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THE STABLE PICARD GROUP OF A(2)

PRASIT BHATTACHARYA, NICOLAS RICKA

Abstract. Using a form of descent in the stable category of A(2)-modules,
we show that there are no exotic elements in the stable Picard group of A(2),
i.e. that the stable Picard group of A(2) is free on 2 generators.
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Convention. Through out this paper, F will denote the field with two elements.
Every algebraic structure is implicitly over the base field F, and tensor products are
taken over F. The Hopf algebras under consideration in this paper are connected,
cocommutative finite dimensional graded Hopf algebras, unless explicitly specified
otherwise.

1. Introduction

Let A be a Hopf algebra. The Picard group of St(A), denoted by Pic(A) is the
group of stably ⊗-invertible A-modules,

Pic(A) := {M ∈ St(A) : ∃ N such that M ⊗N = S},

where S is the unit of the symmetric monoidal category (St(A),⊗,S). When B ⊂ A
be a Hopf subalgebra, the forgetful functor U : St(A) → St(B) being monoidal,
it induces a group homomorphism Pic(U) : Pic(A) → Pic(B). Define the relative

Picard group Pic(A,B) as the kernel

Pic(A,B) := ker(Pic(U)).

Some elements are always in the Picard group of a Hopf algebra. Explicitly,
there is a morphism of groups (see (3)):

ι : Z ⊕ Z → Pic(A).

The interesting part of the Picard group consist in the the elements in the cokernel
of ι. These are called exotic elements. In this paper, we are interested in the
determination of the Picard group of A(2), the Hopf subalgebra of A generated
by Sq1, Sq2 and Sq4. This problem is very natural, as the continuation of the
study presented in [AP76]. Let A(1) denote the Hopf subalgebra of the Steenrod
algebra A generated by Sq1 and Sq2. Questions regarding Picard groups of hopf
algebra started with [AP76], where the determination of the stable Picard group of
the Hopf subalgebra A(1) is used to show the uniqueness of the infinite loop space
structure on the classifying space of the infinite orthogonal group (see loc cit for
the definition of A(1)). The connective real K-theory ko is also related to A(1) as
H∗(ko,F) ∼= A//A(1) (see [AP76]). Here, the result is quite surprising: the group
homomorphism

ι : Z ⊕ Z → Pic(A(1))

2010 Mathematics Subject Classification. 55S10,55P42,19L41.
Key words and phrases. Stable category of modules, Picard group, Steenrod algebra.

1

http://arxiv.org/abs/1702.01493v1


2 PRASIT BHATTACHARYA, NICOLAS RICKA

is not surjective, and there is exactly one exotic element, called the Joker (see
[AM74, Bru12]). This A(1)-module is pictured in figure 1.

Figure 1. The joker. Each dot represents a copy of F. Straight
lines represent the action of Sq1 and curved ones represent the
action of Sq2.

Studying Pic(A(2)) is of topological interest for two reasons. Firstly, A(2) shares
the same relationship with the spectrum of topological modular forms as the rela-
tionship between A(1) and connective real K-theory. Secondly, the Joker plays a
role in the determination of the Picard group of the K(1)-local stable homotopy
category [HMS94].

The main result of this paper shows there are no ‘surprises’ for the stable Picard
group of A(2), more precisely:

Theorem. 4.6 The morphism of groups

ι : Z ⊕ Z → Pic(A(2)),

which sends (n,m) to Sn,m, is an isomorphism.

The key idea in our approach is that we consider a chain of inclusions of Hopf
subalgebras of A(2) (which we define in section 2),

D(2) ⊂ C(2) ⊂ A(2)

of Hopf subalgebras of A(2). Our starting point is to compute Pic(D(2)) by hand
and show that (see Proposition 3.1) Pic(D(2)) does not have any exotic elements.
The heuristic reason for considering D(2) is that it is very close to being an exterior
algebra (see Remark 2.12) and Pic(E) for an exterior Hopf algebra is known to be
free of exotic elements (see Proposition 3.2). Then, by definition of the relative
Picard group, we get a three-stage filtration of the stable Picard group of A(2).

