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On the ring of cooperations for 2-primary connective
topological modular forms
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This paper is dedicated to the memory of Mark Mahowald

ABSTRACT

We analyze the ring tmf.tmf of cooperations for the connective spectrum of topological modular
forms (at the prime 2) through a variety of perspectives: (1) the Ez-term of the Adams spectral
sequence for tmf A tmf admits a decomposition in terms of Ext groups for bo-Brown—Gitler
modules, (2) the image of tmf.tmf in TMF.TMFq admits a description in terms of 2-variable
modular forms, and (3) modulo ve-torsion, tmf.tmf injects into a certain product of copies of
7. TMFo(N), for various values of N. We explain how these different perspectives are related, and
leverage these relationships to give complete information on tmf.tmf in low degrees. We reprove
a result of Davis—Mahowald—Rezk, that a piece of tmf A tmf gives a connective cover of TMF((3),
and show that another piece gives a connective cover of TMF((5). To help motivate our methods,
we also review the existing work on bo.bo, the ring of cooperations for (2-primary) connective
K-theory, and in the process give some new perspectives on this classical subject matter.
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1. Introduction

The Adams—Novikov spectral sequence based on a connective spectrum E (E-ANSS) is perhaps
the best available tool for computing stable homotopy groups. For example, HFF, and BP give
the classical Adams spectral sequence and the Adams—Novikov spectral sequence, respectively.

To begin to compute with the F-ANSS, one needs to know the structure of the smash powers
E"*. When E is one of HF,, MU, or BP, the situation is simpler than in general, since in
this case E A E is an infinite wedge of suspensions of E itself, which allows for an algebraic
description of the Fs-term. This is not the case for bu, bo, or tmf, in which case the Fy page
is harder to describe, and in fact, has not yet been described in the case of tmf.

Mahowald and his collaborators have studied the 2-primary bo-ANSS to great effect: it gives
the only known approach to the calculation of the telescopic 2-primary v;-periodic homotopy in
the sphere spectrum [30, 32]. The starting input in that calculation is a complete description of
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bo A bo as an infinite wedge of spectra, each of which is a smash product of bo with a suitable
finite complex (as in [34] and others). The finite complexes involved are the so-called integral
Brown—Gitler spectra. (See also the related work of [5, 16, 17].)

Mahowald has worked on a similar description for tmf A tmf, but concluded that no
analogous result could hold. In this paper, we use his insights to explore four different
perspectives on 2-primary tmf-cooperations. While we do not arrive at a complete and closed-
form description of tmf A tmf, we believe our results have the potential to be very useful as a
computational tool.

The four perspectives are the following.

(1) The E; term of the 2-primary Adams spectral sequence for tmf A tmf admits a splitting
in terms of bo-Brown—Gitler modules:

Ext(tmf A tmf) 2 @) Ext(S%tmf A bo;).

K3

(2) Modulo torsion, TMF,TMF is isomorphic to a subring of the ring of integral two variable
modular forms.

(3) K(2)-locally, the ring spectrum (TMF A TMF) g (2) is given by an equivariant function
spectrum:

(TMF A TMF) g (2) = Map®(G2/Gis, Ey)hGs.

(4) By our Theorem 7.1, TMF,TMF injects into a certain product of homotopy groups of
topological modular forms with level structures:

TMF A TMF < [] TMFo(3/) x TMFy(57).

i€Z,

Jj=0
The purpose of this paper is to describe and investigate the relationship between these different
perspectives. As an_application QL our method, in Theorems 7.14 and 7.16, we construct
connective covers tmfy(3) and tmfy(5) of the periodic spectra TMF,(3) and TMFy(5),
respectively, recovering and extending previous results of Davis, Mahowald, and Rezk [22, 33].
Others have also investigated the ring of cooperations for elliptic cohomology. Clarke and
Johnson [18] conjectured that TMF(2),.TMF((2) was given by the ring of 2-variable modular
forms for T'o(2) over Z[1/2]. Versions of this conjecture were subsequently verified by Baker
[3] (in the case of TMF[1/6]) and Laures [27] (for all TMF(I')[S~!] associated to congruence
subgroups, where S is a large enough set of primes to make the theory Landweber exact).
This previous work clearly feeds into perspective (2) (indeed Laures’ work is cited as an initial
step to establishing perspective (2)). In retrospect, Baker’s work also contains observations
related to perspective (4): in [3], he observes that the ring of 2-variable modular forms can
be regarded as a certain space of functions on a space of isogenies of elliptic curves. Finally,
since the writing of this paper, Culver has produced a similar (but more complete) analysis of

tmfy (3).tmfy (3) (a.k.a. BP(2),BP(2)) [21].

1.1. A tour of the paper

For the reader’s convenience, we take some time here to outline the contents of the paper.

Section 2

This section reviews Brown—Gitler comodules and Brown—Gitler spectra, splittings associated
to these, and exact sequences which relate the various comodules.

Sections 2.1 and 2.2 begin with a review of mod 2, integral, and bo-Brown—Gitler spectra.
Our interest stems from the fact (Section 2.3) that the Ea-term of the Adams spectral sequence
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for bo Abo (respectively, tmf A tmf) splits as a direct sum of Ext-groups for the integral
(respectively, bo) Brown—Gitler spectra. Section 2.4 recalls some exact sequences used in [9]
which allow for an inductive approach for computing Ext of bo-Brown—Gitler comodules, and
introduces related sequences which allow for an inductive approach to Ext groups of integral
Brown—Gitler comodules.

Section 3

This section is devoted to the motivating example of bo A bo. Sections 3.1-3.3 are primarily
expository, based upon the foundational work of Adams, Lellmann, Mahowald, and Milgram.
We make an effort to consolidate their theorems and recast them in modern notation and
terminology, and hope that this will prove a useful resource to those trying to learn the classical
theory of bo-cooperations and vi-periodic stable homotopy. To the best of our knowledge,
Sections 3.4 and 3.5 provide new perspectives on this subject.

Section 3.1 is devoted to the homology of the HZ; and certain Ext 4(,), -computations relevant
to the Adams spectral sequence computation of bo,bo.

We shift perspectives in Section 3.2 and recall Adams’s description of KU,KU in terms of
numerical polynomials. This allows us to study the image of bu,bu in KU,KU as a warm-up
for our study of the image of bo,bo in KO,KO.

We undertake this latter study in Section 3.3, where we ultimately describe a basis of KOgbo
in terms of the ‘9-Mahler basis’ for 2-adic numerical polynomials with domain 2Zs. By studying
the Adams filtration of this basis, we are able to use the above results to fully describe bo.bo
mod v;-torsion elements.

In Section 3.4, we link the above two perspectives, studying the image of bo,HZ; in KO,KO.
Theorem 3.6 provides a complete description of this image (mod wvi-torsion) in terms of the
9-Mahler basis.

We conclude with Section 3.5 which studies a certain map

Ko AKO 1 T ko
keZ

constructed from Adams operations. We show that this map is an injection after applying .
and exhibit how it interacts with the Brown—Gitler decomposition of bo A bo.

Section 4

In Section 4, we recall certain essential features of TMF and tmf, the periodic and connective
topological modular forms spectra.

Section 4.1 reviews the Goerss—Hopkins—Miller sheaf of E..-ring spectra, O'°?, on the moduli
stack of smooth elliptic curves M. One can use this sheaf to construct TMF (sections on M
itself), TMF;(n) (sections on the moduli stack of I'y(n)-structures after inverting n), and
TMF((n) (sections on the moduli stack of I'g(n)-structures after inverting n). We consider the
maps

f,q: TMF[1/n] — TMFy(n)

induced by forgetting the level structure and taking the quotient by it, respectively. We use
these maps to produce a TMF[1/n]-module map

U, : TMF[1/n] A TMF[1/n] — TMF(n)

important in our subsequent studies.
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Section 4.2 reviews Lawson and Naumann’s work on the construction of BP(2) as the E-ring
spectrum tmf;(3). We use formal group laws and some computer calculations to compute the
maps

BP, — tmf;(3),, BP,BP — tmf;(3).tmf,(3).

We isolate the lowest Adams filtration portion of this map in Section 4.4 via our computation
of m.f : TMF, — TMF;(3). in Section 4.3.
Finally, we review the K (2)-local version of TMF A TMF in Section 4.5.

Section 5

With the stage set, our work begins in earnest in Section 5. Here we study the Adams spectral
sequence for tmf A tmf.

We study the rational behavior of this spectral sequence in Section 5.1, observing that it
collapses after inverting vy. This provides a precise computation of the map

vyt Ext(tmf A X¥bo;) — vy ' Ext(tmf A tmf).

In Section 5.2, the exact sequences of Section 2.4 are used to perform an inductive
computation of Ext(tmf A X% bo,) relative to Ext(tmf A bo,*). We produce detailed charts
for Ext(tmf A X%bo,) for j < 6.

Sections 5.3 and 5.4 are concerned with identifying the generators of the lattice

Ext(tmf A $*bo;)/vo-torsion
inside of the ‘vector space’
vyt Ext(tmf A 2%bo,).

In Section 5.3, we produce an inductive method compatible with the exact sequences of
Section 2.4. Section 5.4 completes the task of computing said generators.

Section 6

In Section 6, we study the role of 2-variable modular forms in tmf-cooperations. Baker and
Laures have proved that, after inverting 6, TMF-cooperations are precisely the 2-variable I'(1)
modular forms (meromorphic at the cusp).

After reviewing the Baker—Laures work in Section 6.1, we adapt it to the study of TMF, TMF
modulo torsion in Section 6.2. In particular, we prove that 2-integral 2-variable I'(1)-modular
forms (again meromorphic at the cusp) are exactly the 0O-line of a descent spectral sequence
for TMF, TMF.

The efficacy of this result becomes apparent in Section 6.3 where we prove that tmf,tmf
modulo torsion injects into the ring of 2-integral 2-variable modular forms with nonnegative
Adams filtration. Moreover, the injection is a rational isomorphism; once again we are primed
to identify the generators of a lattice inside a vector space.

Sections 6.4 and 6.5 undertake the task of detecting 2-variable modular forms in the Adams
spectral sequence for tmf A tmf, resulting in a table of 2-variable modular form generators of
Ext(tmf A tmf)/torsion in dimensions < 64.

Section 7

Our final section studies the level structure approximation map

U:tmf Atmf — [ TMFo(37) x TMFy(57).
1€72,520
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The first theorem of Section 7.1 is that the analogous map

¥ : TMFATME - J[ TMFo(37) x TMF(57)

i1€7,520

induces an injection on homotopy groups. The proof is quite involved. It includes a reduction to
a K (2)-local variant of the theorem, whose proof in turn requires the key technical Lemma 7.4
on detecting homotopy fixed points of profinite groups using dense subgroups.

In Section 7.2, we compute the effect of the maps

U3 : mutmf A tmf — 7, TMF(3),
U5 : mtmf A tmf — 7, TMF(5)

on a certain submodules of m,tmf A tmf.

In Section 7.3, we observe that these computations allow us to deduce differentials and hidden
extensions in the corresponding portion of the ASS for tmf A tmf using the known homotopy
of TMF(3) and TMF;(5).

Davis, Mahowald, and Rezk [22, 33] observed that one can build a connective cover

tmfo(3) — TMF,(3)

out of tmf A bo; and a piece of tmf A bos. In Section 7.4, we reprove this result, and relate this
connective cover to our map W3. We also show that similar methods allow us build a connective
cover

tmfo(5) — TMF,(5)

out of the otllei part of tmf A bos, tmf A boz, and a piece of tmf A bos. Note that neither
tmfo(3) nor tmfy(5) coincide with the Hill-Lawson connective covers of TMF(N). The
connective covers we consider are 7-connected and 23-connected, respectively.

1.2. Notation and conventions

In this paper, unless we say explicitly otherwise, we shall always be implicitly working 2-locally.
We denote homology by H,, and it will be taken with mod 2 coefficients, unless specified
otherwise. We let A = H*H denote the mod 2 Steenrod algebra, and

A, = H.H =Tt 6, .. ]

denotes its dual. In any Hopf algebra, we let T denote the antipode of . We let A(¢) denote

the subalgebra of A generated by Sq',...,Sq? . Let A//A(i) be the Hopf algebra quotient of
A by A(i) and let (A//A(7)). be the dual of this Hopf algebra.

We will use Ext(X) to abbreviate Exta, (Fo, H.X), the Fs-term of the Adams spectral
sequence (ASS) for m.X and will let C% (H*X) denote the corresponding cobar complex.
Given an element = € 7, X, we shall let [x] denote the coset of the ASS Es-term which detects
x. We let AF(z) denote the Adams filtration of .

We write bu for the connective complex K-theory spectrum, bo for the connective real
K-theory spectrum, and bsp for the connective symplectic K-theory spectrum, so that X*bsp
is the 3-connected cover of bo.

2. Brown—Gitler comodules and spectra

Mod 2 Brown-Gitler spectra were introduced in [14] to study obstructions to immersing
manifolds, but immediately found use in studying the stable homotopy groups of spheres (for
example, [19, 31] and many other places). Mahowald, Milgram, and others have used integral
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Brown—Gitler modules/spectra to decompose the ring of cooperations of bo [32, 34], and much
of the work of Davis, Mahowald, and Rezk on tmf-resolutions has been based on the use of
bo-Brown-Gitler spectra [9, 22, 33]. In this section, we collect the things about Brown—Gitler
comodules and spectra that pertain to the subject matter of this paper.

2.1. Brown-Gitler comodules
Consider the subalgebras of the dual Steenrod algebra
(AJJA@). =Tl .8 .. &1 iyar ]
The first few of these arise as the homology of spectra:
HHF, 2 A, = (A//A(-1)).,
H,HZ, = (A//A(0))..
H,bo = (A/JA(1))..
H.tmf = (A//A(2))..

The algebra (A//A(i)). admits an increasing filtration by defining wt(£;) = 29=1; every element
has filtration divisible by 2°*1. The Brown-Gitler subcomodule N;(j) is defined to be the
F,-subspace spanned by all monomials of weight less than or equal to 2i*!j, which is also an
A,-subcomodule as the coaction cannot increase weight.

2.2. Brown-Gitler spectra

The modules N_;(j) through N;(j) are known to be realizable by the mod-2 (classical),
integral, and bo-Brown-Gitler spectra, respectively [25], which we will denote by (HF3);,
HZ;, and boj, since we have

HFQ >~ hgﬂ(HFg)j,
HZ ~ lim HZ;,
bo ~ liénboj.

To clarify notation, we shall underline a spectrum to refer to the corresponding subcomodule
of the dual Steenrod algebra, so that we have

(HF2); := H.(HF2); = N_1(j),
HZ, := HHZ, = No(j),
bo; := H.bo; = N1(j).
It is not known if tmf-Brown—Gitler spectra tmf; exist in general, though we will still define
tmf ;= Ny ().

The spectrum N3(1) is not realizable, by the Hopf-invariant one theorem.

2.3. Algebraic and topological splittings

There are algebraic splittings of A(%).-comodules

(A//A®D). = @IV AG).
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This splitting is given by the sum of maps:
S2TIN () = (AJ/AG)).

i Fi1 o

o (2.1)
11 5 ...;_>€‘112 SRR

where the exponent a above is chosen such that the monomial has weight 2¢+15. It follows that
there are algebraic splittings

Ext(HZ AHZ) = @) Ext (o), (5% (HF,),), (2.2)
Ext(bo Abo) = (P Ext ). (SYHZ)), (2.3)
Ext(tmf A tmf) 2 @D Ext 2. (5%boj). (2.4)

These algebraic splittings can be realized topologically for ¢ < 1 [32]:

HZ A HZ ~ \/ Y¥HZ A (HF,);,
J

bo A bo ~ \/ Y4 bo A HZ;.
J
However, the corresponding splitting fails for tmf as was shown by Davis, Mahowald, and Rezk
[22, 33], so

tmf A tmf 2 \/ £%tmf A boj.
J

Indeed, they observe that in tmf A tmf the homology summands
Y8mf Aboy, and X%tmf A bo,

are attached nontrivially. We shall see in Section 7.4 that our methods recover this fact.

2.4. Short exact sequences relating Brown—Gitler comodules
The E5 terms of the Adams spectral sequences
Exta(1), ((A//A(1))+) = bo.bo
Ext (2, ((A//A(2))+) = tmf, tmf
split, by (2.3), (2.4) into summands of the form
Ext (), (HZ;),

EXtA(z)* (@j)-

It is therefore desirable to compute the above Ext groups. In [9], this is accomplished inductively
by means of a certain exact sequences relating these Brown—Gitler comodules [9, Lemmas 7.1,
7.2].

We begin by pointing out that a similar set of exact sequences interrelates the integral
Brown—Gitler comodules.

LEMMA 2.5. There are short exact sequences of A(1).-comodules

0 = SYHZ; — HZ,; — bo,_; ® (A(1)//A(0)). — 0, (2.6)

0 — SYVHZ; ® HZ) — HZ,; y — bo; ; @ (A(1)//A(0)). — 0. @7)
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Proof. The proof is almost identical to that given in [9]. On the level of basis elements, the
map

45
% Jﬂj — ﬂzj
is given by
?ilgéé RN 711722'1 ’;"2 e
where the integer a is 45 — wt(£;" €5 - --). The map
243'@]_ ®@ HZ, — M2j+1
is determined by
1@ le (1676 ) -,
6608 o (68" ) &,
816 06— (6" ) &
We abbreviate this by writing
676 @ {L§.6) e (6878 ) {L§.6). (2.8)
The maps
HZ,; — bo, | ® (A(1)//A(0))x,
HZy;,1 — bo;_y @ (A(L)//A(0)).
are given by
phint2e Bisteagia |, EERER . @ENEY, wt(ENEPER ) <4 —4,
1 2 3 .
0, otherwise,

where ¢ € {0,1}. The proof is now a direct computation. O

The exact sequences of [9] which relate the different bo-Brown—Gitler comodules take the
form:

0 — S¥bo; — boy; — (A(2)//A(1)). ® tmf,; | — £¥bo; | — 0, (2.9)

0 — $¥bo; ®bo, — boy; 1 — (A(2)//A(1)). @ tmf, | — 0 (2.10)

REMARK 2.11. Technically speaking, as is addressed in [9], the comodules (A(2)//A(1)). ®
tmf; ; in the above exact sequences have to be given a slightly different A(2).-comodule
structure from the standard one arising from the tensor product. However, this different
comodule structure ends up being Ext-isomorphic to the standard one. As we are only interested
in Ext groups, the reader can safely ignore this subtlety.

