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Abstract. We compute the rational homotopy groups of the K(n)-local sphere for all heights
n and all primes p, verifying a prediction that goes back to the pioneering work of Morava in
the early 1970s. More precisely, we show that the inclusion of the Witt vectors into the Lubin–
Tate ring induces a split injection on continuous stabilizer cohomology with torsion cokernel
of explicit bounded exponent, thereby proving Hopkins’ chromatic splitting conjecture and
Goerss’s vanishing conjecture rationally. The key ingredients are the equivalence between the
Lubin–Tate tower and the Drinfeld tower due to Faltings and Scholze–Weinstein, integral p-
adic Hodge theory, and an integral refinement of a theorem of Tate on the Galois cohomology
of non-archimedean fields.
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1. Introduction

A central problem in homotopy theory is to understand the homotopy groups of spheres
πk+dS

k, i.e., the group of continuous maps Sk+d → Sk up to homotopy. Since every space may
be approximated by a CW complex built from iteratively attaching cells, the homotopy groups
encode how all spaces are built up to homotopy. It follows from the Freudenthal suspension
theorem that πk+dS

k stabilizes for k > d + 1, so one may first seek to determine the stable
homotopy groups of spheres, πdS0 := limk→∞ πk+dS

k. These are abelian groups, which vanish
for all d < 0, while π0S

0 ∼= Z encoding the degree of a map, while Serre showed that πdS0 is
finitely generated and torsion in all positive degree d.

However, early attempts at understanding π∗S0 through explicit calculations in small degrees
only provided limited information about the large-scale structure. Chromatic homotopy theory
begins with the deep observation that the elements of π∗S0 may be organized into certain periodic
families of increasing periodicity. From a modern perspective, these periodic families are captured
by a filtration on S0

(p), the localization of the sphere spectrum for any given prime number p,
obtained from localizations LnS0 of the sphere spectrum by passing to homotopy groups. These
localizations provide successive approximations to the sphere spectrum

S0 → . . .→ LnS
0 → . . .→ L1S

0 → L0S
0 ' S0

Q

whose associated graded pieces are given by theK(n)-local spheres LK(n)S
0, implicitly depending

on p. The homotopy limit of this tower recovers S0
(p), and so a fundamental problem in the field

is to understand the homotopy groups π∗LK(n)S
0.

In the case n = 0, we have LK(0)S
0 ∼= S0

Q, the rational sphere spectrum. As an immediate
consequence of the aforementioned theorem of Serre, π∗S0

Q
∼= Q ⊗ π∗S0 is Q in degree 0 and

0 otherwise. In the case n = 1, π∗LK(1)S
0 was calculated in the 1970s by Adams–Baird (un-

published) and Ravenel [Rav84]. The case n = 2 took many years of work by many people and
was only recently resolved (see [SY95, SW02b, SW02a, GHMR05, Beh12, Koh13, BGH22] for an
incomplete list); even stating the answer is very involved. Consequently, a full computation of
π∗LK(n)S

0 for h > 2 seems to be out of reach.
In light of this, attention over the last few decades has gradually turned towards understand-

ing structural features of π∗LK(n)S
0. Since the 1970s and motivated by the work of Lazard

and Morava, a guiding problem has been to determine the location of the free Zp-summands in
π∗LK(n)S

0 or, equivalently, to understand Q⊗π∗LK(n)S
0. Through the full force of the compu-

tations mentioned above, this is now known for n ≤ 2 and all primes p. In this paper, we resolve
this question completely for all n and all primes p:

Theorem A. There is an isomorphism of graded Q-algebras

Q⊗ π∗LK(n)S
0 ∼= ΛQp

(ζ1, ζ2, . . . , ζn),
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where the latter is the exterior Qp-algebra on generators ζi in degree 1− 2i.

In particular, this result confirms the rational part of Hopkins’ chromatic splitting conjecture
[Hov95] for all primes p and all heights n. Previously, this was only known for n ≤ 2 through the
explicit computation in the works listed above. As such, Theorem A constitutes the first general
result in the direction of this conjecture since the construction of the class ζ ∈ π−1LK(n)S

0 by
Devinatz and Hopkins [DH04] in the early 2000s. We will give a more thorough explanation of
the homotopical context for our results in Section 2.

In order to explain our approach, we recall that the homotopy groups of LK(n)S
0 can be

approached algebraically through Lubin and Tate’s deformation theory of formal groups. Let
Γn be a formal group of dimension 1 and height n over Fp, and let Gn = Aut(Γn,Fp) be the
so-called Morava stabilizer group, defined as the group of automorphisms of Γn that lie over
an automorphism of Fp. Then Gn is an extension of Gal(Fp/Fp) ∼= Ẑ by AutFp

(Γn). Let
W = W (Fp) be the ring of p-typical Witt vectors. By Lubin–Tate theory, there is a complete
local ring A ∼= W Ju1, . . . , un−1K, corepresenting deformations of Γn, which admits a continuous
action by Gn. Further, the invariant differentials ω of the universal deformation of Γn form an
invertible A-module, and the natural actions of Gn on A and ω extend to an action of Gn on the
graded ring A∗ =

⊕
t∈2Z ω

⊗t/2 (i.e., A∗ is evenly concentrated). The Devinatz–Hopkins spectral
sequence [DH04] takes the form

Hs
cts(Gn, At) =⇒ πt−sLK(n)S

0,

where Hs
cts refers to continuous cohomology. Thus understanding the bi-graded ring Hs

cts(Gn, At)
is of great importance in chromatic homotopy theory. However, the action of Gn on A∗ is
extremely difficult to describe [DH95].

Consider instead the problem of computing H∗cts(Gn,W ), where Gn acts on W through its
quotient Gal(Fp/Fp). A classical theorem of Lazard [Laz65] states that the cohomology of a
p-adic Lie group G with Qp-coefficients can be computed in terms of Lie algebra cohomology.
Applied to G = O×D, Lazard’s theorem provides an isomorphism of graded Qp-algebras:

H∗cts(Gn,W [1/p]) ∼= ΛQp
(x1, x2, . . . , xn) (1.0.1)

Here, the right hand side is the exterior Qp-algebra on generators xi of degree 2i− 1.
Remarkably, and verified by extensive calculations for heights n ≤ 2 over the last 40 years,

work of Morava [Mor85] from the early 1970s suggests that the natural map of Zp-modules

H∗cts(Gn,W ) // H∗cts(Gn, A) (1.0.2)

is a rational isomorphism; i.e., it becomes an isomorphism after inverting p. The main result of
this paper establishes a refinement of this conjecture:

Theorem B. For every integer s ≥ 0, the natural map W ↪→ A induces a split injection

Hs
cts(Gn,W ) ↪→ Hs

cts(Gn, A)

whose complement is killed by a power of p independent of s. In particular,

Hs
cts(Gn,W )⊗Zp

Qp → Hs
cts(Gn, A)⊗Zp

Qp
is an isomorphism.

We have not attempted to make explicit the power of p which kills the complement of
Hs

cts(Gn,W ) in Hs
cts(Gn, A), though this should be possible by our methods. In fact, at heights

n = 1, 2 this complement is zero, suggesting that this might be the case in general; this is known
as the “chromatic vanishing conjecture”.
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The proof of Theorem B is summarized in Section 3.5. It relies upon recent advances in p-adic
geometry. Ultimately we draw much of our power from the isomorphism, due to Faltings [Fal02a]
and clarified by Scholze and Weinstein [SW13], between the Lubin–Tate and Drinfeld towers.
Faltings’ isomorphism may be regarded as an equivalence of stacks:

[LT /Gn] ' [H/GLn(Zp)]. (1.0.3)

The cohomology of the stack on the left accesses H∗cts(Gn, A). The main idea is to use this
isomorphism to replace the opaque action of Gn on Lubin–Tate space LT with the far more
transparent action of the group GLn(Zp) on Drinfeld’s symmetric space H. Theorem A is then
readily deduced from Theorem B via the the Devinatz–Hopkins spectral sequence.

The groups appearing in (1.0.3) are profinite, and accordingly the stacks appearing there
must be construed as living on the pro-étale topology on rigid-analytic spaces. Thereby the pro-
étale cohomology of rigid-analytic spaces, first considered in [Sch13a] and expanded in [BMS18],
enters the picture as an indispensable tool. Much of this article is concerned with controlling the
pro-étale cohomology of a rigid-analytic space X over a local field K of characteristic (0, p), for
example X = LT or X = H.

The results we obtain are new even for the case when X = SpaK is a single point. In that
case our result (Theorem 4.0.3) is a refinement of a classical theorem of Tate. It states a bound
on the torsion part of H1

cts(Gal(K/K),OC), where C is the completion of K and OC is the ring
of integers in C.

Outline of the document. Since this paper is written with an audience of both arithmetic
geometers and homotopy theorists in mind, we have chosen to include the additional background
material that might be familiar for one group but not necessarily the other. In that spirit, we
begin in Section 2 with a rapid review of the key players in chromatic homotopy theory, focusing
on stating the chromatic splitting conjecture, before constructing the desired splitting and de-
ducing Theorem A from Theorem B. Section 3 then collect preliminary material from arithmetic
geometry, including the notion of adic space, a short treatment of continuous cohomology from
the condensed perspective, and the pro-étale topology. The section concludes with an outline
of the proof of Theorem B, see Section 3.5, which is then fleshed out in the rest of the paper.
In Section 4, we establish an integral refinement of a theorem of Tate, by determining bounds
on the torsion exponents in the Galois cohomology of OC and its Tate twists, where C is the
completion of an algebraic closure of a local field K of mixed characteristic. We then globalize
this result in Section 5 to the pro-étale cohomology of the generic fiber of a semistable formal
scheme over OK with coefficients in the sheaf of bounded functions. Finally, in Section 6, we put
all the pieces in action to prove Theorem B, by first applying methods separately to the Drinfeld
tower and the Lubin–Tate tower, and then deducing our main theorem via the isomorphism of
towers.
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supported by a Sloan research fellowship, NSF Grants DMS-2304781 and DMS-1906236, and a
grant from the Simons Foundation (MP-TSM-00002836, NS).
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2. Chromatic homotopy theory

The goal of this section is to place Theorem B in the context of stable homotopy theory
and deduce Theorem A from Theorem B. To this end, we begin with a rapid review of some
relevant material from chromatic homotopy theory, before turning to the applications. We refer
the reader interested in a more thorough introduction to the subject to the following sources:
[Lur10, BB20, BGH22]. The homotopy theory experts can safely skip ahead to the new results,
beginning in Section 2.5.

2.1. Chromatic characteristics. Our starting point is the chromatic perspective on the cate-
gory of spectra as envisioned by Morava [Mor85] and Ravenel [Rav84] and established by Dev-
inatz, Hopkins, and Smith [DHS88, HS98]. This story has been told by many, and we take
a revisionistic approach following [BB20], also freely using the language of higher algebra as
developed by Lurie in [Lur09, Lur17].

In order to motivate the homotopical constructions, let us first recast some familiar concepts
from algebra in more category-theoretic language; the resulting definitions can then be trans-
ported more easily to higher algebra. Let Mod(Z) be the symmetric monoidal abelian category of
abelian groups. A non-trivial unital associative ring A ∈ Mod(Z) is said to be a division algebra
(or skew field) if any module over A is free. Two division algebras A and B are said to be of
the same characteristic if A⊗Z B 6= 0. It is straightforward to verify that this notion induces an
equivalence relation on the collection of all division algebras in Mod(Z).

It turns out that we can classify all such characteristics: Indeed, the minimal representative
of the equivalence classes of characteristics of division algebras in Mod(Z) are given by the prime
fields Fp for primes p and Q. This fact is essentially a translation of the basic classification of
prime fields in classical algebra.

Stable homotopy theory is the study of the category Sp of spectra, which forms a higher
analogue of the category of abelian groups; Waldhausen and May coined the term ‘brave new
algebra.’ The role of the integers is then played by the sphere spectrum S0, and the tensor
product is replaced by the smash product written as ⊗ or ⊗S0 for emphasis. Equipped with this
structure, Sp forms a symmetric monoidal stable ∞-category; we may therefore speak of rings
and their modules in this setting. Interpreted in this context, formally there is an identification
Sp = Mod(S0). The next definition is then the natural higher algebraic counterpart to the
concept of characteristic as discussed above:

Definition 2.1.1. A division algebra in Sp is a unital associative ring spectrum A such that
every A-moduleM splits into a direct sum of shifts of free rank 1 modules. Two division algebras
A,B ∈ Sp are of the same (chromatic) characteristic if and only if A⊗S0 B 6= 0.

We again obtain an equivalence relation on the collection of all division algebras in Sp, so
we are naturally led to ask if we can understand the equivalence classes. This question has
been answered completely in the aforementioned seminal work of Devinatz, Hopkins, and Smith.
Stating their classification in the form we want requires a short detour. Let p be a prime, let
κ be a perfect field of characteristic p, let Γ be a 1-dimensional height n commutative formal
group over κ, and finally let n ∈ N ∪ {∞}. It is an insight of Morava, based on earlier work of
Quillen, that this data lifts to Sp: there exists a multiplicative cohomology theory K(Γ, κ)∗ with
the following properties:

(1) The value of K(Γ, κ)∗ on a point is given by

K(Γ, κ)∗(pt) ∼=


Q if n = 0

κ[v±1
n ] if 0 < n <∞

κ if n =∞,
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where vn is a formal variable in degree 2pn − 2.
(2) K(Γ, κ)∗ is complex oriented, and the K(Γ, κ)∗-cohomology of complex projective space

represents the formal group Γ:

Spf(K(Γ, κ)∗(CP∞)) ∼= Γ.

(3) K(Γ, κ)∗ satisfies the Künneth formula for any two spectra X,Y :

K(Γ, κ)∗(X ⊗ Y ) ∼= K(Γ, κ)∗(X)⊗K(Γ,κ)∗ K(Γ, κ)∗(Y ).

By Brown representability, K(Γ, κ)∗ is represented in the category of spectra by a (unital and
associative) ring spectrum K(Γ, κ), known as Morava K-theory (at height n and over the field κ).
Since the ring of coefficients K(Γ, κ)∗(pt) is a graded field, K(Γ, κ) itself must be a division alge-
bra in the sense of Definition 2.1.1. For example, if Ĝa is the formal additive group, thenK(Ĝa,Q)

and K(Ĝa,Fp) represent singular cohomology with coefficients in Q and Fp, respectively. If Ĝm
is the formal multiplicative group, then K(Ĝm,Fp) is a summand of mod p complex topological
K-theory. Generalizing the last example, for any prime p and any height n ∈ N, there exists
a formal group Γn of height n over Fp. Mildly abusing notation, we set K(n, p) := K(Γn,Fp),
keeping the prime implicit. (After base change to an algebraically closed field, Γn is unique
up to isomorphism by a theorem of Lazard [Laz75].) We also set K(0, p) = K(Ĝa,Q) and
K(∞, p) = K(Ĝa,Fp).

Armed with a good collection of division algebras, we can now return to the classification of
characteristics in Sp to state:

Theorem 2.1.2 (Devinatz–Hopkins–Smith). The collection of Morava K-theories K(n, p) for
p ranging through the primes and n ∈ N ∪ {∞} forms a complete and pairwise distinct set
of representatives for the characteristics of division algebras in Sp. Moreover, the K(n)s are
minimal in the sense that any division algebra of the same characteristic as K(n, p) is a module
over K(n, p).

In other, more plain terms: the Morava K-theories K(n, p) provide precisely the prime fields
of the category of spectra. A couple of remarks are in order.

• (Non-commutativity) In contrast to the situation in classical algebra, the Morava K-
theories in intermediate characteristic 0 < n <∞ cannot be made commutative. In fact,
they do not even afford the structure of an E2-ring spectrum, see for instance [ACB19].
This is the main reason to work with division algebras in the definition of characteristic.

• (Interrelation) A finitely generated abelian group M with M ⊗ Q 6= 0 also satisfies
M ⊗Fp 6= 0 for all primes p. This statement has a chromatic refinement: If X is a finite
spectrum, i.e., a compact object in Sp, thenK(n, p)∗(X) 6= 0 impliesK(n+1, p)∗(X) 6= 0.
Note that both the classical algebraic as well as the chromatic statement are false in
general for non-compact objects.

To access and isolate the part of Sp that is visible to a fixed Morava K-theory K(n, p),
we need another important tool from stable homotopy theory, namely the theory of Bousfield
localization. These form a suitable generalization of localizations and (derived) completions
familiar from commutative algebra.

Fix an arbitrary spectrum M ∈ Sp. A spectrum X is said to be E-acyclic if M∗(X) = 0; a
spectrum Y is then calledM -local if any map X → Y from anM -acyclic spectrum X is null, i.e.,
factors through a zero object. Intuitively, we wish to quotient Sp by the ideal of all M -acyclic
spectra to focus on those spectra which are “seen” by M . Bousfield [Bou79] rigorously proved
that this works, thereby constructing a localization functor LM : Sp → Sp with the following
properties:

(1) LMX = 0 if and only if X is M -acyclic;
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(2) LM is idempotent and has essential image spanned by the M -local spectra;
(3) for any Z ∈ Sp, there is a natural map Z → LMZ which exhibits LMZ as the initial

map out of Z to an M -local spectrum.
These properties characterize LM uniquely up to homotopy. Finally, we denote the full subcate-
gory of M -local spectra by SpM ; alternatively, this category is obtained from Sp by inverting all
M -equivalences, i.e., those maps which induce isomorphisms in M∗-homology. Via localization,
SpM inherits a structure of symmetric monoidal ∞-category from Sp, with tensor product given
by the localized smash product.

Some examples might be illuminating. If M = Q, then LQ is rationalization, whose effect on
homotopy groups of any spectrum is tensoring with Q. The element p ∈ Z ∼= π0S

0 is represented
by a map p : S0 → S0, whose cofiber we denote by S0/p, the mod p Moore spectrum. On
the one hand, the local category SpS0/p is the category of p-complete spectra, and localization
at S0/p has the effect of derived p-completion on homotopy groups. It is customary to write
Xp := LS0/pX and Spp := SpS0/p. On the other hand, localizing at M = S0[1/p], the colimit
over multiplication by p on S0, has the effect of inverting p on S0. Similarly, we can construct
spectral analogues of p-localization, by inverting all primes but p, to obtain the category Sp(p)

of p-local spectra. For more information about various localizations on Sp, we refer to [Bou79].
The main example of interest to us is SpK(n,p), the so-called K(n, p)-local category. In light

of Theorem 2.1.2, it forms an irreducible piece of the category of spectra, as we will explain
momentarily, and it is one of the key objects of study in chromatic homotopy theory. Note that
the functor LK(n,p) and thus SpK(n,p) only depend on the characteristic and are in particular
independent of the choice of Γn.

