
CHAPTER V 

THE HOMOTOPY GROUPS OF H RING SPECTRA 

By Robert R. Bruner 

§I. Explicit homotol~ J operations and relati0ns 

This section contains statements of our results on homotopy operations as well 

as some applications of these results. The proofs depend on material in §2 and will 

be given in §3- 

Note that, aside from the computations in ~,S at the end of this section, all 

the results here apply to the homotopy of any H ring spectrum Y. Let ~:DpY + Y 

denote the structure map. 

The order of results in this section is: 

relation to other operations, 

particular operations and relations, 

Cartan formulas, 

computations in w,S, 

remarks. 

In order not to interrupt the main flow of ideas, we have deferred a number of 

remarks until the end of the section. 

Throughout this section let Er(X,Y) be the ordinary mod p Adams spectral 

sequence converging to IX,Y]., and let Er(S,~ ) be the spectral sequence of IV §6 

based on ordinary rood p homology. Let ~ be the sequence 

. . . . .  

From the spectral sequence Er(S,~) we obtain an isomorphism between an associated 

graded of ~.DpS n and E~(S,D ): 

EO(~.DpS n) ~ E (S,~). 

Write EO(a) for the image in Es'~(S,~ ) of an element a~ ~,D~S n of filtration s. By 

IV.7.5, E2(S,~ ) is free over E2(S,S) on generators e i corresponding to the cells of 

DpS n. By 2.9 below, a more convenient basis over E2(S,S) is given by the elements 



130 

~pJ = (-l)Jv(n)ejq_~_n(p_l) 

where ~ = 0 or 1 (s = O if p = 2), q = 2(p-l) (q = 1 if p = 2), jq-s ~ n(p-1) and 

is the function defined in IV.2.4 (v = 1 if p = 2). Thus, E0(a) can be written as a 

linear combination of the ~SPJ with coefficients in E2(S,S). Recall the operation 

: ~n Y + ~NY associated to each element a ~ ~NDpS n. 

Relation of the ~* to other operations 

* x p Proposition 1.1. If I:S np+ DpS n is the natural map then i (x) = and 

I pn p = 2 

EO(1) = PJ p > 2 and n = 2j 

0 p > 2 and n odd 

Propoosition 1.2. 

h o a = 8 ~ o h, 

Let h:~, + H, be the Hurewicz homomorphism. If EO(a) = 6~PJ then 

where 8eQJ is the Dyer-Lashof operation defined in III.1. 

If E0(m) = ~ aj, Bs~, with each aj, cE2(S,S) and x~E2(S,Y) , we let 

EO(a)(x) = ~ aj, ~(~). 

Proposition 1.3o (Kahn, Milgram) If x ~ ~n Y is detected by ~E2(S,Y) , then ~*(x) 

is detected by EO(a)(x). 

To see the relation to Toda brackets, suppose we have compressed a into the 

np+i skeleton Dis n and that it projects to ~ on the top cell S np+i. Let 
P 

DP i-1 -l(x) = PD (x) Di-l~qn and let c i ~ ~np+i_lD~ S n be the attaching map of the np+l 
P 

cell. 

Proposition 1.4. ~*(x) ~< a, ci, ~Di-l(x) >. The set of all such a*(x) is a eoset 
w 

of ~D~-l(x) o ~i-lsn 
~NUp 

Note: We will frequently find further that EO(a) = aSgP j where i = jq-g-n(p-l) and 

(-1)Jv(n)a detects ~. Then 

EO(~)(~) = E0(a*(~)) = as~pJ(~), 

so that a* is detected by Toda brackets in essentially the same fashion as by 

Steenrod operations in E2(S,Y). 
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Particular operations and relations 

Hereafter, if e cE (S,~D) and x~ ~n Y, let e(x) = {a (x)IEO(a) = e}. Clearly, 

the indeterminacy in e(x), defined to be 

Ind(e(x)) = {~*(x) - 6*(x)]E0(~) = e = EO(6)}, 

is the set of values of all homotopy operations on x whose corresponding element in 

E (S,~) has higher filtration than does e. 

Proposition 1.5 (Kahn, Milgram): The following are equivalent: 

(i) 6aP j acts on ~n Y 

(ii) e iE E (S,~), i = jq-s-n(p-1) 

(iii) Dis n is reducible 
P 

(iv) if p = 2 then n ~ -i-1 (2¢(i)); 

if p > 2 then ~ = 0 and n = 2j, 

or ~ = 1 and j ~ 0 (p~(i)). 

The functions ~ and ~ are defined in 2.5 and 2.11 below. 

Definition 1.6. If p = 2, let 6 0 = 2, 61 = n, 6 2 = v and let 8j be a generator of 

Im J in dimension 8a+2b-1, where j = 4a+b and 0 ~ b ~ 3. If p > 2, let s 0 = p, and 

let ~j be a generator of Im J in dimension jq-l. 

Theorem 1.7 (Toda, Barratt, Mahowald, Cooley): Let p = 2. If x c ~n Y and 

j = 4a+b, 0 < b < 3, then 

6j o x 2 = 0 if n ~ 2 j - 8a - 2 b - 1 (2 j+l) 

and 6j o pn+l(x) = ~x 2 for some ~ ~ ~8a+2bS if n ~ 0 (2) and 

n ~ 2 j - 8a - 2 b - 2 (2J+l). 

Theorem 1.8. Let p > 2 and x I ~n Y. Let ep(a) denote the exponent of p in the prime 

factorization of a. If n = 2k-1 then 

aj o 6pkx = 0 if j = 0 

or j > 0 and Ep(k+j) = j-l. 

If n = 2k then 

• o 8pk+Ix = ax p for some ~ ~(j+l)q_2 S aj 

ifj = 0 

or j > 0 and ~p(k+j+l) = j-1. 
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Theorem 1.9. The operations listed in Tables I.i and 1.3 exist on ~n and satisfy 

the relations listed in Tables 1.2 and 1.4. In Tables 1.1 and 1.3 the colunms 

labelled "indeterminacy" list generators for the indeterminacy of each operation, 

and the columns labelled "~ " list the values of p* 

~p, :~NDp Sn ÷ ~N Sup ~ ~N_npS 

thereby indicating the deviation from additivity of the given operation (by IV.7.4). 

TABLE I. I 

Operations on Wn for p > 2 

n__ operations indeterminacy ~p, 

n = 2k-i ~pk 0 0 

hoPk 0 0 

gl ~ o o 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

n = 2k-i 
~÷1 ho ~ o 

k - -I (p) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

n = 2k-I hoOP k+l ~ISP k 0 

k -= -2 (p) 6P k+2 gl Pk and 0 

hoPk+l (if it exists) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

n = 2k pk 0 p! 