We briefly recall how the maps in the exact sequences (2.9) and (2.10) are defined. On the
level of basis elements, the maps

o
b)) ij — @ij
3% bo; ® bo; — boy; 4

are given, respectively, by
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7111'1552'25? RN 5? 7;1115512&13 .
g;ulgghg? e ® {135%753;53} = (gfg;hlg}mgis e ) : {1’5-11755753}7
where a is taken to be 85 — wt(ggilgwﬂ’s --+). Here, we are using the notation introduced in
(2.8). The maps
boy; —+ (A()//A(1)). © tm, _,, (2.12)

boyj 1 — (A(2)//A(1)). ® tmf; _, (2.13)
are given by

F8i1+dey Fhin+2es F2istes Fi
5171-"- €1£2L2+ F2£3l3 6354714

L JENERERG e UERE wi GRG0 ) <8 -8,
0, otherwise,

where €5 € {0,1}. The only change from the integral Brown—Gitler case is that while the map
(2.13) is surjective, the map (2.12) is not. The cokernel is spanned by the submodule

Fo{{16&} © E8j_8bfoj—1 C (A(2)//A(1))+ ® tmf;_;.
We therefore have an exact sequence

boy; = (A(2)//A(1)). @ tmf;_; — =¥+ bo; | — 0.

REMARK 2.14. The authors do not know if analogues of the exact sequences (2.6), (2.7),
(2.9), (2.10) exist in general the Brown—Gitler comodules N;(j). Culver [21] constructs analogs
of these in the context of BP(2)-cooperations in [21].

3. Motivation: analysis of bo,bo

In analogy with the four perspectives described in the introduction, there are four primary
perspectives on the ring of cooperations for real K-theory.

(1) There is a decomposition (at the prime 2)
bo Abo~ \/£¥bo A HZ;.
320

(2) There is an isomorphism KO,KO = KO, ®ko, KO¢KO, and KO¢KO is isomorphic to
a subring of the ring of numerical functions.
(3) K(1)-locally, the ring spectrum (KO A KO) gy is given by the function spectrum

(KO AKO) g1y ~ Map(Zy /{+£1}, KO3%).
(4) By evaluation on Adams operations, KO,KO injects into a product of copies of KO:
KO AKO < [[KO.

i€z
In this section, we will recall results from the literature which relate these four perspectives.
Our discussion of bo,bo will frame our subsequent treatment of tmf,tmf.

3.1. The Adams spectral sequence for bo,bo

In this section, we will compute the Adams spectral sequence

Ext 1), ((A//A(1)).) = bo.bo. (3.1)
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The splitting (2.3) reduces the understanding of the Adams FEs-term for bo Abo to an
understanding of Ext (1), (HZ;).
Define
Extaq), (X) _
AW Image (Ext 4(1), (X) — v; ! Extaq). (X)).
v1-tor
The following lemma follows from a simple induction (for instance, using the algebraic Atiyah—
Hirzebruch spectral sequence), using the fact that HZ, is given by the following cell diagram.

& o
s
& o

)
1 o

LEMMA 3.2. We have
Ext ), (HZ{") _ [Ext(bo'™), i even,
“ | Ext(bsp ), i odd.

v1 -tor
Here, X{V denotes the ith Adams cover.

We deduce the following well-known result (cf. [30, Theorem 2.1]).

PROPOSITION 3.3. For a nonnegative integer j, denote by a(j) the number of 1’s in the
dyadic expansion of j. Then,

Ext a1y, (HZ;) N Ext(bo' =2l j even,
vy -tor N Ext(bsp<2j7°‘(j)71>), j odd.

Proof. This may be established by induction on j using the short exact sequences of
Lemma 2.5, by augmenting Lemma 3.2 with the following facts.

(1) All vo-towers in Ext (1), (HZ;) are vi-periodic. This can be seen as Ext (1), (HZ;) is a
summand of Ext(bo A bo), and after inverting v, the latter has no v;-torsion. Explicitly, we
have,

vy L Ext(bo A bo) = Folvi!, u?, v

(2) We have,
Extaq), ((A(1)//A(0)). ®bo;) _ Exta). (bo;)
vo-tors o vo-tors
=~ Fyluo]{1, &1, ..., 67}
This follows from the fact that
Ext HZ.
Bt Q) o g,
vg-tors

which, for instance, can be established by induction using the short exact sequences of
Lemma 2.5. O

It turns out the v;-torsion is all concentrated in Adams filtration 0 (see, for instance, [32]).
It follows that for dimensional reasons, the only possible nontrivial differentials in spectral
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sequence (3.1) go from wvj-torsion classes to v{-periodic classes. This is not possible, so we
deduce

COROLLARY 3.4. The Adams spectral sequence for bo,bo collapses at Es.

3.2.  The cooperations of KU and bu

In order to put the ring of cooperations for bo in the proper setting, we briefly review the story
for bu. We begin by recalling the Adams—Harris determination of KU,KU [1, Section II.13].
We have an arithmetic square

KU A KU —— (KU AKU)%

| |

(KU AKU)g — (KU AKU)))o,

which results in a pullback square after applying 7,
KU,KU ——— Map®(ZJ, m.KU%)

| J

Qutt, v —— Map®(Zy, Qo[ut!]).

Setting w = v/u, the bottom map in the above square is given on homogeneous polynomials
by

flu,v) = u" f(Lw) = (A= u” f(1,X)).
We therefore deduce that KU, KU = KU, ®ku, KUgKU, and continuity implies that
KUoKU = {f(w) € Qu™'] : f(k) € Z),for all k € Z[} }.

Note that we can perform a similar analysis for KU,bu: since bu and KU are K (1)-locally
equivalent, applying 7, to the arithmetic square yields a pullback square with the same terms
on the right hand edge

KU,bu —— Map®(Z5, m.KU3)
| |
Qutt, v] —— Map®(Z5, Q2[u™!]).
Consequently, KU,bu = KU, ®xu, KUpbu, with
KUpbu = {g(w) € Q[w] : g(k) € Z),for all k € Zé)}.
Consider the related space of 2-local numerical polynomials:
NumPoly ) := {h(x) € Q[z] : h(k) € Z(2),for all k € Z(y)}.
The theory of numerical polynomials states that NumPoly ) is the free Zs)-module generated

by the basis elements
x z(x—1)---(x—n+1
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We can relate KUgbu to NumPoly 5 by a change of coordinates. A function on Z(XQ) can be
regarded as a function on Z,) via the change of coordinates

Zoy S 2,
k— 2k + 1.

Observe that
k(k—1)---(k—n+1)  2k(2k—2)---(2k — 2n + 2)

n! 2mn

(2k+1)—1)((2k+1) —3) - (2k+ 1) — (2n — 1))

ALY

We deduce that a Z,)-basis for KUgbu is given by
(w—1D(w—=3)...(w—(2n—1))

2nn)

9n (U)) =

(Compare with [1, Proposition 17.6(i)].)
From this, we deduce a basis of the image of the map

bu,bu — KU,KU,

as we now explain. In [1, p. 358], it is shown that this image is the ring

bu,bu
v1-tor

= (KU.bun Q[u, v])ar>o,

where AF > 0 means the elements of Adams filtration > 0. Since the elements 2, u, and v have
Adams filtration 1, this image is equivalently described as

bu,bu
v1-tor

= KU,bun L2) [u/2,v/2].

To compute a basis for this image, we need to calculate the Adams filtration of the elements
of the basis {g,(w)} for KUgbu. Since w has Adams filtration 0, we need only compute the
2-divisibility of the denominators of the functions g, (w). As usual in this subject, for an integer
k € Z, let v2(k) be the largest power of 2 that divides k and let a(k) be the number of 1’s in
the binary expansion of k. Then,

va(n!) =n —a(n)
and so
AF(g,) = a(n) — 2n.

The following is a list of the Adams filtration of the first few basis elements:

n binary AF(gn)
0 0 0
1 1 -1
2 10 -3
3 11 —4
4 100 -7
5 101 -8
6 110 —10
7 111 —11
8 1000 —15
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FIGURE 3.1 (colour online). bu.bu.

It follows (compare with [1, Proposition 17.6(ii)]) that the image of bu.bu in KU, KU is the
free module:

bu,bu

v1-tor

_ Z(2){2111;1x(0,2n—m—04(n))um,gn(w) cn=0,m > ’I’L}

The Adams chart in Figure 3.1 illustrates how the Mahler basis can be used to identify
bu,bu/vy — tors as a bu,-module inside of KU,KU. Namely:

(1) start with the Mahler basis g,(w) (on the negative s-axis);
(2) draw u-towers on each of the g, (w)’s;
(3) for each m > n, add a vg-tower on u™g, (w), starting in nonnegative Adams filtration.

Restricted to the first quadrant, this gives the v;-torsion-free summand of the Adams spectral
sequence for bu,bu.

3.3. The cooperations of KO and bo

Adams and Switzer computed KO,.KO along similar lines [1, Section II.17]. There is an
arithmetic square

KO AKO — (KO AKO)%

| |

(KO AKO)g — ((KO AKO)%)q,
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which results in a pullback when applying .

KO,KO ——— Map®(Z /{£1}, m.KO%)

| |

Qut?, vF2] —— Map®(Z /{£1}, Q2[u™?)).

(One can use the fact that KU, is a K (1)-local Co-Galois extension of KOS to identify the
upper right hand corner of the above pullback.) Continuing to let w = v/u, the bottom map
in the above square is given by

f(u2,v2) = u2"’f(1,w2) — ([)\] — uQ”f(l, )\2)).
We therefore deduce that KO, KO = KO, ®ko, KOgKO, with
KOoKO = {f(w?) € Qw*?] : f(A\?) € Z,for all [\] € Z) /{£1}}.

Again, KO,bo is similarly determined: since bo and KO are K (1)-locally equivalent, applying
. to the arithmetic square yields a pullback square with the same terms on the right hand
edge:

KO,bo —— Map®(Zy /{#1}, 7.KO%)

| |

Q[u*?,v?] —— Map®(Z; /{=1}, Qz[u™?)).
We therefore deduce that KO,bo = KO, ®ko, KOgbo, with
KOgbo = {f(w?) € Qu?] : f(A\?) € Zy, for all [\] € Z /{+1}}.

To produce a basis of this space of functions, we use the g-Mahler bases developed in [20],
which we promptly recall. First note that there is an exponential isomorphism

Ty — 75 J{£1} : k > [37].

Taking w = 3%, we have w? = 9%, or in other words, the functions f(w?) that we are concerned
with can be regarded as functions on 2Z,. They take the form

F(9%) : 22y =1+ 87y — Zo,

where 1+ 8Z, C ZJ is the image of 2Z, under the isomorphism given by 3*.

To obtain a g-Mahler basis as in [20] with ¢ =9 it is important that v5(9 — 1) > 0. The
g-Mahler basis is a basis for numerical polynomials with domain restricted to 2Zs. In the
notation of [20], we have that

k
=5 (1),
n/yg
where ¢,, € Z(g) are coefficients and

(k> (9= 1)(9F —9) - (9F — 9T
n 97 (9n_1)(977,_9),_.(9n_9’n—1)'

Let us set
(w2 — 1)(”(1)2 —-9).--. (wQ _ gnfl) .
(97 —1)(9" —9)--- (97 —9n—1)”

fn(w?) = (3.5)
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then any f € KOgbo is given by
f(w2) = chfn(wz), Ccp € Z(g),

that is, a basis for KOgbo is given by the set {f,,(w?)},>0.
As in the KU-case, it turns out that the image of bo,bo in KO,KO is given by
bo.bo

v1-tor = (KO.bo NQ[u?, UZ])AF)O.

In order to compute a basis for this, we once again need to know the Adams filtration of f,.
One can show that

va((9" = 1)(9" = 9)--- (9" — 9" 1)) = wy(n!) + 3n
= 4n — a(n).

It follows that we have
bo.bo
v1-tor

= Z(g){2max(0’4"*2m*“(”))u2mfn(w2) :n20,m>n, m=0 mod 2}

@ Z(g){2'“3’((0’4”*2’"*1*a("))2u2mfn(w2) :n>=20,m>n m=0 mod 2}

n=20,m>=2n m=0 mod 2,
®Z)23 u¥ f(whnt T ~
ce{l,2}, a(n)—4n+2m+c>0
Here is a list of the Adams filtration of the first several elements in the g-Mahler basis:
n fr in terms of g; AF(fn)
0 go 0
1 g2+ g1 -3
2 1594 + 1593 + 1592 =7

With this information, we can now give the Adams chart (Figure 3.2) of bo.bo modulo
v1-torsion.
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3.4. Calculation of the image of bo,HZ; in KO,KO
We now compute the image (on the level of Adams F..-terms) of the composite
bo,HZ; — bo,bo — KO,KO.
Since vflbo* YYHZ; = KO.,, it suffices to determine the image of the generator
es; € boy; (SYHZ,).
Because the maps
bo A £¥HZ; — bo A bo

are constructed to be bo-module maps, everything else is determined by 2 and w;, that is,
u-multiplication. Consider the commutative diagram induced by the maps bo — bu, bu — HF5,
and BP — bu

bo/\E4jHZj —boAbo—+buAbu+— BP ABP

N

HFQ A E4jHZ]‘ E— HIFQ Abo —— HFQ A HFQ

On the level of homotopy groups the bottom row of the above diagram takes the form

Fof€),...} = Falél, €2,6,...] = Falé1, 6,63, ]

Since we have
bo. XY HZ; — (HFy). 2% HZ;
eaj = &7,
it suffices to find an element b; € boy;bo such that
bo.bo — (HF3).bo
b &)Y
Clearly we can take by = 1 € bogbo. Note that we have
BP.BP — (HF,),.HF,
t) > &
From the equation
nr(v1) = v + 26
and the fact that the map BP,.BP — bu,bu is one of Hopf algebroids, we deduce that we have
BP.BP — bu.bu

v—u
t] — = ugy (w).
Hence, we get that
bu,bu — (HF5).HF,

V—U

B — &7
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and thus,
bu*bu — (H]FQ)*HIFQ

02— u?\’ =4j
( i )r»f?.

o 0?2 —u?\’
925 —a(4),,2i fj(w2) = < > modulo terms of higher AF

Since

4
by (3.5) we see that we have
bo.bo — (HF3).bo
22j—0‘(j)u2jfj (w2) — gilj7
so that we can take
bj = 2D ().

We have therefore arrived at the following well-known theorem (see [30, Corollary 2.5(a)]).

THEOREM 3.6. The image of the map

Ext(bo A SV HZ;) . Ext(bo A bo)

v1-tors v1-tors

is the submodule

Fo [vo]{vénax(oAj_%n_a(jDu2mfj(wz) :m =27, m=0 mod 2}
aF, [vo]{v{flax(oAj_Qm_l_a(j))vouQ’"fj (w?) : m=>j, m=0 mod 2}

m>=j, m=0 mod 2,
ce{l,2}, a(j) —4j+2m+c=0]"

@ Fy {uszj (w?)n°

REMARK 3.7. For each j > 0, this theorem describes a submodule of W These
submodules are represented by the different colors in Figure 3.2.

3.5. The embedding into [[ KO
The final step is to consider the maps of KO-algebras given by the composite

3" L KO AKO 2% KO AKO % KO

where ¢3k is the 3% th Adams operation. Together, they result in a map of KO-algebras

KO A KO 12 HKO

kEZL

REMARK 3.8. The map above has a modular interpretation. Let My, denote the moduli
stack of formal groups, and let

(SpecZ)//Cy — My,



594 M. BEHRENS, K. ORMSBY, N. STAPLETON AND V. STOJANOSKA

classify G,, with the action of [—1]. This map equips (SpecZ)//Cs with a sheaf of E..-rings,
such that the derived global sections are KOj; the reader is referred to[29, the Appendix] for

details. The spectrum KO A KO is the global sections of the pullback
(SpecZ x a1,, SpecZ) //(Ca x Cs).
For k € Z, we may consider the map of stacks
(SpecZ)//Cy — (SpecZ X a4, SpecZ) //(Ca x Cs)

sending G,, to the object [3*] : G,,, — G,,. As k varies, this induces the map [] 3.
ProPOSITION 3.9. The map

Ko, Ko 1Ly H KO,

keZ
is an injection.
Proof. Consider the diagram

KO.KO v [I.p KO.

e L

(KO,KO)y ————— [[,e,(KO.)

Map®(Z5 /{£1}, (KO,)%) —— Map(3Z%, (KO,)%),

where the bottom horizontal map is the map induced from the inclusion of groups
3% s 75 J{£1}.
The vertical maps are injections, since

[)2KO.KO =0, and [)2'KO.=0.

The bottom horizontal map is an injection since 3% is dense in Z /{41}. The result follows.

We investigated the Brown—Gitler wedge decomposition
\/ bo A £YHZ; =5 bo A bo,
J
and we now end this section by explaining how the map
~gk
kKo AKO 1L T k0O

keZ

is compatible with the above decomposition.

ProrosITION 3.10. The composites

bo A HZ; — bo Abo — KO A KO “— KO

are equivalences after inverting vi.

d
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Proof. This follows from the fact that f;(97) = 1. O

REMARK 3.11. In fact, the ‘matrix’ representing the composite
1_[ TZSk
\/ bo AHZ; = bo Abo — KO AKO ~— [ KO
J keZ
is upper triangular, as we have
0, k<y,
fi(9F) = : (3.12)

1, k=j.

This is related to a result of Barker and Snaith [6] in the following way. They prove that with
respect to the decomposition

buAbo~\/S¥bu A HZ; (3.13)
J

the automorphism
1A% :buAbo — buAbo

is represented by a matrix conjugate to

1 1 0 0
0 9 1 0
0 0 92 1

(3.14)

Using the fact that the composite
bu A bo — bu A bu £ bu

corresponds to projection on the j = 0 summand of (3.13), it follows that (3.12) is consistent
with the top row of the matrix (3.14).

4. Recollections on topological modular forms

4.1. Generalities

In this subsection, we work integrally. The remainder of this paper is concerned with
determining as much information as we can about the cooperations in the homology theory
tmf of connective topological modular forms, following our guiding example of bo. Even more
than in the bo case, an extensive cast of characters will play supporting roles. First of all, we
will extensively use the periodic spectrum TMF, which is the analogue of KO. In particular,
we will use the fact that this periodic form of topological modular forms arises as the global
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sections of the Goerss—Hopkins—Miller sheaf of ring spectra O°? on the moduli stack of smooth
elliptic curves M. As the associated homotopy sheaves are

k/2 :
T OP — w®k/2if k is even,
0, if k£ is odd,

there is a descent spectral sequence
H*(M,w®") = 19, sTMF.

Morally, the connective tmf should arise as global sections of an analogous sheaf on the
moduli stack of all cubic curves (that is, allowing nodal and cuspidal singularities); however,
this has not been formally carried out. Nevertheless, tmf can be constructed as an E,.-ring
spectrum from TMF as a result of the gap in the homotopy of a third, nonconnective and
nonperiodic, version of topological modular forms associated to the compactification of M.

