
CHAPTER VIII 

POWER OPERATIONS IN H d RING THEORIES 

by J. E. McClure 

It was shown in Chapter I that an ~ ring structure on a spectrum E induces 

certain operations ~j in E-cohomology. In this chapter we investigate these 

operations in some important special cases, namely ordinary cohomology, K-theory, 

and cobordism. 

In section I we collect the properties off the ~i and their internal variants 

Pj; most of these have already been shomu in Chapter I. We also show that the 

results of Chapter VII allow one to construct an H d structure on E by giving space- 

level operations with certain properties. The section concludes with a brief 

account of a multiplicative transfer in E-cohomology which generalizes the norm map 

of Evens [35]. 

In section 2 we show that the general facts given in section I are strong 

enough to prove the usual properties of the Steenrod operations without any use of 

chain-level arguments. In section 3 we show that the same arguments applied to the 

spectrum HZpAX give the Dyer-Lashof operations in H,(X;Zp) with all of their usual 

properties; in particular, we give new proofs of the Adem and Nishida relations 

which involve less calculation than the standard proofs. 

In section 4 we show that the power operations in K-theory induced by the H d 

structures on KU and KO are precisely those defined by Atiyah [17]; this gives a 

concrete description of these ~ structures. In section 5 we show that rather 

eobordism operations defined by tom Dieck in [31] lead to H d structures on the 

classical cobordism spectra which agree with their E structures; again, this fact 

gives a rather concrete homotopical description of the E structure. In section 6 

we show that the Atiyah-Bott-Shapiro orientations are H d ring maps; it is still an 

open question whether they are E maps. 

In section 7 we show that questions about ~ ring maps simplify considerably 

when the spectra involved are p-local. We use this to show that the Adams 

operations are H~ ring maps (a fact which will be important in Chapter IX) and that 

the Adams summand of p-local K-theory is an H 2 ring spectrum. We also give a 

sufficient condition for BP to be an H 2 ring spectrum; however the question of 

whether it actually is an H 2 ring spectrum remains open. 

Notation. In chapters Vlll and IX we shall write zX for 81 ̂ X, instead of 

X^ 81 as in chapters I-VII. We shall also use Z to denote the suspension 
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isomorphism ~nx + EU+Ix . In particular, if E is a ring spectrum the fundamental 

class in ~nsn will be denoted by Znl. 

$I. Genera lproperties of power operations 

Let E and F be spectra, let ~ be a subgroup of Zk, and let d be a fixed 

positive integer. By a power o~eration on KS in the most general sense we mean 

simply a sequence ~ of natural transformations 

Edix + FdikD X, 

one for each i ~ Z, which are defined for all X , ~ . We shall also call ~ an 

(E,~,F) power operation when it is necessary to be more specific. In this section 

we consider the relation between power operations, extended pairings, and H d ring 

structures. In particular, we collect the properties of the canonical power opera- 

tions associated to an H d ring structure and of the related internal operations. 

The most important class of power operations for us will be the operations 

~ : Edix ÷ E dijD X 

determined by an H~ ring structure on E. As usual, we abbreviate~z, by ~j. 

Recall the definition from I§4: if x ~ Edix is represented by f:X + ~diE then 

~x is represented by the composite 

Dkf Dkzdi E ~k,i zdikE. D X I Dk X ~ 

Our first result collect the properties of these operations. 

Proposition i.I. 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

Let E be an H d ring spectrum and let x ~ Edix, y c EdJy, ~ C Z k, 

a*~j+k x = (Pjx)(~kX) E Ed(j+k)i(DjX^DkX). 

6*[( ~ x)( ~y)] = ~ (xy) , E d(i+j)kD (X^Y). 

i*~ x = x k E E dij(X (k)) 

If 1 E EOs is the unit then ~l is the unit in EO(D~S) = EO(B~+). 

(vi) If X = Y and i = j then 

~k(X + y) = ~k x +~k y + 

in EdikDk X, where 

O<£<k 
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T£,k_£ :DkX 

is the transfer defined in II.l.4. 

1 *k (vii) If E is p-local then ~_x = 
57 TwX 

the transfer D~X ÷ X (k) of II.1.4. 

(viii) 

- D£X ̂ Dk_£X 

whenever lwl is prime to p, where ~ is 

If E is p-local then 

* 1 xp =  pX+ %y+ ((x+ ylp yp)l 

Proof. (i), (ii), and (iii) are immediate from Definition 1.4.3. Part (iv) follows 

from Remark 1.4.4. Part (v) follows from 1.3.4(i). Parts (vi) and (viii) were 

shown in II.2.1 and II.2.2, and part (vii) follows from the proof of the latter. 

We shall also want to go in the other direction, that is, to start from a set 

of operations having certain properties and deduce the existence of an H d ring 

structure. Let E be a ring spectrum. We say that a set {~j}j~ 0 of (E, zj,E) 

power operations is consistent if it satisfies 1.1(i), (il), and (iii). Given a 

consistent set of operations ~j on E we can define maps 

~j,i:~ ~diE + zdiJE 

by applying ~j to the classes represented by the identity maps zdiE + EdiE. It is 

easy to see that the ~ ~ form an H d ring structure on E whose induced power 

operations are the given ~j. On the other hand, two H d ring structures on E 

which determine the same power operations are clearly equal. Thus there is a one- 

to-one correspondence between H d ring structures on E and consistent sets of 

(E,zj ,E) power operations. 

Next we consider a more general situation. Let ~ be a subgroup of Z k and let F 

be a ~-oriented ring spectrum with orientation ~:D S d + zdkF (see VII§3). The 

class in Fdk(D~sd) represented by the orientation will also be denoted by w. An 

(E,w,F) power operation ~ is stable if the equation 

(I) (zdx) : 6 (U • %x) 

holds in Fd(i+l)k(D ~dx) for all x ~ Edix. l.l(iii) implies that the (E,~,E) power 

operations determined by an ~ ring structure on E are stable. More generally, let 

~:D E + F he any map (in the terminology of VII§3, { is called an extended pairing). 

If x ~ Edix is represented by f:X + zdiE define ~x E FdikD~x to be the element 

represented by the composite 

D f zdiE 6 (i)^ u ~ (i) ~ zdikF, D X ~ ~D - (D s d) D E -(EdkF) ^F 
W N W W 
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where ¢ is the product nmp for F. Then ~ is a stable power operation. 

Conversely, given a stable operation ~n we obtain a map ~:DnE + F by applying ~ 

to the identity map E + E. Clearly, this gives a one-to-one correspondence between 

maps ~:DnE ÷ F and stable power operations. To sum up, we have shown 

Proposition 1.2. (i) There is a one-to-one correspondence between consistent sets 

of (E,zj ,E) power operations and H d~ ring structures on E. 

(ii) If F is a n-oriented ring spectrum and E is any spectrum, there is a one- 

to-one correspondence between stable (E,w,F) power operations and maps $:D n E + F. 

For applications of 1.2 it is usually easiest to work with space-level instead 

of spectrum-level power operations. Our next result will allow us to reduce to this 

case. Let ~ be the homotopy category of finite CW complexes. Let {(En) }~ A be 

the set of finite n-subcomplexes of E~. By an (E,n,F) power operation on g we mean 

a sequence ~ of natural transformations 

~di X ~dik( + x(k)), 
+ lim (En) A n 

one for each i s Z, which are defined for all X ~ ~ . ~n is stable if it satisfies 

equation (i). A set {~j}j>O of (E,zj,E) power operations on ~ is consistent if 

it satisfies l.l(i),(ii) and (iii). Recall the cylinder construction Z from VII§I. 

Proposition 1.3. (i) Let T be a prespectrum and suppose that each Tdi has the 

homotopy type of a countable CW-complex. Let F be a ring spectrum. If the pair 

(T,F) is liml-free in the sense of VII.4.1 then every stable (ZT,n,F) operation 

on ~ extends uniquely to a stable operation on h~ 

(ii) Let E be a ring spectrum and suppose that each Edi has the homotopy type 

of a countable CW-complex and that zE is liml-free. Then every consistent set { ~j } 

of (E,Zj ,E) operations on ~ extends uniquely to a consistent set of operations on 

~. 

Proof. For part (i), let {Xi,B} be the set of finite subeomplexes of Tdi and let 

xi, 8 ~ Edix be the class of the inclusion map Xi, 8 + Tdi The elements i,6 
]~n(xi,6) determine an element of a,~li ~dik((En)~ ~n Xi, 8) and hence of FdikDnTdi 

by VII.4.10 and VII.4.12. It is easy to see that the maps ~i:D Tdi + Fdi k 

representing these elements form an extended pairing of prespectra as defined in 

VII.3.2. Part (i) now follows from VII.3.4. For part (ii), a similar argument 

shows that the set {%) determines an ~ ring structure on the prespectrum zE and 

the result follows from VII.6.3. 

The definitions we have given are closely related to tom Dieck's axioms for 

"generalized Steenrod operations" [31]. Let E be a ring spectrum. In tom Dieck's 
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terminology, a generalized Steenrod operation is what we have called an (E,~,E) 

power operation. His axioms Pl and P2 are 1.1(iv) and 1.1(ii) respectively. In 

particular, if ~ satisfies P1 then ~zdl is a ~-orientation for E. Axiom P3 is 

equation (1) above with ~ = ~ zdl. Thus an operation satisfying P1 and P3 is 

stable in our sense (but not conversely), tom Dieck's final axiom P4 will also be 
k 

of interest in what follows. If q is a vector bundle over X then E~ x q is a 

vector bundle over E~ ×~ X k whose Thom complex is homeomorphic to D T(q). If v is 

an E-orientation for q and ~ is an operation satisfying PI then ~ (v) is clearly 

an E-orientation for E~ x qk. Axiom P4 is the statement that E has canonical 

orientations for some class of vector bundles and that ~w takes the canonical 

orientation for q to that for E~ ×~ qk This axiom will be satisfied in all of the 

particular cases considered in this chapter. 

From now on we fix an H i ring spectrum E and let ~ denote the associated 

power operations. Let X be a space. Let A be the diagonal map 

+ S O X ^B~ = X^D ÷ D (X^S O ) = D X 

defined in 11.3.1. 

to be the composite 

We define the internal power operation 

p :~dix + ~dik(x ^B~ +) 

Edix ~-~ EdikD X a*~dik(x^B +). 

Since X+^ B~ + : (X x B~) + we obtain an unreduced operation 

P :Edix + Edik(x × B~). 

Our next result summarizes the properties of the unreduced operations; similar 

statements hold for the reduced ones. 