8P k+l al Pk multiple of ~i 

hoPk+l a2 Pk multiple of ~2 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

n = 2k 8pk+2 hoPk+l and multiple of a2 

k - -2 (p) ~2 Pk 
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TABLE 1.2 

Relations among operations on ~n for p > 2 

n relations 

n = 2k-I p~pk = PhoPk = pglPk = 0 

(k+l)<:lSP k = 0 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

n = 2k-I pSP k+l = -hoPk 

k - -i (p) (,ISP k+l ~ 0 mod ~28P k 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

n = 2k-i PhoBP k+l - 0 mod (:2BP k 

k - -2 (p) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

n = 2k kc:iPk = pSP k+l 

(k+2)~lSP k+l = 0 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

n = 2k pSp~+2 =_ _hoPk+l rood a2 Pk 

k _= -2 (p) 
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TABLE i. 3 

n 

Operations on n n for p = 2 

operations indeterminacy T2* 

n - 0 (4) pn 2pn 2 

en+l ne n n 

pn+3 2pn+3,vpn m u l t i p l e  of  v 

hlPn+2 2hlPn+2,vpn multiple of v 

n - 1 (4) pn 0 0 
hl Pn+l n2Pn 2 

0 or n 
pn+2 2pn+2 0 or 2 

hlPn+5 2hlPn+5 , v2p n 0 or v 2 

2  p+4, 2 p  o 
h3,-,n+3 ~ 2pn 2 i ~ 2h pn+3, 0 or v 

n ~ 1 (8) pn+6 2pn+6 0 or v 2 

................................................................................. 

n _= 2 (4) pn 2pn 2 

pn+l qpn 0 

hlPn+4 2hlPn+4 0 

h21 Pn+3 2h~P n+3 0 

h~P n+2 2h~P n+2 0 

h2Pn+3 v2P n 0 or v 2 

n = 2 (8) pn+5 2pn+5 0 

n - 3 (4) pn 0 0 

hl Pn+l 0 0 or n 2 

hlPn+3 2hlPn+3 0 

h2 ~n+2 I r n2hl Pn+l 0 

h2P n+2 0 0 

n = 3 (8) pn+4 2pn+4 0 
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TABLE 1.4 

Relations among operations for p = 2 

n m 0 (4) 2P n+l = 0 

2hl Pn+2 = n2p n+l 

n _: 0 (8) 2p+3 = hip +2 
nP n+3 = 0 

2vt ~+3 = ~hlt:'n+2 = 0 

n--4(8) 

n -= 1 (4) 

2pn+3 v~n+l 
= h pn+2 

npn+3 

vhlPn+2 = 2pn 

2P n = 0 

2hlPn+l = n2p n 

2p n+2 = h lPn÷ l  

qhl Pn+l = 0 

2hl Pn+5 = h21Pn+4 

2h~P n+3 = 0 

n ~ 1 (8) n ~  +2 = 0 

2vP n+2 = 0 

2p n+6 = hip n+5 

n= 5 (8) 
np n+2 = vp n 

~pn+2 = 0 

n ~ 2 (4) 2pn+l = ~pn 

nP n+l = 0 

4~P n : o 

2hlPn+4 : h2pn+ 3 

2h2Fn+3 : h~F n+2 

2h13F n+2 = 0 

n = 2 (8] 2p n+5 = hlPn+4 

np n+~ : h2p +3 

n -- 6 (8) vP n+l = 0 

2h2Fn+3 = v2p n 

+4 2pn nhlPn ~ 0 rood 
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n - 3 (4} 2P n = 0 

nP :0 
2 h l  Pn+l = 0 

2hlPn+3 = h~p n+2 

2h~F n+2 = n2hl Fn+l 

2h2 Pn+2 = 0 

n - 3 (8) 2pn+4 = hlPn+3 

qF n+4 : h2Fn+2 

r]h2Pn+2 = 2pn 

n ~ 7 (8) ~pn = 0 

qhl ~+3 = 0 

rlh2Pn+2 = 0 
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Cartan Formulas 

For later computations we need the Caftan formulas for the first operation 

above the pthpower. 

Proposition I.I0. Let p = 2, x ~ ~n Y, y c ~m Y. Assume n+m is even. Then 

I 22 pn+icx)y2 + 2pm+l(y) + Cn, mnx Y 

pn+m+l (xy) = Sn,m(X,y) 

22 
Sn,m(X,y) + en,m~]X Y 

n~m~O(2) 

n ~ 3 (4) or m ~ 3 (4) 

n~m~l(4) 

where Sn,m:W n × ~m ÷ W2(n+m)+l is an operation such that 

EO(Sn,m) : pnpm+l + pn+Ipm 

and 2Sn,m(X,y) 

i )nx2y 2 n ~ m ~ I (4) 

I 0 n ~ 3 (4) or m ~ 3 (4) , 

and where Cn, m is an integer depending only on n and m. 

Proposition I.II. 

(i) 

(ii) 

(iii) 

Let p > 2, x ~n Y and y~ ~m Y. Then 

if n = 2j and m = 2k, 

8pj+k+l(xy) = Bpj+I(x)yP xPBpk+l(y) + d a x p-p 
+ n,m 1 J 

where dn, m is an integer depending only on n and m. 

if n = 2j and m = 2k-l, 

6pj+k(xy) = xPspk(y) 

if n = 2j-I and m = 2k-l, 

8pj+k(xy) = Sj,k(x,y) 

where Sj, k : ~2j_l Y × ~2k_l Y + w2(j+k)p_3 Y is an operation such 

that E0(Sj, k) = 8~ • pk + ~ • spk and pSj,k(X,y) = 0. 
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Computations 

Our final results contain extensions to all H ring spectra of classical 

results about ~,S due to Toda, Barratt, Mahowald, Gray and Milgram, as well as some 

low dimensional calculations at the prime 2. 

Let ~ denote equality up to multiplication by a unit. 

Proposition 1.12. If p = 2 then pI(2) : n- 

Proposition 1.13. If p > 2 then BpI(p) ~ al and 8pp-I(a I) = 81 . 

Combined with the Cartan formulas I.I0 and I.Ii, these yield the following 

results. 

Proposition 1.14. Let x E ~n Y and n : 2j. If p : 2 then pn+l(2x) = nx 2. If p > 2 

then 8pj+l(px) $ alxP and 8PJ+P-l(alX) = 61xP. The indeterminacy of each is 0. 

Corollary 1.15. Let x~ ~n Y. If p : 2, n ~ I (4) and 2x = 0, then nx 2 : 0. 

If p > 2 and px = 0 then ~i xp = 0. If p > 2 and ~l x = 0 then 81xP = 0. In 

particular, al~ l = 0. 

In the next proposition, the statement "aPJ(x) = y mod A" means that A 

is the indeterminacy of aP j when applied to x. If the indeterminacy is not 

mentioned, it is 0. 

Proposition 1.16. 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

The following hold in w.S localized at 2. 

pl(n) = n2 

P3(v) = v 2, hlP4(v) = no or ~, h2p5(v) = 0. 

2 5 
p3, hlP4 ' hlP6 ' hl P , and h2P5 annihilate 2v and 4v. 

2 9 and h13P8 annihilate 2 p6, p7, hl P , 

= hlPS(o) = n* * P7(G) 0 2 , or n + nO, 

hlPl0(c ) * * -- = v mod <2v > + <n~>, 

~p9(a ) * * 
h : 2v mod <4v > + <n~ >. 

(vi) p7(2o) = 0, hlPS(2G) = 0, h2P9(2G) = 0, 

hlPl0(2~) = 2v* mod <4v > + <n~ >, 

h~p9(2~) :4v* mod <n~>. 
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(vii) p7, hiP8 ' h~p9 and h2P9 annihilate 4a, 

hlPl0(4o) = 4v* mod <n~> - 

Remarks: These are listed by the result to which they refer. 

(1.4): The indeterminacy of the Toda bracket <~, ci, ~D~-l(x)> in Proposition 

D~ ~ -i-Isn -l(x) o + (~np+iY) o a, while the indeterminacy of a*(x) is 1.4 is ~ NUp 

only ~D~-l(x) o ~ND~-ls n. This reflects the fact that a*(x) uses the canonical 

null homotopy Di(x) of Di-l(x) o whereas the Toda bracket allows any null 
P P ci' 

~D~-l(x)~ o c i . homotopy of 

(1.8): Since ~pq-2 is the first nonzero homotopy group of S in a dimension 

congruent to -2 mod q, we get 

ajBpk+lx : 0 

for j < p-I satisfying the hypotheses of (1.8). 

(1.9): (i) In the range of dimensions listed, the operations and relations 

given in Tables i.i through 1.4 generate all the operations and relations over ~,S. 