Rationally, every smooth elliptic curve C/S is locally isomorphic to a cubic of the form

y2 =% — 2Teqx — 54cg,

with the discriminant A = ¢} — ¢ invertible. Here ¢; is a section of the line bundle w®’ over
the étale map S — M classifying C. This translates to the fact that Mg =2 Proj Q[cy, cg][A™1],
which in turn implies that (TMF.)g = Q|c4,cs][A™!]. The connective version has
(tmf.)o = Qle, c6)-

The spectrum of topological modular forms is, of course, not complex orientable, and just like
in the case of bo, we will need the aid of a related complex orientable spectrum. The periodic
spectrum TMF admits ring maps to several families of orientable (as well as nonorientable)
spectra which come from the theory of elliptic curves. Namely, an elliptic curve C' is an abelian
group scheme, and in particular it has a subgroup scheme Cn] of points of order n for any
positive integer n. When n is invertible, C[n] is locally isomorphic to the constant group (Z/n)?.
Based on this observation, there are various additional structures that one can assign to an
elliptic curve. In this work, we will be concerned with two types, the so-called T';(n) and T'g(n)
level structures.

A T'y(n) level structure on an elliptic curve C is a specification of a point P of (exact) order
n on C, whereas a I'g(n) level structure is a specification of a cyclic subgroup H of C' of order
n. The corresponding moduli problems are denoted M (n) and My(n). Assigning to the pair
(C, P) the pair (C, Hp), where Hp is the subgroup of C' generated by P, determines an étale
map of moduli stacks

g: Mi(n) = Moy(n).
Moreover, there are two morphisms
frq: Mo(n) = M[1/n]

which are étale; f forgets the level structure whereas ¢ quotients C' by the level structure
subgroup. Composing with g, we obtain analogous maps from Mj(n). We can take sections
of OP over the forgetful maps and obtain ring spectra TMF;(n) and TMFy(n), ring maps
TMF[1/n] — TMFy(n) — TMF;(n) as well as maps of descent spectral sequences

H*(M[1/n],w®*) == 7, TMF[1/n]

| |

H*(M2(n),w*) =——= 7. TMF-(n),

obtained by pulling back. In particular, for any odd integer n, we have such a situation 2-locally.
We wuse the ring map f:TMF[1/n] - TMFo(n) induced by the forgetful
f:Mo(n) = M[1/n] to equip TMFy(n) with a TMF[1/n]-module structure. With this
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convention, the map ¢ : TMF[1/n] — TMFy(n) induced by the quotient map on the moduli
stacks does not respect the TMF|[1/n]-module structure. However, one can uniquely extend
q to

TMF[1/n] ———— TMFq(n).

_
J - 7. (4.1)
TMF[1/n] A TMF[1/n]

Another way to define ¥,, is as the composition of f A ¢ with the multiplication on TMF(n).
Finally, we will be interested in the morphism

which is the étale map induced by the multiplication-by-n isogeny on an elliptic curve, and the
induced map ¢p,; : TMF[1/n] — TMF[1/n] is an Adams operation on TMF[1/n].

In Section 7, we will make heavy use of the maps W3 and W5. Their usefulness is due to the
relative ease with which their behavior on nontorsion homotopy groups can be computed.

REMARK 4.2. There is a subtlety in defining the maps
q :TMF[1/n] = TMFy(n),
¢rn) :TMF[1/n] — TMF[1/n]

which is glossed over in the above discussion. The definition of the map ¢ presupposes a
canonical identification of the sections of OP on the étale opens f and ¢, and the definition
of the map ¢y, somehow associates a map of spectra to an isogeny of elliptic curves. The real
origin of these maps of spectra comes from Lurie’s generalization of the Goerss—Hopkins—Miller
theorem (see [11]), which actually presents the p-completions of the sheaf QP as a sheaf on
the étale site of the moduli stack of height two 1-dimensional p-divisible groups M,q. The
p-torsion of an elliptic curve C' gives a p-divisible group C[p*]. Let

u: Ma(n)) = My

denote the map which forgets level structure and outputs the p-divisible group of the underlying
elliptic curve (where (p,n) =1). The Serre-Tate theorem implies this map is étale, and

TMF?(n);} is the associated spectrum of sections. Given a cyclic subgroup H of order n,

the isogeny
C—C/H

induces an isomorphism of associated p-divisible groups, and hence gives a 2-cell making the
following diagram of stacks homotopy commute:
A
MU(n)p u\
ql “U Mpd

T
My
This induces a map on sections
¢ : TMF)) — TMFy(n))
(see, for instance, [23, Chapter 5]). The map
q : TMF[1/n] — TMFy(n)
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is then obtained by constructing the map rationally, and assembling over an arithmetic square.
The map

¢n) : TMF[1/n] — TMF[1/n]

is obtained using the diagram

induced by the isogeny
[n]: C — C.

A different perspective on these maps between TMF-spectra can be found in [8], but that
treatment also secretly relies on Lurie’s generalized Goerss—Hopkins—Miller theorem. The
reader uncomfortable with relying on unpublished work could also obtain the morphisms ¢ and
¢n) using the obstruction theoretic construction of TMF described in [23, Chapter 12]: the
isogenies induce isomorphisms on formal groups, and the functoriality of the Goerss—Hopkins—
Miller theorem gives maps on the K (2) localizations of TMF. An explicit map of f-algebras
corresponding to the respective isogenies gives, via K (1)-local E,, obstruction theory, a map
of the K (1)-localizations of TMF. These assemble via chromatic fracture to give a map on the
p-completions of TMF for (p,n) = 1, and these then assemble via the arithmetic square to give
the desired maps.

4.2. Details on tmfy(3) as BP(2)

We return to the convention that everything is 2-local. The significance of bu in the computation
of bo.bo was that at the prime 2, bu is a truncated Brown—Peterson spectrum BP(1) with a
ring map bo — bu which upon K(1)-localization becomes the inclusion of homotopy fixed
points (KU3)"“2 — KUs. In particular, the image of KO3 — KU3 in homotopy is describable
as certain invariant elements. By work of Lawson—Naumann [28], we know that there is a
2-primary form of BP(2) obtained from topological modular forms; this will be our analogue
of bu in the tmf-cooperations case.

Lawson—Naumann study the (2-local) compactification of the moduli stack M;(3). Given
an elliptic curve C' (over a 2-local base), it is locally isomorphic to a Weierstrass curve of the
form

y2 +aixy +azy = x>+ asT + ag.

A point P = (r,s) of order 3 is an inflection point of such a curve; transforming the curve so
that the given point P is moved to have coordinates (0,0) puts C in the form

y? + arxy + asy = z°. (4.3)

This is the universal equation of an elliptic curve together with a I';(3) level structure. The
discriminant of this curve is A = (af — 27a3)a3, and M;(3) ~ ProjZs)la1, as][A™']. Conse-
quently, m. TMF,(3) = Z)[a1, as][A™"]. Lawson-Naumann show that the compactification
M (3) =~ Proj Z)lai, as] also admits a sheaf of E.-ring spectra, giving rise to a nonconnective
and nonperiodic spectrum Tmf; (3) with a gap in its homotopy allowing to take a connective
cover tmf;(3) which is an E.-ring spectrum with

mtmfl (3) = Z(g) [al, ag].
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This spectrum is complex oriented such that the composite map of graded rings
Z(g) [1}1,1}2] Cc BP, — (MU(Q))* — tmf; (3)*

is an isomorphism [28, Theorem 1.1], where the v; are Hazewinkel generators. Of course, the
map BP, — tmf;(3), classifies the p-typicalization of the formal group associated to the curve
(4.3), which starts as [36, IV.2; 37]:

FX,)Y)=X+Y —a; XY —2a3X°Y — 3a3X?Y? + —2a3 XY?
—2a1a3 XY — a1a3X3Y? — a1a3 XY — 20103 XY* + O(X,Y)".

We used Sage to compute the logarithm of this formal group law, from which we read off the
coefficients 1; [35, A2.1.27] in front of X?' as

I — ay I — a$ + 2as

1 2’ 2 4 )

} al + 30atas + 30a;a?

3 = o ee e
8

Now the formula [35, A2.1.1] pl, = >, _,, liv%i_i (in which [ is understood to be 1) allows
us to recursively compute the map BP, — tmf(3).. For the first few values of n, we have
that

vy > a,  vg s az, v Tajaz(al +as).. ..
We can do even more with this orientation of tmfy(3), as

is a morphism of Hopf algebroids. Recall that BP.BP = Z)[v1,v,...][t1,t2,...] with v;
and t; in degree 2(2° — 1) and the right unit is 7z : BP, — BP,.BP determined by the fact
[35, A2.1.27] that

77R(ln) = Z litfzz,i—i
0<isn
with lp =ty = 1 by convention. On the other hand,
tmfl(g)*tmfl (3)(@ - Q[ala as, (_117 (_13]

and the right unit tmf;(3), — tmf;(3).tmf;(3) sends a; to a;. With computer aid from Sage,
we can recursively compute the images of each ¢; in tmf(3).tmf;(3). As an example, we include
here the first three values

t — %(dl —a1),

to > L(4as + 2at — a1a; + 2aia; — 4as — 3a}),

ts — 135 (480a1a3 — 16a1a3 + 480a1as — 16a1aias + 8ajajas — 16aia1as (4.4)
+ 32a1a3a3 + 24atas + 16a] — 4a,a5 + 4ala; — 4aza; — 11a3a; + 32a,a3a3
+ 24aia; — 32aiasa; — 22a7al + 32atasa; + 20a5a, — 496a;a3 — 508atas — 27a])

and rather than urging the reader to analyze the terms, we simply point out the exponential
increase of their number. In Section 4.4, we will use the Adams filtration to extract leading
terms from these expressions, allowing us to extract meaningful information from these
formulas.
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REMARK 4.5. Just as we used bu.bu as a means of porting formulas in BP,BP to bo.bo,
so we are using tmf(3).tmf;(3) to analyze tmf,tmf. The reader might wonder why we do
not give a complete analysis of tmf;(3),.tmf;(3). In fact, such an analysis has recently been
completed by Culver [21].

4.3. The relationship between TMF;(3) and TMF and their connective versions

As we mentioned already, the forgetful map f: M;(3) — M is étale; moreover, f*w = w. As
a consequence, we have a Cech descent spectral sequence

E = HP(Ml(S)XM(Q+1)7w®*) N Hp+q(/\/l,w®*).

With it, the modular forms H°(M,w®*) can be computed as the equalizer of the diagram
P1
HO(My (3),0%%) =t HO(M (3)  pq M (3), ), (4.6)
P2

in which p; and ps; are the left and right projection maps. The interpretation is that the
M-modular forms M F, are precisely the invariant M, (3)-modular forms.

To be more explicit, note that M;(3) x g M1(3) classifies tuples ((C,P),(C’, P’),¢) of
elliptic curves with a point of order 3 and an isomorphism ¢ : C' — C’ of elliptic curves which
does not need to preserve the level structures. These data are locally given by

C: v’ +aizy+asy = 2>,

C': y? +dxy +ayy = 23, (4.7)

P T u 4 y|—>u_?’y—l—u_2s:r—|—t7

such that the following relations hold

sa; —3r + s> =0,
sas + (t +rs)a; — 3r? 4+ 2st = 0,
r® —tas —t> — rta; = 0, (4.8)
a) = nr(a1),
az = nr(az).

(Note: For more details on this presentation of M;j(3), see the beginning of [38, §4]; the
relations follow from the general transformation formulas in [36, 1I1.1] by observing that the
coefficients d@eye, must remain zero. See also [7], where M (3) is implicitly used to compute
the 2-primary descent spectral sequence for tmf.)

Hence, the diagram (4.6) becomes

Lo lar, as] = Zzylar, as][u™,r, s, 1]/ (~)

(where ~ denotes the relations (4.8)) with pj being the obvious inclusion and p} determined
by

ay — u(ag + 2s),
ag — u>(as + ra, + 2t),

which is in fact a Hopf algebroid representing M s). Note that we do not need to localize at 2
but only to invert 3 to obtain this presentation.
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As a consequence of this discussion, we can explicitly compute that the modular forms M F,
are the subring of M Fy(3). generated by

cy = af —24ajas, cg = a$ + 36a3az — 21643, and A = (ai — 27a3)a3, (4.9)

which, in particular, determines the map TMF, — TMF;(3). on nontorsion elements.

4.4. Adams filtrations

The maps BP,, — tmf;(3). and BP,BP — tmf;(3).tmf;(3) respect the Adams filtration, which
allows us to determine the Adams filtration on the right-hand sides. Recall that

AF(v;)=1, i>0

where as usual, vy = 2. Consequently, AF(a1) = AF(a3) = 1, which in turn implies via (4.9)
that

AF(cy) =4, AF(cs) =5, and AF(A)=4. (4.10)

More precisely, modulo higher Adams filtration (we use ~ to denote equality modulo terms in
higher Adams filtration) we have

cy ~af, cg~216a% ~8aZ, A~ aj. (4.11)

Note that the Adams filtration of each t; is zero.

4.5. Supersingular elliptic curves and K(2)-localizations

At the prime 2, there is a unique isomorphism class of supersingular elliptic curves; one
representative is the Weierstrass curve

C: yv+y=2°

over [Fo. Recall that a supersingular elliptic curve is one whose formal completion at the identity
section C is a formal group of height two'. Under the natural map M — M g from the moduli
stack of elliptic curves to the one of formal groups sending an elliptic curve to its formal
completion at the identity section, the supersingular elliptic curves (in fixed characteristic) are
sent to the (unique up to isomorphism, by Cartier’s theorem [35, Appendix B]) formal group
of height two in that characteristic.

Let M*® denote a formal neighborhood of the supersingular point C of M, and let 7:[(2)
denote a formal neighborhood of the characteristic 2 point of height two of My,. Formal
completion yields a map M*%% — 7:1(2) which is used to explicitly describe the K(2)-localization
of TMF (or equivalently, tmf) in terms of Morava E-theory.

The formal stack H(2) has a pro-Galois cover by Spf W(IF,)[[u1]] for the extended Morava sta-
bilizer group Gs. The Goerss—Hopkins—Miller theorem implies in particular that this quotient
description of ﬂ(2) has a derived version, namely the stack Spf Ey//Gs, where E5 is a Lubin—
Tate spectrum of height two. As we are working with elliptic curves, we take the Lubin—Tate
spectrum associated to the formal group C over Fy, and G, = Autg, (C) x Gal(F4/Fy).

Let G denote the automorphism group of C; it is a finite group of order 48 given as an
extension of the binary tetrahedral group with the Galois group of Fy/Fy. Then, G embeds
in G as a maximal finite subgroup and Spf E5 is a Galois cover of M?*® for the group G. In

tAs opposed to an ordinary elliptic curve whose formal completion has height one. These two are the
only options.
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particular, taking sections of the structure sheaf 0P over M** gives the K(2)-localization of
TMF which is equivalent to E}“. Moreover, we have K(2)-local equivalences

(TMF A TMF)g 2y ~ Hom® (G2 /G, E2)"“ ~ ] EH(GNeGa)
z€G\(G2)/G

The decomposition on the right-hand side is interesting though we will not pursue it further
in this work. The interested reader is referred to Peter Wear’s explicit calculation of the double
cosets in [40].

5. The Adams spectral sequence for tmf,tmf and bo-Brown—Gitler modules

Recall that we are concerned with the prime 2, hence everything is implicitly 2-localized.

5.1. Rational calculations
Recall that we have
tmf, tmfy = Q[ca, cg, 4, Cs)
and consider the (collapsing) vg-inverted ASS
P vo ! Extaz). (5¥bo;) = tmf.tmf @ Qs.
J

In this section, we explain the decomposition imposed on the E.-term of this spectral sequence
from the decomposition on the Es-term. In particular, given a torsion-free element x € tmf,tmf,
this will allow us to determine which bo-Brown—Gitler module detects it in the Es-term of the
ASS for tmf A tmf.

Recall from Section 4 that tmf; (3) ~ BP(2). In particular, we have,

H*(tmf,(3)) = A//E[Qo, Q1, Q2]
We begin by studying the map between vg-inverted ASS’s induced by the map tmf — tmf; (3)

* %

’Ual EXtA(Q)* (FQ) _ W*tmf X Q2

| J

(]Fg) —> m,tmf; (3) ® Qs.

—1 *, %
Y EXtE[QOan,Qz]*
We have

—_ s ~ +
Vg L EXtEFQo,Ql’QZ]* (]FQ) — ]FQ [U() 17 U1, ’Uz],

where the generators v; have (t — s, s) bidegrees:

|U0‘ = (07 1)7
|Ul‘ = (27 1)7
lva| = (6,1).

Recall from Section 4 that m.tmf;(3)g = Q[ai, as], and that
U1 = [a1]7

Vg = [ag] .
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Of course m,tmfy = Q[cy, cg], with corresponding localized Adams Es-term
vo_l Ext:a)* (Fq) 2 Fo [vgﬂ, 4, Cl,
where the generators [¢;] have (t — s, s) bidegrees
|[eall = (8,4),

|[e6]] = (12,5).

Recall also from Section 4 that the formulas for ¢4 and c¢g in terms of a; and az imply that the
map of FEs-terms of spectral sequences above is injective, and is given by

] = [at], o
[c6] > [8a3].
Corresponding to the isomorphism
mtmfg = HQ, tmf
there is an isomorphism of localized Adams Fs-terms

v ' Ext o) (F2) = vy ' Ext () ((A//A(2)).)-

Since the decomposition

AJJA(2). = P S¥bo,

is a decomposition of A(2).-comodules, it is in particular a decomposition of A(0),-comodules,
and therefore there is a decomposition

vy Extaa), (F2) = @) vy ' Extag). (5¥bo;). (5.2)
J

PROPOSITION 5.3.  Under the decomposition (5.2), we have
vy Extao), (S¥bo;) = Falvg ' {[cf cg] © i1 + o = j}
C Ual EXtA(Q)* (F2).