Pic(A(2)) // Pic(C(2)) // Pic(D(2))

Pic(A(2), C(2))
?�

OO

Pic(C(2), D(2))
?�

OO

Pic(D(2)),

.

where the vertical maps are the inclusion of the kernel of the next horizontal map.
Next we use methods of homotopical descent along restriction functors as described
in [Ric16]. In Corollary 4.5, we give a criteria for general B ⊂ A under which
the relative Picard group Pic(A,B) is trivial. It follows that Pic(C(2), D(2)) and
Pic(A(2), C(2)) are trivial. Our main result, Theorem 4.6, is a straightforward
consequence of the above observations.

In light of Corollary 4.5, it seems that the exotic element in the stable Picard
group of A(1) (namely the Joker) is just a low-dimensional anomaly and authors
expect the stable Picard group of A(n) not to have any exotic elements whenever
n ≥ 21. Authors hope to address the case when n > 2 in future.
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2. Set up

Let A be a finite dimensional graded Hopf algebra. Let Mod(A) be the category
of bounded below graded A-modules. For a graded A-module M , we denote by Mn

the set of elements in degree n. The diagonal ∆ : A → A ⊗ A gives Mod(A)
the structure of a symmetric monoidal closed category. Explicitly, if M,N are
A-modules, the action of A on M ⊗N is defined by

A⊗M ⊗N
∆⊗M⊗N
−→ A⊗A⊗M ⊗N
≃
→ A⊗M ⊗A⊗N

→ M ⊗N,

and the unit S for this monoidal structure is the A-module F, concentrated in degree
zero.

Recall from [Mar83, Theorem 12.5, Proposition 12.8] that the category Mod(A)
has enough injective and projective modules, and that the class of injective modules,
projective modules, and free modules coincide. Let St(A) (see [SS03, Example
2.4.(v)] for an efficient and detailed definition) denote the stable category of graded
A-modules. Objects of St(A) are the objects of Mod(A), but the stable morphisms
between two A-modules M and N is

(1) [M,N ]A :=
Mod(A)(M,N)

< {f : M → P → N : P is a projective A-module} >
.

In particular, free (respectively injective, projective, since these notion coincide)
A-modules becomes equivalent to 0 in this category. It turns out (see [Mar83])
that the structure of a closed monoidal category on Mod(A) passes to St(A) . We
will denote (abusively) the monoidal product in St(A) by ⊗, the unit by SA and
the hom-bifunctor by FA(−,−).

Additionally, the process of ‘killing the free modules’ gives St(A) the structure
of a triangulated category (see [HPS97, Section 9.6]). We recall here the definition
of the suspension functor, for completeness.

Definition 2.1. Choose a minimal projective resolution

· · · → P i+1 → P i → · · · → P 1 → P 0 → SA

of SA as an A-module. For n ≥ 0, let the A-module ker(Pn+1 → Pn) be de-

noted by S
n,0
A , and the linear dual of S

n,0
A by S

−n,0
A . We denote by S

n,m
A the A-

module S
n,0
A [−m], where [−m] is the shift in internal grading. Explicitly (Sn,m

A )k =

(Sn,0
A )k+m.

We can now define the suspension functor

Σn,m : St(A) → St(A)

which sends M 7→ S
n,m
A ⊗M .

Remark 2.2. Another choice of projective resolution of SA would result in another
definition of S

n,m
A . However, since the resulting objects would be isomorphic to

S
n,m
A , the choice we made is harmless.
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Definition 2.3. We say that an A-module M is reduced if it does not contain any
A-free summand.

Let M be an A-module. As observed in [Bru12], one can construct a reduced
A-module M red, which is stably isomorphic to M .

To follow the common notations in algebraic topology, we make the convention

[M,N ]As,t := [Σs,tM,N ]A.

Remark 2.4. By [HPS97, Section 9.6], the suspension functor which is part of the
triangulated structure is Σ1,0. In particular, for A-modules M and N , and s ≥ 0,
the bigraded extension groups are isomorphic to

(2) [M,N ]A−s,t = [Σ−s,tM,N ]A ∼= Exts,tA (M,N).

In particular when s = 0, Ext0,tA (M,N) = [M,N ]A0,t is the set of stable maps, as
described in (1). Let homA(M,N) denote the space of homomorphisms between M
and N . When s ≥ 1, the vector space

[M,N ]As,t
∼= πs(homA(Σ

0,tM,N)).