Proposition 1.4. Let x ~ Edix, y ~ EdJx, ~ C Zk" 

*p x k Edikx (i) I ~x = 

(ii) 

(iii) 

(iv) 

(v) 

Pwl = i ¢ EO(x x B~) 

P (xy) = (P x)(Pwy) ¢ E d(i+j)k(x x Bw) 

If i = j then 

Pk(X+y) =Pk x + Pk y + ~ (~,k_~)*I(P~x)(Pk_~Y)] 
O<~<k 

1 k* 
If E is p-local and l wl is prime to p then P x = 7~ 7 x ~ 1. 
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(vi) 

(vii) 

cycle then 

If E is p-local then 

i _ xp * Pp(x+y) = PpX + Ppy + p7 [(x+Y)P - yP)](Tpl). 

If ~ C ~k is generated by a k-cycle and ~' C E L is generated by an ~- 

(I × ¥) P P ,x = P ,P x ~ Edik£(x × B~ x Bw'), 

where y:B~ x Bw' + Bw' × B~ switches the factors . 

Proof. All parts except (vii) are immediate from i.I. For (vii) we use the 

argument of [i00, VIII.I.3]. If we give the set ~ x ~' its lexicographic order we 

obtain a faithful action of Zk£ on it. Let g ~ Zk£ be the element which switches 

the factors w and w'. The following diagram is readily seen to commute. 

× ~, d ~i~,(- l ZklZ £ 6k,£_ 

~' x ~ ~ I~ -'-Z£1Z k -- . Zk£ 

Here d is the evident diagonal and Cg is conjugation by g. By l.l(ii) we have 

* * * * ~k~X : (I o i o d)* P ,P x = A d t 6k,~ x 8k,~ Pk£ x 

and similarly 

P P ,x = (1 x B£,k o i o d) Pk x. 

But (1 x Cg)*Pk~X = PkgX since Cg:BZk~ ÷ BZk£ is homotopic to the identity. 

We conclude this section with a brief description of another kind of operation 

induced by H d structures, namely a multiplicative version of the transfer for 

finite coverings. The definition is due to May. First recall the definition of the 

ordinary (additive) transfer. If p:X ÷ B is a j-fold covering then one can 

construct a map 
x 

as in [8, p.l12]. If x ~FiX is represented by f:X + F i then p!x ~ FiB is represented 

by 

B P '~ENj xz. X j Ix~,'Ezj xz.(Fi)J ~-F i , 

J J 

where the last map is the Dyer-Lashof map determined by the infinite loop space 

structure on F i. B Now if F is an HI ring spectrum and if x ~ Fdix is repre- 

sented by f:Z(X +) + zdiF we define p®x E FdiJB to be the element represented by 

. )+ -~ D.f 
~(B +) ~(~)- ~(E~j xLXJ Djz~X + __j~D. zdiFj ~j,i=~diJF" 

3 
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If F is merely H~ one can give the same definition in degree zero. Our next result 

records some properties of p® . 

Proposition l~5 

(ii) 

(iii) 

(iv) 

Ill p@ : l, : o. 

p®(xy) : (p@x)(pxy) 

If q:Y + X is a k-fold covering then (pq)®= P®~9 

f*P'~9 = ~g* for a pullback diagram 

X g -~X' 

B ~ B  T 

(v) If Y is any space and x E Fdix, y ~ Fdky then 

(i × p)®(y × x) : [(i × h)*Pjy](p®x) ( F ~ (i+k)(y x B) 

where h:B + BZj is the classifying map of p. 

Proof. Part (i) is trivial and parts (iii) and (iv) have the same proofs as in the 

additive case. For part (ii) let f:Z~(X +) + zdiF and g:Z~(X +) + zdkF represent x 

and y. It suffices to show commutativity of the following diagram, in which Z ~ has 

been suppressed to simplify the notation. 

B+ x÷ x ÷ 5(fgl D.(X+A ) ; D.(zdiF^ zdkF) 

A 6 6 

~+ ~+ D. f^ D.g 
B+^B + PaP ~ D.X+A D.X + J J ; D. zdiF~D, zdkF 

J J J O 

D. Z d(i+k) 

J ~ dj (i+k) F 

Z dj iF^ Z dj F 

The pentagon commutes by 1.4.3 and the remaining pieces by naturality. 

it suffices by (ii) to show 

p)®(~*y) * (I x = (I x h) ~y 

For part (v) 

where ~:Y x X ÷ Y is the projection. 

diagram 

An inspection of [8, p.l12] shows that the 

+ 

y+^B + (I x p) ........ ,D. (Y+^X +) 
J 

~i~h + ~Dj~ + 
+ 

Y+ A BZ~ A ~ D. Y+ 
J J 

con~nutes and the results follows. 
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Remarks 1.6.(i) Formula (v) is due to Brian Sanderson (also cf. [35, remark 6.2]). 

If we let p:X + BZj be the j-fold cover associated to EZj + BZj and let x = 1 then 

the formula gives 

(I × p)®(y × I) = Pjy, 

so that the internal operation Pj is completely determined by the multiplicative 

transfer, an observation also due to Sanderson. 

(ii) If p:X ÷ B and q:Y + C are any two coverings then p × q is a covering 

which factors as (p × 1)(1 × q). We can therefore compute (p × q)®(x × y) in 

principle by using formulas (ii), (iii) and (v), but there is no simple external 

analog of formula (ii). 

(iii) If F is H d then V zdiF is H~ by II.l.3. Thus we can define a map 
~ Z 

which  a g r e e s  on homogeneous  e l e m e n t s  w i t h  t h a t  a l r e a d y  g i v e n .  We l e a v e  i t  a s  an  

e x e r c i s e  f o r  t h e  r e a d e r  t o  show t h a t  i f  x has  n o n z e r o  d e g r e e  t h e n  1~(1 + x) has  

componen t s  p ! x  in  d e g r e e  Ix I and PxX in  d e g r e e  j x I ( e f .  [35,  Theorem 7 . 1 ] ) .  

(iv) In the case F = HZp a multiplicative version of the transfer was first 

defined by Evens, who called it the norm [35]. ~t seems likely that this agrees 

with p®, but we shall not give a proof. Note that in this case one always has 

~X • p!p x = jx, but it is not true that p~p = ~ For example, formula (v) gives 

(1 × p)®(l × p) (y × I) = (I x h) Pjy. 

which is certainly not equal to ~ × i in general. 

2. Steenrod Operations in Ordinary Cohomology. 

In this section we use the framework of ~l to construct the Steenrod operations 

in mod p cohomology and prove their usual properties. The construction will be 

similar to one given by Milgram [37, Chapter 27], except that we use stable extended 

powers instead of space-level ones. On the other hand, the proofs will be quite 

close to those of Steenrod and Epstein [lOO] except that we make no use of chain- 

level arguments. 

Throughout this section and the next we write H for HZp, H* for mod-p 

cohomology, and ~ for the subgroup of Zp generated by a p-cycle. If p is an odd 

prime we write m for ~ as usual. For odd primes the spectrum HZp is ~ ~ but 

not H I® (see VII.6.1), hence the power operation ~p can be defined in even degrees 

but not in odd degrees (unless one uses some form of local coefficients). The 

~ does extend to odd degrees, as we shall now show. operation 
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Proposition 2.1. 

the diagram 

For each i c Z there is a unique map 

(7iH) (p) i -D ziH 
w 

~Pl H 

• • 

:D zIH + zPIH for which 

commutes, where ¢ is the iterated product map. For each i,j ~ Z the diagram 

D (~iH ~ zJ H) 

I D¢ 

D (zi+J H) 

commutes up to the sign (-I) mij . 

~p(i÷~ )H 

D ZmH ^D ~JH 

~PiH ^2 pj H 

The proof is the same as for 1.4.5. One can in fact replace ~ in this result 

by any subgroup of the alternating group ~, but we shall have no occasion to do so. 

Using the map ~ we obtain an external operation 

~ :~ix ÷ ~PiD X 
and an internal operation 

p :~ix + ~Pi(x ^B~ +) 

as in §i. The uniqueness property in 2.1 implies that these operations agree with 

those already defined when i is even. 

Since I ~ZI ~ HPs p is the canonical generator zPl, we see that ~ZI is an 

orientation for the real regular representation bundle 

E~ x (I{1) p + B~. 

It follows that the element X ~ HP-IB~ defined by 

ZX = P~ZI 

is the Euler class of the real reduced regular representation (i.e., the sum of the 

nontrivial real irreducibles). In particular, X is nonzero since each nontrivial 

real irreducible has nonzero Euler class. 
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Our next result gives the basic properties of the operation Pw. Note that 

~* H* H (X ̂ B~ +) is an (B~)-module. 

Proposition 2.2. 

(ii) 

(iii) 

(iv) 

(v) 

(i) I P x = x p 

P.(xy) = (-1)mlxllY](P x)(P y) 

P ~ Z x  = (-l)mlXlx(ZP~x) 

P~(x + y) = P~x + P#y 

8P~x = 0 if p is odd or Ixl is even. 

Proof. Parts (i) and (ii) are immediate from 2.1 and part (iii) follows from part 

(ii). For part (iv) we assume first that Ixl is even. Then we may apply 1.4(vi) to 

get 
1 _ x p p * Pp(X + y) = PpX +Ppy + ~ [(x + y)P - y ](~pl). 

But Tpl = x i 1 = p!l = 0 and the result follows in this case. If Ixl is odd this 

gives 
P#(~x + Zy) = P ~x + P Zy. 

Applying part (iii) gives the equation 

(-l)mlx]×(ZP~{x + y)) : (-l)mlXIx(Z(Pnx + P y)) 

and the result follows since X is not a zero divisor in H'B#. For part (v) we need 

a lemma. Let s:H + ZH represent the Bockstein operation. 

Lemma 2.3. The composite 

D Z2iH ~ ~ z2pi H 2pi~ ~- z2pi+l H 

factors through the transfer 

T :D ~2iH ~ (~2iH)(P). 
IT W 

The proof of 2.3 is rather technical and will be given at the end of this 

section. For the moment we use it to prove part (v). Let x ~ H2ix be represented 

by f:Z~X + Z2iH and consider the following diagram, where we have suppressed Z ~ to 

simplify the notation. 
+ A X^B~ ~ - - , .  D X 

I I i n Ii 

X X 'pj ---- 

Df 
~ D ~2iH ~ ~ z2pi H E2pl~ 2pi+iii 

f(P) (~2iH) (p) I 

The dotted arrows exist by 2.3 and the diagram commutes. The top row represents 

~P#x. Thus ~P~x is in the image of the transfer 
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(I^T) :H X + H*(X^ B~+). 

But the composite of (i ̂ x~)* with the restriction 

(I^I) :H (X^B~ +) + H X 

)~ 
is multiplication by p and hence vanishes. Since (1 ~ ~ is clearly onto we 

see that (1Axe)* = 0 so that 8P~x = 0 as required. Finally, if p is odd and 

x ~ H2i-lxwe have 

0 = ~P (Zx) : ~(X • ZP x) = -×.E(~P x) 

since SX = O. The result follows in this case since X is not a zero divisor. This 

completes the proof of 2.2. 

