed as homotopy ring maps [FH20, Theorem 5.2.4] rather than £..-ring maps, so they
do not (on the nose) “satisfy” (3). However in the sequel we never use that our operations are £
(rather than just homotopy ring maps), so the article [FH20] can be used as a drop-in replacement for
the entirety of this section.

Remark 3.3. For a scheme X, exterior powers of vector bundles induce a special A-ring structure on
GW(X) [Zib18, FH20]. As in any special lambda ring, there are thus induced Adams operations. From
our construction, it is unclear if these “geometric” operations coincide with the ones induced by the
spectrum maps ™. On the other hand the spectrum maps g} are by construction closely related to
the geometric operations (see Lemma 3.36).

Remark 3.4. We show in §3.8 that ¢ ~ ¢%y (see Proposition 3.38). One can view this as either
identifying 9™ with the geometric operation, or lifting ¥g;; to an E..-operation.

Remark 3.5. One may show that for any n (even or odd), ¥™(83) = n?-n?- 8, where by 1" we mean the
“geometric” operation mentioned above. This implies that any spectrum map realizing this geometric
operation must invert n? and n? (since 3 is a unit). If n is odd, then n? maps to a unit in Z[1/n] (namely
n?) and also in W(k)[1/n] (namely 1), whence is a unit in GW(k)[1/n] and so KO[1/(n?-n?)] ~ KO[1/n].
One the other hand if n is even then the image of n? in W(k) is 0 and so

KO[1/(n? - n?)] ~ KO[1/2]T[1/(n* - n?)] VKO[1/2] 7 [1/(n? - n?)] ~ KO[1/n]".

An Adams operation ™ : KO[1/n]T — KO[1/n]* for n even satisfying all expected properties exists but
is not very interesting; see Remark 3.26.

Remark 3.6. The endofunctors of SH (k) given by E — E>o and E — E[n~!] are respectively lax and
strong symmetric monoidal (the former being the composite of the strong symmetric monoidal functor
SH(k)>o — SH(k) and its hence lax symmetric monoidal right adjoint, and the latter being a smashing
localization). It follows that the functor

SH(k) — SH(k), E — Exo[n™"]
is lax symmetric monoidal. Applying it to the homotopy ring map ¥™ : KO[1/n] — KO[1/n] we obtain
P kw[l/n] = kw[l/n] € CAlg(hSH(k)).

Ezample 3.7. We will use many times the following fact: if E — F € SH(S) is any morphism, then
the induced map T (F) — s (F) is @ 74 (1)-module morphism. For example, suppose that KOY(S) is
generated by elements of the form (a), for a € O(S)* (e.g. S the spectrum of a field or Z[1/d!] [BW20,
Lemma 5.5]). Then moo(1) — mo,0(KO) is surjective, and hence any ring map ¢ : KO — KO acts
trivially on g o(KO). More generally, ¢ acts trivially on the image of 7. (1) — .. (KO), e.g. on 7.
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Here is a sketch of our construction. We view KGL as a motivic spectrum with (homotopy coher-
ent) Ch-action coming from passage to duals. Using the Gepner—Snaith theorem, we construct a Co-
equivariant €-endomorphism 9 ¢g of KGL[1/n]. By the homotopy fixed point theorem, over sufficiently
nice base schemes, like Z[1/2], KGL"“? is 2-adically equivalent to KO. We obtain for n odd an Es-
endomorphism ¢} g on KO™ := KGL"“2. There is a fracture square for KO involving KO, KO[1/2]~
and KO3 [1/2]~. To build our Adams operation on KO[1/n] we will choose a compatible operation ¢™ on
KO[1/2]~. We have SH(Z[1/2])[1/2]” ~ SH[1/2] (see §2.7), and KO[1/2]~ corresponds to the topologi-
cal orthogonal K-theory spectrum KO'P[1/2] under this equivalence. It thus seems natural to let i)™ be
the topological Adams operation on KO'™P[1/2n]. Since KO5[1/2]~ € SH(Z[1/2])®Q~ ~ D(Q), compat-
ibility of ¥ and 9™ is purely a question about homotopy groups. The operation ¥ on KO'P[1/2n]
acts on a generator of 4 by multiplication by n?. We can write 1! (3) = af, for some a € GW(Z[1/2])5,
and the compatibility is equivalent to requiring that the image of a in W(Z[1/2])5[1/2] ~ Q2 be n?. Our
proof of this ultimately relies on the fact that the space of £s-endomorphisms of KU™P is discrete, i.e.
Goerss—Hopkins obstruction theory.

Remark 3.8. This proof seems very unsatisfying to the authors. We believe that the Grothendieck—Witt
space of any scheme should admit £, Adams operations after inverting the relevant integer, functorially
in the scheme. Presumably this should be related to the spectral A-ring theory of Barwick—Glasman—
Mathew—Nikolaus. This operation would coincide with Zibrowius’ one essentially by construction, and
the fact that ¢"(8) = n? - n? - B would be a fairly straightforward computation. Taking suspension
spectra and inverting the Bott element (see §3.2), we would immediately obtain an ., Adams operation
on KO[1/n].

Unfortunately we have been unable to implement this idea, forcing us to perform the contortions
sketched above instead.

Along the way, we also determine the real realization of KO. Recall the real realization functor rg from
§2.7.2. Note that the periodicity generator 3 : S8* — KO gives a periodicity of degree 4 in 7 (KOg), so
this spectrum cannot possibly be the topological KO™P.

Lemma 3.9. Let S = Spec(R).

(1) rr(KGL) =0
(2) The map rr(KO) — rg(KOY) identifies with KO*P[1/2] — (KO"“P))[1/2].

3.2. Motivic ring spectra KO and KGL.

3.2.1. Recall that BC5 is the ordinary 1-category with one object C5, and space of endomorphisms
given by the group Cs of order 2. The category BCY is obtained by adding an initial object *; in other
words BCY' is equivalent to the opposite of the ordinary 1-category of Cs-orbits (i.e. the subcategory of
Fing, on the two objects Cy and *). For a category C, Fun(BC»,C) is the category of objects in C with
a homotopy coherent Cs-action. Given X € Fun(BC2,C) we write X hC2 ¢ ¢ for its limit. The functor
Fun(BCY,C) — Fun(BC%,C) given by evaluation at Co admits a (partially defined) right adjoint (the
right Kan extension) sending X € Fun(BC»,C) to the diagram X"“2 — X [Lur09, Proposition 4.3.2.17
and Definition 4.3.2.2]. It follows that given any object (X — Y) € Fun(BC4,C) there is a functorially
induced morphism X — Y"®2 € C (provided that Y2 exists).

3.2.2.  The group completion or (direct sum) K -theory functor
CMon(Grpd) — CMon(Grpd)s? — Spc,

(with the second functor being the forgetful one, using that Grpd ~ Spc) is lax symmetric monoidal
(e.g. use [GGN16, Theorem 5.1] and the fact that right adjoints of symmetric monoidal functors are lax
symmetric monoidal) and hence induces

K® : CAlg(CMon(Grpd)) — CAlg(Spe.).

Here we use the convention that for a symmetric monoidal category C®, CAlg(C) = CAlg(C?®) denotes
the category of £.-algebras, and for any category D (symmetric monoidal or not) with finite products
CMon(D) := CAlg(D*). The symmetric monoidal structure on CMon(Spe) is given by tensor product,
and the one on Spc, by smash product.
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3.2.3. Let S be a scheme. Write Vect(S) for the ordinary 1-groupoid of vector bundles on S. This
carries the following structures.

e For V,W € Vect(S), there is the direct sum V @& W € Vect(S); this way Vect(S) becomes an
object in CMon(Grpd).

e For VW € Vect(S), there is their tensor product V@ W € Vect(S). This operation distributes
over the sum, promoting Vect(S) to CAlg(CMon(Grpd)).

e For V € Vect(S5), there is the dual V* = Hom(V, Og). This operation commutes with sum and
tensor product, and there is a functorial isomorphism (V*)* ~ V. Hence Vect(S) is promoted
to Fun(BCsy, CAlg(CMon(Grpd))).2

e For f: X — Y € Sch, there is a pullback operation f* : Vect(Y) — Vect(X). This is compatible
with composition in f, and also with all the previous structures.

All in all we obtain
Vect : BCy x Sch®? — CAlg(CMon(Grpd)).
Applying K we get K®Vect : BCy x Sch°? — CAlg(Spc.), or equivalently
K®Vect € Fun(BCy, CAlg(P(Sch),)).

If X € Sch is affine, then K®Vect(X) is the K-theory space of X [TT90, Theorem 7.6], but in general
this is not correct. We can fix this issue by passing to Zariski sheaves:

K := Lz..K®Vect € Fun(BCy, CAlg(P(Sch),)).

Then for every X € Sch the space K(X) is the (Thomason-Trobaugh) K-theory space of X [TT90,
Theorem 8.1].

3.2.4. Consider the homotopy fixed points Vect(S)"“2. This is an ordinary 1-category, which can be
described as follows: an object consists of a vector bundle V' together with isomorphism « : V ~ V*|
such that o corresponds to a under the double dual identification. In other words, Vect(S)"2 is the

category of non-degenerate symmetric bilinear forms (see e.g. [Schl0a, Definition 2.4]) on S, which we
also denote by Bil(S).
Using §3.2.1, we may thus extend Vect over BCS to obtain

(Bil — Vect) : BC5 x Sch®® — Grpd.
Using that CAlg(CMon(Grpd)) — Grpd preserves limits (being a right adjoint), this further upgrades to
(Bil — Vect) € Fun(BC45, CAlg(CMon(Grpd)).
Applying as before direct sum K-theory and sheafification, we obtain the presheaf
GW := Lz, K9Bil € P(Schz9))«

We are restricting the base schemes here to 1/2 € S because then this definition of GW given us the
correct Grothendieck-Witt space [Sch10a, Remark 4.13] [Sch10b, Corollary 8.5]. All in all we have thus
built

(GW — K) S FUH(BCS, CAlg(P(SChZ[l/Q])*))

3.2.5. Restricting K from P(Sch). to P(Smg). and motivically localizing, we obtain Lyt K € CAlg(Spc(S)«)
and then X°L,,tK € CAlg(SH(S)). We have the Bott element Bkcr € K°(P') ~ [S*! K] and hence
obtain Sy, € m2,1 X% Linot K. By definition we have

KGLg := (2% LimotK)[Biear] € CAlg(SH(S)).

See [Hoyl6a, Proposition 3.2, Lemma 3.3 and Theorem 3.8] for details on periodic E.-ring spectra; the
upshot is that KGLg is represented by the prespectrum (LpmotK, LimotK, ... ) with bonding maps given
by multiplication by 3. It follows from [Hoyl6a, Example 3.4] and [TT90, Proposition 6.8 and Theorem
10.8] that if S is Noetherian and regular, then the canonical map K|gm, — 2*°KGLg is an equivalence;
in other words KGL represents algebraic K-theory.

There is a similar Bott element 5 € KVO(HPl AHPY) ~ [$84 GW] [PW10b, Definition 5.3, Theorem

5.1], and inverting it in the suspension spectrum we obtain

KOs := (2 Lot K)[8'7!] € CAlg(SH(S)).

2To be precise, the generator of Cy acts via Vect(S) — Vect(S), V = V*, a: V S5 W (o)1 : V* — W*. We
must pass to inverses in order to obtain a functor Vect(S) — Vect(S) instead of Vect(S)°P — Vect(S).
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Arguing as above, using [Sch17, Theorems 9.6, 9.8 and 9.10] we see that if S is Noetherian, regular, and
1/2 € S, then the canonical map GW|gn, — Q°KOg is an equivalence; in other words KO represents
hermitian K-theory. In fact (in this situation) [Sch17, Theorem 9.10] implies that

(3.1) Qe "KO ~ GWM,

where GW!™ is the presheaf of n-shifted Grothendieck—Witt spaces [Sch17, Definition 9.1].

One may show that the image 3 of 3 under the map GW — K is B¢y, (see e.g. [ROD16, Proposition
3.3]). It follows that we could equivalently define KGL as (X L0 K)[3 '], and in particular we obtain
a morphism of £,-rings KO — KGL. We now make this Cs-equivariant.

3.2.6. Consider the functor
F : CAlg(SH(S)) — Cat, E s 2™ F;

in other words F(FE) is the set of subsets of m..E. We view this power set as a category (in fact poset)
by partially ordering it by inclusion. The functor F classifies a fibration (by [Lur09, Theorem 3.2.0.1])

CAIg(SH(S))mrk — CAlg(SH(S)).

Thus the objects of CAlg(SH(S))mrk are pairs (E, X) with F € CAlg(SH(S)) and X C m.(F), and
the morphisms (E, X) — (E', X') are morphisms £ % E’ such that o, (X) C X'. In particular given a
functor b : C — CAlg(SH(S)), a lift of b to CAlg(SH(S))m:k is a section of F, or in other words a choice
for every object ¢ € C of X, C m..(b(c)) subject to the condition that for every map a: ¢/ = ¢ € C we
have b()«(X¢) C Xe.

The functor CAlg(SH(S)) — CAlg(SH(S))mk, E — (E, 7 (E)*) has a left adjoint which sends
(E, X) to the initial E-algebra in which all elements of X become invertible.

3.2.7. We have the functor
(2% Lot GW — X Lyt K) : BCS — CAlg(SH(S)).

We lift this to a functor BC§ — CAlg(SH(S))mm by choosing the sets {3’} and {3’} respectively.
Here ' is the image Bj¢qp, of 8" in T X% LinotK) and so fixed by the Ca-action. Composing with the
localization functor CAlg(SH(S))mrk — CAlg(SH(S)) we obtain

(KOS — KGLs) € Fun(BCS, CA]g(SH(S))
3.2.8. It is straightforward to make this entire construction functorial in S as well.

3.2.9. It can be shown that the space LyotK (respectively Ly,otGW) is motivically equivalent to the
product of Z and the infinite Grassmannian (respectively the infinite orthogonal Grassmannian) [ST15,
Proposition 8.1 and Theorem 8.2] [Hoy16b, Corollary 2.10]. Since Grassmannians are stable under base
change, so are the motivic spaces Ly, otK and Lot GW, and hence so are the spectra KGL and KO.

3.2.10. Recall the real realization functor rg from §2.7.2. We now determine rg(KO) (and rg(KGL)).

Proof of Lemma 3.9. (1) Since KGL ~ £°(Zx Gr) By ] we get rr(KGL) ~ °°(Zx Gr(R))[rr (Bkar) -
It suffices to show that rg(Bkcr) € 1 (Z x Gr(R)) is nilpotent. Since Gr(R) ~ BO, by Bott periodicity
[Kar05, §4.1] we have m3(Z x Gr(R)) ~ m2(0) ~ 0, whence the result.

(2) The Wood cofiber sequence [R@16, Theorem 3.4] ¥H'KO 2 KO — KGL together with rg (1) = 2
(Remark 2.20) and (1) implies that rg(KO) is 2-periodic. We deduce that rg(KO) ~ rg(KO[1/2]7) ~
rr(KW/[1/2]), and this was shown to be KO[1/2] in [Rén16, Theorem 4.4]. It also follows that rg(KO%)
is rational, and to conclude it suffices to show that m.rg(KO%) ~ Qz[3%!]. We have (see Corollary 2.19
for the first step)

mrr(KOY) =~ 1. (KO [1/2]7) =~ m. (KO3 [1/n,1/2]) ~ m. (KO3 [1/(8n"), 1/2)).

For n < 0 we have 7, (KO) ~ W(R) ~ Z if n =0 (mod 4), and = 0 else; in either case multiplication by
Bn* is an isomorphism [Sch17, Proposition 6.3] [Bal05, Theorem 1.5.22]. This implies that 7, (KO%) ~ Z4
or 0, depending on n as before, the same is true in the colimit along An*. The result follows. Il

3.3. The Gepner—Snaith and homotopy fixed point theorems.
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3.3.1. The presheaf G,, : X — O(X)* defines an abelian group object in P(Smg). Sending an element
to its inverse inverse lifts this to G,, € Fun(BCs, Ab(P(Smg)<o)). Let L C Vect denote the subgroupoid
spanned sectionwise by the trivial line bundle @. This is closed under tensor products and duals, and
hence defines a subfunctor

L < Vect : BCy — CMon(P(Smg)).

By inspection QL is discrete, and identifies with G,,. Since L is (sectionwise) connected, we thus obtain
BG,,, ~ L — Vect. Composing with Vect — 2°°KGL and using the adjunction

XF 40% : CMon(P(Smg)) & CAlg(SH(S))
we obtain a map?
Y BG,, — KGL € Fun(BCy, CAlg(SH(9))).
We also have the map
Brar, : S o~ BOP! — NOP® &~ ¥ BG,, — LT BG,y,
employing the stable splitting Xy ~ X Vv $°. The image of Skar in T KGL is the Bott element Sxar,
[GS09, Proposition 4.2]. We may thus lift the map ¥°BG,, — KGL to Fun(BCs, CAlg(SH(S))mrk)

by choosing the sets {BKGL, UBKGL} and {BkaL, —PkaL} respectively above ¥° BG,, and KGL (here o
denotes the action by Cy, so that in particular ofSkgr, = —PkaL). Inverting the marked elements and
noting that Skar, —PxarL are units in KGL we obtain the Gepner—Snaith map

Y BGm [P o Prar) — KGL € Fun(BCy, CAlg(SH(S))).
Lemma 3.10. The Gepner—-Snaith map is an equivalence.

Proof. We have ¥° BG,[Bréy] =~ KGL by [GS09, Theorem 4.17]. The image of ofkcr, in this ring is a
unit (e.g. because it corresponds to —fkar), so the further inversion does nothing. (I

3.3.2. Since G,, is a discrete abelian group object, we have the endomorphisms ¢" : G,,, — Gy, z +— ="
for all n € Z, and they all commute. In particular we obtain

P" : Gy, = Gy, € Fun(BC2, Ab(P(Sms)<o))-
This deloops to
" : BG,, — BG,, € Fun(BC3, CMon(P(Smg))).

Lemma 3.11. The composite

3 B
2.1 BxaL EfBGm TByY

2% BG,y, — KGL
is homotopic to nPkGL-
Proof. The stable splitting P — P} induces the map
KO(P}) ~ K()[0(1)]/(O(1) = 1)* = K(P') =~ K°(%)
a+bO(1) — b.

The element
P! = BGpy =% BGyny — KGL € KO(PL)
corresponds to
0(1)®" = ([0(1) = 1]+ 1)* =1+ n[O(1) — 1]
which thus maps to nfkar, as desired. ([

We can thus form the following composite in Fun(BCs, CAlg(SH(S))mrk)
(2 BG, {Brcr, oBrar}) LA (2% BGy, {¢" (Brcr), o¢™ (Brcr)}) — (KGL, {nfxar, —nfraL}).
Inverting the marked elements we obtain
KGL ~ X3 BGn [Ardr» oPrar) — KGL[nBrar] ~ KGL[1/n].
Further inverting n in the source, we finally arrive at
Yég : KGL[1/n] — KGL[1/n] € Fun(BC>, CAlg(SH(S))).

Proposition 3.12. The underlying map ¥ég : KGL[1/n] — KGL[1/n] coincides (up to homotopy) with
the map Vi, constructed by Riou [Riol0, Definition 5.3.2 and sentences thereafter].

3Note that if C < D is an adjunction then so is Fun(A4,C) < Fun(A, D), e.g. by [BH17, Lemmas D.3 and D.6].
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Proof. Since both operations are stable under base change, we may assume that S = Spec(Z). By [Riol0,
Remark 5.2.9] the map
[KGL,KGL] — [S°P>, KGL] ~ Z[U]
is injective. Here U = O(1) — 1 is the first Chern class of the tautological bundle. The image of ¢}, is
(14 U)™ [Riol0, Definition 5.3.2]. It suffices to verify that the same holds for 1¢g. The image in this
case is given by
TP ~ NFBG,, —2% N BG,, — KGL.

This corresponds to O(1)®™ = (1 + U)™ by construction. O

Remark 3.13. In light of [Riol0, §3], this means that the ¢)¢q act on (higher) algebraic K-groups in the
same way as any of the other standard constructions.

3.3.3. The map
KO — KGL € Fun(BCj5, CAlg(SH(S)))

induces by definition a map
KO — KGL"®2.

Proposition 3.14. Let S be Noetherian, regular, 1/2 € S and veda(s) < oo for all s € S. Then the
map KO — KGL" is a 2-adic equivalence.