The reader is referred to [Mar83, Proposition 14.1.8] for the explicit comparison.

We now turn to the definition of our main object of interest: the Picard and
relative Picard groups.

Definition 2.5. Let Pic(A) be the group of stably ⊗-invertible A-modules,

Pic(A) := {M ∈ St(A) : ∃ N such that M ⊗N = SA}.

This group is called the Picard group of St(A), and its elements are called Picard

elements.

Remark 2.6. Note that Picard elements share a lot of properties with the unit
object (see [MS14b, Proposition 2.1.3]). In particular, Picard elements have a finite
dimensional representative. This justifies our restriction to bounded below modules.

When B ⊂ A be a Hopf subalgebra, the forgetful functor U : St(A) → St(B) is
monoidal. This induces a group homomorphism Pic(U) : Pic(A) → Pic(B).

Definition 2.7. Let

Pic(A,B) := ker(Pic(U)).

This group is called the relative Picard group associated to the inclusion B ⊂ A.

Note that there is always a family of ⊗-invertible modules. Indeed, for all
(m,n) ∈ Z ⊕ Z, the A-module S

n,m
A has inverse S

−n,−m
A . This defines a group

homomorphism

(3) ι : Z ⊕ Z → Pic(A).

Definition 2.8. The elements in the cokernel of ι are called exotic elements.

Let A(2) be the Hopf subalgebra of the modulo 2 Steenrod algebra A gener-
ated by the Steenrod squares Sq1, Sq2, Sq4. As an algebra, A(2) has the following
presentation

A(2) ∼=
F[Sq1, Sq2, Sq4]









Sq1Sq1,
Sq2Sq2 + Sq1Sq2Sq1,

Sq1Sq4 + Sq4Sq1 + Sq2Sq1Sq2,
Sq4Sq4 + Sq2Sq4Sq2 + Sq4Sq2Sq2









.
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The coalgebra structure is given by the Cartan formulas. This Hopf algebra is
dual to

A(2)∗ ∼=
F[ξ1, ξ2, ξ3]

(ξ81 , ξ
4
2 , ξ

2
3)

,

together with the diagonal

∆(ξ1) = ξ1 ⊗ 1 + 1⊗ ξ1,

∆(ξ2) = ξ2 ⊗ 1 + ξ21 ⊗ ξ1 + 1⊗ ξ2,

∆(ξ3) = ξ3 ⊗ 1 + ξ22 ⊗ ξ1 + ξ41 ⊗ ξ2 + 1⊗ ξ3.

By Palmieri’s work [Pal97, Theorem 1.3], a stable A(2)-module M is ⊗-invertible
if and only if, for all quasi-elementary Hopf subalgebras E of A(2), the restriction
of M to E is. Moreover, all the elementary sub-Hopf algebras of A(2) are in
fact exterior Hopf subalgebras by [Pal01, Section 2.1.1]. Finally loc cit recalls
the classification the elementary Hopf subalgebras of A (the result is originally in
[Mar83]). We deduce the following result:

Proposition 2.9. The maximal elementary Hopf subalgebras of A(2) are

E1
∼= E(Q0, Q1, Q2),

E2
∼= E(Q1, P

1
2 , Q2),

where

Q0 = Sq1,

Qi+1 = QiSq
2i+1

+ Sq2
i+1

Qi,

P 1
2 = Sq2Sq4 + Sq4Sq2.

Definition 2.10. Let D(2) be the Hopf subalgebra of A(2) generated by Q0, Q1, Q2,
and P 1

2 .

Definition 2.11. Let C(2) be the Hopf subalgebra of A(2) generated by Sq1, Sq2,
Q1, P

1
2 and Q2.

The dual of these Hopf algebras have an easy presentation:

D(2)∗ ∼=
F[ξ1, ξ2, ξ3]

(ξ21 , ξ
4
2 , ξ

2
3)

,

C(2)∗ ∼=
F[ξ1, ξ2, ξ3]

(ξ41 , ξ
4
2 , ξ

2
3)

,

as quotient Hopf algebras of A(2)∗.

