CHAPTER VIII

POWER OPERATIONS IN Hi RING THEORIES

by J. E. McClure

It was shown in Chapter I that an #a

o0

ring structure on a spectrum E induces
certain operaticns i} in E-cohomology. In this chapter we investigate these
operations in some important special cases, namely ordinary cohomology, K-theory,

and cobordism.

In section 1 we collect the properties of the 3% and their intermal wvariants
PB; most of these have already been shown in Chapter I. We also show that the
results of Chapter VII allow one to construct an HS structure on E by giving space-
level operations with certain properties. The section concludes with a brief
account of a multiplicative transfer in E-cohomology which generalizes the norm map

of Evens [35].

In section 2 we show that the general facts given in section 1 are strong
enough to prove the usual properties of the Steenrod operations without any use of
chain-level arguments. In section 3 we show that the same arguments applied to the
pl\X give the Dyer-Lashof operations in Hy(X;Z_ ) with all of their usual
properties; in particular, we give new proofs of the Adem and Nishida relations

spectrum HZ

which involve less calculation than the standard proofs.

In section 4 we show that the power operations in K-theory induced by the HS
structures on KU and KO are precisely those defined by Atiyah [17]; this gives a
rather concrete description of these Hg structures. In section 5 we show that
cobordism operations defined by tom Dieck in [31] lead to Hg structures on the
classical cobordism spectra which agree with their E_ structures; again, this fact
gives a rather concrete homotopical description of the E_ structure. In section 6
we show that the Atiyah-Bott-Shapiro orientations are Hi ring maps; it is still an

open question whether they are E_ maps.

In section 7 we show that questions about Hg ring maps simplify considerably
when the gpectra involved are p-local. We use this to show that the Adams
operations are H, ring maps {(a fact which will be important in Chapter IX) and that
the Adams summand of p-local K-theory is an Hi ring spectrum. We also give a
sufficient condition for BP to be an Hi ring spectirum; however the question of

whether it actually is an Hi ring spectrum remains open.

Notation. In chapters VIII and IX we shall write X for st AX, instead of
XA S1 as in chapters I-VII. We shall also use ¢ to denote the suspension
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isomorphism o S “Emﬂ)i . In particular, if E is a ring spectrum the fundamental
class in B°S™ will be denoted by ™1,

§1l. General properties of power operations

Let E and F be spectira, let n be a subgroup of Iy, and let d be a fixed
positive integer. By a power operation on n4 in the most general sense we mean

simply a sequence "Pn of natural transformations
gdix » pdikp x,

one for each i ¢ Z, which are defined for all X e }1“5 . We shall also call "S’" an
(E,n,F) power operation when it is necessary to be more specific. In this section
we consider the relation between power operations, extended pairings, and H: ring
structures. In particular, we collect the properties of the canoniecal power opera-

tions associated to an Hi ring structure and of the related internal operations.

The most important class of power operations for us will be the operations
/S) . Ed1X N Edl‘)D X
m L

determined by en Hi ring structure on E. As usual, we abbreviate @Z by ?} .

. Joaa
Recall the definition from I84: if x ¢ £y ig represented by f:X » XdlE then
)
§ 4 is represented by the composite

D f . £, s .
D X —t» DX —£,p p¥p Tl pdig,

Our first result collect the properties of these operations.

Proposition 1.1. Let E be an H. ring spectrum and let x ¢ EVX, y ¢ E¥Y, v ¢y,
(1) @ Ppx = (PP B2 xaD 0.

(i1) s*@jkx = 33“] Pox e Ed‘jki(DjDkX)

(111) s U (] = P () ¢ B (xavy,

(1v) R x = e 2z

(v)  If 1 ¢ EOS is the wnit then P1 is the wnit in E(D,S) = E0(Br™).

(vi) If X =Y and i = j then

) ) : * D
@k(x +y) Skx+$ +O(%(ktg’k_g[(:?g'x)(ék_ly)]

in E4KDX, where
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: A
Tl,k—Q'DkX — DQX Dk-zx

is the transfer defined in II.l.4.

. . 1 %k ) ) .
(vii) If E is p-local then S%x = T;T-rﬂx whenever |v| is prime to p, where t_ is

the transfer DX » X'¥) of I1.1.4.
(viii) If E is p-local then

@5(x+y) = E;x + @%y + r;{%fv((x fP o xP o yP

Proof. (i), (ii}, and (iii} are immediate from Definition I.4.3. Part (iv) follows
from Remark I.4.4. Part (v) follows from I.3.4{i). Parts (vi) and (viii} were
shown in II.2.1 and II.2.2, and part {vii) follows from the proof of the latter.

We shall also want to go in the other direction, that is, to start from a set
of operations having certain properties and deduce the existence of an HS ring
structure. Let E be a ring spectrum. We say that a set {'§G}j2 0 of (E, Zj,E)
power operations is consistent if it satisfies 1,1(1), (ii), and (iii). Given a

consistent set of operations 33 on E we can define maps

ai aij
. D,z E z E
55,1 ”

e 1t 1e

by applying 3% to the classes represented by the identity maps zdiE + I
eagy to see that the gj,i form an H: ring structure on E whose induced power
operations are the given 33 . On the other hand, two HS ring structures on E
which determine the same power operations are clearly equal. Thus there is a one-
to-~one correspondence between HS ring structures on E and consistent sets of
(E,Zj,E) power operations.

Next we consider a more general situation. ILet n be a subgroup of Iy and let F
be a w-oriented ring spectrum with orientation u:D“Sd > deF (see VII§3). The
class in de(DﬂSd) represented by the orientation will also be denoted by pu. An

(E,n,F) power operation E?" is stable if the equation
%
(1) CACE S IR RGP

nolds in FAUI*DK(p 5dy) ror a11 x ¢ EYX. 1.1(iii) implies that the (E,n,E) power
operations determined by an Hg ring structure on E are stable. More generally, let
g:DNE + F be any mep {in the terminclogy of VII§3, ¢ is called an extended pairing).
If x ¢ EdiX is represented by f:X » XdiE define f?nx € FdianX to be the element

represented by the composite

D f . (1) .
DX —Twp s¥E . (D“sd)(i)/\ D E A Bk (i) g 0, pdikp,
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where ¢ is the product map for F. ’I‘hen’?1T is a stable power operation.
Conversely, given a stable operation‘?Tr we obtain a map g:DﬂE + F by applying Sbﬂ
to the identity map E + E. Clearly, this gives a one-to-one correspondence between

maps g:DﬂE + F and stable power operations. To sum up, we have shown

Proposition 1.2. {i} There is a one-to-one correspondence between consistent sets
of (E,XJ,E) power operations and HS ring structures on E.
(i1} If F is a w-oriented ring spectrum and E is any spectrum, there is a one-

to-one correspondence between stable (E,n,F) power operationg and maps g:DTr E+ F.

For applications of 1.2 it is usually easiest to work with space-level instead
of spectrum-level power operations. Our next result will allow us to reduce to this
case. Let [ be the homotopy category of finite CW complexes. Let {(Eﬂ)a}aEA be
the set of finite n-subcomplexes of En. By an (E,n,F) power operation on [ we mean

a sequence 3% of natural transformations

F4y 5 14m 7K (En); A, x
a

one for each i ¢ Z, which are defined for all X ¢ . :P" is stable if it satisfies

),

equation (1). A set {P'}'>O of (E,z:,E) power operations on G is consistent if
it satisfies 1.1(i),(ii) and {iii). Recall the cylinder construction Z from VII§1.

Proposition 1.3. (i) Let T be & prespectrum and suppose that each Ty; has the
homotopy type of a countable CW-complex. Let F be a ring spectrum. If the pair
{T,F) is limt-free in the sense of VII.4.1 then every stable (ZT,n,F) operation
on € extends uniquely to a stable operation on };3 .

(ii) 1let E be a ring spectrum and suppose that each Eq; has the homotopy type
of a countable CW-complex and that zE is liml—free. Then every consistent set { @3}

of (E,z,,E) operations on § extends uniquely to a consistent set of operations on

nd.

Proof. For part {i}, let {X B} be the set of finite subcomplexes of Tg; and let
~di >

X, € B X be the class of the inclusion map X + T,:+. The elements
i,8 i,8 ~dik . b8 di ~dik
TPn(xi’B) determine an element of %%@ F2((Em) A Xi,B) and hence of F 7D T,.

by VII.4.10 and VII.4.12. It is easy to see that the maps Ci:Dani > Faix
representing these elements form an extended pairing of prespectra as defined in
VII.3.2. Part (i) now follows from VII.3.4. For part (ii), a similar argument
shows that the set (§§} determines an Hg ring structure on the prespectrum zE and
the result follows from VII.6.3.

The definitions we have given are closely related to tom Dieck's axioms for

"generalized Steenrod operations" [31]. Let E be a ring spectrum. In tom Dieck's
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terminology, a generalized Steenrod operation is what we have called an (E,rn,E}
power operation. His axioms Pl and P2 are 1.1(iv) and 1.1{ii} respectively. In
particular, if E% satisfies Pl then S%xdl is a w-orientation for E. Axiom P3 is
equation {1) above with u = \§%zdl. Thus an operation satisfying Pl and P3 is
stable in our sense (but not conversely). tom Dieck's final axiom P4 will also be
of interest in what follows. If g is a vector bundle over X then Em < qk is a
vector bundle over Em x_ Xk whose Thom complex is homeomorphic to D“T(q). Ify is
an E-orientation for q and §% is an operation satisfying P1 then ﬁ%(v) is clearly
an E-orientation for Er x_ qk. Axiom P4 is the statement that E has canonical
orientations for some clags of vector bundles and that E% takes the canonical
orientation for q to that for En Xy qk. This axiom will be satisfied in all of the

particular cases considered in this chapter.

From now on we fix an Hg ring spectrum E and let ’?; denote the associated

power operations. Let X be a space. Let A be the diagonal map

xaBrt = xap ¥ 5 D (xas%) =D x
" ™ i

defined in II.3.1. We define the internal power operation

~di ~dik

A (X ABr")

to be the composite

YIC .
Ele U 'ﬁdlk

* -
D X A g K x AT,
Since X*A Bx* = (X x Bn)™ we obtain an unreduced operation

Pn:Edlx » B (% « By

Our next result summarizes the properties of the unreduced operations; similar
statements hold for the reduced ones.