For examples, when n ~ 0 (4) and p = 2: 

(a) nP n and n2P n are nonzero operations because the relations listed do 

not force them to be O; 

(b) the relation 4hlPn+2 = 0 follows from the listed relation 

2hl Pn+2 = n2p n+l ' 

and is therefore omitted; 

(e) the redundant operation hlPn+2 is included because the relation 

2pn+3 = hl Pn+2 

which makes it redundant reflects a universally hidden extension: 

2n+2 

h0Pn+3 = O in E~ and 2pn+3x 

I 
I 

I ........... 

2n+3 

is detected by hlPn+2x. 
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(ii) The operations of degree n+3 for n ~ 0 (4) and p = 2 are particularly 

interesting. If n ~ 0 (8) then by [59] ~2n+3DgS n~ = Z8GZ 8. It is generated by 

vpn and pn+3 with relations 

and 

2pU+3 = hlPn+2 

4pn+3 = 2hl Pu+2 = n2p n+l. 

If n £ 4 (8) then [59] gives ~2n+3D2Sn = Z40 ZI6 and it is generated by hlPn+2 (of 

order 4) and pn+3 (of order 16) with relations 

2hlPn+2 = ~2pn+l 

2pn+3 = hlPn+2 + vpn 

4pn+3 = n2pn+l + 2vF n 

spn+3 = 4~p n. 

(iii) Entries in the Tp, column such as "O or n 2" indicate that we have not 

calculated Wp,. Such entries simply list the elements of ~,S in the relevant 

dimension. Even this limited information is useful in Proposition 1.16. 

(I.i0) and (I.Ii): Let ¢: 65 + 0- ® 61. be the diagonal of the Steenrod algebra 
(¢(pn) = [ pi ® pn-i). If 

EO(~) = [ aiA i, ai~ E2(S,S), Ai~ (~ 

then 

EO(6,(~)) : ~ ai¢(Ai)- 

* 
This defines 6,(s) and, hence, the formula for ~ (xy), modulo higher filtration in 

E(S, • ) .  

(1 .15) :  This p roo f  t h a t  ~18p = 0 d i f f e r s  from Toda ' s  in  t h a t  Toda views the  

p roduc t  in  ~,S as compos i t ion  and s t u d i e s  D ( S n ~ p  e n+l)  whi le  we view i t  as the  

smash produc t  and s tudy DpSn^ DpS m. Toda shows t h a t  

D p C S n ~  e n+l ) D S n P ~ a  1 e np+q 

and 

D p ( S n ~  1 e n+q) D SnP~B1 enp+Pq-1 • 

Thus, i f  px = O or  alX = O then  alxP = O or 81xP = O, r e s p e c t i v e l y .  The p roof  g iven  

in  1.15 uses the  va lues  of  the  o p e r a t i o n s  on p and ~1' r a t h e r  than the  s t r u c t u r e  of  

Dp of  t h e i r  c o f i b e r s .  
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Segal [49] saw that the Cartan formula for homotopy operations should provide a 

proof that al~ ~ = O, but his explicit formulas were incorrect. 

There is still another proof that ~18~ = 0 which uses virtually none of the 

machinery of homotopy operations, but does require that we have calculated enough of 

~,S to know that the p2q-3 stem is either 0 or Zp. Given this, the relation 

2 
-a18 ~ = p~pP -P(61) 

from Table 1.2 implies that alS~ = O. 

Remark 1.17: This is a quick survey of results on homotopy operations which are not 

included here. Toda [106] shows that the extended powers propagate several 

relations. For example, if <al,P,X> = O then 6s xp = 0 mod ~l for I < s < p. As 

corollaries he shows that 62~ = 0 and the ~s are nilpotent, foreshadowing Nishida's 

proof, a few years later, that all positive dimensional elements of ~.S are 

nilpotent. 

Gray [36] obtained results similar to 1.15 using homotopy operations which are 

associativity or commutativity obstructions for ring spectra. 

Oka and Toda [92] have extensive information on the cell structure of 

Dp(Sn~p e n+l ) which they use, in particular, to show that Yl ~ O. 

~lilgram [80] also uses extended powers D2(sn~2 i e n+l) to define homotopy 

operations which can be iterated to yield infinite families of elements in ~.S, 

presumably related to the elements detected by K-theory. 

Cooley, in his thesis [30], uses extended powers to compute some Toda brackets 

and to derive 1.7 as well as the relation ~x 2 = 0 if x ¢~n, n ~ 2,3,7 (8), which is 

not in 1.7. 

~iilgram [79 and 81] computes the Coker J part of the operations on ~8S and ~9 S 

using Steenrod operations in E2(S,S). 

§2. Extended powers of spheres 

In this section we collect the results on extended powers of spheres which are 

needed to prove the results of ~l. They will also be essential to our results on 

differentials in the next chapter. First, we recall the values of the K 8nd J 

groups of lens spaces. Then, we identify the spectra D~S n, ~ cyclic, as the 

suspension spectra of stunted lens spaces and determine when they are stably reduc- 

ible or coreducible. Also, we show that, after localizing at p, ~S n is a wedge 

summand of D S n, which gives a simple cell structure to DpS n. 
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Throughout this section, let p be a prime, let ~ c Sp be the p-Sylow subgroup 

generated by the p-cycle (1 2.--p), and let W k be the k-skeleton of a contractible 

or Zp free CW complex W. (Definitions 2.1 and 2.7 provide the ~ free CW complexes 

which we shall use most frequently.) 

The results for p = 2 are analogous to the results for odd primes, but are 

sufficiently simpler that we state them separately. We begin with odd primes. 

Definition 2.1. Let p > 2 and let p = exp(2~i/p). Let ~ act on the unit sphere 

S 2k+l ~C k+l by letting a generator of ~ send (z i) to (pzi). Let 

~2k+l = s2k+i/~, 

~2k = {iZo,...,Zk] c ~2k+l I z~ is real and [ 0}, 

~n+k = ~n+k/~n-1, 
n 

and 

where [z0,...,z k] denotes the equivalence class of (z0,...,z k) and ~2k-I 

embedded in ~2k ~n+k 
by settlng z~. = O. We call L a stunted lens space. 

n 

is 

Each representation of ~ on C k+l without trivial subrepresentations yields a 

free ~ action on S 2k+l and a corresponding lens space s2k+I/~. Since they are all 

stably equivalent we have simply chosen our favorite. Note, however, that the 

others reappear briefly in the proof of Proposition 2.4. 

It is easy to see that ~n _ ~n-1 is an open n cell. Thus ~n+k has one cell 
n 

in each dimension between n and n+k inclusive. Note that E? = ~n and ~ = (~n)+, 

the union of ~n and a disjoint basepoint. 

Since t ~ = S~/~ is a K(~,l), H*(~;Zp) = E{x} @P{Sx}, with Ixl = I, and 

the Steenrod operations are specified by 

pi(x~(Bx)J ) = (~)xE(6x)J +i(p-l) 

The isomorphisms 

Hi~ n+k ~ Hi~ n+k < Hi~ 
n 

for n < i < n+k then determine H*L~+k-~n as an ~f)p module. 

Definition 2.2. Let p > 2 and let ~ act on C by multiplication by p. Let 

~ KU(~ 2k+l) be the bundle 

S 2k+l × C ~ S 2k+l × {0} = ~2k+l 

let ~i = r(~i) ~ KO(L2k+I) where r:KU + K0 forgets complex structure, let 
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= J(~l ) c j(~2k+l), and let ~ = ~ - I CEKU(L 2k i). 

denote the restrictions of these elements to ~2k. 

Let ~,~i,~ and c also 

We collect some results from [47], [48] and [58] in the following theorem. 

Theorem 2.3. Let ~2k + E2k+l 

generated by x. 

(i) i*:KU(~ 2k+l) ÷ KU(~ 2k) 

(ii) 

(iii) 

Proof. 