Proof. Statement (2) of the proof of Lemma 3.3 implies that we have
vy Exta), (bo;) = Falvg '[{€1" : 0<i < j}.
Using the map (2.1), we deduce that we have
vy ' Ext o), (5¥bo;) 2 Folvg '{E €™ + i1 + iy = 5}
C Exta). (A//A(2)).)-

Consider the diagram:

H,tmf — H,tmf;(3) «—— BP,BP

T T |

HZtmf —— HZ,tmf;(3) +—— tmf;(3).tmf;(3) (5.4)

| J |

HQ.tmf —— HQ,tmf;(3) +—— tmf; (3).tmf;(3)g.
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The map
BP.BP — H.tmf,(3) = Fy[£7,£3,62 &4, . . ]
sends t; to £2. Thus, the elements
Sk ¢ H,tmf,
t1"t32 ¢ BP,BP

have the same image in H,tmf;(3). However, using the formulas of Section 4, we deduce that
the images of ¢; and t5 in

tmfy (3).tmfy (3)g = Qa1, as, a1, as]
are given by
ty = (a1 +a1)/2,
ty > (4a3 — a1a’ — 4az — a3)/8 + terms of higher Adams filtration.
Since the map
tmf; (3).tmf;(3)g — HQ.tmf;(3) = Qas, as]

of diagram (5.4) sends a; to a; and a; to zero, we deduce that the image of ¢; and ¢s in
HQ.tmf,(3) is

t1 — a1/2,
to — a3/2 + terms of higher Adams filtration.
It follows that under the map of vg-localized ASS’s induced by the map tmf — tmf;(3)

110_1 EXtA(g)* (Fo) — ’Uo_l EXtE[QO,Q17Q2]* (Fs),

we have,
66" = [a1/2]" [as /2.
Therefore, by (5.1), we have the equality (in vy "' Ext (o), (A//A(2)).))
E165" = [ea/16]" [c6/32]"
and the result follows. O

Corresponding to the Kiinneth isomorphism for HQ, there is an isomorphism
vo_l Ext 4(0). (M ® N) = 1)0_1 Ext 4(0). (M) ®F2[%ﬂ} 110_1 Ext (o). (V).
In particular, since the maps
vy ' Ext(tmf A ¥bo;) — vyt Ext(tmf A tmf)
can be identified with the maps
vy Extao). (A//A(2))+) g, 1) Vo Extao). (S¥boy)

— vy Bxtao). (4//A(2)):) @p, 1) v Exta). (A//A(2)).),

we have the following corollary.

COROLLARY 5.5. The map
vy ' Ext(tmf A X¥bo;) — vy ' Ext(tmf A tmf)
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& o
& o

Sq*
1 o

FIGURE 5.1. bo,.

obtained by localizing (2.4) is the canonical inclusion
Falvg ", [ea], [eoll{[Ea] [c6]™ : i1 + o = j} = Falvg ', [ea], [co], [Ea], [co]l-

5.2. Inductive computation of Ext 4(2), (bo;)

The exact sequences (2.9), (2.10) provide an inductive method of computing Ext 4(2), (bo;) in

terms of Ext 4(1), -computations and Ext 4(2), (m’l)
We give some low-dimensional examples. We shall use the shorthand

M < @ Mi[k
to denote the existence of a spectral sequence
P Exty o (M) = Extyf, (M).
In the notation above, we shall abbreviate M;[0] as M;. We have
A2)/JA(1)). & T*bo, & TPF, 1],
¥2Mbo, <« B24(A(2)//A(1)). ® ¥3%bo],
S%bo, < (A(2)//A(1)). @ (Z%2tmf, ® B*¥F,) & X50bo, & X56bo, [1] & THF,[1],
S10bo; <= (A(2)//A(1)). ® (2%tmf, & £°°bo, ) & £%bo; & B™bo, [1],
S%8bog < (A(2)//A(1)). ® (S*8tmf, & X72F, & X80F,[1]) (5.6)
® Yot ® %bo, [1] ® % [2],
$%bo, < (A(2)//A(L). ® (Stmf, & 20bo,) & Bbo?,
S1bo, « (A(2)//A(1)). ® (E*tmf, & tmf, © SH2F, @ SO, [1))
® £12bo2[1] @ £120bo, @ £'20bo, [1] & S'2F,|1].

216@2 P 216

(
(

In practice, these spectral sequences tend to collapse. In fact, in the range computed explicitly
in this paper, there are no differentials in these spectral sequences, and the authors have not
yet encountered any differentials in these spectral sequences. These spectral sequences collapse
with vg-inverted, for dimensional reasons.

In principle, the exact sequences (2.9) and (2.10) allow one to inductively compute
Ext 4(2). (bo ) given Ext 4(2), (bo?k) where bo, is depicted in Figure 5.1. The problem is that,
unlike the A(1)-case, we do not have a closed form computation of Ext (), (bof’ *). These
computations for k < 3 appeared in [9] (the cases of k = 0, 1 appeared elsewhere) We include
in Figures 5.2 through 5.5 the charts for Zgj@j, for 0 < j < 6, as well as 28@% in dimensions
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< 64. In these figures, the different contributions to bo; coming from the different summands
of the F-term of the spectral sequences 5.6 are denoted with different colors.

5.3. Rational behavior of the exact sequences

Ext a(2), (281@].)

We finish this section with a discussion on how to identify the generators of oTors

On one hand, the inclusion

Ext a(2), (5%bo)) ¢
vo—tors

vo L Extaz), (B¥bo;) = Falvg ", [ca], [c]]{E5" €42+ iy +ip = j}

vy ' Extag). ((A//A(2)).)

discussed in Section 5.1 informs us that the ho-towers of Ext A(Q)*(Efsj@j) are all generated
by

he[ca][c6] 167 €5

for appropriate (possibly negative) values of k depending on i1, 142, p, and q.
The problem is that the terms

v ' Extag) (X' (A(2)//A(1)). @ tmf ;) C v5 ! Extaa), (5'%boy;), (5.7)
vy Ext o) (B (A(2) /A1)« @ tmf; 1) Cvg ' Exta), (B9 boy; ) (5.8)

in the short exact sequences (2.9), (2.10) are not free over Fo[vi ™, [ca], [cs]] (however, they are
free over Fo[vi?, [c4]]).

We therefore instead identify the generators of v, ' Ext A2). ((A//A(2)).) corresponding to
the generators of (5.7) and (5.8) as modules over Fo[vg?, [c4]], as well as those generators
coming (inductively) from

Uo_l EXtA(Q)* (E24jmj) C ’Uo_l EXtA(g)* (Zlﬁjm%), (59)
vy " Extaga), (5% %o, @ bo,) C vy Extag), (8% ®bo,; ) (5.10)

in the following two lemmas, whose proofs are immediate from the definitions of the maps in
(2.9), (2.10).

LEMMA 5.11. The summands (5.7) (respectively, (5.8)) are generated, as modules over
Fo[vi!, [ca]], by the elements

61667, &6 TG € (A//AQ2)x,
with iy + 42 < j — 1 and a = 16§ — 1647 — 16i5 (respectively a = 165 + 8 — 16i; — 16i5).
LEMMA 5.12. Suppose inductively (via the exact sequences (2.9), (2.10)) that the summand
vy ' Extaca), (E¥bo;) C vy ' Exta), ((A//A(2)).)

has generators of the form

{&é .}
Then, the summand (5.9) is generated by

(&8}
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and the summand (5.10) is generated by
(&3 {&.6)
The remaining term
vy " Ext gz, (5% %8bo; [1]) C vy Extaa), (boy;) (5.13)

coming from (2.9) is handled by the following lemma.

LEMMA 5.14. Consider the summand
1)0_1 EXtA(l)* (224j78b70j_1> C ’Uo_l EXtA(l)* (EIGjmj_l) C 1)0_1 EXtA(Q)* (2163-@2]4)
generated as a module over Fo[vi?, [c4]] by the generators
1061 &5, E6TIE € (A//A2))-
with i1 +io=j— 1. Let ; (0<i<j—1) be the generator of the summand (5.13), as a
module over Fy[vE?, [c4], [cs]] corresponding to the generator £ € bo;_;. Then, we have,

e Ri A hi
[06]&; 2“+ 312 = Uéxiz +

in vyt EXtA(Q)*(Elﬁjmzj), where the additional terms not listed above all come from the
summand

1)0_1 EXtA(Q)*(EZZU@j) C Uo_l EXtA(Q)*(EIG]-@zj).

Proof. This follows from the definition of the last map in (2.9), together with the fact that

with vy inverted, the cell £162&5 € (A(2)//A(1)). attaches to the cell & with attaching map
[c6] /va. O

Lemmas 5.11, 5.12, and 5.14 give an inductive method of identifying a collection of generators
for vy " Ext (2. (bo;), which are compatible with the exact sequences (2.9), (2.10). We tabulate
these below for the decompositions arising from the spectral sequences (5.6). For those
summands of the form (A(2)//A(1)). ® —, these are generators over Fa[v!, [c4]], for the other
summands, these are generators over Fo[vF!, [c4], [cs]]-

@0 N ]FQ . 1
S%ho, : S%bo, 1 &F,&
2'%bo, : (A2 /A0 &°,88

S*bo, 1 &5,&
SPF1] g *[e)€Es + -
%**boy : SHAQR)/AM). &6
S¥bot : {&,6)-{€,&)
S%bo, i BE(A(2)//A(1)). @ tmf, ¢ £72,67163, 665,616, €965, £16:6;
SU(AR) /AL &°,6E;
=*bo; : &,&]

SOF,[1] 0 v tles)é5ES + -
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S%ho, 1]+ vy Heale” + -+ v eslTEas + -+
5o« BY(AQ)//AM). @ tmf, = 6,676, &6, 6067, 616, £°68;
(A@2)//A1)). ®bo, : {&°,&8&} {1, &)
S%boi : {&, &} {6, &)
S%boy 1]+ {vg eslé3€s + -} {€F. &5}
=%bos : B(AQ2)//AL). ®tmi, : 6%, E1°6, 678, E'6)°, 6765, 6365,
£1°6°, 616, 61°6363, £6%6, £°6, 666
SPAQ)/AM). &6
=%boi : {&5.€1} - {65,65)
S¥bo,[1] v [eo€1€3" + - ug [esl€1E7E + -
v [ea €1 ERE5 + -
£%bo; : EO(AR)//AM). @by &°,E°6, 6106, 676,% 61°6;, 6768,
T(AQ2)//AM). @ boy = {&", &%} {€1, &)
S¥boi : {&, €1} {86} {8.6)
=%bog 1 BM(AQ2)//A). @ tmiy - &, E°6, 6156, €1°6)° €175, £1°63€5,
§°6°. 618", 6786, 61676, 676,648,
619631, 616°. 61°6,°65, 6163°65, 61°665, 616785,
£1°6%, 66,67
SP(AQR)//AM). @ tmf, - 82,6565, 6°6, 867 £°6, 668
SHAQ)AM). &6
£"bo, : &, &
S 0 vy Yeelé3Er + -
S10boy 1]+ v [ee]€5E5% + g oo €388 + -
S0y [1] v [eg]€TEST + - v [egl€T R E -
v lea €1 E3°65 + -
5.4. Identification of the integral lattice

Having constructed useful bases of the summands

vgl EXtA(2)*(28jmj) C U(?l EXtA(Q)*(A//A(Q)*)7
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it remains to understand the lattices
Ext 4(2). (2% bo;)

Vg — tors

C vy ' Bxta(e). (%¥bo;).

This can accomplished inductively; the rational generators we identified in the last section are
EXtA(z) N

compatible with the exact sequences (2.9), (2.10), and of the terms in these exact

—tors
Extaq).,

oo fors -computations of Sectlon 3, and knowledge of

sequences are determined by the

Ext(2). (bo})
vo — tors

Unfortunately the latter requires separate explicit computation for each k, and hence does not
yield a general answer.

Nevertheless, in this section, we will give some lemmas which provide convenient criteria for
identifying the ¢ so that given a rational generator x € (A//A(2)). (as in the previous section),
we have

Ext 4(2)«((A//A(2))+)

vy — tors

vix € C vy Ext ). (A//A(2)).).

We first must clarify what we actually mean by ‘rational generator’. The generators identified
in the last section originate from the exact sequences (2.9), (5.7). More precisely, they come
from the generators of v, ' Ext A(2), (M) where M is given by

Case 1: M :m]f,
Case 2: M = (A(2)//A(1)). ® tmf,.

In Case 1, a generator x of vy ' Ext 4(0). (M) is a generator as a module over Fy [vE!, [ea), [ce]],
using the isomorphisms

Vg ExtA(2 (bo®)
> o Exta. (A//A@2)). © bof)
= %—1 Exta(0). (4//A(2))+ ® bo}) (5.15)
= v ! Extao). (A//A(2)).) O, [v1] vy " Ext (). (bo})
= Fyfvg ', [eal, [co]] @r, Fa{l, &1},
The rational generators in this case correspond to the generators
z € {L &N

In Case 2, a generator = of vy " Extas), (M) is a generator as a module over Fj [, [cal]
using the isomorphisms

vy Extaca), ((A(2)//A(1)): ® tmf;)
= vy Exta), (tmf )
= vy | Exta, ((A//A(1)). ® tmf )
- Uo o Exta). ((A//A(1)).  tmf )
= vy L Extao). ((A//A(1))x) ®g,p, £1) v ' Ext (o), (tmf;)
= Folvg ! [eall{1, &1} @r, Fo{&77 6™ ¢ in 412 < j}.

The rational generators in this case correspond to the generators

_ ile ® §1L1£4L2.

(5.16)
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In either case, the maps « in both (5.16) and (5.15) arise from surjections of cobar complexes
Ca.(N) = Clpy. (N)
induced by the surjection
A, — A0)..

Thus, a term vix € C'(0), (V) representing an element in vy ! Ext 4(0). (V) corresponds (for i

sufficiently large) to a term [{;]’z + -+ € C%_(N). Then, we have determined an element of
the integral lattice

Exta, (N)

[E)'z+--] e vy — tors

C vy ' Exta, (N).

LEMMA 5.17. Suppose that the A(2).-coaction on x € (A//A(2)). satisfies
Y(r) =1+ Yy

with y primitive, as in the following ‘cell diagram’:

X (e]

Sq*

Then,
o Extae (4/A(2).)

0 vy — tors

C vy Extay. (A//A(2)).)
and is represented by

(116116 ]z + ([&1161&6] + (G161 6] + 6116 6I8] + 6|16y
in the cobar complex C ) ((A//A(2)).).

Proof. Since the cell complex depicted agrees with A(2)//A(1) through dimension 4,

Ext (), of this comodule agrees with Ext,, (F2) through dimension 4. In particular,

30 1. Extace).
VT + generates an vo—tors

cocycle, we note that

-term in this dimension. To determine the exact representing

[E11&16] + [611611E76] + [E116.6160) + [&1€71€7]
kills hhy in Exta(z), (F2). O
ExXAMPLE 5.18. Let a = éfjlész -+ be a monomial with exponents all divisible by 8. A

typical instance of a set of generators of (A//A(2)). satisfying the hypotheses of Lemma 5.17
is

4
&a o
Sq*
£8
-1 ©

The following corollary will be essential to relating the integral generators of Lemma 5.17 to
2-variable modular forms in Section 6.
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COROLLARY 5.19. Suppose that x satisfies the hypotheses of Lemma 5.17. The image of
the corresponding integral generator

vo + -+ € Extaa), (A//A(2).))
in Ext5(q,,01,q.]. ((A//E[Qo, @1, Q2])+) Is given by

vg’x + vo[al]Qy.

Proof. Note the equality
E[QOv Qla QZ]* - IFQ [517 527 53]/(5%7 g, g’%)

Therefore, the image of the integral generator of Lemma 5.17 under the map

Cha). ((A//A(2))) = Ckigy.01,0.]. (A//E[Qo, @1, Q2])+)
is
[E11€11€x) + [1]€21€2]y
and this represents v3x + vg[ai]?y. O

Similar arguments provide the following slight refinement.

LEMMA 5.20. Suppose that the A(2).-coaction on x € (A//A(2)). satisfies
Ya)=1Rz+®yY
with y primitive, and that there exists w and z satisfying
Pz)=1®z+&®y
and
Y(w)=10w+&H®2+6H @y

as in the following ‘cell diagram’:

xr o ’\

%

z o |sq

Sq?

Y OJ

Then,
X 2) % AllA *
e ¢ LGN rp . (aa@).)
is represented by
(€1l + [EFw + ([€7] + [&2]) = + [EFEaly

in the cobar complex C'),) ((A//A(2)).).
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EXAMPLE 5.21. Let = f_fflf_?f -+ be a monomial with exponents all divisible by 8. A
typical instance of a set of generators of (A//A(2)). satisfying the hypotheses of Lemma 5.20
is

5?5_21/04 © ™
(& 18+ &2 _)a o

Sqt

P S 5 S
(5?7151'2%1 +§i2+1f§'71)04 © d

Sq?

(E,8 +88_)a o

COROLLARY 5.22. Suppose that x satisfies the hypotheses of Lemma 5.20. The image of
the corresponding integral generator

vox + - - € Ext (9, ((A//A(2)4))
in Extp(q,,q.,q.]. (A//E[Qo, Q1, Q2]).) is given by

vz + [a1]z.

6. The image of tmf.tmf in TMF,TMFq: two variable modular forms

6.1. Review of Baker—Laures work on cooperations

In this brief subsection, we do not work 2-locally, but integrally.
For N > 1, the spectrum TMF;(N) is even periodic, with

TMF(N)2. 2 M. (D1 (N)[A 208
In particular, its homotopy is torsion-free. As a result, there is an embedding
TMF;(N)2. TMF{(N) — TMF; (N )2. TMF,(N)qg
= M. (T (N))[A™ g ® M. (1 (N))[A™ g
Consider the multivariate g-expansion map
M.(T1(N))[A™ g @ Mu(T1(N))[A™ o — Q((g,9))-

In [27, Theorem 2.10], Laures uses it to determine the image of TMF; (N), TMF; (V) under
the embedding above.

THEOREM 6.1 (Laures). The multivariate g-expansion map gives a pullback
TMF, (N), TMF; (N) —— TMF; (N), TMF; (N)g

Z[1/N1((¢,9) ———— Q(¢:2)-
Therefore, elements of TMF (N ), TMF;(N) are given by sums
Z fi ® gi € M.(Ty(N))[A™ ] ® M.(T1(NV)[A™ g
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with

Z filg) ® gi(q) € Z[1/N]((q.q))-

We shall let M2-v"(T'1(N))[A~, A~1] denote this ring of integral 2-variable modular forms
(meromorphic at the cusps). We shall denote the subring of those integral 2-variable modular
forms which have holomorphic multivariate g-expansions by M2~ (I';(N)).

REMARK 6.2. Baker [3] showed that in the case of N =1, with 6 inverted, we have

TMF, TMF[1/6] = M2~"*"(T'(1))[1/6,A~ ', A™1].

Laures’s methods also apply to this case.

6.2. Representing TMF . TMF /tors with 2-variable modular forms

From now on, everything is again implicitly 2-local.
We now turn to adapting Laures’s perspective to identify TMF,TMF /tors. To do this, we
use the descent spectral sequence for

TMF — TMF (3).
Let (B.,T'p,) denote the Hopf algebroid encoding descent from M;(3) to M, with
B* = W*TMFl(?)) = Z[al, as, Ail],
I'p, = W*TMF1(3) ATMF TMF1(3) = B. [7”, S, t}/(N),

(see Section 4) where ~ denotes the relations (4.8). The Bousfield-Kan spectral sequence
associated to the cosimplicial resolution

TMF — TMF,(3) = TMF,(3)"\™2 = TMF, (3)"\t™r3 ...
yields a Baker-Lazarev spectral sequence [4]
Exty! (B.) = m_ TMF.