Now let x ~ Hqx. If p = 2 we define pix ~ Hq+ix to be the coefficient of 

X q-i in P~x. If p is odd we define pix ~ Hq+2i(p-1)X to be (-1) mi+mq(q-1)/2 times 

the coefficient of X q-2i in P x. We also define an element ~ a HP-2B~ for p odd by 

the equation B~ = ×. 

Proposition 2.4. (i) pi(x + y) = pix + P~ 

(ii) Pi(Zx) = Zpix 

(iii) pix = x p if q = 2i and p is odd or if q = i and p = 2. pix = 0 

if q < 2i and p is odd or if q < i and p = 2. 

(iv) pOx = x. 

(v) If p = 2 then B~ix = ~i+ix; in particular, Bx = plx. 

(vi) If p = 2 then P~x = z(pix)x q-±. If p is odd then 

P~x = E(-l)mi+mq(q-l)/2[(pix)xq-2i + (-l)q(Bpix)~xq-2i-l]. 

(vii) pixy = E(~x)(pi-jy). 

Proof. (i), (ii) and (iii) follow from 2.2(iv), 2.2(iii) and 2.2(i) respectively. 

For part (iv), we observe that p0 is a stable operation of degree 0 and hence 

represents an element of H0H ~ Zp. Thus pO is a constant multiple of the identity 

and the result follows since p01 = i p = 1 by part (iii). In part (v) we can use 

part (ii) to reduce to the case where q is even. The result follows in that case 

from 2.2(v) and the relation 8× = ×2. In part (vi) the p = 2 case is true by 

definition. If p is odd we can use part (ii) and 2.2(iii) to reduce to the case 

where q is even. We then have P~x = 1*Ppx. We recall from [68, Lemma 1.4] that the 

image of 

I : HZp H*B~ 

is nonzero only in dimensions of the form 2i(p-1) and 2i(p-1)-l. Thus this image is 

generated as a ring by X and ~ and we have 
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P x = ~ (-l)mi+mq(q-l)/2[(pix)x q-2i + Yi~X q-2i-l] 

for some elements Yi e Hq+2i(p-I)+Ix" Now 2.2(v) imples that Yi = (-l)qBpix as 

required. Finally, part (vii) follows from 2.2(iv) and part (vi). This completes 

the proof of 2.4. 

Next we shall prove the Adem relations for p odd. We use the method of proof 

of Bullett and MacDonald [26, §4], where the case p = 2 may be found. However, in 

our context the relations arise more naturally in the form given by Steiner [102]. 

Let U and V denote indeterminates of degree 2p-2 and define S and T by 

S = U(I - V-Iu) p-I 

T = V(l - u-lv) p-I. 

We shall prove that the equations 

(I) [ (~pix)U-JT-i = ~ (~pix)V-Js-i 

i,j i,J 

(2) ~ (~6pix)u-JT -i = (i - U-Iv) [.(8~pix)V-Js -i + u-lv [ (~6pix)v-Js -i 

i,j 1,3 i,j 

hold for all x. The usual Adem relations can easily be obtained from these as in 

[i02, p. 1631; the basic idea is simply to expand the right sides of (i) and (2) as 

power series in U and T and compare coefficients. The proof of (I) and (2), like 

any proof of the Adem relations, is based on the relation 

(3) y*P~P~x = P~P~x 

given by 1.4(vii). In order to compute P~P~x in terms of the pi we need to know 

more about the element × ( HP-IB~. We have mentioned that × is the Euler class of 

the real reduced regular representation of ~, and that this representation is the 

sum of the nontrivial real irreducibles of ~. Choose one such irreducible, and let 

u ~ H2B~ denote its Euler class. Then the Euler classes of the remaining 

irreducibles (suitably oriented) are 2u, 3u,...,mu, and thus × = +_m!u m. The 

ambiguity in the sign arises from the question of whether the various orientations 

have been chosen consistently, but it turns out that we shall not need to eliminate 

this ambiguity. Thus we shall assume × = m!u TM (it is in fact possible to choose the 

orientations so that this holds) and leave it to the reader to check that the other 

possibility leads to the same relations (I) and (2). We define b e HIB~ by the 

equation 8b = u, so that ~ = mlbu m-l. Then the equation 2.4(v) may be written as 

follows. 

(4) P x = ~ (-l)i+mq(q-l)/2(m!)q[pix + (-l)q(spix)bu-l]u m(q-2i). 
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Since both sides of (I) and (2) are stable we may assume that q has the form 2r with 

r even. We define U = -u 2m, so that (4) becomes 

(5) P x = ~ (-l)r[pix + (spix)bu-l]ur-i. 

Now 2.2(ii) and 2.2(iv) give 

(6) P P x = ~ (-1)r[p~pix + (-l)m(P SpIx)(P~b)(P~u)-I(p~u) r-i] 

in H*X®H*B~H*B~. We denote the copies of b and u in the second copy of B~ by c 

and v, and we let V = -v p-1 . Equation (4) gives the following formulas. 

(7) 

(8) 

(9) 

(I0) 

(ii) 

P~b = m![b - ucv-l]v TM 

P~U = u p - uv p-I = u(V - U) 

P~U = -(P~u) p-I = U(V - U) p-I = vP-Is 

p~pix = ~ (-l)r[pjpix + (spjpix)cv-llv r+2im-j 

P 8pix = ~ (-1)rm![PJspix _ ((6~6pix)cv-l]vr+2im-Jv m. 

We therefore have 

(12) P P x = (vPs) r ~[pjpix + (6pjpix)cv-l+ (PJ6Pix)(bu -I - cv-I)v(v - U) -I 

+ (8~spix)bcu-lv-Iv(v _ U)-I]v-Js -i. 

Now we apply equation (3). We have y*u = v, ~*U = V, and y*S = T. Since 

vPs = UPT = ~*(vPs) we have 

(13) P P x = y P P x = (vPs) r ~ [pjpix - (6£Jpix)hu -I 
w w 

+ (pj6pix)(cv -1 _ bu-1)U(U _ V) -I _ (6pj~pi)bcu-lv-lu(u_v)-l]u-JT -i. 

Collecting the terms in (12) and (13) which do not involve b or c gives equation 

(i), and the terms which involve c but not b give (2). This completes the proof. 

Finally, we give the proof of Lemma 2.3. Let M be the Moore spectrum S<2p e 1 

and let i:S ÷ M be the inclusion of the bottom cell. 

D Lemma 2.5. HI(D,M) has a basis {x,y) such that (D~i)*x = O, (~i) y / O, and x is 

in the image of the transfer 

T * HIM(P) : ÷ HID M. 
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Proof of 2.5. We use the spectral sequence 

Hi(~;~ (M (p))) ~ H i+jD M 

-0,i -I,0 is generated by a single element. of 1.2.4. Each of the groups 52 and ~2 

The generator of the latter group clearly survives to E and represents an element 

y ~ HID~M. Since (i(P))*:HOM (p) + HOs is an isomorphism, so is the map induced by 

_l,O Hence (D i)*y / 0. Now let z ~ HIM (p) be a generator of D i on ~2 " 

HIM®HOM® .-. @HOM and let x = x z. Clearly, x is represeneted by a generator of 
w 

~0,1 (D i)*x * * ~*(i (p) 52 and = (D i) T z = )*z which is zero since HIs= O. 
' ~ W W 

Proof of 2.3. Let HZ be the spectrum representing integral cohomology. Then 

H = HZ^M. Let e:S + HZ be the unit and let n be the composite 

D (e^ l) 
D M = D (S~M) w ~D (HZ^M) = D H ~ ~H. 
W W ~ 

Let w be the element of H~D M represented by n. Then (D i) 8w = 0 since S vanishes 

on HOD~s = HOB~. Hence by iemma 2.5, 8w is a multiple of x and in particular it is 

in the image of the transfer. Thus we have a factorization 

D M - -  ~ ~H 

/ n 

M(P) 

~EH 

Now consider the diagram 

D E2iH = D (E2iHz^M) 6 PD E2iHZ^D M ~^n pE2piH^H ¢ ; E2piH 
W W 

@ i^ 8 Z i+iH 

(E 2i (P) = (E 2i ^M) (p) = (E2iHZ) (p) E2iHZ^M (p) a~a-q-~E2pi~^EH 

The uniqueness clause in 2.1 imples that the composite of the top row is 

~:D E2iH ÷ E2piH, so it suffices to show that the diagram commutes. Part Q 
N 

commutes by VI.3.10 of the sequel, and the other parts clearly commute. 
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§3- Dyer-Lashof operations and the N ishida relations 

An interesting feature of the treatment of Steenrod operations in §2 is that is 

generalizes to give the properties of Dyer-Lashof operations; thus homology opera- 

tions are a special case of cohomology operations (cf. [68]). The use of stable 

instead of space-level extended powers is crucial for this since homology does not 

have a simple space-level description. We give the details in this section; IX§l 

will give another approach to homology operations which generalizes to extraordinary 

theories. We continue to use the notations of §2, so that H denotes HZp. 

First let M be any module spectrum over H and let Y be an arbitrary spectrum, 

There is a natural transformation 

A:M*Y + Hom(H,Y,~,M) 

defined as follows: if y ~ M*Y is represented by f:Y + EiM then A(y) is the 

composite (l~f), 

H,Y = ~,(H^Y) ~ ~,(H~M) ~,M, 

which is a homomorphism raising degrees by i. Clearly A is a morphism of cohomology 

theories, Since it is an isomorphism for Y = S we have 

Lemma 3.1. A is an isomorphism. 

Now let X be a fixed H a ring spectrum with structural maps 8j (for example, X 

might have the form Z~Z + for an infinite loop space Z) and let M = H^X. Then M is 

an ~ ring spectrum with structural maps 

~j ,i ̂ ej 
Dj (Z2iH^X) 8 ,~D. Z2iH ̂ D. X ~ z2iJH^x 

J J 

and we obtain power operations 

J J 

and Rj:M2iy + M 2ij(Y × BZj). 

The operation ~ can be extended to odd degrees by r~ans of the maps 

D ZiM = D (ZiH^X) 6~D ziH^D X ~^@rzPiH^X 
W ~ ~ W 

where ~ is the map given by 2.1. The unit of X gives an ~ ring map h:H + H^X = M 
o~ 

and h, also preserves 7, in odd degrees. 

Define b, u, X and ~ in M*B~ to be the images under h, of the elements b,u,× 

and m in H*B~ defined in §2. Thus Z~ = R Zl. Lemma 3.I gives the following 

isomorphisms for any space Y. 
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M*(Y x B~) ~ (M*Y)[ [~ l l  i f  p = 2 .  

M*(Y × B~) ~ (M*Y)[[b,u]l if p is odd. 