Proof. Tt suffices to show that for every (absolutely) affine, smooth S-scheme X the morphism
map(X?"" X, KO)/2 — map(X?™" X, KGL"“?) /2

is an equivalence. Since these spectra are periodic, we may assume that n > 0, and then since X is
arbitrary we may assume that n = 0. Since X is a QL-scheme in the sense of [BKS®15, Definition
2.1], the claim follows from [BKS@15, Theorem 2.4 and Corollary 2.6]. To be precise, their definition of
(Hermitian) K-theory (and the involution on K-theory) uses perfect complexes, but the evident functor
Vect — Perf is duality preserving (when using the 0-shifted duality on Perf, which is why we reduced to
n = 0) and induces an equivalence on (Hermitian) K-theory spaces, as we have seen in §3.2.5. (]

Definition 3.15. Let n be odd, whence invertible in Z%. We denote by

the map induced from 9¢g by completing at 2 and taking homotopy fixed points. (If the base scheme
does not satisfy the assumptions of Proposition 3.14, pull back from Z[1/2].)

3.4. Action on the Bott element. For an algebraically closed field K of characteristic zero, the group
Ky (K) is uniquely divisible, and K (K) = K* ~ Q/Z® D where Q/Z corresponds to the roots of unity
and D is uniquely divisible [Weil3, Theorem VI.1.6]. This implies (using e.g. Lemma 2.14(2)) that
7o (KGL(K))) ~ Zj.

Lemma 3.16. The action of " on m(KGL(K)j) is given by multiplication by n.
Proof. We have m2(KGL(K))) ~ m L4K;(K), compatibly with the Adams action. It thus suffices to

show that the action on K;(K) is multiplication by n, i.e. ¥"([a]) = [a"]. This is [Weil3, Example
IV.5.4.1]. O

Viewing GL(K) as a discrete topological group, apply the topological +-construction to obtain a
space BGL(K)" x Z with m;(BGL(K)* x Z) = K;(K) for ¢ > 0. In this model, the Cs-action on
K(K) ~ BGL(K)* x Z is induced from the automorphism of GL(K) given by A — A~T (and the
identity on Z). If K = R or K = C, we can give GL(K) its usual topology instead; denote the result by
GL(K*°P). Functoriality of the +-construction yields

K(K) — BGL(I(tOp)Jr X7 € Fun(BCQ,S/Hzo).
These maps are in fact p-adic equivalences for all p [Sus84, Corollary 4.7].

Lemma 3.17. Let E € Fun(BCy x BCh, CAlg(SH)) denote kuy with its usual action by complex con-
jugation and passage to dual bundles. Suppose given a map ¥ : E — E such that the induced map on mo
is given by multiplication by the odd integer n. Then the induced endomorphism of

((E"C2)50)"C

acts by multiplication by n=2 on m_4.
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Proof. By Goerss—Hopkins obstruction theory, the space Mapc g SH)(KU/Q\,KU/Q\) is discrete and iso-
morphic to Homgy e (1. KU, 1, KUY) ~ (Zh)* via evaluation at the Bott element [GHO04, Corollary
7.7 K(1)-localization and connective cover provide inverse equivalences Mapcajg( SH)(KU/Q\,KU/Q\) o~
Mapcag(s) (kub, kub). It follows that

Mappun(Be, x ey, calg(sH) (£s B) = Mapeaigsw) (£ E)hC2xC:

is also discrete. The upshot of all this is that v is just given by the ordinary ¥™, made equivariant with
respect to Co x C% in the usual way.

We have (E"“2)5q ~ ko) and the induced action by C} is trivial (since ko ~ BO* x Z and transpose
coincides with inverse on orthogonal matrices). By the above discussion, the map induced by ¢ is the
usual Adams operation ¥ on ko, made compatible with the trivial action in the canonical (trivial)
way. We thus need to show that the Adams action on 7_4 (ko5 )<z ~ (ko3)*RP is by multiplication
by n~2.

We first consider the KO-cohomology. Let us write x € koy and 8 € kog for the generators, so that
2% = 4. The groups (KO%)**(RP) can be read off from [Fuj67, Theorem 1] as follows

(KOY)¥*RPY ~ Zh[\, @, 3, B/ (N + 2), 2% — 4B);

the (KO%)* ~ Z4[x, B, 7] /(x® — 4B)-algebra structure (coming from pullback along RP* — %) is the
evident one. Here |A] = 0 and A corresponds to O(1) — 1. The algebra structure is compatible with
Adams operations (here we are crucially using that 1 is compatible with the trivial action in the trivial
way). Note that ¢(\) = A. For this it suffices to show that ¢¥(O(1)) = O(1); but ¥(O(1)) = O(n)
[Ada62, Theorem 5.1(iii)] and O(2) ~ O (e.g. since O(2) = (1 + A\)? = 1 since A = —2)), so this holds
since n is odd. It follows that the Adams action on (KO3)**(RPS) is via multiplication by n=2*, since
this holds for the generators 1 (3 being a ring map), A (as seen above), and z, %! (which can be checked
in KO*, where it e.g. follows from the injection into KU*)
It remains to observe that (koy)*(RPS) — (KO5)*(RPY) is injective. Indeed the obstruction to this
is
[SORP, (KO}) <o) = [S~ORPE, (KOj)<_4] = 0.
(I

Theorem 3.18. Let S be a scheme with 1/2 € S and n odd. The action of Vg on the Bott element

is given by multiplication by n? - n2.
B is g (1 P (0 <

Proof. It suffices to prove the result for S = Spec(Z[1/2]). We can write ¢}'.s(8) = af, for some
a € GW(Z[1/2])5; we need to show that a = n? - n2. Since the map KOj — KGLj is compatible with
the Adams action by construction, it follows (e.g. from Lemma 3.11) that rk(a) = n*. Hence (using
Lemma 2.9) it suffices to prove that a has image n? in W(Z[1/2]).

We first prove the result for S = Spec(R) instead. Consider
E = KGL5(C) := mapgy ) (X7 Spec(C), KGLy) € Fun(BCy x BCy, SH);

here the first action comes from complex conjugation and the second from the Cs-action on KGL (i.e.
taking duals). We have a map E — K(C'*P)) ~ ku) which is an equivalence by Suslin’s theorem [Sus84,
Corollary 4.7]. Tt is Cy x C-equivariant for the usual action on kuy. By Lemma 3.16 the action of 4"
on mo F is by multiplication by n. We may hence apply Lemma 3.17 to deduce that the Adams action
on m_4((E"®2)5)"C is by multiplication by n~2. By the Quillen-Lichtenbaum conjecture for algebraic
K-theory [RO05, Theorem 2] we have ((KGL(C))"“2)s ~ KGL(R)5. We thus learn that ¢]lqq acts by
multiplication by n=2 on 7_4(KO(R)%) ~ W(R)5{n*8~1}. The claim (over R) follows since the Adams
action on 1 must be trivial (since it comes from the sphere spectrum; see Example 3.7).

Now we go back to S = Spec(Z[1/2]). It would be enough to show that ¥}.q(8) = af, for some
a € GW(Z)y € GW(Z[1/2])5. Indeed then we could determine a by comparison with S = Spec(R).
This argument indeed works; see Lemma 3.37. Since the proof of Lemma 3.37 is rather involved (in that
it relies on [CDH™'20]), we provide here an alternative way of proceeding. It is enough to show that
Ylag acts on m_4(KOY) ~ W(Z[1/2])3{8~'n*} by multiplication by n~2. By arguing as in for example
[BW20, proof of Theorem 5.8], we find that

(x) W(2Z[1/2]) = Z[g)/ (9%, 29),
where g := (2) — 1.
Consider the decomposition

Spec(F2) < Spec(Z) < Spec(Z[1/2]).
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The sequence of functors
Perf(F2) LN Perf(Z) 7, Perf(Z[1/2])

induces a localization cofiber sequence K(F3) — K(Z) — K(Z[1/2]) [Weil3, Example 6.11] [TT90,
Theorems 3.21, and 7.4]. The functor i, is duality preserving if we give Perf(F3) the duality Hom(—,i'0);
then all the functors become Cs-equivariant and we get an induced localization sequence

KGL, (F2)"“2 — KGLy(Z)"Y* — KGL(Z[1/2])"C2.

Since 'O ~ YO we see that we get the shifted duality on K(Fz). We have K(Fs)y ~ HZj [Weil3,
Corollary IV.1.13], and the Cs-action is given by multiplication by —1, the duality being shifted. In
particular (see e.g. [Cad99, Lemma 1])

0 * even

(K(F2)5)" = H™*(BC,, Z) = :
m (K(F2)2) B2 =12/2 +<00dd

We thus get a short exact sequence

(#%) 0 = m_4KGL) (F2)"C2 25 1 KGL) (Z)"C> L5 n_yKGL)(Z[1/2))"C>
9y n_sKGL) (Fo)'%2 = 7,/2.

We now determine the image of the injection j*. By the homotopy fixed point theorem and (x) we
have

r_KGL(Z[1/2))"% = W(Z[1/2])5 ~ Zhlg]/ (4% 29) ~ ZH{1} & Z/2{g}.

The filtration induced by the homotopy fixed point spectral sequence is the I-adic one, so the first two
subquotients are

1%(2[1/2)) = W(Z[1/2]) /T = F2{1} and g*(Z[1/2]) = I(Z[1/2])/1° = F2{{~1),(2)},

which must be a subquotient of the appropriate group 62 ( [1/2]) = H*T(Cy, K;(Z[1/2])%) on the Es
page. By [Mil71, Corollary 16.3]

Ky (Z[1/2]); ~ (Z[1/2)*); ~ Zy © Z/2,

and also Ko(Z[1/2])5 ~ Z4. We deduce that egi) (Z[1/2]) is a finite abelian group of rank at most 1
if i = 0, and at most 2 if i = 1; since the subquotient gr’(Z[1/2]) has the same rank we find that
eéi)(Z[l/Q]) = gr’(Z[1/2]). The map e(o) (Z) — ego)( Z[1/2]) is an isomorphism, which implies that

1°(Z) — gr®(Z[1/2]) is injective. On the other hand K;(Z)} ~ Z*, which implies that the map
egl)(Z) (1)( Z[1/2]) ~ Fa{(—1),(2)} is an injection onto Fo{(—1)}. These facts together imply that
g 1 m_4KGLY(Z2)C2 — 7 yKGL5(Z[1/2])"“2 does not hit the element g. Consequently d(g) = 1 and
9(1+ eg) =0 for some € € {0,1}. Let us put o := 1+ eg. It follows from exactness of (xx) that

1 4KGLY(Z)"% ~ Zh{a} C m_4KGLy(Z[1/2])"=.

Note that we have an action of ¥" = g also on KGL(Z), and hence on KGLj(Z)"“2. Tt follows
that 9" (a) = pa for some p € Zy. We know (by Example 3.7) that ¢ acts on 7_4KGL3(Z[1/2])"“2 by
multiplication by some element a 4+ €'g € W(Z[1/2]); here a € Zs and ¢’ € Z/2. Comparison with the
case S = Spec(R) shows that a = n=2. We thus get

pi*a = (pa) = " ($(@) = ¥ (@) = (0% + €g)j"a

and so

p(1+eg) = (" +g)(1 +eg)
=n"2+ (n %+ ¢)g.

Comparing coefficients of 1 yields p = n~2, and then comparing coefficients of g yields ¢ = 0. This was
to be shown. 0
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3.5. The 2-adic fracture square. Recall the following well-known fact.

Lemma 3.19. Let C be a stable, presentable, compactly generated co-category and n € Z. Then for
every E € C the natural commutative square

E —— E[1/n]
15 cartesian.

Proof. Let X € C be compact. Functors of the form map(X, —) preserve limits and colimits, so comple-
tion and localization, and form a conservative collection. This reduces the result to C = SH where it is
well-known; see e.g. [Baull, Proposition 2.2]. |

We can apply this with C = SH(S) and n = 2 to obtain the fracture square
E —— E[1/2]~ E[1/2]” V E[1/2]"
(3.2) l l
By —— Ep[1/2) = Bp1/2- v BA[1/2)%;
here we have used the decomposition of 2-periodic spectra into + and — parts (see §2.7.3).
Definition 3.20. For E € SH(S) we define
E* = E} xppp o E[1/2]5.
Note that there are maps
E— E* and E* - Ey — E)[1/2]F.

Lemma 3.21. Let C be an co-category and X, Ay, As, B1, B € C with maps X — B1 X Bs and A; — B;.
Then

X X B1x B> (Al X A2) ~ (X X B Al) X By AQ.
Proof. Consider the following commutative diagram

(X XBlAl) X32A2 *>A1><A2 *>A2

| [

—— B
X xp, Ay ———— A1 X By A

| l |

X —— By x By —— Bj.

The right hand squares and horizontal rectangles are cartesian, hence so are the left hand squares, and
hence so is the left hand vertical rectangle, by the pasting law [Lur09, Lemma 4.4.2.1]. O

Our slightly unconventional Definition 3.20 is partially justified by the following result.

Corollary 3.22. For E € SH(S) we have cartesian squares

E —— E[1/2]" E —— E[1/2]*
I [ ] |
Et —— E1/2]7 E- —— E{[1/2]"
Proof. Immediate from Lemma 3.21, the fracture square (3.2) and the definition of E¥. O

Remark 3.23. Note that if £ € CAlg(SH(S)) then E5, E[1/2]* = E[1/2]) and E[1/2]~ = E[1/2,1/n]
are Es-rings, and hence so are E* (being pullbacks of £,.-rings along £.-ring maps). All in all the
fracture squares for E from Corollary 3.22 are pullback diagrams in CAlg(SH(S5)).
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3.6. Proof of the main theorem.

Lemma 3.24 (Heard). The diagram («a : KO — KGL) € Fun(BCs,SH(S)) is a universal n-complete
limit diagram: if F : SH(S) — C is any functor preserving binary products, then F(a/n)) : F(KO/n) —
(F(KGL/n))"2 is an equivalence.

Proof. This is essentially [Heal7, §3]. To paraphrase, (KO/n — KGL/n) € Fun(BCs,SH(S)) identifies
with (KGL — KGLCZ), where by KGL®? we mean the product KGL x KGL with its switch action. This

is clearly a universal limit diagram. In slightly more detail, let i : ¥ — BC5 and p : BCy — * be the
canonical functors. Then X2 ~ i,(X) and Y2 ~ p,(Y); thus (X¢2)"*2 ~ p,i, X ~ (id), X ~ X. O

We can use this to identify KO™, in the sense of Definition 3.20.

Lemma 3.25. Let S satisfy the assumptions of Proposition 3.14 (such as Spec(Z[1/2])). Then for n
odd we have KO[1/n]T ~ KGL[1/n]"®2 € SH(S). The same holds for n even and any S.

Proof. For n even we have
KO[1/n]* ~ KO[1/n]) ~ KGL[1/n]"“>,
by Lemma 3.24. Thus we now consider n odd.

Taking homotopy fixed points in the 2-adic fracture square for KGL[1/n] we obtain a cartesian square
KGL[1/n)"% ——— KGL[1/2n]">

l l

(KGLY)"®  —— (KGLy[1/2])",

noting that KGL[1/n]) ~ KGLj. By Proposition 3.14 we have (KGL})"“2 ~ KO} ~ KO[1/n]}. We
also have

KGL hCs hoayn (£-3:-24) A +.

[1/2n]""2 ~ (KGL[1/2n]"%2)) ~ ~ ~ KO[1/2n]; ~ KO[1/n][1/2]";

here we have used that KGL[1/2n]"“? is n-complete since KGL[1/2n] is (n acting by 0). The same

argument shows that (KGLy[1/2])"“2 ~ KOJ[1/2]T ~ KO[1/n]3[1/2]*. Hence the above cartesian

square identifies with the defining square of KO[1/n]*. O

Remark 3.26. Using KO[1/n]t ~ KGL[1/n]"“2, for any n we can define (¢™)T : KO[1/n]T — KOJ[1/n]*
as (ag)"C2. If n is even this is the best we can do (see Remark 3.5). For n odd we shall see how to
extend this to an endomorphism of all of KO[1/n].

Definition 3.27. For n odd and § satisfying the assumptions of Proposition 3.14, we denote by
Yias 1 KO[1/n]t — KO[1/n]*
the map induced from ¢%g : KGL[1/n] — KGL[1/n] (see §3.3.2) via the equivalence KGL[1/n]"“? ~
KO[1/n]*.
For S = Spec(Z[1/2]) we have KO[1/2n]~ € SH(Z[1/2])[1/2]~ =~ SH[1/2], and r&(KO) ~ KO*P[1/2]
by Lemma 3.9. By ¢g,, : KO™P[1/n] — KO™P[1/n] we mean the topological Adams operation, for

example obtained by taking homotopy fixed points of the complex realization of the operation on KGL.

Lemma 3.28. In CAlg(SH(Z[1/2])) there exists a unique (up to homotopy) map ¥™ : KO[1/n] —
KO[1/n] such that the two squares

KO[1/n] ——s KO[1/n]* KO[1/n] —— KO[1/2n]~ =~ KO™P[1/21]
w"l wzcsl and w”l wz}pl
KO[1/n] ——s KO[1/n]* KO[1/n] —— KO[1/2n]~ =~ KO™“P[1/21]

commute (in CAlg(SH(Z[1/2]))).
Proof. Applying Remark 3.23 with £ = KO[1/n] (and S = Spec(Z[1/2])) we obtain a pullback square
Mapcaig(suzn/2)) (KO[L/n],KO[1/n])  —— Mapeaig(swz(i/2))) (KO[1/n], KO[1/n]T)

l |

Mapcaig(swziy2)) (KO[1/n], KO[1/2n]7) ——— Mapcaigswuzn 2y (KO[1/n], KO3 [1/2]7) =: M.

We have two maps a,b : KO[1/n] — KO3[1/2]~ € CAlg(SH(Z[1/2])), induced by ¢jqg and ¢f,
respectively. A choice of E.-ring map ™ with the desired properties is a path in M from a to b. Thus
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such a map exists if a, b are homotopic, and is unique if 771 of the corresponding component of M vanishes.
Since KOL[1/2]~ € SH(Z[1/2])[1/2]” ® Q S D(Q), we find that

M =~ Mapcaig(p(q)) (e (KO) @ Q, rr (KO3 [1/2]7)).

We claim that rg (KO) ® Q is the free E-ring over Q on an invertible generator in degree 4. Indeed if
we denote that universal object by F(X41)[z~1], then the canonical map F(3*1)[z7!] — rg(KO) ® Q
induces an isomorphism on 7, by Lemma 3.9 and the well-known computation 7, F'(3?"1) ~ Q[xz] (with
|z| = 2n; this follows e.g. from [RS17, Corollary 8.4]). We deduce that

M C Q>Trg (KOS [1/2]7)

is given by the union of those path components corresponding to invertible elements of yrg (KO5[1/2]7).
It thus follows from Lemma 3.9 again that moM ~ Q5 {z} and m M = 0 (for any choice of base point).
In other words ¢™ exists if and only if @ and b act in the same way on (3, and if so it is unique. Since both
maps act by multiplication by n? (see Theorem 3.18 for Yhass and for Y, we can use e.g. comparison
with the action on KU and Lemma 3.11), the result follows. (]

Proof of Theorem 3.1. Since everything is stable under base change, we may assume that S = Spec(Z[1/2]).
We let 9" be the map constructed in Lemma 3.28. Hence () the induced endomorphism of KOT ~
KGL"®? is given by Ylas =~ (Pag)"C2. Tt follows that (#x) the induced endomorphism of KO ~
(KOM)5 ~ (KGLj)"“* is also given by ¢7qg.

(1,3) Hold by definition.

(2) By Corollary 2.15 and Lemma 2.11, the map 75 4(KO) — w5 4(KO3%) is injective, and hence it
suffices to prove the claim for (1)™)5. By (sx), this is ¢}/¢g, so the claim follows from Theorem 3.18.

(4) The map KO — KGL factors as KO — KOT ~ KGL"“?> — KGL, so the claim follows from
(). O

Remark 3.29. The construction of ™ also implies that if S is a regular )L-scheme, then under the
equivalence KO[1/n]* ~ KGL[1/n]"“2 we have (¢")* ~ ¢4 (see Definition 3.27).

3.7. The motivic orthogonal image of j spectrum. In this section we show that our Adams op-
eration can be used to construct a “motivic image of orthogonal j” spectrum. This idea originated in
discussions with JD Quigley and Dominic Culver regarding [CQ19]. None of the results in this section
are used in the sequel.

We begin by determining the lowest two “generalized slices” of the sphere spectrum.

Theorem 3.30. Let k be a field of exponential characteristic e # 2.

(1) The unit map 1 % KO € SH(k) induces an equivalence on 3.
(2) There is a fibration sequence

S32HZ,/24 5 51 (1)[1/e] 22 5, (KO)[1/e] ~ S>'HZ/2.
Proof. (1) For E € SH(k) there is a functorial cofiber sequence [Bacl7, Lemma 11(1)]
So(Ezl) — §0E — foﬂo(E)*.