Remark 2.12. Note that every generator D(2) is either contained in E1 or in E2.
However, D(2) is not an exterior algebra as the commutator

[Q0, P
1
2 ] = Q0P

1
2 + P 1

2Q0 = Q2

is nonzero. In fact,

D(2) =
F[Q0, Q1, P

1
2 , Q2]

〈Q0
0, Q

2
1, Q

2
2, [Q0, P 1

2 ] = Q2, (P 1
2 )

2〉

is a presentation of D(2).
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3. An elementary case: the Picard group of D(2)

In this section we compute the stable Picard group of D(2). An immediate
consequence of the study of exterior algebras in [AM74] is that the Picard group
of exterior Hopf algebras does not contain any exotic element (we give another
argument here in Proposition 3.2, which relies on the analysis of [CT05]). The
Hopf algebra D(2) being close to be an exterior Hopf algebra, the reader should
expect that its Picard group does not contain exotic elements. Proposition 3.1
shows that it is indeed the case.

Proposition 3.1. The group homomorphism

ι : Z ⊕ Z → Pic(D(2)),

is an isomorphism.

The proof is direct, and only relies on the analysis of the Picard group of ele-
mentary algebras.

Proposition 3.2. Let n ≥ 2 and E = E(x1, x2, . . . xn) be the exterior Hopf algebra

generated by the elements xi. Then, ι is an isomorphism.

Proof. Let M be a ⊗-invertible module. Equivalently, the morphism

hom(M,M) → SE

is an isomorphism. The latter assertion depends only on the underlying ungraded
module over the exterior algebra E. But the exterior algebra is isomorphic to
the group algebra of an elementary abelian 2-group. By the classification of ⊗-
invertibles modules in the group algebra case, due to Carlson and Thevenaz in
[CT05], M is stably isomorphic to S

n,m
E . The result follows. �

Proof of Proposition 3.1. Let [M ] be an isomorphism class of stably ⊗-invertible
modules. By Definition 2.3 and subsequent construction, we can assume without
loss of generality that M is a reduced module (see Definition 2.3). Moreover, by
Remark 2.6), M is finite dimensional in this case.

Let M1 and M2 and N be the restrictions of M to E1, E2 and E(Q1, Q2) re-
spectively. There is a commutative diagram of abelian groups such that

Pic(D(2)) //

��

Pic(E1)

��

[M ] ✤ //
❴

��

[M1]
❴

��
Pic(E2) // Pic(E(Q1, Q2)) [M2]

✤ // [N ].

By Proposition 3.2, Pic(E1), Pic(E2) and Pic(E(Q1, Q2)) are isomorphic to Z ×
Z, and therefore the left vertical map and the bottom horizontal map in (3) are
isomorphisms as shown below:

Pic(D(2)) //

��

Pic(E1)

∼=

��
Pic(E2)

∼= // Z ⊕ Z.

Consequently, without loss of generality, we can assume that both M1 and M2 are
stably isomorphic to SE1

and SE2
respectively (if not, replace M by Σn,mM for

suitable m and n). Let x ∈ M be an element of smallest degree (this makes sense
since the modules are bounded by assumption).

Suppose that Q0, Q1, Q2 and P 1
2 acts trivially on x, then the inclusion

xF → M
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is split. Since this inclusion induces an isomorphism in Margolis Homology (see
[Mar83], it is an isomorphism, showing the result.

Suppose now that one of the operations Q0, Q1, Q2 and P 1
2 acts non-trivially on

x. Let us assume this operation belongs to E1 (a similar argument gives the result
when it belongs to E2). As M1 is stably isomorphic to SE1

, x must then belong
to a free E1-submodule. But x cannot be in the target of any operation for degree
reasons (it is in minimal degree and the operation have a positive degree). Thus
there is an E1-submodule E1x in M1. In particular, an operation in E2 acts non
trivially on Q0x. As M2 is stably isomorphic to SE2

, Q0x must then belong to a
free E2-submodule. But again, Q0x cannot be in the target of any operation in E2

for degree reasons, giving E2 · Q0x ⊂ M2. Consequently, x generates a D(2)-free
submodule, as Q2P

1
2Q1Q0x 6= 0. Now, D(2) is an injective submodule (recall that

injective, projective and free modules are the same notion over a connective finite
dimensional Hopf algebra), so D(2) splits off. This is in contradiction with the
hypothesis that M is reduced.