Thus we can define operations Riy for y ~ MqY as follows: if p = 2 let R~ be the 

coefficient of X -~-i in R y, and if p is odd let R~ be (-1) mi+mq(q-1)/2 times the 

coefficient of x ~-2i in R~y. Now if Y = S O there is an isomorphism HqX ~ M-qs 0 

which we shall always denote by x ~ r x . We define the Dyer-Lashof operations 

Qi:HqX ÷ Hq+iX when p = 2 

Qi:HqX + Hq+2i(p_l)X when p is odd 

by the equation Qix = R-ix. The properties of Qi will follow from those of R~ and 

R i. Our next result gives the basic facts about R. 

"*R yP Proposition 3.2. (i) I wy = 

(ii) R (yz) = (-l)mlYlIZl(Ry)(R z) 

(iii) R~(Zy) = (-i) mlyl ~ .ZRy 

(iv) R~(y + z) = R~y +R~z. 

(v) sR~y = 0 if p is odd or lyl is even. 

Proof. (i) and (ii) are immediate from the definitions and (iii) follows from 

(ii). In the proof of 2.2(v) it was observed that the transfer 

:H Y + H (Y x B~) 
/I 

vanishes for all spaces Y. By 3.1 it follows that 

[ :M Y + M (Y × Bw) 
I I  

also vanishes. In particular, the map 

* * M*(B~p :M (pt.) + ) 
P 

vanishes. Part (iv) now follows by the proof of 2.2(iv). To complete the proof of 

part (v) it suffices to give a suitable substitute for Lemma 2.3. That lemma gives 

a map 

F:(E2iH) (p) + E2pi+IH 

such that F o 
w 

is the composite 

D ~2iH ~ ~ ~2piH z2pi~ ~ ~2pi+IH. 
W 
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Consider the following diagram 

D (z2iHAX) 6 ~D z2iH^D X ~ ^e _z2piHAX z2piB ^i z2pi+IH^ X 

T W 

(r.2iH^X)(p) = (Z2iH)(p),~x(p) 1^t~, (z2iH)(P)^D X 
,g 

The left part commutes by VI.3.10 of the sequel and the right part commutes by 

definition of F. Thus the top row of the diagram factors through x~. Using this 

fact in place of Lemma 2.3, the proof of 2.2(v) now goes through to prove part (v). 

If we now replace pi × and ~ in Proposition 2.4 by R i X and ~ then every 

part except (iv) remains true with the same proof. If we replace U,V,S and T in the 

Adem relations (equations (1) and (2) of Section 2) by U = h,U, V = h,V, 

= h,S and T = h,T then these relations remain true and have the same proof. 

Proposition 3.3. 

(ii) 

(iii) 

(iv) 

(v) 

(i) Qi(x + y) = Qi x + Qiy 

If p is odd then Qix = 0 for 2i < Ixl and Qix = x p for 2i = Ixl. 

If p = 2 then Qix = O for i < Ixl and Qix = x 2 for i = Ixl- 

6Q2S = Q2S-I if p : 2 

Qi(xy) = ~ (~x)(Qi~y) 

i 
The Adem relations hold: if U and V are indeterminates of dimension 

2-2p, S = U(I - V-Iu) p-I and T = V(I - U-Iv) p-I then the equations 

i * i ° ~ (Q @x>u ~ : ~ (Q~@x~vis j 
1,3 1,3 

and if p is odd 

l,j 

(QiS~x)Ui~ = (I - u-iv) ~ (~Qi~x)ViSJ 
• . 

1,3 

i " i " + u-av X (Q ~xlV 
i,j 

are valid for all x. 

(vi) If X has the form £~Z + for an E space Z and 

~:Hq~Z ÷ Hq+IZ 

is the homology suspension then Qi = oQi. 



266 

Proof. We shall prove part (vi); the remaining parts are immediate from the 

properties of R i. For any space Z the retraction of Z to a point splits the coflbre 

sequence E~Z + 
E~S 0 ~ ~E~Z 

and gives a map 

E~Z + v:Z Z + 

Now let Z be an E® space and let X = E~Z +, 

and W are H ring spectra but ~ and W are not. 

composites D 

D ~----E---~D X - - - ~ X - ~  
w 

Dv 
and D W ~--!-~D W ~W ~p~, 

= Z®Z, W = Z~(~Z) +, W = E~Z. 

Let ~ denote either of the 

Then X 

where the unmarked arrows come from the H structures on X and W. We can use the 

maps ~ to define operations R in the theories represented by H^X and H^W and it 

is easy to see that 

(1) (1 ̂ v),~ y = R (l^v),y 

for all y. Now if x ~ Hq2Z then m E (H^W)-qs C (H^W)-qs, and (1) and the 

definition of Qi give 

(2) ~ [ [ (_l)mi+mq(q+l)/2Qi x 2i-q 

i 

since (l^ v), is monic. The natural map s:E2Z + Z induces a map EW ÷ ~ which 

will also be called ~. A fairly tedious diagram chase (given at the end of IX§7) 

shows that the following diagram commutes. 

ED W a ~ D EW 
w 

E~ D~ 

Hence the following diagram commutes, where f:S + E-qH W represents x__. 

ED f 
EB~ + W~ED (E-qH W) 6 ~D E-qH ED W ~-E-PqH^EW I^~'E-PqH^X 

IT 1[ 

D S I ~ *.D (E-q+IH^~) ~D Z-qH^D EW >E-PqH^D 
"IT W W IT 
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The top row of this diagram represents 

r e p r e s e n t s  R (1 ^~)~Zx . Thus we have 

(3) 

(i ̂ g) zR x_ and the other composite 

Combining this with (i) gives 

(4) 

Now the definition of e gives 

(5) Za_~x = (I ̂ va),Zx . 

Combining (5) and (2) gives 

(6) (I^~),ZHx = ~ (-l)mi+mq(q+l)/2ZoQix x 2i-q 

1 

Finally, by 3.2(iii) we have 

(7) R (l^w),Zx = R Zox = (-l)m(q+l)x(ZR ox) 

" " 2i-q = [ (-l)m1+mq(q+l)/2ZQ1~x × 

i 

The result follows from (4), (6), and (7). This completes the proof of 3.3- 

We conclude this section with a proof of the Nishida relations in the form 

given by Steiner: 

(8) : 
i,j 

and if p is odd 

(9) 

• [. (Qi# x)uiT4 
l,J 

~i " -i " . . (6Qi~,x}UiT-J ( ,6@x)V ~ : (I-~-iI 
i,j 1,J 

+ UV -I ~ (Qi6~,x)UiT-J , 

i,j 

where P, is the dual of the conjugate Steenrod operation ~i and U, V, S and T 

are as in 3.3(v). The usual Nishida relations can easily be obtained from these by 
=i i 

first translating from P, to P, and then writing both sides as power series in U 

and V; see [102, p. 164]. We shall prove (8) and (9) for p odd~ there is a similar 

proof for p = 2. The basic idea will be to show that the total Steenrod operation 

H ~ V zIH 
i~ z 

is an H ring map, and this in turn will follow easily from 1.4(vii). To make this 

work, however, we need a particular H~ structure on V z IH which we now construct. 
icZ 
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Let E*X be the functor H*(X × B~) on the category of spaces. We denote the 

generators of HIB~ and H2B~ by c and v, so that E*X is the polynomial ring 

(H*X)[c,v]. E* is a multiplicative cohomology theory and hence is represented by a 

ring spectrum E. The projection X × B~ + X gives a natural transformation 

H*X + E*X which is represented by a map g:H + E. Of course, E is equivalent to 

V ziH with its usual ring structure and g is the inclusion of H in this wedge. 
i(O 

Next we define power operations in E*. Let ~ be the composite 

~i X = ~i(X^B~ +) j~H2iJ(Dj(X^B +)) A ~2ij((DjX)^B~ +) = ~iJDjx. 

It is easy to see that the ~E 
thus they determine an H 2 j are consistent in the sense of Definition 1.2 and 

ring structure on E by 1.3 (compare II.1.3). The 

operation ~E extends to odd degrees since ~ does, and g is an H 2 ring map which 

also preserves~ in odd degrees. An inspection of the definitions gives the 

following description of the Internal operation~. 

(i0) pE = (IAy)*P :Hi(X^B~ +) + HPi(x^ B~+A B~ +) 
w w 

Note that, with the conventions we have adopted, c and v are the generators in the 

second copy of B~ in this situation. As in Section 2 write b and u for the 

generators in the first copy of B~; thus g,:H B~ ÷ E*B~ takes v to u and c to b. 

Now let F*X be the Laurent series ring (H*X)tEc,v,v-1]] = E*Xl[v-l]]. F* is a 

multiplicative cohomology theory and hence is represented by a ring spectrum F, and 

the inclusion H*X ÷ F*X is represented by a ring map H ÷ F which we again call g; of 

course F is equivalent as a ring spectrum to iYZ ZiH and g is the inclusion of H 

in this wedge. Now observe that the element ~jEv * (H B~j)[[c,v,v-l]] is a Laurent 

series which is bounded above, and that by l.l(iv) it has leading coefficient 

1 ~ HOBzj" EHence oE~ jv is invertible,F and it follows that we can extend the F 

operations ~j to operations ~j in the F-cohomology of finite complexes. The ~j 

are consistent in the sense of 1.2 and hence give an H 2 structure for F by 1.3. 

Next we define the total Steenrod operation t:H ÷ F by letting t, be the 

composite p 

HqX ~rHPq(X × B~) = EPqX ~FqX, 

where the last map is multiplication by (-l)mq(q-1)/2(m!)-q v -mq. By 2.4(vi) we 

have the formula 

(ii) t,x = ~ [g,pix + (-l)~,(6pix)cv-l]v -i, 

i 

where V = _v~_ ~ i as in Section 2. In particular, the projection of t: ÷ V EiH on 
i~.Z 
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~2k(p-I)H is pk. Either from the definition or from formula (ll) we get the 

following equations. 

(12) t,c = b - cuv -1 

(13) t,v = u + uPv -I = u(l - UV -I) 

(14) t,V = -uP-l(l - UV-I) p-I = U(1 - UV-1) p-1 = S. 

t is clearly a ring map, but it turns out not to be an ~ map. However, we have 

Proposition 3-4- Let Y be any spectrum and let y a HqY. Let w = (I - UV-1) m. Then 

t, $~y = wqp~t,y. 

This fact will suffice for our purposes but we remark that by combining it with 

7.2 below one can show that t is actually an H map. It is certainly not ~ since 

it does not preserve P . 

For the proof of 3.4 we need a standard lemma. 

Lennna 3 • 5 • 

is monic. 

For any space Y the map 

, , ~, ~*y(p) ~* 
i ~ A : H D Y ÷ ~ H (Y^Bw +) 

For completeness we shall give a proof of 3.5 at the end of this section. 

Proof of 3.4. 

sense of 1.2 and 1.3 it suffices to show that they agree on finite complexes. 

Since both sides of the equation are stable (H,~,F) operations in the 

By 

3.5 it suffices to show 

l*t,~y = ,* wq~Ft,y 

and 

(15) 

for all y. 