2.2. Chromatic divide and conquer. From now on, we will restrict attention to the category
of p-local spectra for a fixed prime p, and usually drop the prime from the notation. Intuitively
speaking, the idea of the chromatic approach to stable homotopy theory is to filter the category
of p-local spectra Sp(p) by its subcategories of mixed chromatic characteristics (0, 1, . . . , n) for
n→∞. Here we say that a spectrum has mixed chromatic characteristic (0, 1, . . . , n) if it is local
with respect to the direct sum K(0) ⊕ K(1) ⊕ . . . ⊕ K(n), and we write Ln for the associated
Bousfield localization. There is then a sequence of Bousfield localization functors and natural
transformations,

. . .→ Ln → Ln−1 → . . .→ L1 → L0 (2.2.1)
the so-called chromatic tower. Note that the bottom layer is rationalization L0 = LQ. Also
note that the infinite height has been omitted, a curiosity justified by the chromatic convergence
theorem of Hopkins–Ravenel [Rav92]: If X is a p-local finite spectrum, then it can be recovered
from its chromatic tower (2.2.1):

X ' limn LnX.

Given X, it is then sensible to ask for the graded pieces of its chromatic filtration, i.e., the
difference between LnX and Ln−1X. This is captured by the chromatic fracture square, taking
the form of a (homotopy) pullback square that exists for any height n > 0 and an arbitrary
spectrum X:

LnX //

��

LK(n)X

��

Ln−1X // Ln−1LK(n)X.

(2.2.2)

Geometrically, one should think of this square as being analogous to the gluing square for a sheaf
over an open-closed decomposition of a space. In this picture, LK(n)X corresponds to the sheaf
over a formal neighborhood of a point, while Ln−1X is the restriction to the open complement
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of the point. The term Ln−1LK(n)X along with the maps pointing to it then control the gluing
process.

The weakest form of Hopkins’ chromatic splitting conjecture stipulates that the bottom hor-
izontal map in (2.2.2) is split for X = S0 (and hence for any finite spectrum X), so that the
chromatic assembly process takes a particularly simple form. The strong form of the conjecture
(Conjecture 2.4.2 below) gives a complete description of Ln−1LK(n)S

0 in terms of the LiS0 for
i ≤ n. Assuming it, one could inductively reduce the study of the LnS0 to that of the LK(n)S

0,
whose homotopy groups are identified after inverting p by our Theorem A.

2.3. Morava E-theory and the cohomology of the stabilizer group. Just as a height
n formal group over Fp gives rise to the spectrum K(n), the Lubin–Tate ring also admits a
spectral incarnation. Let Γ be a height n formal group over a perfect field κ of characteristic
p. Let A(Γ, κ) denote its ring of deformations, so that A(Γ, κ) ∼= W (κ)Ju1, . . . , un−1K. An
unpublished theorem of Goerss–Hopkins–Miller, revisited and extended by Lurie in [Lur18], lifts
this data to a commutative algebra in SpK(n), called E(Γ, κ), with the property that

π∗E(Γ, κ) ∼= A(Γ, κ)[β, β−1], |β| = 2.

The commutative ring spectrum E(Γ, κ) is known as Morava E-theory or Lubin–Tate theory.
In fact, Goerss, Hopkins, and Miller prove something stronger. Consider the 1-category of

formal groups over perfect fields FG. The objects of FG are given by pairs (Γ, κ) as above,
and a morphism (Γ, κ) → (Γ′, κ′) in FG consists of a ring map i : κ → κ′ together with an
isomorphism of formal groups i∗Γ ∼−→ Γ′. Goerss, Hopkins, and Miller produce a fully faithful
functor E(−,−) : FG → CAlg(Sp). It is important to note that the source is a 1-category and
that the target is an ∞-category. Thus this theorem identifies a very rigid portion of CAlg(Sp),
in which the mapping spaces are homotopy equivalent to sets.

The underlying spectrum of E(Γ, κ) is easily constructed as a consequence of the Landweber
exact functor theorem. That theorem produces cohomology theories out of the complex cobor-
dism spectrum with specified formal groups, so long as these satisfy a certain hypothesis. The
universal deformation of Γ over A(Γ, κ) satisfies the hypothesis, and this gives rise to Morava
E-theory. However, producing Morava E-theory as a commutative algebra in SpK(n) is quite
a bit more difficult and requires either obstruction theory or a derived deformation theory of
formal groups—this is the content of the Goerss–Hopkins–Miller theorem.

Let Γn be any formal group of height n over Fp; then Γn is unique up to isomorphism. We
write En = E(Γ,Fp). We let Gn = Aut(Γn,Fp) ∼= AutEn, the Morava stabilizer group. As a
topological group, Gn may be identified with the profinite completion D̂× of D×, where D is the
central simple algebra of invariant 1

n over Qp, with ring of integers OD = EndFp
(Γn).

It turns out that LEn = Ln, so En does not provide us with a new localization functor.
Furthermore, there is a close relationship between En and K(n), akin to the one between a
local ring and its residue field. Since the ideal In = (p, u1, . . . , un−1) of π0En is generated
by a regular sequence, we may form a (not necessarily commutative) ring spectrum En/In by
iterated cofibers. This will have the property that π∗(En/In) ∼= π∗(En)/In = κ[β, β−1]. The ring
spectrum obtained in this way is equivalent as a spectrum to a finite direct sum of suspensions
of K(Γn, κ):

En/In '
⊕

0≤i≤pn−2

Σ2iK(Γn, κ).

Here, the direct sum accounts for the fact that En is 2-periodic, while the periodicity of K(Γn, κ)
is 2pn − 2, an issue that could be avoided by considering the 2-periodizatiopn of K(Γn, κ).

The unit in SpK(n) is the K(n)-local sphere, denoted LK(n)S
0. Being the unit, LK(n)S

0

is the initial object in CAlg(SpK(n)), so there is a canonical map of commutative algebras
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LK(n)S
0 → En. Since Gn acts on En through commutative algebra automorphisms, this map

is Gn-equivariant for the trivial action on LK(n)S
0. A result of Devinatz and Hopkins [DH04],

reinterpreted in Rognes’ framework of spectral Galois extensions [Rog08], says that the unit map
LK(n)S

0 → En exhibits En as a pro-Galois extension of LK(n)S
0 in SpK(n), with Galois group

Gn. Concretely, this means that we have canonical equivalences of commutative ring spectra

LK(n)S
0 ' EhGn

n and LK(n)(En ⊗ En) ' Ccts(Gn, En), (2.3.1)

where Ccts(Gn, En) denotes the ring spectrum of continuous functions on Gn with coefficients in
En. This enables us to run Galois descent along LK(n)S

0 → En. Form the associated K(n)-local
cosimplicial Amitsur complex

LK(n)S
0 → E⊗̂•+1

n := LK(n)

(
En ⇒ En ⊗ En →→→ E⊗3

n . . .
)
, (2.3.2)

where we have omitted the degeneracy maps from the display. Applying the homotopy groups
to the resolution (2.3.2) and using (2.3.1) to identify the abutment and E2-page, we obtain a
Bousfield–Kan spectral sequence of signature

Es,t2
∼= Hs

cts(Gn, πtEn) =⇒ πt−sLK(n)S
0, (2.3.3)

where H∗cts denotes cohomology with continuous cocycles.
Since Gn has finite virtual cohomological dimension, this spectral sequence provides an ex-

cellent approximation to the homotopy groups of LK(n)S
0: it converges strongly with a finite

horizontal vanishing line on some finite page, i.e., there exists r ≥ 2 and some N > 0 such
that Es,tr = 0 for all s > N . In fact, if p is odd and 2(p − 1) ≥ n2, then we may take r = 2
and N = n2. The spectral sequence (2.3.3), often simply referred to as “the” descent spectral
sequence in chromatic homotopy theory, provides a gateway between stable homotopy theory
and p-adic geometry.

2.4. The chromatic splitting conjecture and the vanishing conjecture. Computational
evidence at low heights n ≤ 2 suggests that the continuous cohomology of the action of Gn on
W ⊆ π0En largely controls the behavior of π∗LK(n)S

0, as we shall now explain. Recall the
isomorphism (1.0.1)

H∗cts(Gn,W [1/p]) ∼= ΛQp(x1, x2, . . . , xn),

where the latter is the exterior Qp-algebra on generators xi in degree 2i− 1.
Each of the classes xi can be lifted1 to a class x̃i in the integral cohomology ring H∗cts(Gn,W ).

Let
ϕ : H∗cts(Gn,W )→ H∗cts(Gn, π0En) ∼= E∗,02 (2.4.1)

be the natural map induced from the inclusion W ↪→ A ∼= π0En.
Hopkins’ chromatic splitting conjecture, recorded in [Hov95], predicts that the classes x̃i carry

all the relevant information about the homotopy groups of LK(n)S
0; more precisely:

Conjecture 2.4.2 (Chromatic splitting conjecture). For p odd and each i = 1, . . . , n, we have
the following behavior.

(1) For each i = 1, . . . , n, the class ϕ(x̃i) survives the spectral sequence (2.3.3), thereby giving
rise to a homotopy class

ei ∈ π1−2iLK(n)S
0,

or all the same, a map ei : S1−2i
p → LK(n)S

0.
(2) The composition S1−2i

p
ei→ LK(n)S

0 → Ln−1LK(n)S
0 factors through a map ei : Ln−iS1−2i

p →
Ln−1LK(n)S

0.

1In the chromatic practice, there are certain preferred choices of lifts, but these will not matter for our purposes
here. For details, we refer to [Hov95].
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(3) The ei induce an equivalence of spectra

Ln−1LK(n)S
0 ∼=

n∧
i=1

(Ln−iS
1−2i
p ) :=

⊕
0≤j≤n

1≤i1<...<ij≤n

(
j⊗

k=1

Ln−ikS
1−2ik
p

)
,

where the right hand side is indexed on the Zp-module generators of the exterior algebra
ΛZp(ē1, ē2, . . . , ēn).

A more refined formulation of the conjecture as well as the necessary modifications for the
prime 2 can be found in [BGH22]. It has been verified by explicit computation of both sides
for heights n ≤ 2 and all primes p. After tensoring with Q, the chromatic splitting conjecture
predicts that

Q⊗ π∗LK(n)S
0 ∼= ΛQp(ē1, ē2, . . . , ēn), |ei| = 1− 2i. (2.4.3)

Indeed, there are natural equivalences Q⊗ LiX ' Q⊗X for all spectra X and all i ≥ 0, so (3)
of Conjecture 2.4.2 rationalizes to (2.4.3). Further chromatic consequences of Conjecture 2.4.2
can be found in [BB20].

A related question concerns the map ϕ appearing in (2.4.1). The following conjecture2 was
formulated by Beaudry, Goerss, and Henn in [BGH22, Page 3].

Conjecture 2.4.4 (Vanishing conjecture). The inclusion of coefficients W ↪→ π0En induces an
isomorphism H∗cts(Gn,W ) ∼= H∗cts(Gn, π0En).

Conjecture 2.4.4 has been verified for all n ≤ 2 and for all primes p; moreover, in these cases,
it does not need to be modified for p = 2, but rather accounts for the additional complications
witnessed there. If correct, this conjecture would substantially simplify the task of understanding
π∗LK(n)S

0. Our goal in this paper is to prove (2.4.3) for all heights n and all primes p.

2.5. Power operations and the splitting of W → A. Fix a prime p and a height n ≥ 1, and
let E = En be Morava E-theory. Thus A = E0 ∼= W Ju1, . . . , un−1K, where W = W (Fp). Our
proof of Theorem A begins with the following proposition.

Proposition 2.5.1. The inclusion W ↪→ A admits a continuous Gn-equivariant (additive) split-
ting. In other words, there is a Gn-equivariant decomposition of topological abelian groups

A ∼= W ⊕Ac.

Our proof of Proposition 2.5.1 uses input from homotopy theory, namely the power operations
on Morava E-theory. We will briefly recall this theory here:

Before we can give the proof of the proposition, we need to show that power operations on
E-theory are continuous in a suitable sense.

Power operations on Morava E-theory are a consequence of the E∞-ring structure on E, which
endows E with multiplication maps

(E⊗m)hΣm
→ E.

This structure is essentially unique by a theorem of Goerss, Hopkins, and Miller [GH04]. For
m ∈ N, these are natural multiplicative operations

Pm : E0 → E0(BΣm).

They are defined to be the composite [S0, E]→ [(S0)hΣm
, (E⊗m)hΣm

]→ [(S0)hΣm
, E], where the

first map is given by applying the mth tensor power (recalling that S0 is the unit) and applying
homotopy orbits for the resulting Σm-action and the second map makes use of the E∞-ring
structure on E.

2The name comes from the equivalent formulation that H∗cts(Gn, π0En/W ) = 0.
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The operation P 0 is the constant function 1 and the operation P 1 is the identity map on
E0. Since the E-cohomology of a symmetric group is a free E0-module, there is a Kunneth
isomorphism

E0(BΣi ×BΣj) ∼= E0(BΣi)⊗E0 E0(BΣj).

Power operations have the property that, if i+ j = m, then the composite

E0 Pm

−−→ E0(BΣm)→ E0(BΣi ×BΣj) ∼= E0(BΣi)⊗E0 E0(BΣj)

is P i ⊗ P j .
Although Pm is not additive, by [BMMS86, Chapter VIII], the ideal Itr ⊆ E0(BΣm) generated

by the images of the transfer maps along Σi × Σj ⊆ Σm has the property

Pm/Itr : E0 → E0(BΣm)/Itr

is a ring map. A theorem of Strickland’s [Str98] proves that E0(BΣm)/Itr is a finitely generated
free E0-module and that there is a canonical isomorphism of formal schemes over Lubin–Tate
space

Spf(E0(BΣm)/Itr) ∼= Subm(Γ̄),

where Γ̄ is the universal deformation of the formal group Γ and Subm(Γ̄) is the formal scheme
classifying subgroup schemes of order m in Γ̄. Note that no such subgroup exists unless m = pk

for some k and thus Subm(Γ̄) = ∅ if m 6= pk. Ando, Hopkins, and Strickland [AHS04, Section
3] proved that the map Pm/Itr classifies the deformation associated to the quotient of Γ̄ by the
universal subgroup of order m. In particular, they show that Pm/Itr is a continuous ring map
for all m ∈ N.

Lemma 2.5.2. The power operations on Morava E-theory are continuous with respect to the
In-adic topology on E0 and E0(BΣm).

Proof. The proof makes use of the fact that Pm/Itr is continuous as well as an application of
Hopkins–Kuhn–Ravenel character theory [HKR00].

Assume that m =
∑j
i=0 aip

i is the base p expansion of m. The restriction map

E0(BΣm)→
j⊗
i=0

E0(BΣpi)
⊗ai

is injective as E is p-local and
∏j
i=0 Σ×ai

pk
contains the Sylow p-subgroup of Σm. All of the tensor

products are over E0. We are reduced to proving that P p
k

is continuous.
For 0 ≤ i ≤ k, consider the E0-algebra map

E0(BΣpk)→ (E0(BΣpi)/Itr)
⊗pk−i

given by restriction to Σ×p
k−i

pi , applying the Kunneth isomorphism, and then taking the quotient

by the ideal Itr. The composite of the power operation P p
k

with this map is continuous since it
may be identified with the map (P p

i

/Itr)
⊗pk−i

.
Taking the product of these maps for all 0 ≤ i ≤ k, we get a map

E0(BΣpk)→
k∏
i=0

(E0(BΣpi)/Itr)
⊗pk−i

.

Hopkins–Kuhn–Ravenel character theory implies that this map is injective. Since the composite
of the pkth power operation with this map is continuous, the pkth power operation is continuous.

�
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Proof of Proposition 2.5.1. Recall that A = E0. Let Pm : E0 → E0(BΣm) be the mth power
operation, determined by the E∞-ring structure on E. Let

βm : E0 Pm−−→ E0(BΣm)
TreΣm−−−→ E0

be the composite of the mth power operation with the K(n)-local transfer map along the sur-
jection from Σm to the trivial group.

The standard relations among the power operations implies that the formal sum β(x) =∑
m≥0 βmx

m, considered as map E0 → E0JxK, satisfies β(x + y) = β(x)β(y). Since β0(a) = 1

and β1(a) = a for all a ∈ E0, the map β factors through a homomorphism from the additive
group E0 to the subgroup 1 + xE0JxK of E0JxK×. Now we may quotient the target by the
maximal ideal in E0 to obtain a map E0 → FpJxK that sends addition to multiplication. The big
Witt vectors Wbig(Fp) may be canonically identified (additively) with the abelian group of units
in FpJxK with constant coefficient 1 under multiplication. Further, the p-typical Witt vectors
W = W (Fp) splits off of the big Witt vectors. The quotient map (1 + xFpJxK) ∼= Wbig(Fp)→ Fp
is given by reading off the coefficient of x, and this quotient map factors through W . The maps
constructed so far fit into a diagram:

E0 β
//

$$

E0JxK // FpJxK

**
1 + xE0JxK //

?�

OO

1 + xFpJxK ∼= Wbig(Fp) //
?�

OO

W // Fp
Let γ : E0 → W be the composition of the maps appearing in the diagram. Precomposing

with the inclusion W → E0, we obtain an additive endomorphism f of W . This map is the
identity modulo p, and therefore f is an automorphism. The map α := f−1 ◦ γ is therefore a
section of W → E0.

Further, the maps that go into the construction of α are Gn-equivariant. For Pm, this follows
from the fact that Gn acts on E via E∞-ring maps. The transfer map is Gn-equivariant as it
is given by restriction along a map of spectra (alternatively by the formula for this transfer and
the action of Gn on the level of characters). �

Corollary 2.5.3. The inclusion W ↪→ A induces a split injection H∗cts(Gn,W ) → H∗cts(Gn, A)
with cokernel H∗cts(Gn, Ac).