�

4. Two descents to Pic(A(2))

We will first review the algebraic descent spectral sequence, henceforth will be
abbreviated to Alg-DSS, which is our main computational tool for our main result.
This spectral sequence was developed in [Ric16] and is inspired from the descent
spectral sequence which appeared in [MS14b]. This section recollects the construc-
tions of loc cit and reformulate some of the results in our particular case. The key
point of this section is Corollary 4.3, which gives a explicit condition under which
the relative Picard groups are trivial.

Let B ⊂ A be a conormal Hopf subalgebra such that algebra (A//B)∗ is exterior
on one element τ in degree |τ | ≥ 1. This is exactly the situation we will encounter
later, first when A = C(2) and B = D(2), and, second when A = A(2) and
B = C(2). Given an A-module MA, let EndA(MA) be the space homA(MA,MA),
i.e. space of homomorphisms from MA to itself. In particular, πi(EndA(MA)) ∼=
[MA,MA]

A
i,0. In [Ric16], the author considers the moduli space of stable A-modules,

over a fixed B-module MB. This is a topological space LA(MB) whose connected
components are in one-to-one correspondence with the set of stable equivalence
classes of A-modules MA such that UMA = MB. Let MA be the base point for
LA(MB). Then one should note that

ΩLA(MB) ∼= GL1(EndA(MA)),

which means
πi(LA(MB),MA) = πi−1(GL1(EndA(MA)))

for i ≥ 1. In particular, one can give an explicit description of the homotopy groups
of LA(MB):

• π0(LA(MB)) is the set of stable equivalence classes of A-module whose
restriction to St(B) is MB,

• If LA(MB) is nonempty, then π1(LA(MB),MA) ∼= AutSt(A)(MA) where the
A-module MA is chosen to be the basepoint of LA(MB), and,

• for i ≥ 2, πi(LA(MB),M) ∼= [M,M ]Ai−1,0.

Remark 4.1. In the case when MB is the unit SB in St(B), LA(SB) clearly is
nonempty as SA is a point in LA(SB), and,

π0(LA(SB) ∼= Pic(A,B).

The higher homotopy groups are

πi(LA(SB),SA) ∼= [SA,SA]
A
i−1,0.
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So far we have described the negative homotopy groups in terms of Ext-groups
in (2). For the unit, SA one can use Poincaré duality (see [Ric16, Section 4]) to
conclude

(4) πi(LA(SB),SA) ∼= Ext
i−2,−|A|
A (SA,SA)

where |A| is the maximum internal degree among elements in A. Note that the
latter is zero, for degree reasons.

The forgetful functor Mod(A) → Mod(B) stabilizes in a strong symmetric
monoidal functor

U : St(A) → St(B).

Furthermore, the functor U has a right adjoint FB(A,−). Using this adjunction,
one can produces an Endomorphism spectral sequence (see [Ric16]), henceforth will
be denoted by EndSS,
(5)

EndE
s,n
2

∼=
⊕

t

Extn,t(A//B)∗(S(A//B)∗ ,Ext
s−1,t−|B|
B (SB , SB)) ⇒ πs−n(EndA(SA))

which computes the homotopy groups of EndA(SA).

Remark 4.2. Note that, we have the following chain of isomorphisms:

[SB,SB]
B
s,t = [USA,SB]

B
s,t

∼= [SA, homB(A,SB)]
A
s,t

∼= [SA,SA ⊗ (A//B)∗]As,t.

The action of (A//B)∗ is induced by the action of (A//B)∗ on itself in

Exts,tA (SA, (A//B)∗ ⊗ SA).

EndSS (5) must be compared to the Cartan-Eilenberg spectral sequence
(see [Rav86]). The Cartan Eilenberg spectral sequence is a tri-graded spectral
sequence

En,s,t
2 =

⊕

t′+t′′=t

Exts,t
′

(A//B)∗(S(A//B)∗ ,Ext
s′,t′′

B (SB,SB)) ⇒ Extn+s′,t
A (SA,SA).

which can be extended to compute the bigraded stable homotopy in the stable
category

(6) cessE
n,s,t
2 =

⊕

t′+t′′=t

Extn,t
′

(A//B)∗(S(A//B)∗ , [SB,SB]
B
s,t′′ ) ⇒ [SA,SA]

A
s−n,t

which we will refer to as CESS. Using the fact that πi(End(SA)) = [SA,SA]i,0
along we the Poincaré duality isomorphism, it is easy to see that EndSS (5) is the
restriction of CESS (6) to t = 0.