Adams conjecture: 

be the inclusion and let <x> denote the cyclic group 

is an isomorphism and 

KU(L 2k) = <o> @ < 2> ~) ... ~ <op-l> 

r:KU(L2k) + ~(~2k) is an epimorphism, 

K0(L2k I) = K0(L2k) G ~(s2k+l), 

and i* is projection onto the first summand under this isomorphism. 

~(~2k) = <Jr(o)> = <~ - 2> and has order p[k/(p-l)], 

7(~ 2k+1) = 7(~ 2k) • 7(S 2k+l) 

and i* is projection onto the first mnnmand under this isomorphism. 

Also, J(~i ) = ~ for i = 1,2,...,p-1. 

This is all in [47], [48] and [58] except J(~i ) = ~, which follows from the 

J(~i ) = Jr~ i = jr¢i~ = Jr~ = ~. // 

The extended powers Dks u are suspension spectra of Thom spaces of complex 
W 

bundles over ~k = W~/~. Thus Theorem 2.3 ensures us that the following theorem 

(proved in [81]) identifies all such spectra. Note that its proof does not require 

p to be a prime. 

Theorem 2.4. If s > O, the Thom complex of r + s~ over ~k satisfies 

~T(r s~) ~ r~2s+k 
+ =Z X 2s " 

Proof. The contribution of the trivial r dimensional fibration is obvious and may 

be ignored. We will actually prove a much more precise result. If a is an n- 

dimensional representation of 7, we let Rn(a) and su-l(a) denote R n and S n-1 with 

action given by a. If the action is free on S n-1 we obtain a closed manifold 

L(a) = sn-l(a)/w. If a and 8 are two such representations of dimension n and k 

respectively, let alL(B) be the bundle 
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sk-l(8) x Rn(~) ~sk-l(s) x {0} = L(S). 
w 

We claim that there is a homeomorphism 

T(alL(6)) ~ L(B~)a)/L(~), 

where L(a) is embedded in L(SQ a) as the last n coordinates. This will imply 

Theorem 2.4 for odd k (since L(6) is odd dimensional, p being odd). The even case 

will follow by removing the top cell on each side, since the homeomorphism will be 

cellular if we give the Thom complex T(~IL(8)) the natural cell structure compatible 

with that of L(~). 

To establish the claim, let f:sk-l(B) × Rn(a) + sn+k-l(8 ~)~)/~ be induced 
w 

by the natural inclusion sk-l(8) × Rn(a) + RU+k(8 ~) - {0} followed by the 

radial retraction R n+k - {0} + S n+k-1. It is easy to check that f is one-to-one and 

maps onto everything except the copy of L(a) embedded as the last n coordinates. 

Just as easily, one sees that f sends the zero section of alL(6) to the embedding of 

L(8) as the first k coordinates. It follows that alL(8) is the normal bundle of 

this embedding L(~) + L(8~) a) and that its Thom complex is L(~ ~)~)/L(~). // 

The fact that ~ ~ j(~k) has finite order enables us to define stunted lens 

spectra in positive and negative dimensions. 

Definition 2.9. Let 9(k) = [k/2(p-l)]. If n is any integer, ~ = 0 or I, and k h e, 

let 
~2n+k z2(n-r) ~2r+k 
2n+~ = Z 2r+~ 

for r ~ n (p~(k)) such that r ~ O. 

The following result shows that the spectrum ~n+k is well-defined up to 
n 

equivalence in h ~. Recall that an n-dimensional complex X is reducible if 

X/X n-I = S n and the projection X + S n has a right inverse. Dually, an (n-l)- 

connected complex X is coreducible if X n = S u and the inclusion S n ÷ X has a left 
~k 

inverse. Let W = S ~, let q:W + ~ be the quotient map and let W k = q-l(L ). Then 

we may define D~ = ~ ~ X (p). N 

Theorem 2.6. Let Sabe the p-local n-sphere spectrum. Then 

(i) n zn n! p-1)÷k 
n(p-l) " 

(ii) ~2n+k is coreducible iff n ~ 0 (p~(k)), while 
2n 

coreducible iff k = I. 

~2n+k is 
2n+l 
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(iii) If ~ = O or i, k £ a and n ~ r (p$(k)) then 

~nnlk= z2(n-r)~2r+k 
2r+s " 

~b ~-a-i 
(iv) L a and L_b_l are (-I) dual spectra. 

(v) If ~ = 0 or 1 and k > ~ then ~2n+k is reducible iff either k = e or k 
- 2n+ c 

is odd and 2n+k+l - 0 (p@~k)) ~ • 

n > 0 then Dk~ = ~ x S n(p) = E~T(nYk) where Yk is the restriction Proof. If 

to ~k of the bundle over L ~ = B~ induced by the regular representation of ~. 

Since Yk = 1 + E1 + ... + ~m, J(n~k) = n + nm~ (where 2m = p-l). By Theorem 2.4, 

- nEn(p-l)+k 
Z T(nYk) = E n(p-l) " 

If n < 0 then, by [Equiv, VI.5.3 and 5.41 

Sn(P ) = ~ ~ (zns) (p) = z-Nz~T(N + nXk) 

for sufficiently large N, and since J(n~k) = n + nm~, we find that 

W k ~ S n(p) = z-Nz~T(N+n + nm~) = ~n~n(p-1)+k 
~ n(p-l) 

by Definition 2.5 and Theorems 2.4 and 2.3.(iii). This proves (i). 

~2n+k Z~T(n~l~k) By [15] Z®T(n~) is coredueible if and By Theorem 2.4, 2n = " ' 

only if S(n~) = O, so the first half of (ii) follows by Theorem 2.3.(iii). For 

the second part of (ii) we need only note that the Bockstein is nonzero on H 2n+l if 

k > 1. 

To prove (iii), note that ~(n~) = ~(r~) if n ~ r (p~(k)) by Theorem 

2.3.(iii). 

To prove (iv), first consider ~2n+k with k odd. By Theorem 2.4, 
2n 

+k = Z~T(nci~k). Since k is odd, L is a closed manifold. By considering the 

fibration 

S I + Z k ÷ Cp [k/2], 

~k 
we see that the tangent bundle of L is ([k/2] + I)~ - I. Atiyah's duality 

theorem [15, Theorem 3.3] implies that the (-1) dual of ~2n+k is 
2n 

~®T(I (n+[k/2] + I)~) ~-2n-I - = L_2n_k_ I. To prove (iv) for the other three possible 

combinations of odd or even top and bottom cells, we use the duality between 

inclusion of the bottom cell of a complex and projection onto the top cell of its 

dual. 
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Finally, (v) follows from (ii) and (iv) by the duality between reductions and 

coreductions. // 

Now we present the analogs of 2.1 through 2.6 for DpS n instead of D S n. Since 

the transfer splits %8 u off as a wedge summand of D S n, we can use this as a short- 

cut to the results we need. Let X(p) denote the p-localizatlon of a spectrum or 

space X. The following result is proved in 17]. 

Proposition 2.7. There is a CW spectrum L with one cell in each nonnegative 

dimension congruent to 0 or -I modulo 2(p-l), such that L = (Z~BZ~)(p). 

Definition 2.8. Let L k be the k-skeleton of L and let L n+k = Ln+k/L n-I if n > 0. 
n 

If n < 0, ~ = 0 or I, and k > e, let L 2n+k z2(n-r)I2r+k (pC(k) - 2n+a = ~2r+e for r ~ n ) such 

that r > 0. 

Note that n and k are not uniquely determined by L n+k as they are by ~n+k. For 
n n 

example, L~ = L~ ..... L q where q = 2(p-l), since L has no cells in dimensions 
q-l' 

1,2,...,q-2. 

Theorem 2.9. 