Proposition 1.4. Let x ¢ EMX, y ¢ E¥X, « ¢ 7y.
(1) %P x = x¥ e 2k
(i1) Pl =1 e EQ(X x By)
(111) P (xy) = (Px)(Py) e ESHIR(X « By)
(iv) If 1 = j then

¥

P lx+y) =Px + Py + | | ]

(P x)(P
0<e<k

Ty kg k-ly)

. - . _ 1 k¥
(v) If E is p-local and |n| is prime to p then an T T X rnl.
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{vi) If E is p-local then
P (x+y) = Px + Py + 2 [(x+y)® - x® - yP)1(r 1),
D P D p! P

{vii) If = C I is generated by a k-cycle and x' C I, is generated by an ¢-

£
¢cycle then

dikze

*
(1 xy) PP x=P Pxe¢ekE (X x Br x Br'),
m™w w w

where vy:Bwm x Br' » Bn' x By switches the factors .

Proof. A1l parts except (vii) are immediate from 1.1. For (vii} we use the
argument of [100, VIII.1.3]. If we give the set ¢ x ' its lexicographic order we
obtain a faithful action of Ty On it., Let g e Iy be the element which switches
the factors » and +'. The following diagram is readily seen to commute.

g
1" d ﬂfﬂ'( 1 zkle_._.lgli;-z

X kg
c

LY By x Lg
n‘Xn*—d—"'ﬂ'fnC—“”Z Iz ,__2;:_,2

Here d is the evident diagonal and cy is conjugation by g. By 1.1(ii) we have

P LI S @ ( *
v k; E 34 k) L kg
and Slmllarl}’

*
P“P“'x = {1 x Bﬁ,k o1 o0d} szx'

But (1 x cg)*Pklx = Pk x since ¢ :szz > szl is homotopic to the identity.

z g

We conclude this section with a brief description of another kind of operation
induced by Hi structures, namely a multiplicative version of the transfer for
finite coverings. The definition is due to May. First recall the definition of the
ordinary (additive)} transfer. If p:X + B is a j-fold covering then one can
construct a map .
’E:B »> EZJ x. X

I;
d

as in [8, p.1l12}. If x eFiX is represented by f:X + Fi then p,x eFiB is represented
by .
B—Pogr x ® g . (Fy ——F,
J L. j oz, 1 i
J J
where the last map is the Dyer-Lashof map determined by the infinite loop space

structure on Fy. B Now if F is an Hd ring spectrum and if x e Fdix is repre-
o

sented by f:o(x") + zdiF we define Pg* € gdiip to be the element represented by

. . . ., Df . B ..
=57y 22 ). (B3 x, Wyt e D, £ x* -J“vnjzdlr* A FESNPLS
J
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If F is merely H, one can give the same definition in degree zero. Our next result

records some properties of By *

Proposition 1.5 (i) R@} =1, By 0=
(ii) p@(xy) = (pgr) (pyy)
(iii) If q:Y » X is a k-fold covering then (pq)@)= Bede

(iv) ¥ p' gzg for a pullback diagram

X —— & ox

P,k

B— B!

(v) If Y is any space and x ¢ Fdix, ¥ e FA%y then

(1% Dlgly x ) = 111 x 1) Pyl () « pd (14K) (v gy

®

where h:B »+ sz is the classifying map of p.
Proof. Part (i) is trivial and parts (iii) and {iv) have the same proofs as in the
additive case. For part (ii) let £:3°(X") » 19iF ang g (X)) » 1 dkp represent x
and y. It suffices to show commutativity of the following diagram, in which £ has
been suppressed to simplify the notation.

~t D, A D, (f g) :
B 5 X —_J_,Dj (xtaxh) 2 D, (3, 1 %F) o p 310

. J
l A }'6 id \Edj(i*rk)F
t b D.faDl. g /

B'ap’—RAP DX ADX—J—~J~>D2 F»DjzdkF—>szlF'~E®kF

The pentagon commutes by I.4.3 and the remaining pieces by naturality. For part (v}
it suffices by (ii) to show

% . *
(1 x p%a(n ¥) = (1 x h) Py

where w:Y x X + Y is the projection. An inspection of [8, p.112] shows that the

disgram
Fga g

+ + {1 )+ + +
Y AB xR > D (Y7 AX )
luh“ lD.x’

. 3
Y‘I-ABE:k A =D.Y+
3 3

commutes and the results follows.
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Remarks 1.6.(1) Formula {v) is due to Brian Sanderson {also cf. [35, remark 6.2]).
If we let p:X » BZJ be the j-fold cover associated to Ezj + sz and let x = 1 then
the formula gives

(1 x p)@;y x 1} = sjy,

80 that the internmal operation Pﬁ is completely determined by the multiplicative
transfer, an observation alsc due to Sanderson.

(ii) If p:X + B and q:Y + C are any two coverings then p x q is a covering
which factors as (p x 1)(1 x q). We can therefore compute (p x q)ég(x x y) in
principle by using formulas (ii), (iii) and (v), but there is no simple external
analog of formula (ii).

(iii) If F is Hi then \/ XdiF is H by II.1.3. Thus we can define a map
ieZ
o 1 e TI rdip
i'e 2 i'e 4

which agrees on homogeneous elements with that already given. We leave it as an
exercise for the reader to show that if x has nonzero degree then 33(1 + x) has
components p;x in degree [x| and p,x in degree j x| (ef. [35, Theorem 7.11).

{iv) In the case F = Hzp a multiplicative version of the transfer was first
defined by Evens, who called it the norm [35]. It seems likely that this agrees
with Py but we shall not give a proof. Note that in this case one always has

p!p*x = jx, but it is not true that pep*x =x. For example, formula (v) gives
(1 ) (1 [ 1) {1 h)*P y
X X X = X Y
b ] Py J

which is certainly not equal to y~j x 1 in general.

2. Steenrod Operations in Ordinary Cohomology.

In this section we use the framework of §1 to construct the Steenrod operations
in mod p cohomology and prove their usual properties. The construction will be
similar to one given by Milgram [37, Chapter 27], except that we use stable extended
powers instead of space-level ones. On the other hand, the proofs will be quite
close to those of Steenrod and Epstein [100] except that we make no use of chain-

level argumenis.

Throughout this section and the next we write H for HZp, g for mod-p
cohomelogy, and n for the subgroup of Zp generated by a p-cycle. If p is an odd
prime we write m for E%l as usual. For odd primes the spectrum HZp is Hi but

not Hi (see VII.6.1), hence the power operation ‘P_ can be defined in even degrees

p
but not in odd degrees (unless one uses some form of local coefficients). The

operation ??ﬂ does extend to odd degrees, as we shall now show.
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i i .
Proposition 2.1. For each i e Z there is a unique map g:DﬂZ H > Ep H for which
the diagram

(z H) ————“————————’D b H

commutes, where ¢ is the iterated product map. For each i, € Z the diagram

D (slEAzdn) —6——;13“211{ /\D“E'JH
lDﬂcp Eng
D (z ¥ Piy APy

\ Zp(l+J ) ‘¢/

commutes up to the sign (-1ymij |

The proof is the same as for I.4.5. One can in fact replace 7 in this result

by any subgroup of the alternating group Aj, but we shall have no occasion to do so.

Using the map ¢ we obtain an external operation
P itx - #®Ip x
™ b
and an internal operation
P oHX » BT (X ABA ")

as in 81. The unigueness property in 2.1 implies that these operations agree with

those already defined when i is even.

% o
Since 1 5221 e PP is the canonical generator P1, we see that E;zl is an

orientation for the real regular representation bundle
Ew x“(Rl)p + Bm.

It follows that the element y e Hp"an defined by
Iy = PHZI

is the Euler class of the real reduced regular representation (i.e., the sum of the
nontrivial real irreducibles). In particular, y is nonzero since each nontrivial

real irreducible has nonzero Euler class.
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Our next result gives the basic properties of the operation P, . Note that
¥
H (XABt') is an H'(Br)-module.

Proposition 2.2. (i) z*P"x = xP

(1) P xy) = (-0 R 0 (P y)
(iii) P ix = (-1)m|xlx(ZP"x)
(iv) P (x +y) = P x + Py

{v) 8P,x = 0 if p is odd or |x| is even.

Proof. Parts (i) and (ii) are immediate from 2.1 and part (iii) follows from part
(ii). For part (iv) we assume first that |x| is even. Then we may apply l.4(vi) to

get 1 P_ D _ Py *
Pp(x +y) = pr +Ppy + T [(x + ¥y} -x -y ](Tpl)-

* * ¥
But Tpl =1 11=pll =0 and the result follows in this case. If |x| iz odd this

gives
P"(Ex + 1y) = Pﬂzx + P“Ey.

Applying part (iii) gives the equation
1P ap ey = 0Pl x v py)

*
and the result follows since x is not a zero divisor in H Br. For part (v) we need

a lemma. Let g:H + IH represent the Bockstein operation.

Lemma 2.3. The composite
2pi

Dﬁzle & .popig B, ;2pivly
factors through the transfer

7 _:D Z2iH — (EZiH)(p)
St

The proof of 2.3 is rather technical and will be given at the end of this
section. For the moment we use it to prove part (v). Let x e ﬁ21X be represented
by £:1%X » £%3H and consider the following diagram, where we have suppressed I” to

simplify the notation.

D f 2pi

XABrh A _.px ki D }:ZiH £ 22p1H L 8, ZZpJLHH
w w PPt
l 1 Ty ltﬂ lT“ ’,/,’
{p} . e
X A X(p) £ (221H)(p)

The dotted arrows exist by 2.3 and the diagram commutes. The top row represents
8P x. Thus BP x is in the image of the transfer
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* ¥ ok
(16":“) HX > H (Xa B;r+).
But the composite of (1 At“)* with the restriction
* % o
(1a) B (XABr") » H X

is multiplication by p and hence vanishes. Since (1 At)* is clearly onto we
see that (].AT“)* = 0 so that 8P x = 0 as required. Finally, if p is odd and
x ¢ B 1% we nave

0 = 3P“(Ex) = 8(x - ZP“X) = -xoz(sPﬂx}

since Bx = 0. The result follows in this case since y is not a zero divisor. This
completes the proof of 2.2.