We can use parallel methods to construct a Baker—Lazarev spectral sequence for the
extension

TMF A TMF — TMF, (3) A TMF (3).

Let (BiQ), r B(z)) denote the associated Hopf algebroid encoding descent, with
B = 1, TMF,(3) A TMF,(3),

T 2 = 7. (TMF;(3)"™%2 A TMF, (3)/\ M 2),

B

The Bousfield-Kan spectral sequence associated to the cosimplicial resolution

TMF"? — TMF, (3)"2 = (TMF, (3)"r2)"?

= (TMF, (3)me3) 2 ..

yields a descent spectral sequence

Extfifg@) (BiQ)) = TMF,_,TMF.

LEMMA 6.3. The map induced from the edge homomorphism

TMF, TMF /tors — Extggz) (B?)
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is an injection.

Proof. This follows from the fact that the map
TMF A TMF — TMF A TMFg

induces a map of descent spectral sequences

Eth_"(tg) (B>|(<2)) — TMFt_sTMF
B

J |

Ext’ (B? % Q) == TMF,_,TMFq

@)
B«
and the rational spectral sequence is concentrated on the s = 0 line. (]

The significance of this homomorphism is that the target is the space of 2-local two-variable
modular forms for I'(1).

LEMMA 6.4. The 0-line of the descent spectral sequence for TMF,TMF may be identified
with the space of 2-local two-variable modular forms of level 1 (meromorphic at the cusp):

Bxtyie (BY) = M2 (P)[A~H A7),

Proof. This follows from the composition of pullback squares

Extp”  (BO)—— Ext}”  (BY 2 Q)
B B

* *

| |

TMF (3), TMF (3)—— TMF; (3), TMF; (3)g
Z((¢,9)) Q((¢,9))-

The bottom square is a pullback by Theorem 6.1. Note that since TMF;(3) Aryre TMF(3) is
Landweber exact, T" B> is torsion-free. Thus, an element of B,Ez) isT

B(z)-primitive if and only

if its image in B,EQ) ® Q is primitive. This shows that the top square is a pullback. O
6.3. Representing tmf.tmf/tors with 2-variable modular forms

Recall from equation (4.10) that the Adams filtration of ¢4 is 4 and the Adams filtration of cg
is 5. Regarding 2-variable modular forms as a subring

Mf’“‘“"(l“(l)) C Q[C4, 66,54,56],
we shall denote by M27v%"(T'(1))4>° the subring of 2-variable modular forms with non-
negative Adams filtration. The results of the previous section now easily give the following
result.

PROPOSITION 6.5. The composite induced by Lemmas 6.3 and 6.4

tmfo, tmf /tors — TMFo, TMF /tors < M2~ (I'(1))[A!, A~
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induces an injection
tmfy, tmf /tors < M2~ ([(1))4F20
which is a rational isomorphism.

Proof. Consider the commutative cube

tmfg*tmf/tors ——— TMF,. TMF /tors

o _

l \M2 var (1))[A_1,A_1]

tmfa,tmfg TMF,, TMFq

M2 (D(1)

ME_W(F(D)

rapa= A g,

(The dotted arrow exists because the front face of the cube is a pullback.) The commutativity
of the diagram, and the fact that rationally the top face is isomorphic to the bottom face give
an injection

tmfo, tmf /tors — M2~ (T'(1))

that is a rational isomorphism. Since all of the elements of the source have Adams filtration
> 0, this injection factors through the subring

tmfy, tmf /tors < M2~ (I'(1))4F>0,

6.4. Detecting 2-variable modular forms in the ASS

DEFINITION 6.6. Suppose that we are given a class
x € Ext(tmf A tmf)
and a 2-variable modular form
f & M2 (D(1) A0,

We shall say that  detects f if the image of x in vy ' Ext(tmf A tmf) detects the image of f
in M27v%"(T'(1)) ® Q2 in the localized ASS

vy ' Ext(tmf A tmf) = tmf, tmf ® Q, = M2~ (I'(1)) ® Q».
REMARK 6.7. Suppose = as above is a permanent cycle in the unlocalized ASS
Ext(tmf A tmf) = tmf,tmf),
and detects ¢ € tmf,tmfy. If f is the image of ¢ under the map
tmf.tmfy — [M270(D(1))5]4727,

then z detects f in the sense of Definition 6.6.
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Given a class x € Ext(tmf A tmf), we wish to find a 2-variable modular form it detects. To
accomplish this, we contemplate the following diagram

tmf, tmf) ¢ tmf1 (3).tmfq(3)%
tors ’ tors

| | >

M (D (1))3 s M2 (T
f (6.8)

Q [64766764766]C—> @2 ai, ag, ala QS]

. J/

tmf, tmf ® Qo tmf;(3).tmf;(3) ® Qo

and the associated ‘Ext version’:

Ext(tmfAtmf) Ext(tmf; (3)Atmf(3))
vo—tors tors

BQF M2 (D (1)) EAF M2 (Dy(3)))
) (6.9)
Faloi][e], [co), [6a), [Fel] > Fa[vi][an], [as], [a], [@s]]

N

vg ' Ext(tmf A tmf)—— vy Ext(tmf;(3) A tmf; (3))

Here, E4'F M277%" denotes the associated graded with respect to Adams filtration (AF), where,
as usual (see Section 4.4), we set

AF(Q) = AF(CLl) = AF(CLg) = 1, AF(C4) = 47 AF(Cg) = 5.

As indicated, in both of the above diagrams, all of the arrows are injections. To determine
whether a class x € Ext(tmf A tmf) detects f € M27v9"(I'(1)), it suffices to determine whether
the image of = in Ext(tmf;(3) A tmf;(3)) detects the image of f in M2~v%"(T';(3)).

The following lemma follows immediately from (4.11).

LEMMA 6.10. The map (1) of Diagram (6.9) is given by
[ea] = [aa]*,
[c6] = vg[as]*.
Given a 2-variable modular form f € M2~v%"(T'(1)), let f(a;,a;) denote its image in
MZ7"(I'1(3)) ® Qo = Qslar, as, @y, as] = tmf(3),tmf;(3) ® Qo.
and let
[f(ai,@;)] € vy Ext(tmfy (3) A tmfy (3)) 2 Fa[vg !, [a1], [as], [a1], [as]

denote the element which detects it in the (collapsing) vo-localized ASS.
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Similarly, let ¢x(a;, @;) denote the images of ¢; in tmf;(3).tmf;(3) ® Q2 (as in Section 4.2),
and let [ty(a;,a;)] denote the elements of Ext which detect these images in the vp-localized
ASS for tmf; (3).tmf; (3) ® Q.

The map (2) of Diagram (6.9) is essentially determined by the following lemma.

LEMMA 6.11. The subalgebra
Fol : k> 1] C (A//E[Qo, Q1, Qo)) = F2[€7,65, 65,64+

is contained in

EXt%[QO,QL,QQ}* ((A//E[Q()7 Ql, QQ])*) = Ext(tmf1(3) AN tmf1 (3))
Furthermore, map (2) of Diagram (6.9) is determined by

& > [tr(as, @;)).

Proof. The elements E,f are easily checked to be primitive with respect to the E[Qq, Q1, Q2]«-
coaction. The second part follows from the fact that in the diagram

BP.BP H.H
t;. is mapped to é}% by the top horizontal map. O

REMARK 6.12. In fact, Lemma 6.11 completely determines map (2). This is because
Ext(tmf;(3) A tmf;(3))/vo — tors is generated as an F[vg, a1, as)-algebra by the elements &7
(see [21]).

We assemble these observations to give the following convenient criterion for determining
when a particular element z € Ext(tmf A tmf) detects a 2-variable modular form f.

PROPOSITION 6.13. Suppose that we are given an element z € Ext(tmf A tmf) whose image
in
Ext(tmfy(3) A tmf(3)) = Extp(q,,01,0.). (A//E[Qo, Q1, Q2]))
is given by
_ _ 2k 22ko
Z:ZZJ£1 BT
J
with z; € Ext(tmf;(3)). The element z detects a 2-variable modular form
f & M2 (p(1) A0
if and only if

[faia)] =Y Z[ta(ai, @) [ta(ai, @) - -
J
6.5. Low-dimensional computations of 2-variable modular forms

Below is a table of generators of Ext(tmf A tmf)/tors, as a module over Fa[vg, [c4]], through
dimension 64, with 2-variable modular forms they detect. The columns of this table are:

dim: dimension of the generator,
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boyg: indicates generator lies in the summand Ext 42, (bo,) (see the charts in Section 5),

AF: the Adams filtration of the generator,

cell: the name of the image of the generator in v, ' Ext 4(2), (boy,), in the sense of Section 5.3,

form: a two-variable modular form which is detected by the generator in the vg-localized ASS
(where f), are defined below).

The table below also gives a basis of M279"(I'(1)) as a Z[c4]-module: In dimension 2k, a form
ag in the last column, with o € Q and g a monomial in Z[cy, cs, A, fr] not divisible by 2,
corresponds to a generator g of M7~ (T'(1)).

The 2-variable modular forms f; € M27?%"(I'(1)) in the above table are the generators of
Mf""“"(F(l)) as an M, (T'(1))-algebra in this range, and are defined as follows.

&y + c1)/16
fa =
f3:=
Jai=

C6 +c6)/8
5fics + 21 facs)/8
5facs + 21 f1c)/8

fies+ f3)/16

= (-
(-
(
(
= (-
fo := (=C2cs + cAeg + 5AALoc? + T68 facy + 1792 facs) /2048
(
(
(
(2f
(

E"

fr = (4f2A + fsco +5fac] + 635 + 5f1 foct + Tfoca + 4f7 faca) /8

fs 1= (AfreaD + foco + Bfich + Bf7ct + Tfsct + 2fact + 4f7cD)/8

fo =
fio =
fll

32f1A + fiface + 337 i + 8f5ca + 32fsca + 327 ca) /64
2f2c} + frf26] + 2fsca + 31T faca + firfe + fofs)/4
Af1eaD + 11F2E 4 34f562 + 28162 + 23132 + dfoca + fifsca + Aftes
+4fs + fafs)/8
frz = (fifsce + 8facy + 8fsci + 811 f2¢i + 8fsci + 87 foch + fafsca) /8
fiz = (8f32 + 80 facy + 56 f3ci + 801 foch + T6fsci + 551 f2ci + 4f1oca
+ 18fafscs + 1117 faca + 4f12 + f1fo + frfofs +4f1 f2)/8
fra = (2QLFIAA +8fsA + 16 f4A + 202 A + fiocs + 1115 + 36 f2¢) + 591 f5¢3
FA90£4¢3 + 43713 £ 119f0c + 140f1 f5¢2 + T5F2¢2 + 10f11e4 + 11 fsca
+32f7ca + 8f1f2f5)/16
fis 7= (4f6 A + [T f2A + 76 foc] + 54 3¢ + 901 facy + T3 foci + 507 f2¢§ + 3 fr065
+ 8f7¢5 + 20f2f5¢5 + 87 foch + Tf12ca + 4f1 f2f5¢4) /8

fie == (2f1A% + 24113 A + 9fscald + 18fscad + AfPes A + 2fo A + fifsA

TThere is one exception: there is a 2-variable modular form CZ}I() which agrees with ¢4 f19 modulo terms of
higher Adams filtration, but which is 2-divisible. See Example 7.12.
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+36f2c] + 480 fsci + 402f,ch 4 359f2ct + 94 foct + 112, fscs + 55 fics
+ 12116 + 14fsch + 20f0¢ + 2fraca + 5 fafrea + fiea + AfE faca + fifia
+ fsfo+ fifafr)/2

fi7 = (2fo A% + 2232 A 4+ 11 fsea A + fofsA + 19 focics + 682 f2cS + 480 f3c)
+ T68f1 foch + 648 fsci + 4627 foct + 30 f10¢] + 63 f7¢5 + 185 f f5c5
+ 84f7 foct + 12 f13¢] + 27 fract + 29f1 fofsci + 161 foch + Afi5ca + 4 f5 foca
+2f2 fafsca + fafia + fofo)/2

fig = (4f2A% + 168 f3¢7A + 96 fscaA + 8 fa f5 A + 168 focic + 5880 fach
+ 4140 3¢5 + 6648 f1 foch 4 5592 fsc + 39802 foct + 248 fiocs + 560 f7¢
+ 1586 f2 fsci + TAAST foch + 112 f1s¢f + 220 fract + 2651 f2f5¢5
+ 136 1 f2c] + 40 fisca + 4f1 frsca + 4[5 foca + 197 fa fsca + 87 faca

+4fsfo+ fifsfo + f213) /4

We shall now indicate the methods used to generate Table 1, and make some remarks about
its contents.

The short exact sequences (2.9), (2.10) were used in Section 5.2 to give an inductive scheme
for computing Ext 4(2), (bo,), and the charts in that section display the computation through
dimension 64. In Section 5.3, these short exact sequences are used to give an inductive
scheme for identifying the generators of vy L Ext A(2). (boy,), and appropriate multiples of these
generators generate the image of Ext (o), (bo,)/tors in these localized Ext groups. These
generators are listed in the fourth column of Table 1.

The two variable modular forms in the last column of Table 1 are detected by the generators
in the fourth column, in the sense of the previous section. In each instance, if necessary, we use
Corollary 5.19 or 5.22 to find the image of the generator in Ext(tmf;(3) A tmf;(3)) and then
apply Proposition 6.13.

The 2-variable modular forms were generated by the following inductive method. Let {z;}
be a basis of

Ext** 2" (tmf A tmf)

vy — tors

as an Fa[vg]-module. We wish to produce a basis
{fo} € MEZ""(D(1))

such that for appropriate n(z;) > 0, the z; detects 2"(*!) f, . Suppose inductively that we have
found such 2-variable modular forms f,, for all z; with Adams filtration (AF) greater than s,
and let z € {z} be a basis element with AF(z) = s. We wish to produce a 2-variable modular
form f. such that z detects 2"(*) ., and so that

fo @Fo{f., : AF(z) > s} C ME"""(T'(1)) ® Fa.
This will be accomplished by writing a finite sequence of approximations

PO
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TABLE 1. Table of generators of Ext(tmf A tmf)/tors.

dim boy AF cell form
8 1 0 & f1
12 1 3 81€3 2f2

16 2 0 16 2
20 1 3 [co/4] - €8 2f3
20 2 3 LI3¢3 2f1fa
24 1 4 /2] - &3 fa
24 2 0 & fs
24 3 0 £24 I3
28 2 3 [81€a 2fe
28 3 3 [8]€16¢3 2f2f>
32 1 4 [A)E] Afy
32 2 1 [c6/16] - £5€3 + [ca/8] - €5 fo
32 3 0 1343 fifs
32 4 0 £32 I
36 1 7 [8A)ES 2A fy
36 2 3 [c6/4] - &5 2f7
36 3 3 [8]é1? 2fafs
36 3 0 &+ 842 J1o
36 4 3 (8]€74€5 213 fo
40 2 4 [c6/2] - €5 fs
40 3 1 (26363 f11
40 4 0 £1583 25
40 5 0 £20 s
44 1 7 [Acg/4] - £F 2Af3
44 2 7 [c6/4]([co/16] - E3€5 + [ca/8] - €3) cefo/4
44 3 3 [c6/4] - £5€5 2f1f7
44 4 3 [8]€5¢€42 2f1f2f5
44 4 0 EI6E4 4 E3E)2 2f13
44 5 3 [8]€32€3 2ft f2
48 1 8 [Ace/2] - &3 Afy
48 2 4 A3 Afs
48 3 4 [c6/2] - 37 Jafr
48 3 1 [c6/16] - (£3€5 + €57) f1a
48 4 0 £16 f2
48 4 1 (2167565 fifu
48 5 0 T3 I3 fs
48 6 0 £48 re
52 2 7 [8AJEd 2A fg
52 3 4 [c6/2] - €3&3 2f15
52 4 3 [8]€5€3 2f5f6
52 5 3 [8]£16&32 2f2 fofs
52 5 0 £24¢8 4 £16¢12 2f1f13
52 6 3 [8]€10&3 2f7 fo
56 1 8 [A288 A2fy
56 2 8 [A]([ce /2] - €765 + [ca] - €3) 8Afo

(Continued)
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TABLE 1. Continued.

625

dim boyg AF cell form
56 3 4 [A]E3ES Afsfi
56 4 1 [c6/16] - £5€32 + [ca/8] - £3° f5.fo
56 4 0 &8 fie
56 5 0 €L fif2
56 5 1 [21£1583&3 i
56 6 0 33 fifs
60 1 11 [8A2%]- & 2A2 fy
60 2 7 [Ace/4] - &5 2A fr
60 3 7 [8A]EL2 2Af5 fo
60 3 4 [A](EFE3 +&37) Afio
60 4 4 [c6/2] - £3€385 + [ca] - £5€35 2f6fo
60 4 3 [81¢4 2f17
60 5 0 £30 + £765¢€3 fis
60 5 3 [816§£5¢43 2f1fs5fs
60 6 3 8674632 2f3 fafs
60 6 0 £32¢4 2f2 f13
60 7 3 [8]€18¢5 2f} f
64 2 8 [Ace/2] - &3 Afs
64 3 5 [2A]6363 Afi
64 4 2 [c6/16] - E5€3 + [ca/8] - €5 1372
64 5 1 [2]€3%]é3 fifsfo
64 5 0 &8s f1fie
64 6 0 £°65° 217
64 6 1 IELES fiifi
61 7 0 3 e
64 8 0 5 I3
with
. 1 _ _

) € S M2TT(D(L) € MZTT(D(D) © Q.

and

[ = =

We will then take n(z) == — k and f, := 5 £V,

Step 1. Find an element

FL9 € Qles, e, 24, 6]
so that
[£] = 2 € vy ! Ext(tmf A tmf).

Such an f§°> can be produced in one of two ways:

Technique (a) Find a representative

_ _ 72k1,j 72k
P= g

J
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for the image of z in Ext(tmf; (3) A tmf;(3)) using Corollary 5.19 or 5.22. Then, by Lemma 6.11,
we have

Z i[t1(as, ai) ‘jtz(ai,di)kz’j"']-

J
Then, use Lemma 6.10 to find fz so that

)= 3 2l (0 @) ta(as, @)= -]
under map (1) of Diagram 6.9.

Technique (b) If 2=} v, [64][69]21’]'227]'-“, where inductively you already have

2-variable modular forms f., = which z; ; detect, you may also take fz(o) to be

7O = 22 Z]CJCG Forfoay oo

J
Step 2. Write the g-expansion of fz(o)
£ q) =9 (q,9)/2",
where g<0)(q, q) is the g-expansion of 2-integral 2-variable modular form.