It thus suffices to show that 1 — KO induces an equivalence on so(—>0) and my(—)o. Indeed then it also
induces an equivalence on fomy(—)«, 80 on so(my(—)«), and on so(—>1) (the latter since sg is a stable
functor), and hence on 5yp(—) by the cofiber sequence. It is well-known that the unit map 1 — KO
induces an isomorphism on 7, ;. Similarly we know that so(1) ~ HZ and so(KOxp) ~ HZ (e.g. use
[Bacl7, Theorem 16]). In the commutative diagram

GW(]{?) ~ FQ,O(]l) é FO,O(KOZO) ~ GW(]{?)

! |

7, ~ 7T07030(]l) L) WO,OSO(KOEO) ~7
the vertical maps are both the rank map; it follows that « is an isomorphism. Since this holds over any
field, the map so(1) — s0(KOxp) induces an isomorphism on m, o; since this is the only non-vanishing
effective homotopy sheaf of HZ the map is an equivalence.
(2) We invert the exponential characteristic throughout. For E € SH(k) there is a functorial cofiber
sequence [Bacl7, Lemmas 11(2) and 8§]

nggl(E)* — §1(E) — 81(E>1).
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Note that s; of the first term of the cofiber sequence vanishes, so (%) the map f is equivalent to the
projection §1 F — s151 F.

We shall show that (a) foXm, (1), ~ %3?HZ/24, (b) the unit map induces an isomorphism s1(1>1) —
51(KO>1) ~ ¥21HZ/2, and (c) foXm; (KO), = 0. This will imply the result.

(a) First note that

- (%)
El(fOKO)—Q ~ ll(KO)_Q ~ EO(KO[ 1])_1 ~ Z—l ~ 0,

where (%) is obtained from e.g. [Bacl7, Table 1]. This implies via [RS@16b, (1.2)] that
m(1)_o ~7Z/24.

Since this holds compatibly over any field (see [RS@16b, Remark 5.8]), Lemma 3.31 below implies the
claim.

(b) The claim that s;(KO>1) ~ $%1HZ/2 is immediate from (x) and [Bacl7, Theorem 16]. Since
1 — KO induces an isomorphism m,(—)o it also does on fomy(—)« and hence on s1my(—)+«. Considering
the cofiber sequence s1(—>1) — s1(—>0) — s1(zmy(—)+), it thus suffices to show that s1(1) — s1(KOx0)
is an equivalence. Note that s1(KO>¢) ~ s1f0KO>¢ =~ siko. The claim thus follows from [AR(D17,
Theorem 3.2] and [RS®@16b, Corollary 2.13 and Lemma 2.28] (both spectra are given by L11HZ/2).

(c) Since §;KO ~ %%'HZ/2 [Bacl7, Theorem 16] is a 1-slice, the claim follows from ().

This concludes the proof. ([

Lemma 3.31. Let k be a field, H € SH(k)"IY. Suppose that (1) wo0(H) =~ Z/n for some n € Z, and
(2) for every finitely generated separable field extension K/k, the map my o(H)(k) — 7y o(H)(K) is an
isomorphism. Then H ~ HZ/n.

Proof. Write GW € SH(k)" for the unit. The isomorphism 7y o(H) =~ Z/n induces a map « :
GW — H. We also have the rank map 8 : GW — HZ/n. We shall show that «, are surjections
with equal kernels; this will prove the result. Since my o(H)(k) — mg o(H)(K) is an isomorphism and
GW (k) — my o(H)(k) is surjective, o is surjective. We claim that «(K) is the rank map. Indeed let
K /K be a separable closure and consider the commutative diagram

Gw(k)y 5 r (H)K) ~Z/n

! H

Z~GW(K) = ry (H)(R) ~ Z/n.

The map «(K) is the unique morphism of abelian groups sending 1 to 1, whence «(K) is the rank map
as desired. We deduce that ker(a)(K) = ker(5)(K), and hence ker(a)) = ker(f) by unramifiedness (and
since “taking the underlying sheaf” is an exact conservative functor [Bacl7, Proposition 5(3)]). The
result follows. O

We put ksp := foX42KO, so that
»4%ksp ~ £,KO.
Corollary 3.32. For n odd, the Adams operation Y™ — 1 : ko[l/n] — ko[l/n] lifts to ¢™ : ko[l/n] —
$42ksp[1/ne].
Proof. We invert e throughout.

Let us write f<; for the cofiber of fo — id. Then we have a cofiber sequence 4?ksp — ko — C :=
f<iko. We need to show that the composite

ko[1/n] X"=% ko[1/n] — C[1/n]
is zero. Considering the cofiber sequence

1 — ko — D,

it suffices to show that (a) the composite 1 — ko Yl ko — C s zero, and (b) any map D — C is
zero. ;

(a) It is enough to show that 1 — ko Y"1 ko is zero. This is clear since Y™ (1) = 1.

(b) Recall that X42SH (k)" defines the non-negative part of a t-structure on SH (k) with f, and
fgl as non-negative and negative truncation, respectively (see e.g. [BH17, §B]). It follows that C is
in the negative part of this t-structure, and hence it is enough to show that D is in the non-negative
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part. Consider the following commutative diagram, in which all rows and columns are cofiber sequences
(defining E, F)

fol 1 f<il
| | |

fQ ko ko fg 1ko
| | |
E D F.

It suffices to show that E, F € ©42SH (k). This is clear for E, since ¥*2SH (k)" is closed under
colimits. It follows from Theorem 3.30 that I ~ %42HZ/24 € ©42SH (k)vet.
This concludes the proof. (I

Definition 3.33. A motivic orthogonal image of j spectrum is any spectrum j, in a fiber sequence
3
jo = kogz) = B%ksp ).
Clearly the unit map 1(2) — ko(y) lifts to j,. Theorem 7.8 states that the lifted unit map 12y — j, is

an n-periodic equivalence.

3.8. Geometric operations. In this section we compare our stable Adams operations to the ones
constructed by Fasel-Haution [FH20]. None of the results in this section are used in the sequel.

3.8.1. We begin with the following adaptation of [PW10b, Theorem 13.1].
Lemma 3.34. For n # 0 the map

[KO[1/n], KO[1/nlloatgms(z /2y — KSp[L/n]°(HP*) x GW(Z[1/2])[1/n], a = (a(H(1)),a(8)/B)
is injective. Here H(1) € KSp°(HP™) corresponds to the tautological bundle.
Proof. There is a presentation KO =~ colim; X+ (4=842=49) X for a sequence of pointed, smooth, affine
7Z[1/2]-schemes X; [PW10b, Theorem 12.3]. By [PW10b, proof of Theorems 13.1, 13.2, 13.3], the induced
map 7 : [KO,KO[1/n]] — lim; KO[1/n]|¥~44=2(X,) is an injection (in fact, equivalence). Note that
y(a)i = a(y(id);). The isomorphism KO[1/n]¥~44-2(X;) ~ KSp[1/n]°(X;){57"} hence shows that a
ring map «a : KO[1/n] — KO[1/n] is determined by its effect on KSp[1/n]°(X) for X smooth affine, and
on . By [PW10b, Theorem 8.1], since X is affine the action of « is determined by the action on the
class corresponding to the tautological bundle of HGr(r,00) (for various r), and on 5. The claim now

follows by the computation of the cohomology of HGr(r, 00) in terms of HP> [PW10c¢, Theorems 11.4
and 8.1]. 0

Recall that over any base scheme S with 1/2 € S we have
KSp’(HP) = KO"*(HPZ) ~ (P KO 2% (5){p¥O(7)"}.
>0
Since KO¥*(S) = GW(S) and KO¥~*%~2(8) = 7 make sense also for S = Spec(Z) (with GW(Z) =
Z @ Z{(—1)}), we will by slight abuse of notation put
KSp’(HPZ) := KO 2(Z){b5°(7)'}.
>0

Corollary 3.35. Let n be odd and R C [KO[1/n],KO[1/n]]syz[1/2)) denote the set of those homotopy
ring maps such that o(B)/6 € GW(Z)[1/n] € GW(Z[1/2]))[1/n] and a(H(1)) € KSp’(HPF)[1/n] C
KSpO(HIP’%El/Q])[l/n]. Then the map

R— GW(Z)[1/n],a— «(B)/8
s an injection.
Proof. Consider the commutative diagram
R —_— KSp[1/n]°(HPS®) x GW(Z)[1/n]

— |

[KO ® Q,KO ® Qlcagmsnzii/2)) — (KSp® Q)P (HPZ] /5) x (GW(Z[1/2]) ® Q).
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The top horizontal map is injective by Lemma 3.34, and the right hand vertical map is injective since
GW(Z),Z are torsion-free. It follows that the left hand vertical map is injective.

Write H_ € KO™*72(x) for the trivial symplectic bundle. We shall now show that a homotopy ring
map o : KO® Q — KO ® Q (over Z[1/2]) is determined by its effect on 8 and H_. Since

SH(S)®Q~ (SH(S) Q)" x (SH(S)®Q)~
as symmetric monoidal categories, we need only prove the same claim about (KO ® Q)*. We have

equivalences of homotopy ring spectra (KO ® Q)™ ~ HZ[t,t ] ® Q and (KO® Q)™ ~ (1 ® Q)™ [u,u 1]
(see e.g. [DF19, Theorem DJ); here |t| = (4,2) and |u| = (8,4). Since

[1,2"(1® Q)] 2 [Q,Q[n]lpig) =0 for n £ 0
and similarly
[HZ, YnHZ @ Q]SH(Z[l/Q]) =0forn#0

(see e.g. [Riol0, Remark 5.3.16)), it follows that « is determined by its effect on ¢,u. Since ¢t can be
chosen to be the image of H_, and u the image of 3, the claim follows.

We deduce the following: given o € R, write a(8) = a8 and a(H_) = bH_, for some a € GW(Z)[1/n],
b € Z[1/n] (uniquely determined). Then a and b determine «. To conclude the proof, we need to show
that a determines b. Since H? = 2hf3, we find that b*> = rk(a), so that a determines b up to a sign. It
will thus suffice to prove that b = 1 (mod 4). Since the complex realization of KO is KO™P (see e.g.
[ARD17, Lemma 2.13]), we may as well show: if a : KOy — KO, € SH is a homotopy unital map,
then (o — 1)(H-) = 0 (mod 4). One has [KO3, KO3]sy =~ Z5[T], where T = ¢° — 1 (see e.g. [HMO7,
Proposition 3.7]). We may thus (formally) write « = Y., a;T" for certain a; € Z4. Since « is unital we
must have 1 = a(1) = ag. Since ¢°(H_) = 25H_ (e.g. by comparison with the Adams action on KU%)
we get T(H_) =24H_ =0 (mod 4). This implies the claim and concludes the proof. d

3.8.2. For a scheme X over Z[1/2], put GW*(X) = KO°(X) @ KSp®(X). This is a commutative, Z/2-
graded A-ring with A-operations given by exterior powers of vector bundles [FH20, Theorem 4.2.4]. We
denote the associated Adams operations by 1y.,. Recall the stable operations ¢y : KO[1/n] — KO[1/n]
from [FH20, §5.2].

Lemma 3.36. For n odd, we have

o2 (VEn) = Vgeol KOO (=) [1/n]
and
T2 (Yy) = <(*1)n(n71)/2>nne¢geo|Ksp0(—)[1/n]-
Moreover ¥y (8) = n*n?p.

Proof. Put o; = moMap(242— o), w = ((=1)""=1/2)pn.. By construction, for X € Smg and
E € KO"(X) or E € KSp®(X) we have

(3.3) o (H1) — H_)RE) = (H(1) — H_.) R ;41 (E) € GWH(HP! A X,).

Furthermore by construction [FH20, p. 16], the map a1 is given by w™! oo Since Yo (H(1)—H_) =
w(H(1) — H-) [FH20, Lemma 5.1.4], and 1, preserves products in all of GW*(X), (3.3) inductively

implies that o; = w'yz,,. All claims follow. O

3.8.3.  We need some facts about homotopy fixed point K-theory. For part (2) below we require some
difficult results about Hermitian K-theory over schemes in which 2 is not invertible from [CDH™20].

Lemma 3.37. (1) For any scheme S, the ring spectrum KGL"“? € SH(S) is SL-oriented.
(2) For S = Spec(Z) we have

Taw 2« (KGL"92)0) ~ GW(2)5 (8, 8L, H_|/(I(Z)H_, H? — 2hp).

Proof. (1) The construction of the ring map MSL — KO — KGL in [BW20, Corollary B.3] shows that
over any base, MSL — KGL refines to a Cy-equivariant map (for the trivial action on MSL). The result
follows.

(2) We have map(X,KGL) ~ K(Perfx), for any X € Smyz. The Cs-action on KGL corresponds to
the action on Perfyx by dualization £ — Hom(E,Ox). The equivalence QpK ~ K is implemented
by the pushforward i, : K(X) — K(X x P!). Since i, : Perfx — Perfy,p: is duality preserving if
on Perfyx,p1 we use the n-shifted duality and on Perfy the (n + 1)-shifted duality, we find that for
n > 0 the duality on map(3?"" X, KGL) ~ K(Perfx) is the n-shifted one. Iterated tensoring with Ox[1]
induces a Cy-equivariant automorphism of Perfx, intertwining the 4n-shifted duality and the usual one,
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or the (4n + 2)-shifted duality and the negative of the usual one [Sch10b, Proposition 7]. Denote by
B € m5.4(KGL"®?) the element corresponding to 1 € 7o o(KGL"“?) under the induced equivalence; in
other words f8 is represented by the perfect complex O[2] (with a certain canonical 4-shifted duality
naively expressed as Hom(O|2], O[4]) ~ Hom(O, O[2]) ~ O[2]). Multiplication by § is an automorphism
of KGL"®2 (indeed this can be checked before taking fixed points, and 3 corresponds to an automorphism
of Perfx, and hence of KGL). It follows that A = 7y, 2. ((KGL"2)3) is (8,4)-periodic. We shall show
that Ago = GW(Z)5 and Ay = Z5, in such a way that the map

a:A— 7r4*72*((KGLZ[(’£2/2])/2\) ~ (KOZH%])Q

is the canonical one in degrees (0,0) and (4, 2). Since a(3) = 8 by construction, the map « is an injection,
and we can check all the desired relations over Z[1/2], where we know them to be true.

It remains to determine Ag o and A4 2. Since we have determined above the dualities on map(1, KGL) ~
K(Z) and map(S*?, KGL) ~ K(Z) to be the usual one and its negative, the desired result is an immediate
consequence of [CDH*20, Theorem 1]. O

3.8.4. We can now compare the Adams operations.

Proposition 3.38. Let S be a scheme with 1/2 € S, and n an odd integer. The two maps
Y™ gy KO[1/n] — KO[1/n] € SH(S)

are homotopic.

Proof. By definition, the maps are pulled back from Spec(Z[1/2]), so we may assume that S = Spec(Z[1/2]).
By Lemma 3.36 and Theorem 3.1, both maps act on 3 by multiplication by n?n?. Hence by Corollary 3.35,
it suffices to check that both maps send H (1) to an element of KO*?(HPZ)[1/n] C KO4’2(HIP’%‘[°1/2} )[1/n].

First we treat ¢jy. Lemma 3.36 shows that up to a factor in GW(Z)[1/n]*, ¥py (H (1)) = tgeo(H(1)).
By definition, this is a linear combination with integer coefficients of exterior powers of H (1), which are
clearly already defined over Z.

For ™, note that it suffices to show that the subring KO**%*(HP5)) is preserved. Lemma 3.37
(together with the homotopy fixed point theorem over Z[1/2]) implies that this ring coincides with the
image of

((KGLY)"C2 )2 (HIPE) — ((KGLA)"C2)4*2* (HIPZ, ) = (KOR)H*2* (HIPZ;, )

The result follows since (¢™)5 = ¥}og by definition, and the latter is already defined over Z. O

4. COBORDISM SPECTRA

4.1. Summary. We will be using the algebraic cobordism spectra MSL and MSp [BH17, Example 16.22]
[PW10a]. They can be constructed explicitly out of the Thom spaces of tautological bundles on special
linear (respectively quaternionic) Grassmannians; we review this in §4.2. In particular there is a canonical
map

(4.1) YHTIEHP™ — X747 ?Th(y) — MSp,

where v denotes the tautological bundle on HIP>.

There are notions of SL-oriented and Sp-oriented cohomology theories [PW10a, Definitions 5.1 and
8.1]. We will only deal with cohomology theories represented by homotopy commutative ring spectra A €
CAlg(hSH(S)). In this situation one way of exhibiting an SL-orientation (respectively Sp-orientation) is
to exhibit a homotopy ring map MSL — A (respectively MSp — A) (see e.g. [BW20, Proposition 4.13]
or [PW10a, Theorems 5.5 and 13.2]).

If A is Sp-oriented and V' is a symplectic vector bundle bundle on X € Smg, then we obtain the Borel
classes b;(V) € A*21(X) [PW10a, Definition 11.5]. One has [PW10a, Theorem 8.2]

A" (HP®) =~ A b (7)].

Similarly if A is SL-oriented and V' is an oriented vector bundle, then we obtain the Pontryagin classes
pi(V) € A%4(X) [Analb, Definition 19]. When dealing with n-periodic cohomology theories, we will
implicitly shift everything into weight zero (by multiplying by powers of n); so then we write

bi(V) € A*(X) and pi(V) € AY(X).
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The cohomology of MSp and MSL have been worked out in [PW10a, Theorem 13.1] [Anal5, Theorem
10]*. We perform the straightforward dualization:

Theorem 4.1. Let A be a cohomology theory (i.e. A € CAlg(hSH(S))).

(1) Suppose that A is Sp-oriented. The Kronecker pairing A..(HP") @ A**(HP") — A, is perfect.
Denote by {Bi}1 € A (HP™) the dual basis to {b1(7)} € A**(HP"). The 3; are compatible
with HP™ < HP" ™ ; denote by B; € A, (HP™) their common images. Write b; € Ay, 2,(MSp)
for the image of Bi+1 under the map induced by (4.1). Then

A**(MSp> ~ A**[bo, bl, b2, e ]/(bo - 1)

(2) Suppose that A is n-periodic and SL-oriented. The canonical map MSp — MSL annihilates b;
for i odd; write p; for the image of ba; in Ag;(MSL). Then

A*MSL ~ A*[po,pl, .. ]/(po — 1)

Ezample 4.2. KO admits a ring map from MSL (see e.g. [BW20, Corollary B.3]), and hence is SL-oriented
(whence also Sp-oriented). Since MSL is very effective, ko = fyKO is also SL-oriented. Similarly so are
kw = ko[n~!] and KW = KO[n~1], since they receive ring maps from ko.

If A denotes any of the above theories, then by Remark 3.6 we obtain Adams operations on A-
homology. We are particularly interested in the case S = Spec(k) and A = kw (). Note that if W(k) = o
then kw ~ kw s,y and so all 9" act on kw, E for any E' € SH(k) and n odd.

Proposition 4.3. Let S = Spec(k), where k is a field (of characteristic # 2). Suppose that W(k) = Fa.
Then
¢ (pi) € pi + Bpi—1 + B*kw.MSL.
In fact
bi_a 1
V3(b;) € b; + B*kw . MSp + Bbi-2 Z even.
0 i odd

We also record the following well-known facts.
Lemma 4.4. We have rg(MSp) ~ MU and rg(MSL) ~ MSO.

4.2. Real realization. For an algebraic group G, write BG for the stack of G-torsors, viewed as a
sheaf of groupoids on Smg.® Suppose given furthermore an inclusion G — GL,. Then we obtain a
map BG — BGL,, — K° corresponding to the tautological virtual bundle on BGL,,, and consequently
a Thom spectrum MG € SH(S) [BH17, §16.2]. For a G-torsor E, write V(E) = E xg A™ for the
associated vector bundle, where G acts on A" via the embedding into GL,,.

Lemma 4.5. There is a cofibration sequence®

NI AN 0)pe — BT BG — MG.

Proof. By definition,
MG ~ colim Th(V(E)),
E:X—BG

where the colimit is over all smooth schemes with a map to BG, i.e. smooth schemes and G-torsors
on them, and Th(V(E)) is the associated Thom spectrum. In other words there is a cofiber sequence
Eff%’"V(E) \0— X=X, — Th(V(E)) and hence

. co—2n,n co—2n,n
E:C)(QE%GEJF V(E)\ 0 — X5 BG — MG.

4n [Anal5], the author works over perfect fields of characteristic # 2 only. However, all results hold over general base
schemes [personal communication]. Indeed the only place where the assumption on the base is used is in Lemma 12. This
holds over general bases, as can be seen as follows. It suffices to show that the endomorphisms [z : y] — [y : =] and
[:y] = [~z : y] of P! are Al-homotopic. Since both have determinant —1, and SL2(Z) is Al-connected (being generated
by elementary matrices), the result follows.