Now let x e HIX., 1If p = 2 we define Pix € Hq+iX to be the coefficient of
x31 in P .x. If p is 0dd we define Pix ¢ HI2L(P-1y 1o pe (-1)™1*ma(a-1)/2 tipes
the coefficient of 321 in P x. We also define an element u € BP=?Br for p odd by

the equation Bw = x.

Proposition 2.4. (i) Pi(x +y) = piy + Piy
(i1) Plzx) = zpix
(1i11) Plx = xP if q =21 and pis odd or if q = i and p = 2. Pix = 0
if q < 21 and p is odd or if q < i and p = 2.
(iv) % = x.
(v) If p =2 then szix = P21+lx; in partieular, gx = Plx.

(vi) If p = 2 then P_x = £(Ptx)x3"t. If p is odd then

Pox = 2(-1)PHIAUAL/2(ply)y a2t 4 (1) %gplr)uydTREL,
(vii) Pixy = E(P’jx)(Pi-jY)-

Proof. (i), (ii) and (iii) follow from 2.2(iv), 2.2(iii) and 2.2(i) respectively.
For part (iv), we observe that P is a stable operation of degree O and hence
represents an element of HOH 2 Zp' Thus PO is a constant multiple of the identity
and the result follows since P°1 = 1P = 1 by part (iii). In part (v) we can use
part (ii) to reduce to the case where q is even. The result follows in that case
from 2.2(v) and the relation B8y = xz. In part {vi) the p = 2 case is true by
definition. If p is odd we can use part (ii) and 2.2(iii) to reduce to the case
where q is even. We then have P x = 1*pr. We recall from [68, Lemma 1.4] that the
image of

on*Bs > #¥Br

P

is nonzero only in dimensions of the form 2i(p-l) and 2i(p-1)-1. Thus this Image is

generated as a ring by x and w and we have
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an =3 (_1)mi+mq(q—1)/2[(Pix)xq~21 vy

iqu-21—1]

for some elements Vi € Hq+2i(p-1)+1X‘ Now 2.2{v) imples that y; = (—l)quix as
required. Finally, part (vii) follows from 2.2{(iv} and part (vi). This completes
the proof of 2.4.

Next we shall prove the Adem relations for p odd. We use the method of proof
of Bullett and MacDonald [26, 541, where the case p = 2 may be found. However, in
our context the relations arise more naturally in the form given by Steiner [102].
let U and V denote indeterminates of degree 2p-2 and define S and T by

s = (1 - vigp-1

"

+3
[}

V(1 - uttvyP-l,

We shall prove that the equations

(1) ;o eptoudet oy eletgvisT
i,] i,3
(2) R T L 1

(1 - v 3 erlptovds™ s vl g (Pertavis”
13 '

i,,} i,]

hold for all x. The usual Adem relations can easily be obtained from these as in
[102, p. 163]; the basic idea is simply to expand the right sides of (1) and (2) as
power series in U and T and compare coefficients. The proof of {1} and (2), like
any proof of the Adem relations, is based on the relation

(3} Y*PvP“X = PP x

given by l.4(vii). In order to compute Pnan in terms of the Pi we need to know
more about the element x « HP~1Br. We have mentioned that x is the Euler class of
the real reduced regular representation of =, and that this representation is the
sum of the nontrivial real irreducibles of w. Choose one such irreducible, and let
u ¢ H2Bn denote its Euler class. Then the Euler classes of the remaining
irreducibles {suitebly oriented) are 2u, 3u,...,mu, and thus y = smiu®. The
ambiguity in the sign arises from the question of whether the various orientations
have been chosen consistently, but it turns out that we shall not need to eliminate
this ambiguity. Thus we shall assume y = m!u® (it is in fact possible to choose the
orientations so that this holds) and leave it to the reader to check that the other
possibility leads to the same relations (1) and (2). We define b e HYBr by the
equation gb = u, so that w = mlbu =1, Then the equation 2.4(v) may be written as
follows.

(4) Px = ) (-MPUED20npte o (1) 3(gplope (47,
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Since both sides of (1) and (2) are stable we may assume that q has the form 2r with
r even. We define U = —u2m, so that (4) becomes

(5) Px =] (-1)7Phx + (gplaputiom R

Now 2.2(ii) and 2.2(iv) give

6) PPx=J (-DTP P + (-1 gPix) (P b)(Pw P 1T
kA " K 1 " " T

in H*X ® H*Bvr ® H*Bu. We denote the copies of b and u iIn the second copy of Brn by ¢
and v, and we let V —vP-1, Equation (4) gives the following formulas.

(7) Pb=mllb - uev~ L]y

(8) Pou=uP - wPl = wv - v

9 PU = ~(PwPL = yv - pyPL = yP-ls

(100 ppix = 7 (-1Trpdplx + (gplptyyevh vt

1) e gptx = T (1w Peplx - ((gPY g ey VIR,

We therefore have
(12) PPX= (vPs)* Z[P‘]Pix + (gpIPin) v te (P‘]BPix)(bu_l - o vy - m
+ (gPPixven v vy - ;v dgt,

Now we apply equation (3). We have y*u = v, Y*U =V, and Y*S = T. Since
vPs = UPT = Y*(VPS) we have

* T ooiod Sl vy -1
(13) PPx=yPPx= (P | P/Px - (8P'P'x)DU
+ (Pgptx) (v - pu o - 7 - gpdsptyben v u(uory eI

Collecting the terms in (12) and (13) which do not involve b or ¢ gives equation
(1), and the terms which involve ¢ but not b give (2). This completes the proof.

Finally, we give the proof of lemma 2.3. Let M be the Moore spectrum Sup el
and let 1:S » M be the inclusion of the bottom cell.

lemma 2.5, Hl(D"M) has a basis {x,y} such that (D“i)*x =0, (D“i)*y # 0, and x is
in the image of the transfer

* 1.(p} 1

T _H'M + H"D M.

m ™
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Proof of 2.5. We use the spectral sequence
B (1 (u(P))) = 5D M

of I.2.4. Each of the groups Eg‘l and E%’O is generated by a single element.

The generator of the latter group clearly survives to E_ and represenis an element
Y e HIDNM. Since (i{p))*:HOM(p) > HOS is an isomorphism, so is the map induced by
D“i on El’o. Hence (D"i)*y # 0. Now let z ¢ HMP) be a generator of

H1M® HOM® ves @ HOM and let x = r:z. Clearly, x is represeneted by a generator of

* %
Eg’l, and (Dﬁi)*x = (D i)tz =1 (1(p)) z which is zero since H1S = 0.

Proof of 2.3. Let HZ be the spectrum representing integral cohomology. Then
H= HAM. Let e:S » HZ be the unit and let n be the composite

D (enrl)
DM = D (SAM) —"———=D (HZAM) = DnH—-g—#H.

Let w be the element of HOD“M represented by n. Then {Dﬁi)*aw = ( gince B vanishes
on HOD“S = HOBs. Hence by Lemma 2.5, gw is a multiple of x and in particular it is

in the image of the transfer. Thus we have a factorization

Now consider the diagram

Ay . T’“(EZiHZAM) —L»D £°14z AD M _Ean 2Py .p .8, ;2Piy

2p1
2p1+l
g “ ®

(22 (P = (pPlap A (P o (pRipg) (PIa () 18, 21HZAM(p) éim—»):zPlHZAZH

Dz
ki

The uniqueness clause in 2.1 imples that the composite of the top row is
[ D §21H > zzle, so it suffices to show that the diagram commutes. Part (:)
eommutes by VI.3.10 of the sequel, and the other parts clearly commute.
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§3. Dyer-lashof operations and the Nishida relations

An interesting feature of the treatment of Steenrod operations in §2 is that is
generalizes to give the properties of Dyer-Lashof operations; thus homoclogy opera-
tions are a special case of cohomology operations (ef. [68]). The use of stable
instead of space-level extended powers is crucial for this since homology does not
have a simple space-level description. We give the details in this section; IX§1
will give another approach to homology operations which generalizes to extraordinary
theories. We continue to use the notations of §2, so that H denotes HZP.

First let M be any module spectrum over H and let Y be an arbitrary spectrum.
There is a natural transformation

AMYY + Hom(H,Y,m,M)

defined as follows: if y ¢ 'Y is represented by f:Y » ZiM then Aly) is the

composite ()

*
HY = n (HAY) ——T 7, (HAM) —> 1M,

which is a homomorphism raising degrees by i. Clearly A is a morphism of cchomology

theories. Sinece it is an isomorphism for Y = S we have
lemma 3.1. A is an isomorphism.

Now let X be a fixed H_ ring spectrum with structural maps 63 (for example, X

might have the form 1°z% for an infinite loop space Z) and let M = HaX. Then M is

an Hi ring spectrum with structural maps

. . [ Y] ..
D, (z2im A x) ——6—ij g2iy AD X A PSS IS S PO

and we obtain power operations
Ry 5 ¥ Np y
J J
and Ry MY 5 P (1 « Bz, ).

The operation 72“ can be extended to odd degrees by means of the maps

DwziM = D (HAX) L, D, HAD X €29, ;PlHax
where £ is the map given by 2.1. The unit of X gives an Hi ring map h:H » HAX = M

and hy also preserves :?“ in odd degrees.

Define 5; ZL X and & in M*Bn to be the images under hy of the elements b,u,x
and w in H*Bw defined in §2. Thus i{ = R“Zl. lLemma 3.1 gives the following
isomorphisms for any space Y.
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MY x Br) = (M*Y)[Ix]] if p = 2.

I

M¥(Y x Br) = (M'Y)[[b,ull if p is odd.