Step 3. Write ¢(°)(¢, ¢) as a linear combination of the g-expansions of the 2-variable modular
forms of Adams filtration greater than s + k already produced mod 2:

99(q,q) = Zhi(q,(j) mod 2.

Step 4. Set
1
1) — 00 4 = ,
fz - fz + 2k Zh1
Then,
D) =112 = =
and

9,0 = g (q,q) /2",

where ¢(1) is a 2-integral 2-variable modular form.

Step 5. Repeat steps 3 and 4 to inductively produce fz(i).
We explain all of this by working it through some low degrees:

f,: The corresponding generator of Ext®; s (2) (X8bo, ) is £§. Using ‘Technique (a)’, we compute
the image of £ in Ext(tmf;(3) A tmf;(3)) to be

_ al + a?
)] = |
Using Lemma 6.10, we take
0 _ —Citcy
lg =g

We find that fgg) has an integral g-expansion, and therefore take
1

fii=f8).
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2f,: The corresponding generator of Extfg(f)*(zé@l) is [8]¢5. Using ‘Technique (a)’, we

compute (appealing to Corollary 5.19) its image in Ext(tmf; (3) A tmf;(3)) to be
[8t2(ai, &1)2 + QG%tl (ai, di)ﬂ = [2&% + 2&%]
Using Lemma 6.10, we take

(0) —Cg + cg
T = 4

We find that f ) has an integral g-expansion. In fact,
f[(g(;)gle (Q7 Cj) = O HlOd 2a

so, fg]54 =f 0])54 and we define

— (D)
f2i= Ty /2

f2: The corresponding generator of Extg’(lz(j) (X16bo,) is 19, Since & detects f1, we can

simply use ‘Technique (b)’ to get
0
fao = fi-

The process terminates here, as f} is 2-integral since f; is. o
2f;fy: The corresponding generator of Exti{?g’)*(Ewbioz) is £§€5. Again, we use ‘Technique

(b)’. Since £§ detects f; and [8]€3 detects 2f27 [8]€8¢5 detects 2f1 fo. B
2f5: The corresponding generator of EXtA(2 (X8bo, ) is [ce/4)E5. Since £F detects fi, we use

‘Technique (b)’ to begin with
f[(coﬁ)/4 Cﬁf1/4

This 2-variable modular form is not 2-integral, but the form

0= s f1

g
is 2 integral (‘Step 2’). Moving on to ‘Step 3’, we find
c6(9)f1(4,9) = f2(¢,@)ca(g) =0 mod 2.

We define

f(l) L 6 f1 faca
[cs/41€Y * 9 2

It turns out (‘Step 4°)

1 ~
f[(cs)/4]g§ (¢,9) =0 mod 2.
Therefore, we define
@ chtfa
[36/4]£§ . 4 -
In fact,
5¢6(q) f1(¢,7) + 21f2(q, §)ea(q) =0 mod 8,
SO we set

5ce f1 + 21 facy

¢
Fieoymes = 1
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and
1203
fa = 5f[c6/4]éi“'

7. Approximating by level structures
Recall from Section 4 the maps
U, : TMF[1/n] A TMF[1/n] — TMF((n)
and
¢rn) : TMF A TMF[1/n] — TMF A TMF[1/n].

Here W, is induced by the forgetful and quotient maps f,q : Mo(n) — M[1/n], while ¢p,) = 1 A
[n] where [n] : TMF[1/n] — TMF[1/n] is the ‘Adams operation’ associated to the multiplication
by n isogeny on M[1/n]. For reasons which will become clear in the next section, we are
interested in the composite map ¥ given as

tmf Atmf ——~— ] TMF,(37) x TMFq(57),

l i€Z,5>0
/

TMF A TMF

where
o= T ¥siop)x Tsiop
i1€2,520

We will abuse notation and refer to the composite

tmf A tmf — TMF A TMF 2 TMF(n)

(for (2,n) =1) as ¥,, as well; these are the ¢ = 0 factors of V.
In order to study ¥,,, we consider the square

tmf, tmf Wg\p’l) T« TMFg(n)

| |

MEver(D(1)) —— M (To(n)).

Here the left-hand vertical map is the composite
tmf, tmf — tmf,tmf /tors < M2 (T'(1))A20 — M27ve"(T(1)),

and M. (Tp(n)) is the ring of level T'o(n)-modular forms. The bottom horizontal map is also
induced by f and g; if we consider a 2-variable modular form as a polynomial p(ca, cg, €4, ),

then ¢y, (p) = p(f"cs, f e, " ca, " co).

We are especially interested in the cases n = 3,5. Recall from [33] (or [12, § 3.3]) that
M,.(To(3)) has a convenient presentation as a subalgebra of M, (T'1(3)). More precisely,
M.(T1(3)) = Zla1, a3, A~ with A = a3(af — 27a3), and M, (To(3)) is the subring

M. (To(3)) = Z[a?, a1a3,a3, A~ 1].
Using the formulas from loc. cit., we may compute

f(es) = a% — 24a; a3, q"(cs) = ail + 216a1as,

f*(cs) = —ab +36a3asz — 21643, q*(cs) = —a$ + 540a3as + 5832a3.
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There are similar formulas for the n = 5 case which we recall from [12, § 3.4]. Here the ring
of T'y(5)-modular forms takes the form

M.(To(5)) = Z[ba, ba, 6, A~/ (52 = 35 — 467,

where |bo| = 2 and |bs| = |0] = 4. (These are the algebraic, rather than topological, degrees.)
The discriminant takes the form

A = 6%by — 1183
and we have
f*(cq) = b3 — 12by + 126, q*(cq) = b3 + 228by + 4926,
[ (cg) = —b3 + 18byby — 720268, q*(cg) = —bi + 522byby + 10008bo6.

7.1. Faithfulness of i

In this section, we will prove the following theorem.

THEOREM 7.1. The map on homotopy
. : TME,TMF — [ 7. TMFq(3’) x 7. TMFq(5)
i€Z,j>0

induced by the map 1 defined in the last section is injective.

Theorem 7.1 will be proven in two steps. Consider the following diagram

s

TMF,TMF —— % 7. TMF(39) x . TMFq(57)
1€Z,j>0
| | )
(¥ ) . )
7o (TMF A TMF) () — =[] m.TMF0(37) () X 7 TMF0(57) s (2)

i€7,5>0

where the vertical maps are the localization maps. We will first argue that the left vertical map
in (7.2) is injective, and we will observe that the same argument shows the right-hand vertical
map is injective. Second, we will show that the bottom horizontal map of (7.2) is injective.
Theorem 7.1 then follows from the commutativity of (7.2) and these injectivity results.

LEMMA 7.3. The localization map

TMF,TMF — TMF.TMF g (2)

is injective.

Proof. Since TMF A TMF is E(2)-local, we have

(TMF A TMF) g (2) =~ holim TMF A TMF A M2, v{),
¥
where (4, j) above run over a suitable cofinal range of N* x N*. In order to conclude that there
is an isomorphism
T (TME A TMF) g (9) = TMF*TMF&MO

and for the map

TMF.TMF — TMF, TMF; .
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to be injective we must show that no element of TMF, TMF is infinitely divisible by elements of
the ideal (2, ¢4). Consider the Adams—Novikov spectral sequence for TMF,TMF. This spectral
sequences converges since TMF A TMF is E(2)-local [26, Theorem 5.3]. The Ej-term of this
spectral sequence is easily seen to not be infinitely divisible by elements of the ideal (2,c4).
Therefore, any infinite divisibility in TMF,TMF would have to occur through infinitely many
hidden extensions. This would result in elements in negative Adams—Novikov filtration, which
is impossible. O

The same argument shows that the various maps

F*TMF()(N) — W*TMFQ(N)K(Q)

are injections. The only remaining step to proving Theorem 7.1 is to show the bottom arrow
of Diagram (7.2) is an injection. This is the heart of the matter.

LEMMA 7.4. The map

(VK (2))=
=

T (TMF A TMF)K(Q) H T« TMF() (37)[((2) X W*TMF()(E)j)K(Q)

i€7,5>0

is an injection.
In order to prove this lemma, we will need the following technical observation.

LEMMA 7.5. Suppose that G is a profinite group, H is a finite subgroup of G, and U is an
open subgroup of G containing H. Then, there is a finite set of open subgroups U; < U which
contain H, and a corresponding finite set {yj} of elements in G such that

(1) {yrUx} forms an open cover of G, and
(2) HNyUpy,' = HNypHy, .

Proof. We have

H= (] V

HLVL,U

(where we use <, to denote ‘open subgroup’). Therefore, for each y € G, we have

HNyHy ' = ﬂ HnyVy L.

HLV LU

Therefore, for each z € H with z ¢ yHy !, there must be a subgroup H <V, <, U so that
2z & yV,y~!. Define

U, = (V-
(If the set of all such z is empty, define U, = U.) Since H is finite, this is a finite intersection,
hence U, is open. Note that U, has the property that H < U, <, U and
HﬁyUyy_1 = HnyHy "

Consider the cover {yU,}, where y ranges over the elements of G. Since G is compact, there
is a finite subcover {y;U,, }. We may therefore take Uy = U,,. O

Proof of Lemma 7.4. Let Sy denote the second Morava stabilizer group, and let E> denote
the version of Morava E-theory associated to a height 2 formal group over Fy. The spectrum
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E, admits an action by the group Sy x Gal where Gal is the Galois group of Fy over Fy, and
we have

where Gay is the group of automorphisms of the (unique) supersingular elliptic curve C' over
IFo. In [24], it is shown that this homotopy fixed point description of TMF (5 gives rise to the
following description of (TMF A TMF) k(2

(TMF A TMF) (o) 2 (Map* (Sz/Ga, Bz)" %)™ "

There is a subtlety being hidden with the above notation: the Galois group is acting on the
continuous mapping spectrum with the conjugation action, where it acts on the source through
the left action on

(SQ X GCLZ)/(GQ4 X Gal) = 82/024.

For N coprime to 2, let M§*(N)(Fz) denote the groupoid whose objects are pairs (C, H) where
C is a supersingular elliptic curve over Fy and H < C(F3) is a cyclic subgroup of order N, and
whose morphisms are isomorphisms of elliptic curves which preserve the subgroup. Then, we
have

hGal

TMF()(N)K(Q) ~ H E;l Aut(C,H)
[C,H]eMG* (N)(F2)
For a prime ¢ # 2, let Isog;®(F2) denote the groupoid whose objects are quasi-isogenies
¢:C1 = Cy

with C,Cs supersingular curves over Fy, and whose morphisms from ¢ to ¢’ are pairs of
isomorphisms (a1, ae) making the following square commute

Cl L)CQ

|

Cf—= ¢4

It is easy to see that there is an equivalence of groupoids
IT M&(@)(F2) = Tsog® (Fs)
i€7,§20

given by sending a pair (C, H) to the quasi-isogeny ¢ given by the composite

o:-c oo/

However, since there is a unique supersingular elliptic curve C over F, the category Isog}®(F2)
admits the following alternative description (we actually only need that C' is unique up to
{-power isogeny). Let T’y denote the group of quasi-isogenies ¢ : C' — C whose order is a power
of £. There is an inclusion

Fg(—>SQ

given by associating to a quasi-isogeny ¢ the associated automorphism $ of the formal group
C'. Then, there is a bijection between the isomorphism classes of objects of Isog;*(Fz2) and the
double cosets

G2u\I'¢/Gaa.
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Moreover, given an element [¢] € G24\I'¢/Ga4, the corresponding automorphisms of the
associated object ¢ in Isog;’®(Fs) is the group

Goa N ¢Gasgp™ ' C Ty
Putting this all together, we have

hGal

(Map(PZ/G24a E2)hG24) hGal ~ H E§G240¢G24¢_1
[0]€G24\I'y /G2y

hGal

1

H E; Aut(¢)
[¢]€lsog;® (F2)

~h Aut(C,H)
11 I &
I€2,720 [(C,H) e Mi? (¢9) (Fa)

H TMF () k¢ (2)
i€7,j20

hGal

12

12

and under the equivalences described above, the map

Vre(2) : (TMF A TMF) g (9) — H TMF(37) g(2) X TMF(57) (2

i€Z,5>0
can be identified with the map
c — 4 hGal = \hGloy hGal
(Map (SQ/G24, E‘Q)}IG2 ) — (Map(Fg/G24 11 F5/GQ4, Eg)th ) (76)
induced by the map
[3/Goy I1T5/G2s — Sa/Gay. (7.7)

In [10], it is shown that the image of the above map is dense. Intuitively, one would like to say
that this density implies that a continuous function on Sy /G2y is determined by its restrictions
to I'3/G24 and T'5/Gay, and this should imply that the map (7.6) is injective on homotopy.
The difficulty lies in making this argument precise.

Before we make the argument precise (which is rather technical) we pause to give the reader
an idea of the intuition behind the argument. An element in

T s Mapc (SQ/G24, Eg)hG24
is something like a section of a sheaf over G4 \S2/Ga4 whose stalk over [z] € G24\S2/Gay is

— -1
T ES/GQAL NxGaosx .

One would like to say a section of this sheaf is trivial if its values on the stalks are trivial.
However, the actual space of continuous maps is a (K (2)-local) colimit of maps

Map®(S2/Gay, Ef’g)hc24 ~ hﬂ Map(S2/U, Eg)hG24
G2a<UL,S2

¢

. =hGosNzUx ™t
li E,

bl

G24SU<082 [2]€G24\S2 /U
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so an element of the homotopy of the continuous mapping space is actually represented by a
kind of locally constant section with constant value over Go42U lying in the group
ﬂ_*E_v;LG24ﬁ2EU$71 .

The difficulty is that there are only maps

— —1 - -1
W*E5G24OIUI N W*EQLG24mIG24x

and these maps are not necessarily injections. The point of Lemma 7.5 is that the open cover
of Sy given by the double cosets Go4xzU admits a finite refinement, over which the ‘constant
sections’ have values in one of the stalks, and hence the vanishing of a value at a stalk implies
the vanishing of the constant section.

We now make this argument completely precise. We have

_ Gal
hGal (77* Map(Sy /U, Ey)'G24 )

7. (Map®(S2/Gas, Ea)"921) =lim - lim

i oyJ
1 Gos<U<oSs (2%,v1)
_ . Gal
. ) ﬂ.*E;LGm;ﬂIUI
S R
i Goa<U<oS (27, v1)
1) G2aSUsod2 \ [2]€G24\S2/U » 71

and

1

— hGal
7. (Map(L¢/Gaa, B5)"24)

= \ha Gal
Ty Map(l“g/GM, Eg) 24 )

@< @)

— -1
Ty E§G24 NzGaosx

2/, 1)

Gal

1%

lim H

<—

bI \[z]€G24\T¢/G2a

for suitable pairs (4, 7). Consider the natural maps
— —1 — -1

W*EQLG24QZIZU‘I¢ W*E5G24QCEG24CE

(2, v1)

I

[2]€G24\T'¢/G2a

Ge: lim —
G24<SU<o82 [2]€Gas\S2 /U (217 U{)

Lemma 7.4 will be proven if we can show that if we are given an open subgroup Gaoy < U <, S
and a sequence in the product

(Gat)m € ]

[CE] €G24\82/U

T E;LG24 NzUz ™!
(2%, v1)
such that

G1(2Go4zv) = 0
for £ = 3,5, then there is another subgroup Gay < U’ <, U such that the associated sequence

_ 7, —1
W*E3G24me x

Co N || o
[x]€G24\S2/U" (2, v1)
is zero, where zq,,.u is the restriction to U’ of zg,,.u-
Suppose that (2¢,,20)[»] is such a sequence in the kernel of ¢3 and ¢5. Take a cover {y; Uy }
of Sy as in Lemma 7.5, and let U’ = N Uj. Regarding I's and I'5 as subgroups of S,, the density

of the image of the map (7.7) implies that the map
Fg/UIHF5/U/ — SQ/UI
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is surjective. We therefore may assume without loss of generality that the elements y; are
either in I's or I's. We need to show that the associated sequence (ZG24zU’)[:1:] is zero. Take a
representative x of a double coset [x] € G24\S2/U’. Then, x € y, Uy, for some k. Note that we
therefore have

Gos NaU'z™ < Goa NaUpaz ™" = Goa NyxUky;, ' = Goa NyrGaayy, ' < GoaNaUz ™"

Consider the associated composite of restriction maps

T E;LG24FIIUI71 T ES‘GMOZII»‘GMUEI T EQLG24Q$U/171
* * *
Cx) Cx) @)
y U1 s Y1 » Y1

The element zq,,,0 is the image of z¢,,,»v under the above composite. However, since 2,2zt
is in the kernel of ¢3 and ¢s, it follows that the image of zq,, .7 is zero in

=hG2aNyrGaay; '
T Ey k

(24, 0])

We therefore deduce that zg,,.v is zero, as desired. O

7.2. Computation of V3 and V5 in low degrees

Using the formulas for f* and ¢* for I'y(3) and I'o(5) in the beginning of this section, we now
compute the effect of the maps W5 and ¥5 on a piece of tmf A tmf. Using the notation of (5.6),
we have decompositions:

Ext’y (), (2'%boy) = Ext’y()) (S'F2) @ Ext’y(,) (2*'bo;) ® Extly, (5%Fa[l]),

Ext;’(’;) (£16bo,) Ext;‘(*z)* (216@2)

Ext’y(y) (5*'boy) & Ext’y(), (5*'F2) ® Ext’y(, (5%bo}),

Ext’y()), (Z%°tmf; @ B4F,) >

A(2) A(2). @ Ext’y () (X°°bo; & %%bo, [1])

Ext®” (2**bo,) = Ext"” (26418‘2[1])@(

Ext})(y), (£7bo,)

As indicated by the underbraces above, we shall refer to the first piece of bo, as EQ, and the

second piece as @2, and the first piece of bo, as &4'
We define a tmf,-lattice of m,TMF((¢) to be a m.tmf-submodule I < 7., TMF((¢) which is
finitely generated as a m,tmf-module, and has the property that

AT = 1, TMFq(¢).

Note that the first condition forces I to be concentrated in 7>y TMF((¢) for some N.
We will show that a portion I3 of tmf,tmf detected by

Ext’y,) (S¥ho, @ %'°bo,)

in the ASS maps isomorphically onto a tmf.-lattice of 7. TMF((3), recovering an observation
of Davis, Mahowald, and Rezk [22, 33]. Similarly, we will show that a portion I5 of tmf.tmf
detected by

EX‘EZ’EFZ)* (216&2 ey 224m3 o 232&4)

in the ASS maps isomorphically onto a tmf,-lattice of 7, TMF(5). This is a new phenomenon.
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Actually, Davis, Mahowald, and Rezk proved something stronger in [22, 33]: they showed
(2-locally) that there is actually a tmf-module

tmfo(3) := tmf A (2'%boy U S**boy) Uy B3 tmf

which maps to TMF,(3) as a connective cover, in the sense that on homotopy groups it gives
the aforementioned tmf,-lattice. In the last section of this paper, we will reprove and strengthen
their result, and show that there is also a (2-local) tmf-module

@0(5) = 2¥tmf U *tmf A boy U 2 tmf

(where tmf A boj is a tmf-module whose cohomology is isomorphic to the cohomology of tmf A
bos as an A-module) which maps to TMF((5) as a connective cover, topologically realizing the
corresponding tmf ,-lattice of 7. TMF(5).