Similar to the EndSS (5), we have a spectral sequence

Es,n
1 (LA(MB)) ⇒ πs−n(LA(MB)),

where s is a homological degree, and n the spectral sequence degree. We call this
spectral sequence Algebraic descent spectral sequence or Alg-DSS. The first differ-
ential is induced by the product on (A//B)∗. Thus we have (see [Ric16, Corollary
8.11])

(7) dssE
s,n
2

∼=
⊕

t

Extn,t(A//B)∗(S(A//B)∗ ,Ext
s−2,t−|B|
B (SB,SB)) ⇒ πs−n(LA(SB)).

Taking a minimal resolution of SB, one can assume that

cessE
∗,s,t
1

∼= F[θ]⊗ Ext
s,t−∗·|τ |
B (SB,SB)
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where |θ| = (1, 0, |τ |), since τ is the Bockstein associated to θ. Note that the E2-
pages of spectral sequences of (5) and (7) are isomorphic up to a shift, hence we

may assume that dssE
s,n
1

∼= EndE
s−1,n
1 . As a result we get the following lemma.

Lemma 4.3. The elements in dssE
s,n
1 with s−n = 0, are of the form θn⊗ y where

y ∈ Ext
n−2,n|τ |−|B|
B (SB,SB).

Many but not all, higher differentials in Alg-DSS (7) can be imported from the
stable Cartan Eilenberg spectral sequence (5) using the following comparison tool
that has been established in [MS14b, Section 5] (also see [Ric16, Proposition 7.6]).

Proposition 4.4 ([MS14a],[MS14b, 5.2.4, Remark 5.2.5]). The differential of length

r originating at (s− 1, 0, n) in EndE
s−1,n
r coincides with the differential originating

at dssE
s,n
r , if s ≥ r + 1.

Note that if θq = 0 in Ext∗,∗A (SA,SA) then the dq is the last possible differential
in CESS (6) and hence in EndSS (5). Since π−1(EndA(SA)) = 0 means that all the

elements in EndE
n+1,n
1 are either zero or not present in the E∞-page of EndSS. Thus

by Proposition 4.4 all the in dssE
n,n
1 for n ≥ q + 1 cannot be a nonzero permanent

cycle. Hence the potential nonzero elements in π0(LA(MB)) are of the form

θn ⊗ y ∈ dssE
n,n
1

where n ≤ q and y has bidegree (n− 2, n|τ | −B). Suppose (q+ 1)|τ | < |B|, then y
is forced to be trivial whenever n ≤ q. Thus we can conclude:

Lemma 4.5. If B ⊂ A be a normal Hopf subalgebra of a connected Hopf algebra

such that

• A//B∗ = E(τ),
• θq = 0 in Ext∗,∗A (SA,SA), and,

• (q + 1)|τ | < |B|,

then Pic(A,B) = 0.

Theorem 4.6. The morphism of groups

ι : Z ⊕ Z → Pic(A(2)),

which sends (n,m) to S
n,m
A(2), is an isomorphism.

Proof. When A = C(2) and B = D(2), then A//B∗ = E(ξ21) and ξ21 is Bockstein to
h11. Since h3

11 = 0 in Ext∗,∗C(2)(SC(2),SC(2)) (see Proposition A.2), we see that the all

the criterias of Lemma 4.5 is satisfied. Hence, Pic(C(2), D(2)) = 0. Since we have
already established Pic(D(2)) = 0 (Proposition 3.1), it follows that Pic(C(2)) = 0.
This completes our first descent.