Theorem B has thus been reduced to the statement that H∗cts(Gn, Ac) is p-power torsion. This
will be established in the course of the next sections.

2.6. The proof of Theorem A assuming Theorem B. We finish this section by explaining
how to deduce Theorem B from Theorem A. The key point is that, rationally, the cohomology of
the stabilizer group action on the homotopy groups of Morava E-theory simplifies dramatically
in non-zero degrees:

Lemma 2.6.1. For all t 6= 0 and all s ∈ Z, we have Hs
cts(Gn,Q⊗ πtEn) = 0.

Proof. Recall that the (extended) Morava stabilizer group Gn can be described naturally as a
semidirect product

1 // O×D
// Gn ' O×D o Gal(Fp/Fp) // Gal(Fp/Fp) // 1, (2.6.2)

where O×D is isomorphic to the automorphism group of our chosen formal group law Γn over Fp.
The center of O×D is isomorphic to Z×p and we may consider the central subgroup Zp ⊂ Z×p P O×D,
which we can take to be generated by the element 1 + p ∈ Z×p . Fixing some integer t, the
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associated convergent Lyndon–Hochschild–Serre spectral sequence for continuous cohomology
(e.g., [Ser02, Section I.2.6(b)]) has signature

Hp
cts(O

×
D/Zp, H

q
cts(Zp,Q⊗ πtEn)) =⇒ Hp+q

cts (O×D,Q⊗ πtEn).

It is thus enough to show that

Hq
cts(Zp,Q⊗ πtEn) = 0

for t 6= 0. To this end, we use that the generator of Zp acts by multiplication by (1 + p)t, see for
example [BB20, Secton 3.3.2(c)]. The continuous Zp-cohomology of Q⊗ πtEn is thus computed
via the complex

Q⊗ πtEn
(1+p)t−1−−−−−−→ Q⊗ πtEn.

Since Q⊗ πtEn is a Qp-vector space, when t 6= 0 the action by (1 + p)t − 1 is invertible, so the
complex is acyclic. We then conclude by another application of the Lyndon–Hochschild–Serre
spectral sequence, this time for the extension (2.6.2). �

Proposition 2.6.3. Theorem B implies Theorem A.

Proof. We will use the Devinatz–Hopkins spectral (2.3.3) which we recall has signature

Es,t2
∼= Hs

cts(Gn, πtEn) =⇒ πt−sLK(n)S
0

This spectral sequence converges strongly and collapses on a finite page with a horizontal van-
ishing line. One the one hand, it follows that rationalization yields another strongly convergent
spectral sequence

Q⊗ Es,t2
∼= Hs

cts(Gn,Q⊗ πtEn) =⇒ Q⊗ πt−sLK(n)S
0.

Here, the identification of the E2-term uses that Gn is a compact group so that rationalization
commutes with taking continuous cohomology; see for example [BP21, Corollary 12.9]. On
the other hand, Lemma 2.6.1 implies that the rationalized Devinatz–Hopkins spectral sequence
collapses on the E2-page, resulting in a graded isomorphism

H∗cts(Gn,Q⊗ π0En) ∼= Q⊗ π−∗LK(n)S
0.

Since the spectral sequence is multiplicative, this is in fact an isomorphism of graded rings.
Theorem B combined with Lazard’s theorem [Laz65] as stated in Lemma 3.4.4 identifies the left
hand side as

H∗cts(Gn,Q⊗ π0En) ∼= H∗cts(Gn,Q⊗W ) ∼= ΛQp
(x1, x2, . . . , xn),

with xi in cohomological degree 2i− 1. This gives Theorem A. �

3. Arithmetic prerequisites

To complete the proof of Theorem B, we must show that the complement of the split injection

H∗cts(Gn,W )→ H∗cts(Gn, A)

is pN -torsion for some N ≥ 0. Our proof lies entirely within the domain of p-adic geometry.
After reviewing these topics, we offer a summary of the proof at the end of this section.
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3.1. Adic spaces. We offer the reader a brief summary of the necessary techniques from non-
archimedean analytic geometry, starting with Huber’s category of adic spaces [Hub94]. This
category contains all formal schemes, rigid-analytic varieties, and perfectoid spaces. For a more
leisurely exposition, see the last named author’s chapter in [BCKW19].

A topological ring A is a Huber ring if it contains an open subring A0 whose topology is
induced by a finitely generated ideal I ⊂ A0. A subset S of a Huber ring A is bounded if for
every n ≥ 0 there exists N ≥ 0 such that INS ⊂ In. A single element f ∈ A is power-bounded
if {fn}n≥1 is bounded. A Huber pair is a pair (A,A+) consisting of a Huber ring A and an
open and integrally closed subring A+ ⊂ A whose elements are power-bounded. A continuous
valuation on a Huber ring A is a continuous multiplicative function | | : A→ H ∪ {0}, where H
is a totally ordered abelian group (written multiplicatively). The adic spectrum Spa(A,A+) is
the set of equivalence classes of continuous valuations satisfying |A+| ≤ 1. It is endowed with
the topology generated by rational subsets of the form

U = U

(
f1, . . . , fr

g

)
=

{
| | ∈ Spa(A,A+)

∣∣∣∣ |fi| ≤ |g| 6= 0, i = 1, . . . , r

}
for f1, . . . , fr ∈ A generating an open ideal and g ∈ A. Then Spa(A,A+) is quasi-compact.

One defines presheaves of rings O+
X ⊂ OX on X = Spa(A,A+) as follows. For the rational

subset U above, we declare that OX(U) is the completion of A[fi/g] with respect to the topology
in which A0[fi/g] (with its I-adic topology) is an open subring, and O+

X(U) is the completion of
the integral closure of A+[fi/g] in A[fi/g]. Then (OX(U),O+

X(U)) is another Huber pair. For
certain classes of Huber pairs (A,A+) (including all which are considered in this article), the
presheaves OX and O+

X are sheaves. In such cases, the triple (X,OX ,O
+
X) is an affinoid adic

space. A general adic space is a triple (X,OX ,O
+
X) which is locally isomorphic to an affinoid adic

space. The sheaves OX and O+
X are the structure sheaf and integral structure sheaf, respectively.

As a basic example, if X = Spa(W,W ), then OX = O+
X and the ringed space (X,OX) is

isomorphic to SpecW . In particular it has two points: a generic point lying in Spa(K,W )
(which extends to the usual absolute value on K) and a special point (which satisfies |p| = 0).

A rigid-analytic space over K is an adic space over Spa(K,W ) that is locally isomorphic to an
affinoid adic space of the form Spa(A,A+), where (A,A+) obeys a certain finiteness condition.
Namely, A is isomorphic to a ring quotient of a Tate algebra K 〈T1, . . . , Td〉, and A+ is equal to
the subring of power-bounded elements of A. A special case is A = K 〈T1, . . . , Td〉, in which case
Spa(A,A+) is the closed ball of radius 1. (Chronologically, Tate’s theory of rigid-analytic spaces
long predates Huber’s theory of adic spaces; rigid-analytic spaces as Tate defined them sit inside
of adic spaces over Spa(K,W ) as a full subcategory, so there is no harm in thinking of them this
way.)

Fix a continuous real-valued valuation | | representing the sole point of Spa(K,W ), so as to
fix a value of |p|.

Example 3.1.1 (The rigid-analytic open ball). Let A = W JT1, . . . , TdK, and letBd = Spa(A,A),
the formal d-dimensional unit ball over Spa(W,W ). Let Bd,◦ be the fiber of Bd over the generic
point of Spa(W,W ); i.e., Bd,◦ is the locus where |p| 6= 0. Let us observe that Bd,◦ is exhausted by
affinoid (closed) balls over K. For each real number r of the form r = |p|1/n with n = 1, 2, 3, . . . ,
let Bdr be the following rational subset of Bd:

Bdr = U

(
Tn1 , . . . , T

n
d , p

p

)
.

Then Bdr is an affinoid rigid-analytic space over K. We have

Bd,◦ = lim−→
r<1

Bdr ,
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since for each continuous valuation on A with |p| 6= 0, we must have |Ti|n ≤ |p| for n sufficiently
large. Therefore Bd,◦ is a rigid-analytic space over K.

There is an important distinction between the global sections of OX and O+
X [1/p] for a rigid-

analytic space X over K. When X is quasi-compact, these agree, but in general they are quite
different. In the situation of the rigid-analytic open ball, we have that

H0(Bd,◦,O+
X)[1/p] = W JT1, . . . , TdK[1/p]

is the ring of power series in KJT1, . . . , TdK which are bounded on the open unit ball. Whereas,
H0(Bd,◦,OX) is the much larger ring of power series in KJT1, . . . , TdK which converge on the
open unit ball.

3.2. Remarks on continuous cohomology. When G is a topological group and M is a topo-
logical abelian group admitting a continuous G-action, Tate’s continuous cohomology groups
Hi

cts(G,M) are defined using the complex of continuous cocycles. At this level of generality,
however, one has no abelian category of topological abelian groups, and so M 7→ Hi

cts(G,M) has
no interpretation as the ith derived functor of fixed points M 7→MG.

The language of condensed mathematics [CS] is well-suited to resolve this issue in all contexts
which will arise in this article. We quickly review the main points of the theory, ignoring set-
theoretic issues throughout.3 The pro-étale site of a point ∗proét is the category of profinite sets
with jointly surjective continuous maps as the covers. A condensed set is a sheaf of sets on ∗proét.
Similarly there are condensed groups, rings, etc. There is a functor X 7→ X from topological
spaces/groups/rings to condensed sets/groups/rings, viaX(S) = Ccts(S,X), meaning continuous
maps S → X. This functor is fully faithful when restricted to compactly generated topological
spaces [CS, Proposition 1.7]

Let Cond(Ab) be the category of condensed abelian groups. Then Cond(Ab) is an abelian
category containing all limits and colimits [CS, Theorem 1.10]. It has a symmetric monoidal
tensor product M⊗N and an internal Hom-functor Hom(M,N) related by the adjunction

Hom(P,Hom(M,N)) ∼= Hom(P⊗M,N).

The forgetful functor Cond(Ab)→ Cond(Set) has a left adjoint X 7→ Z[X], the “free condensed
abelian group on X”. In the case X = S for S profinite, we abuse notation and write Z[S] for
Z[S].

Cond(Ab) has enough projectives, and we can form the derived category D(Cond(Ab)). Then
D(Cond(Ab)) admits a derived tensor product ⊗ and a derived internal hom functor RHom
satisfying the usual adjunction relation.

In the language of condensed mathematics, the notion of completeness goes by the term “solid”.
For a profinite set S = lim←−Si with each Si finite, the free solid abelian group on S is defined as

Z[S]� = lim←−Z[Si],

where Z[Si] is the free abelian group on Si, considered as a discrete topological group. A solid
abelian group is a condensed abelian group M such that for all profinite sets S, any morphism
S → M extends uniquely to a morphism Z[S]� → M. Let Solid denote the category of solid
abelian groups; by [CS, Theorem 5.8], Solid is closed under all limits and colimits in Cond(Ab).
Then Solid is an abelian subcategory of Cond(Ab). The functor D(Solid) → D(Cond(Ab)) is
fully faithful. For an object C of D(Cond(Ab)), the following are equivalent:

(1) C lies in its essential image of D(Solid)→ D(Cond(Ab)).
(2) Hi(C) is a solid abelian group for all i ∈ Z.

3They can be dealt with as in [CS, Lecture I].
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(3) For all profinite sets S, the natural map

RHom(Z[S]�,C)→ RHom(Z[S],C)

is an isomorphism.
The following lemma shows how solidity and completeness are related.

Lemma 3.2.1. Let M be a topological abelian group which is separated and complete for a linear
topology. Then M is a solid abelian group.

Proof. The hypothesis means there is a directed system of open subgroups Mn ⊂ M inducing
the topology on M , such that the map M → lim←−M/Mn is an isomorphism.

Let S = lim←−Si with each Si finite, and let f : S → M be continuous. For each n, the map
S → M/Mn is locally constant, so it must factor through Si → M/Mn for some i = i(n). This
map can be extended to a morphism of condensed abelian groups Z[Si]→M/Mn. After passage
to the limit in n, we obtain a morphism Z[S]� →M . �

Now suppose G is a condensed group. A G-action on a condensed abelian group M is a
morphism G×M→M satisfying the usual axioms.

Lemma 3.2.2. Let M be a topological abelian group which is separated and complete for a linear
topology. Let G be a profinite group which acts continuously on M . Then M is a solid abelian
group with G-action.

Proof. The claim in the lemma is that the group action G ×M → M can be upgraded to an
action G×M →M on the level of condensed sets. That is, we need for every profinite S = lim←−Si
an action

Ccts(S,G)× Ccts(S,M)→ Ccts(S,M)

which is functorial in S. Therefore let f : S → G and h : S → M be continuous. Since M ∼=
lim←−M/Mn for a directed system of open subgroups Mn, it is enough to produce an action with
values in Ccts(S,M/Mn) compatibly in n.

The continuity of the action of G on M means exactly that there exists an index N and an
open subgroupH ⊂ G such thatHMN ⊂Mn. Since h is continuous, it is locally constant modulo
MN ; that is, the composition S → M → M/MN factors through hi : Si → M/MN for some i.
After replacing i, we may also assume that f : S → G → G/H factors through fi : Si → G/H.
Then the sum

∑
s∈Si

fi(s)h(s) is well-defined inM/MN ; this is the required action of f on h. �

For a profinite group G, let SolidG be the category of solid abelian groups admitting an action
of G. Then SolidG is an abelian category.

Lemma 3.2.3. Let G be a profinite group. Consider the functor of fixed points SolidG → Solid
defined by M 7→ MG, i.e., the right adjoint to the trivial action functor Solid → SolidG. Let
C 7→ RΓ(G,C) be its derived functor D(SolidG)→ D(Solid), and let Hi(G,C) = Ri(G,C).

(1) For an object C of SolidG, the object RΓ(G,C) is the totalization of the double complex

C→ RHom(Z[G],C)→ RHom(Z[G2],C)→ · · · .

The transition maps are derived from the usual formulas in group cohomology.
(2) In particular, if M is an abelian group which is separated and complete for a linear

topology, and G acts continuously on M , then

Hi(G,M) ∼= Hi
cts(G,M).

Here Hi
cts(G,M) is Tate’s continuous cohomology.
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Proof. The idea is to construct a projective resolution of the trivial module Z in SolidG. Let

Z[G]� = lim←−
H

Z[G/H]

be the “solid Iwasawa algebra”; here H runs over open subgroups of G. We claim that Z[G]�

is projective in SolidG. Indeed, let M → Z[G]� be a surjection; we want to produce a section.
Since M is solid, it is enough to produce a morphism G → M such that the composition G →
M → Z[G]� is the natural map. The required morphism is g 7→ gm, where m ∈ M(∗) lifts the
identity section ∗ → Z[G]�.

Similarly, the solid Iwasawa algebras Z[Gn]� are projective. Thus we have the usual projective
resolution of the trivial G-module Z:

Z→ Z[G]� → Z[G2]� → . . . . (3.2.4)

If C is an object of D(SolidG), then RΓ(G,C) is the totalization of the double complex with terms
RHom(Z[Gn]�,C). Since C is solid, the latter is isomorphic to RHom(Z[Gn],C). This is (1).

In the case C = M described in (2), we have (since Z[G] is a free condensed abelian group)

RHom(Z[Gn],M) ∼= Hom(Gn,M) ∼= Ccts(G
n,M),

so that RΓ(G,M) is nothing but the condensed version of the complex which computes Tate’s
continuous cohomology. Therefore Hi(G,M) is the condensed version of Hi

cts(G,M). �

Lemma 3.2.3 shows that as long asM is separated and complete for a linear topology, the con-
tinuous cohomology Hi

cts(G,M) really is the derived functor of G-fixed points in an abelian cate-
gory. This allows us to seamlessly use the language of derived categories to compute Hi

cts(G,M).

Notation 3.2.5 (Continuous homotopy fixed points). Let G be a profinite group. We write

D(SolidG) → D(Solid)

C 7→ ChG

for the functor RΓ(G,C) described in Lemma 3.2.3; i.e., the derived functor of M 7→ MG.
Similarly, if M is a topological abelian group which is separated and complete for a linear
topology, and G acts continuously on M , then we write MhG for RΓ(G,M).

By Lemma 3.2.3, MhG is a complex of solid abelian groups which computes Hi
cts(G,M); it

would also be appropriate to use the notation RΓcts(G,M) forMhG. If H ⊂ G is a closed normal
subgroup, then MhH is an object of D(SolidG/H), and then the quasi-isomorphism

MhG ∼=
(
MhH

)h(G/H)

formally implies the Hochschild-Serre spectral sequence in continuous cohomology:

Hi
cts(G/H,H

j
cts(H,M)) =⇒ Hi+j

cts (G,M).

Crucially, we can apply this picture to the example where M = A is the Lubin–Tate ring and
G = Gn is the Morava stabilizer group. Another important example we will encounter occurs
when K is a nonarchimedean local field, G = Gal(K/K), and M = OC , the valuation ring of the
completion C of an algebraic closure K of K.
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3.3. The pro-étale site for rigid-analytic spaces. Let X be a rigid-analytic space over K.
We swiftly recall some material from [Sch13a, §3,4] regarding the pro-étale site Xproét.

Objects in Xproét are formal limits U = lim←−Ui, where i runs over a cofiltered index set, the
Ui are rigid-analytic spaces étale over X, and each transition map Ui → Uj commutes with the
maps to X. It is required that Ui → Uj is finite étale and surjective for large i > j. For an
object U = lim←−Ui, let |U | = lim←−|Ui| be its underlying topological space. A covering in Xproét is
a family of pro-étale morphisms fj : Uj → U such that the underlying topological space |U | is
covered by the fj(Uj).

The integral structure sheaf Ô+
X on Xproét is defined as the p-adic completion:

Ô+
X(U) =

(
lim−→O+

Ui
(Ui)

)∧
(p)
,

and the structure sheaf is ÔX := Ô+
X [1/p].