It will turn out that to verify these computational claims, it will suffice to compute the
maps

\:[13 : Ig — W*TMF()(?))
\115 : I5 — W*TMF()(E))
rationally. The behavior of the torsion classes will then be forced.

The case of TMF(3).
Observe that we have

v ' Ext)yry) (2°bo; @ $'%bo,)
=v? EX‘LZZ‘Q)* (2%bo,)

@ vy Extly (E1°F2)

@ vy Extlyy (X*'hoy)

= Falvg ", [eal, [AT{IAL Lo, (o], [fa]}
® Falvg ', [eal {7, L1 fo]}
® Falog ™, [eal, [AI{[ 5], [fel [f7], [fs]}-
Recall that
M, (T(3)) = Z[a?, ara3, a3
(regarded as a subring of Z[ay, as]). For a T'y(3) modular form f, we will write
f=2alak+---,

where we have

(1) f=0 mod (2°), and
(2) f=2dlal mod (27, a]™).

We shall refer to Qia{ag as the leading term of f.
The forgetful map

[T MA(T(1)) = M. (T'o(3))
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is computed on the level of leading terms by
frle=ai+-,
Frles) =S+
F1A) =af 4

Using the formulas for f* and ¢* given in the beginning of this section, we have

U3(f1) = araz +--- ‘1’3(f2):a?a3+~~

3(f3) = ara3 + U3(fs) = ataj +-

Us(ff) =afad +--+ V3(fifo) =ajad + - (7.8)
U3(fs) = a3+ - U3(fs) = azai +--

Us(fr) =a§+--- U3(fs) = afai + -

It follows that on the level of leading terms, the (tmf,)g-submodule of tmf,tmfg given by
@[647 A]{flu f2, f3, f4}

®Qlea{ff, frf2}

@Q[C4’ A]{f57 fﬁa f7, f8}
maps under U3 to the (tmf,)g-lattice given by the ideal

(Is)g = (a1a3,a3) C M. (To(3))q
expressed as
Qlaf, a3l{a1a3, atas, a3, alal}
®Qlail{aia3, aja3}
®Qlai, as]{a3, azai, a3, agai}.

The case of TMF(5).
Observe that we have

vy Extlil, (b0, & %o, & ¥32bo,)
= vy Extyl, (5PF[1])
@ vy ' Exty(y, (Z¥'F)
@ vy ' Exty(,, (3%bot)
@ vy Extly (EF)
= Folug ™, [eal, [AI{[fo] [es fol}
@ Folvg ™, [ea] {7, LT a1}
® Folvg !, leal, [AT{[fs 1], [Fs fol, [frol, [Fuad, U fu), L £l Lfral s}

® Folvg, [ea], [AI{[/5], [c6 £}
Recall that
M.(To(5)) = Z[ba, ba, 6]/ (b] = b6 — 46%).
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For a I'y(5) modular form f, we will write
f=2056"05 + -+,
where € € {0,1} and
(1) f=0 mod (2%), and
(2)
f= 2ibg(5k +ad*by) mod (2, b, e=0,
f=2,6%by mod (211, b5, e=1.
We shall refer to 2%‘%6’“1)2 as the leading term of f.
The forgetful map
[T M (I(1)) = M.(To(5))
is computed on the level of leading terms by
f*(c4) :b§+ R
f*(CG) :b§+... ,
frA) =6+,

Unlike the case of I'y(3), the M, (I'(1))-submodule of 2-variable modular forms generated by
the forms listed above in

vy Ext’il,) (5'%Do, @ %o, @ £¥ho,)

does not map nicely into M, (I'g(5)). Rather, we choose different generators as listed below.
These generators were chosen inductively (first by increasing degree, and second, by decreasing
Adams filtration) by using a row echelon algorithm based on leading terms (see Examples 7.11
and 7.12). In every case, a generator named Z agrees with z modulo terms of higher Adams
filtration:

fo=fo+ Af+AEF2,
cofo = cofo + cahfa + cifi fo,
=+ fitaf
f2fo = f2fo+cafs +cafifo
Fshi = fifs + Af,
J?;J_C/z = fsf2a + Afa,
Fifi = fifo + Afs+ cafr + caDfo+ G fs + Efifo+ i fa,
frfo = hofr+ Afs+ eafs + GAf + i f2,
fia = fu+Af+ cifs + i fa
fis = fis + calfs + ci fo + ci fa.

The following forms, while not detected by Ext’;, (3'%ho, ® %2'bo, @ $%2bo, ), will be
needed:

fi= ff1 +cafs +cafa +Cif127

Fofo=fifa+cafs+Efs+Cfo.
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We now define:
fio = fio + fr + cafo + A fife,
fi=fu+ fs +adfi+Efs,
cafio = cafio+ cofo +C4]:13\J72 +0421J€272-

Again, the following forms are not detected by Ext)y, (31%bo, @ $*bo, ® ¥32bo,), but will
be needed:

f1 fo=fifo+ casDfo+ Efo + i fs + i fo + cafs fo,
c1 fio
2

Fis = fis + Afs +cafr + calhfo + A fo + S fa+ S fifo + cifa+ fofi +
+cofo + cafsfo+ fifo+ EfE .
We then define:
B=F,
01}3 = 04]792 + Af:f; + C4A]/C;1 + CiA};ﬁ + cﬁﬁ; + cifg + cif?fl + ciff\{z,

4f10 4f10
2

cof2 = cofe + cailhfrfy + caDA 4 e Acofo + BASs fo + A0 4 gty

+ A fif2 + cifise

Using the formulas for f* and ¢* given in the beginning of this section, we have

Us(fo) = 64+ W5 (e fo) = b6 +

Ws(f7) = 130 + s (f2f>) = b30% +

Us(fsf1) = 0%bs + W5 (f5f2) = b26°by +

Us(frf1) = 26 + -- U5 (frf2) = b36° +

Ws(f1a) = 8 + U5 (frs) = bod® + (7.10)
W5(fi) = 036°ba + W5 (f} f2) = b36%ba +

W5(f10) = ba0* + Us(fi1) = 8*bs +

Us(cafio) = 2020%by + U5 (fi f2) = b30° +

W5 (frs) = b30 + Us(f2) = 6% +

Ws(caf§) = 26%, + s (c6 f§) = bad®bs +

EXAMPLE 7.11. We explain how the above generators were produced by working through
the example of fig.

Step 1. Add terms to fio of higher Adams filtration to ensure that \I/;:,(fﬂ)) =0 mod 2. For
example, we compute

V3 (f10) =
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According to (7.8), we have W3(f7) = a$ + ---. Since f; has higher Adams filtration, we can
add it to f1o without changing the element detecting it in the ASS to cancel the leading term
of a$. We compute

Us(fio+ fr) = afa3 + - .

Again, using (7.8), we see that ¥3(csfs) (of higher Adams filtration) also has this leading term,
S0 we now compute:

Us(fio+ f7+ cafe) = aj’a3 + -
We see that W3(c?fif2) also has this leading term, and
Us(fio + fr + cafo + i f1f2) =0 mod 2.

Step 2. Add terms to fig + f7 + cafe + c3f1fo to ensure that the leading term of W (]/”;)) is
distinct from those generated by elements in lower degree, or higher Adams filtration. In this
case, we compute

Us(fio0 + fr + cafs + cifif2) = b2 +

By induction, we know the leading term of U5 on generators in lower degree and higher Adams
filtration, and in particular (7.10) tells us that this leading term is distinct from leading terms
generated from elements of lower degree. We therefore define

Fio = fio+ fr + cafo + i for
EXAMPLE 7.12. We now explain a subtlety which may arise by working through the example

of ¢4 f10.

Step 1. We would normally add terms to c4f1p of higher Adams filtration to ensure that
\113(C4f10) =0 mod 2. Of course, because we already know that \Ilg(fw) =0 mod 2, we have

\113(04f10) =0 mod 2.

Step 2. We now add terms to 041/”;) to ensure that the leading term of \1'5(02}_1/0) is distinct
from those generated by elements in lower degree. In this case, we compute

Ws(cafio) = 0360 +

By induction, we know the leading term of U5 on generators in lower degree and higher Adams
filtration, but now (7.10) tells us that

Ws (co fo) = b36" +
Since cg fo has higher Adams filtration, we add it to 04]71/0 and compute
Ws(cafro + cofo) = b30%bs.
We inductively know that Us( f}’?g) = b36%by + - -, and we compute
Ws(cafro + cofo + cafP f2) = D162,
We inductively know that \115(]:1272) =b362+ -+, and we compute

1’5(04% + %\fls + C4f/1§J?2 + Cif/foQ) = 2050%by + - - -

In other words, the expression above is congruent to 0 mod 2, and therefore the leading term
is divisible by 2! However, this leading term is distinct from leading terms generated from
elements of lower degree, so we define

cafio = cafio + cofo + cafifo+cififo
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and record the leading term of \Ilg,(c/;j”l/o) as 2b26%by. (In fact, the 2-variable modular form

—_—

cy f1o is 2-divisible, and this is why some of the equations in (7.9) involve the term C4f 1)

In light of the form the leading terms of (7.10) take, we rewrite

vy VExtYr, (£'%bo, @ $'bo, & $*2bo,)

A(2)4
= Favg ', [ca], [ATI{[fo], [es fo]}
® Folvg !, [eal {1, L Fal}
® Folvg ™, [eal, [AI{[fs 1], [ s £l Lol [l [ 1, [f7 fol, [Faal, Lfrs]}
® Folvg ™, [ea], [AT{[£3], [e6 f31}

in the form

Falvi, [ea), [AT{[fo), [co fol @
Folod, [eal {[f3), [f2fo)}@
Falvg !, [eal, [AT{[fs 1], [fs fols fials [eafrol, [ fuls L fol, [Fual, [fas] @ Falogt, [A]J{[fro]}

©Falog™, [eal, [All{[caf2), [co f2]} @ Falo, [AT{[f2])-

It follows from (7.10) that on the level of leading terms, the (tmf., )y submodule of tmf, tmfg
given by

Qlea, ]{fg,cﬁfg}
© Qlesl{ [}, [2f2)

4f10

Qlea, Al Fs f1, fs for fros 2228 Fofo, Fofoy i, fis} @ QIA{ fao}

& Qles, A|{EL2 4f9 a2} ® QAN T2}
maps under U5 to the (tmf,)g-lattice
(I5)g = Q[ba, 6°]{b362%, 6%bs, 6%, 8%ba, ba6°, 8%, 6%, 6504} € M. (To(5))o
expressed as
Q[b3, 6°1{6*, b35"}
& Q[b3]{b36°, b36°}
Q[b2, 83){0by, b203bs, 64y, b6 by, bo6°, b26°, 85, 020} ® Q[A]{b20"}
@ Qlea, Al{6%by, 02004} & Q[A]{6%}.

7.3. Using level structures to detect differentials and hidden extensions in the ASS

In the previous section, we observed that W3 maps a tmf,-submodule of tmf,tmf detected in
the ASS by

Ext’(, (X°bo; & 1° bo,)
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to a tmf,-lattice I3 C 7, TMF(3), and ¥5 maps a tmf,-submodule of tmf, tmf detected in the
ASS
Ext’;’,) (5'%bo, @ S*'boy & %%bo, )

to a tmf,-lattice I5 C ., TMF(5).
We now observe that using the known structure of 7, TMF,(3) and 7. TMF((5), we can
deduce differentials in the portion of the ASS detected by

Ext’y5,) (S¥ho, @ %'%bo, @ **bo, & $*2bo,).

We begin with X%bo, ® 216@2. Figure 7.1 displays this portion of the Es-term of the ASS for
tmf,tmf, with differentials and hidden extensions. The v, L Ext A(2)-generators in the chart are
also labeled with I'g(3)-modular forms. These are the leading terms of the I'y(3)-modular forms
that they map to under the map ¥3 (see (7.8)). The Adams differentials and hidden extensions
are all deduced from the behavior of ¥3 on these torsion-free classes, as we will now explain.
We will also describe how the hg-torsion in this portion of the ASS detects homotopy classes
which map isomorphically under ¥3 onto torsion in 7, TMF,(3). We freely make reference to
the descent spectral sequence

H*(Mo(3),w®") = my— s TMFy(3),
as computed in [33].
Stem 17. We have
Ws(nfa) = najas + -
Mahowald and Rezk [33] define a class z in m17TMF((3) such that

3.3
c4x = najaz +--- .

There is a class z17 in Extzg%* (X®bo, ) such that

[ca]z17 = ha[fa].
The class z17 is a permanent cycle, and detects an element y,7 € tmf,7tmf. We deduce
U3 (y17) = ,
Ys(nyi7) = nz,
Us(vyi7) = va.

Stem 24. The modular form a3} is not a permanent cycle in the descent spectral sequence

for TMF(3). It follows that the corresponding element of Ext 4(2), (&2) must support an ASS
differential. There is only one possible target for this differential.

Stem 33. There is a class z33 € Extk‘g)* (216&2) satisfying

[ca]zas = ha[fs].
There are no possible nontrivial differentials supported by hjz33. Dividing both sides of
U3(n*fs) = natas + -
by c4, we deduce that there is an element ys34 € tmfsstmf detected by hizs3 satisfying

Ws(yaqs) = 2°.
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FIGURE 7.1 (colour online). Differentials and hidden extensions in the portion of the ASS for
tmf, tmf detected by ~*bo, @ %'°bo, coming from TMFy(3).
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Since 2 is not n-divisible, we deduce that z33 must support an Adams differential, and there

is only one possible target for such a differential. Since
U3 (Ry17) = R = va?,

it follows that the element gy7 € Exti’g)*(ml) detects vys3, which maps to vz? under ¥s.
We then deduce that

\113(<77al/7 Vy33>) = <T]7V7 V'T’2> = a1a3x2.

Stem 48. Let 245 € Extj’?g)*(EQ) denote the unique nontrivial class with hjzss =0, so

that [Afs] 4+ z4s is the unique class in that bidegree which supports nontrivial hy and ho-
multiplication. Note that there is only one potential target for an Adams differential supported
by [6f5] or z4s. Since a§ supports nontrivial  and v multiplication, it follows that [Afs] + z4s
must be a permanent cycle in the ASS, detecting an element y45 € tmf,tmf satisfying

W3 (yas) = as.

Since 1/2a§ is not n-divisible, we conclude that hs ; z45 cannot be a permanent cycle. We deduce
using hs 1-multiplication (that is, application of (v,7n, —)) that

ds (R 1 248) = hé,_llds(hz,1z4s)
for ¢ > 1, and that

ds3(za8) = d3([0 f5]) # 0.

We now proceed to analyze $'bo, ® ¥?*bo, @ X32bo,. Figure 7.2 displays this portion of
the E-term of the ASS for tmf,tmf, with differentials and hidden extensions. The v, L Ext A(2)"
generators in the chart are also labeled with I'g(5)-modular forms. These are the leading terms
of the T'g(5)-modular forms that they map to under U5 (see (7.10)). As in the case of X%bo; @

¥16boy, the Adams differentials and hidden extensions are all deduced from the behavior of
W5 on these torsion-free classes. We will also describe how the hg-torsion in this portion of the
ASS detects homotopy classes which map isomorphically under W5 onto torsion in 7. TMFq(5).
We freely make reference to the descent spectral sequence

H*(Mq(5),w®") = w9 TMFq(5),
as computed in [12], for instance. Most of the differentials and extensions follow from the fact
that the element [fo] which generates
Ext 4(2), (2'°bo,) & Ext (o). (S%F5[1])

must be a permanent cycle in the ASS, and that the ASS for tmf A tmf is a spectral sequence

of modules over the ASS for tmf
Extza)* (Fy) = m.tmf).

Below we give some brief explanation for the main differentials and hidden extensions which
do not follow from this.

Stem 36. We have
Us5(fi0) = bodt 4+

Since byd* is not a permanent cycle in the descent spectral sequence for TMF((5), we deduce
that f1p must support a differential. There is only one possibility (taking into account the
differential ds(hs2z33) coming from TMF(3)),

da([f10]) = h3[fo).
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48

40

FIGURE 7.2 (colour online). Differentials and hidden extensions in the portion of the ASS for
tmf.tmf detected by 216&2 ® ¥**bo, ® 232@4 coming from TMFq(5).
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This is especially convenient, in light of the fact that n36* = 0.

Stem 41. The hidden extension follows from dividing

s ({7 2]) = nb30° + -+
by ¢y4.
Stem 54. The three hidden extensions to the element [HC4J‘~‘9] all follow from the fact that
v?(26%) is nontrivial, and that
2(1%6%) = n*ro°.
Stem 56. The hidden extension follows from the Toda bracket manipulation
2w, 25, 2fo) = (2,1, 2R)2fo.

Stem 64. The differential on [}g /2] follows from the fact that §° is not 2-divisible. The hidden
extensions follow from the fact that 6% # 0 and v2§% # 0.

Stem 65. The hidden 7-extension follows from the fact that §*kk is n-divisible, and v(§*k&) =
(265)k.

7.4. Connective covers of TMF(3) and TMF(5) in the tmf-resolution
In this section, we will topologically realize the summands

Ext’)5). (2°bo, & %'%bo,),

Ext’y(,), (5'°bo, @ ¥*'bo; © £%bo,)
of Ext(tmf A tmf), which we showed detect tmf,-submodules that map to tmf,-lattices of
7 TMF(3) and 7, TMF(5) under the maps ¥3 and Uy, respectively. From now on, everything
is implicitly 2-local.
For the purposes of context, we shall say that a spectrum
X — tmf
over tmf is a tmf-Brown—Gitler spectrum if the induced map
H,X — H,tmf

maps H, X isomorphically onto one of the A.-subcomodules tmf, C H,tmf defined in Section 5.

Not much is known about the existence of tmf-Brown—Gitler spectra, but the most optimistic
hope would be that the spectrum tmf admits a filtration by tmf-Brown—Gitler spectra tmf;.
The case of i = 0 is trivial (define tmfy = SY) and the case of i = 1 is almost as easy: a spectrum
tmf; can be defined to be the 15-skeleton:

15] <y tmf.

tmf; = tmf!
In light of the short exact sequences
0 — tmf, , — tmf, — Z%bo, — 0,

one would anticipate that such tmf-Brown—Gitler spectra would be built from bo-Brown—Gitler
spectra, so that

tmf; ~ boy U X%bo; U--- U X8bo;.