(iv). 

t,P y = wqP~ t,y 

Since i w = I and t is a ring map the first equation follows from 1.1 

For the second, we first let y = El. Then 

t,P Z1 = t,(x.21) = (t,x).(t,~l) = Xw.Zl 

Since X w is not a zero divisor, it suffices to show (15) when q is even, say 

while 
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q=2r. 

and 

Then as elements of (H*Y)[[b,c,u,v,v-l]] we have 

,-2r -2mpr_ ~ = V-Prpzp y t,P y = (-l)mr(m!~ v ~ ~ y 

2r F w2r( * w P t,y = l^y) P (u-rp y) by (10) 

= w2rv-Pr(l _ UV-1)-2mr(1 ¥)*p P y 

= v-PrP P y by 1.4(vii), 

and the result follows. 

If we let y be the class of the identity map H ÷ H we obtain 

Corollary 3.6. The diagram 

DH ~H 

ID~ t I t 

DF ~F 

commutes, where the unmarked arrows come from the H structures of H and F, 

Now let X be an H~ ring spectrum. 

spectrum and there is an operation 

Then, as we have seen, HAX is an ~ ring 

~:(H^X)qY + (H^ X)PqD Y 

for Y ~ ~ Similarly, F^ X is an H 2 ring spectrum and we obtain an operation 

~:(FmX)qY + (F^x)PqD Y, 

The unit of X induces H ring maps h:H + H^X and h':F + F^X. 

Corollary 3.7. If Y is any spectrum and y ~ (H^X)qY then the equation 

(t ̂  I), ~y = wq~ct ^l),y 

holds in (F^X)PqY. 

Proof. For q = 0 this is immediate from 3.6. If y = E1 we have 

(t~l),~l = (t^l),~ h,zl = h~t, zl = w~F(tw ~I),zl 

by 3.4. For general y let z = z-qy ~ (H^x)O(z-qY). Then y = (Zl)qz and we have 
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as required. 

* ~Zl)q~z] (t^l),R~y = (t^1),6 [( 

= 6*{wq(~Zl)q~(tal),z] 

= wq~(t ^l),y 

Corollary 3.7 gives the following relation between the internal operations. 

(16) (t ̂  l),Ry = wqR~(t ̂  l),y 

To prove the relations (8) and (9) one simply evaluates both sides in the special 

case when Y is a point. First we recall that the operation in homology induced by 
i pi:H + z2i(p-1)H is not P, but its conjugate ~i P,. Since 8 = -8 we have in 

particular B~ = -6_~z . Thus (ll) gives 

(17) =i (_l)qg,Bp--i,z cv-l]v-i ( t ~ l ) , z  = [ [g,Pwz - 
i 

for any z e HqX. Now let x ~ HqX, y = ~. Then we have 

(18) 

(t^l),R y = ( t^ l ) ,  Z (-l)mq(q+l)/2(m!)-q[~x--(-l)q(B~x)bv-l]v-mqvJ 
J 

= (-l)mq(q+l)/2(m!)-qz [(tal),@x--(-l)q(t^l),~x(t, b) (t, v)-l] (t,v)-mq(t, v)j 

J 

= ~i _ (-l)mq(q+l)/2(m!)-qu-mqw -q ~ [ ,~x (-l)qBpi~xcv -I 
i,j 

~-i -i -I - (-l)qpiB~x(bu - I -  cv- l ) ( l  - UV-I) - I  + 6P,S~xbcu v (I - UV-I ) - I ]~v- i  

On the other hand, we have 

(19) 

J 

J 
= (-1)mq(q+l)/2(m!)-%-m%-q Z" IQi~,x- (-1)q ~Qi~,xbu-1 

l,J 

+ (-i)qQiB~x(bu-l_ev-1)( I_U-Iv)-I BQiB~,xbcu-lv-I (I_U-Iv)-I ]UiT-J 

If we collect the terms in (18) and (19) not involving b or c we get (8). 

Collecting the terms involving b but not c gives (9). 
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It remains to show ~.5. 

Proof of 3.5. 

sequence 1.2.4 

Let p be odd; the p = 2 ease is similar. 

Hi(~;~x(p) ) ~ ~i+J(D X). 

We use the spectral 

Let {x } ~ A be an ordered basis for H X. Let lal denote the degree of x . The 

graded group H*(X (p ) )  E H*(X) @p has  t he  b a s i s  {x ? - - -  (~ x I a l , " ' , ~  p ~A} and 
P 

t h e  E2- term has  a b a s i s  c o n s i s t i n g  of  r e p r e s e n t a t i v e s  f o r  t he  e l e m e n t s  

~ b ~ u ~ x  I ~ ~ A, ~ = 0 or 1, i ~ 0; and ~ l ~  - - -  ® X ~ p l l ~ l  = m ~  ~ i  ¢ ~ x  ~ i  ~ 

( In  p a r t i c u l a r ,  t h e  s p e c t r a l  sequence c o l l a p s e s ,  as we a l s o  know from 1 . 2 . 3 ) .  Hence 

t h e s e  e l e m e n t s  form a b a s i s  f o r  H*(D X).  Let  z ~ H*D X be a nonze ro  e l ement  w i t h  
~ g w 

z = A z = 0. Since ~*z = 0, z is a finite sum of the form 

Since A z = O, we have 

k .bSu i~ x . 
~,¢,i 

(20) 0 = Y ~ ,~,i b u P x 
~g~i 

(-l)J+ml~[(]al-l)/2(m!)la]X .ui+mlal-2jmb~[~x + (-l)I~l(B~x)bu -I] 
( ~ C ~ l  ~ CI 

by equation (4) of section 2. Now let K be 

the set of triples (~,~,i) with ~,s,i # 0 

of u k in line (20) is 

max{i+ml~l ]~,~,i f O} and let S be 

and i+ml~ 1 = K. Then the coefficient 

(-l)mI~I(l~I-l)/2(m!)IcI~ .bOx 

(~,~,i) ~ S ~,~,I 

since all other terms in line (20) involve smaller powers of u. But this is a 

contradiction since the x~ are linearly independent. 

84. Atiyah's power operations in K-theory 

In this section we show that the power operations in KU sand K0 defined by 

Atiyah [17] give H d structures for these spectra which agree with those con- 

structed in VII 87. We shall work with complex K-theory, but everything is similar 

for KO. 

We begin by recalling the definition of Atiyah's operations. Let G be a finite 

group. If Y is a G-space let VectGY be the set of isomorphism classes of 
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equivariant vector bundles over Y; we write Vect Y for the case where G is the 

trivial group. If Y is a free G-space there is a natural bijection 

VectGY ~ Veer(Y/G) 

(see [18, 1.6.1]). If Y is any G-space we write A for the composite 

VectGY + VectG(EG × Y) + Vect(EG ×G Y), 

where the first map is induced by the projection EG × Y + Y. The map A is additive 

and hence if Y is a finite G-complex we obtain a map 

KGY + K(EG ×G Y) 

which will also be denoted by A. Now if X is a finite nonequivariant complex and we 

let Zj act on xJ by permuting the factors then the j -fold tensor power gives a map 

~j:Vect X + Vectz ~ + KZ X j 

3 J 

which however is not additive. In order to extend it to virtual bundles and to the 

relative case we must use the "difference construction" [94, Proposition 3.11. Let 

(Y,B) be a G-pair and consider the set of complexes 

d I d 
0 ~ .... E 0 ~ E 14 ... ~ n En 4 0 

of G-vector bundles E i over Y which are acyclic over B. We write ~G(Y,B) for the 

set of isomorphism classes of such complexes. Two elements E, and E~ of ~G(Y,B) 

are homotopi% denoted E, = E~; if there is an element H, ~G(Y x I, B × I) (with G 

acting trivially on I) which restricts to E, and E~ at the two ends. We say that E, 

and E~ are equivalent~ written E, ~ E~, if there are complexes F, and F', which are 

acyclie on Y such that 

E,~F, = E' ~F'. 

It is shown in [94, appendix] that there is a natural epimorphism 

F:~G(Y,B) + KG(Y,B) 

which induces a bijection from the equivalence classes in~G(Y,B) to KG(Y,B). If B 

empty F is easy to describe: it takes E, to ~ (-l)iEi . F is is additive and 

multiplicative if we define addition and multiplication in ~G to be the direct sum 

and tensor product of complexes. Now if (X,A) is any pair of finite CW complexes 

the j -fold tensor product of complexes give a map 

(X,A) + ~Zj ((X,A)J). 

If E, and E' in D(X,A) are homotopic by a homotopy H, then the restriction of 
w 

H, ~j along the diagonal map 
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(X,A)J x I + (X,A)J x lJ 

gives a homotopy between ~Jand (E~) ®j . If F, is acyclic on X then the inclusion 

(E,) ®j + (E, e F,) ®j is Zj-equivariantly split and is a homology equivalence by 

the Kunneth theorem, so that ~, J ~ (E,@F,) ®j . It follows that the j-fold 

tensor product preserves equivalence and we can pass to equivalence classes to 

obtain amap 

~j:K(X,A) + KG{(X,A)J). 

Letting A be the basepoint * of X we write~j for the composite 

KX = K(X,*) ~K z ((X,*) j) A~K(Fgj xz (X,*)J) = ~.X. 
J 3 J 

We can extend~j to all even dimensions by letting it take the Bott element 

b c ~-2(sO) to bJ. It is easy to see that the ~j are consistent in the sense of 

1.3, so by 1.2 and 1.3 we have 

Theorem 4.1. KU (resp. KO) has a unique ~ = (resp. ~) 

the  power o p e r a t i o n s  are  t hose  d e f i n e d  by A t iyah .  

ring structure for which 

We shall see in Section 6 that the H 8 structure on K0 extends to an H 4 

structure. Our next result answers an obvious question. 

Proposition 4.2. The structures on KO and KU given by 4.1 are the same as those 

given by VII.7.2. 

For the proof we need a len~na. 

Lemma 4.3. Let X be a based space and let k:X + + X be the based map which is the 

identity on X. Then 

* ~* + F (Dj(X +)) (Djk) :F DjX ~* 

is a split monomorphism for any theory F. 

Proof of 4.3- If v:g®X + ~X + is the map given in the proof of 3.3 then 

(~l*(~x) * = (~ (a~x o vl) * = 1. 

Proof of 4.2. Let ~j be Atiyah's power operation and let~j' be that given by 

VII.?.2. By VII.7.7 we have 

J 

while by l.l(iii) we have 
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' 2 

J J J 

.. T 2 
Since ~.E 1 is an orientation for the Thom complex D~-S 2 this implies 

J J 
, ! ! 