5There might be some concern here which topology we are using, but we shall only apply the following discussion to
special groups, where all torsors are Zariski-locally trivial.

6Again7 the G-orbits should be taken as sheaves in some sufficiently strong topology.
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By universality of colimits in co-topoi [Lur09, Theorem 6.1.0.6], passage to G-orbits preserves pullbacks.
It follows that there is a cartesian square

(B x (A" \0))hg = V(E)\ 0 —— (A" \ O)nc

I |
EhG ~ X — ¥pg X BG.
Thus colimp.x g V(E) \ 0 = (A™ \ 0)xqg, by universality of colimits again (this time in the presheaf
oo-topos). The result follows. O

If G = GL,,, the association E — V(E) induces an equivalence between G-torsors and vector bundles
of rank n. Similarly if G = SL,,, we get an equivalence between G-torsors and oriented vector bundles
(i.e. carrying a trivialization of the determinant), and if G = Sp,, then we obtain an equivalence with
symplectic bundles of rank 2n (i.e. carrying a non-degenerate, alternating bilinear form). See e.g.
[AHW18, §3] for this. The Grassmannian variety Gr(n, k) represents the functor of n-dimensional vector
subbundles of OF; similarly SGr(n, k) represents the functor of n-dimensional vector subbundles of OF
together with an orientation, and HGr(n, k) represents the functor of 2n-dimensional vector subbundles
V of O?F such that the restriction of the canonical alternating form on O2?* to V remains non-degenerate.
There are thus canonical GL,,, SL,, and Sp,, torsors on Gr(n, k), SGr(n, k) and HGr(n, k), respectively,
inducing maps
(4.2) Gr(n,o0) = BGL,,, SGr(n,o) — BSL, and HGr(n,o0) — BSp,,.

Each of these maps is well-known to be a motivic equivalence; see e.g. [MV99, Proposition 2.6], [AHW18,
proof of Theorem 4.1.1], [PW10b, proof of Theorem 8.2].
We can use this to connect to more standard definitions of Thom spectra.

Lemma 4.6. We have motivic equivalences
MGL, ~ %720 Th(ySY) MSL, ~ £®°2%"Th(75Y)  and MSp,, ~ L°" 42" Th(y5P),

where 7SY — Gr(n,00) (respectively v5% — SGr(n, 00),75P — HGr(n,00)) denotes the tautological
bundle.

Proof. We need to prove that the motivic Thom spectrum functor inverts the motivic equivalence Gr,, —
BGL,, and similarly for SL,,, Sp,,. This follows from [BH17, Proposition 16.9 and Remark 16.11]. O

By definition [BH17, Example 16.22], the (E-ring maps of) spectra
(4.3) MSp — MSL — MGL
are obtained by applying the motivic Thom spectrum formalism to the maps K5P° — K5 — K°. Since

KSpe & colim,, BSp,, (argue as in the discussion just before [BH17, Theorem 16.13]), we find (using
Lemma 4.6 and [BH17, Proposition 16.9 and Remark 16.11]) that

MSp ~ colim MSp,, ~ colim X%~ 42" Th(~5P),

as expected. Similarly
MSL = colim 22 Th(ASE)  and  MGL ~ colim 30— 2nn (4 GLy
Corollary 4.7. We have rg(MSp) ~ MU and rg(MSL) ~ MSO. In fact rg(MSp,) ~ MU, and
rr(MSL,) ~ MSO,,.
Proof. Tt suffices to show the “in fact” part. By Lemma 4.5, we have
MSL,, ~ Z"O_Q"’”cof(Tn — Gp),

where T;, = (A" \ 0)psr, and G,, = *pg1,,. Since SLy, is a special group [Ser58, §4.4.b], we can take the
homotopy orbits in the Zariski topology, and hence (since Zariski equivalences are motivic equivalences),
we can just take the homotopy orbits in the category of motivic spaces. In other words we obtain

Ty ~ coliAm SL™ x (A™\ 0) € Spe(S)..
meA©P
Since g preserves colimits and finite products, we find that

rr(Th) ~ 7%%1215}9 SL, (R)™™ x (R™\ 0) ~ (R™ \ 0) s, (r)-
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The inclusion SO,, — SL,(R) is a homotopy equivalence [Hall5, §E.5], so that this is the same as
(R™\ 0)nso,,- Similarly we find that rg(G,) ~ BSO,,, whence

TR(MSLn) ~ E_nCOf((Rn \ O)hSOn — BSO,) ~ MSO,,

as desired. The argument for MSp is similar, using that Sp,, is special [Ser58, §4.4.c] and Sp,,(R) ~ U,
[AGO1, §4.4]. 0

4.3. Homology.

4.3.1. We recall some well-known facts about duality in homology and cohomology theories represented
by (motivic) spectra.
Let A € CAlg(hSH(S)) and X € SH(S). Then we have the Kronecker pairing

A(X) ®a.. A7(X) = A
(f: 271 5 AAX)®(g: X — 97A) > (271 L AA X 229 A0 A A).
This is easily seen to be A,.-bilinear.

Lemma 4.8. If X is cellular and strongly dualizable, and either A, X or A** X is flat over A, then the
Kronecker pairing is perfect.

Proof. Write DX for the dual and put ® := ®4,,. Replacing X by DX if necessary, we may assume
that A**X is flat. Then for any cellular object Y we get A,.(DX AY) ~ A,,(DX) ® A (Y); indeed
this holds for spheres by construction and is a natural transformation of homological functors preserving
filtered colimits (here we use that A**X is flat).

Let wu:1 — DX AX and c: X A DX — 1 be the unit and co-unit of the strong duality between X
and DX. Since X is cellular, A,,(DXAX) ~ Aus(DX)® Asi(X), and hence A, (u), Asx(c) define maps
of the correct shape to exhibit a strong duality between A..(X) and A..(DX). Consider the following
diagram

~ X)® Aw(DX N X) A X ADX)® A (X o~
A (X A1) A--lidnw) A (X ADX A X) Arelenid) Ao (1AX).

The vertical maps are lax monoidal structure maps; the equivalence A, (DX AX) ~ A, (DX)® Awi(X)
has already been established. The diagram commutes because A,. is lax symmetric monoidal. Up to
suppressing tensoring with the unit, the bottom horizontal composite is the identity (by definition of w, ¢
exhibiting a strong duality). It follows that the top horizontal composite (inverting the middle vertical
maps) (id ® Ay (¢))o(Ayx (u)®id) is the identity. A similar diagram shows that (A..(c)®id)o(id @ A (u))
is the identity. Thus A..(u), A (c) exhibit a strong duality between A..(X) and A..(DX). This was
to be shown. O

In preparation for later, we also observe the following.
Lemma 4.9. Let ¢ : A — A be a ring automorphism. Then the Kronecker pairing satisfies
(Ya,y) = ¢(z, v y).

Proof. The commutative diagram (in which suspensions have been suppressed)

1 —" 5 XAA 2 ana

id Awl id Awl

XAA N Agpa ™y a

wilmlfll w*ll

ANA — 5 A
shows that ¥~ (yx,y) = (z,9~1y). The result follows. O
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Let
Xo—)X1—>ESH(S)
be a directed system and put X = colim; X;. Suppose that lim] A**(X;) = 0. Then
A (X) ~ lim A (X;),

and we can give this the inverse limit topology (i.e. give each A**(X;) the discrete topology and take
the limit in bigraded topological abelian groups).

Corollary 4.10. Assume in addition that each X; is strongly dualizable and cellular, and A**(X;) or
Aux(X;) is flat. Then

(4.4) A™(X) ~Homa,, (Aw(X), Ar) and Au(X) ~Homa,, (A" (X), Ass).

Here Homy , . means continuous homomorphisms (for the discrete topology on the target and the inverse

limit topology on the source).
Proof. For the first claim we compute
A™(X) = lim A™(X;) = lim Homy,,, (A (X3), As)
~ Hom,. (colim A..(X:), Au) = Homa, . (Au(X), Aus),

using the Milnor exact sequence [GJ09, Proposition VI.2.15], Lemma 4.8, and compactness of the spheres.
For the second claim, note that by definition a basis of open neighborhoods of 0 in A**(X) is given by
ker(A**(X) — A**(X;)). Any continuous homomorphism thus factors through A**(X;) for some i,
yielding the formula

Homy,, o(A™(X), Asy) ~ colimHomy, , (A™(X;), Aus).

But also
colimHomy,, (A" (X;), Auxs) == colim A (X;) ~ A (X),

using Lemma 4.8 and compactness of the spheres again. O

4.3.2. We recall some standard facts about oriented ring spectra and Thom isomorphisms. Given a
homotopy ring spectrum F over S and an algebraic group G — GL,,, a G-orientation of E consists of
a choice of Thom class t(V) € E*»"(Th(V)) for every G-bundle V on a smooth S-scheme, satisfying
certain naturality and normalization axioms (see e.g. [Anal9, Definition 3.3]).

Lemma 4.11. Let E be G-oriented and V a Nisnevich locally trivial G-bundle on X € Smg (e.g. G
special and V' arbitrary). Then the map

idg AA

EATR(V) 4228, A Th(V) A X, EA0DNd,

EAS"EAX, TS EAYP X,
s an equivalence.

We call this equivalence the (homological) Thom isomorphism; it induces in particular ¢ : E,/ Th(V) ~
E*72n,*7n(X>-

Proof. By the smooth projection formula, we may assume that X = S. By Nisnevich separation [Hoy16b,
Proposition 6.23] and naturality of the Thom class, we may assume that V is trivial. In this case the
map is homotopic to the identity, by definition. (I

4.3.3. We now compute the homology of MSp, following the standard topological proof.
Write HGr(r,n) denote the quaternionic Grassmannian of 2r-dimensional symplectic subspaces in
2n-dimensional symplectic space (see e.g. [PW10c]). For example HGr(1,n) = HP".

Lemma 4.12. Suppose that A is Sp-oriented. We have A..(HP™) ~ A,.{Bo, b1, ..}, and the canonical
map o : (HP*)" — HGr(n, o) induces

A (HGr(n, 00)) =~ Sym” (A, (HP™)®™).
Proof. ¥°HGr(r,n) € SH(S) is cellular and strongly dualizable [RS@16a, Proposition 3.1]. By [PW10c,

Theorem 11.4] the maps
A (HGr(r,n)) « A**(HGr(r,n + 1))

are surjective, and

(4.5) A" (HGr(r, 00)) ~ h}zn A (HGr(r,n)) = A*[by,...,b.].
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We deduce (using Corollary 4.10) that A..(HP>) is the topological dual of A**(HP>) ~ A**[b], so
that compatible classes (; exist as claimed. In particular
Since (4.5) holds over any base, we find that

A**((H]P)OO)TI) ~ A™ [[ala s aan]]v
where a; = bi(v;), 7; being the tautological bundle on the i-th factor HIP*°. There is a map’ « :
(HP*)™ — HGr(n, o0) such that

o (y) 2y ByeB---Hy, = E.
By the Cartan formula [PW10c, Theorem 10.5], the map

a : A (HGr(n,00)) — A™((HP>)")
is given by
bi = b’L(E) = Ui(alv ceey a’n)a

where o; is the i-th elementary symmetric polynomial. It is thus a split injection onto (A** ((HP>)"))*».
The map a. is obtained by passing to continuous duals, and hence as claimed. (I
Remark 4.13. The above result can also be deduced from [Anal?7, Theorem 5.10].
Lemma 4.14. Let v be the tautological bundle on HP™. Then v\ 0 is (motivically) contractible.

Proof. Let v, be the tautological bundle on HP". Then 7, \ 0 = Sp,,/G X Sp,,_;, where G C Sp; is
the subgroup fixing the first vector. One checks (e.g. using Sp; = SLs) that G ~ G,. Since all of these
groups are special, the étale quotients are homotopy quotients, and we deduce that ~, \ 0 ~ Sp,, /Sp,,_; -
Taking colimits we get v\ 0 ~ Sp/Sp ~ . O

Proof of Theorem 4.1(1). Consider the motivic space BSp 2 colim,, HGr(n, o) (see (4.2)). This has an
H-space structure coming from addition of vector bundles. The diagram

(HP®)" — BSp”

HGr(n,00) —— BSp
commutes (essentially by construction); here the horizontal maps classify the tautological bundles. The
inclusion at the base point (HP*>)" — (HP>)"*! covers the canonical map HGr(n, co) — HGr(n+1,00)
and induces in cohomology the quotient map
Passing to continuous duals, we deduce that under the identification A..(HGr(n,00)) ~ Sym" (A..HP>),
the map HGr(n, 00) — HGr(n + 1, 00) corresponds to multiplication by Bp. This implies that

A+« (BSp) ~ colim A,.(HGr(n,o0)) ~ colim Sym" (A,.HP™) ~ A,.[5o, 1, .-]/(Bo — 1).

The Thom isomorphism (Lemma 4.11) induces an isomorphism of rings A..BSp LN A MSp. It
remains to identify the classes ¢(5;). Let v be the tautological bundle on HP*°. The defining cofiber
sequence of pointed spaces

v\ 0 = v~ HP> 2 Th(y)
has the property that +\ 0 is contractible (Lemma 4.14). This supplies us with an isomorphism

s Aw{P1, B2, ... } = A (HP™) ~ A,.(Th(y)).

To conclude the proof, we shall show that s(5;) = ¢(8;—1).
To see this, it suffices to show that the composite

s S

A (HP®) £ A, (Th(y)) ~ As_so_o(HP®)

maps (§; to 8;_1. By construction, its dual is
AT EP) S0 A7 (Th(y)) 5 A (HP),

"Recall that HGr(n, k) represents the functor of 2n-dimensional symplectic subbundles of the trivial symplectic bundle
©?%. On HP* we thus have v < O whence 48" < ©2?"*; this defines a map (HP*)" — HGr(n,nk). Now take colimits.
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i.e. multiplication by s*(¢(y)). By definition, this is b = by () [PW10c, Proposition 7.2], and so the claim
follows by dualization. (I

4.3.4. Write SGr(n, k) for the special linear Grassmannian varieties [Anal5, Definition 22].
Lemma 4.15. XSGr(n, k) € SH(S) is cellular and strongly dualizable.

Proof. By definition we have SGr(n, k) = det v, \ 0, where 7, j is the tautological bundle on Gr(n, k).
We thus have a cofiber sequence

SGr(n, k) — Gr(n, k) — Th(det vp, ).

Since Gr(n, k) and Th(det vy k) ~ P(det vy, x & O)/P(dety) [MV99, Proposition 2.17] are strongly du-
alizable [CD09, Proposition 2.4.31] so is SGr(n, k). For cellularity we use the description SGr(n,k) =
SL,/Pj. The group P} is an extension of special groups (SLx, SL,,—x and G,) and thus special. Thus
the étale quotient defining SGr(n, k) is a Zariski quotient, and hence (the action being free) a homotopy
quotient:

SGr(n, k) ~ (SLn)np; =~ Sgkzrpl PX" x SL,,.

It thus suffices to show that SL,, and P} are (stably) cellular; this is proved in [Wenl0, Proposition
41]. O

Essentially by construction, the space SGr(n, k) represents the functor of n-dimensional subbundles of
OF | together with a choice of trivialization of the determinant. If V is a symplectic bundle, then det(V)
is trivialized (by the Pfaffian; see e.g. the discussion just before [Anal2, Definition 4.5]), and so V is also
a special linear bundle. This induces maps HGr(n, k) — SGr(2n, 2k) and HGr(n, c0) — SGr(2n, c0).

Lemma 4.16. Suppose that A is SL-oriented and n-periodic. The composite

(HP*)" — HGr(n,o0) = SGr(2n,00) — SGr(2n + 1, 00)
imnduces

Aeu(SGr(2n + 1,00)) =~ Sym”™ (A, (HP®) /{5, Bs, ... }).
Proof. Write « for the composite. We first determine the map

o A (SGr(2n + 1,00)) = A™((HP™)") ~ A [aq, ..., a,].
By [Anal5, Theorem 10] we have
A™(SGr(2n 4+ 1,00)) ~ A™[p1, ..., pull;

here p; = p;() are the Pontryagin classes of the tautological bundle v on SGr(2n + 1,00). Thus
a*(p;) = pi(E), where E := v, By 8- - B, is the tautological bundle on (HP*>*)". We compute using
[Anal5, Lemma 12]

pi(E) = Hpt(%') =TI + a3

K2

In other words
o (p;) = ai(a%, . ,ai).

It follows that o* is a split injection onto A**[a?,a2,...,a2]*. By Lemma 4.15, Corollary 4.10 and

»'n

[Analb, Remark 13] the map «, is the topological dual of o*, which is easily checked to be as claimed. O

Proof of Theorem 4.1(2). By the Thom isomorphism (Lemma 4.11) we have
A MSL ~ colim A,..SGr(2n + 1, 00),
which by the above identifies with

A**(MSp)/(bl,bg, ce )

This was to be shown. O
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4.4. Adams action. In this section we work over a field k of characteristic # 2. Recall that for any
Sp-oriented cohomology theory A we have A**(HP>) ~ A**[b], where b = b1(y) [PW10a, Theorem 8.2].
Recall also that we put KW = KO[n™!] and kw = KWx.

Lemma 4.17. Suppose that W(k) = Fy. Then
Y3(b) = b(1 + Bb?) € kw? (HP™).

Proof. We implicitly invert 3 throughout this proof.
Since kw™* (HP®) < KW**(HP), it suffices to prove the claim for KW. Note that

KOW2(HP™) = @) KO 2-2(1KO0(1)} = (D Z{bKO(7)'} — KGL*2(HP);
>0 i>0

here we use that KO¥*" ~ GW(k) = Z by assumption, and KO¥" 4" %2 ~ 7 as always (see e.g.
[Bacl7, Table 1]). Write o : KO — KGL for the canonical map and H (1) € KO*?(HP>) ~ KSp" (HP>)
for the class of the tautological bundle. We shall first determine ¢3(H (1)), and to do this we determine
a(®(H(1))) = 1> (a(H(1))) (see Theorem 3.1(4)). We have a(H(1)) = By, where v € KGL® (HP™)
is the tautological bundle. By Remark 3.13, “our” Adams operation on KGL is just the classical one, so
can be computed in terms of exterior powers of vector bundles (see e.g. [Weil3, §I1.4]). It follows that
for any rank 2 vector bundle V' we have

P3(V) =V -3V @detV € KGLY(X).
If the bundle is symplectic, then det V = 1. Hence
v} (a(H (1) =% (Biary) =372 Brén(v?* = 37)
=372 (B ) (Bier (Brér)® = 3) = a3 H()(BH (1) - 3)).
Here we have used that ¥ is a ring map and ¢*(fxaL) = 3fkcr (by construction). Hence by injectivity
of a we get
YHH(1)) =32H(1)(BH (1) - 3).

By [Anal?7, Theorem 6.10] we have b¥C(v) = H(1)— H_, where H_ € KO*?(x). Hence also 9% (H_) €

KO™"?(%). Tt follows that ¢3(b) € KW?(HP*) is the image of ¢*(H(1)) — ¢*(H_) € KO“?(HP*>). One

has KW* ~ W(k)[3*!], with |3| = 4 (sce e.g. §6.3.2). Thus KW? = 0, so 1?(b) is just the image of
¥3(H(1)). Since 2 =0 € KW*, the result follows. O

Remark 4.18. Our proof is complicated by the fact that we did not want to use the geometric description
of the Adams operations on KO*™*(HP*); in particular this made it difficult to determine 13 (b) without
the assumption that W(k) = Fy. If we allow ourselves this description (i.e. Proposition 3.38 and Lemma
3.36) we get

o wgeo(H(l) B H—)

3 4,2 00
b = € KO™*(HP>).
W) = (™)
Using that for a rank 2 symplectic bundle E one has wgeo(E) = E3 — 3E, one easily deduces that

$?(b) = b(1 — Bb°/3) € kw? (HP),
over any field.

Lemma 4.19. For a scheme S and n odd, the maps ™ : KW[1/n] — KW][1/n] € SH(S) and (provided
S is a field) Y™ : kw[l/n] — kw[l/n] are equivalences.

Proof. The second map is obtained from the first by applying the connective cover functor, so the second
claim follows from the first. The first claim is compatible with base change, so we may check it over
Spec(Z[1/2]), and thus we may reduce to fields [BH17, Proposition B.3]. It thus suffices to show that
" m, KW([1/n] — 7, KW[1/n] is an isomorphism; recall that =, KW[1/n] = W[1/n,3,37!]. Hence
by Example 3.7 and Theorem 3.1(2,3) the map on m,; is given by multiplication by n?‘, which is an
isomorphism as needed (and all other homotopy sheaves vanish). (I

Proof of Proposition 4.3. It suffices to prove the “in fact” statement.