Davis, Mahowald, and Rezk [22, 33] nearly construct a spectrum tmfy; they show that there
is a subspectrum

»8bo; U 2'0boy < tmf
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(where tmf is the cofiber of the unit S — tmf) realizing the subcomodule
¥®bo, @ £'%bo, C H,tmf.

We will not pursue the existence of tmf-Brown—Gitler spectra here, but instead will consider
the easier problem of constructing the beginning of a potential filtration of tmf A tmf by tmf-
modules, which we denote tmf A tmf; even though we do not require the existence of the
individual spectra tmf;. We would have

tmf A tmf; ~ tmf A bog U X3tmf A boy U --- U Z8%mf A bo;,
such that the map
H.tmf A tmf; — H,tmf A tmf
maps H,tmf A tmf; onto the sub-comodule
(A//A(2)). ® tmf, C H.tmf A tmf.
Note that in the case of ¢ = 0, we may take
tmf A tmfo := tmf —= tmf A tmf.

Since this is the inclusion of a summand, with cofiber denoted tmf, it suffices to instead look
for a filtration

tmf A tmf; < tmf A tmfy < - -+ < tmf A tmf

of tmf-modules. Our previous discussion indicates that the cases of i = 1 is easy, and now the
work of Davis-Mahowald—Rezk fully handles the case of ¢ = 2. In this section, we will address
the case of i = 3, and a ‘piece’ of the case of i = 4. We state a proposition and two theorems
before moving onto their proofs.

PROPOSITION 7.13. (1) There is a tmf-module
tmf A tmfs ~ Y8tmf A bo; U X% mf A boy U 224tmf A boj < tmf A tmf
which realizes the submodule
(AJ/A(2))s ® (2%bo; @ ¥'°bo, ® X*'bo,) C H.tmf A tmf
where tmf A boj is a tmf-module with
H.,(tmf A bo}) = (A//A(2)). @ bogy

(but which may not be equivalent to tmf A bos as a tmf-module).
(2) There is a map of tmf-modules

Y3 ¢mf 2 tmf A tnfy

and an extension

tmf A tmfyg — tl’\I{lf A tmf.

tmf A tmfs Uy Z64mf
(3) There is a modified Adams spectral sequence

Ext’(, (5°bo, ® %'%bo, ® $*'bo, & £%2bo,) = m,tmf A tmfs Uy £%tmf,
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and the map ¢ induces a map from this modified ASS to the ASS for tmf A tmf such that the
induced map on Fs-terms is the inclusion of the summand

Ext’y,) (S*ho, @ %'%bo, @ ¥2'bo, @ B%2bo,) < Bxt’y,) ((A//A(2)).)-

In [22, 33|, Davis, Mahowald, and Rezk construct a map

¥32¢mf ﬂ tmf A tmf,
such that cofiber tmf A tmfy Ug ¥33tmf has an ASS with Es-term
B3 = Ext’y’, (S*bo, @ bo,)
and there is an equivalence
vy t(tmf A tmfy Ug 233 tmf) ~ TMF(3).

What they do not address is how this connective cover is related to tmf A tmf and the map U3
to TMF;(3).

THEOREM 7.14. (1) There is a choice of attaching map (8 such that the tmf-module
t/rzl/fo(?)) := Y% mf A tmfy Ug 5% tmf
fits into a diagram

tmf A tmfaC—— tmf A tmf ——2 TMF(3).
>

tmf() (3)

(2) The Es-term of the ASS for tfvmfo(3) is given by

Ey" = Ext’}, (3°ho, ® ='°ho,).

(3) The map tmf A tmfy — tfvmfo(i%) of Diagram (7.15) induces the projection
Ext’(, (3%bo, ® $'%boy) — Ext’yf, (S*ho, @ £'°bo,)

on Adams E,-terms. -
(4) The map tmfy(3) = TMF,(3) of Diagram (7.15) makes tmfy(3) a connective cover of
TMFo(3).

We also will provide the following analogous connective cover of TMF(5).

THEOREM 7.16. (1) There is a tmf-module
t?n%0(5) = ¥3%tmf U X*tmf A bojy U X% tmf
which fits into a diagram
tmfo(5) > tmf A tmfs Uy S0 tmf —— tmf A tmf —— TMFq(5).

Vs
\ J{ (7.17)

Y24tmf A boy Uz X%tmf
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(2) There is a modified ASS
Ext’j’,) (5'%bo, @ $*'boy & %¥bo,) = . (tmfo(5)).

(3) The map tmfo(5) — tmf A tmfs U, S6%mf of Diagram (7.17) induces a map of modified
ASS’s, which on Es-terms is given by the inclusion

Ext’y (3'°Do, © ©*'bo, ® *2bo,) < Ext’y(, (S*bo; @ $'°bo, ® ©*'bo, ® $*bo,).

(4) The composite tfvmfo(f)) — TMF((5) of Diagram (7.17) makes tmf (5) a connective cover
of TMF()(5)

The remainder of this section will be devoted to proving Proposition 7.13, Theorem 7.14, and
Theorem 7.16. The proofs of all of these will be accomplished by taking fibers and cofibers of a
series of maps, using brute force calculation of the ASS. These brute force calculations boil down
to having low-degree computations of the groups Ext A(g)*(@i,@j) for various small values
of ¢ and j. The computations were performed using Bruner’s Ext-software [15]. The software
requires module definition input that completely describes the A(2)-module structure of the
modules H*bo;. The first author was fortunate to have an undergraduate research assistant,
Brandon Tran, generate module files using Sage.

Proof of Proposition 7.13. Endow tmf A tmf with a minimal tmf-cell structure correspond-

ing to an Fy-basis of H,tmf. Let tmf A H[‘“ﬂ denote the 46-skeleton of this tmf-cell module,
so we have

H, (tmf A tmf ™) 2 (4//A(2)). ® (2°bo, © £1bo, ® 224bo, @ T32boll Y @ £10bol).
(7.18)
We first wish to form a tmf-module X; with
H.X1 2 (A//A(2)). ® (S*bo, & 3'%bo, & 2**boy & *2hol ) (7.19)

by taking the fiber of a suitable map of tmf-modules

5 @ tmf A tmf " 5 tmf A E4Obog}].
We use the ASS

Ext®!

Loy, (LT 1%h0%) = [ tmf ATmE £ tmf A bol .

The decomposition (7.18) induces a corresponding decomposition of Ext groups. The

only nonzero contributions near t —s =0 come from E4Ob70[56], 232@54]’ and X%*bo,; the
corresponding Ext charts are depicted below.

Exta(z), (240bo, 240hol®) Extaz), (£32bol', £40holh) Exta(z), (£24bos, 2*°bol®)

| : ,
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The generator [ys] € Eth’?z)*(Ew@éﬁ],240@[56]) would detect the desired map ~s5. We just

need to show that this generator is a permanent cycle in the ASS. As the charts indicate, the
only potential target is the nontrivial class
T e EXti’(;;+2(E24b703, 240@%6]).

We shall call x the potential obstruction for ~s; if dao(vs) = x, then we will say that s
is obstructed by x. The key observation is that in the vicinity of ¢t —s =0, the groups
Ext 1), (£**bos, $40bol”) are depicted below.

Extaca, (£2%bog, 2bol®)

'

y

V4

d

>
+

0
Under the map of ASS’s

[46 ]

(H.mf ™, 290108y — [9¢-5tmf A tmf ™Y, £90tmt A bo o

l J{bO/\tmf

Ext’jly, (H.mf -, 540bolf) === [£1=*bo A Tmf ", £90bo A bolJy,

( 5

it
EXtZ(Q)*

the potential obstruction x maps to the nonzero class

y e EXti’&;jQ(EM@& 240@[56]).

Therefore, if 75 is obstructed by x, then y is the obstruction to the existence of a corresponding
map of bo-modules

bo A¢mf V5 : bo A MHG} — 2o A boéﬁ].
However, Bailey showed in [2] that there is a splitting of bo-modules

bo A tmf =~ \/ ¥%bo A bo;.
i
In particular, the map bo Ay 75 is realized by restricting the splitting map
bo A tmf — £*’bo A bos

to 46-skeleta (in the sense of bo-cell spectra). Therefore, bo Ayms 5 is unobstructed, and we
deduce that 5 cannot be obstructed.
The tmf-module tmf A tmfs may then be defined to be the fiber of a map

Y4t X1 = 232b0£114],
which on homology is the projection on the summand
H. X, — S%2(A//A(2)). @ bol*
Again, we use the ASS

Ext’j(,, (tmf; & $32bol" | 232holM) = (210 X, £32bol Vs
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The Es-term is computed using the decomposition (7.19). The only nonzero contributions come
from the following summands:

Extac), (£32bol', 232b0[™)  Exty(p) (22%bos, 232bol**))

JI

We discover that the only potential obstruction to the existence of 74 is the nontrivial class

2 € Ext’ o) " (%*'bos, 5¥bof ).

Unfortunately, we cannot simply imitate the argument in the previous paragraph, because z
is in the kernel of the homomorphism

Bxt? )t (52bog, £%2bol ) — Bxt? )+ (2*boy, B*2bo) V).

Nevertheless, a more roundabout approach will eliminate this potential obstruction. We first
observe that there is a map of tmf-modules

Vit X1 = 5% (boy)lg)]

(with (b04)g]4] denoting the quotient bo£114] /bogs]), which on homology is the canonical
composite

H.X) — S2(A//A2)). @ bol! " — 5(4//A(2)). @ (bo,) -

The existence of ) is verified by the ASS

EXt:EQ)* (@3 @ E32@£114] , 232 (m)%?]) = [Zt_SX17 232 (b04)%]4]]tmf

The Es-term is computed using the decomposition (7.19). The only nonzero contributions in
the vicinity of ¢ — s = 0 come from the following summands:
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Extacz), (222bof™*), 232 (bo)f3)  Extacz), (22%bos, 232 (boy)l)

We see that there are no potential obstructions for the existence of 4. Let X5 denote the fiber
of v}, so that we have

H.X> = (A//A(2)). @ (S*bo, & B'°bo, & ¥*bo, & $*bo}). (7.20)
We instead contemplate the potential obstructions to the existence of a map of tmf-modules
vy Xy — ¥ tmf A boLS],
which on homology induces the projection
H,. X — S%2(A//A(2)). @ bo!®.
The E>-term of the ASS
Ext’;{y). (tmf; & 2%bof, £32boll) = [B7 X5, %¥bol s

is computed using the decomposition (7.20), and in particular the contribution coming from
the summand %?*bo, C tmf, gives the following classes in the vicinity of t — s = 0:

Exta(z). (£2*bos, 232bol™)

L

Potential
obstructions /

to ya"

We see that there are many potential obstructions to the existence of v} in

Ext? ) " (5*bos, 5*2bol).
The potential obstructions for the related map
bo Atmt 74+ Xo — T3 tmf A bo[ls]
of bo-modules in the ASS
(8]

EXtZEl)* (@3 [a5) 232m4 , E&ngs]) = [EtstQ’ 232b0£8]]bo
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may be analyzed, and the contribution coming from the summand %%*bo, C tmf, gives the
following classes in the vicinity of t — s = 0:

Extyy, (E24bo3, £32bolfh)

Potential
obstruction to /
bo Mmrys”

/
Y Y4

0

We see that there is one potential obstruction to the existence of bo Ayt v in

Ext?y,) (5 'bos, b,

We analyze these potential obstructions through the following zig-zag of ASS’s:

Extj;?z)* (@3 ® 232@4[114], 232@14]) — [NV X,, 232tmf A b0£114]]tmf
T

Ext’i(,,. (tmfy © $32bo}, 522bol ) ——= [27* X5, 532tmf A bol oms
i

Extzzz)* (mf, & 2%2bol® | 52bol) ——— (215 X,, %32tmf A bol¥ o
J boAtms—

Exti’im (tmf; ® 32bo’Y | 232bol¥ ) = [£1*bo Ame X2, £32bo A bol]p,.

In the above diagram, the potential obstruction z to the existence of 4 maps under r to a
nontrivial class, so that if z obstructs 74, then r(z) obstructs the composite

'-)/4|X2 . X2 — X1 7—4> E‘ﬂtmf AN b0£114].

The key fact to check using Bruner’s Ext-software is that in bidegree (t — s,s) = (—1,2), the
maps ¢ and j are both surjective, with the same kernel. It follows that if v4|x, is obstructed
by r(z), then the map

b0 Apmt Y4 b0 Atmt Xz — 532bo A bol

is obstructed. We may now avail ourselves of the Bailey splitting of bo A tmf: the map bo At
~4 is unobstructed, because it is realized by the projection

bo Atmt X2 ~ bo A (58bo; V £'0boy Vv £2*bos v 532bolY ) — £3%bo A bol.

We conclude that z cannot obstruct the existence of 74,. We may therefore define tmf A tmfs
to be the fiber of the map ~4.
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We now need to show that the tmf-module tmf A tmfs is built as
Y3tmf A bo; U Z1%mf A bos U B24tmf A boj.
In order to establish this decomposition, our first task is to construct a map of tmf-modules
3 : tmf A tmfs — 22*tmf A bos
by analyzing the ASS
Ext’y(, (tmf;, $'bos) = [£'~*tmf A tmfy, 2*bog]ims.
The only contributions in the vicinity of t — s = 0 come from the summands $16bo, and ¥3%boy
of tmf,:
Exty(z),(Z%*bo3, £2*bo;) Exty(),(Z'%bo,, £24bo;)

g R 3
‘

3

4

0[] 9

———

As we see from the charts above, there is a potential obstruction to the existence of =3 in

2,142
EXtA(Q)j_ (X*'bog, X*'boy).

The Bailey splitting does not eliminate this potential obstruction, as

2,—142
Ext? ) (5*'bos, £*'bo;) = 0.

However, by Toda’s Realization Theorem [13, Section 3; 39], this potential obstruction also
corresponds to the existence of a different ‘form’ of the tmf-module tmf A bos, with the same
homology. Since Exti"(_;js(@‘g,@;ﬂ = 0 for s > 3, both forms are realized. It follows that if v

is obstructed with the standard form, then it is unobstructed for the other form. Let tmf A boj
be the unobstructed form, so that there exists a map

3 : tmf A tmfs — 2?4 tmf A boy.
The fiber of v3 is tmf A tmfy, where
tmfs ~ $%bo; U $'%boy

is the spectrum constructed by Davis, Mahowald, and Rezk. We note that there is a fiber
sequence

Y3tmf A bo; — tmf A tmfs — 2'%tmf A bosy
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since a quick check of Ext™ '™ (bo,, bo;) reveals there are no exotic ‘forms’ of tmf A bo; for
i =1,2, and X®bo, is the 15-skeleton of the tmf-cell complex tmf A tmfs.
We now must produce the map of tmf-modules

a : 2%tmf — tmf A tmfs.
This just corresponds to an element a € mgztmf A tmfs. In the ASS,

Ext®?!

A(2). (tmf,) = 7, (tmf A tmf3),

there is a class

Ze3 € EXti{ng(EMb&s) C EXtif?;ng(@g)

(see Figure 5.4). Moreover, according to Figures 5.3 and 5.4, there are no possible targets of an
Adams differential supported by this class. Therefore, x43 corresponds to a permanent cycle:
take a to be the element in homotopy detected by it. The factorization

tmf A tmfs ——— tmf A tmf

tmf A tmfs U, Z%4tmf
exists because the element xg3, when regarded as an element of the ASS

s,t
Ext’)

(2)*(H*tmf) = m_s(tmf A tmf),

is the target of a differential

ds([f3/2]) = wes

(see Figure 7.2).
The modified ASS

Ext’l, (3°bo, & £'%bo, @ N*'bo, @ £¥bo,) = m.tmf A tmfs U X tmf

is constructed by taking the modified Adams resolution

tmf A tmfs Uy 204tmf Y7 4 Y, e
H A tmf A tmfs HAY; HAY,

where the map p is the composite
p : tmf A tmfs U, 2%%mf — H A tmf A tmfs Uy 2% mf 2 H A tmf A tmfs,
s is a section of the inclusion
H Atmf A tmfs < H A tmf A tmfs U, 2%4tmf,
Y7 is the fiber of p, and Y; is the fiber of the map
Y, 1 - HAY;_1.

The map from this modified ASS to the ASS for tmf A tmf arises from the existence of a
commutative diagram

tmf A tmfs Uy 204tmf ——— tmf A tmf

] J

H Atmf A tmfs——— H A tmf A tmf.
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(This diagram commutes since the class [?g/ 2] killing z63 in the ASS for tmf A tmf has Adams
filtration 1.) O

Proof of Theorem 7.14. Define a 2-variable modular form

212 34 2501 2 2
fo = fo— s1scafa — spcafs + fipap fica — 851f1A

so that [fo] = [fo] and ¥3(fo) = 0. (This form was produced by executing an integral variant
of the ‘row-reduction’ method outlined in Step 1 of Example 7.11.) Then, we may take the
attaching map

B : £32tmf — tmf A tmf

to be the map of tmf-modules corresponding to the homotopy class

]?;) € m3otmf A tmf.
We define

tmfo(3) := L3tmf A tmf, Uy £33 tmf.
Since W3(fy) = 0, there is a factorization

tmf A tmfa——— tmf A tmf BLLIN TMF(3).
Y

tmf( (3)

The rest of the theorem is fairly straightforward given this, and our analysis of W3 in the
previous section. O

Proof of Theorem 7.16. An analysis of the Adam Fs-terms in low dimensions reveals that
the only nontrivial attaching map of tmf-modules

v : 23tmf A boj — tmf A tmf,
must factor as
v : X3 tmf A boj Yy $324mf 2y tmf A tmfy, (7.21)

where v’ is the unique nontrivial class in that degree. The existence of differentials in

Figure 7.2 from bos-classes to bo,-classes implies that in tmf A tmfs, tmf A bos must be
attached nontrivially to tmf A tmfs, and we therefore have

tmf A tmfs ~ tmf A tmfy U, Z?*tmf A boj.
When applied to the factorization (7.21), Verdier’s Axiom implies that there is a fiber sequence
$32tmf Uy, 24 mf A bol — tmf A tmfs — tmfo(3).
Now, an easy check with the ASS reveals that the composite

203 tmf %5 tmf A tmfs — tmf, (3)
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is null, from which it follows that there is a lift

Y32tmf U, 224tmf A bog

, i J

£63tmf ——— tmf A tmfs.

Define

@0(5) = 2¥tmf U, 2*tmf A boy Uy X9%tmf.

Verdier’s axiom, applied to the factorization above, gives a fiber sequence

tmfo(5) — tmf A tmfs Uy S%tmf — tmfy(3).

Given our analysis of Ws, the rest of the statements of the theorem are now fairly
straightforward. O
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