~.bj = ~ = ~jb. It therefore suffices by 1.3 to show that % and ~j are equal on 

KX for any finite complex X, and by 4.3 it suffices to show that they agree on 

K(X +) = KX. They do agree on Vect X by [71, VIII.1.2]. But any element x of KX 

can be written in the form V-W with V,W ~ Vect X, and we have 

j-1 

Z  i,jit( ix)( iw)] 
J J J i=l 

by l.l(vi), and similarly for ~.'. Hence 
J 

j-i 
Cox ;v %w- 

J J i=l 1,J  - I  - 
I 

and similarly for~j. We therefore have ~jx =~jx by induction on j. 

By analogy with Section 2 we now ask what operations in K-theory can be 

obtained from the internal power operation 

P :KX + K(X × B~) 
w 

The structure of K(B~) has been determined by Atiyah [16]: K(Bw) is a Z -module 
P 

and the composite 

IR(~) ®Z A • l~K(B~)® Z =K(B~) 
P P 

is an isomorphism, where IR(~) is the augmentation ideal. If p is the automorphism 

group of ~ then the invariant subgroup K(B~) p is generated by A(N-p), where N is 

the regular representation of ~. Atiyah also shows that KIBn = O. In particular, 

K*B~ is flat over K*(pt) and we obtain a K~nneth isomorphism 

KX® K(B~) ~ K(X × B~) 

for finite complexes X. Since P is the restriction of Pp we see that P actually 

lands in the invariant subring KX®K(B~) p. We can therefore define operations 

~:KX ÷ KX 

and 8P:Kx ÷ KX × 
P 

by the equation 

(i) P x = ~Px ® I + 8Px®A(N - P). 

By 1.4(i) we have 
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(2) ~Px = x p. 

Atiyah proves the relation 

(3) pePx = x p - ~Px 

in [17]. Since the representation N of ~ is Induced from the trivial representation 

of the trivial group we have A(N) = ~ 1 and therefore (I), (2) and (3) give 

(4) P~x = cPx®I + 8Px® T i, 

an equation which will be used in 37. 

We can in fact lift eP to KX by using the equivariant internal operation P . 

This is the composite 

Kx ?~ K IxPl ~- .~x ,  
where A is the diagonal map from X with its trivial n-action to X p with its 

permutation action. Clearly P~ = A o P . Since ~ acts trivially on X, we have 

K X ~ KX®R~. The p-invariant subring of R~ is generated by 1 and N-p, so we may 

define ePx as an element of KXby the equation 

~x = xP®l + 0Px® (N - p). 

The operation Pw satisfies the obvious analog of 1.4 and one can use its properties 

to obtain additivity and multiplicity formulas for e p and ~P (using equation (3) as 

the definition of ~P). One can also obtain the G-equivariant Adams operations in 

this way by starting with a G-complex X and constructing operations 

j :KGX + KZj IG Xj 

exactly as before. The reader is referred to [34] for details. 

§5. tom Dieck's operations in cobordism 

In [31], tom Dieck constructed "Steenrod operations" (power operations in our 

terminology) for the cobordism spectra associated to the classical groups. In this 

section we use these operations to give H d structures for these spectra. A wider 

class of cobordism spectra will be investigated by Lewis in the sequel, and he will 

show that they have not just H but E structures. His results do not quite include 

those of this section, however, since his methods do not give the "d-structure" 

(i.e., the Zj-orientations) for the classical spectra. 

Throughout this section we write G for any of the classical groups O, SO, 

Spin c, U, SU, Sp or Spin. Let d = 1,2,2,2,4,4,4 respectively. We depart somewhat 
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from standard notation (in this section only) by writing G(i) for the group which 

acts on R di. Let Pi be the universal G(i)-vector bundle over BG(i), let S(Pi) be 

its fibrewise one-point compactification, and let T(Pi) be the Thom complex obtained 

by collapsing the points at ~. We shall always identify principal G(i)-bundles with 

free G(i)-spaces, so that the principal bundle associated to Pi is EG(i). If q is 

any G( i )-vector bundle with principle bundle Q, there is a bundle map F:q + Pi and 

induced maps S(F):S(q) + S(Pi) and T(f):T(q) ÷ T(Pi). If F' is another such map we 

shall need to know that T(F' ) is homotopic to T(F) (of course this is well-known 
Rdi 

for the maps of base spaces induced by F and F' ). Now F has the form ~ XG(i) 
S di for some G(i)-map F:Q ÷ EG(i) and S(F) is equal to F XG(i) , and similarly for 

F' and S(F'). It is shown in [32] that there is at most one G(i)-equivariant 

homotopy class of G(i)-maps from any G(i)-space into EG(i), so it follows that S(F) 

is homotopic to S(F') by a homotopy preserving the base points in each fibre, and 

hence T(F) = T(F') as required. 

Now we define the Thom prespectrum TO by letting (TG)di = T(Pi) with 

~:zdT(Pi ) + T(Pi+ I) 

induced by any bundle map from Pi Q Rd to Pi+l" We wish to show that TG is an 

Hd ring prespectrum. For this we need some bundle theoretic observations. 

Let p be a G(i)-vector bundle over X with associated principal bundle P. Then 

EZj ×Zj ~ is a vector bundle over EZj xzjXJ ; we wish to give it a canonical G(ij )- 

bundle structure. Let H = G(i)J. Then ~ is an H bundle over X j with principal 

bundle ~, and Zj acts on everything on the left. However, its action on ~ does 

not commute with the right H-action (~ is not a "zj-equivariant principal H- 

bundle"). Instead we have c(ph) = (ap)(oh) for a~Zj, p~Y~, h~H. Now let 

Q = ~ x h G(ij ). This is a principal G(ij )-bundle over xJ with associated vector 

bundle ~. Because of our choice of d the permutation action of Zj on (Rdi) j lifts 

to a homomorphism Zj + G(ij) denoted a ~-~, and we have q(h) = q--he-1 for all 

h ~ H. We define a left action of Zj on Q by G(p,g) = (op,qg); it is easy to check 

that this action is well-defined and that it commutes with the right action of 

G(ij ). Thus Q is a Zj-equivariant principal G(ij )-bundle and hence so is its 

pullback EZj × Q to EZj ×Z X J . Since zj acts freely on EZj × Q and conmutes with 
J 

G(ij ) we can divide out by its action to get a principal G(ij )-bundle EZ- × Q over 
zj . 

EZj ×Zj Xj " The reader can check that the associated vector bundle is EZj ×Zj y~ " 

Since T(EZj ×Zj~) is naturally homeomorphic to Dj T(p) we obtain maps 

~j,i:Dj(TG)di ~ T(Ezj xz. ~i ) -T(Pi j ) : (TG)di j 
J 

for all i,j >_ O. The diagrams of Definition VII.5.1 commute since in each case the 
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two composites are induced by bundle maps into a universal bundle. Thus we have 

shown 

Proposition 5.1. The maps ~j ,i are an H d® structure for TG. 

Now define MG = Z(TG). Every G(i)-vector bundle q has a canonical Thom class 

in this theory represented by the map 

T(q) ~ T(Pi ) K ~ (MG)di 

At this point we need some lim I information. 

Lemma 5.2. ASJlof the pairs (TG,MG'), (TG,KU), (TG,KO), (TG,ku) and (TG,kO) are 

liml-free. 

Proof. First consider (TG,MG'). The pair (TU,RFJ) is clearly liml-free since the 

spectral sequence Er(TU2i;MU) collapses for dimensional reasons. For each other 

choice of G and G' there are maps f:MU + MG' and g:TG ÷ TU satisfying the hypotheses 

of VII.4.4, hence each pair (TG,MG') is liml-free. A similar argument gives the 

remaining cases. 

Corollary 5.3. MG is an H d ring spectrum. 

On the other hand, it was shown in [71,IV§2] that ~G has an E ring structure. 

Such structures always determine H structures, as mentioned in I§4; see [Equiv, 

VII§2] for the details. Let ~:~MG ÷ MG be the structural maps obtained in this 
H J J 

way and let Sj be those obtained from 5.1 and 5.3. As one would expect, the two 

structures agree: 

Proposition 5.4. For each j, ~ = ~. 

Proof. We use the notations and Definitions of VII§8. 

suffices to show that the elements 

composites 

W(ni)^z. T(Pi)(J) 
J 

and 

Fix i and let a = a i- 
H E 

z. and z. in cobordism represented by the 
l 1 

(~)a 
< ~ (D. M G) r (MG) 

J a a 

T(ni)~LT(Pi)(j) < (~MG)a (~,~)a_ . . (MG) a 
J 

It 

are equal. An inspection of the proofs of [71, IV.2.2] and [Equiv. VII.2.41 

shows that the second composite is induced by a bundle map from ni~ (pi)j into 
E 

the universal bundle Pa, hence z~ is the canonical Thom class in 

MGa(T(ni)Az.T(Pi)(J)). On the other ± hand by Proposition VII.8.1 there is a 

J 
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relative Thom isomorphism 

W:(MG)a(T(ni ) ~Ej (T(Pi)(J)) ~(MG)a+dij(EaT(EEj xE.(Pi )j))J 

which takes z~ to the canonical Thom class in the target group. Since the 
i 

canonical Thom class of a Whitney sum is the product of the Thom classes, the 

relative Thom isomorphism W takes the Thom class of T(n~)A~ (T(Pi)(J)) to that 

of EaT(EEj ×E. (Pi)j )" Thus ~z~ = ~z~ and the result follo~. 
J 

We conclude this section with a discussion of cobordism operations related to 

P~. The situation in unoriented cobordism is quite simple: there is a 

~tu~neth isomorphism 

MO*(X × BZ 2) ~ (MO*X)[[×]] 

where X is the MO* Euler class of the Hopf bundle, and we can define operations 

for i ~Z by the equation 

Ri:MO~ + Moq+i× 

• . 

P2 x = ~ (Rlx)× q-m. 
i 

One can prove various properties of the R i exactly as in §2 (see [31, §15]). 

To deal with the case of complex cobordism we need some formal-groups notation. 

Let F(x,y) be the formal group of MU and let [n](x) be the power series defined 

inductively for n > 0 by [1](x) = x and [n+l](x) = F([n](x),x). There is a 
.° 

Kunneth theorem due to Landweber [49]: 

MU*(X x B~) ~ (MU*X)[ [u] ] / [p ] (u) ,  

where u is the Euler class of a nontrivial irreducible complex representation of w. 

The power series [p](u) has leading term pu but is not divisible by p, so that in 

particular RFJ*B~ is torsion free. We cannot continue as in the unoriented case 

since the power series [p] (u) and the ring MU*B~ admit no simple descriptions. 

There is however a relation between P and the Landweber-Novikov operations s which 

is due to Quillen and was used by him to give a proof of the structure theorem for 

~,MU. Let aj (x) for j >_ 1 be the coefficient of yJ in the power series 
p-1 

al ak 
~F([i](x),y). For a multi-index a = (~l,...,ak) let a(x) ~ = al(x) ..- ak(x) 
i=l 

X ~ Mu2p-2B~ by the equation ×.Z21 = P E21; thus × is the Define Euler class of 

the complex reduced regular representation. 
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Proposition 5.5. For any finite complex X there is an integer m ~ 0 such that the 

equation 

(I) (P~x)×m-q = I~I~< m(Sax)a(u)~×m-l~l 

holds for all x c MU2qX. 