Thus we can define operations Riy for y ¢ ﬁqY as follows: if p = 2 let Riy be the
coefficient of Y3~T in Ry, and if p is odd let Rly ve (-1)™*ma(a-1)/2 tines the
coefficient of iq-2i in Ry. Now if Y = &0 there is an isomorphism HqX 2 &'QSO
which we shall always denote by x —>x . We define the Dyer-Lashof operations

QL:H X > HyyyX when p = 2
i, i
Q .HqX > Hq+2i(p~1)x when p is odd

by the equation Qix = R-iz: The properties of Qi will follow from those of R, and
Rl. Our next result gives the basic facts about R

Proposition 3.2. (i) i*Rvy = yP

PEIE

{11} R (yz) = { Ry} R 2)

m
(-1) v X IRy

(iii) RW(Zy)
(iv) R, (y + 2) = Ry +R 2.

(v} B8Ry =0 1if p is odd or |y| is even.

Proof. (i) and (ii) are immediate from the definitions and (iii) follows from

(ii). In the proof of 2.2(v) it was observed that the transfer
* % *
rﬂ:H Y+ H (Y x Br}
vanishes for all spaces Y., By 3.1 it follows that
* % *
T“:M Y+ M (Y % Br)
also vanishes. In particular, the map
* % *
:M (pt. M (B )
5 pt.) > M { P

vanishes. Part (iv) now follows by the proof of 2.2(iv). To complete the proof of
part (v) it suffices to give a suitable substitute for Lemma 2.3. That lemma gives
a map

i (x20) (P), ;PP Y

such that F o T is the composite

. . 2pi .
D“z‘?lH B, poPiy 2T B, PPty
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Consider the following diagram

2 i

1Y .
D (Z H/\X) ——(S——)D 221}{ AD X “L’ZZle AX gaAal 22p1+1HAX
lr T\j:T\\\\‘ ////ﬂ:j o
n n

GRaan® . PP ax(P) 1A, By Plap x

The left part commutes by VI1.3.10 of the sequel and the right part commutes by
definition of F. Thus the top row of the diagram factors through 1,. Using this
fact in place of ILemma 2.3, the proof of 2.2(v) now goes through to prove part (v).

If we now replace Pi, x and w in Proposition 2.4 by R Y and » then every
3
part except (iv) remains true with the same proof. If we replace U,V,S and T in the
Adem relations (equations (1)} and (2) of Section 2) by U = hU, V=1V,

g = h,S and T = h*T then these relations remain true and have the same proof.

Proposition 3.3. (i) Qi(x +y) = Qix + Qiy

(ii) If p is odd then Qlx = O for 2i < |x] and aly = xP for 21 = |x

2 then Qx = 0 for i < x| and olx = x° for i = |x|.

i

If p

(111) 8e*% = @*5 1 irp =2
(iv) olixy) = 7 (@x)(Q ¥y
i
(v) The Adem relations hold: if U and V are indeterminates of dimension
2-2p, S = U1 - v 10)PL ana T = v(1 - Utv)P~! then the equations
;oo - 3 el ovis
i,] i,
and if p is odd
5o@ledonty - a - vty eetdovte
i,,j 17j

Uy 1 (Q:‘LBij)'\fiSj
i,]

are valid for all x.

(vi) If X has the form :”Z% for an E_ space Z and

o:HqQZ > Hq+12

is the homology suspension then Qic = aQi.
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Proof. We shall prove part (vi); the remaining parts are immediate from the
properiies of R'. For any space Z the retraction of Z to a point splits the cofibre

sequence

0 A

178" —» 572" A5z
and gives a map

vig’7 + ZmZ+

Now let Z be an E_ space and let X = 172°, X =372, Ww=:"2)", ¥ =702, Then X
and W are H_ ring spectra but X and ¥ are not. Let g denote either of the

composites
D v A
D“x —r D"X P QUL ¢
L D N
and D W —JL-‘-D“w —W 2w,

where the unmarked arrows come from the H_ structures on X and W. We can use the
maps ¢ to define operations ?{“ in the theories represented by HAX and HAW and it
is easy to see that

(1) (Lav)Ey =R (1av)y

for all y. Now if x e ﬁqszz then x ¢ (HAW) %S c (BaW)™9S, and (1) and the
definition of Qi give
) ﬁn =] (_l)m1+mq(q+l)/2gii x21-q

1

since (1A v)y is monic. The natursl map e:107 + 2 induces a map W » X which
will also be called e. A fairly tedious diagram chase (given at the end of IX§7)
shows that the following diagram commutes.

D W —B D W

T k1
lD €
"
Lz D“X
a ~

z

FEL lw—e————

LW e K

Henee the following diagram commutes, where £:S + £ %H W represents X.

D f
Br’ —T» 2D (7 ¥) D2 % 1D ¥ —w 1 P ALH Lte ; Py, %

A LA llAA 1Az

D zf
D S L D"(E'qﬂﬂa W) —» Dﬂz'qﬂ AD ¥ —> £ Py D %
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The top row of this diagram represents (l,As)ﬂ£§n§_ and the other composite

represents ﬁn(l Ac) Ix . Thus we have

(3) (1me) 2R x = B (1 4e),zx.

Combining this with (1) gives

(4) (1Ave)*2§“§ =R (1ave):zx .

Now the definition of ¢ gives

(5) Tox = (1 Ave),Ix .

Combining (5) and (2) gives

(6) ClAva)*X§ﬁ§>= )} (-l)mi+mq(q+l)/2£g§E§_XZi—q
i

Finally, by 3.2(iii) we have

(7) R (1ave),zx = R zox = (-1)™ 9" (zR ox)
o m L

"

) {_l)mi+mq(q+1)/2zQic

X X21—q.

1

The result follows from (4}, (6), and (7}. This completes the proof of 3.3.

We conclude this section with a proof of the Nishida relations in the form

given by Steiner:

(8) ;o Fdovid - 7 @Faxuird
1,3 i,j
and if p is odd

(9) ] Bledavisd - - wh ) eeBaovitd
i, i,
I RNE o B
+ UV Y (QU8PxUTY
1,

where ?i is the dual of the conjugate Steenrod operation ?i and U, V, Sand T
are as in 3.3{(v}. The usual Nishida relations can easily be obtained from these by
first translating from ?i to Pi and then writing both sides as power series in U
and V; see [102, p. 164]. We shall prove (8) and (9) for p odd; there is a similar
proof for p = 2. The basic idea will be to show that the total Steenrod operation
B — \ z'H
ieZ
is an H_  ring map, and this in turn will follow easily from l.4{vii). To make this

i .
work, however, we need a particular H, structure on \/ $"H which we now construct.
ieZ
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let E*X be the functor H*(X x Bw) on the category of spaces. We denote the
generators of Han and H2Bn by ¢ and v, so that E*X is the polynomial ring
(H*X)[c,vl. E* is a multiplicative cohomology theory and hence is represented by a
ring spectrum E. The projection X x Bnm + X gives a natural transformation
H*X > E*X which is represented by a map g:H » E. Of course, E is equivalent to
\/ £"H with its usual ring structure and g is the inclusion of H in this wedge.
i<0

E

J

Next we define power operations in E*. let ¥ be the composite

. - 3 r3 * I3 .
#ix = ¥xas®) —-']—vﬁzi‘](Dj (XAaBrt)) -A—-ﬁZiJ((DJ.X)ABn*) - “E’lenjx.

It is easy to see that the fP? are consistent in the sense of Definition 1.2 and
thus they determine an Hi ring structure on E by 1.3 (compare II.1.3). The
operation 335 extends to odd degrees since 3% does, and g is an Hi ring map which
also preserves'@% in odd degrees. An inspection of the definitions gives the

following description of the internal operation /?“.
E * o~ + ~pi + +
(10) P1T = {1lAy) P":H (XABr ) » H (XA Brn A Br )

Note that, with the conventions we have adopted, ¢ and v are the generators in the
second copy of Brm in this situation. As in Section 2 write b and u for the

generators in the first copy of Bw; thus g*:H*Bn > E*Bn takes v to u and ¢ to b.

- - * .
Now let F'X be the Laurent series ring (H*X)[[c,v,v Ly = E*iivlny. Fisa
multiplicative cohomology theory and hence is represented by a ring spectrum F, and
the inclusion H*X > F*X is represented by a ring map H + F which we again call g; of

course F is equivalent as a ring spectrum to i?; ziH and g is the inclusion of H

in this wedge. Now observe that the element f??v (H*BEJ)[[c,v,v_lll is a Laurent
series which is bounded above, and that by 1.1(iv) it has leading coefficient
1 ¢ HOBZJ. Hence SDFV is invertible, and it follows that we can extend the
operations @;I to operations §>§ in the F-cohomology of finite complexes. The iag

are consistent in the sense of 1.2 and hence give an Hi structure for F by 1.3.

Next we define the total Steenrod operation t:H » F by letting ty be the
composite p
HIX — T #P4(X x Br) = BP% ——F%,
where the last map is multiplication by (-1)™A"1)/2(51)=q ,"M9 gy 2.4(vi) we
have the formula

i

(11) tyx = ] [g*Pix + (-1)qg*(sPix)cv_1]V‘ s
i

where V = —vP~1 ag in Section 2. In particular, the projection of +t: » \/ I'H on
ieZ
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zzk(P“l)H is PX, Either from the definition or from formula (11) we get the
following equations.

(12) tyec = b - cuvt

(13) tev = u + wPv Lt = w1 - o

(14) 1V = P~ - g hyP-l - g - Pl oo,

t is clearly a ring map, but it turns out not to be an Hi map. However, we have

Proposition 3.4. Let Y be any spectrum and let y ¢ H¥Y. et w = (1 - wv-1ym,  Then
Py = wq@ﬁt*y-

This fact will suffice for our purposes but we remark that by combining it with
7.2 below one can show that t is actually an H_ map. It is certainly not Hi since

it does not preservelga.

For the proof of 3.4 we need a standard lemma.

lemma 3.5. For any space Y the map

* ¥ % ~¥ (D) ok +
U @A :HDY > HY® ®H (YABr )
is monic.

For completeness we shall give a proof of 3.5 at the end of this section.

Proof of 3.4. Since both sides of the equation are stable (H,n,F) operations in the
sense of 1.2 and 1.3 it suffices to show that they agree on finite complexes. By
3.5 it suffices to show

* * F
1 t* ?ﬂy =1 Wq @“t *y
and

- o3pF
(15) t*P"y =y P" b,y

for all y. Since *w = 1and t is a ring map the first equation follows from 1.1
(iv). For the second, we first let y = £l. Then

tyP Il = %, (xo21) = (t,x)«(t,z1) = xw-Il
while

F F ~
WP" t,I1 = an gyl = wg*Pﬂzl = wy+2l.