Denote the inverse of 1® by ¥'/3. Note that 13(8) = 98 = 3, so that % acts by the identity on kw.,
and hence so does ¥'/3. Applying Lemma 4.9 to ¥'/3 we deduce that (¥'/3z,y) = (z,4%y), i.e. that the
action of ¥'/3 on kw,HP> is dual to the action of 1% on kw*HP*>. On kw*HP>™ we have

wS(bn) _ wS(b)n _ bn(l + 6()2)n _ bn + nﬁb"+2 + O(ﬁQ)
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Hence
(4.7) H3(8;) = Bi + Bi — 2)Bi—a + O(B).
It follows that for any z € kw,HP™ we have 1'/3(z) = 2 + O(f). Since ¢ is B-linear and inverse to
173, we deduce that x = ¢33 (z) = ¥?(z) + O(B), i.e. ¥*(z) = x4+ O(B). Using this when applying
3 to (4.7) we find that

Bi =% (Bi) + B(i — 2)(Bi—2 + O(8)) + O(8%), whence ©*(8;) = B; + B(i — 2)Bi—2 + O(B*).

Using that the 8; € kw,HP> maps to b;_1; € kw,MSp and 2 = 0 € kw, the result follows. O

5. SOME COMPLETENESS RESULTS

5.1. Summary.

Theorem 5.1. Let k be a field of char(k) # 2, and suppose that vedy(k) < oo. If E € SH(k)*Y, then
EJ is n-complete.

In particular, the map
Tan By = M B,
is an isomorphism. This is the only form of the result we shall use in the sequel. In §5.2 we give a

complete argument for this 7,.-isomorphism. The extension to an equivalence of spectra uses a technical
result established in the remaining subsections; this is not relevant for the sequel and so can be skipped.

5.2. Main result. We first recall and extend the slice completeness result of [BE@20, §5]. Recall that
the slice tower [Voe02] is a functorial tower foF — E € SH(k); the slice completion of E is

scE = limcof(f,E — E).

Proposition 5.2. Let k be a field of exponential characteristic e, t coprime to e with veds (k) < 00.8 If
E € SH(k)>o, then B}, — sc(E);, is an equivalence.

Note that the fact that Ef, — sc(E);, is a m..-isomorphism was established in [BE@20, Corollary
5.13]. We will give the full proof of Proposition 5.2 in §5.3.4.

Ezample 5.3. Let E € SH(k)[n™]>0. Since p = 2 on SH(k)[n~1], we deduce that /2" is slice complete.
It follows that slice spectral sequence techniques as in [OR19] could be used (over fields of characteristic
# 2 and vedy < 00) to study the relationship between 1[p~!]% and kw’. We pursue a different strategy
in the sequel.

The following argument is closely related to part of [HKO11a, Lemma 20].
Lemma 5.4. Let E € SH(k). Then E} is n-complete if and only if E/(2,p) is n-complete.

Proof. Necessity is clear since n-complete spectra are stable under finite colimits. We thus show suffi-
ciency. Consider the fiber sequence

F — E/2— (E/2),.

Then F is n-periodic, 2-complete, and F'/p ~ 0 by assumption. By (2.1) we have F//p ~ F/2. We deduce
that F' ~ 0 (F being 2-complete); in other words E/2 is n-complete. The result follows since n-complete
spectra are stable under limits. O

Proof of Theorem 5.1. By Proposition 5.2, E/(2, p) — sc(E)/(2, p) is an equivalence. Since slices are 7-
complete (being modules over HZ 2y ~ s0(1(2)); see e.g. [BH17, Theorem B.4]), we deduce that E/(2, p)
is n-complete (being a limit of finite extensions of slices, by the effectivity assumption). We conclude by
Lemma 5.4. [

5.3. Remaining proofs.

8We are using here the slightly extended definition of virtual cohomological dimension introduced in [BE@20, §1.1.2],
i.e. vede (k) = max{cdp(k[v—1] | p|t}.
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5.3.1.
Definition 5.5. (1) By a tower in a category C we mean an object of Fun(Z°P,(C), i.e. a diagram
Ee=...Fb—F —-FEy—FE_1—---€C.

(2) Suppose that C is pointed. We call a tower F, nilpotent if for every n € Z there exists N > n
such that the composite map Fn — E, is zero.

Lemma 5.6. Let E, € SH be a tower of spectra such that each tower m;(Es) of abelian groups is
nilpotent. Then

lim E; ~ 0.

11— 00
Proof. For fixed i, the tower 7;(E,) is Mittag-Leffler, and hence lim!m;(E,) ~ 0 [Wei95, Proposition

3.5.7]. Clearly also limsm;Es ~ 0. The claim thus follows from the Milnor exact sequence [GJ09,
Proposition VI.2.15]. O

Recall that if Aq — A is a tower in C;4 with C an abelian category, there is a canonical descending
filtration on A denoted by

FFA =im(A" — A).

5.3.2. Let C be a triangulated category with a t-structure. Fix X € C. For every E € C, we have a
natural tower

"'—>E22—>E21—)E20—)---—)E.

Applying [X, —] we obtain a tower in abelian groups, and hence a natural descending filtration on [X, F]
which we denote by G*[X, E]. Given F € C%, we put H'(X, F) = [X,X'F].

Lemma 5.7. Let a: E — F € C induce the zero map H (X, m,E) — H (X, mF). Then
o(G'[X, E]) c G™HX, F).

Proof. An element of G*[X, E] is represented by a map X — Es;. Its image in [X, F] is lands in
G'TX, F] if and only if the composite X — E>; — E — F factors through F-;11 — F. For this it is
enough that the composite X — E>; — F>; — Sim;(F) is zero. Since this factors as X — Xim(E) —
im;(F), the result follows. O

We now specialise this to C = SH(k), X (the suspension spectrum of) a smooth variety.

Remark 5.8. Let X € Smy. Then G¥[X,E] = 0 for k£ > dim X; in fact [X, E>x] = 0. This follows
from the fact that the Nisnevich topos of X has homotopy dimension at most dim X (see e.g. [BH17,
Proposition A.3(3)]).

Corollary 5.9. Let X € Smy be connected of dimension < d. Let a: E — F € SH(k) induce the zero
map on the generic stalk w,(—)o(k(X)), fori=0,1,...,d. Then the map

s [X,E] = [X, F)
increases filtration by (at least) 1.

Proof. We first claim that o : H*(X,m;(E)o) — H*(X,m,(F)o) is the zero map, for k > 0 and 0 < i < d.
Since Zariski and Nisnevich cohomology of the homotopy sheaves of E agree [Mor05b, Lemma 6.4.7],
for this it suffices to show that « : m,;(E)olxy.. — m;(F)o|x,.. is the zero map. This follows from
unramifiedness of homotopy sheaves [Mor05b, Lemma 6.4.4] and our assumption on a(k(X)). We have
thus proved the claim.

Applying Lemma 5.7, we deduce that () a(G'[X, E]) C G"T[X, F] for 0 < i < d. Since ¥°X €
SH(k)>0, for i < 0 we have [X, F| ~ [X, F>¢] ~ [X, F>;41], and so (x) still holds. For i > d we have
G*[X, E] = 0 by Remark 5.8, and so again (*) holds.

This concludes the proof. ([
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5.3.3.

Definition 5.10. Let F, € SH(k) be a tower.
(1) We call E, locally nilpotent if for every connected X € Smy, and 4, j € Z, the tower

m; 5 (Ee)(k(X))

=i,
is nilpotent.
(2) We call E, sectionwise nilpotent if for every X € Smy, and i, j € Z, the tower

[R5 X, B
is nilpotent.
Proposition 5.11. Let E, € SH(k) be locally nilpotent. Then it is sectionwise nilpotent.

Proof. Let X € Smy. It suffices to show that there exists N > 0 such that [X, Ex] — [X, Fo] is the
zero map. Writing X as the disjoint union of its (finitely many) connected components, and using that
[X1]] X2, E] ~ [X1, E] ® [X2, E], we may assume that X is connected, say of dimension d. We claim
that for any 7 there exists V(i) > i such that [X, En(;)] — [X, ;] increases postnikov filtration by (at
least) 1. Assuming this for now, if N = N°(@+1)(0), then the composite

(X, En] = [X, Enecao)] = [X, Enoa-v(g)] = -+ = [X,, Eo]

increases postnikov filtration by d 4+ 1, and hence is the zero map by Remark 5.8.

It hence suffices to prove the claim; clearly we may assume that ¢ = 0. The local nilpotence assumption
implies that there exists N = N(0) > 0 such that the maps m;(En)o(k(X)) — m;(Eo)o(k(X)) are all
zero, for 0 <4 < d. The claim now follows from Corollary 5.9.

This concludes the proof. ([

Corollary 5.12. Let E, € SH(k) be locally nilpotent. Then lim; E; ~ 0.

Proof. Immediate from Proposition 5.11 (which shows that m;map(X7*X, E,) is nilpotent) and Lemma
5.6 (which implies that map(X7* X, lim; E;) ~ lim; map(X/* X, E;) ~ 0). O

5.3.4. We can now prove our extended slice completeness result.

Proof of Proposition 5.2. By [BE@20, Theorem 5.3(1)] (using [BE@20, Remark 5.12]) we know that
fe(E)/(t™, p™) is locally nilpotent. The claim thus follows from Corollary 5.12. O

6. THE HW-HOMOLOGY OF kw

6.1. Summary. Throughout k is a field with veda(k) < oo. Recall (see Lemmas 2.12, 2.10 and 2.8)
that then

See §6.3 for a definition of the motivic spectra HW, kw. The following result will be improved upon in
Proposition 7.7.

Theorem 6.1. Let veda (k) < oco. We have

W)Y *=4i>0

e ((kw A HW)Y) ~ {0 s

There exist generators t; € my.0i (kw AHW)2) and z; € 74 (kw AHW)%) such that the following hold.

(1) Letk'/k be an extension with veda (k') < co. Then |k generates ma;((kwp AHW . )5) ~ W(K')5.
(2) Fori >0 we have t? € (2 + 1(k)*)tis1.
(3) Writing i =, €,2" for the binary expansion of i > 0, up to a unit (of W(k){') we have

T = Htf{l'

n

(4) xo can be chosen to be 1.

Remark 6.2. Tt follows that m.((kw A HW)%) is a flat W(k)4-algebra generated by t¢, 1, ..., subject to
the relations t7 = (2 + r;)t;41 for certain r; € I(k)2.

6.2. The motivic dual Steenrod algebra.
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6.2.1. We will use the mod 2 motivic cohomology spectrum HZ/2. Tt is a consequence of the solution of
the Beilinson-Lichtenbaum and Milnor conjectures (see e.g. [KR@18, (7.1)]) that

,(HZ/2), ~ k" [7].

Here kY denotes the homotopy module of mod 2 Milnor K -theory [Morl2, Example 3.33], and 7 €
m1(HZ/2);. In particular we have a cofiber sequence

(6.1) »0-tHzZ/2 5 HZ/2 — EM.

6.2.2. We recall the structure of the motivic dual Steenrod algebra [HK@, Theorem 5.6]. There exist
elements

,& € HZ/2,H7/2,i =0,1,2,...,5 =1,2,...
with
ITi] = (2771 — 1,20 —1) and |&| = (2T —2,2° —1).

Then, when viewed as a left HZ/2-algebra, there is an equivalence?

(6.2) HZ/2 AHZ/2 ~HZ/2[70,T1, - -, &1, €2, ... 1/ (TF — (T + pT0)€ir1 — pTiv1)-

We may occasionally write & := 1. The switch map on HZ/2 A HZ/2 induces an automorphism of
HZ/2..HZ/2 called antipode which we denote by x — T.

Lemma 6.3. (1) The action of HZ/2**HZ/2 on HZ/2.. is determined by Sq* (1) = p, Sq'(z) = 0
forz=7andi>1, ori>0andz =1 orz € ki (k).
(2) The right unit ng : HZ/2.. — HZ/2.,.HZ/2 is given by ng(t) = 7 + p1o and nr(a) = a, for
ackMk).

Proof. The right unit is a special case of a homology coaction, and so dual to the action of HZ/2**HZ/2
on HZ/2**: ng(x) = 3, Sq"(z) - Sq’. Thus (1) and (2) are (essentially) equivalent. The right unit
is kM (k)-linear (see e.g. Example 3.7 and use that my(1), ~ KM — 7 ,(HZ/2) ~ EM is surjective)
and satisfies (1) = 1. Thus for « € kM (k) we get nr(z) = x. For degree reasons, we must have
nr(T) = at + bro + c&1, for some a € Fa, b € k1 (k), ¢ € ky' (k). This translates into Sq°(7) = ar,
Sq' (1) = b and Sq*(7) = ¢ (using [Voe03b, Lemmas 13.1 and 13.5]). Hence a = 1. We have ¢ = 0 by
[Voe03b, Lemma 9.9]; b = p is holds essentially by definition (using that Z(1)[1] = G,, and considering
the long exact sequence computing H*(k,Z/2(1))). O

Corollary 6.4. The monomials
H?ieié-_jnj
%]

form a left HZ/2,.-module basis of HZ/2..HZ/2.

Proof. Since the conjugates form a left basis, it is clear that these monomials form a right basis. It
suffices to prove that elements of the form 77m (where m is one of the monomials) form a kM -basis. By
Lemma 6.3, elements of the form (7 + p7)Pm form a kM-basis, where m is one of the monomials in the
claim. Order the monomials in the 7, El and 7 lexicographically, with 7 < 7; < Ei < Ti4+1. The relation
from (6.2) ensures that 72 is a sum of monomials > 7;; this implies that if 7P is any such monomial,
To7PMm is a sum of larger monomials. Since Ty = 79 (see again [HK@, Theorem 5.6]), it follows that the
matrix expressing the elements {(7 + p79)PT }p m in terms of the basis {77}, 7 is triangular (with unit
diagonal). The result follows. O

6.2.3. The Kronecker pairing induces an isomorphism HZ/2**HZ/2 ~ (HZ/2,.HZ/2)* (see e.g. [Hoy15,
Proposition 5.5]). By passing to the dual of the monomial basis of HZ/2,,HZ/2, any monomial m €
HZ/2, ,HZ/2 defines a dual m € HZ/2PTHZ/2.

Warning 6.5. We can extend this map HZ/2,.,-linearly, but the extension is not compatible with gradings:
if a € HZ/2, s then am € HZ/2P~"975HZ/2 whereas am € HZ /2y, g+ HZ/2.

9%n the naive sense that the right hand side has an HZ/2-module structure and also a homotopy HZ/2-algebra structure,

and there is an equivalence respecting both structures
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Ezample 6.6. Since HZ/2P4 is concentrated in ¢ > 0, except for HZ/2%? = Z /2, we find that HZ/2*"HZ/2
is generated as an Fo-vector space by 1 and 7p. In other words

HZ/2°HZ/2 =Fy, HZ/2'° =TFo{R} and HZ/2P°HZ/2 = 0 else.
Similarly HZ/2*'HZ/2 is generated by 7, kM &, 71,770, k{wfo,a;o,ﬁ?o, so that
HZ/2"'HZ/2 = Fo{7}, HZ/2V ' HZ/2 = kM @ Fo{rry}, HZ/2> ' HZ/2 = Fo{&1} & kM {7},
HZ/23'HZ/2 = Fo{ A} & Fa{ro&, }, HZ/24 HZ/2 = Fo{7m }, and HZ/2P'HZ/2 = 0 else.
If « € HZ/2**HZ/2 is any endomorphism, then we denote by
o =anid, o =idAa : HZ/2 NHZ/2 — HZ/2 ANHZ/2
the induced maps. We obtain
ok o®:Hz/2,.82/2 — 0HZ/2,,HZ/2.

Lemma 6.7. (1) For any o € HZ/2**HZ/2, the map ol is right HZ/2..-linear, and of is left
HZ/2..-linear
(2) We have the formulas

. . 1. (1) =70 Fol(r) =&,i>0
Tox (10) = 1 Ty (n) =1 . N
OL( V) IL( % ) =0,i A1 oy (&) =0,i>1, and
70, (1) =0,i>0 n () =01#1 R
~L . ~ L . 1*(51):1 61*(7-72):05120
7o, (&) =0,i =0 71, (&) =0,i>0 . R
€. (&) =0,i#1 &1, (&) = 61,0 > 0.

(Here in the last formula £&_1 :=0.)
(3) Rk is a derivation (i.e. satisfies T (ab) = 7% (a)b + anp (b)), AL is a derivation on the right
~L
HZ/2..-subalgebra on all the generators except 1o, and &1, is a derivation on the right HZ/2..-
subalgebra on all the generators except o, T1.

Proof. (1) Immediate from the definitions.
(2) For E € SH(k) we have an action

HZ/2""HZ/2 ®wz,, HL[2:E — HZ/2..E,a @ e — ax(e).
By the eightfold way [Boa82, p. 190], this is obtained from the coaction
A:HZ/2:E — HZ/2.,HZ/2 ®uz o, HZ/2.:E

by partial dualization: if A(e) =", a; ® e; then a,(e) = >, (a;, ®)e;. Applying this with E = HZ/2, it
follows that for « € HZ/2**HZ/2 and x € HZ /2., HZ/2 with A(z) = z; ® y;, we have

ok (@) = 3 (s, 0y, and similarly of(z) = 3 (s, 0.
The formulas now follow from the formulas for the comultiplication in HZ/2,,HZ/2 [HK@®, Theorem
5.6].
(3) By (1), it suffices to show the claims about the Z/2-subalgebras. Let g be one of the monomial
generators of HZ/2,,HZ/2 and a,b € HZ/2,.HZ/2. Suppose we can write

Ala)=1®a+g®d +Y a;®a, Ab) =10b+gab +> b,
where the a;, b; are monomials. Suppose further that when expanding a;b; into monomials, g does not
appear. Then gZ(a) = o/, gL (b) = b’ and
A(ab) = g (ab +a'b) + .. .,

where g does not appear on the left in the omitted terms. It follows that gZ(ab) = ab’ + a’b, which is
what we wanted. A(a),A(b) can always be written in the desired form, the only problem may occur
when expanding the product. As long as g itself is not a product, the only way the assumption can fail
is from an “unexpected” contribution, i.e. coming from 72 = (7 + p79)&i+1 + pTit1. It thus suffices to
ensure that A(a), A(b) do not contain 7; on the left hand side, for 0 < i < N for certain N depending on
g. This will happen if 7; for ¢ < N are excluded as generators (considering again the explicit formulas
for the comultiplication). One checks that for g = 79, 71,1, respectively N = 0,1,2 work. The result

follows. 0
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6.3. Spectra employed in the proof.

6.3.1. We write ko = fOKO for the spectrum of very effective hermitian K-theory. We also put ku =
foKGL ~ fyKGL. Note that we have canonical ring maps ko — ku — so(KGL) ~ HZ.

Proposition 6.8. The canonical map HZ/2..ko — HZ/2,.HZ/2 is injective and hits the elements

E?,EQ, cee3T2,T3y.... The resulting map
HZ/2 Ao ¢ HZ/2[E. &y, ... Ta T3y ... 1/(...) < HZ/2 A HZ/2

s an algebra isomorphism.
Similarly HZ/2..kgl — HZ/2,,.HZ/2 is injective and

HZ/2 ANkgl ~ HZ/2[¢,, &, ... T, T3,...]/(...) — HZ/2 NHZ/2.

Also
HZ/2 NHZ ~ HZ/2[¢,, &y, ..., T1,T2,T3,...]/(...) = HZ/2 NHZ/2.

Proof. Once we have produced the maps in question, to show they are equivalences it suffices to show
isomorphisms on 7., over any field extension. Since all the maps and spectra are stable under base
change, we thus need only prove the assertions on the level of ..

This is essentially contained in [ARQD17]. We first explain the case of HZ. We have the cofiber sequence

Hz % uz % uz/2 % suz.

The map iduz/2 A2nz is given by 2 = 0 (since 2 € .. (1)), hence after smashing with HZ/2 the cofiber
sequence splits and we get
HZ/2..HZ/2 ~HZ/2..HZ & C.

Putting § = p o 9, we find that HZ/2.,HZ = ker(6%). One knows that § = 7y corresponds to the
Bockstein Sq'. Using Lemma 6.7 we find that 6% vanishes on the right HZ/2,.-algebra M generated by
T1,To, ..., &1, &, ... and does not vanish in 79M. Dualizing, we find that § vanishes on M and does not
vanish on 7o M (these are now left HZ/2,.-modules). By Lemma 6.4 we have HZ/2,.HZ/2 = M ©&7ToM.
It follows that ker(6%) = M, as desired.