(iii) 

Let S n be the p-local n-sphere spectrum and let q = 2(p-l). Then 

= s2 j -1  E2j-IL~" 1" The maps DwS n + DpS n and (i) %s 2J  2JL q and Dp 
~n+kn + Ln+kn induced by the inclusion ~ C Ep are projections onto wedge 

summands. 

(ii) Lj~ +k is coreducible iff j ~ 0 (pC(k)) while L jq+k is coreducible 
' jq-I 

iff k = -1. 

If e = 0 or 1 and i ~ j (p@(k+2e)) then 

Lj q+k = Z ( j-i ) qLiq+k . 
Jq-e lq-c 

L-jq+a-I 
(iv) If ~ and 6 are 0 or i then L~ q-6jq_~ is (-I) dual to --iq+8-1 " 

(v) If ~ = 0 or I then L jq+k. has a reducible jq+k cell iff either 
Jq-e 

k = a = 0 or k = iq-1 and i+j R 0 (pi+~-l). 

Note: Part (i) shows that bottom dimensions of the form jq-a, a = 0 or I, are more 

natural in this context than jq+E. This accounts for the exponent ~(k+2s) in (iii), 

where ~(k) might be expected. 
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Proof. By the remark preceding the theorem, the first statement in (i) can be 
n ~ 

abbreviated to DpS n = r Ln(p_l). The transfer (Z BZp)(p) + Z'B~ splits off L ~ and 

L~(p_l) as wedge summands of ~ and ~n(p-1) respectively. Similarly, the 

transfer splits off DpS n as a wedge summand of D~S n. 

Dp~ tl~ D ~ = Zn~n(p_l) il 

and 

ZnL~(p_l) t2~, Zn~nn(p_l ) = D S n 

The maps 

n 
Z L(p_l ) 

i2,_ D S n , 
P 

where t I and t 2 are transfers, and i I and i 2 are induced by the inclusion ~ C Zp are 

inverse equivalences because their composites induce isomorphisms in mod p homology. 

This proves (i). Now (ii)-(v) follows from 2.6 and (i). // 

The preceding theorem does not assert that ~ ~Z Sn(P) ~n~n(p-l)+k where 
= ~ ~n(p-l) 

P 
W k is the k-skeleton of a contractible free Zp space, because this is not true. In 

general, ~ ~p ~(P) will have homology in dimension np+k which goes to 0 in DpS n 

and in ~nLn(p-l)+k n(p-l) . Since we are only interested in homology which is nonzero in 

DpS n, rnln(P -l)+k Sn(P) ~n(p-l) is more useful to us than is W k ~ 

P 
Therefore we will let Dks n = 2nL n(p-1)+k W k S n(p) p n(p-l) , rather than ~Z " 

P 

The preceding theorem also shows that we may ignore the distinction between 

L n+k and En+k without harm. We used ~n+k and D S n as a stepping stone to 
n n n w 
information about DpS u because J theory only gives information about coreducibility 

of Thom complexes, and we need Atiyah's S-duality theorem to convert this to infor- 

mation about reducibility. The S-duality theorem of Atiyah only applies to Thom 

complexes of bundles over manifolds so cannot be used on bundles over the skeleta of 

BZp, or over the even skeleta of B~. Conveniently, the odd skeleta of B~ are 

manifolds (if we use a lens space for B~). To obtain analogous information about 

DrSn for nonprime r, a similar technique works. First, we split DrSn off of DTsn 

using the transfer, where x C. Z r is a p-Sylow subgroup. Then the structure of T (a 

Cartesian product of iterated wreath products of ~) suggests manifolds mapping to BT 

which we can use just as the odd skeleta of B~ are used here. 

We now turn to the analogs of 2.1 through 2.6 for p = 2. 
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Definition 2.10. Let n £ O, let w = ~2 act antipodally on S n and let 

and pn+k = pn+k/pn-i . 
n 

We call pn+k a stunted projective space. Let ~ in KO(P n) be the canonical real 
n 

line bundle and let ~ = ~-i e Ko(pn). 

Remarks. (i) If p = 2 we will agree to let L n and ~nmean pn and let L n+k and 
n 

~n+k mean pn+k so that uniform statements of results for all primes can be given. 
n n 
The pn and pn+k notation will still appear frequently because many of the results 

n 
are not the same for even and odd primes. 

(2) It is easy to see that pn _ pn-i is an open n-cell so that ~n +k has (me 

cell in each dimension between n and n+k inclusive. Since P~ = S~/Z2 is a K(Z2,1) , 
H*(P~;Z2 ) = P{x} with Ixl = 1 and 

sqix J = (~Ix i+j 

The isomorphisms 

Hip n+k + Hip n+k + Hip ~ 
n 

for n < i < n+k thus determine H*P n+k as an a module. 
n 2 

Theorem 2.11. Let ~(n) be the number of integers j congruent to 0,1,2, or 4 mod 8 

such that 0 < j ~ n. Then ~(pn) = <l> and has order 2 #(n) . Furthermore, 

J:KO(pn) + j(pn) 

is an isomorphism. 

Proof. KO(P n) is computed in [i]. The computations there and the Adams conjecture 

imply the last statement. // 

Theorem 2.12. If s ~ 0 the Thom complex of r+s~ over pn satisfies 

Z®T(r + s~) = Z~P s+n. 
s 

Proof. The proof of Proposition 2.4 can easily be adapted to prove this as well. 

As for odd primes, we can now define stunted projective spectra starting and 

ending in any positive or negative dimensions. 
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Definition 2.13. For k > 0 and any n let 

pn n+k = zn-rz~p r+k 
r 

for any r ~ n (2¢(k)), r > 0. 

The following result shows that pn+k is well defined up to equivalence in 

n k X = S k X (2) Let S k have the antipodal action of ~. We define D 2 ~ . 

Theorem 2.14. 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

Let S n be the 2-1ocal n-sphere spectrum. Then 

Dksn = znpn+kn 

pn+k i s  c o r e d u c i b l e  i f  and only  i f  n _= 0 (2 ¢(k))  
n 

I f  n -- m (2¢(k))  then  pn+k = ~:n-mpm+k 
n m 

pb and p-a-1  are  (-1) dual  s p e c t r a  
a -b-I 

pn+k i s  r e d u c i b l e  i f  and on ly  i f  n+k+l ~ 0 ( 2 ¢ ( k ) ) .  
n 

Proof (i) follows for n > 0 from Theorem 2.12 once we observe that the regular 

representation Xk is 1 + ~. For n < 0 we have 

D~S n = D~(~ns) = E-N~T(N + n~k) 

by VI.5.3 and VI.5.4 of [Equiv] for sufficiently large N. Hence D~S n = 
znp n+k 

' n 

for n < 0 also, again by 2.12. 

Parts (ii) through (v) follow exactly as in 2.6. In (iv) we use the fact that 

pn is a closed manifold with tangent bundle (n+l)~ - I. // 

The last results in this section identify the top dimensional component of any 

attaching map of DpS n by combining Theorems 2.6 and 2.14 with Milnor's result on 

Thom complexes of sphere bundles over suspensions. First we must define the maps 

under consideration. As in §l, q = 2(p-l) and ~ = 0 or I (q = 1 and ~ = 0 if 

p = 2). 

Definition 2.15. Define a function Vp by 

Vp(n) = max{viLe_v+ 1 is reducible). 