Since xw is not a zero divisor, it suffices to show (15) when q is even, say
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q = 2r. Then as elements of (H*Y)[[b,c,u,v,v'lii we have

= (_1yF, \—2r -2mpr _ ypr
Py (-1 {ml) Tv P“P“y v P“P“y
and
2r F __2r * -r
w P“t*y =W (1Ay) PW(U P“y) by (10)
-’ — - *
= WPl oo )T ) PPy

= V'prPnP“y by 1.4(vii),

and the result follows.
If we let y be the class of the identity map H » H we obtain
Corollary 3.6. The diagram

D H e H
"

e l
o

D R — o
w
commutes, where the unmarked arrows come from the H_ structures of H and F.

Now let X be an H, ring spectrum. Then, as we have seen, HAX is an Hi ring

spectrum and there is an operation
R :(HaX)Y > (Ha X)PID ¥
for Ye hd . Similarly, FAX is an Hi ring spectrum and we obtain an operation
RY:(FAX)% » (FAXPD Y,
The unit of X induces H ring maps h:H + HAX and h':F » FaX,
Corollary 3.7. If Y is any spectrum and y ¢ (HAX)YY then the equation
(tALRY = Wit al)y
* - *
holds in {FaX)Pdy,
Proof. For q = O this is immediate from 3.6. If y = £l we have
F
(tAl)*’}a”El = (LAl)y R DyIl = hyty oL = wR (tAl)yzl

by 3.4. For gemeral y let z = £ %y « (H~rx)%(z"%). Then v = (z1)% and we have
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(bal)y 2y = (141),6 (R 1192 2]

¥ q oF .q F
8 [wi(R 11)°R (tal)yz]

apF
w R"(t Al),y

as required.

Corollary 3.7 gives the following relation between the internal operations.
(16) (tA1) By = wirl(tal),y
¥ " *

To prove the relations {8} and (9) one simply evaluates both sides in the special
case when Y is a point. Flrst we recall that the operatlon in homology induced by
Pl » 3210~y 16 pot P but its conjugate P* Since B = -8 we have in
partieular 8z = -8z . Thus (11) gives

(17} (tal),z = § [g*Fiz - (~1)qg*B_P;i‘z ev hivt
i [——

for any z ¢ HqX. Now let x ¢ HqX, ¥y = x. Then we have

(BAL)R y = (tal)y | (-1)PHED2 (0 gl o (1) 3pe )ou ™ 1y
A]

o

= (-1)PHO2 013795 ((4a2), 0 x-(-1) (A1) 8@ x (4,0) (£,v) L] (8,0) 5,1

J
(18) = (-l)mq(q+1)/2(ml)_qu-mq-w_q‘i. [@‘inx - (-l)qsﬁinxcv_l
i
- (—1)q?iBij(bu—l— v hya - wh s sﬂi‘BQ‘j woeu w1 - o siyt
On the other hand, we have
w—qRi(thl)*y = w-qRijz [g*%)i - (—1)qg*fﬁ"i;xcvml1V"j

w9y (R Fx - (-1 Ry (Pfe) ey hypivy I
J

(19) = (c)PUWD2 (0% P9y iRy - (<199 polBxou
i,

+ (1% B xmuov ) (107t T ogeteB e e (107t ot

If we collect the terms in {18) and (19) not involving b or ¢ we get (8}.
Collecting the terms involving b but not ¢ gives (9).
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It remains to show 3.5,

Proof of 3.5. Let p be odd; the p = 2 case is similar. We use the spectral
sequence 1.2.4
i B xP) ) — Y (D X).
¥
let {x } ., be an ordered basis for H X. ILet [af denote the degree of x . The
o oo
graded group K (X(p)) = B (0% has the basis {Xa ® ¢+ ® X | apseendy €A} and
1 p
the E,-term has a basis consisting of representatives for the elements
1 = mina, # max ai}

{in particular, the spectral sequence collapses, as we also know from I.2.3). Hence

{beul@"xa| «ch, e=0o0rl,i>0} and {rﬂ(xﬁ@ e ®x e

P’ ¥
these elements form a basis for H (D"X). let 2 € H D"X be a nonzerc element with

* *
12 =A2=0. Since 1"z = 0, z is a finite sum of the form

e i
) Aa,E’ib u ?"xa.
[

x o,€e,1
Since Az = 0, we have
(20) 0= ) A __ PP x
oy, ©€ T
=y pdmlelUal-i/zylaly o imfal-2ime oy gy ladgply ypal
a,e,1 a a
by equation (4) of section 2., Now let K be max{i+mla] Ixa .4 70} and let S be
i
the set of triples {a,e,i) with 2 ., # 0 and i+m|o] = K. Then the coefficient
4 a,e,1
of u¥ in line (20) is
) (-pymlaltal-D72 el 0 ey

< i o
{a,e,i) ¢ S %8s

sinee all other terms in line (20) involve smaller powers of u. But this is a

contradiction since the X, are linearly independent.

§4. Atiyah's power operations in K-theory

In this section we show that the power operations in KU and KO defined by
Atiyah [17] give HS structures for these spectra which agree with those con-

structed in VII §7. We shall work with complex K-theory, but everything is similar
for KO.

We begin by recalling the definition of Atiyah's operations. Let G be a finite

group. If Y is a G-space let Vect,Y be the set of isomorphism classes of
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equivariant vector bundles over Y; we write Vect Y for the case where G is the

trivial group. If Y is a free G-space there is a natural bijection
VectoY = Veet{Y/G)
(see [18, 1.6.1]). If Y is any G-space we write A for the composite
VectgY + Vectn{EG x ¥) » Vect(EG xg 1),

where the first map is induced by the projection EG x Y » Y. The map A is additive

and hence if Y is a finite G-complex we obtain a map
KGY > K{EG Xa Y)

which will also be denoted by A. Now if X is a finite nonequivariant complex and we

let zj act on ¥ by permuting the factors then the j-fold tensor power gives a map

/3). Veet X » Veot_ ¥ + K_ ¥
3 z. b
J J
which however is not additive. In order to extend it to virtual bundles and to the
relative case we must use the "difference construction®™ [94, Proposition 3.11. Let
(Y,B) be a G-pair and consider the set of complexes

d d
0 «— EO -&JL~ El _—— eee 4 En 4~— 0

of G-vector bundles E; over ¥ which are acyclic over B. We write pG(Y,B) for the
set of isomorphism classes of such complexes. Two elements Ey and Ej of IBG(Y,B)
are homotopic, denoted Ey = E;, if there is an element Hy &o(Y x I, B x I) (with G
acting trivially on I) which restricts to Ey and E} at the two ends. We say that Ey
and E}f are equivalent, written Ey ~ E;, if there are complexes Fy and F; which are
acyclic on Y such that

Ex @ Fy ~ E! @ Fl.
It is shown in [94, appendix] that there is a natural epimorphism

r:8,(Y,B) » Ky(Y,B)

which induces a bijection from the equivalence classes in Jg(Y,B) to K5(Y,B). If B
is empty T is easy to describe: it takes Ey to (-1)iEi. I is additive and
multiplicative if we define addition and multiplication in ‘3G to be the direct sum
and tensor product of complexes. Now if (X,A) is any pair of finite CW complexes
the j-fold tensor product of complexes give a map

p(X,8) > B ((X,8))),
J
If Ey and E; in B(X,A) are homotopic by a homotopy Hy then the restriction of

}gfga along the diagonal map
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(X,A8 x I » (x,8) x I

gives a homotopy between Eg)jand (E;)C)j. If Fy is acyclic on X then the inclusion
(E*fj I, (£, ® F*fa I s I, -equivariantly split and is a homology equivalence by
the Kanneth theorem, so that ﬁg‘j ~ (E*(D F*)@)j. It follows that the j-fold
tensor product preserves equivalence and we can pass to equivalence classes to

obtain a map

333 K(X,A) > Kg((X,000).
Letting A be the basepoint * of X we write 3% for the composite

B = K(EL,%) —= K (%)) 3‘*—»1{(Ezj x, (X,%)9) = %D, X.
3 3
We can extend @5 to all even dimensions by letting it take the Bott element

be K_Z(SO) to od. It is easy to see that the @3 are consistent in the sense of
1.3, so by 1.2 and 1.3 we have

Theorem 4.1. KU (resp. KO) has a unique Hi (resp. Hﬁ) ring structure for which

the power operations are those defined by Atiyah.

3

We shall see in Section 6 that the Hi gtructure on KO extends to an H4

structure. Our next result answers an obvious question.

Proposition 4.2. The structures on KO and KU given by 4.1 are the same as those
given by VII.7.2.

For the proof we need a lemma.

Lemma 4.3. Let X be a based space and let 2:X" + X be the based map which is the
identity on X. Then
(D, 1) FD.x » F (D, (x1))
2 : X .
J J J
is a split monomorphism for any theory F.

Proof of 4.3. If vir™X » £"X' is the map given in the proof of 3.3 then
* * w0 *

D, v) {D,A) = (D. = 1.

{ Jv) { ) ) { J(E X o v}

\

Proof of 4.2. Let '53 be Atiysh's power operation and let @3 be that given by
VIi.7.2. By VII.7.7 we have

?j'(zzb) = %'2:21)-1)3

while by 1.1{(iii) we have
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\ o\ oy
(22‘0) = 33.221)- Po.
Since .P b 1 is an orientation for the Thom complex D 52 this 1mp11es

j}b = tp ='$3b. It therefore suffices by 1.3 to show that f? and 5 are equal on

® for any finite complex X, and by 4.3 it suffices to show that they agree on
K(X+) = KX. They do agree on Vect X by [71, VIII.1.2]. But any element x of KX

can be written in the form V-W with V,W ¢ Vect X, and we have
Pw ®
®jv=?j(x+w) Dx + w+i£1 RIS ACC IR}

by 1.1(vi), and similarly for i?: Hence
J

Pr-Pv-Pu-'] P P
PR A TCA TR R NN ISR

im 1A
i ! 1
and similarly for j}. We therefore have ng ={ng by induction on j.