The pro-étale cohomology Hi(Xproét, Ô
+
X) of a rigid-analytic space X will be of special interest

to us. To investigate it, we will make crucial use of perfectoid spaces. Let us recall the relevant
definitions from [SW20], adapted to the case where all structures live in characteristic 0. A
topological Qp-algebra R is perfectoid if the following conditions hold:

(1) R is uniform, meaning its subring R◦ of power-bounded elements is bounded,
(2) R◦ is p-adically complete,
(3) There exists an element $ ∈ R◦ such that $p|p holds in R◦, and such that the pth power

Frobenius map
R◦/$ → R◦/$p

is an isomorphism.
In particular there exists for all n ≥ 1 an element $n whose pnth power is the product of $
by a unit in R◦. A Huber pair (R,R+) is a perfectoid affinoid algebra over Spa(Qp,Zp) if R is
perfectoid. An adic space over Spa(Qp,Zp) is perfectoid if it admits a cover by adic spectra of
perfectoid affinoid algebras.

Suppose that X is a rigid-analytic space over a field containing Qp. We say that an object
U ∈ Xproét is affinoid perfectoid if U = lim←−Ui, where Ui = Spa(Ri, R

+
i ) is affinoid, and if R+

is the p-adic completion of lim−→R+
i , and R = R+[1/p], then R is a perfectoid K-algebra. More

generally, an object U ∈ Xproét is perfectoid if it admits an open cover by perfectoid affinoid
subobjects.

Perfectoid objects are useful to the calculation of Hi(Xproét, Ô
+
X) for the following two reasons:

(1) The affinoid perfectoid objects U ∈ Xproét form a basis for the topology [Sch13a, Propo-
sition 4.8].

(2) Suppose U ∈ Xproét is affinoid perfectoid. Then for all i ≥ 1, Hi(Uproét, Ô
+
X) is almost

zero, in the sense that it is annihilated by$n for all n [Sch13a, Lemma 4.10]. In particular
Hi(Uproét, ÔX) = 0 for i ≥ 1.

The facts above suggest a strategy for computing Hi(Xproét, Ô
+
X): By (1), there exists a

pro-étale cover fi : Ui → X where each Ui is perfectoid affinoid, and by (2), RΓ(Xproét, Ô
+
X) is

“almost” computed by the Čech complex O+(X) →
∏
i O

+(Ui) →
∏
i,j O

+(Ui ×X Uj) → · · · .
The precise consequences for the pro-étale cohomology of rigid-analytic spaces will be reviewed
in Section 5.

It will be important to consider the pro-étale cohomology of a rigid-analytic space as a complex
of condensed abelian groups. For a rigid-analytic space X, observe that we have a morphism of
sites:

λX : Xproét → ∗proét
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Indeed, if S = lim←−Si is a profinite set, then X × S = lim←−X × Si is an object of Xproét. Conse-
quently, if F is a sheaf of abelian groups on Xproét, we may define:

RΓcond(Xproét,F) = R(λX)∗F,

an object of D(Cond(Ab)) whose value on ∗ is RΓ(Xproét,F).
In particular we have RΓcond(Xproét, Ô

+), the condensed pro-étale cohomology of the com-
pleted integral structure sheaf. On the other hand, we may consider Ô+ to be a sheaf of topological
groups, by endowing Ô+(U) with the p-adic topology for all affinoid perfectoid U ∈ Xproét. Let
Ô+

cond be the sheaf of condensed abelian groups on Xproét defined by

Ô+
cond(U) = Ô+(U).

By Lemma 3.2.1, Ô+
cond is a sheaf of solid abelian groups, since Ô+(U) is p-adically separated

and complete for all affinoid perfectoid U . Then the cohomology RΓ(Xproét, Ô
+
cond) is a complex

of solid abelian groups.

Lemma 3.3.1. We have an isomorphism in D(Cond(Ab)):

RΓcond(Xproét, Ô
+) ∼= RΓ(Xproét, Ô

+
cond)

In particular RΓcond(Xproét, Ô
+) lies in D(Solid).

Proof. Since Xproét admits a basis consisting of perfectoid affinoids, this reduces to the claim
that for all perfectoid affinoids U = Spa(R,R+) ∈ Xproét, we have an isomorphism in Cond(Ab):

(λU )∗Ô
+ ∼= O+

cond(U)

and Solid admits all limits, it is enough to see that (λU )∗Ô
+ is solid for U = Spa(R,R+) perfectoid

affinoid. This in turn reduces to the following calculation, for any profinite set S = lim←−Si:

H0(U × S, Ô+) ∼=
(

lim−→H0(U × Si,O+)
)∧

(p)

∼=
(

lim−→Ccts(Si, R
+)
)∧

(p)

∼= Ccts(S,R
+)

∼= O+
cond(U)(S)

In the penultimate step we used the fact that R+ is p-adically complete. �

In the context of the proof of Lemma 3.3.1 we have

Ccts(S,R
+) ∼= Hom(Z[S], R+).

Applying this over a covering of X by perfectoid affinoids U = Spa(R,R+) in Xproét, we obtain
an isomorphism in D(Cond(Ab)):

RΓcond((X × S)proét, Ô
+) ∼= RHom(Z[S], RΓcond(X, Ô+)). (3.3.2)

Let G be a profinite group. A pro-étale G-torsor over X is an object Y → X admitting an
action G× Y → Y lying over the trivial action of X, such that the map G× Y → Y ×X Y given
by (g, y) 7→ (y, gy) is an isomorphism.

Proposition 3.3.3. Let X be a rigid-analytic space, and let Y → X be a perfectoid pro-étale
G-torsor. There is an isomorphism in D(Solid):

RΓcond(Xproét, Ô
+) ∼= RΓcond(Yproét, Ô

+)hG.
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Proof. Since Y → X is pro-étale, the pro-étale cohomology of X can be computed by means of
the simplicial cover:

· · · →→→ Y ×X Y ⇒ Y

Namely, RΓcond(Xproét, Ô
+) is quasi-isomorphic to the totalization of the corresponding double

complex
RΓcond(Y, Ô+)→ RΓcond(Y ×X Y, Ô+)→ · · · .

Since Y → X is a G-torsor, the nth term in the complex is quasi-isomorphic to

RΓcond((Gn × Y )proét, Ô
+) ∼= RHom(Z[Gn], RΓcond(Yproét, Ô

+))

by (3.3.2). Lemma 3.2.3(1) identifies the latter as the nth term in a double complex whose
totalization computes RΓcond(Yproét, Ô

+)hG. �

Example 3.3.4. Let K be a nonarchimedean field of characteristic (0, p). Let K be an algebraic
closure, and let C be the metric completion of K. Then Spa(C,OC)→ Spa(K,OK) is a pro-étale
torsor for the group Gal(K/K). Furthermore, since C is algebraically closed, every pro-étale
cover of Spa(C,OC) is split, meaning that Hi(Spa(C,OC)proét, Ô

+) = 0 for i > 0. Therefore by
Proposition 3.3.3 we have an isomorphism in D(Solid):

RΓcond(Spa(K,OK)proét, Ô
+) ∼= O

hGal(K/K)
C .

3.4. Continuous cohomology of p-adic Lie groups. As Theorem B is a statement about the
continuous cohomology of the Morava stabilizer group Gn ∼= O×D o Ẑ, it will be useful to collect
some basic results on the continuous cohomology of p-adic Lie groups such as O×D.

The first systematic study of the continuous cohomology of p-adic Lie groups was undertaken
by Lazard [Laz65]. Lazard’s results include comparision theorems such as [Laz65, Théorème
V.2.4.10], which we briefly summarize. If G is a Qp-analytic group admitting a p-valuation,
Lazard defines its Lie algebra LieG over Qp. Then if V is a finite-dimensional Qp-vector
space admitting a continuous action of G, then LieG acts on G, and we have an isomorphism
H∗cts(G,V ) ∼= H∗(LieG,V ). (If G is an algebraic group over Qp, then any sufficiently small
subgroup of G(Qp) satisfies Lazard’s hypotheses, with LieG being the usual Lie algebra of G.)

The following is a well-known consequence of Lazard’s theorem, see for example [Mor85,
Remark 2.2.5].

Lemma 3.4.1. Let G be either of the groups GLn(Zp) or O×D. Consider the trivial action of G
on Qp. There is an isomorphism of graded Qp-algebras:

H∗cts(G,Qp) ∼= ΛQp
(x1, x3, . . . , x2n−1).

In the case of G = O×D, the outer automorphism ad Π acts as the identity on H∗cts(G,Qp).

Proof. By Lazard’s result, H∗cts(G,Qp) ∼= H∗(LieG,Qp), so we are reduced to calculating Lie
algebra cohomology. In the case of G = O×D, the outer automorphism ad Π on G corresponds to
the inner automorphism of LieG, which acts trivially on H∗(LieG,Qp).

The Lie algebra cohomology of a reductive Lie algebra g over a field k of characteristic zero
is well-studied [CE48], [Kos50]; we give a brief exposition. If k = R and g is the Lie algebra of
a compact Lie group G, then H∗(g,R) is isomorphic to the de Rham cohomology ring H∗dR(G).
Generally, this is a graded-commutative R-algebra whose primitive elements live in odd degree.
In the special case G = U(n), the sequence of fibrations U(n − 1) → U(n) → S2n−1 allows one
to identify the rational cohomology H∗dR(U(n)) with the rational cohomology of a product of
spheres S1 × S3 × · · · × S2n−1. Thereby we obtain an isomorphism

H∗(gln(Q),Q) ∼= ΛQ(x1, x3, . . . , x2n−1), (3.4.2)
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since the two sides become isomorphic after tensoring with C. (See [Kos50] for an explicit descrip-
tion, due to Dynkin, of the elements x1, x3, . . . , x2n−1 in terms of cocycles.) The isomorphism
(3.4.2) implies the lemma for G = GLn(Zp), since LieG = gln(Qp).

Now suppose G = O×D. Then LieG = D is a twist of gln(Qp) in the sense that there is an
isomorphism:

LieG⊗Qp
∼−→ gln(Qp). (3.4.3)

This implies that H∗(LieG,Qp) is an exterior algebra as claimed, since it becomes one after
tensoring with Qp. �

Lemma 3.4.4. Let W = W (Fp) and K = W [1/p].
(1) The continuous cohomology Hi

cts(Gal(Fp/Fp),W ) is Zp if i = 0, and is 0 otherwise.
(2) Let Gn act on K through its quotient Gal(Fp/Fp). There is an isomorphism of graded

Qp-algebras:
H∗cts(Gn,K) ∼= ΛQp

(x1, x3, . . . , x2n−1)

Proof. (1) Since Gal(Fp/Fp) ∼= Ẑ, it is enough to show vanishing of cohomology in degree 1. Since
W is p-adically complete, this is further reduced to showing that H1

cts(Gal(Fp/Fp),Fp) = 0; this
is true because x 7→ xp − x is surjective on Fp.

(2) Consider the Hochschild–Serre spectral sequence:

Hi
cts(Gal(Fp/Fp), Hj

cts(O
×
D,W )) =⇒ Hi+j

cts (Gn,W ).

Consider the action of Gal(Fp/Fp) onHj
cts(O

×
D,W ) = Hj

cts(O
×
D,Zp)⊗Zp

W . The action on the first
factor is trivial by Lemma 3.4.1, and the action on the second factor has no higher cohomology
by (1). Therefore:

H∗cts(Gn,W ) ∼= H∗cts(O
×
D,Zp),

at which point we tensor with Qp and apply Lemma 3.4.1. �

3.5. Overview of the proof of Theorem B. Let p be a prime number, and let Γ be a formal
group of dimension 1 and height n over Fp. Let LT be the functor of deformations of Γ. Then
LT is representable by a formal scheme Spf A whose coordinate ring is isomorphic to a power
series ring over W = W (Fp):

A ∼= W Ju1, . . . , un−1K.
Let OD = End Γ; then OD is the ring of integers in a division algebra D over Qp of invariant

1/n. Explicitly, OD is generated over W (Fpn) by an element Π satisfying Πn = p and Πα =
σ(α)Π, where σ ∈ AutW (Fpn) is the Frobenius automorphism. The Morava stabilizer group Gn
from Section 2 is the profinite completion of D×; it fits into an exact sequence:

1→ O×D → Gn → Gal(Fp/Fp)→ 1.

There is a continuous action of Gn on A.
Our main theorem (Theorem B) concerns the continuous cohomology ring H∗cts(Gn, A). The

action of Gn on A is rather inexplicit, and it seems difficult to compute H∗cts(Gn, A) directly
in terms of cocycles. To address this problem, we pass from the formal scheme LT to its rigid-
analytic generic fiber LTK , which is isomorphic to the open unit ball over K. The use of LTK has
a precedent in chromatic homotopy theory, namely in applications of the Gross-Hopkins period
morphism [HG94]:

π : LTK → P(M(Γ)).

Here M(Γ) ∼= Kn is the rational Dieudonné module of Γ, and P(M(Γ)) ∼= Pn−1
K is the cor-

responding projective space, considered as a rigid-analytic space over K. The morphism π is
étale, surjective, equivariant for the action of O×D, and fairly explicit in terms of the variables
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u1, . . . , un−1. Using the period morphism π, it is possible in principle to give formulas for the
action of O×D on A, see [DH95].

For our work we will not use the period morphism but rather a different structure possessed
by LTK : the isomorphism between the two towers. This was discovered by Faltings [Fal02b], see
also [FGL08] for more details. We review the form given in [SW13, Theorem D], which treats
this phenomenon as an isomorphism between perfectoid spaces.

Let H be Drinfeld’s symmetric space (also called Drinfeld’s upper half-space) in dimension
n− 1. This is a rigid-analytic space over Qp, defined as

H = Pn−1
Qp
\
⋃
H

H

where Pn−1
Qp

is rigid-analytic projective space, and H runs over all Qp-rational hyperplanes in
Pn−1
Qp

. Then H admits an action of the group GLn(Qp). Then H admits an action of the group
GLn(Qp) and in particular of its subgroup GLn(Zp).

Theorem 3.5.1. There exists a perfectoid space X and a diagram of adic spaces:

X
GLn(Zp)

}}

Gn

��

LTK H

Here, X admits commuting actions of Gn and GLn(Zp). The morphism to LTK is a pro-étale
GLn(Zp)-torsor, which is equivariant for the action of Gn. The morphism to H is a pro-étale
Gn-torsor, which is equivariant for the action of GLn(Zp).

Proof. This is an application of a general duality statement [SW13, Theorem E] between Rapoport-
Zink spaces at infinite level. Both LTK and the base change HK arise as the generic fiber
of a deformation problem of formal groups. We have already seen that Lubin-Tate space LT
parametrizes deformations of a formal group Γ over Fp of dimension 1 and height n. Whereas,
HK is the generic fiber of a formal scheme HW over Spf W which parametrizes deformations of
a special formal OD-module X in the sense of [Dri76]. The relation between X and Γ is:

X = Γ⊕ Γ(p) ⊕ · · · ⊕ Γ(pn−1),

where Γ(pk) is the pullback of Γ under the pkth power Frobenius automorphism of Fp.
Trivialization of the torsion in the universal deformation of Γ (resp., X) produces a pro-étale

torsor over LTK (resp., HK) with group GLn(Zp) (resp., O×D), known as the Lubin–Tate tower
(resp., the Drinfeld tower). Applied to this situation, [SW13, Theorem E] is the statement that
the two towers are isomorphic in the limit to the same perfectoid space X.

Note that HK → H, being a pullback of SpaK → SpaQp, is a pro-étale Gal(Fp/Fp)-torsor.
It remains to be seen why the composition X → HK → H is a pro-étale torsor for the group
Gn. For this, we observe that there is an OD-equivariant isomorphism Γ

∼−→ Γ(pn) (for instance,
the pnth power isogeny divided by p). From this one constructs an isomorphism i : X

∼−→ X(p)

which satisfies the relation i ◦ α = (ΠαΠ−1) ◦ i for all α ∈ O×D. The isomorphism i induces an
automorphism of X lying over the Frobenius automorphism of SpaK and satisfying the same
relation with respect to O×D. This automorphism is exactly the necessary structure required to
extend the action of O×D on X to an action of Gn. �

Theorem 3.5.1 suggests a strategy for accessing the cohomology ringH∗cts(Gn, A). The diagram
in Theorem 3.5.1 witnesses an isomorphism in D(Solid):

RΓcond(LTK,proét, Ô
+)hGn

∼−→ RΓcond(HK,proét, Ô
+)hGLn(Zp) (3.5.2)
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Indeed by Proposition 3.3.3, both objects are isomorphic to

RΓcond(Xproét, Ô
+)h(Gn×GLn(Zp)).

The isomorphism in (3.5.2) is helpful because it translates the opaque action of O×D on LTK
into the transparent action of GLn(Zp) on H. To completely leverage (3.5.2), we will have to
say something about the Ô+-cohomology of Xproét, where X is LTK or H, respectively. Let us
write Xan for the analytic topology, to distinguish it from the pro-étale topology. The following
comparison statements appear as Theorem 6.2.5 and Theorem 6.3.2.

Theorem 3.5.3. The pro-étale cohomology of Ô+ on LTK and H can be approximated as follows.
(1) There is a morphism of differential graded solid W -algebras, which is equivariant for the

action of Gn:
A[ε]→ RΓcond(LTK,proét, Ô

+).

(2) There is a morphism of differential graded solid Zp-algebras, which is equivariant for the
action of GLn(Zp):

Zp[ε]→ RΓcond(Hproét, Ô
+).

Here R[ε] is shorthand for the complex R 0→ R in degrees 0,1. Let A be the cofiber of either of
the above morphisms in D(Solid). Then Hi(A) = 0 for i ≤ 0, and there exists a single power of
p which annihilates Hi(A) for every i ≥ 1.

The proof of Theorem 3.5.3 requires the full force of the integral p-adic Hodge theory theorems
of [BMS18] and [vK19]. The effect is to reduce the study of RΓcond(Xproét, Ô

+) (where X is
either of LTK or H) to the case of a point X = Spa(K,OK). By Example 3.3.4, the pro-
étale cohomology of Spa(K,OK) agrees with the Galois cohomology O

hGal(K/K)
C , where C is the

completion of an algebraic closure of K. This cohomology was controlled by Tate [Tat67], in a
way that is valid for any local field of characteristic (0, p). Expressed in our language, Tate’s
result is that there is a morphism of differential graded solid OK-algebras

W [ε]→ O
hGal(K/K)
C

whose cofiber has pN -torsion cohomology groups, for some absolute constant N .
Combining (3.5.2) with Theorem 3.5.3, we obtain a diagram in D(Solid):

AhGn ⊗Zp
Zp[ε] ∼= A[ε]hGn

→ RΓcond(LTK,proét, Ô
+)hGn

∼= RΓcond(Hproét, Ô
+)hGLn(Zp)

← Zp[ε]hGLn(Zp)

∼= ZhGLn(Zp)
p ⊗Zp Zp[ε]

Here, each of the two arrows not labeled as an isomorphism has cofiber whose cohomology groups
are annihilated by some uniform power of p.