Let v = Vp(n) and define ap(n) E ~v_l S to be Z v-n of the composite 

S n-I ~ L n-v ~ S n-v 

in which the first map is a lift of the ataching map of the n cell and the second is 

projection onto the top cell of L n-v . 
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The indeterminacy in the definition of ap(n) is the kernel of the homomorphism 

induced on ~n-1 by the inclusion of the bottom cell of L n-I 
n-v 

We will often omit the subscript p for typographical simplicity. The notations 

v and a are intended to be nmemonic: v stands for "vector field number" and a 

stands for "attaching map". Actually, v is not quite the vector field number as 

defined by Adams [1]; V2(n) is p(n-1) in Adams' notation. The function Vp tells us 

how far we can compress each of the attaching maps of L ~. The attaching map of the 

n cell factors through L n-v if and only if <-v+l is reducible. Thus, it factors 

through L n-v but not through L n-v-l, where v = Vp(n). By the definition of Vp(n), 

ap(n) is nonzero. We obtain a good hold on Vp and ~ from the following two lemmas. 

Let ~p(j) be the exponent of p in the prime factorization of j. 

Proposition 2.16. If p > 2 then, with q = 2(p-l), 

= ~i ~ : 0 

Vp(j ~-~) 

[ q(1 + ep(j)) ~ = 1 . 

If p = 2 then v2(j) = 8a + 2 b, where ~2(J+l) = 4a + b and 0 ~ b ~ 3. 

Proposition 2.17. If Vp(n) = i then ap(n) is the map of degree p. If Vp(n) > 1 

then ap(n) ® 1 generates Im J @ Z(p) in dimension Vp(n)-l. 

Proof of 2.16. Theorem 2.14.(v) shows that v2( j ) is the maximum s such 

that ~2(j +l) = ¢(s-l). The formula for v2( j ) follows easily from this. Theorem 

2.9.(v) shows that if p > 2 then Vp(jq) = 1 while Vp(jq-l) is the maximum s such 

that ep(j q) = @(s-l). The formula for Vp(j q-e) follows immediately. // 

Proof of 2.17. Let n = jq-e, v = Vp(n) and a = ap(n). 

of cofiber sequences 

S n-I ~ L n-I _ ,. L n 
n-v n-v !] bT I 

-i a Sn-v 
~ Ca  

We wish to construct a map 

S n 

Jl 
~ s  n 

where Ca = Sn-v~j e n, b is the inclusion of the bottom cell, and a ® i generates 
a 

Lm J @ Z(p). By S-duality and Theorems 2.9.(iv) and 2.14.(iv), it is equivalent to 

construct a map of cofiber sequences 

(,) 

S -n < L v-n-I ~ L v-n-I ~ S -n-I 
-n -n - I 

1 Ii 
Ca S -n-I S -n ~ a s v-n-I ~ ,. 
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in which b* is the collapse onto the top cell and a is as before. The len~na is 

trivial when v =l so we may assume v > I and hence, that n is odd. Let ¥ be the 

L v-n-l= T(y). By the bundle -(n+l)~ if p = 2 and -j(p-1)~ if p > 2 over L v. Then -n-I 

definition of v, y is trivial over L v-I but not over L v. This implies y = ~ v where 

~:L v + LV/L v-I = S v is the collapsing map and 0 ~ v Ko(sV). By [85], T(v) has 

attaching map J(v). Thus, the inclusions of the fiber S -n-1 into T(y) and T(v) 

induce a map (*) of cofiber sequences with a = J(v). Since v is greater than l, it 

is even when p > 2 by 3.2. Thus, 2.3.(iii) and 2.9.(i) when p > 2, and 2.11 when 

p = 2, imply that the kernel of ~(L v) + S(L v-l) is ~. Hence ~(y) generates it, 

being nonzero. Since ~ (a) = ~(y), a~ ~(S v) must generate ~(S v) ® Z(p). // 

In the notation of 1.6, Propositions 2.16 and 2.17 are summarized by the 

equations 

a2(j) ~ ~a2(J+l ) 

ap(jql = p 

and ap(jq-l) = ~l+ep(j) 

where ~ denotes equality up to multiplication by a unit of Z(p). 

§3. Proofs for section 1 and other calculations 

This section primarily consists of proofs of results of §I with the additional 

necessary results (3.1-3.4) interspersed. Note, however, that the spectral sequence 

charts in Figures 3.1 to 3.9 can be very useful in conjunction with Theorem 1.10 

since they show where in the Adams spectral sequence the elements detecting the 

results of homotopy operations must lie. 

P = so the Proof of i.i. l*(x) = x p by IV.7.3.(iii). Clearly, E0(1) = e 0 ® i n eo, 

second statement is immediate from the definition: 

~pJ = (-l)Jv(n)e 
jq-~-n(p-1)" 

Proof of 1.2. Recall from III §I that the homology operations are defined by 

QJx = ~.(ej_n@X2) if p = 2, 

and ~QJx = ~.((-1)Jv(n)ejq_E_n(p_l ) ®x p) if p > 2. 

To prove 1.2 we simply calculate. If p = 2 and EO(~) = PJ then 
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ha (x) : [a (x)],(1 N) 

= ~,Dp(X),~,(~ N) 

: ~,Dp(X),(ej_n® i~) 

= ~,(ej_n®h(x)2) 

= QJh(x). 

The proof is essentially the same when p > 2. // 

Proof of 1.3. This is just the naturality of the spectral sequence Er(S,~). // 

Proof of 1.4. Consider the following con~nutative diagram, in which the row is the 

cofiber sequence of c i and e' is a lift of a to Dis n. 
P 

Snp+i-I ci p Di-Is n 

S N 

j. Dis n ~ SnP +i 

• DpX 

Y 

Clearly a (x) = ~Dp(X)~ = ~D (x)~' and this lies in the Toda bracket 

<a,ci,~ l(x)>. If a and ~ both lift to Dis n and project to a on S np+l, then 
P 

O~ ~ -i-isn * * -l(x) o - ~ lifts to Di-Is n p  so that ~ (x) - 8 (x) is in ~ NDp . 

i-I Conversely, if 7 ¢ ~p sn then a + y also lifts to Dis np and projects to a' on 

S np+i . II 

Proof of 1.5. By definition, 8cpj is defined on ~n if and only if e i is a permanent 

cycle in E~(S,A?). Thus (i) and (ii) are equivalent. Let ~i be ~ truncated at the 

np+i cell. The map of spectral sequences Er(S , ~i ) + Er(S,S up+i) induced by the 

projection Dis n + S np+i sends e i to the identity map of S np+i. If Dis n is 
P P 

reducible then there is a map back which splits Er(S,S np+i) off Er(S , ~i), forcing 

e i to be a permanent cycle. Conversely, if e i is a permanent cycle then any map 

detecting it will be a reduction. Thus (ii) and (iii) are equivalent. Finally, 

(iii) and (iv) are equivalent by Theorems 2.6.(v), 2.9.(v) and 2.14.(v). // 
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Proof of 1.7. To show 6j o x 2 = 0, where 8j ~ ~v-1 S, we need only show that pn+Vn+l 

is reducible and pn+V is not, since this implies that the n+v cell is attached 
n 

o n l y  t o  t h e  n c e l l  of  pn+V, and P r o p o s i t i o n  2 .17  ~mpl ies  t h a t  t he  a t t a c h i n g  map i s  
n 

a generator of Im J in ~v_l S. If j = 4a + b then v = 8a + 2 b, so 2.14.(v) implies 

that n must satisfy 

n + 8a + 2 b = -1 (2 j) 

and n + 8a + 2 b ~ -I (2J+l). 

To show 6~ o pn+lx is a multiple of x 2, we must show that pn+V+ln+l is not 

reducible, but pn+v+l is reducible, for then the top cell will be attached to the 
n+2 

cells carrying x 2 and pn+lx. The rest of the proof is the same as in the first 

case. // 

Proof of 1.8. To show that ~j o Bpkx = 0, for x ~ ~n Y and n = 2k-l, is trivial 

kq 
when j = O. Simply note that ~q-I is a mod p Moore spectrum. When j > 0 we must 

~(k+j)q-1 is not. By 2.9.(v) we need ~(k+j)q-I is reducible, while Lkq_l show Lkq 

k+j ~ 0 (pj-l) but k*j ~ 0 (pJ). 