By analogy with Section 2 we now ask what operations in K-theory can be

obtained from the internal power operation
P.":KX » K(X x Bm)

The structure of K(Bm) has been determined by Atiyah [16): X(Br) is a 2p4modu1e
and the composite
A®1

m(n)®%p K(Bﬂ@%p——-K(Bn)

is an isomorphism, where IR(w) is the augmentation ideal. If p is the automorphism
group of 7 then the invariant subgroup K(Bw)°? is generated by A(N-p), where N is
the regular representatlon of m. Atiyah also shows that Kan = 0. In particular,

k*Br is flat over K" (pt) and we obtain a Kunneth isomorphism
KX ® K(Brn) = K(X x Bw)

for finite complexes X. Since P" is the restriction of P_ we see that PTr actually

lands in the invariant subring XX ® K(Br)P. We can there?ore define operations
¢P KX » KX

and oP:KX > KX x ip

by the equation

(1) Px=¢Px®1+ePx®A(N-P).

By 1.4(i) we have
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(2) ¢px = xP,
Atiyah proves the relation
(3) pePx = xP - ¢Px

in [17]. 8ince the representation N of 7 is induced from the trivial representation

of the trivial group we have A(N) = t 1 and therefore (1), (2) and (3) give
(4) Pox = Wr®l+6Px® 1,

an equation which will be used in §7.

We can in faet 1ift 6P to XX by using the equivariant internal operation ?%.
This is the composite =
KX ]

*
K (xP) Lk X,
m m

where A is the diagonal map from X with its trivial m-action to XP with its
permutation action. Clearly P, =ho ?;. Since n acts trivially on X, we have
K"X = K{ ® Rn. The p-invariant subring of Rn is generated by 1 and N-p, so we may

define 6Px as an element of KX by the equation
?ﬂx=xp®1 + 6Px @ (N - p).

The operation ?; satisfies the obvious analog of 1.4 and one can use its properties
to obtain additivity and multiplicity formulas for 6P and yP {using equation (3) as
the definition of wp), One can also obtain the G-equivariant Adams operations in
this way by starting with a G-complex X and constructing operations

. J
GZ.KGX > KZjIG X

exactly as before. The reader is referred to [34] for details.

§5. tom Dieck's operations in cobordism

In [31], tom Dieck constructed "Steenrod operations" (power operations in our
terminology) for the cobordism spectra associated to the classical groups. In this
section we use these operations to give Hg structures for these spectra. 4 wider
class of cobordism spectra will be investigated by lewis in the sequel, and he will
show that they have not just H_ but E  structures. His resulis do not quite include
those of this section, however, since his methods do not give the "d-structure"

{i.e., the Ej-orientations) for the classical spectra.

Throughout this section we write G for any of the classical groups 0, SO,
Spin®, U, SU, Sp or Spin. Let d = 1,2,2,2,4,4,4 respectively. We depart somewhat
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from standard notation (in this section only) by writing G(i) for the group which
acts on RY, Iet Py be the universal G(i)-vector bundle over BG(i), let S(pi) be
its fibrewise one-point compactification, and let T{p;) be the Thom complex obtained
by collapsing the points at ». We shall always identify prineipal G{i)-bundles with
free G{i)-spaces, so thet the principal bundle associated to p; is EG{i). If q is
any G(i)-vector bundle with principle bundle @, there is a bundle map F:q + P; and
induced maps S(F):5(q} » 8{p;) and T(f}:T(q) » T{p;). If F' is another such map we

shall need to know that T(F') is homotopic to T{F) ({of course this is well-known
di
1) B

for the maps of base spaces induced by F and F'). Now F has the form F ox
Sd1 , and similarly for

for some G(i)-map F:Q » EG(i) and S(F) is equal to F Xa(1)
F' and S(F'). It is shown in [32] that there is at most one G(i)-equivariant
homotopy class of G(i)-maps from any G(i)-space into EG(1), so it follows that S(F)
is homotopic to S(F') by a homotopy preserving the base points in each fibre, and

hence T(F) = T(F') as required.
Now we define the Thom prespectrum TG by letting (TG)di = T(pi) with

!
0:L T(Pi) > T(pi+1

)

induced by any bundle map from Py @ i 1o Pj+1+ We wish to show that TG is an

Hi ring prespectrum. For this we need some bundle theoretic observations.

let p be a G(i)-vector bundle over X with associated principal bundle P. Then

Ezj xz‘;J is a vector bundle over Ezj xz.xig we wish to give it a canonical G{ij)-
J J

bundle structure. Iet H = G(1)9. Then p) is an H bundle over ¥ with principal

bundle PJ, and Zj acts on everything on the left. However, its action on P does

not commute with the right H-action (¥ is not a “zj—equivariant principal H-

bundle"). Instead we have o(ph) = (op)(ch) for o €Iy, P er, h e¢H. Now let

Q=H xn G(ij). This is a principal G(ij)-bundle over ¥ with associated vector

j on (Rdi)j 1lifts

to a homomorphism Iy + G(ij) denoted o >3, and we have g(h) = Ghe 1 for all

bundle }J. Because of our choice of d the permutation action of &

h e H. We define a left action of zj on Q by olp,g) = (cp,;é); it is easy to check

that this action is well-defined and that it commutes with the right action of
G(ij). Thus Q is a %; ~equivariant principal G(ij)-bundle and hence so is its

pullback Ezj x @ to Ezj xz‘xﬂ. Since zj acts freely on EEj x @ and commutes with

G(ij ) we can divide out by its action to get a principal G(ij)~-bundle Ezj %5, @& over

ELy x5 ¥ . The reader can check that the associated vector bundle is Ezs x%' .
J J

Since T(Ezj xE_;J) is naturally homeomorphic to QjT(p) we obtain maps
J

Cj,i‘Dj(TG’di = (B, XXJ_ p’i) —-'-T(pij) = (frc;)d].J

for all i,j > 0. The diagrams of Definition VII.5.1 commute since in each case the
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two composites are induced by bundle maps into a universal bundle. Thus we have
shown

Proposition 5.1. The maps ¢j,i are an Hd structure for TG.
LA LAt AL , w

Now define MG = Z(TG). Every G(i)-vector bundle q has a canonical Thom class
in this theory represented by the map

T(q) —= T(p,) L (MG) 44

At this point we need some liml information.

Lemma 5.2. Allof the pairs (TG,MG'), (TG,KU), (TG,KO), (TG,ku) and (TG,k0) are

liml—free.

Proof. First consider (TG,MG'). The pair (TU,MU) is clearly liml-free since the
spectral sequence Er(TU213MU) collapses for dimensional reasons. For each other
choice of G and G' there are maps f:MU » MG' and g:TG +» TU satisfying the hypotheses
of VII.4.4, hence each pair (TG,MG') is liml-free. A similar argument gives the

remaining cases.
Corollary 5.3. MG is an Hg ring spectrum.

On the other hand, it was shown in [71,IV$2] that MG has an E_ ring structure.
Such structures always determine H_ structures, as mentioned in I§4; see [Equiv,
VIIS2] for the details. Let g?:?jMS + MG be the structural maps cbtained in this
way and let g? be those obtained from 5.1 and 5.3. As one would expect, the two

structures agree:

Proposition 5.4. For each j, g? = g?.

Proof. We use the notations and Definitions of VII§8. Fix i and let a = as- It
suffices to show that the elements z? and z? in cobordism represented by the
composites (EE)
() «x ja
T(ni)/\zj T(pi) —>(DJ.M})a (MG)a

(g.)
T(ny) A, T(p )9 o (Dae) —125 (o)
5 i j a a
are equal. An inspection of the proofs of [71, IV.2.2] and [Equiv. VII.2.4]
shows that the second composite is induced by a bundle map from Ny C)(pi)j into
the universal bundle Dy, hence z? is the canonical Thom class in

MGa(T(ni)/xz T(pi)(J)). On the other hand by Proposition VII.8.1 there is a
J
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relative Thom isomorphism

. a () a+dij &, J
¥:{MG) (T(ni) A (T(pi) ) ——» {MG) (z T(E):J. le(pi) B

J J
which takes zg to the canonical Thom class in the target group. Since the
canonical Thom class of a Whitney sum is the product of the Thom classes, the
relative Thom isom?rphism ¥ takes the Thom class of T(ni)’\z.(T(Pi}(j)) to that
of :MEr, x; (p;))). Thus vz = vz’ and the resuts rollowb.
d

We conclude this section with a discussion of cobordism operations related to
P“. The situation in unoriented cobordism is quite simple: there 1s a
Kinneth isomorphism

MO¥(X x BZy) = (MOX)[lx]]
where y is the MO® Euler class of the Hopf bundle, and we can define operations

. +1
rlamox » ot X
for i ¢Z by the equation

_ ot i q-i
Px = % (Rx)y ™ .

One can prove various properties of the rl exactly as in §2 {see [31, §15]).

To deal with the case of complex cobordism we need some formal-groups notation.
let F(x,y) be the formal group of MU and let [n](x) be the power series defined
inductively for n > 0 by [11(x) = x and [n+1]}(x) = F([n)(x),x). There is a
Kunneth theorem due to Landweber [491:

MUS (X x Ba) = (MUTX) [{ull/(pl(w),

where u is the Euler class of a nontrivial irreducible complex representation of w.
The power series [p](u) has leading term pu but is not divisible by p, so that in
particular MU*Bn is torsion free. We cammot continue as in the unoriented case
since the power series [pl(u) and the ring MU*Br admit no simple deseriptions.
There is however a relation between Pﬁ and the Landweber-Novikov operations 8y which
is due to Quillen and was used by him to give a proof of the structure theorem for
M. Let aj(x) for j > 1 be the coefficient of yj in the power series

o [

p-1
| ] F([il(x),y). For a multi-index o = {ay,.+.,0;) let a(x)® = a. (x) .. ak(x) K,
i=1

Define y eMUQP_2Bw by the equation x-zzl = P"zzl; thus y is the Euler class of

the complex reduced regular representation.
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Proposition 5.5. For any finite complex X there is an integer m > O such that the

equation

(1) (Px)" = ] (Sax)a(u)axm_lal
laf <m

holds for all x € MU23X.
For the proof see [93] or [11]. There is a similar relation between PTr and Sy

in the unoriented case. Since the right side of equation (1) is additive in x we

have

Corollary 5.6. (P ) (x+y) - Pox —Pny)-xm = 0 for large m.