For the proof see [93] or [ii]. There is a similar relation between P and sa 

in the unoriented case. Since the right side of equation (I) is additive in x we 

have 

Corollary 5.6. (Pw)(x+y) - Pnx _pny).×m = 0 for large m. 

§6. The Atiyah-Bott-Shapiro orientation. 

It is well-known that the KU and KO orientations constructed by Atiyah, Bott 

and Shapiro in [19] give rise to ring maps 

cU:MSpin c ÷ KU 

and ¢O:MSpin + KO 

In this section we shall prove 

Theorem 6.1. cU is an ~ ring map and ¢0 is an H 8 ring map. 

Remark 6.2. MSpin actually has an H 4 structure, as shown in §5. By combining 6.1 

with VII.6.2 we see that the H 8 structures for KO and kO constructed in §4 and in 

VII§7 extend to H 4 structures. 

We shall give the proof of 6.1 only for ¢0, which will henceforth be denoted by 

¢; the remaining case is similar. If p is a Spin(8i)-vector bundle we denote its 

Atiyah-Bott-Shapiro orientation in K0(T(p)) by u(p). 

First we translate 6.1 to a bundle-theoretic statement. As usual, let Psi be 

the universal Spin(Si)-vector bundle. If X C BSpin(8i) is any finite complex, we 

obtain an orientation class 

~(Psilx) ~(T(PsilX))- 
These classes are consistent as X varies, hence by 5.2 and VII.4.2 they determine a 

unique class in K0(TSpinsi ) which is represented by a map 

~i:TSpin8i + BO × Z. 
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The sequence {~i} is a map of prespectra, and ¢ is defined to be Z{u i} (see 

VII§l). The multiplicative property [19, ll.1 and ll.3] of the Atiyah-Bott-Shapiro 

orientation implies at once that {ui } is a ring map, and hence so is @ by 5.2 and 

VII.2.3. Similarly, Theorem 6.1 is a consequence of the following property of ~. 

Proposition 6.3. If p is any Spin(8i)-vector bundle then 

u(Ezj xzj pJ) = (~iI~(p), 

where gJ~ is the power operation defined in §4- 

In the terminology of ~l, Proposition 6.3 says that ~j satisfies tom Dieck's 

axiom P4- tom Dieck gives a simple proof of the analogous statement for the KU- 

orientation of complex bundles in [3], §12]. 

For the proof of 6.3 we need to recall several technical facts from {19]. The 

first is the "shrinking" construction in ~(D,Y). Let 

d I d 
0 ~ E 0 ~ E 1 w~----- ... ,--n-- En ~- 0 E,: 

be a complex of real vector bundles over X which is acyclic over Y. Choose 

Euclidean metrics in each E i and let 5i:Ei_ 1 ÷ E i be the a~oint of d i with respect 

to the chosen metrics. Let 

s(E.): 0 ( s(E)oD s(E)I ~--- 0 

be the complex with s(E) 0 = Q El, s(E) I = @ 
i even i odd 

E i , and differential 

D(e I, e3,...) = (die:[ , 62e I + d3e3, 64e 3 + d5e5,...) 

Then s(E) is in ~9(X,Y) and it defines the same element in KO(X,Y) that E does (see 

[19, p.22]). The same construction works G-equivariantly provided that the chosen 

Euclidean metrics are G-invariant. 

Next we need the Clifford algebra C i. By definition, C i is the quotient of the 

tensor algebra T(R i) by the ideal generated by the set {x • x - llxll2.11x e R i} . The 

grading on T(R i) gives C i a Z2-grading by even and odd degrees and we will write 

for the Z2-graded tensor product of two Z2-graded objects. By a module M over 

C i we mean a Z2-graded real vector space with a map 

C i [] M + M  

satisfying the usual properties. Equivalently, such a structure is given by two 

maps 
~®MO+M: 
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and R i ® M I ÷ ~, 

each denoted by x ® m l ~ xm, such that 

2 
(i) x(xm) = -ILxll m 

for all x,m. In particular, the latter description shows that if M is a Ci-module 

and N is a Cj-module then M [] N is a Ci+ j-module with 

(x @y)(m ®n) = xm ®n + (-1)Imlx ®yn 

for all x~Ri, y~, m~M, n~N. If M is any module over Ci we can define a 

complex 

E(M): 0 ~ EO(M ) ~d El(M) ~ 0 

of real vector bundles over R i by letting Eo(M) = R i × M O, El(M) = R i × M l, and 

d(x,m) = (x,xm). Equation (1) shows that this is acyclic except at O, and in 

particular it defines an element of KO(Di,si-1). 

We can now define two complexes over (Ri) j ,namely E(M [] J) and the external 

tensor product E(M) ® J. The first has length 2 and the second has length j +l. We 

need to be able to compare them. 

Lemma 6.4. The inner product in E(M) ® j can be chosen so that s(E(M) @ J) 
~Dj 

isomorphic to E(M ) . 

is 

Proof. It is shown in [19,p. 25] that one can choose inner products in M 0 and M I so 

that the adjoint of x:M 1 + M 0 is -x:M 0 + M 1 for each x ~ R i. We define an inner 

product in M @ j by 

<m I @ --. ®mj, ~ ® ... ®m:3 > = <ml'ml>' ... <m.j ,mj>' 

with the understanding that <m,m'> = O if Iml / Im'l. Then s(E(M) × J ) and 

E(M [] J) clearly involve the same two bundles, but they have different 

differentials, say d and d'. The definition of the shrinking construction gives 

d(x,m I @ ... @mj) = 

j ;m~ I +.-.÷ l~i I-~ 
(-I) (x,m I @ ... @ mi_ I ® xim i ® mi_ I ® ... ® mj ) 

k=l 

if x = x I @ ... @ xj ~(Ri) j, while the definition of M [] j as a Cij-module gives 
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d'(x,m I @ --- ~9~) = 

i (-l)]mlI+'"+]mi-ll(x,ml e "'" ~gmi_ 1 ~ xim i ~ mi+ 1 ~ °'" ~m. ). 
k=l "] 

The required isomorphism is given by taking (x,ml® ..- ®9) to itself if 

Imll + -.. + Imjl is congruent to 0 or i mod 4 and to its negative in the remaining 

cases. 

Next we recall that Spin(i) is a subgroup of the group of units of C i (in fact 

this is the definition of Spin(i) in [19, p.8]) and that the resulting conjugation 

action on Ric C i agrees with its usual action on R i. We can therefore define an 

action of Spin(i) on E(M) through automorphisms by g(x,m) = (gxg-l,gm). Now if P is 

a principal Spin(i)-bundle over X with associated vector bundle 

p:V ÷ X we can define a complex E(M,P) over V = P XSpin(i ) R i by 

E(M,P) = P ×Spin(i) E(M). 

This complex defines an element of ~(BV,SV) and hence of KO(T(p)). If P is a 

G-equivariant principal bundle for some G (i.e., G acts from the left on P and 

commutes with the right action of Spin(i)) then E(M,P) has a left G-action and 

defines an element of KOG(T(p)). If G acts freely on P we can divide out by its 

action , and it is easy to see that the quotient complex E(M,P)/G is just E(M,P/G). 

Atiyah, Bott and Shapiro specify a module k over C 8 for which E(k) represents 
"~ 8 the Bott element in KO(S ) (see [19, p.15]), and if P is a principal Spin(8i)-bundle 

they define ~(p) ~ K~(T(p)) to be the element represented by E(k [~ i p). 

From now on we fix i, P and p and denote ~[~ i by M. Let q = ~ with its 

permutation action by ~j and let Q be the associated Nj -equivari&nt Spin(Sij)-bundle 

as defined in Section 5. To prove 6.3 it suffices to show that E(M~J,Q) and the 
N 

external tensor product E(~,P) ®J define the same element of KO~j (T(q)). We can 

describe these complexes more simply: the first is 

and the second is 

× E(M ~j ) 
Spin(8i) j 

× Spin(8i)j(E(M)®J); 

in each case Zj acts through permutations of both factors. Now it is shown in [19, 

p. 25] that the inner products on M 0 and M 1 used in the proof of Len~na 6.4 can be 

chosen to be invariant under Spin(8i), hence the irmer product on E(M) ® J used in 

the proof of that lemma is invariant under both (Spin(8i)) j and Zj, and so is the 

isomorphism s(E(M) ®j ) ~ E(M []J ). It follows that s(E(M,P)®J) is isomorphic to 

E(M [] J ,Q) as required. 
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§7. p-local H~ ring maps. 

In this section we make some general observations about p-local H ring maps 

and apply them to show that the Adams operations are H ring maps and that the Adams 

summand of KU(p) is an }~ ring spectrum. We also obtain a sufficient condition for 

BP to be an H~ ring spectrum. 

Throughout this section we let p be a fixed prime and let ~ C Zp be generated 

by a p-cycle. 

Lemma 7.1. Let F be a p-local spectrum and let Y be any spectrum. 

is split monic, and if j is prime to p the map 

:F DjY ÷ F ( Y ^ D j _ I Y )  

i s  s p l i t  m o n i c .  

The nmp 

Proof. The subgroup Z. I ~ of Z. has index prime to p, and hence the composite 
$ JP 

H (Zjp;M) ---~H (Zjy~p;M) ~H (Zjp;M) 

is an isomorphism for any p-local Zj p-module M. Thus 

F D. Y ~-F DZ.I Y 
JP 

J 

is split monic by 1.2.4. The result for 6* follows since ~ factors as 

D.D Y = DZ. I~D. Y 
J ~ f~Y J P 

J 

. 

and the result for s is similar. 

As an application, we have 

Proposition 7.2. Let E and F be H~ d ring spectra with power operations ~j and ~j 

Suppose that F is p-local. Let f:E + F be a ring map such that the equation 

(i) f, o~p = ~' o p f* 

holds on Ediy for all i ~ Z and all spectra Y. 

~=9' P r o o f  We s h a l l  show t h a t  f ,  o . o f ,  
J 

t r i v i a l  f o r  j = 1 s i n c e r ~  1 i s  t h e  i d e n t i t y .  Suppose  i t  i s  t r u e  f o r  a l l  k < j .  I f  j 

Then f is an H d ring map. 

for all j by induction on j. This is 
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is prime to p we have a f,~jy = (f,y)(f,~j_lY) and ~ %f,y = (f,y)(~_lf,y). 

* J ~ j f , x  ' ' If j has the form kp we have ~ f,%y = f,~k~X and =~'k ~f,x. In 

either case the result follows from 7.1 and the inductive hypothesis. 