When n = 2k, the relation mj o 8pk+lx = s o x p for some s is also trivial 

when j = 0. We need only note that T kq+q is a mod p Moore spectrum. For j > 0, 
~kq+q-I 

T (k+j)q+q-I is not. By 2.9.(v) we must show that ~q+qL (k+j)q+q-1 is reducible, but -kq+q-1 

we must have k+j+l ~ 0 (pj-l) but k+j+l ~ 0 (pJ). // 

When n = 2k, if we try to show 6. o x p = 0 by this technique we find we must 
S 

assume k+j ~ 0 (pj-1) and k+j ~ 0 (pj-1), so that no information is available. 

Before we compute the first few homotopy groups of DDS u (and hence the first 

few homotopy operations), we describe the attaching maps of the first few cells. 

Exact definitions of the maps used in the following proposition can be found in the 

proof. 

Proposition 3.1. Let p = 2. 

(i) If n -= 1 (4) then pn+3n = Sn~ en+Iv Sn+2<~ en+3 

2 ~+2 

(ii) If n 5 2 (4) then pn+3 snvsn+l n+2 n+3 n = ~n+2 e k2ne 

(lli) If n - 3 (4) then pn+3 sn<32en+l n+2k22en+3 
n = k2ne 

(iv) If n - 0 (4) then pn+Jn = snvsn+l~2en+2 v S n+3. 
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Proof. Much of the structure of pn+3 is determined by Sq I and Sq 2 in H*~n +3. We 
n 

will assume this information and fill in the rest. Suppose n ~ 0 (4). Then 2.14 

implies pn+3 is both reducible and coreducible, so only the middle two cells are 
n 

attached. When n ~ 1 (4), collapsing the bottom cell of the previous case yields 

pn+2n = sn~2 en+l v sn+2" Computing Sq I and Sq 2 shows e n+3 is attached to S n+2 by a 

map of degree 2, and is attached to the ~oore spectrum by a map which projects to q 

on S n+l. This projection induces an epimorphism 

= ,~n n+l, sn+l = Z2" 
Z4 ~n+2 t~ '~2 e ~ ~ ~n+2 

Therefore, the attaching map is a generator ~ of ~n+2(sntJ2en+l). 

When n 5 2 (4), we start with pn+2 = snvsn+l n+2 n k#n+ 2 e The long exact 

homotopy sequence of snv sn+l + pn+2 shows that the inclusion sn+l + pn+2 
n n 

induces an isomorphism on ~n+2" Since Sq 2 is nonzero on Hn+Ip n+3, the n+3 cell is 
n 

attached by the map 
sn+20~sn+l ~ pn+2, 

n 
which we also call q. 

F i n a l l y ,  when n ~ 3 (4) ,  we s t a r t  with pn+2n = sn ' J2en+ l~nen+2  The map 

• n  +2 ÷ S n+IVS n+2 which collapses the bottom cell, induces on ~n+2 a monomorphism 

~n+l ~ sn+2 
~n+2~n +2 = Z2~Z > ~ Z 2 ~Z = ~n+2 o ~) n+2 

which sends (a,b) to (a,2b). Computing Sq I and Sq 2 shows that the attaching map of 

the n+3 cell is (0,I) ~ ~n+2~n +2, which projects to the map of degree 2 on S n+2. We 

simply call this map 2. // 

Proposition 3.2. Let p > 2. 

(I) Ljq+2q-i = sjqvsjq+q-I ~ ejq+q U ejq+2q-I 
Jq -j~l + P -(j+2)~ I 

(2) L jq+q sJq-i Upe jq ~'~ e j q+q-I ~-~ e jq+q 
jq-I = -(j+l)~ I -jal+p " 

Proof. Recall that the first three nonzero homotopy groups of S localized at p are 

n 0 = Z, ~q-1 = Zp generated by ~l, and ~2q-1 = Zp generated by ~2" Thus 

Ljq+q-I = sjqv ~q+q-I is the only possibility. Computing 6 and pl in H*L jq+q 
Jq Jq 

shows that L jq+q ~- sJqvs jq+q-1 ~ e jq+q Finally, the long exact homotopy 
Jq -jal+P • 

sequence of ~qv ~q+q-1 + Ljq+ q shows that the inclusion of ~q+q-1 induces an 
Jq 
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isomorphism of ~jq+2q-2" Thus the attaching map of the jq+2q-1 cell factors through 

S jq+q-1 and is determined to be -(j+2)a I by computing p1. 

Collapsing the bottom cell and redefining j we find that 

L~ q+q-I = ~q-lkJpeJq ~-~ e jq+q-I . The long exact homotopy sequence of 
Sq-I -(j+l)~ I 

~q-1 __>Ljq+q-1 shows that the attaching map of the jq+q cell is determined by its 
jq-I 

projections onto ~q and ~q+q-l. Computing pl and 8 shows these to be -J~l and p 

respectively. // 

Diagrams of the cohomology with Sq I and Sq 2 or 8 and pl indicated are 

convenient mnemonic devices. For p = 2 we have 

Pnn÷3 

@ 

n _= 1 2 3 4 (4) 

For p > 2, we have 

-(j+2)~ I -J~l 

jq+q 

and jq -(J+l)el 
-J a 1 

Jq 

We can also think of these diagrams as indicating cells by dots and attaching maps 

by lines, and this is how we have labelled the diagrams for p > 2. 

The spectral sequence Er(S , ~)) will enable us to glean a maximal amount of 

information from Propositions 3.1 and 3.2. We begin with p = 2. Recall, from [66], 

the initial segment of the HZ 2 Adams spectral sequence for ~,S. 
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/ hi h 2 
Y 

h 3 

0 

t-s ÷ 

1 2 3 4 5 6 7 8 9 

Vertical lines represent multiplication by ho, detecting the map of degree 2, and 

diagonals represent multiplication by hl, detecting n. We shall only use the first 

8 stems (t-s ~ 8). Let ~ be the sequence 

Pn n+8~ pn+74n ... 4 pn+l ~ n  Pn n " 

(Omitting the Z n from D~g u = znpn+in means a class in Er(S,~) will have stem 

degree equal to the amount by which the corresponding homotopy operation raises 

degrees.) 

Proposition V.7.5 says that E2(S , ~ ) is free over E2(S,S) on generators in each 

degree from n to n+k. Write x(i) for the element of E2(S , ~) which is x E E2(S,S) in 

the i summand, if i ~ n. Let x(i) mean 0 if i < n. 

Theorem 3.3. 

d2x(i) = hox(i-1) (2), 

d3x(i) = hlX(i-2) (4), 

and dsx(i) = h2x(i-4) (8). 

In the same range, E~(S,Ag) is given by Figures 3.I through 3.4. 

In Er(S,~) , for t-s < 6, 

ifi-_-O 

if i - 0,I 

if i - 0,1,2,3 

Note: Dotted vertical lines indicate "hidden extensions". That is, they represent 

multiplications by 2 which cause an increase of more than 1 in filtration. 