86. The Atiyah-Bott-Shapiro orientation.

It is well-known that the KU and KO orientations constructed by Atiyah, Bott

and Shapiro in (19} give rise to ring maps
¢U:MSpinc + KU
and $9:MSpin » KO

In this section we shall prove

Theorem 6.1. ¢U is an Hi ring map and ¢O is an Hi ring mep.

Remark 6.2. MSpin actually has an H4

©

with VII.6.2 we see that the Hi structures for KO and kO constructed in §4 and in
VII§7 extend to Hi structures.

structure, as shown in §5. By combining 6.1

We shall give the proof of 6.1 only for ¢O, which will henceforth be denoted by
¢; the remaining case is similar. If p is a Spin(8i)-vector bundle we denote its

Atiyah-Bott-Shapiro orientation in KO(T(p)) by u(p).

First we translate 6.1 to a bundle-theoretic statement. As usual, let pg; be
the universal Spin(8i)-vector bundle. If X € BSpin(8i) is any finite complex, we

obtain an orientation class

u(pgq [X) %(T(p8i|x)).

These classes are consistent as X varies, hence by 5.2 and VII.4.2 they determine a

unique class in Eé(TSpingi) which is represented by a map

ui:TSpin8i + BO x Z.
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The sequence {u;} is & map of prespectra, and ¢ is defined to be Z{us} (see
VII§1). The multiplicative property (19, 11.1 and 11.3] of the Atiyah-Bott-Shapiro
orientation implies at once that {ui} is a ring map, and hence so is ¢ by 5.2 and

VII.2.3. Similarly, Theorem 6.1 is a consequence of the following property of u.

Proposition 6.3. If p is any Spin{8i)-vector bundle then

u(Ez, xzj P o= ®.up),
o)

where dj is the power operation defined in §4.

In the terminology of §1, Proposition 6.3 says that 3} satisfies tom Dieck's
axiom P4. +tom Dieck gives a simple proof of the analogous statement for the KU-

orientation of complex bundles in [31, §12].

For the proof of 6.3 we need to recall several technical facts from {19]. The
first is the "shrinking" construetion in £(D,Y). Let

d d
E,: 0 d4—F. 42 E s ree €« § e—0
* 0 1 T

be a complex of real vector bundles over X which is acyclic over Y. Choose

Euclidean metrics in each E; and let 8;:E; ; » E; be the adjoint of d; with respect
to the chosen metrics. ILet

D

s(E,): 0 +— s(E),«— s(E) «— 0
be the complex with s(E)O = ® B, s(E), = ® E, , and differential
i even i odd

D(el, 83,---) = (dleL, 6261 + d3€3, 6493 + d565’°")

Then s(E) is in #(X,Y) and it defines the same element in KO(X,Y) that E does (see
[19, p.22]). The same construction works G-equivariantly provided that the chosen
Euclidean metrics are G-invariant.

Next we need the Clifford algebra Cy. By definition, Cj

tensor algebra T(r}) by the ideal generated by the set {x® x - ﬂxn2-1}x e R'}. The

is the quotient of the

grading on T(Ri) gives Gy a Z,-grading by even and odd degrees and we will write
B for the Z,-graded tensor product of two Z,-graded objects. By a module M over
Ci we mean a Zz-graded real vector space with a map

C;y B M+ M

satisfying the usuel properties. Equivalently, such a structure is given by two
maps

R:.L®MO+M1
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and Rl oM 50,

each denoted by x ® mi—» xm, such that
2

(1) x(xm) = -ix1'm

for all x,m. In particular, the latter description shows that if M is a Ci~module

and N is a C,j ~-module then M N is a Ci+j ~-module with

(x®y)m@n) =xmen + (—1)|m|x®yn

for all XERi, ¥y st, meM, neN. If M is any module over C; we can define a

complex

E(M) : 0 — £ (u) <& E, (M) «— 0

of real vector bundles over R- by letting Ey(M) = R x MO, B (M) = B Ml, and
d(x,m) = (x,xm). Equation (1) shows that this is acyclic except at 0, and in

particular it defines an element of KO(Di,Si"l).

We can now define two complexes over (rly ,namely E{M J) and the external
tensor product E(M) ® J. The first has length 2 and the second has length j+l. We
need to be able to compare them.

) ®J

Lemma 6.4. The inmer product in E(M can be chosen so that S(E(M)® J) is

: B

isomorphic to E(M ) .

Proof. It is shown in [19,p. 25] that one can choose immer products in M and M so
that the adjoint of x> M is -x:M° » M} for each x € RL. We define an inner
product in M ®J by

ses ! ses ! = I> ese '
<Inl ¢4 @mj s m1 @ 2 mj> <ml,ml> <m'j ’mj>

. Then s(E(M) *J) and
EM®J) clearly Involve the same two bundles, but they have different

with the understanding that <m,m'> = O if |m| # |m’

differentials, say 4 and d'. The definition of the shrinking construetion gives

d{x,m, ® <+ ®mj) =

|ml|+...+|mi|-1

B
kzl (~1) (X,m) @ eec ®m;_; @XM @M, & +o0 ®mj)

: 14 . s ®J :
if =% @ +.. 8 Xy e¢{R")¥, while the definition of M as a ij -module gives
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d'(X,ml R see ®mj) =

3 lm 1+...+lm_ i
} (- ! -1

k=1 om @ +e @my ; @x;m Bmy,y @ oo Omy e
The required isomorphism is given by taking (x,ml @ e ® mj) to itself if
fmy] + «oe ¢ ]mj] is congruent to O or 1 mod 4 and to its negative in the remaining

cases.

Next we recall that Spin{i) is a subgroup of the group of units of C; (in faet
this is the definition of Spin{i) in [19, p.8]) and that the resuliing conjugation
action on RF C C; agrees with its usual action on RE, We can therefore define an
action of Spin(i) on E(M) through automorphisms by g{x,m) = (gxg'l,gm). Now if P is
a principal Spin(i)-bundle over X with associated vector bundle

p:V » X we can define a complex E(M,P) over V = P Xspin(i) r by
E(M,P) = P Xspin(i) E(M).

This complex defines an element of J¥(BV,SV) and hence of I'{\é(T(p)). If P is a
G-equivariant principal bundle for some G (i.e., G acts from the left on P and
commutes with the right action of Spin(i)) then E(M,P) has a left G-action and
defines an element of fK‘éG(T(p)). If G acts freely on P we can divide out by its
action , and it is easy to see that the quotient complex E(M,P)/G is just E(M,P/G).

Atiyah, Boit and Shapiro specify a module X over 08 for which E(\) represents
the Bott element in %(88) (see [19, p.15]), and if P is a principal Spin(8i)-bundle
they define p{p) ¢ I?G(T(p)) to be the element represented by E 1p).

From now on we fix 1, P and p and denote A i by M. Let q = p5I with its
permutation action by 23 and let Q be the associated ):j -equivariant Spin(8ij)-bundle
as defined in Section 5. To prove 6.3 it suffices to show that E(MJ,Q} and the
external tensor product E(M,P) ®J define the same element of %B;j (T{q)). We can

describe these complexes more simply: the first is

P« ru®J)
Spin(81)
and the second is

(EM) ®);
* Spin(8i)d

in each case L acts through permutations of both factors. Now it is shown in [19,
p. 25] that the inner products on MO and Ml used in the proof of Lemma 6.4 can be
chosen to be invariant under Spin(8i), hence the inner product on E(M) ®J used in
the proof of that lemma is invariant under both (Spin(81'.))j and Zj , and so is the
isomorphism s(EM®J) = g B ). It follows that s(E(M,P) ®'j) is isomorphic to
E(m B ,Q) as required.
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§7. p-local H  ring maps.

In this section we make some general observations about p-~local H_ ring maps
and apply them to show that the Adams operations are H_  ring maps and that the Adams
summand of KU(p) is an Hg ring spectrum. We also obtain a sufficient condition for

BP to be an Hi ring spectrum.

Throughout this section we let p be a fixed prime and let » C I, be generated

p
by a p-cycle.

Lemma 7.1. Let F be a p-local spectrum and let Y be any spectrum. The map
* % *
P (D, Y F{D.D Y
B (Jp)+ (.]n)
is split monic, and if j is prime to p the map

* ¥ *
a ﬁ‘%Y<>F(YAD. Y}

3-1

is split monic.
Proof. The subgroup Zj f w of ij has index prime to p, and hence the composite

B (5, ;M) —=H (5, /2 ;M) —Sw H (2, ;M)
ip’ i*tp’ Jjp’

is an isomorphism for any p-local ij—module M. Thus

* 1* *
FD Y—»FD Y
ip L. Jr
J
is split monic by I.2.4. The result for B* follows since g factors as

D,DY =D
b

Y =D Y
3 "

.S Y

Jd

and the result for o is similar.
As an application, we have

1
Proposition 7.2. ILet E and F be HS ring spectra with power operations ?% andlgg.
Suppose that F is p-local. Let f:E + F be a ring map such that the equation

~1
(1) £, 0%, =8 o,
nolds on E4Y for a1l i ¢Z and all spectra Y. Then f is an HS ring map.

\
Proof. We shall show that f, o G’J =’% o f, for all j by induction on j. This is

trivial for j = 1 since 1 is the identity. Suppose it is true for all k < j. If
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' t
is prime to p we have a*f*@jy = (f‘*y)(f‘*@j _,y) end a*@jf*y = (£, (f)j_lf*y)
E3 ¥ t E] t
If j has the form kp we have B8 f*<§3y'= f*f?k<§;x and 8 <?jf*x =<§&’§;f*x. In

either case the result follows from 7.1 and the inductive hypothesis.

Under the usual limt hypotheses, it suffices to check equation (1) for spaces
of for finite CW complexes. However, for actual calcualtions it is much easier to
deal with the internal operation P7r than with (Ei. Our next result allows us to
reduce to this case when we are dealing with spectra like XU or MU.