The argument kgl is essentially the same, using X%!kgl Pxor, kgl — HZ. It is not immediately
apparent that Sxar, : HZ/2 A kgl — HZ/2 A kgl is the zero map, since fkar € m««(1). We can argue as
follows. Over the ring m..(HZ/2 A kgl) the formal group laws = + y + Skcrzy and x + y are isomorphic;
in particular the former must have infinite height [Rav86, Lemma A2.2.9]. Thus 0 = [2]ka(z) = BrcL?,
whence fkar, is zero in .. (HZ/2 A kgl). Continuing with the above argument, this time it turns out
that § = 71 [ARQD17, Lemma 2.9]; the rest of the argument goes through as before.

For ko the same argument works, using $''ko -5 ko — kgl. Since 1 € m,, (1) it is immediate that it

acts by 0 on HZ/2 Ako. The boundary map ¢ turns out to be §A1 [ARD17, Lemma 2.12] [Voe03b, Lemma
13.1]. The rest goes through as before. (|

6.3.2. We denote by KW = KO[n~!] the Witt theory spectrum. As the name suggest, it represents
Balmer—-Witt theory [Hor05]. We put kw = KWso. The image of the Bott element 8 € ms 4KO yields
an element 5 € mKW = mykw and we have [Bal05, Theorem 1.5.22]

m, (KW) =~ W[5*] and . (kw) ~ W[B].
Lemma 6.9. The canonical map ko — KO — KW induces an equivalence ko[n™'] ~ kw.
Proof. Since ko € SH(k)>0, the map ko — KW indeed factors through kw. We have
7, (ko[n™']) ~ colim [1*(ko)0 2or, (ko) g .. } .
Since m, (ko)—,, ~ 7, (KO)_,, for x,n > 0 and x,(ko)_,, = 0 for *x < 0, the result follows. O

We put HW = 1]~ !<o; in other words this is just the homotopy module W[n*]. The unit map
induces

(6.3) HW ~ kw<g ~ kw/(.
Warning 6.10. Tn other works HW would perhaps have been denoted K" [~'] or W [n*] (and HW would

have denoted something else). Since this object is so central for our work, we reserve the prominent
notation.
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6.3.3. Consider the spectrum foHW. One may show (e.g. see [Bacl7, Theorem 17]) that m,(foHW), ~
K ZV is the homotopy module of Witt K -theory; in other words K ZV = I (and multiplication by 7 induces
the inclusion I**1 < I*; for % < 0 we put I* = W). There is a canonical map KW — kM [Mor04b]; by
the resolution of the Milnor conjecture [Voe03a, OVVO0T7, Mor05a] this induces a cofiber sequence

(6.4) LU RW Oy kW (M

Taking effective covers, we obtain a map foHW — fok™ ~ HZ/2 [Bacl7, Lemma 12]. The induced
square

foHW ——— KW

(6.5) l l
HZ/2 —— kM

is cartesian [Bacl7, Theorem 17].

Lemma 6.11. The map 7 : X% ~1HZ/2 — HZ/2 lifts uniquely (up to homotopy) to a map 7 : > ~1HZ/2 —
foHW, and cof (7) ~ K.

Proof. Since X0"'HZ/2 ~ XGA~'AHZ/2 € SH(k)>1 and K" kM € SH(k)<o, the long exact sequence
for [©%~1HZ/2, —] shows that there is a unique lift as claimed. We can view this as a morphism from
the bicartesian square

¥O-1HZ/2 —— 0

idl |
$0-1HZ/2 — 0

into (6.5); taking cofibers we get a bicartesian square

cof(7) —— KW

! |

cof(r) —— kM.
The bottom horizontal map is an equivalence by (6.1), hence so is the top one. This was to be shown. O
Corollary 6.12. We have K" € S0~ 1SH(k)vel.

Proof. Since SH (k) is closed under colimits (and HZ/2, foHW € SH(k)"*f), this is immediate from
Lemma 6.11. g

6.4. Determination of . (kw A HW)J.
6.4.1. For E € SH(k), consider the n-multiplication tower
(6.6) P ey D YRy DN 5

Functorially associated with this is a spectral sequence (the n-Bockstein spectral sequence) with [Lurl6,
n
beginning of §1.2.2 and Construction 1.2.2.6]
EPTY =y q(cof(n : STPTLTPHIE 5 TPPREY),, p <0
(6.7) dy : EPO — pPoprtre b
> Tptq(E)w.

Here by the last line we mean that the E-page in position (p, ¢, w) is is related to mp4q(E)y, (but we
are not claiming any kind of convergence).

Remark 6.13. Since the tower (6.6) is compatible with base change, so is the associated spectral sequence
(6.7).

The boundary map in the cofiber sequence
SUEL EL EmS e2E

induces the Bockstein
§=pd: E/n— X*E/n.
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By construction, §2 = 0 and so 6. gives m.(E/n). the structure of a chain complex. We write its

homology (respectively cycles, respectively the entire complex) in spot corresponding to 7, (E/n)y as
Ho(m(E/0)«, 64)p (respectively Zq(me(E/N)x, 0x)p, Co(me(E/N)«,04)p). Recall the notion of conditional
convergence from [Boa99, Definition 5.10].

Lemma 6.14. By suitably re-indexing the spectral sequence (6.7) we obtain a conditionally convergent
spectral sequence

EYTY = w(B/n)uwss = 7s(B))w
dy: EYT — By bIre,
Here Ef’f’w =0 for f <0. We have
Ey™ = Zy(m(E/1)s, 64)w
E;f’w = Hs(ﬂ*(E/n)*, 5*)f+w’ f>0.
Proof. We have cof(n : X7PTL=PHE — $7P7PE) o~ $7P"PE/n and hence EV'"" ~ w14 (E/1)w—p.

The re-indexing is obtained by putting s = p+ ¢ and f = —p.
By Lemma 6.16 below, the spectral sequence converges conditionally to

cof (lim X7 E = E) = lim cof (5P7E 5 B) = lim E/nP ~ EJ).
P P P
By construction, the dj-differentials are induced by d., whence the identification of the Fy-page. [

Remark 6.15. If E — E/n is an E.-ring map, then the spectral sequence above can be identified with
the descent spectral sequence for this map. In particular, it is multiplicative. Furthermore F' is an
FE-module, then the spectral sequence for F' is a module over the one for F.

In the proof of Lemma 6.14, we have made use of the following well-known fact. Let Fo : Z°? — SH
be a tower of spectra. Then as above there is an associated spectral sequence EF9(E,).

Lemma 6.16. The spectral sequence EP1(E,) converges conditionally to cof(lim Fq — colim F,).

Proof. Let E]’D = cof(lim E, — E}). Then there is a morphism of towers E, — E, inducing a morphism
of spectral sequences EF9(E,) — EP9(FE]). By construction, this induces an isomorphism on the Ej-
page, and hence on all following pages. Noting that lim £, ~ 0 and colim £, ~ cof(lim E, — colim F, ),
we may replace Fo by F,, and so assume that lim F ~ 0. Conditional convergence to the colimit means
by definition [Boa99, Definition 5.10] that
lim 7; (F,) ~ 0 ~ lim'7;(E,), for i € Z.

By the Milnor exact sequence [GJ09, Proposition VI.2.15], this follows from (and is in fact equivalent
to) lim E, ~ 0. O
6.4.2. Applying Remark 6.15 to the map (see (6.4))
and G = E A K", we obtain the spectral sequence
68) E(G)"* = C(m(ENEM).,8)[h] = m(EAK"))).

| By(G)* = Z(mu (B AKM)., 0[] /h-im(6.)

Here
h=1¢ El(KW)O71’_1 :EM(I{:)O,
and we have used the module structure to act with h € Ey(K") on Ey(G).

Ezample 6.17. Taking E = 1, we get E1(G)>/" = 0 unless s = 0, so the spectral sequence collapses
at F1. The spectral sequence converges to Wo((KW){,]\)* = (K" (k).)}; on E; = E,, we see the T-adic
filtration (as we must) with subquotients given by k™ (k),. The element h detects n € K" (k)_1. In
particular A is a permanent cycle.

Via the spectral sequence, we obtain a filtration F'®m, (Gg)* on the bigraded group w*(Gﬁ;)*. Multi-
plication by n induces a map 7, (GQ)* — Ty (GQ)*_l which maps F*® to F**! and on associated graded
corresponds to multiplication by h. Taking the colimit we obtain a filtration on

7o (G))aln Y] = colimm. (G)os = m(Ghl 1))
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with

(6.9) Fer, (Gg [n71])« = colim F'+i7r*(Gf7\)*_i

and associated graded
g1 (G )v = Exc(G)"* 7],

Note that even though the filtration F*m,(G}). terminates at FO (i.e. FOm.(G}). = m.(G})«) this need

not be the case for the induced filtration on 7. (G [n~']).: we could well have
FOCF'CcF2cC...

Note also that we are not making any claim about the completeness etc. of the filtrations.

6.4.3. We may wish to apply spectral sequence (6.8) with E = HZ/2. To begin with, using that
(HZ/2)/7 ~ EM (see (6.1)), the form of HZ/2,,HZ/2 (see (6.2)) and the fact that nr(7) = 7 + pmo
(Lemma 6.3) we find that

(6.10) Tox (HZJ2 N EM) ~ EM (k) [10, 71, ..., €1, &2, ... 1/ (T2 = pTig1).
Now we determine the differential.
Lemma 6.18. The action of 8, on m..(HZ/2 A kM) satisfies
0u(ri) =0 and 0.(&) =€,
Proof. We claim that there exists a commutative square
Mt y2apM
I I
HZ/2 i, »21HZ/2,
where the vertical maps are the canonical projections. Indeed using the cofiber sequence
»2Hz/2 5 221HZ/2 - 22UEM - SPHZ /2

it suffices to show that [HZ/2, ¥3HZ/2] = 0, which follows from the form of the motivic Steenrod algebra
(see Example 6.6). We have (again by Example 6.6)

[HZ/2,2*'HZ/2] =~ Fo{&1} @ kY (k) {7},

so that 6 = aé, + b7, for some a € Fy and b € kM (k). Comparison with Lemma 6.7 (and noting that
we are looking at 0%) yields

6.(13) = b&; and 6.(&;) = a&? .
Since n = 0 on HZ/2, smashing the cofiber sequence for K" /i ~ k™ with HZ/2 we obtain a splitting
T (HZ/2 A EM) ~ 70 (HZ/2 N KV @ 7,0 (B2 THZ/2 A KV,

with the first summand given by ker(d,). Since HZ/2 A k™ # 0 (e.g. my(—)« = k) we find that neither
of the (isomorphic) summands can be trivial, and so 0. # 0. After base change to an algebraically closed
field we get kM (k) = 0, so that the only way to get 6, # 0 is @ = 1. Now we compute

0:(0x(71)) = 04 (b&1) = b.
But 62 = 0, so that b = 0. The result follows. O

6.4.4. We now apply the spectral sequence with I = ko. Recall that we have determined . (HZ/Q/\EM)
in (6.10).

Lemma 6.19. The map ko — HZ/2 induces an isomorphism
Tox(ko AEM) ~ M (K)[E, €a, oo 1oy T3y ./ (T7 = pTign) < Tan (HZ/2 A EM).

The homology of 8. acting on this is given by k™ (k)[r2,73,...]/(T? — pTiy1).
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Proof. Applying antipodes in Lemma 6.8, we find that 7..(ko ANHZ/2) — 7. (HZ/2 AHZ/2) is the right
HZ/2..-algebra generated by &7, &s,...,72,73,.... Since these generators form part of a right HZ/2,.-
basis (see Corollary 6.4), multiplication by nz(7) is injective and we obtain 7. (koA k™) as the quotient.
This proves the first claim.

It follows from Remark 6.15 that 0. is a derivation, which by Lemma 6.18 satisfies d.(7;) = 0,
6.(&) = €2, (and also 8, (kY (k)) = 0, since these elements come from the sphere). This implies that
the homology of §, is given by

kY (k)2 73,1/ (77 = prigr) © HY,
where H’ is the homology of d, restricted to the subring

FQ[&%)&?v .. ]

We can determine this as follows, adapting [Ada95, Proof of §3 Lemma 16.9]. Let F; C Fa[¢7, &, ...] be
the Fa-vector space with basis {£27,£2"¢; 11} n>0. Then 6.(F;) C F; and H.(F;,8) = Fa{l1}. Since we
are working over a field,

H, (@ F) ~ Q) H.(F;) ~ Fo{1}.

It thus remains to observe that @), F; = F2[¢7, &, ... ]; equivalently every monomial (in which & occurs
to even power) can be written uniquely as a product [[, m;, with m; one of the basis elements of F;.
This is easily checked. (I

Lemma 6.20. The spectral sequence E.(ko A KW)*’*’* collapses at Fo.

In other words, there are no further differentials, and Fs = F.,. In particular the spectral sequence
converges strongly [Boa99, Theorem 7.1].

Proof. We have Es(koAE") = Z(8.)[h]/h-im(d,) and so in particular Ey (koA K" )*7>0% = h.H(6,)[h].
Recall that the generator 7; has bidegree (20! —1,2¢ — 1), so that 7; € 79 (HZ/2 AHZ/2),_9:. Thus 7;
defines an element with s = 2! and w = 1 — 2 (and f = 0) in our spectral sequence. Similarly Ei”(k:)
yields elements with s = 0, w = %, f = 0. Since i > 2, it follows that Es(ko A K")*/>0* is concentrated
in stems s =0 (mod 4). Since all differentials lower s by 1, we find that any differential emanating from
positive filtration vanishes.

Now we prove by induction on r that all differentials vanish on F,., starting with » = 2. By the
induction hypothesis we have E,. = Es. Let d,.(z) = y be any differential. Then d,(hz) = hd,(z) = hy
is another differential, h being a permanent cycle (see Example 6.17). Since ha has positive filtration f
(since f(xz) > 0 and f(h) = 1), by the above we have hy = 0. But multiplication by h is injective on
EpZ0 — prf>0x and f(y) > 0, so y = 0. This was to be shown. O

Now we invert 7 to obtain a new filtration, as in (6.9).
Lemma 6.21. The filtration F*m.((ko A KW)Q[U’l])* is complete, Hausdorff and exhaustive.

Proof. By strong convergence of the spectral sequence, the filtration F*m.(ko A K W)g)* is complete,
Hausdorff and exhaustive. It is clear that exhaustive filtrations are stable under colimits. We thus need
to show completeness and Hausdorffness, or in other words that

Rlim Fim (ko A K" )N~ = 0.
We claim that for ¢ > 0 the map
n: Fim (ko ANK"Y))e = Fla (ko A KY),)ioa

is an isomorphism. Indeed giving Fim.((ko A K"),). the obvious induced filtration, this becomes a
morphism of complete, Hausdorff, exhaustively filtered groups inducing an isomorphism on associated
gradeds (given by h : h*H(6.)[h] — h*TYH(4.)[h]), so this follows from Lemma 2.2. Hence for i > 0 the
canonical map

Fim((ko AK™),). = Fi((ko A K™), 7))
is an isomorphism Thus

0~ Rli%rn Fir.((ko A KW);;)* = Rlizaniﬂ*((ko /\KW)Q[UA])*,

and the result follows. O
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6.4.5. Proof of Theorem 6.1. We first compute 7, ((ko A KW)%[U’l])*. This is a filtered graded module
over

(B )y ™) = W(E) ]

Here a priori W(k)' must mean the derived I-adic completion, but since veda(k) < oo the I-adic and 2-
adic completion agree (by Lemma 2.12), and the ordinary completion agrees with the derived completion

(by Lemmas 2.10 and 2.8). Note that grom, (K" )N [n~']). = k' (k)[h*]. Put u;_p = h'=2'7;; we have
(s, fyw)(u;) = 4(24,1 —2%,0). For n =), €;2° put

i
Observe that

grtm (ko A K I )e = k(W) [RE 7, 75, ]/ (77 = prign) = B () [ Hyo, s )

This is a free module on k& [h*] with at most one generator in every degree, and all our filtrations are
complete, Hausdorff and exhaustive, so by Corollary 2.3 we get

(ko A K )~ = W) [0 {zo, 1, ),

where x; is a lift of y;.
It follows from Corollary 6.12 and Theorem 5.1 that (ko A K")5 ~ (ko A KW)QW and hence

(ko ALY )R~ = (ko AK™)3 [0 1)2 = (ko A K™ )3 (715 = (ko A K™ [n71)5.
Since ko[n~!] ~ kw (Lemma 6.9) and K" [n~!] ~ HW, we deduce that
(kw AHW)3 = ((ko A K™ )7 [0~ 1])5.
Note that the W(k){ is derived 2-complete, and hence all of 7, ((ko A KW)Q[U_l]) is. In other words
m((ko A K™ ) ~1) = m(((ko A K™ )3 [0 1)3)
(by Lemma 2.14). We have thus computed
T (HW A kw)y) ~ W (k) {xo, x1,. .. }.

(1) Since our spectral sequence as well as the motivic dual Steenrod algebra are stable under base
change (Remark 6.13), so are the y;. Corollary 2.3 shows that any set of lifts will generate.
(2) Let t; be a lift of u;. Then t? is detected by u? = u;1hp. Since

hp= =1 = ~((~1) ~ 1) = -2 € W(k)

we have
t? = —2t;,1 + (higher filtration) = 2t;,; + (higher filtration),

whence the claim.
(3) True by construction.
(5) Clearly 1 lifts yo = 1, whence the claim.
This concludes the proof.

7. MAIN THEOREM
Lemma 7.1. The unit map u: 1[n~'] — kw is 1-connected: cof(u) € SH(k)>2.

Proof. Immediate from examination of the homotopy sheaves (see §6.3.2 and §2.4.6). O

Corollary 7.2. (1) Let v : kw(g)y — kw(g) be any map such that (1) = 1. Then in the following
commutative diagram, the dotted arrow can be filled uniquely up to homotopy.

E4kW(2)

T
M lﬁ

1
kW(g) E— kW(g)
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(2) Let ¢ : kw(g) — E4kw(2) be any map. Then in the following commutative diagram, the dotted
arrow can be filled uniquely up to homotopy.

]1[77_1](2)

ﬁb(go) kW(g) d E4kW(2)

Proof. Put F' = fib(y). Note that () by Lemma 7.1, if £ € SH(k)<o then [kw, E] ~ [1, E]. We have
cof(B : Blkw () — kw(a)) ~ HW o) (see (6.3)); hence ¢ exists if (a) kw LN kw ) — HW 4y is zero,
and is unique if (b) [kw, ""HW )] = 0. The factorization 1 — F exists if (c) [1,E*%kw ()] = 0 and is
unique if (d) [1, ESkW(Q)] =0.
We have HW 5y € SH(k)<o, whence by (x) for (a) it suffices to show that
1 -1
1 - kw — kW(g) — HW(Q)
is zero, which holds since ¥(1) = 1 by assumption. For (b), again by (x) it is enough to show that
(1,57 '"HW 5] = 0. This is clear since ©""HW 3, € SH(k)<o. (c) and (d) are immediate. O

We apply Corollary 7.2 to the map 1 = 13 constructed in Remark 3.6 to obtain ¢ : kw ) — E4kw(2).
From now on, this is the only map we will denote by .

Remark 7.3. The defining property of ¢ implies that for E' € SH(k)2) and a € kw.(E) we get Sp(a) =
¥3(a) — a. In particular, if kw, E is S-torsion free, then

(7.1) p(a) = (¥*(a) - a)/B.

Specializing even further, assume that 2 = 0 € W(k). Then ¢3(8) = 98 = 8 (by Theorem 3.1(2)) and
hence

(7.2) o) = Pip(a).
Remark 7.4. Arguing as in Example 3.7, we see that ¢ : kw.E — kw,_4F is W(k)(2)-linear.
Ezample 7.5. Since kw, ~ W(k)[8] is S-torsion free, we deduce from Theorem 3.1(2) that
p(B") = (W (B") = B")/B =W (B)" = B")/B = (9" - )"
Recall from Theorem 4.1(2) (and Example 4.2) that
kw.MSL ~ kw.,[po, p1,p2,.--.]/(po — 1).

Lemma 7.6. Suppose that W(k) ~ Fy. Consider the action of ¢ on kw,MSL.

(1) We have ¢(p;) € pi—1 + Bkw,.MSL.
(2) We have ¢°(p;) = 1.