We will briefly indicate how this is used to prove Theorem B, leaving the details for Section 6.
By Proposition 2.5.1, we have a Gn-equivariant splitting A = W ⊕ Ac. After inverting p in the
above diagram, we arrive at an isomorphism in cohomology:(

H∗cts(Gn,K)⊕H∗cts(Gn, Ac)⊗Zp
Qp
)
⊗Qp[ε] ∼= H∗cts(GLn(Zp),Qp)⊗Qp

Qp[ε] (3.5.4)

By Lemmas 3.4.1 and 3.4.4, H∗cts(Gn,K) and H∗cts(GLn(Zp),Qp) are isomorphic to the same
exterior Qp-algebra. In particular dimQp

Hi
cts(Gn,K) = dimQp

Hi
cts(GLn(Zp),Qp) for all i.
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Comparing dimensions of the Qp-vector spaces in (3.5.4) shows that H∗cts(Gn, Ac)⊗Zp Qp = 0,
which is to say that H∗cts(Gn, Ac) is torsion. A more careful analysis shows that H∗cts(Gn, Ac) is
killed by a uniform power of p, which is the assertion of Theorem B.

4. The Galois cohomology of OC

Let us fix some definitions. A nonarchimedean field is a field K which is complete with
respect to the topology induced from a nontrivial nonarchimedean valuation | | : K → R≥0.
(Some authors do not require K to be complete, but for our purposes it will be useful to always
assume this.) Let OK be its valuation ring; i.e., the subring of elements with |α| ≤ 1. Let κ
be the residue field of OK . The characteristic of a nonarchimedean field K refers to the pair
(charK, charκ).

A local field is a nonarchimedean field satisfying the additional conditions: (a) the valuation
on K is discrete, in other words OK is a discrete valuation ring, and (b) the residue field κ is
perfect.

Let L be a (possibly infinite) Galois extension of a nonarchimedean field K. The valuation on
K extends uniquely to a valuation on L, and the completion L̂ is a nonarchimedean field admitting
a continuous action of Gal(L/K). (If L/K is finite then it is not necessary to complete.) It is
an interesting problem to compute the continuous cohomology groups Hi

cts(Gal(L/K),OL̂), or
at least to approximate these as OK-modules. For simplicity we will assume throughout that
charK = 0.

A basic result along these lines is due to Ax, which settles the problem in degree 0.

Theorem 4.0.1 ([Ax64]). Let K be a nonarchimedean field with charK = 0. Let L/K be a
Galois extension of nonarchimedean fields. Then the subfield of L̂ fixed by Gal(L/K) is exactly
K. Consequently H0(Gal(L/K),OL̂) = OK .

Results on higher cohomology tend to require that K be a local field. A classical result
attributed to Noether states that if L/K is a finite tamely ramified Galois extension of local
fields, then OL is a free OK [Gal(L/K)]-module, and therefore Hi(Gal(L/K),OL) = 0 for i > 0.
For arbitrary finite extensions there is the following result of Sen:

Theorem 4.0.2 ([Sen69]). Let K be a local field of characteristic (0, p). Let L/K be a finite
Galois extension. Then H1(Gal(L/K),OL) is α-torsion for any α ∈ OK with |α| ≤ |p|1/(p−1).

The theorem applies to L/K infinite, but only in the sense that the non-continuous H1 can
be controlled.

The following is the main theorem of this section. The techniques used in its proof are due to
Tate; control over the error terms is the only added value.

Theorem 4.0.3. Let K be a local field of characteristic (0, p), and let C be the completion of
an algebraic closure K/K. Let ΓK = Gal(K/K). Then:

(1) H0(ΓK ,OC) = OK .
(2) There exists an injective map of OK-modules

OK → H1
cts(ΓK ,OC)

whose cokernel is pk-torsion. Here we can take k = 4 or k = 5 when p is odd or even,
respectively. If p - eK (where eK is the absolute ramification index of K), these bounds
can be improved to k = 3 and k = 4, respectively.

(3) Hi
cts(ΓK ,OC) is p-torsion for i > 1.

A more detailed version of Theorem 4.0.3 appears as Theorem 4.2.5. We also obtain an explicit
bound on the cohomology of the nontrivial Tate twists OC(j).
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Theorem 4.0.4. With notation as in Theorem 4.0.3, let j 6= 0 be an integer, and let OC(j) be
the jth Tate twist of OC as a Gal(K/K)-module. Then:

(1) H0(ΓK ,OC(j)) = 0.
(2) H1

cts(ΓK ,OC(j)) is pM+ordp(j)-torsion. Here M = MK is a constant which only depends
on K and which is insensitive to passage to a tamely ramified extension of K. If p - eK
we may take M = 2 if p is odd and M = 3 if p = 2.

(3) For i ≥ 2, Hi
cts(ΓK ,OC(j)) is p-torsion if p is odd and p2-torsion if p = 2.

The theorem appears later as Theorem 4.3.3.

4.1. Infinitely ramified Zp-extensions. Suppose K is a local field of characteristic (0, p). We
fix some notation regarding valuations. We will have use for the (additively written) valuations
v and vK on K. These are normalized so that v(p) = vK(π) = 1, where π is a uniformizer of K.
The two valuations are related by vK = eKv, where eK = vK(p) is the (absolute) ramification
index of K, and they extend uniquely to Q-valued valuations on K.

LetK∞/K be an infinitely ramified Galois extension with Gal(K∞/K) ∼= Zp. Then Gal(K∞/K)
has an obvious filtration by subgroups pnZp for n = 0, 1, . . . . We write Kn/K for the finite ex-
tension corresponding to the subgroup pnZp ⊂ Zp.

On the other hand we have the upper numbering ramification filtration Gal(K∞/K)u for
real numbers u ≥ −1. By the Hasse-Arf theorem, the jumps of this filtration occur at rational
integers. That is, there is a sequence of integers −1 = u0 ≤ u1 ≤ u2 < . . . such that

Gal(K∞/K)u ∼= pnZp whenever un < u ≤ un+1

for all n = 0, 1, . . . . The two filtrations on Gal(K∞/K) are “eventually compatible” in the
following sense.

Lemma 4.1.1. Let u1, u2, . . . be the sequence defined above.
(1) There exists N = NK ≥ 1 such that uN ≥ 0 and un+1 = un + eK for all n ≥ N .
(2) If eK = 1 and K∞/K is the cyclotomic Zp-extension, then the sequence u1, u2, . . . is

1, 2, 3, . . . .
(3) Suppose L/K is a finite tamely ramified Galois extension. Then L∞ = LK∞ is an infin-

itely ramified Zp-extension of L. The sequence of jumps for L∞/L is eL/Ku1, eL/Ku2, . . . .
In particular, if p - eK and K∞/K is the cyclotomic Zp-extension, then the sequence of
jumps for K∞/K is eK , 2eK , . . . .

(4) Let N = NK as above. Consider the Zp-extension K∞/KN . Its sequence of jumps is
eKN

, 2eKN
, . . . .

Proof. Part (1) is well-known (see [Tat67, Proposition 5]), so we only give a sketch. It is possible
to reduce to the case that the residue field of K is quasi-finite, in which case local class field
theory applies. The reciprocity map of local class field theory K× → Gal(K∞/K) sends 1 +muK
surjectively onto Gal(K∞/K)u for each u ≥ 1. The statement now follows from the observations
that (a) since K∞/K is infinitely ramified, the inertia group Gal(K∞/K)0 is an open subgroup
of Gal(K∞/K), and (b) (1 + muK)p = 1 + pmuK = 1 + mu+eK

K for u large enough (u > eK/(p− 1)
suffices).

For part (2): The computation of the higher ramification groups of the cyclotomic Zp-extension
over Qp (or any unramified extension thereof) is standard, see for instance [Ser79, Chapter IV,
§4].

For part (3), note that the the wild inertia groups Gal(K/K)>0 and Gal(K/L)>0 agree.
Let ψL/K(u) be the Herbrand function. The transitivity of the Herbrand function implies that
Gal(K/L)ψL/K(u) = Gal(K/K)u for all u > 0. On the other hand ψL/K(u) = eL/Ku for u > 0
since L/K is tamely ramified. Since the ramification filtration is compatible with quotients we
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have Gal(L∞/L)eL/Ku = Gal(K∞/K)u for all u > 0, and so the jumps for Gal(L∞/L) occur at
eL/Ku1, eL/Ku2, . . . .

Part (4) follows once again from the transitivity of the Herbrand function. �

Let us call a Zp-extension K∞/K regular if its sequence of jumps is eK , 2eK , . . . . Part (4) of
the lemma will allow us to reduce our arguments to the case that K∞/K is regular, in which
case the ramification is tightly controlled.

For a finite extension L/K of local fields, we let DL/K denote the relative different. Recall
the formula for the valuation of the different in the case that L/K is Galois:

vK(DL/K) =

∫ ∞
−1

(
1− 1

# Gal(L/K)u

)
du (4.1.2)

Applied to Kn/K, we find:

vK(DKn/K) =

n−1∑
k=0

(uk+1 − uk)

(
1− 1

pn−k

)
(4.1.3)

Lemma 4.1.4. Assume that K∞/K is regular. Then for all n ≥ 0:

vKn+1
(DKn+1/Kn

) = eKp
n+1 − eK + p− 1

Proof. Use the transitivity of differents together with (4.1.3) and vKn+1
= pn+1vK . �

We need the following result on traces.

Lemma 4.1.5 ([Ser79, Chapter V Lemma 4]). Let L/K be a cyclic extension of order p. Let
d = vL(DL/K). Letting mK denote the maximal ideal of OK , and similarly for mL, we have for
each i ≥ 0:

trL/K(miL) = mjK ,

where j =
[
i+d
p

]
.

Lemma 4.1.6. Assume K∞/K is regular. We have the following inequalities.

(1) For x ∈ Kn+1 we have: ∣∣trKn+1/Kn
(x)
∣∣ ≤ |p|1− 1

pn+1 |x|

(2) For x ∈ Kn we have: ∣∣trKn/K(x)
∣∣ ≤ |p|n− 1

p−1 |x|

Proof. Applying Lemma 4.1.5 to Kn+1/Kn, we find d = eKp
n+1 − eK + p− 1, and so

vKn
(trKn+1/Kn

(x)) ≥
[
vKn+1(x) + d

p

]
≥

vKn+1(x) + d− (p− 1)

p

= vKn
(x) + eKp

n − eK
p

Translating this in terms of absolute values gives (1).
Applying (1) inductively to x ∈ Kn gives (2). �
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Keep the assumption that K∞/K is regular. Define the normalized traces by t = p−n trKn/K

and tn = p−1 trKn+1/Kn
. Then Lemma 4.1.6 translates into:

|t(x)| ≤ |p|−
1

p−1 |x| , x ∈ K∞ (4.1.7)

and
|tn(x)| ≤ |p|−

1

pn+1 |x| (4.1.8)

Let σ be a topological generator of Gal(K∞/K).

Lemma 4.1.9. Assume that K∞/K is regular. For x ∈ K∞ we have:

|x− t(x)| ≤ |p|−1− 1
p(p−1) |σ(x)− x|

Proof. For each x ∈ Kn+1 we have

x− tn(x) =

p−1∑
i=1

p−1(1 + σp
n

+ · · ·+ σ(i−1)pn)(1− σp
n

)(x),

so that
|x− tn(x)| ≤ |p|−1

∣∣∣(1− σpn)x
∣∣∣ ≤ |p|−1 |σ(x)− x| . (4.1.10)

We will prove by induction on n ≥ 1 the following statement which implies the lemma: for
x ∈ Kn, we have

|x− t(x)| ≤ |p|−1− 1
p2−···− 1

pn |σ(x)− x| .
The base case is (4.1.10). Assume the statement for n, and then for x ∈ Kn+1 we have:

|x− t(x)| ≤ max {|x− tn(x)| , |tn(x)− t(x)|}

Treating each quantity on the right side in turn, we have

|x− tn(x)| ≤ |p|−1 |σ(x)− x|

by (4.1.10), and then applying (4.1.7) and (4.1.8), we find:

|tn(x)− t(x)| = |tn(x)− t(tn(x))|

≤ |p|−1− 1
p2−···− 1

pn |(σ − 1)tn(x)|

≤ |p|−1− 1
p2−···− 1

pn+1 |σ(x)− x| .

�

The bounds in Lemma 4.1.6 and Lemma 4.1.9 show that t : K∞ → K is continuous and
therefore extends uniquely to a K-linear map t : K̂∞ → K satisfying the bounds for all x ∈ K̂∞:

|t(x)| ≤ p−
1

p−1 |x| (4.1.11)

|x− t(x)| ≤ |p|−1− 1
p(p−1) |σ(x)− x| (4.1.12)

Lemma 4.1.13. The natural map

OK ∼= H1
cts(Gal(K∞/K),OK)→ H1

cts(Gal(K∞/K),OK̂∞) (4.1.14)

is injective. If in addition K∞/K is regular, the cokernel of the map is α-torsion for any α ∈ OK
with v(α) > 1+ p+1

p(p−1) . In particular the cokernel is p2-torsion for p 6= 2 and p3-torsion for p = 2.
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Proof. The map in (4.1.14) is injective, for if α ∈ OK lies in the kernel, then α = (σ − 1)β for
β ∈ OK̂∞ , but then α = t(α) = 0.

Assume now K∞/K is regular. Let us write the superscript t = 0 to mean the kernel of the
normalized trace t wherever this is defined. For each n ≥ 1, the operator σ − 1 is injective on
Kt=0
n and hence an isomorphism; write (σ − 1)−1 for its inverse. The inequality (4.1.12) shows

that (σ − 1)−1 is bounded on Kt=0
∞ with operator norm ≤ |p|−1−1/p(p−1), so it extends to an

operator (σ − 1)−1 on K̂t=0
∞ with the same operator norm. Therefore

H1
cts(Gal(K∞/K),Ot=0

K̂∞
) ∼=

Ot=0
K̂∞

(σ − 1)Ot=0
K̂∞

is α-torsion for any α ∈ OK with v(α) ≥ 1 + 1/p(p− 1).
On the other hand, the inequality (4.1.11) shows that the inclusion

OK ⊕ Ot=0
K̂∞

↪→ OK̂∞

is β-torsion for any β ∈ OK with v(β) ≥ 1/(p − 1). Combining this paragraph with the last,
we find that the cokernel of (4.1.14) is killed by any product αβ, where v(α) ≥ 1 + 1/p(p − 1)
and v(β) ≥ 1/(p − 1). If K contains elements of sufficiently small positive valuation, then
the conclusion of the lemma holds: the cokernel of (4.1.14) is killed by any element of valuation
> 1+(p+1)/p(p−1). In general, one can let L/K be a sufficiently ramified finite tame extension,
and let L∞ = LK∞. Then L∞/L is regular by Lemma 4.1.1(3). The result descends from L to
K using Noether’s theorem (Hi(Gal(L/K),OL) = 0 for i > 0). �

We are ready to state the main result of this subsection. Let K be a general local field
of characteristic (0, p), and let K∞/K be an infinitely ramified Zp-extension. The inclusion
OK ↪→ OK̂∞ induces a map of complexes:

O
hGal(K∞/K)
K → O

hGal(K∞/K)

K̂∞
. (4.1.15)

Note that Gal(K∞/K) acts trivially on OK . A choice of isomorphism Gal(K∞/K) ∼= Zp induces
a quasi-isomorphism O

hGal(K∞/K)
K

∼= OK [ε].

Proposition 4.1.16. Let X be the cofiber of the morphism in (4.1.15), so that we have an exact
triangle

O
hGal(K∞/K)
K → O

hGal(K∞/K)

K̂∞
→ X.

Then Hi(X) = 0 for all i 6= 1. As for H1(X), it is p3-torsion if p 6= 2, and p4-torsion if p = 2.
If K∞/K is regular, the bounds can be improved to p2 and p3, respectively.

Proof. We have H0(X) = 0 because H0(Gal(K∞/K),OK̂∞) = OK and because the map in
(4.1.14) is injective, by the same reasoning used in the proof of Lemma 4.1.13. Also we have
Hi(X) = 0 for i > 1 because Gal(K∞/K) ∼= Zp has cohomological dimension 1. Thus we are
reduced to studying H1(X), which is the cokernel of (4.1.14). If K∞/K is regular, the desired
statement is Lemma 4.1.13.

If K∞/K is not regular, let N = NK be the bound from Lemma 4.1.1, so that K∞/KN is
regular. Let XN be the complex analogous to X. Then we have a left exact sequence:

0→ H1(Gal(KN/K),OKN
)→ H1(X)→ H1(XN )

By Sen’s theorem (Theorem 4.0.2),H1(Gal(KN/K),OKN
) is p-torsion. Lemma 4.1.13,H1(XN )

is p2- or p3-torsion as p is odd or even. ThereforeH1(X) is p3 or p4-torsion as p is odd or even. �
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4.2. The Galois cohomology of OC . Keep the assumption that K is a local field of charac-
teristic (0, p). Let K be an algebraic closure, and let C be the metric completion of K. We are
interested in OhΓK

C , the complex computing the continuous cohomology of ΓK on OC . The idea
is to use an infinitely ramified Zp-extension K∞/K as an intermediary:

OhΓK

C
∼=
(
O
hGal(K/K∞)
C

)hGal(K∞/K)

. (4.2.1)

First we deal with the inner term on the right side of (4.2.1).

Lemma 4.2.2. Define Y0 by the exact triangle

OK̂∞ → O
hGal(K/K∞)
C → Y0,

where the first morphism is induced from OK̂∞ ↪→ OC . Then H0(Y0) = 0, and for all i > 0,
Hi(Y0) is almost zero, in the sense that it is α-torsion for any α ∈ OK̂∞ with v(α) > 0.