Proposition 7.3. Let F be a p-local spectrum such that n.F is free over Z(p) in
even dimensions and zero in odd dimensions. Let X be a space such that Hy(X;Z) is
free abelian in even dimensions and zero in odd dimensions. Suppose that X end F

have finite type. Then the map

* * % ~¥ ~¥
v ®a :FD X F P o ¥ xamh
is monic.

¥
Proof. First let F = HZ(p). The Bockstein on H (DHX;ZP) is given by II.5.5 and

~¥
it follows that E, = E_ in the Bockstein spectral sequence. Thus H (DKX;Z } is a

(p)

direct sum of copies of Zi ] and Z,, so it suffices to show that the maps

’
h*@;)®deh @a)@% ;emMm %r&eﬁmtmo&wwtﬁtﬁ@Q
is a split injection by a simple transfer argument. For the second we use 3.5 and
the universal coefficient theorem. Thls completes the proof for F = HZ( ) For the
general case, we observe that (D A induces a monomorphism on E2 of the Atiyah-
Hirzebruch spectral sequence and that the spectral sequences for X(P) and XABr*
collapse for dimensional reasons.,

Our first spplication is to the Adams operation

X,
$ 'KU(p) > KU(p)

with kX prime to p. This is well-known to be a ring map.

Theorem 7.4. If Y is any spectrum and y ¢ KU?DY then ¥ Q? y = k_jn(§3(kpwky). In

particular, w is an H_ ring map but not an H ring map.

Proof. Let @y 'Jn(? Ky for y K°UY. We must show ? @ ;p The(? are

consistent in the sense of 1.2 and thus define another Hz structure on KU(p) (Whlch

ggrees with the standard H_ structure but has different za~or1entatlons). By 7.2 it
suffices to show w GDw , and by 1.3 it suffices to show this for finite com-
plexes. Since w is a ring map we clearly have 1*wK§; = 1*<?;wk’ so by 7.3 it

suffices to show
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(2) kaﬂx - P;‘zpkx

for all x eKan whenever X is a finite complex. If x is the Bott element b then
wkb = kb and P b = bP sc (2) is satisfied in this case. Thus we may assume n = O.
Since wk is a stable map it commutes with the transfer, and thus (2) will follow
from equation (4) of section 4 once we show that wk commutes with 6P. It suffices
to show this for the universal case BU x Z, and since K(BU x Z) is torsion free it
suffices to show that wk commutes with pep. But this is immediate from equation (3)
of Section 4.

Next we recall the Adams idempotents

E + KU a

a %) () 2%

defined in {5, Lecture 4]. These idempotenis split off pieces of KU(p) which we
shall denote by LO""'Lp-E' Thus the idempotent Ea factors into a projection map
and an inclusion map:

r s
KU 2,1 —E.gy
{p} a {p)
i = . i 3 = o eee V .
with rps, = 1. Since ) Ea 1 we have KU(p) LOV Lp—2 The E,
ae Z
p-1
satisfy the formulas Ejl = 1,
a 0 if n # a mod p-1
(3} Eb =
a
b™  otherwise
and
{4} Ea(xy) =73 (Ea,x){Ea_a,y).

In particular, the image of Ey is a subring of K*X and hence Ly has a unique strue-
ture for which sy is a ring map. On the other hand, (3) implies that the kernel of
Ey is not an ideal and hence there is no ring structure on Lo for which ry is a ring

map.

Proposition 7.5. Ly has a unique Hi ring structure for which sy is an HE ring map.

Proof. We must show that(EB takes the image of E, to itself, i.e., that the

equation

holds on Kan for every n ¢ Z and every spectrum Y.
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Let ch be the Chern character and let X be a finite complex. We have
en(yPE x) = ch(E,yFx) for all ac Zp.1 a0d all x ¢ KK by [5, p.84-85] and [1,
5.1(vi)]. Hence waa = anp by {5, Lemma 4 of lecture 4]. As in the proof of 7.4
it follows that Eaep = epEa and that EP x = P E;x for all xeXX. Now let neZ and

let a be the class of n in Z Then we have

p-1°

I I
EP, Eq(bPx) = EgP (VPE_ x)

n

T
Ey(bP'P E_ x)

348 T
bPUE_ P E_x = bPPP E_.x

u

n _ n
Pn(b E_gx) = P Ey(b"x)

for all x¢KX. As in the proof of 7.4 it follows that (5) holds on the space level
w1th? replaced by ? Sinece both sides of (5) are stable in the sense of 1.2 and
1.3, 1t follows that (5) holds on the spectrum level with ?. replaced by ? The
rest of the proof is an induction on j just like that in the proof of 7.2. We give
the inductive step when j has the form kp:

* *
- S E PP
By ¥y By = By 3 Ey = BB Oy

= ? (E,P & oY) = ? Ey )P “Eyy by inductive hypothesis

*,
?k@nEOy =8 @jEOy ,
so that (5) holds in this case by 7.1. The remaining case is similar.

It would obviously be desirable to have an analog of 7.5 for BP. In this case
the Quillen idempotent ¢ factors into a projection and an inclusion

T.pp - S.wu

MU (p) (p)

which are both ring maps. We could therefore attempt to factor the operations

:% either through the inclusion {(as in the proof of 7.5) or through the projection
{or both}. The proof of 7.5 shows that the (@ factor through sy if and only if the
following equation holds for all finite complexes X and all xe MU21X

(6) eP ex = P ex.

Similarly, the TSDJ factor through ry if and only if the equation

(7} ePex = P x

holds. In either case the resulting structural maps on BP would be the composites

D, s £, r
g/ D, BP d D, MU do My —Z— BP.
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The point is that, while these maps 55 clearly satisfy the first and third
diagrams of Definition I.4.3, the diagram involving 8 is much harder to verify and
equations (6} and {7) give two sufficient conditions for it to commute. We conclude

this section by giving some weaker sufficient conditions.

lemma 7.6. Equation (6) or (7) holds in general if it does when x is the Euler
class v €MUSCP® of the Hopf bundle over CP™.

Proof. Suppose anev = ePnV- Since ¢ is a ring map we have ¢ @"ev =g @%v by
7.3 (with X = CP®). Now e® ¢ and ef?“ both satisfy tom Dieck's axioms Pl, P2,
and P3, so Theorem 11.2 of [3l] implies that they are equal, hence eP“ € = eP" for

all spaces as required. The other case is similar.

Next we need some notation. Let f{x) = 19%151»5 MU*(IX}} where [pl{x} is the
power geries defined at the end of Section 5. Let [pl*{x) e BP*([x]] be relplix)
and let £'(x) = ryf(x). Let u' e BP*Brr be ryu, so that u' is the BP-Euler class of
a nontrivial complex irreducible representation of 7. Landweber's Kinneth theorem
for MU* (X x Bn) given in Section 5 implies
%

BP (X x Br) = (BP'X)[{u'}l/[p')(u")

Lemma 7.7. Equation {7) holds for all X if and only if equation
(8) TgP ¢ [cPR] = r*Pn[CPn] mod f'(u')
holds in BP*Br for all n > O.

Proof. Assume that (8) holds. We shall show that ryP ev = ryP v, where v is ag

*
in 7.6. Let M*X denote the even-dimensional part of MU(p)X and let P be the

composite
* Pﬂ * * *
MX——>MBrz (MX)[{ull/[pl(u) — (M X)[[u]ll/f(u).

1f M*X has no p~torsion then, since f(x) has constant term p, u is not a zero-
divisor in M*(X)[[u]]/f(u). The element y of Corollary 5.6 has leading term
(p-l)!up'l, hence y is also not a zero divisor. Thus 5.6 implies that P is additive
for such X. It is also multiplicative by 1.4{iii). In particular we have a ring
homomorphism

P:M (pt) » M (pt)) [[ull/f(u).

Since the elements [CP%] generate M*(pt) ® Q as a ring and since MU*(Bn) is torsion

free, equation (8) implies
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(9) ryP ex = ryP x mod £'(u')

for all x ¢ MU™(pt).

Now let ev = bivl. Since ¢ is an idempotent we have by = 1 and eb; = O for
i=1
i > 2. Hence (9) gives
= t t
ryP by = 0 mod f'(u')
for all i > 2. Now the ring homomorphism

PiM (CP®) » M (CP” x Bn) = M'[lv,ull/f{u)

is contimuous with respect to the usual filtrations by [31l, Theorem 5.1] and hence

we have

0 e~ 8
o
«
it
it~ 8

_ i
r*Pnev (r*Pﬂbi)(r*P“v) = r*Pﬂv mod £'{u'}.

[

e}
*

jav]

Finally, we observe that the map
¥ * * *
BP (CP x Bm) = BP [[v',u']]/Ip]'(u') » BP {(v',u'li/u* @ BP [{v',u']]1/f'(u'}

is monic since u' and f'{(u') are relatively prime. We have shown that
r*(P"ev - an) goes to zero in the second summand, so we need only show that

it goes to zero in the first. But the map
BP"(CP® x Br) » BP*[[v',u'll/u' = BP [[v']]
can be identified with the restriction
(1 x 0*:BP*(cP™ x Br) » BP¥CP®
and the result follows since

{1 x 1)*r*(Pﬂev -Pyv) = ryellev)P - vP) = (rev)P - (rev)P = 0.

We can now use Quillen's formula 5.5 to give a very explicit equation which is

equivalent to (7).
Corollary 7.8. Equation {7) holds for all X if and only if the element

o ) (ca,b-n-l)r*{CPn-IatIr*(a(u)a)(r*x)n-iqi‘
al <n

of@%uhz&o%r%@nnﬁofme%mpkb %mtm(%&mJ)Mewmﬂn

numerical coefficients defined in [6, Theorem 4.1 of part Ii.
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Proof. This is immediate from 5.5, 7.7, and [6, Theorems I.4.1 and II.15.2].

There is no obvious reason for the elements specified in 7.8 to be zero. If
they were zero, it would be evidence of a rather deep connection between 1"1r and €.
The author's opinion ig that there is no such deep connection and that neither

equation {7) nor equation (6) holds in general.