Proof. Since kw,MSL ~ kw,[p1,...] is B-torsion free, by (7.1) and Proposition 4.3 we get
o(ps) € B (ps + Bpi_1 + B*kw MSL — p;) = p;_1 + Bkw,.MSL,

whence (1). By (7.2), ¢ commutes with 3, and hence by iteration we find that ¢°(p;) = 1 + a;83, for
some a; € kw_4MSL. (2) follows since kw_,MSL = 0. O

Proposition 7.7. Consider the maps
o (kw A MSL) =5 . (kw A kw()) = 7 (kw AHW 5)).
Put &; = a(p;) and z; = rZ;.
(1) The canonical maps induce equivalences (of right modules)

kw A kW(g) o~ \/ kW(Q){jZ} and kw A HW(Q) ~ \/ HW(Q) {.Z'l}

K2

(2) & € mai(kw ANHW () ~ W (k) 2) is a generator if and only if ©° () generates mo(kw A HW (3)).
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Proof. (1) We first prove the claim about kw A HW. By stability under base change, we may assume
that veda(k) < co. Since the field is arbitrary, it suffices to show that the map induces an isomorphism
on 7. This we can check separately after inverting 2 and after completing at 2 (see Lemma 2.16). Note
that (2.2) implies that 1[n~!] ® Q ~ HW ® Q and hence (kw A HW) ® Q ~ kw ® Q, and so

Wk)®@Q *x=4n>0

7« (kw AHW) @ Q ~ {0 olse

Similarly by Theorem 6.1 we have
W(k)y *=4i>0

7o ((kw A HW)S) =~ {0 olse

We thus need to show that the image of p; in 74;(kw AHW)®@Q ~ W(k)®Q and my; (kwAHW)S) ~ W (k)P
is a unit. We first deal with the 2-complete case, in which it suffices to show that the image of p; is a
unit modulo I [Stal8, Tag 05GI]. Since W(k)/I = Fy is independent of k, we may reduce to the case
where k is quadratically closed and hence W(k) = Fy; it hence suffices to show that the image y; of p;
is non-zero. But ¢°(y;) is the image of ©°!(p;) = 1 (by Lemma 7.6). Since 1 # 0 € mo(kw A HW)) we
have ©°(y;) # 0 and so y; # 0.

In the rational case we are dealing with p-periodic spectra, so we may reduce to the case where k is
real closed and hence W(k) = Z (see §2.7); it is thus enough to show that the image of p; is non-zero in
W(k) ® Q ~ Q. Consider the commutative diagram (“fracture square”)

(kW A HW)(Q) e (kW AN HW) ®Q

l l

(kw AHW)Y —— ((kw AHW)S) ® Q.
On applying my;, we obtain a commutative diagram

7T4i(kW/\HW)(2) E— 7T4i(kW/\HW)®@

| l

Zh —t Zh[1/2).
Since Z4 is torsion-free the map ¢ is injective. p; maps to a generator in the lower left hand corner, hence
has non-zero image in the lower right hand corner. It follows that it must also have non-zero image in
the upper right hand corner. This completes the proof for kw A HW.
To treat kw A kw, we note that we have built a map v :\/, E4nkw(2) — kw A kwg) of connective
objects in kw(z)-Mod. The extension of scalars functor kw(z)-Mod — HW 3)-Mod is conservative on
bounded below objects (e.g. by [Bac18b, Lemma 29] and [Bacl8c, Corollary 4]). But

Y ®kw(2) HW(Q) : \/ E4nHW(2) — kw A HW(Q)
n>0

is just the equivalence constructed above. The result follows.

(2) We have z = ax; for some a € W(k)(2). We need to show that @ is a unit if and only if ¢**(z) is
a generator. Since W(k) ) is a local ring (Lemma 2.13), we may check this modulo I, and hence base
change to a quadratic closure. We may thus assume that W(k) = Fz. Now by construction (i.e. Lemma
7.6(2)) we have ¢°(z;) = 1, and hence ¢°/(z) = a generates g if and only if @ is a unit, if and only if x
generates my;. O

Theorem 7.8. Let k be any field of characteristic # 2. Denote by ¢ the map obtained via Corollary
7.2(1) from the map ¢ = ¢ constructed in Remark 3.6. Then the canonical map 1[n~']2) — fib(y)
obtained via Corollary 7.2(2) is an equivalence. In other words, there is fiber sequence

]].[7771](2) — kW(Q) — E4kW(2).

Proof. Write F = fib(p). The “extension of scalars” functor SH(k)[n~']2) = HW )-Mod is conserva-
tive on bounded below objects (e.g. by [Bacl8b, Lemma 29] and [Bac18c, Corollary 4]). It consequently
suffices to show that HW ) — F' A HW is an equivalence. Since the field is arbitrary, it is enough to
show that we have an isomorphism on m,. Considering the long exact sequence for m, F' and Proposition
7.7, it suffices to show that ¢ : my;(kw AHW (2y) = m4;_a(kw A HW (5y) is an isomorphism for i > 0. In
other words we need to show that o(z;) generates m4;—4 as a W(k))-module. By Proposition 7.7(2)
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this holds if and only if ©°(—1) (p(x;)) generates 7. Since z; generates 74, this is indeed the case, again
by Proposition 7.7(2). O

8. APPLICATIONS

8.1. Homotopy groups of the n-periodic sphere. Determination of the groups =, (1[n~])(k) (or
some completed or localized variants), for various fields &, has been pursued by various authors over the
years. The case k = C was first to be approached, by Guillou-Isaksen [GI15]. They resolved it up to
a conjecture about the classical Adams—Novikov spectral sequence, which was subsequently proved by
Andrews—Miller [AM17]. The cases k = R and k¥ = Q (both up to 2-adic completion) were done by
Guillou-Tsaksen [GI16] and Wilson [Will8], respectively. All of these authors use the motivic Adams
spectral sequence. In contrast, Ormsby—Rondigs [OR19] use the slice spectral sequence; this allows them
to treat all fields of (characteristic # 2 and) finite cohomological dimension in which —1 is a sum of four
squares (e.g. all finitely generated fields of odd characteristic).
Our results allow us to determine these groups for all fields of characteristic # 2.

Theorem 8.1. Let k be a field, char(k) # 2. We have

S

w * =0

WI1/2] @ 3 @ coker(8n : W oy — Wy)) *=4n—-1>0
W/2]@ms @ker(Bn: W) — W)  x=4n>0
WIl/2] ® 72 else

T (Lk[n7']) =

Here 73 denotes the classical stable stems.

Proof. The cases * < 0 are clear.
We have 7, 1[n7 ] @ Q ~ W(k) ® Q (see (2.2)), and hence m,1[n~!] is torsion for * > 0. Thus (for
* > 0)

r A = x,1[1/n,1/2] @ T, 1l o).
We first show that 7, 1[1/n,1/2] ~ W[1/2] ® ©f. By Corollary 2.18 and §2.7.3 we have
m (1[1/n~" 1/2])(K) = C(Sper(K), Z) ® 73 @ Z[1/2].
The case * = 0 yields
C(Sper(K), Z) @ Z[1/2] = my(1[1/n, 1/2])(K) =~ W(K)[1/2].

The claim follows.
It remains to determine m, (1[~'])(2). This is an immediate application of Theorem 7.8, by taking

the associated long exact sequence of homotopy sheaves of the fibration sequence ]1[77_1](2) — kw(g) LN
$4kw (). Since w,kw ~ W] (see §6.3.2), the claim follows, as long as * & {4n,4n — 1| n > 0}, whereas
in these cases we get the kernel and cokernel of

p: w(g) ~ £4*kW(2) — £4*74kw(2) ~W.
By Example 7.5, this is multiplication by 9™ — 1. Since we are working 2-locally, by Lemma 8.2 below,

up to a unit this is the same as 8n. O

Lemma 8.2. Forn > 0 we have

12(9" — 1) = 12(8n).
Proof. Writing

9”1(1+8)”18n+z<2)8p,

p=2
it suffices to show that VQ((Z)SP) > 12(8n). Since (Z) = W, it is enough to show that
(%) va(p!) < 12(8P71) = 3(p — 1). Legendre’s formula (see e.g. [Mol12, Theorem 2.6.4]) implies that
vo(p!) < p, whence () holds for p > 2 as needed. O
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8.2. Homotopy groups of MSp[n~!]. Next we compute the homotopy sheaves of MSp[n~!]. This will
require some slightly involved algebraic manipulations.

Lemma 8.3. Suppose that E € SH(k)2) such that kw.E is 3-torsion free. Then for a,b € kw.E we
have

¥ (@)p(b) + p(a)b = ¢(ab).
Proof. Via (7.1) this is a direct computation:
¥ (a)p(b) +p(a)b = S (a)(¥°(b) — b) + (¥°(a) — a)?]
= 7' [¥*(@)p*(b) — ab] = 87! [¢°(ab) — ab] = p(ab).

O

Lemma 8.4. Suppose that W(k) = Fo. Then the operation ¢ : kw.MSp — kw,_4MSp is surjective,

with kernel

Fg[yl,yg, .. ] C kW*MSp ~ FQ[B, bl, bg, .. ]
where degy; = 2i and y2 = f.

Proof. Let R = F3[f], which we view as a filtered ring via the filtration by powers of 5. We also view
kw,MSp as filtered by powers of 8. Note that

gr*R ~ T[] and grkw,.MSp ~ Fy[3’,b],b5,...];

here 3’ € gr! and b, € gr¥ are the images of 3 € F! and b; € F°. By (7.2) we have p(8z) = Bo(z); in
other words ¢ is a filtered morphism. Note also that all our filtrations are degreewise finite, and hence
complete, Hausdorfl and exhaustive. By Lemma 2.4 and Corollary 2.3(2), it thus suffices to show that
gre (o) is surjective with kernel Fa[y), 95, .. .], such that j lifts y5. Since ¢(8) = 0 this makes sense, and
since S lifts ' it suffices to show the claim with ¢4 = ’. By Proposition 4.3 and (7.1) we have
bi,Q 1 even
©(b;) € fkw.MSp + {0 : odd

This implies that
b i even

8.1 b)) =24 2 :
(5.1 o)) {0 o
Also by Proposition 4.3 we have

Y3(b;)) =b; (mod B)
and hence, since ¥ is a ring map and kw.MSp is generated by the b; (over kw.), we get

Y3(x) =2 (mod B) for all 2 € kw,MSp.
Via Lemma 8.3 this implies that
p(ab) = ap(b) + ¢(a)b  (mod f)

for all a,b € kw,MSp and hence

(8.2) w(ab) = ap(b) + ¢(a)b for all a,b € gr*kw . MSp.
We also have ¢(5) = 83 = 0 and hence
(8.3) p(8') =0
We have the decomposition
grokw, MSp ~ Fy[f',b], b5, ...] ~ Fa[bh, b, ...] @r, Fa[B', 07,05, ...] =0 A®p, B.

Using that ¢ is a derivation (i.e. (8.2)) and the action on the generators (i.e. (8.1), (8.3)) we see that
© = ¢|4 ®r, idp. Since ®p, B is an exact functor, it is thus sufficient to prove that ¢|4 is surjective with
kernel Fa[ya, ys, - . . ]. This is established in Lemma 8.5 below (put z; = b},). O

Lemma 8.5. Consider the graded ring

A= FQ[SEl,SCQ, . .],
where |z;| = i. Give it the derivation ¢ with ¢(x;) = x;—1 (and @(x1) = 1). Then @ is surjective with
kernel a polynomial ring

FQ[QQ; Y3, .. ]
where |y;| = .
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Proof. We begin by establishing surjectivity of ¢. Define
(8.4) TiA= A f ) anpe™(f),
n>0

where (™) means the n-fold iteration of ¢. Since ¢ lowers degrees, (™ (f) = 0 for n sufficiently large,
so the sum is finite. Direct computation shows that ¢ o I = id; hence ¢ is surjective as desired.
Let J C A be the ideal generated by x2,23,..., and give A the filtration by powers of J. Then
gr'(A) >~ A[.Tl,.’L'Q, .. ] (9 Fg[tl, tg, .. ]

where A[...] denotes an exterior algebra in internal degree (i.e. coming from the filtration) zero, and ¢;
in internal degree 1 corresponds to z7. Indeed using Lemma 2.6 it suffices to consider the case A" = Fa[z]
and J' = (z?), which is easily verified by hand. Since we are in characteristic 2, ¢ annihilates squares
and so is a J-filtered homomorphism; thus it descends to gr® A.
We first study |z, 2,,...]- Suppose that n is not a power of two. We claim that
oAz, xe,. . po]n = Alz1, 22, ..o, Tp—1]n—1

is surjective. If f € Alxy, 29, ..., Tn_1]n_1 then @~ V(f) € Ax1,22,..., 2, _1]o = Fa. If o~ D(f) =0
then I(f) € Alz1,22,...,2,—1] and hence f is in the image of the relevant restriction of ¢. It is thus
enough (in order to prove the claim) to show that there exists g € A[z1,2a,. .., Tn_1]n with (™ (g) = 1.
Indeed then given f € Alzy,2o,...,Tn_1]n_1 with =D (f) # 0 we conclude that f + ¢(g) is in the
image of ¢, and hence so is f. Let n =41 + --- + ix. Then since ¢ is a derivation we find

() (. ) — Y @) (o Y. plen) _ n .
4 (zzl"'xlk);<a>@ (1'11) ' k(xk)<’i1,...,’ik>,

here the sum is over multi-indices « of length k£ and sum n, and the coefficients are multinomial coeffi-
cients. We need to find i1 + - - -+ = n with 1 < 4,. < n such that the multinomial coefficient is odd. By
Kummer’s theorem for multinomial coefficients (see e.g. [How74, Lemma 2.2]), this is possible because
n is not a power of 2: write n = 2521 2% for a finite strictly increasing sequence {a;} and let i; = 2%;

then
(")) = s - st o

where S(i) is the sum of the base 2 digits of 4. This concludes the proof of the claim.
We deduce the following: if n is not a power of 2, there exists
(8.5) Yn € T + A[T1, ..., Tn_1]n
with ¢(y,) = 0. This yields a map
o Alyaln # 2] — ker(iolgr®(A))

which we shall show is an isomorphism; here the source denotes an exterior algebra on generators in
degrees different from powers of 2. First note that « is injective, since the composite

Alyaln # 2¥] % ker(plgr”(4)) < gr(A4) = Alnln > 1]

induces an injection on indecomposables (see (8.5) and Lemma 2.7(2)). Now we show that « is surjective.
This is a dimension counting argument; it suffices to show that ker(p|gr(A4)) and Afy,|n # 2¥] have the
same Poincaré series P;,. Surjectivity of ¢ implies surjectivity of the quotient gr’(¢); this (together with
the rank-nullity theorem) implies that

Py(ker(plgr’(A))) = (1 — ) Pe(plgr(4)).
Since P,(B ® C) = P,(B)P,(C) and P;(A[z,]) = 1+ t™ we deduce that
Py(ple’(A) = (1 =t) [T +t") = T @ +t") = P(Alyaln # 27)).
n>1 n#£2k
We have thus proved that
ker(plgr®(A)) = Alyaln # 2°].
Consider the polynomial ring
S = F2[5n|n 7é 2k]['r§k|k > O] = F?[z%a g?n'r%a gf)nga ﬂ7,$i, s ]

Note that gr®(¢p) is acts trivially on gr>? and is a derivation. This implies that

(8.6) ker(gr® () = ker(gr®(¢)) @r, Falt1,t2,...],
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and also that gr®(yp) is surjective (since we have shown that it is so on gr®). Hence by Lemma 2.4 we
deduce that
gr® (ker(p)) ~ ker(gr®(¢)).

It follows that each of the elements y; € ker(gr’()) lifts to §; € ker(i); since also z7 € ker(p) we obtain
a map v : S — ker(y) which we shall show is an isomorphism. We give S the filtration by powers of
the ideal (g2, 22, | n # 2¥); then v is a filtered morphism (since y? = 0 and hence §? € F'). For degree
reasons, S and ker(y) are complete, Hausdorfl and exhaustive. Hence by Lemma 2.2 it suffices to show
that gr®(v) is an isomorphism. Note that (e.g. by Lemma 2.6) we have

gr*(S) =~ Al | n # 28] @ Fo[§2, 22, | n # 2%].

Comparing with (8.6), we see that gr*(y) = 71 ® 72, where 7y, is an isomorphism by construction. It is
thus enough to show that

v2 : Faffn|n # 2¥][a3u [k > 0] = Fa[t, ta, .. ]
is an isomorphism. Note that by (8.5) we have
Y(Gn) € T + (21, Tpo1)A+ F?
and hence (since we are in characteristic 2)
Y(@2) € x? + (2F,..., 22 _)A% + F2

It follows that the map induced by 72 on indecomposables is unitriangular in the natural bases, so an
isomorphism; hence so is y2 by Lemma 2.7(2).
This concludes the proof. (I

Corollary 8.6. Let k be any field of characteristic # 2. Then
T, MSpa) [ = Wa [y1, 92, - -]

Proof. To ease notation, we implicitly invert n throughout this proof.
We first show the claim about 7, instead of .. Note that W(k)(s) is a local ring (Lemma 2.13). We
need to show that
¢ : kw, MSp(9) — kw,_4MSpy)

is surjective with kernel as indicated. The map ¢ is a map of W(k)(2)-modules which are degreewise
finitely generated free. Note that kW*MSp(Q)/ I is independent of k and hence the same holds for ¢/I.
Thus by Lemma 8.4 the claim holds modulo I. It follows (using Nakayama’s lemma) that ¢ is split
surjective: we may choose C' C kw.MSp s,y such that kw.MSp,) = ker(¢)&C and ¢ : C — kw._4MSpy)
is an isomorphism. Thus ker(¢/I) ~ ker(¢)/I. This implies in particular that any element in ker(¢/I)
lifts to ker(p), and that any family of elements of ker(y) which form a basis of ker(¢/I) form a basis of
ker(p) (again using Nakayama’s lemma). Lifting the polynomial generators g; € ker(y/I) arbitrarily to
yi € ker(p) we deduce that monomials in the y; form a basis of ker(y); the result about =, follows.
Since m,MSpy) is a W ) -algebra, we obtain a map W, [y1,92,...] = m MSpy). We shall show
this is an isomorphism. To do so, we need to see that the map induces an isomorphism on fields, or
equivalently that our generators y; are stable under base change. The above proof shows that a family
{y:} will generate (over some field K) if and only if it generates modulo I. Since W(K)/I is independent
of K, the result follows. (I

Theorem 8.7. Let k be any field of characteristic # 2. Then
T MSply~] = Wiy, ys, ...,
where |y;| = 2i.

Proof. To ease notation, we implicitly invert n throughout this proof.

If char(k) > 0 then W(k) = W(k)(2) [MH73, Theorem III1.3.6], and hence the result follows from
Corollary 8.6. We may thus assume that char(k) = 0, and by essentially smooth base change [BH17,
Lemma B.1] that £ = Q. Write J for the augmentation ideal ker(m.MSp — m.HW). Let n > 0 and
put M = (J/J?)2,. We claim that M ~ W (k). Assuming this for now, let z, be a generator of M,
and y,, € w2, MSp a lift of z,. We obtain a map a : Wly1, yo,...] = x,MSp, which we shall show is an
isomorphism. It suffices to show that c sy and [1/2] are isomorphisms (see e.g. Lemma 2.16). It follows
from Corollary 8.6 that

Mgy =~ W(k)2){yy.},
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where the ¥/, form a family of polynomial generators of 7, MSpyy. Thus a(g) is an isomorphism (Lemma
2.7(2)). To show that a[1/2] is an isomorphism, since we are dealing with p-periodic spectra, it suffices to
show that there is an isomorphism on global sections (see §2.7.2; this is where we use k = Q). Moreover,
since rg (MSp) ~ MU (see Lemma 4.4), we know that [Rav86, Theorems 4.1.6 and A2.1.10]

m«MSp[1/2] ~ 7. MU[1/2] ~ Z[1/2,t1, 2, .. .]
with [¢;| = 2¢. This implies that
MI1/2) = Z[1/2]{t,}
and so a[1/2] is an isomorphism (Lemma 2.7(2) again).
It remains to prove the claim that M ~ W(Q). As we have seen, M) ~ W(Q)2) and M[1/2] ~

Z[1/2] ~ W(Q)[1/2] (see e.g. [MHT73, Theorem III.3.10] for the latter isomorphism). We first show that

M is finitely generated as a W(Q)-module. Indeed let 57 € M[1/2] and £ € M(y) (with a € Z odd

and x,y € M) generate M[1/2] and My respectively; then x and y generate M. By [Bou98, §IL.5.2,
Theorem 1], a finitely generated module is invertible (by which we mean locally free of rank 1) if and
only if it is stalkwise invertible. These properties hold for M, so it is an invertible W(Q)-module. The
result will follow if we show that Pic(W(Q)) is trivial. It follows from idempotent lifting [Weil3, Exercise
1.2.2] that for any ring R we have Pic(R) ~ Pic(Ryeq). It thus suffices to show that W(Q)yeq ~ Z. Since
Q is uniquely orderable, this follows from [MH73, Theorem II1.3.8]. O

8.3. Homotopy groups of MSL[r~!]. We can easily adapt the arguments to MSL as well.

Theorem 8.8. The canonical map MSp — MSL induces
7, MSL[n™ Y ~ Wlya, ya, - . ..