Proof. See [Tat67, §3, Corollary 1]. In modern terms, K̂∞ is a perfectoid field, and for such fields
there is an “almost purity” result: for i > 0, the cohomology Hi

cts(Gal(K/K∞),OC) is almost
zero. The vanishing of H0(Y0) is a case of Ax’s theorem (Theorem 4.0.1). �

The complex Y0 in Lemma 4.2.2 admits a Gal(K∞/K)-action, so we may define the derived
invariants Y := Y

hGal(K∞/K)
0 .

Lemma 4.2.3. We have

Hi(Y ) =

{
0, i = 0,

π-torsion, i ≥ 1.

Here π is uniformizer for K. In particular Hi(Y ) is p-torsion for i ≥ 1.

Proof. Consider the spectral sequence

Hi
cts(Gal(K∞/K), Hj(Y0)) =⇒ Hi+j(Y ).

The left side only has nonzero terms for i = 0, 1. Combining this with Lemma 4.2.2, we find that
H0(Y ) = 0 and Hi(Y ) is π2-torsion for all i > 0.

To improve the result as in the lemma, we let L/K be a finite Galois extension such that
eL/K ≥ 2 and p - # Gal(L/K). Let YL be the complex defined analogously to Y , using L∞ =
LK∞. We may identify Gal(L∞/K∞) with Gal(L/K). Then Gal(L/K) acts on YL, and there
is an exact triangle

A→ Y → Y
hGal(L/K)
L ,

where A is the cofiber of OK̂∞ → O
hGal(L/K)

L̂∞
. But by Noether’s theorem, this cofiber is 0, and

so Y ∼= Y
hGal(L/K)
L . Now consider the spectral sequence

Hi(Gal(L/K), Hj(YL)) =⇒ Hi+j(Y
hGal(L/K)
L )

Since # Gal(L/K) is invertible in OK , the left side is only nonzero for i = 0, and so Hi(Y ) ∼=
Hi(YL)Gal(L/K). We have just seen that this is π2

L-torsion, where πL is a uniformizer for L. Since
eL/K ≥ 2, we find that Hi(Y ) is π-torsion as well. �

We have a composition of morphisms:

O
hGal(K∞/K)
K → O

hGal(K∞/K)

K̂∞
→ OhΓK

C (4.2.4)

induced by OK ↪→ OK̂∞ ↪→ OC . Recall ΓK = Gal(K/K) is the absolute Galois group of K.
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Theorem 4.2.5. Define Z by the exact triangle

O
hGal(K∞/K)
K → OhΓK

C → Z,

where the first morphism is the composition in (4.2.4). Then:

Hi(Z) =


0, i = 0,

pk-torsion, i = 1

p-torsion, i ≥ 2

Here we can take k = 4 or k = 5 as p is odd or even respectively. If K∞/K0 is regular (for
instance if p - eK), these bounds can be improved to 3 and 4, respectively.

Proof. Consider the three exact triangles:

O
hGal(K∞/K)
K →O

hGal(K∞/K)

K̂∞
→X

O
hGal(K∞/K)

K̂∞
→OhΓK

C →Y

O
hGal(K∞/K)
K →OhΓK

C →Z

Here the first triangle is from Proposition 4.1.16, the second is obtained by applying hGal(K∞/K)
to the triangle defining Y0, and the third is as in the theorem. By the octahedral axiom, we have
an exact triangle X → Z → Y . The result now follows by combining Proposition 4.1.16 with
Lemma 4.2.3. �

4.3. Galois cohomology of characters. Once again suppose K is a local field of characteristic
(0, p). Let

χ : Gal(K/K)→ Z×p
be a character; i.e., a continuous homomorphism. We assume that χ is infinitely ramified, in the
sense that the image of the inertia group under χ is infinite. Let K∞ be the fixed field of the
kernel of χ. Let Zp(χ) be Zp with an action of Gal(K/K) through χ. Then ifM is any p-adically
complete Gal(K/K)-module, we may define a new such module by M(χ) = M ⊗Zp

Zp(χ). The
present goal is to bound the continuous cohomology of Gal(K∞/K) acting on OK̂∞(χ).

Let U ⊂ Z×p be the largest subgroup which is isomorphic to Zp. Thus U = 1 + pZp for p odd
and U = 1 + p2Zp for p = 2. Let K0 be the fixed field of χ−1(U); then K∞/K0 is an infinitely
ramified Zp-extension. As usual, we let Kn/K0 be the fixed field of pn Gal(K∞/K0). Finally, we
define an integer r ≥ 1 by

χ(Gal(K∞/K0)) = 1 + prZp.

Lemma 4.3.1. Let N ≥ 0 be large enough so that K∞/KN is regular. Then

Hi
cts(Gal(K∞/K0),OK̂∞(χ)) =

{
0, i = 0

(pk-torsion), i = 1.

Here we may take k = N + r + 1 if p is odd and N + r + 2 if p = 2.

Proof. We first prove the result in the case that K∞/K0 is regular. Write t : K̂∞ → K0 for the
normalized trace. As in the proof of Lemma 4.1.13, we make use of the fact that the inclusion

OK0
⊕ Ot=0

K̂∞
↪→ OK̂∞

has α-torsion cokernel for any α ∈ OKN
with v(α) ≥ 1/(p− 1).

We are therefore reduced to studying the continuous cohomology of Gal(K∞/K0) acting
on OK0

(χ) and Ot=0
K̂∞

(χ), respectively. Let σ ∈ Gal(K∞/K0) be a topological generator, and
let λ = χ(σ)−1. Then for any p-adically complete Gal(K∞/K0)-module M , the continuous
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cohomology of M(χ) is computed by the complex σ − λ : M →M . Note that λ = 1 + pru for a
p-adic unit u ∈ Z×p .

In the case M = OK0 , we have H0(Gal(K∞/K0),OK0(χ)) = 0, since σ acts on OK0(χ) as the
scalar λ 6= 1. On the other hand H1

cts(Gal(K∞/K0),OK0
(χ)) is pr-torsion, being the cokernel of

multiplication by λ− 1 = pru.
To treat M = Ot=0

K̂∞
, we apply Lemma 4.1.9 to the regular extension K∞/K0. We find that

(σ − 1)−1 is defined on K̂t=0
∞ and has operator norm ≤ |p|−1−1/p(p−1).

Let

µ = (σ − 1)−1(σ − λ) = 1− (λ− 1)(σ − 1)−1.

In the case that r ≥ 2, we have |λ− 1| |σ − 1|−1
< 1, and so µ has continuous inverse satisfying∣∣µ−1

∣∣ ≤ 1. Therefore (σ− λ)−1 = (σ− 1)−1µ−1 exists on K̂t=0
∞ and has operator norm bounded

by |p|−1−1/p(p−1). Thus H0(Gal(K∞/K0),Ot=0
K̂∞

(χ)) = 0 and H1
cts(Gal(K∞/K0),Ot=0

K̂∞
(χ)) is

annihilated by any element α ∈ OK0
with v(α) ≥ 1 + 1/p(p− 1).

If r = 1, the idea is to apply the same argument to the regular extension K∞/K1, noting
that λp = χ(σp) now satisfies |λp − 1| |σp − 1|−1

< 1. Thus Hi
cts(Gal(K∞/K1),Ot=0

K̂∞
(χ)) is 0 for

i = 0 and is p1+1/p(p−1)-torsion for i = 1. The inflation-restriction sequence allows us to deduce
the same results for K∞/K0.

We have found that H0(Gal(K∞/K0),OK̂∞(χ)) = 0 and H1
cts(Gal(K∞/K0),OK̂∞(χ)) is α-

torsion for any α ∈ OK0
with v(α) ≥ max {r, 1 + 1/p(p− 1)} + 1/(p − 1). The latter term is

≥ r + 1 or ≥ r + 2 as p is odd or even, respectively, which implies the lemma in the case that
K∞/K0 is regular. (To handle the problem that OK0 may not contain elements of sufficiently
small valuation, it may be necessary to pass to a tamely ramified extension L/K0 as in the proof
of Lemma 4.1.13.) This concludes the proof of the lemma when K∞/K0 is regular.

In general, suppose N ≥ 0 is large enough so thatK∞/KN is regular. Note that Gal(K∞/KN )

is generated by σp
N

and that χ(σp
N

) ≡ 1 (mod pN+r). Thus the preceding argument shows
that H0

cts(Gal(K∞/KN ),OK̂∞(χ)) = 0 and H1
cts(Gal(K∞/KN ),OK̂∞(χ)) is pN+r+1- or pN+r+2-

torsion as p is odd or even, respectively. The same results for K∞/K0 now follow from the
inflation-restriction sequence.

We conclude that H0(Gal(K∞/K0),OK̂∞(χ)) = 0 and H1
cts(Gal(K∞/K0),OK̂∞(χ)) is α-

torsion for any α ∈ OK0
with v(α) ≥ max {N + r, 1 + 1/p(p− 1)} + 1/(p − 1). The latter

term is ≥ N + r + 1 or ≥ N + r + 2 as p is odd or even, respectively, which implies the lemma.
�

Lemma 4.3.2. Assume that K∞/KN is regular. Let ap = 0 if p is odd, and ap = 1 if p = 2.
We have:

Hi
cts(Gal(K∞/K),OK̂∞(χ)) =


0, i = 0,

(pN+r+1+ap -torsion), i = 1,

(pap -torsion), i > 1.

Proof. Combine the spectral sequence

Hi(Gal(K0/K), Hj
cts(Gal(K∞/K0),OK̂∞(χ))) =⇒ Hi+j(Gal(K∞/K),OK̂∞(χ))

with Lemma 4.3.1. The only terms on the left that contribute occur when j = 1. If p is odd,
the i > 0 terms on the left side vanish because # Gal(K0/K) is invertible in OK . If p = 2
then # Gal(K0/K) = 2, and the best we can say is that the i > 0 terms on the left side are
2-torsion. �
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As a special case, assume that p - eK , and let

χ : ΓK → Z×p
be the p-adic cyclotomic character, so that τ(ζ) = ζχ(τ) for any τ ∈ ΓK and any pth power root
of unity ζ. In this case K∞/K0 is a regular Zp-extension. For any j ∈ Z we write Zp(j) = Zp(χj)
for the jth Tate twist, and similarly OC(j) = OC⊗Zp(j). We have χj(Gal(K∞/K0)) = 1+prZp,
where r = ordp(j) + 1.

We conclude the section with a bound on the cohomology of OC(j).

Theorem 4.3.3. Let K be a local field of characteristic (0, p). Let j be a nonzero integer.
Finally, let ap = 0 for p odd and ap = 1 for p = 2. Then

Hi
cts(ΓK ,OC(j)) =


0, i = 0,

pN+ordp(j)+2+ap -torsion, i = 1,

p1+ap -torsion, i > 1.

Here N is chosen large enough so that K∞/KN is a regular Zp-extension. In particular if p - eK
we may take N = 0.

Proof. Let K∞/K be the extension obtained by adjoining all pth power roots of unity. As in
Lemma 4.2.3, define a complex Y0 by the exact triangle

O
hGal(K/K∞)

K̂∞
→ O

hGal(K/K∞)
C → Y0.

Then H0(Y0) = 0 and Hi(Y0) is almost zero for i > 0. Twisting by χ and taking derived
Gal(K∞/K)-invariants, we obtain an exact triangle

OK̂∞(χ)hGal(K∞/K) → OC(χ)hΓK → Y,

where Y = Y0(χ)hGal(K∞/K). The same method of proof for Lemma 4.2.3 shows that H0(Y ) = 0
andHi(Y ) is p-torsion for all i > 0. Combining these bounds with those obtained in Lemma 4.3.2,
we obtain the bounds appearing in the theorem. �
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5. Pro-étale cohomology of rigid-analytic spaces

Let K be a local field of characteristic (0, p), and let X be a smooth rigid-analytic space
over K. In this section we present some results on the pro-étale cohomology H∗(Xproét, Ô) and
H∗(Xproét, Ô

+).

5.1. The rational comparison isomorphism. There is a convenient basis for the topology
Xproét, consisting of those U = lim←−Ui which are affinoid perfectoid. Such covers are convenient
because if U is affinoid perfectoid, then Hi(Uproét, ÔX) = 0 for i > 0 [Sch13a, Lemma 4.10]. As a
consequence, if fi : Ui → X is an affinoid perfectoid covering, then RΓ(Xproét, ÔX) is computed
by the Čech complex ÔX(X)→

∏
i ÔX(Ui)→

∏
i,j ÔX(Ui×X Uj)→ · · · . As a special case, if X

is an affinoid rigid-analytic space, and U → X is a pro-étale torsor for a profinite group G with
U affinoid perfectoid, then

RΓ(Xproét, ÔX) ∼= H0(U, ÔX)hG. (5.1.1)

If C is an algebraically closed nonarchimedean field of characteristic (0, p), and X is a smooth
rigid-analytic space over C, the local nature of Xproét is well-understood, and the cohomology of
ÔX can be related to differentials:

Theorem 5.1.2 ([Sch13b, Proposition 3.23]). Let X be a smooth rigid-analytic space over C. Let
ν : Xproét → Xét be the projection. Then for each j ≥ 0 there is an isomorphism of OXét

-modules:

ΩjXét/C
(−j) ∼= Rjν∗ÔX .

The essential calculation behind Theorem 5.1.2 goes back to Faltings. Étale locally, X is a
finite cover of the d-dimensional torus

Td = Spa(Rd, R
+
d )

R+
d = OC

〈
T±1 , . . . , T

±1
d

〉
Rd = R+

d [1/p].

There is an affinoid perfectoid pro-étale torsor T̃d → Td for the group Zp(1)d, namely

T̃d = Spa(R̃d, R̃
+
d )

R̃+
d = OC

〈
T
±1/p∞

1 , . . . , T
±1/p∞

d

〉
R̃d = R̃+

d [1/p].

By (5.1.1) we have Hi(Tdproét,OX) ∼= Hi
cts(Zp(1)d, R̃d). But now an explicit calculation shows

that for all i the natural map

Hi
cts(Zp(1)d, R+

d )→ Hi
cts(Zp(1)d, R̃+

d )

is injective, with cokernel killed by (ζp − 1)i. Note that Hi(Zp(1)d, R+
d ) ∼=

∧i
R+

d
(R+

d )d. The

upshot is that Rjν∗ÔX ∼=
∧d

R1ν∗ÔX , and R1ν∗ÔX is a locally free OXét
-module of rank d. This

already suggests that Rjν∗ÔX should be related to differentials. We refer the reader to [Sch13b,
Lemma 3.24] for a functorial construction of the isomorphism in Theorem 5.1.2.

Now suppose once again that X is defined over the discretely valued field K. Once again
we write ν : Xproét → Xét for the projection; let νC : XC,proét → XC,ét be the corresponding
projection for XC . We have

Rν∗ÔX = Rν∗(Ô
hΓK

XC
) = (R(νC)∗ÔXC

)hΓK .
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Applying Theorem 5.1.2, we find that (R(νC)∗ÔXC
)hΓK admits a filtration with graded pieces

ΩjXC/C
(−j)hΓK . Now for a quasi-compact object U ∈ Xét, the derived global sections of the jth

piece on U are

RΓ(U,ΩjXC/C
(−j)hΓK ) = (RΓ(U,ΩjX/K)⊗̂KC(−j))hΓK

= RΓ(U,ΩjX/K)⊗̂KC(−j)hΓK .

By Theorem 4.0.3, the terms with nonzero j vanish, and the j = 0 term is RΓ(U,OXét
)[ε].

Therefore
Rν∗OX ∼= OXét

[ε].

We have proved:

Theorem 5.1.3. Let K be a discretely valued nonarchimedean field of characteristic 0 with
perfect residue field. Let X/K be a smooth rigid-analytic space. There is an isomorphism

RΓ(Xét,OX)[ε] ∼= RΓ(Xproét, ÔX).

(By étale descent, the “ ét” on the left side of this can be replaced with “an”.)

5.2. Integral p-adic Hodge theory. Suppose again that C is an algebraically closed nonar-
chimedean field of characteristic (0, p), and that X is a smooth rigid-analytic space over C.
When X has a sufficiently nice formal model over OC , the theorems of [BMS18] and [vK19] can
be used to gain control over the integral pro-étale cohomology RΓ(Xproét, Ô

+
X). The setup is as

follows. Let X be a formal scheme over Spf OC . We assume that X is semistable of dimension
d in the sense of [vK19]. This means that X can be covered by affine opens U which admit an
étale OC-morphism to

Spf OC
〈
T0, . . . , Tr, T

±
r+1, . . . , T

±
d

〉
/(T0 · · ·Tr = π) (5.2.1)

where π ∈ OC is a nonunit. We shall assume that log|p| |π| ∈ Q. (The values of r and π may vary
with U.) Then X carries a log structure associated to the subpresheaf M = OXét

∩OXét
[1/p]× of

OXét
. Let Ω1

Xét,log be the sheaf of log-differentials on Xét; that is, the sheaf generated by Kähler
differentials Ω1

Xét
together with logarithmic differentials df/f for f ∈M. (We refer to continuous

differentials throughout; the right way to construct Ω1
Xét,log is to do it over OC/pn and then take

a limit over n.) The formal scheme X is log-smooth, so Ω1
Xét,log is a locally free OXét

-module of
rank d. Finally, let ΩjXét,log =

∧j
Ω1

Xét,log.

The adic generic fiber X = Xad
C is a smooth rigid-analytic variety. The integral version of

Theorem 5.1.2 compares ΩjXét
with Rjν∗Ô+

X , where we have relabeled ν as the map of sites

ν : Xproét → Xét.

To make this work there are two additional ingredients: the Breuil-Kisin twist and the décalage
functor.

The Breuil-Kisin twist OC {1} is a free OC-module of rank 1 carrying a Gal(K/K)-action.
See [BMS18, Definition 8.2] for its precise definition. There is a canonical Galois-equivariant
injection OC(1) ↪→ OC {1} whose cokernel is killed by (ζp − 1).

The décalage functor will be reviewed in Section 5.4. In our context it appears as an endo-
functor Lη(ζp−1) on the derived category of OXOC,ét

-modules. For the moment we need two facts
concerning Lη(ζp−1): it is a lax monoidal functor, and also there is a natural map

a : Lη(ζp−1)C→ C (5.2.2)

whenever C is bounded below by 0. Let

Ω̃X = Lηζp−1Rν∗Ô
+
X ,
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so that Ω̃X is a complex of OXét
-modules.