Under the usual lim I hypotheses, it suffices to check equation (1) for spaces 

of for finite CW complexes. However, for actual calcualtions it is much easier to 

deal with the internal operation P~ than with ~. Our next result allows us to 

reduce to this case when we are dealing with spectra like KU or MU. 

Proposition T.3. Let F be a p-local spectrum such that ~,F is free over Z(p) in 

even dimensions and zero in odd dimensions. Let X be a space such that H, CX;Z) is 

free abelian in even dimensions and zero in odd dimensions. Suppose that X and F 

have finite type. Then the map 

, , ~, ~*x(p) i ~A :F D X + ~)F*(XAB~ +) 

is monic. 

Proof. First let F = HZ(p). The Bockstein on H (D X;Zp) is given by II.5.5 and 

it follows that E 2 = E in the Bockstein spectral sequence. Thus H (D X;Z(p)) is a 

direct sum of copies,of Z~p) and Zp, so it suffices to show that the maps , 

(l* ~A*) ®Q and (I ~A ) Q Z are monic. For the first we observe that ~ ®Q 
P 

is a split injection by a simple transfer argument. For the second we use 3.5 and 

the universal coefficient theorem. This completes the proof for F : HZ(p). For the 

general case, we observe that I Q A induces a monomorphism on E 2 of the Atiyah- 

Hirzebruch spectral sequence and that the spectral sequences for X (p) and X^ B~ + 

collapse for dimensional reasons. 

Our first application is to the Adams operation 

~k:KU(p) + KU(p) 

with k prime to p. This is well-known to be a ring map. 

Theorem 7.4. If Y is any spectrum and y a Ku2ny then ~k~jy = k~n~j (kn~ky). In 

particular, ~k is an H ring map but not an H~ 2 ring map. 

Proof. Let y = kny for y K2ny. We must show ~k~j = ~ . are 

consistent in the sense of 1.2 and thus define another H~ 2 structure on KU(p) (which 

agrees with the standard H structure but has different Zj-orientations). By 7.2 it 

suffices to show = ~ , and by 1.3 it suffices to show this for finite tom- 
* k *~' k 

plexes. Since ~k is a ring map we clearly have i ~p = I ~p@ , so by 7.3 it 

suffices to show 
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(2) ~kpx = P~kx 

for all x e K2nX whenever X is a finite complex. If x is the Bott element b then 

~kb = kb and P b = b p so (2) is satisfied in this case. Thus we may assume n = O. 

Since ~k is a stable map it con~nutes with the transfer, and thus (2) will follow 

from equation (4) of section 4 once we show that ~k commutes with e p. It suffices 

to show this for the universal case BU × Z, and since K(BU × Z) is torsion free it 

suffices to show that @k commutes with pep. But this is immediate from equation (3) 

of Section 4. 

Next we recall the Adams idempotents 

Ea:KU(p ) + KU(p), a ~ Zp_ I 

defined in [5, Lecture 41. These idempotents split off pieces of KU(p) which we 

shall denote by LO,...,~_2. Thus the idempotent E a factors into a pr~ ection map 

and an inclusion map: 
r s a a 

KU(p) ~L a ~KU(p) 

with raS a = i. Since ~ E = i we have KU(p) = LoV ...~'Lp_ 2. The E a 
a ~  Z a p - l  

satisfy the formulas E01 = l, 

(3) Eabn =I( if n ~ a rood p-I 

Lb n otherwise 

and 

(4) E(xy) = ~ (Ea,X)(Ea_a,y). 

In particular, the image of E 0 is a subring of K*X and hence L O has a unique struc- 

ture for which s O is a ring map. On the other hand, (3) implies that the kernel of 

E O is not an ideal and hence there is no ring structure on L O for which r O is a ring 

map. 

Proposition 7.5. L 0 has a unique H~ ring structure for which s o is an H 2 ring map. 

Proof. We must show that~j takes the image of E 0 to itself, i.e., that the 

equation 

E o  jE0Y = 

holds on K2ny for every n ¢ Z and every spectrum Y. 
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Let ch be the Chern character and let X be a finite complex. We have 

ch(~PEax) = ch(Ea~X) for all a ~ Zp_ I and all x ~ KX by [5, p.84-85] and [I, 

5.1(vi)]. Hence ~E a = EaCP by [5, Lemma 4 of lecture 4]. As in the proof of 7.4 

it follows that EaeP = ePE a and that EaP X = P EaX for all x~ KX. Now let n~Z and 

let a be the class of n in Zp_ 1. Then we have 

EoP Eo(bnx) = EoP (bnE_aX) = Eo(bPnp E_aX) 

= bPnE aP E_ax = bPnp E_a x 

= P (bnE_aX) = P~Eo(bnx) 

for all x E KX. As in the proof of 7.4 it follows that (5) holds on the space level 

with~ replaced by ~ . Since both sides of (5) are stable in the sense of 1.2 and 

1.3, it follows that (5) holds on the spectrum level with~j replaced by ~. The 

rest of the proof is an induction on j just like that in the proof of 7.2. We give 

the inductive step when j has the form kp: 

J o?j EoY= Eo * j 
= E 0 ~k(Eo~vEo y) = ( ~kEo)~wE0 y 

: *~Eoy , 

by inductive hypothesis 

so that (5) holds in this case by 7.1. The remaining case is similar. 

It would obviously be desirable to have an analog of 7.5 for BP. In this case 

the Quillen idempotent e factors into a pr~ection and an inclusion 

r s 
MU(p) BP ~ MU(p) 

which are both ring maps. We could therefore attempt to factor the operations 

~j either through the inclusion (as in the proof of 7.5) or through the projection 

(or both). The proof of 7.5 shows that the ~j factor through s, if and only if the 

following equation holds for all finite complexes X and all x c Mu2ix. 

(6) ~P~ex = P ~x. 

Similarly, the~j factor through r, if and only if the equation 

(7) ~P~x = ~P~x 

holds. In either case the resulting structural maps on BP would be the composites 

D.s 
~j:DjBP J ~Dj~ MU r ~Bp. 
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T The point is that, while these maps ~j clearly satisfy the first and third 

diagrams of Definition 1.4.3, the diagram involving ~ is much harder to verify and 

equations (6) and (7) give two sufficient conditions for it to commute. We conclude 

this section by giving some weaker sufficient conditions. 

Lemma 7.6. Equation (6) or (7) holds in general if it does when x is the Euler 

class v c MU2Cp = of the Hopf bundle over CP ~ . 

Proof. Suppose EP cv = sPv. Since ~ is a ring map we have ~ @ sv = s~wv by 

7.3 (with X = CP~). Now ~ ~ and ~ both satisfy tom Dieck's axioms PI, P2, 

and P3,  so  Theorem 11.2  o f  [311 i m p l i e s  t h a t  t h e y  a r e  e q u a l ,  hence  ~P ~ = ~P f o r  

all spaces as required. The other case is similar. 

Next we need some notation. Let f(x) = [p](x) ~ MU*[[x]] where [p](x) is the 
X 

power series defined at the end of Section 5. Let [p]'(x) E BP*[[x]] be r,[p](x) 

and let f'(x) = r,f(x). Let u' ~ BP*B~ be r,u, so that u' is the BP-Euler class of 

a nontrivial complex irreducible representation of w. Landweber's K~unneth theorem 

for MU*(X × B~) given in Section 5 implies 

BP*(X x B~) ~ ( B P * X ) [ [ u ' ) ] / [ p ' ] ( u ' )  

Lermma 7.7. Equation (7) holds for all X if and only if equation 

(8) r,Pw ~ [CP n] = r,P [CP n] 

holds in BP*B~ for all n > 0. 

mod f'(u') 

Proof. Assume that (8) holds. We shall show that r,P ~v = r,P v, where v is as 

in 7.6. Let M-X denote the even-dimensional part of ~(p)X and let P be the 

composite 
P 

M X ~M*B~ ~ ( M * X ) [ [ u ] ] / [ p ] ( u )  ~ ~ ( M  X ) [ [ u ] ] / f ( u ) .  

If M*X has no p-torsion then, since f(x) has constant term p, u is not a zero- 

divisor in M*(X)[[u]]/f(u). The element × of Corollary 5.6 has leading term 

(p-1)!u p-l, hence × is also not a zero divisor. Thus 5.6 implies that P is additive 

for such X. It is also multiplicative by 1.4(iii). In particular we have a ring 

homomorphism 

P:M*(pt) + M*(pt))[[u]]/f(u). 

Since the elements [CP n] generate ~*(pt) ® Q as a ring and since MU*(B~) is torsion 

free, equation (8) implies 
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(9) r,P Cx = r,P x mod f'(u') 

f o r  a l l  x ~ MU*(p t ) .  
¢ 0  

Now l e t  ev = ~ b i  v l .  S i n c e  s i s  an i d e m p o t e n t  we have  b 1 
i = l  

i > 2 .  Hence (9) g i v e s  

= i and sb i = O for 

r,P b i = 0 mod f'(u'} 

for all i > 2. Now the ring homomorphism 

P:M*(CP ~) + M*(CP ~ x B~) ~ M*[Iv,u]]/f(u) 

is continuous with respect to the usual filtrations by [31, Theorem 5.1] and hence 

we have 

r,P cv ~ r,P ~ biv ~ ~ (r,P bi)(r,P v) I ~ r,P v mod f'(u'). 
i i i=l 

Finally, we observe that the map 

BP*(CP ~ × B~) ~ B P * [ [ v ' , u ' ] ] / [ p ] ' ( u ' )  + B P * [ [ v ' , u ' ] ] / u '  ~ B P * [ [ v ' , u ' ] ] / f ' ( u ' )  

is monic since u' and f'(u') are relatively prime. We have shown that 

r,(P ev - P v) goes to zero in the second summand, so we need only show that 

it goes to zero in the first. But the map 

BP*(CP = × B.)  + B P * [ [ V ' , U ' ] ] / u '  e B P * [ [ V ' ] ]  

can be identified with the restriction 

(I × I)*:BP*(CP" x B~) + BP*CP ~ 

and the result follows since 

* p - _ = (1 × i) r,( ~ev - P~v) = r,((sv) p v p) = (r,v) p (r,v) p O. 

We can now use Quillen's formula 5.5 to give a very explicit equation which is 

equivalent to (7). 

Corollary 7.8. Equation (7) holds for all X if and only if the element 

I~l ! n(Ca'b-n-1)r*[cpn-lal]r*(a(u)~)(r* ×)n-laI" 

of BP*B~ is zero for each n not of the form pk-l. Here the (c ,b -n-l) are certain 

numerical coefficients defined f~ [6, Theorem 4.1 of part I]. 
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Proof. This is immediate from 5.5, 7.7, and [6, Theorems 1.4.1 and 11.15.2]. 

There is no obvious reason for the elements specified in 7.8 to be zero. If 

they were zero, it would be evidence of a rather deep connection between P~ and ~. 

The author's opinion is that there is no such deep connection and that neither 

equation (7) nor equation (6) holds in general. 