Proof. We have a map « : Wy, ys,...] — m,MSL[n~!] which we need to show is an equivalence; it
suffices to do this for a[1/2] and o zy. For a[1/2] the claim reduces to the analogous result in topology
(using Lemma 4.4 and §2.7.3): the map MU[1/2] — MSO[1/2] induces 7. MSO[1/2] ~ Z[1/2, 2,14, . . .]
[Sto15, §IX, Proposition p. 178, Theorem p. 180]. For a(y) we use the resolution

7 "MSL2) — kw A MSL(3) % S*kw A MSL(s).

It suffices to show that m.a s is an isomorphism (since the base field is arbitrary and the formation of
« is compatible with base change). We hence need to show that ¢ is surjective with kernel as indicated.
Using that W(k)) is a local ring (Lemma 2.13), this reduces to checking modulo I, i.e. we may base
change to a field with W(k) = Fo. Examining the proof of Lemma 8.4, this is easily seen to hold. O

8.4. MSp, MSL and kw. The map MSp[n~!] — MSL[p~!] is an £,-ring map (see (4.3)) which annihi-
lates y; for i odd, for degree reasons. It hence induces for i odd an MSp[n~!]-module map MSp[n~!]/y; —
MSL[n~1]. Put

MSpl 1/ (Y1, 93, - Y2nt1) = Q) MSpy~]/y2i41 € MSp[n~']-Mod.
1=0

The canonical map MSp[n~!] — MSp[n~!]/y2n+3 induces
MSp[n 1/ (y1,y3, - - > Y2ng1) = MSP[n~ "1/ (Y1, Y3, - - - Y2nt3),

and we put
MSp[n ™1/ (y1,s, - ) = colimMSp[n~"]/(y1, - .- y2n+1).

Corollary 8.9. There is a canonical equivalence

MSp[n~/(y1,y3,...) ~ MSL[n™!].

Proof. We implicitly invert 5 throughout this proof. Since y; maps to 0 in MSL (for i odd), the map
MSp — MSL factors over MSp/y;. We can thus form the composite

n
MSp/(y1, - -, y2n41) ~ (QMSp/yaip1 — MSLE™ — MSL,
i=0
with the last map being multiplication. Taking the colimit we obtain MSp/(y1,ys,...) — MSL. To see
that this is an equivalence we can compute the effect on homotopy sheaves. Since (y1,ys, ... ) is a regular
sequence in w,MSp ~ Wy1,ya,...] we find
K*(Msp/(yla Ys, ... )) = m[y27y4a < ]a

the result thus follows from Theorem 8.8. O
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There is an E,-map MSL — kw [BW20, Corollary B.3].
Lemma 8.10. The induced map w4(MSL[n~1]) — ma(kw) is surjective.

Proof. Tt suffices to show surjectivity after tensoring with Z[1/2] and Z,).

For Z[1/2] this reduces (via Lemmas 3.9 and 4.4) to the topological result that the map MSO[1/2] N
ko[1/2] (obtained by applying rg to MSL[n~1] — kw) is surjective on m4. We shall make use of some
of the theory of complex orientations and formal group laws, see e.g. [Rav86, §84.1, A.2]. Consider

the formal group law F' induced by MU[1/2] — MSO[1/2] LN ko[1/2] — ku[l/2]. Since the ring
structure on ku[1/2] is the usual one, the associated formal group is the multiplicative one, and hence
the formal group law must be isomorphic to the multiplicative one. Thus there exists a formal power
series f(z) = box + b12? + ... such that F(z,y) = f~1(f(x) + f(y) + tf(x)f(y)), where t € moku[1/2] is
the generator. Since MU, is generated by the coefficients of the universal group law it carries, it suffices
to show that t? is among the coefficients of F. Applying the isomorphism z — ux does not change this
property, so we may assume that by = 1. Noting that the coefficients of F lie in m.ko[1/2] = Z[1/2,?],
one finds that b; = t/2. A tedious but straightforward verification shows that the coefficient of xy? is
—t2; hence the desired result.

For Z(s), since W(k)2) is a local ring we may base change to a field with W(k) = F,. Consider the
commutative diagram

7T4MSL(2) [77_1] E— 7T4(MSL /\kW)(g)

! !

Fo >~ mikw(gy ——— mu(kw Akw)).
We wish to show that the left hand vertical map is non-zero. By Lemma 8.4, the image of the top map
is spanned by (3, which is mapped to Sr (the image of 5 under the right unit ug : kw — kw A kw) in
the bottom right hand corner. Since kw A kw is a ring, the right unit kw — kw A kw has a retraction
and so induces an injection on homotopy groups; in particular Sz # 0. The result follows. [

Corollary 8.11. There exist generators ya, ya, Ye, - - - € T MSL[n~] such that
MSL[U_l]/(Ma Ye, - - - ) ~ kw.

Proof. Lemma 8.10 shows that we may choose y2 such that a(y2) = 8, where o : MSL — kw is the
canonical Ex-map. Now let n > 1. We have a(ya,) = af8"™ for some a € W(k); replacing y2,, by Y2, — ayy
ensures that a(y2,) = 0. Arguing as in the proof of Corollary 8.9 can thus form a map

MSL[n~Y1/(y4, 6, - - - ) — kw € MSL[~']-Mod

which induces an isomorphism on m,. This concludes the proof. (Il

8.5. Cellularity results. It is well-known that the spectra KO and KW are cellular (i.e. in the subcat-
egory of SH (k) generated under colimits and desuspensions by SP?) [RS@16a]. Unfortunately in general
if E is cellular there is little reason to believe that truncations like E>q or myE are cellular. Our main
theorem allows us to make some deductions of this form.

Proposition 8.12. Let k have exponential characteristic e # 2. The spectra
kw, HW, ko[1/e], kgl[1/e], HZ[1/e], fo(K") € SH(k)
are cellular.

Proof. By Lemma 8.13 below, to prove that E is cellular, it suffices to show that E[1/n] and E/n are
cellular. Since ko/n ~ kgl [ARD17, Proposition 2.11] and ko[1/n] ~ kw, we may remove ko from the list.
The argument in [S?P12, Proposition 5.12] (employing [LYZ13, Proposition B.1]) shows that kgl[1/e] ~
MGL[1/e]/(xq,x3,...) is cellular (since MGL is). Put HwZ := fo(K"). By [Bacl7, Proposition 23] we
have Hy Z/n ~ HZ/2VY%?*HZ/2, which is cellular, and by [Bac17, Theorem 17] we have Hy Z[1/n] ~ HW;
hence we may remove HyZ from the list. Again by [Bacl7, Proposition 23] we have a cofiber sequence
SV Hw7 — HZ — HZ vV ©*HZ/2. Since HZ[1/e] is cellular, we may also remove HZ from the list.

It remains to deal with kw and HW. Since MSp is cellular (see [RS@16a, Proposition 3.1]), cellularity
of kw is immediate from Corollaries 8.9 and 8.11. Finally HW is cellular since HW ~ kw/f. (]

Lemma 8.13. Let E € SH(S) and x € mw(1). Then E is cellular if and only if both E/x and E[1/x)]
are.
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Proof. Since cellular spectra are closed under colimits, necessity is clear. We show sufficiency. Let
C C SH(S) denote the subcategory of cellular spectra. Since C is closed under colimits, the inclusion
has a right adjoint r, since C is generated by a set of compact objects from SH(S), r preserves colimits,
and since C is stable under desuspension the functor r is stable. Moreover we have r(XP1E) ~ ¥P9r(E),
and (E % Y*E) ~ (r(E) & Y**r(E)). Tt follows () that » commutes with formation of (—)/x and

(=)[1/a].

We seek to show that r(E) — E is an equivalence. By Lemma 2.16 it suffices to show that r(E)/z —
E/xz and r(F)[1/x] — E[1/z] are equivalences. Since r(E)/x ~ r(E/z) and r(F)[1/z] ~ r(E[1/z]) by
(%), the result follows. i
8.6. HW A HW(Q).

Lemma 8.14. Let h : kwy) — (kw AHW) oy be the Hurewicz map. Then h(B) = 8ux1, for some unit
u e W(k)(g)

Proof. We have h(8) = ax; and ¢(8) = 8. By Proposition 7.7(2), ¢(x1) = v for some unit v. Hence
=a

8 = h(p(B)) = (h(B)) = p(az1)
The result follows. [l

Lemma 8.15. Put f =1 if k contains a subfield of veda < 1 (e.g. char(k) > 0) and f = 2 otherwise.
There exist generators x; € makw A HW 2y such that

frmxn, = f <m + n> Tmtn-
n

In other words the x; satisfy the identities of a divided power algebra, up to possibly a factor of 2.

V.

Proof. The claim being stable under base change, we may assume that veds(k) < 1 or k = Q, in which
case veda (k) = 2. Let t; generate m4.0:. We can write t7 = b;t; 1. By Theorem 6.1(2,3) we have b; € I(k)
and b; = 2u (mod I?) for some u € (W(k)?)*. Note that 1 —u € I and 2(1 — u) € I2, so that b; = 2
(mod I?). We may thus write b; = 2 + ¢; for some ¢; € I12. If veda(k) < 1 then 12 = 2I [EL99, last
Theorem|, whereas if k = Q we have I3 = 8Z(1) [MH73, III (5.9)]. Hence in either case fc; = 2fd; for
some d; € I(k). It follows that
ftE = [ 2w, - tig,
where w; = 1+ d; € W(k)(2) is a unit (Lemma 2.13).
Now we inductively define s; generating m4.5: such that
2i+1
(8.7) PRy ( N )sm.
Indeed we put s; = ¢; and assuming that s,, has been chosen we get s,, = a,t, for some unit a,, hence
fsi = f(antn)Q = fai 2wptpi1 = f- (2aiwntn+1)'
Noting that (2;:1) = 2v,, where v,, is odd by Kummer’s theorem [Mol12, Theorem 2.6.7], we may put

Snt1 = (v a2 wn )t '
Let y; generate m4;. For n =3, ¢2" put

G = 1/nt ]2
then v2(dy,) = 0 by Legendre’s formula [Mol12, Theorem 2.6.4]. We can write
T 1= Op H 851 = enyn.

By Theorem 6.1(3) e,, is a unit modulo I, and hence a unit in W(k),y by Lemma 2.13. Hence the z; are
generators.
We can verify the divided power relations as follows. Write n = Y. €;(n)2". Then

nim! (n4+m)!

Y

these expressions make sense because we are working in a Z(g)-algebra.lo The product on the right hand
side consists of factors of the form 2"!s,., possibly repeated. We can simplify it by repeatedly applying

1076 be precise, the denominator (n+m)! has to be cancelled with the various factors of 2”!, which works by Kummer’s
theorem.
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the relation f(2"!s,)? = f2"*1ls, 1 coming from (8.7). In the end we will thus have transformed it into
a product of the same form, but with no repeated factors. The s; occurring correspond to sum of the
binary expansions of n and m, i.e. the binary expansion of n + m. Hence the right hand side is

n—+m
f( >$n+ma
m
as desired. O

Corollary 8.16. We have
HW AHW () ~ \/ S HW 2 /8n.
n>0
Proof. Since HW =~ kw/ we have HW A HW ) ~ (kw A HW (9))/h(). By Lemma 8.14, up to a unit
multiple we have h(8) = 8x1. Thus by Proposition 7.7(1), our result will hold if we show that the map

W(k)(2) = Tan_akw A HW 5y 2225 7y kew A HW (5) = W(k) 3
is (up to a unit) given by multiplication by 8n. This follows from Lemma 8.15. O
Remark 8.17. Consider the commutative diagram

kW(g) L> Z4kW(2) e kW(g)

l l !

kw A HW 5y —5— Stkw AHW () —2— kw A HW 3.

Theorem 7.8 implies that the lower map denoted ¢ induces an isomorphism on positive homotopy groups.
Thus in order to determine the effect (up to unit) of the lower map 8 on homotopy groups (in positive
degrees), it suffices to determine the effect of the lower composite. If W(k) has no torsion (e.g. k = R),
then it suffices to determine this effect rationally. But rationally the vertical maps are isomorphisms, so
it suffices to determine the effect of the top composite on homotopy. This is given on 7, by multiplication
by 9™ — 1 (see Example 7.5), which up to a 2-adic unit is the same as 8n (see Lemma 8.2). This provides
an alternative proof of Corollary 8.16 over such fields.

8.7. kW*kW(g).

Lemma 8.18. Write " for the n-fold iteration of ¢. The map
kw A kW(g) 1di) H kw A E4nkW(2) ~ @ Y4 kw A kW(g) — @ Z4nkW(2)
n>0 n>0 n>0

is an equivalence of left kw-modules (where the last map is multiplication).

Proof. We have [[ ~ € for connectivity reasons. Since the base field is arbitrary and the map is
canonical, it suffices to show that we have an isomorphism on m.. By Proposition 7.7, this is a map
of degreewise finite free left kw?z)-modules. We may thus show that there is an isomorphism modulo
I, i.e. we may assume that W(k) ~ F3, and it suffices to show that the (left module) generators are

preserved. By Proposition 7.7, generators of the source are obtained as the images of the p; under
MSL A kw — kw A kw. It hence suffices to show that ¢™(p,) = 1. This is Lemma 7.6(2). O

Corollary 8.19. We have
kw (o) kw =~ kw{y ['¢],

in the sense that the underlying kwa)—module is kW?Q) [¢] but the composition product is determined by
B =9Bp +8.

Proof. By adjunction, we have
[kW, Z*kW(Q)] ~ [kW AN kW(Q), E*kW(g)]kw(z) ,

where [—, —]kw(z) denotes homotopy classes of maps of (strong) kwy)-modules. Now kw A kw () =~
@D,, *"kw () as kw(z)-modules, so that

[kw A kw (9), 2 kw(2) Jkwo) = H kw(){an},

where g, : kw A kw(z) — E4nkw(2) is the projection. By Lemma 8.18, ¢, is (or rather may be chosen to
be) adjoint to ¢™. The additive structure follows.
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Since ¢ commutes with multiplication by kW?Q), the multiplicative structure is determined once we
know ¢f. Since kW*kW(g) is S-torsion free, it suffices to know BpB. We compute

P =W —-1)=96¢ - B =98(Bp+1)—B=0-(96p+8).

The result follows. O

APPENDIX A. THE HOMOTOPY FIXED POINT THEOREM

We shall supply an alternative proof of the homotopy fixed point theorem (also known as homotopy
limit problem) for hermitian K-theory of (certain) fields. The original reference is [HKO11b] and uses a
delicate analysis of some problems in equivariant motivic stable homotopy theory. We shall instead use
the improved version of Levine’s slice converges theorem from [BE@20, §5] and the computation of the
slice spectral sequence of KW [R(16] (see also Remark A.2). We fix throughout a base field k.

Let E € SH(k). We denote by

E=(f'E=--- > fPE= f'E—...)

the slice tower; here f™(E) := cof(fnE — E). We have colim,, f*E ~ 0 (see e.g. [RSO18, Lemma 3.1])
and lim,, f"E = scFE.

Lemma A.1l. Let char(k) # 2, veda (k) < co.

(1) lim, map(1, f"KW/2) ~ map(1,KW/2)

(2) lim, map(1, f*(KO)/(2,p)) ~ map(1,KO/(2, p))
Proof. (1) By [R16, Theorem 6.12] the map map(1l, KW) — lim,, map(1, f"KW) induces an isomor-
phism on 7; for ¢ Z 0 (mod 4) (both sides are zero in this case), and induces the I-adic completion
map W(k) — W(k){ for ¢ = 0 (mod 4). Since veds (k) < oo, this is thus a 2-adic equivalence (see e.g.
Lemmas 2.12 (showing that W(k); ~ W(k)3), 2.10 and 2.8 (showing that W(k)5 ~ LiW(k)) and 2.14

(allowing us to compute the homotopy groups of map(1, KW)%)), whence the claim.
(2) Consider the cofiber sequence ko - KO — E. By [BE?20, Corollary 5.13] we have

lim map(L, f*(ko)/(2, p)) =~ map(1, ko/(2, p));

hence it suffices to prove the analogous claim about E. By [BE@20, Corollary 5.13] again we have
limmap(1, f* (kw)/(2, p)) ~ map(1, kw/(2, p)).

Since p = —2 on n-periodic spectra, (1) implies that also

lim map(1, f*(KW)/(2, p)) = map(1,KW/(2, p)),

and hence (*) the same holds for E[n~!] (note that kw = ko[n~!] and KW = KO[n~]). We know the
homotopy sheaves 7,(KW)y (given by W in degrees divisible by 4, else 0) and also m;(KO)q for ¢ < 0:
namely they are the same (see e.g. [Sch17, Proposition 6.3]). It follows that (%) the map E — E[n~}]
induces an isomorphism on m;(E)o for all ¢, and hence on fy. It hence suffices to prove the following
claim: for any spectrum F € SH(k), the map foF — F induces equivalences

map(GL, F*(foF)/(2,p)) = map(GLY, F*(F)/(2, p))
and

map(GAL, fo(F)/(2,p)) = map(GLL, F/(2, p)),
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for any ¢ > 0,n € Z. Indeed then we find
) " (a) . n

=t map(L, 17 fo Bl 1)/ (2. p)

A
=

lim map(1, f"(Eln~")/(2. p))

—~
*

)

12

map(1, E[n~']/(2,p))
map(L, fo(Elr~1)/(2, p))
%) map(1, fo(E)/(2.p))

2 map(L, B/(2, p))-

Since all functors in sight commute with taking the cofiber of 2, we may replace F by F/2 and ignore
the modding out by 2 part. (This is mainly for notational convenience.) We have

map(GA9, G/p) ~ cof (map(G?, GA1 A G) & map(GAY, G)) ~ cof(map(GAITL, G) £ map(GL?, G)).

Thus we may ignore taking the cofiber of p as well. Then G\¢ € SH (k) implies that the (b) holds,
and that (a) holds for n < 0 (since both sides are zero). If n > 0 we additionally use that fof™ ~ f™fo

(since fofn = fn = fnfo)- U

Remark A.2. In the above proof, we have referred to the paper [RO16] for a certain spectral sequence
computation. This paper references the homotopy fixed point theorem, which may seem to lead to
circular reasoning in the proof of Theorem A.3 below. However, the only reason why [R©16] uses the
homotopy fixed point theorem is to determine the slices of KO. The paper [ARD17] determines s, (ko)
independently, and from this we can deduce the slices of s.(KO) via s.(KO) =~ s,(ko)[371]. Thus there
is no circularity.

—~
<o
=

12

Theorem A.3 (homotopy fixed point theorem). Let char(k) # 2, veda(k) < oo. The canonical map
KO/2 — KGL"“2 /2 € SH(k)
induces an isomorphism on Ty.

Proof. By [Heal7, Corollary 3.9] (see also Lemma 3.24), the map KO — KGL"“? is an n-equivalence.
Noting that KGL is 7-complete and hence so is KGL"“2, it hence suffices to show that m,,(KO/2) ~
Tex (KO /2). Consider the fiber sequence F — KO — KO)); we need to show that . (F/2) = 0. Since
F is n-periodic, p = —2 on F and we may as well show that m..(F/(2,p)) = 0. Again by n-periodicity,
it suffices to show that map(1, F/(2,p)) = 0. We have

F:hm[...LzﬂKoLmeo&KoL...}.

Passing to the final subsystem of multiplication by n?, and using the S-periodicity KO ~ $34KO, we
can rewrite this as

451 4,51 4,51 4,51
leim[...LE_SKOLZ_‘*KO mE L Ko 1P }

We deduce that
map(1, F/(2, p)) ~limmap(1, 5~"KO/(2, p))

Al
bag @ lim lim map(1, 4 " (KO) /(2. p))

~lim li{n map(1, 2% f"(KO)/(2, p))
=:lim F,,.

Noting that F_; = 0, it suffices to show that S,, := fib(F,, — F,—1) ~ 0 for all n. Unwinding the
definitions, we have

Sn = limmap(1, %™, (KO)/(2, p)).
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It follows from [ARD17, p.9] (see also [RA16, Theorems 4.18 and 4.27]) that s,(KO)/(2, p) is a sum of
spectra of the form
SIS (2, ),

for various ¢ > 0. Since (see e.g. §6.2.1)

k2Mn717*(k) * Z n—1

T 0N N HZ 2 o~
else

we deduce that map(L, s,(KO)/(2,p)) € SH<an+s. This implies that
Sp = lim X" map(L, 5,(KO)/(2, p)) € SH<an+3-a10,

for any tg, and thus S,, = 0. This concludes the proof. O
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