Theorem 5.2.3 ([BMS18, Theorem 8.3],[vK19, Theorem 4.11]). For each j ≥ 0 there is a
canonical isomorphism of sheaves of OXét

-modules:

ΩjXét,log {−j} ∼= Hj(Ω̃X).

We will require upgrading Theorem 5.2.3 into a statement about an isomorphism of sheaves
of condensed abelian groups. For an abelian group A, let A(p) be the condensed abelian group
associated to A, considered as a topological abelian group with its p-adic topology. Note that if
A is p-adically separated and complete, then A(p) is a solid abelian group by Lemma 3.2.1. We
continue to write A 7→ A(p) for the extension of this functor to D(Ab)→ D(Cond(Ab)).

Lemma 5.2.4. Let X be an affinoid rigid-analytic space over a nonarchimedean field of char-
acteristic (0, p). There is a natural isomorphism in D(Cond(Ab)):

RΓcond(Xproét, Ô
+) ∼= RΓ(Xproét, Ô

+)(p)

Proof. By Lemma 3.3.1, RΓcond(Xproét, Ô
+) ∼= RΓ(Xproét, Ô

+
cond).

We claim there exists a pro-étale cover of X by an affinoid perfectoid space X̃ which is
strictly totally disconnected [Sch22, Definition 1.14]: this means that every étale cover of X̃ has
a section. First note there exists a pro-étale cover X ′ → X which is affinoid perfectoid by
[Sch13a, Proposition 4.8], and then there exists a pro-étale cover X̃ → X ′ with X̃ strictly totally
disconnected by [Sch22, Lemma 7.18].

Such an X̃ has no higher pro-étale cohomology, so that RΓ(Xproét, Ô
+
cond) is computed by the

Čech complex associated to the simplicial complex associated to the pro-étale cover X̃ → X.
Explicitly, RΓ(Xproét, Ô

+
cond) is quasi-isomorphic to the complex of condensed abelian groups

with terms Ai = H0(X̃(i), Ô+
cond), where X̃(i) is the i-fold fiber product of X̃ over X.

Since the X̃(i) are affinoid perfectoid, we have Ai = H0(X̃(i), Ô+)(p). Since the complex with
terms H0(X̃(i), Ô+) computes RΓ(Xproét, Ô

+), the result follows. �

Now let us return to the context of Theorem 5.2.3, so that X has a semistable formal model
X over OC . We may define sheaves Rν∗Ô+

cond and Ω̃X,cond = Lηζp−1Rν∗Ô
+
cond of solid abelian

groups on Xét. On the other hand, the sheaf of continuous differentials ΩjXét,log takes values in
p-adically separated and complete abelian groups by definition. Therefore by Lemma 3.2.1, the
sheaf ΩjXét,log,cond defined by U 7→ ΩjXét,log(U)(p) is a sheaf of solid abelian groups.

Similarly, the sheaf Ô+ on Xproét takes values in p-adically separated and complete abelian
groups, and therefore we may upgrade it to a sheaf Ô+

cond of solid abelian groups. For any
U ∈ Xproét affinoid perfectoid, the value of Ô+

cond(U) on S is

Ô+
cond(U)(S) = Ccts(S, Ô

+(U)) ∼= Ô+(U × S),

and as a result the derived global sections of Ô+
cond as a condensed abelian group computes

RΓcond(Xproét, Ô
+):

RΓ(Xproét, Ô
+
cond) ∼= RΓcond(Xproét, Ô

+)

One also has sheaves of condensed abelian groups Rν∗Ô+
cond and Ω̃X,cond = Lηζp−1Rν∗Ô

+
cond.

Proposition 5.2.5. For each j ≥ 0 there is a canonical isomorphism of sheaves of condensed
abelian groups on Xét:

ΩjXét,log,cond {−j} ∼= Hj(Ω̃X,cond).
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Proof. The claim in the proposition will follow from Theorem 5.2.3 as soon as one knows that

Ω̃X,cond =
(

Ω̃X

)(p)

,

since the ΩjXét,log,cond have the corresponding property. It is enough to check this after passing
to derived global sections over any U ∈ Xét; without loss of generality we can take U = X, in
which case:

RΓ(X, Ω̃X,cond) = Lη(ζp−1)RΓcond(Xproét, Ô
+)

∼= Lη(ζp−1)

(
RΓ(Xproét, Ô

+)(p)
)

∼= RΓ(X, Ω̃X)(p)

In the last step we applied the easily verified fact that Lηζp−1 commutes with the operation
A 7→ A(p). �

5.3. The integral comparison isomorphism for affine semistable formal schemes. The
idea now is to present integral versions of the comparison isomorphism in Theorem 5.1.3. The
first version applies to the setting where K is a local field of characteristic (0, p), and X is a
rigid-analytic space over K admitting an affine semistable model X over OK .

We have a diagram of sites endowed with sheaves of solid rings:

(Xproét, Ô
+
cond) //

��

(Xét,Ocond)

((SpaK)proét, Ô
+
cond)

Each of the morphisms in the diagram induces a map of ring objects in D(Solid), which can be
tensored together to form a map:

H0(X,OX,cond)⊗RΓcond(SpaKproét, Ô
+)→ RΓcond(Xproét, Ô

+).

Theorem 5.3.1. Let X be an affine semistable formal scheme of dimension d over OK with
generic fiber X. There exist constants MK,d,i independent of X such that the cofiber of

H0(X,OX,cond)⊗RΓcond(SpaKproét, Ô
+)→ RΓcond(Xproét, Ô

+)

has ith cohomology group killed by pMK,d,i for all i ≥ 0.
Explicitly:
(1) MK,d,0 = 0,
(2) MK,d,1 = 2d+ 1
(3) For 2 ≤ i ≤ d+ 1,

MK,d,i = MK + ordp(i− 1) + (2 + ap)(i− 2) + 2d+ 2

where MK is the bound from Theorem 4.0.4, and ap = 0 for p odd and ap = 1 for p = 2.
(4) For i ≥ d+ 2,

MK,d,i = (4 + ap)d+ 2.

We record here the more convenient bound

MK,d,i ≤MK + 6d, (5.3.2)

valid for any p and all cohomological degrees.
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Proof. Let C be the completion of an algebraic closure of K. To ease notational burden, we will
drop the “cond” from O, O+

cond, Ω̃, etc., with the tacit assumption that these are to be interpreted
as sheaves of solid abelian groups.

The map in the theorem factors is defined as the following composition:

H0(X,O)⊗RΓ(SpaKproét, Ô
+) ∼= RΓ(Xét,O)⊗ OhΓK

C

∼= RΓ(XOC ,ét,O)hΓK

ε→ RΓ(XOC ,ét, Ω̃)hΓK

α→ RΓ(XOC ,ét, Rν∗Ô
+)hΓK

∼= RΓ(XC,proét, Ô
+)hΓK

∼= RΓ(Xproét, Ô
+)

The map ε comes from the unit morphism OXOC
→ Ω̃. (Note that since Lηζp−1 is lax monoidal,

Ω̃ is a commutative algebra object.) The map labeled α comes from the functor a appearing in
(5.2.2). The cofibers of both maps are controlled in the following two subsections, and the bound
MK,d,i obtained in the theorem is obtained by adding the bounds obtained therein. �

5.4. Controlling the cofiber of ε. The map ε arises from a morphism of sheaves Ocond → Ω̃
on XOC ,ét which fits into a cofiber sequence:

Ocond → Ω̃→ Ω̃≥1.

Thus the cofiber of ε is:
cof(ε) = RΓ(X, Ω̃≥1)hΓK .

By Theorem 5.2.3, Ω̃≥1 admits a filtration whose associated graded pieces are

ΩjXOC
,log {−j} ∼= ΩjXOC

,log ⊗ OC {−j}

Therefore the cofiber of ε has a finite filtration with associated graded pieces

RΓ(X,ΩjX,log)⊗ OC {−j}hΓK

for j = 1, . . . , d. (Here the ⊗ means the tensor product in D(Solid).)

Lemma 5.4.1. For all j ≥ 0 we have:
(1) H0(ΓK ,OC {−j}) = 0.
(2) H1

cts(ΓK ,OC {−j}) is pM+ordp(j)+1-torsion, where M = MK is the constant in Theo-
rem 4.0.4.

(3) For i ≥ 2, Hi
cts(ΓK ,OC {−j}) is p2-torsion if p is odd, or p3-torsion if p = 2.

Proof. Since there is an injective ΓK-equivariant map OC(1) → OC {1} whose cokernel is killed
by (ζp − 1), there is an injective map OC {−j} → OC(−j) whose cokernel is killed by (ζp − 1)d.
After adjusting this map by an appropriate power of p, we may assume that the cokernel is simply
killed by p. The claimed bound follows from applying the long exact sequence in cohomology
together with Theorem 4.3.3. �

Proposition 5.4.2. Considering the cohomology groups of the cofiber of ε, we have:
(1) For i = 0, 1, Hi(cof(ε)) = 0.
(2) For 2 ≤ i ≤ d + 1, Hi(cof(ε)) is pM+ordp(i−1)+1+(2+ap)(i−2)-torsion, where M = MK is

the constant from Theorem 4.3.3, and ap = 0 for p odd and ap = 1 for p = 2.
(3) For i ≥ d+ 2, Hi(cof(ε)) is p(2+ap)d-torsion.
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Proof. Follows from Lemma 5.4.1 together with the spectral sequence

H0(X,ΩjX,log)⊗Hi
cts(ΓK ,OC {−j}) =⇒ Hi+j(Ω̃≥1),

noting that the left side is only nonzero for j = 1, . . . , d and i ≥ 1. �

5.5. Controlling the décalage functor. We record here some lemmas regrading the Lη func-
tor, recalling and extending slightly the results in §6 of [BMS18]. Let (T,OT ) be a ringed topos.
Let D(OT ) be the derived category of OT -modules. Let I ⊂ OT be an invertible ideal sheaf.
We use LηI to denote the lax symmetric monoidal functor D(OT ) → D(OT ) as in [BMS18,
Corollary 6.5., Proposition 6.7]. This functor has the effect of killing the I-torsion in the coho-
mology of a complex. The functor LηI commutes with truncations and in particular preserves
the subcategories of bounded complexes D≥0(OT ), D≤d(OT ), D[0,d](OT ).

Lemma 5.5.1. Let C be an object in D(OT ). Then
(1) Assume that C ∈ D≥0(OT ) and that H0(C) is I-torsion free. We have a natural map in

D(OT ):
a : LηI(C)→ C.

(2) Assume that C ∈ D≤d(OT ). We have a natural map in D(OT )

b : C⊗ I⊗d → LηI(C)

(3) Assume that C ∈ D[0,d](OT ) and that H0(C) is I-torsion free. The cofibers of b◦(a⊗I⊗d)
and a ◦ b are OT /I⊗d-modules.

Proof. These claims are all part of [BMS18, Lemma 6.9.]. �

Applying Lemma 5.5.1 to the ringed topos (XOC ,ét,OXOC
), the invertible ideal I = (ζp − 1),

and the objects Rν∗Ô+ and τ≤dRν∗Ô+, we obtain morphisms:

a : LηIRν∗Ô
+ → Rν∗Ô

+

a : LηIτ
≤dRν∗Ô

+ → τ≤dRν∗Ô
+

b : τ≤dRν∗Ô
+ ⊗ I⊗d → LηI(C)

Lemma 5.5.2. The object cof(a) is I2d-torsion.

Proof. Consider the diagram of cofiber sequences

cof(b ◦ (ā⊗ I⊗d))
= //

��

cof(b ◦ (ā⊗ I⊗d)) //

��

0

��

cof(b) //

��

cof(āb) //

��

cof(ā)

=

��

I⊗d ⊗ cof(ā)[1] // N // cof(ā).

Here N is the cofiber of the map cof(b◦ (ā⊗I⊗d))→ cof(āb). Since cof(b◦ (ā⊗I⊗d)) and cof(āb)
are both Id-torsion, N is I2d-torsion.

By Lemma 5.5.3 below, the map cof(a)→ I⊗d ⊗ cof(a)[2] is 0, so that

N ∼=
(
I⊗d ⊗ cof(ā)[1]

)
⊕ cof(ā).

It follows that cof(ā) is I2d-torsion. �
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Lemma 5.5.3. Let a1, a2, a3 be morphisms in a triangulated category which fit into a diagram:

A
a1→ B

a2→ C
a3→ D.

Then the composition of the canonical maps

cof(a3)→ cof(a2)[1]→ cof(a1)[2]

is 0.

Proof. We have a commutative diagram of fiber sequences:

cof(a2a1) //

��

cof(a3a2a1) //

��

cof(a3) //

��

=

��

cof(a2a1)[1]

��

cof(a2) // cof(a3a2) // cof(a3) // cof(a2)[1]

It follows that the canonical map cof(a3) → cof(a2)[1] factors through cof(a2a1)[1], which is
exactly the fiber of the canonical map cof(a2)[1]→ cof(a1)[2]. Thus the composition cof(a3)→
cof(a1)[2] is zero. �

Lemma 5.5.4. The complexes cof(a) and cof(ā) are almost isomorphic. In particular cof(a) is
(ζp − 1)2d+1-torsion.

Proof. Let
t : τ≤dRν∗Ô

+ → Rν∗Ô
+

be the natural map. Consider the diagram of cofiber sequences:

LηIτ
≤dRν∗Ô

+ //

LηIt

��

τ≤dRν∗Ô
+ //

t

��

cof(ā)

��

LηIRν∗O
+ //

��

Rν∗O
+ //

��

cof(a)

��

cof(LηIt) // cof(t) // D.

We claim that t and LηIt are almost isomorphisms. We begin with t. It suffices to verify
that t is an almost isomorphism after evaluating the source and target complexes of sheaves
on an open. Given an open U → Xét, (Rν∗O

+)(U) ∼= RΓ(ν−1(U)proét,O
+) is now subject

to the constraints imposed by the discussion around [vK19, Equation 3.3.1], in which ∆ has
cohomological dimension d, so the cofiber of the map e is almost zero. Applied to our situation,
this implies that the cofiber of t is almost zero. A similar argument applying the source and
target of LηIt to an open allows us to apply [vK19, Theorem 3.9] to see that the cofiber of LηIt
is almost zero.

Therefore cof(LηIt) and cof(t) are both almost zero. This implies that D is almost zero, and
this further implies that cof(ā) → cof(a) is an almost isomorphism. Since an almost zero sheaf
of complexes is I-torsion, we have that cof(a) is I2d+1-torsion. �

Consider now the map α appearing in the proof of Theorem 5.3.1:

α : RΓ(XOC ,ét, Lη(1−ζp)Rν∗Ô
+)hΓK → RΓ(XOC ,ét, Ô

+)hΓK

Its cofiber is RΓ(XOC ,ét, cof(a))hΓK . Since cof(a) is (ζp − 1)2d+1-torsion, we (rather crudely)
conclude that it is p2d+1-torsion, and thecalageore so are the cohomology groups of the cofiber
of α. When combined with Proposition 5.4.2, we obtain the bounds appearing in Theorem 5.3.1.
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5.6. The integral comparison theorem for general semistable formal schemes. We now
drop the assumption that X is affine or even quasi-compact.

Theorem 5.6.1. Let X be a semistable formal scheme of dimension d over OK with generic
fiber X. Let AX be the cofiber of the natural map

RΓ(X,Ocond)⊗RΓcond(Kproét, Ô
+)→ RΓcond(Xproét, Ô

+).

Then:

Hi(AX) =


0, i = 0,

pdMK+(4+ap)(d+1)2

-torsion, 1 ≤ i ≤ 2d+ 1,

p(4+ap)(d+1)2

-torsion, i ≥ 2d+ 2.

In particular, all cohomology groups of AX are killed by p5(d+1)2+dMK .

Proof. Let {Ui}i∈I be an affine cover of X. For a finite non-empty set of indices J ⊂ I, we
will write UJ =

⋂
i∈J Ui; assume these are all affine. We will write AUJ

for the corresponding
complex.

For every i ≥ 0, Hi(AUJ
) is pMK,d,i-torsion, where MK,d,i is the bound appearing in Theo-

rem 5.3.1. The cover {Ui}i∈I induces a cosimplicial diagram whose totalization computes AX:

AX
∼= lim[n]∈∆

∏
J⊂I

#J=n+1

AUJ
.

Taking the associated spectral sequence (and noting that the nerve of the cover has dimension
≤ d) shows that Hi(AX) is pm(i)-torsion for m(i) =

∑
0≤j≤dMK,d,j−i. When i ≥ 2d + 2, the

terms of the sum are all (4+ap)d+2 ≤ (4+ap)(d+1), so the sum is bounded by (4+ap)(d+1)2.
On the other hand if 1 ≤ i ≤ 2d+ 1, the sum is bounded by

dMK + ordp(d!) + (2 + ap)

d∑
i=1

i+ 2(d+ 1)2 ≤ dMK + (4 + ap)(d+ 1)2.

Here we used the bound ordp(d!) ≤ d. �

5.7. Tame descent. A smooth rigid-analytic space X/K doesn’t necessarily have a semistable
model; it may be necessary to extend scalars. The best result we know along these lines is the
main theorem of [Har03], which states that Xét admits an open cover by rigid-analytic generic
fibers of semistable formal schemes defined over finite extensions L/K. If X is not quasi-compact
then there may not be a single L/K that suffices for this purpose.

In the special case that all the L/K are tamely ramified extensions (or, at least, if the wild
ramification of the L/K is bounded), then it becomes possible to get uniform control over the
pro-étale cohomology of X.

Lemma 5.7.1. Let K be a local field of characteristic (0, p) and d ∈ Z≥0. Let X be a smooth
affinoid rigid-analytic space of dimension d over K. Assume there exists a tamely ramified finite
extension L/K and a semistable affine formal scheme X/OL whose rigid-analytic generic fiber is
XL. Then the cofiber of the natural map

H0(X,O+
cond)⊗RΓcond(Kproét, Ô

+)→ RΓcond(Xproét, Ô
+)

has cohomology groups killed by pMK+6d, where MK is the constant from Theorem 4.0.4.

Proof. (For the purposes of this proof we drop the “cond” subscripts.) By Theorem 5.6.1 applied
to X/OL, the cofiber of

RΓ(X,O)⊗RΓ(Lproét, Ô
+)→ RΓ(Xproét, Ô

+)
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has cohomology groups killed by pM for a constant M = MK,d. Since X is affine and semistable
we have

RΓ(X,O) = H0(X,O) ∼= H0(XL,O
+).