For the second descent with A = A(2) and B = C(2), A//B∗ = E(ξ41) and ξ41 is
Bockstein to h12 which satisfies the relation h3

12 = 0 in Ext∗,∗A(2)(SA(2),SA(2)) (see

Proposition A.3). Easy to check that all the criterias of Lemma 4.5 is satisfied,
therefore Pic(A(2), C(2)) = 0, hence Pic(A(2)) ∼= Z × Z. �
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Appendix A. Various extension groups

The aim of this section is to describe the computations of the bigraded Ext-
groups of F over the Hopf algebras D(2), C(2) and A(2). The May spectral sequence
is the most suitable tool for these sorts of computations which we briefly recall. It
is convenient to work with the dual i.e. D(2)∗, C(2)∗ and A(2)∗, for this purpose.

May spectral sequence is obtained by assigning an additional filtration, called
the May filtration, to the Hopf algebra such that every element is primitive modulo
the filtration. This filtration was introduced by J.P.May in his thesis [May64]. Let
the May filtration of ξi is 2i − 1 following Ravenel [Rav86]. As a result we get a
filtration on the cobar complexes for D(2)∗, C(2)∗ and A(2)∗, which produces the
trigraded May spectral sequence

Es,t,∗
1 := F[h10, h20, h21, h30] ⇒ Exts,tC(2)(F,F)

Es,t,∗
1 := F[h10, h11, h20, h21, h30] ⇒ Exts,tC(2)(F,F)

Es,t,∗
1 := F[h10, h11, h12, h20, h21, h30] ⇒ Exts,tA(2)(F,F)

where hij corresponds to the class [ξ2
j

i ] in the respective cobar complexes whose
tridegree is |hij | = (1, 2j(2i− 1), 2i− 1). The d1-differentials in May SS comes from
the coproducts structure and higher differentials can be computed using Nakamura’s
formula [Nak72], which is also described in [BEM14, Section 2]. We display part
of the Ext-groups in charts in (t− s, s)-coordinate system where each • represents
an F vector space, vertical line represents multiplication by h10, the slanted lines
of slope 1

2 represent multiplication by h11 and dotted lines of slope 1
3 represent

multiplication by h12.

Proposition A.1. The only non-trivial differentials in the May spectral sequence

computing ExtD(2)(F,F) is d1(h30) = h10h21. Consequently,

Exts,tD(2)(F,F)
∼=

F[h10, h20, h21, h
2
30]

(h10h21)
.

This F-algebra is represented in figure 2.

0 4 8 12 16 20
t− s

s

h10 h20 h21

0

4

Figure 2. The algebra Exts,tD(2)(F,F). An element in degree (s, t)

is plotted in (s, t− s).

Proposition A.2. The only non-trivial differentials in the May spectral sequence

computing Exts,tC(2)(F,F) are

• d1(h20) = h10h11,
• d1(h30) = h10h21,
• d2(h

2
30) = h11h

2
21, and,
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h10 h11

h10h
2
20

h4
20

h0(1)

h21

t− s

s

0 4 8 12 16 20
0

4

Figure 3. The algebra Exts,tC(2)(F,F). An element in degree (s, t)

is plotted in (s, t−s). The element denoted h0(1) is h20h21+h11h30.

• d2(h
2
20) = h3

11.

This F-algebra is represented in figure 3.

Proposition A.3. The only non-trivial differentials in the May spectral sequence

computing Exts,tA(2)(F,F) are

• d1(h20) = h10h11,
• d1(h30) = h10h21 + h20h12,
• d1(h21) = h11h12,
• d2(h

2
20) = h3

11 + h2
10h12,

• d2(h
2
21) = h3

12,
• d2(h

2
30) = h11h

2
21,

• d2(h20h21 + h11h30) = h10h
2
12, and,

• d4(h
4
30) = h12h

4
21.

This F-algebra is represented in figure 4.

Remark A.4. Note that the differential d2(h20h21 + h11h30) = h10h
2
12 is not a

straightforward consequence of Nakamura’s operations. The interested reader is
reffered to [Tan70, Proposition 4.2] for the computation. One can compare the
previous result to the list of relations in Ext∗,∗A(2)(F,F) given in [SI67].

t− s

s

h10 h11 h12

h4
20

h11h0(1)

0 4 8 12 16 20
0

4

Figure 4. The algebra Exts,tA(2)(F,F). An element in degree (s, t)

is plotted in (s, t− s).
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