The idea now is to descend the result through L/K. Without loss of generality let us assume
that L/K is Galois. Let K ′/K be the maximal unramified subextension of L/K. Now we have

RΓ(Xproét, Ô
+) ∼= RΓ(XL,proét, Ô

+)hGal(L/K).

Since RΓ(Lproét, Ô
+) is isomorphic to O

hZp

L up to torsion bounded in terms of K (Theorem 4.0.3),
it suffices to show that the natural map

H0(XK ,O
+)→ H0(XL,O

+)hGal(L/K)

is an isomorphism. Since the order of Gal(L/K ′) is invertible in OK , we have

H0(XL,O
+)hGal(L/K′) = H0(XL,O

+)Gal(L/K′) = H0(XK′ ,O
+)

Now since K ′/K is unramified, we have

H0(X,O+)⊗OK
OK′ ∼= H0(XK′ ,O

+)

(since the right side is integrally closed in H0(XK′ ,O
+)⊗K ′), and so

H0(XK′ ,O
+)hGal(K′/K) ∼= H0(XK ,O

+)⊗ O
hGal(K′/K)
K′ = H0(XK ,O

+).

�
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6. Proof of Theorem B

Let us recall the main players in Theorem B: a prime number p, an integer n ≥ 1, the ring
of p-typical Witt vectors W = W (Fp), and the Lubin-Tate ring A ∼= W Ju1, . . . , un−1K, which
admits a continuous action of the Morava stabilizer group Gn. Proposition 2.5.1 states that the
inclusion W ↪→ A admits a continuous Gn-equivariant additive splitting, say with complement
Ac. Theorem B is the statement that the continuous cohomology H∗cts(Gn, Ac) is p-power torsion.

In Section 3.5 we explained how to reduce Theorem B to a statement (Theorem 3.5.3) control-
ling the pro-étale cohomology of the open ball and Drinfeld’s symmetric space. After a detour
on the integral cohomology of p-adic Lie groups, We examine these cases in turn.

6.1. Continuous cohomology of p-adic Lie groups with integral coefficients. Let G be a
p-adic Lie group. In Section 3.4 we reviewed Lazard’s isomorphism H∗cts(G,Qp) ∼= H∗(LieG,Qp),
where LieG is Lazard’s (rational) Lie algebra. For our purposes we will need the integral refine-
ment of this isomorphism described in [HKN11]. First we recall a definition from [DdSMS99].
Let U be a pro-p group. We say U is uniform if it satisfies the conditions:

(1) U is topologically finitely generated.
(2) For p odd (resp., p = 2), U/Up is abelian (resp., U/U4 is abelian). Here Un is the closure

of the subgroup of U generated by nth powers.
(3) Let U = U1 ⊃ U2 ⊃ · · · be the lower p-series. Then [Ui : Ui+1] is independent of i.

For a uniform pro-p group U , [DdSMS99, §8.2] defines the integral Lie algebra L(U) over Zp;
this is a lattice in LieU . The following is [HKN11, Theorem 3.3.3].

Theorem 6.1.1. Let U be a uniform pro-p group acting continuously on a finitely generated free
Zp-module M . Assume that the action map U → AutM factors through 1 + pEndM if p is odd
(resp., through 1 + 4 EndM if p = 2). Then L(U) acts on M , and there is an isomorphism of
graded Zp-modules:

H∗cts(U,M) ∼= H∗(L(U),M)

If G is a Qp-analytic group acting continuously on M , then G contains a uniform pro-p
subgroup U whose action onM satisfies the hypothesis of Theorem 6.1.1. Therefore the question
of computing continuous cohomology of G with integral coefficients can be reduced to a question
about the integral Lie algebra L(G).

Lemma 6.1.2. Let G be either of the groups GLn(Zp) or O×D.
(1) Let G act trivially on Zp. Then

Hi
cts(G,Zp) ∼= Z⊕rip ⊕ Si,

where ri is the dimension of the degree i part of ΛQ(x1, x3, . . . , x2n−1), and where Si is
annihilated by a uniform power of p (that is, the power does not depend on i).

(2) Let C be a complex of solid Zp-modules admitting an action of G. Assume that Hi(C) = 0
for all i ≤ 1 and that Hi(C) is annihilated by a uniform power of p. Then Hi(ChG) is
also annihilated by a uniform power of p.

Proof. In each case, G is the group of units of a Zp-algebra A such that U = 1+p2A is a uniform
pro-p subgroup of G.

For part (1): Theorem 6.1.1 gives an isomorphism H∗cts(U,Zp) ∼= H∗(L(U),Zp). After tensor-
ing with Qp, we have

H∗(L(U),Zp)⊗Zp Qp ∼= H∗(LieU,Qp) ∼= ΛQp(x1, x3, . . . , x2n−1).

Since each H∗(L(U),Zp) is finitely generated over Zp, we may write

Hi
cts(U,Zp) ∼= Hi(L(U),Zp) ∼= Zrip ⊕ Si,
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where Ti is finite. Since the cohomology is 0 for i > n2, there is a uniform power of p which
annihilates Si for all i.

To extend this statement from U to G, we use the existence of the restriction and corestriction
maps between H∗cts(G,W ) and H∗cts(U,W ); their composition is multiplication by #G/U .

For part (2): Consider the spectral sequence

Hi
cts(U,H

j(C)) =⇒ Hi+j(ChU ).

Since U has cohomological dimension n2, the left side is nonzero only when 0 ≤ i ≤ n2 and
j > 0. Therefore if pr annihilates Hi(C) for all i, then prn

2

annihilates Hi(ChU ) for all i. Once
again, the restriction and corestriction maps can be used to extend the result from U to G. �

6.2. Pro-étale cohomology of the open ball. Let K be a local field of characteristic (0, p).
For an integer d ≥ 1, recall that we had defined the d-dimensional rigid-analytic open ball over
K:

B◦,d = (SpaOKJT1, . . . , TdK) \ {|p| = 0}
The ball B◦,d is not quasi-compact. It is exhausted by affinoid (closed) balls of increasing radius:

B◦,d = lim−→
r<1

Bdr , (6.2.1)

where r runs over real numbers in |p|Q+ , and for each r = |p|m/n with m,n relatively prime
positive integers, Bdr is the rational subset defined by the inequality |T |n ≤ |p|m.

The goal of this section is to control RΓ(B◦,dproét, Ô
+). The idea is to apply Lemma 5.7.1 to a

collection of affinoid balls Bdr which cover B◦,d. A convenient choice of radii is r` = |p|1/`, where
` runs over prime numbers 6= p. The closed ball Bdr` admits a smooth formal model after passage
from K to the tamely ramified extension

L` = K(p1/`).

Indeed Bdr` is the rigid-analytic generic fiber of the smooth formal scheme Bd
r`
, where

Bd
r`

= Spf OL`

〈
T1

p1/`
, . . . ,

Td
p1/`

〉
.

Let A` be the cofiber of

H0(Bdr` ,O
+
cond)⊗ OhΓK

C → RΓcond(Brd,proét, Ô
+).

By Lemma 5.7.1, the solid abelian groups Hi(A`) are p6d+MK -torsion, whereMK is the constant
appearing in Theorem 4.0.4. Importantly, these bounds do not depend on `. We obtain an exact
triangle:

R lim←−H
0(Bdr` ,O

+
cond)⊗ OhΓK

C → RΓcond(B◦,dproét, Ô
+)→ R lim←−A` (6.2.2)

Regarding the R lim←−A` term, its cohomology groups are computed by a spectral sequence

Hi(Rj lim←−A`) =⇒ Hi+j(R lim←−A`).
Since the indexing set is totally ordered, the left side is nonzero only for j = 0, 1. Therefore
Hi(R lim←−A`) is p12d+2MK -torsion.

Turning to the term R lim←−H
0(Bdr` ,O

+), we claim there is no R1 lim. Indeed this a general
property, relying on the fact that K is spherically complete.

Lemma 6.2.3. Let F be a nonarchimedean field. Assume that F is spherically complete, meaning
that every sequence of nested closed intervals has a nonempty intersection. Let Bdr be the rigid-
analytic closed ball of radius r over F . Then

R1 lim←−
r<1

H0(Bdr ,O
+) = 0.
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Proof. The condition of being spherically complete implies that

R1 lim←−
n

In = 0,

where I1 ⊃ I2 ⊃ · · · is a decreasing sequence of fractional ideals of F . Indeed, the complex which
computes R lim←−n In is

d :
∏
n

In →
∏
I

In

(an) 7→ (an − an+1)

We claim the map d is surjective. Given a sequence (bn) ∈
∏
I In, let An = b1 + · · ·+ bn + In+1.

Then the An are a sequence of nested closed intervals. Let a1 ∈
⋂
nAn, and let an = a1 − (b1 +

· · ·+ bn−1). Then d(an) = (bn).
For r ∈ R>0, let I(r) denote the fractional ideal of elements f ∈ F with |f | ≤ r. Then

H0(Br,O
+) =

{∑
i

biT
i

∣∣∣∣ bi ∈ I(r−|i|), |bi| r|i| → 0

}
.

Here the indices i are tuples (i1, . . . , id) of nonnegative integers, and |i| =
∑
j ii. Let r1, r2, . . .

be an increasing sequence in (0, 1) with limit 1. Consider the complex

d :
∏
n

H0(Brn ,O
+)→

∏
n

H0(Brn ,O
+)

which computes R lim←−r<1
H0(Br,O

+). Let (bn) be a sequence in
∏
nH

0(Brn ,O
+), so that bn =∑

i bniT
i, with bni ∈ I(r

−|i|
n ) and |bni| → 0 as i → ∞. For each i we have R1 limn I(r

−|i|
n ) = 0,

so there exists ani ∈ I(r
−|i|
n ) such that ani − a(n+1)i = bni.

Since a1i ∈ b1i + I(r
−|i|
2 ) we have |a1i| ≤ max

{
|b1i| , r−|i|2

}
. Therefore lim|i|→∞ |a1i| r|i|1 = 0,

and so a1 =
∑
i a1iT

i defines an element of H0(Br1 ,O
+). Defining an = a1 − (b1 + · · ·+ bn−1),

we find a sequence (an) ∈
∏
nH

0(Brn ,O
+) with d(an) = bn. �

By Lemma 6.2.3, the exact triangle in D(Solid) from (6.2.2) reduces to:

OKJT1, . . . , TdK⊗ OhΓK

C → RΓcond(Bd,◦proét, Ô
+)→ A, (6.2.4)

where each Hi(A) is p12d+2MK -torsion.

Theorem 6.2.5. There is a fiber sequence

OKJT1, . . . , TdK[ε]→ RΓproét(B
d,◦
proét, Ô

+)→ Eball,

where the cohomology groups of the “error term” Eball are killed by p12d+2MK+5. In particular if
p - eK , they are killed by p12d+10.

Proof. By Theorem 4.2.5, we have an exact triangle

OK [ε]→ OhΓK

C → Z,

where the cohomology groups of Z are p5-torsion, or p4-torsion if p - eK . Tensoring with the flat
module OKJT1, . . . , TdK, we obtain an exact triangle

OKJT1, . . . , TdK[ε]→ OKJT1, . . . , TdK⊗ OhΓK

C → OKJT1, . . . , TdK⊗ Z.

Using the octahedral axiom to combine with (6.2.4), we find an exact triangle

OKJT1, . . . , TdK⊗ Z → Eball → A
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from which we can extract the bounds appearing in the theorem. (Note that if p - eK then we
may take MK = 3.) �

Corollary 6.2.6. Let W = W (Fp), let K = W [1/p], and let LTK be Lubin-Tate space in height
n, with A = H0(LTK ,O

+) ∼= OKJu1, . . . , un−1K the Lubin-Tate ring.
(1) There is an exact triangle in D(Solid):

AhO
×
D [ε]→ RΓcond(LTK,proét, Ô

+)hO
×
D → E1,

where the cohomology groups of E1 are killed by a uniform power of p.
(2) For each i ≥ 0, let ri be the dimension of the ith graded piece of ΛQ(x1, x3, . . . , x2n−1).

We have an exact sequence:

0→W (ri⊕ri−1) ⊕ Si → Hi(RΓ(LTK,proét, Ô
+)hO

×
D )→ S′i → 0,

where S′i is killed by a uniform power of p, and Si is a quotient:

Si =
Ri ⊕Hi

cts(O
×
D, A

c)

R′i

Here Ri and R′i are killed by a uniform power of p.

Proof. Identifying LTK with the (n − 1)-dimensional open ball over K, Theorem 6.2.5 states
that the cohomology groups of Eball are killed by a uniform power of p. In the statement of
the corollary we have E1 = E

hO×D
ball . Now apply Lemma 6.1.2(2) to conclude that the cohomology

groups of E1 are killed by a uniform power of p. This is (1).
Part (2) follows from applying the long exact sequence in cohomology to the exact triangle in

(1). Note thatHi(AhO
×
D [ε]) = Hi(AhO

×
D )⊕Hi−1(AhO

×
D ). We have also applied the decomposition

A = W ⊕Ac, together with the results on Hi
cts(O

×
D,Zp) from Lemma 6.1.2(1). �

6.3. The pro-étale cohomology of Drinfeld’s symmetric space. Let H be Drinfeld’s sym-
metric space of dimension n−1. Then H admits a semistable formal model H/Zp. For an efficient
construction of H, see [GK05a, §6]. The formal scheme H/Zp admits an action of GLn(Qp) which
is compatible with the isomorphism HQp

∼= H.
Our goal is to control the pro-étale cohomology of H. Key to that calculation is the following

acyclicity result of Grosse-Klonne:

Theorem 6.3.1. We have

Hi(H,O) =

{
Zp, i = 0

0, i ≥ 1

Proof. This is a special case of [GK05b, Theorem 4.5], who establishes acyclicity for coherent
sheaves on H appearing as integral structures in dominant representations of GLn(Qp); we only
use here the trivial representation. In the case i = 0, [GK05b, Theorem 4.5(iii)] theorem states
that H0(H,O) ⊗ Fp ∼= H0(HFp ,O). The latter is Fp because HFp is a connected scheme whose
irreducible components are all copies of Pd−1

Fp
. Since H0(H,O) is p-adically complete and torsion-

free, this forces H0(H,O) = Zp. �

Theorem 6.3.2. There is a GLn(Zp)-equivariant exact triangle in D(Solid):

Zp[ε]→ RΓcond(Hproét, Ô
+)→ EH,

where the cohomology groups of EH are killed by p5n2+3n.
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Proof. Applying Theorem 5.6.1 to the semistable formal scheme HW , we find an exact triangle

OhΓK

C → RΓcond(HK,proét, Ô
+)→ A,

where the cohomology groups of A are killed by p5n2+3n−3. As in the proof of Theorem 6.2.5,
we combine with Theorem 4.2.5 to obtain the bound appearing in the theorem. �

Corollary 6.3.3. We have the following bounds on the continuous GLn(Zp)-cohomology of the
pro-étale cohomology of HK :

(1) There is an exact triangle

ZhGLn(Zp)
p [ε]→ RΓcond(Hproét, Ô

+)hGLn(Zp) → E2,

where the cohomology groups of E2 are annihilated by a uniform power of p.
(2) For each i ≥ 0, we have an isomorphism

Hi
(
RΓcond(Hproét, Ô

+)hGLn(Zp)
)
∼= W⊕(ri+ri−1) ⊕Qi,

where ri is the dimension of the degree i part of ΛQ(x1, x3, . . . , x2n−1), and where Qi is
annihilated by a uniform power of p.

Proof. For (1): referring to Theorem 6.3.2, we have E2 = E
hGLn(Zp)
H ; the bounds on its coho-

mology are derived from Lemma 6.1.2(2).
For (2), let Hi be the ith cohomology group of RΓcond(Hproét, Ô

+)hGLn(Zp). Using the results
of part (1) and the description of ZGLn(Zp)

p in Lemma 6.1.2(1), we have an exact sequence

0→ Z⊕(ri+ri−1)
p ⊕Q′i → Hi → Q′′i → 0,

where Q′i and Q′′i are annihilated by a uniform power of p. Thus Hi contains a free Zp-module Li

of rank ri + ri−1, such that Hi/Li is annihilated by a uniform power of p. Since Hi is p-adically
separated and complete, we get an isomorphism as in (2). �

Remark 6.3.4. [GK05b] also computes the cohomology of each of the sheaves Ωjlog on H in terms of
certain lattices in Steinberg representations of PGLd+1(K). This would allow us to compute the
Ô+-cohomology of Hd

proét,C . From this we could ultimately compute the continuous cohomology
Hi

cts(O
1
D, A)[1/p], where O1

D ⊂ O×D is the subgroup of elements of reduced norm 1. We do not
pursue these computations here.

6.4. Conclusion of the proof. We now complete the proof of Theorem B.

Theorem 6.4.1. The cohomology groups Hi
cts(O

×
D, A

c) and Hi
cts(Gn, Ac) are annihilated by a

power of p which does not depend on i.

Proof. We leverage the isomorphism between the two towers, as in Theorem 3.5.1. We have a
diagram of adic spaces over SpaK:

X
GLn(Zp)

}}

O×D

!!

LTK HK

Here HK is the base change of H to K. The diagram induces an isomorphism of solid complexes:

RΓcond(LTK,proét, Ô
+)hO

×
D ∼= RΓcond(HK,proét, Ô

+)hGLn(Zp) = RΓcond(Hproét, Ô
+)hGLn(Zp) ⊗W.

Applying Hi and combining Corollary 6.2.6(2) and Corollary 6.3.3(2), we find an injection

W⊕(ri+ri−1) ⊕ Si ↪→W⊕(ri+ri−1) ⊕ (Qi ⊗Zp
W ).
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Since Qi is annihilated by a uniform power of p, so must be Si, and therefore so must be
Hi

cts(O
×
D, A

c). Considering the description of Si in Corollary 6.2.6(2), we find that Hi
cts(O

×
D, A

c)
is annihilated by a uniform power of p.

The claim extends from O×D to Gn, using the Hochschild-Serre spectral sequence combined
with the fact that the cohomological dimension of Gn/O×D ∼= Ẑ is 1. �

Proof of Theorem A. This is now immediate from Theorem B and Proposition 2.6.3. �
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