Similarly, dotted diagonals indicate the effect of multiplication by n when this 

causes an increase in filtration of more than I. See the proof of 1.9 for their 

derivation. 
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l(n) 

(n) 

l(n+l) hl(nl÷2) 
I , 
I ~ /~-~ 
I 

I / 
i ,i 

l(n+3) 

~(n+l) 
s t 
y 

/ 
/ 

n+l n+2 n+9 n+4 n+5 

h~(n) 

h 2 (n+3) 

\ 
n÷6 

n ~ 0 (4) 

Figure 3.1 

*) hit by d5(l(n+7)) iff n e 4 (8) 

**) 2 times l(n+3) is hl(n+2) if n ~ 0 (8) 
and it is "hl(n+2) + h2(n)" if n ~ 4 (8) 

***) if n e 4 (8) 

l(n) 

i 
21(n) 

/ ~ / /  h2(n ) 
D ' 
L / 
h I(n+l) ,' 

i 

t ! 
I I 

l(n+2) 

h~(n) 

h~(n+J) X 

h2(n+2) i 

~ 1(n+5) 

l(n+6) 

n+l 

n ~ 1 (4) 

Figure 3.2 

n+2 n+3 n+4 n+5 

*) differential iff n ~ 5 (8) 

**) if n ~ 5 (8) 

n+6 
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i 

l(n+l) 

h2(n) h~(,n+2 ) 

h 2 (n+l I 

hl(n+4)/ 

l(n+5) 

I 
i 
i 

I 
! 
! 

: 
i h2(n+3) 

i 
i 

t 
/ 

t 

n n+l n+2 

n - 2 (4) 

Figure 3-3 

n+3 n+4 n+5 

*) differential iff n ~ 6 (8) 

**) if n ~ 6 (8) 

***) if n ~ 2 (8) 

n+6 

l(n) h I (n+l) 

s / 
I 

2 / '  
hl(n+2) ,/** 

i h 2 ( n÷2 ) 
e 

hl(n+3) /. 

i //' 
l(n+4) 

h2(n) 

h2(n÷4) 

n n+l n+2 n+3 n+4 n+5 n+6 

n ~ 3 (4) *) differential if n ~ 7 (8) 

**) if n ~ 3 (8) 

Figure 3.4 

Proof of 3.3: The differentials listed correspond to attaching maps which can be 

detected by Sq I, Sq 2 and Sq 4, and they hold in the spectral sequences for ~9',~" an~ 

~"' below 

~9 " 

~,. 

si-I i si-I 

si-2qj n ei.. --- S i-2 === S i-2 a * 

si-4k.jv e i . S i-4 === S i-4 === S i-4 === S i-4 4 



1 5 9  

The differential d2x(i) = hox(i-1) if i ~ 0 (2) is immediate, since l(i) 4 E 2 

and by dimensional considerations d21(i) = ho(i-l) is the only possible d 2 on l(i). 

The module structure over E2(S,S) now gives d2x(i) = hox(i-1). 

The d 3 differential is slightly more complicated. There are two cases. If 

i ~ 1 (4) then the i cell is not attached to the i-I cell, but is attached to the 

i-2 cell by n; d31(i) = hl(i-2) follows as for d2, and this implies d3x(i) = hlX(i-2). 

If i ~ 0 (4) then l(i) ~ E3,,since d21(i) = ho(i-1). However, the map of spectral 

sequences induced by ~ + 

Si-2v si-I i si-2 si-i si-2 
, j n + 2  e --= 

t 1 1 iJ 
~),, si-2 ~n ei -~ , ~ si-2 si-2 

shows that elements of E3(S , ~ ) must satisfy d3x(i) = hlX(i-2) + k where k is the 

kernel of E3(S ,~ ) + E3(S , D"), that is, k must have the form y(i-l). By inspection 

k must be 0 in the dimensions considered. Now, by truncating ~ at the i cell, then 

collapsing the i-3 skeleton we can compare E3(S , ~ ) to E3(S , ~ ). Again we have 

d3x(i) = hlX(i-2) + k, where k is now a sum of elements coming from the i-3 cell or 

below. The first possibility is when n R 0 (4). We must decide between d3hl(n+4) = 

hl2(n+2) and d3hl(n+4) = h12(n+2) + h2(n+l). Let pn, pn+l, hiPn+2 ' and pn+3 denote 

elements detected by l(n), l(n+l), hl(n+2) , and l(n+3), respectively. Comparing 

calculations [59], we find that 2 o pn+3 = h~pn+2 or with Wahowald' s 

hlPn+2 + v o pn, depending on n mod 8. Composing with ~ yields~ ~ o hlPn+2 O. 

hlPn+2 = pn+l. But if d3hl(n+4) were h (n+2) + h2(n+l) we would have n o v o 

Therefore we must have d3hl(n+4) = hl2(n+2). The s~une argument, with minor varia- 

tions, finishes all the d 3 differentials. 

Finally, the d 5 differentials follow by similar comparisons with Es(S , ~"). l_u 

all but one case, there is nothing in filtrations less than or equal to the filtra- 

tion of h2x(i-4) so the comparison with E5(S,~'") is sufficient. The one remaining 

case is when n ~ 1 (4). Here h~(n+3) lies between h2(n+4) and h~(n). Since the 

n+4 cell is not attached to the n+3 cell, the d5h2(n+4) = h~(n) is right here also. 

There are no further possible differentials by inspection. The hidden exten- 

sions here are all evident from ~ahowald's computation in [59] of the Adams spectral 

sequence of P~. // 

Note. The spectral sequence Er(S,~ ) has far more ihidden extensions than Er(S,P ~) 

since the cells are spread apart in Er(S , ~) whereas they all occur in the same 

filtration in Er(S,Pn). By IV.7.6, the same hidden extensions occur among the 

elements generated by the B~x for a fixed x. 
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Proof of 1.9 when p = 2: A permanent cycle x(i) corresponds to an operation xP i. 

Thus, Table 1.3 is simply a list of the elements of E~(S, O ), omitting most of those 

which are multiples by elements of ~,S of other elements of E(S, ~ ). The inde- 

terminacy of an operation consists of those elements in the same stem and higher 

filtration, so it too can be read off Figures 3.1 through 3.4- With the exception 

of ~2,(P n) and T2,(pn+l), the values of T2, listed are the only elements of ~,S in 

the relevant dimension. Since ~2nD2 Sn = Z 2 when n is odd, T2,(P n) = 0 in this case. 

When n is even, I:S 2n + D2 Sn induces an isomorphism of ~2n" By II.l.lO, the 

composite I~2:D2 Sn + D2 Sn is multiplication by 2 on H2n ~ ~2n" Thus ~2,(P n) = 2. 

To calculate T2,(pn+l), first suppose n ~ 2 (4)- By Theorem 3.3, ~2n+2D2 Sn = O. 

Therefore, qP n+l = 0 and hence n~2,(P n+l) = O. This forces ~2,(P n+l) to be O, not 

n. When n ~ 0 (4), Theorem 3.3 gives ~2n+iD2 Su = Z2~Z 2 with generators pn+l and 

qpU. By II.2.8, v2,(P n+l) is not zero and hence must be n. 

Determining the relations in Table 1.4 amounts to determining the ~,S module 

structure of ~,D2Sn. The indeterminacy of the operations in Table 1.3 induces a 

similar indeterminacy in the relations of Table 1.4. The relations are to be 

interpreted as asserting equality modulo the sum of the indeterminacies of the two 

sides. Thus, in order to prove that they hold, we need only show that they hold for 

some choice of representatives. The E terms in Theorem 3-3 force the followir~ 

thirteen relations: 

2~ 

qhl Pn+l 

2vp n+2 

vpn+2 

4v~ 

v~+Z 

n~ 

2h11~+I 

2h2 £n+2 

v? n 

qhlPn+3 

nh2 Pn+2 

Another eighteen 

= 0 n ~ 1,3 (4) 

= 0 n ~ 1 (4) 

= 0 n ~ 1 (8) 

= 0 n ~ 5 (8) 

= 0 n ~ 2 (4) 

= 0 n ~ 2 (4) 

= 0 n ~ 6 ( 8 )  

= 0 n ~ 3 (4) 

=0 

= 0 n ~ 7 (8) 

=0 

relations follow by considering the attaching maps given in 

Proposition 3.1, the spectral sequences in Theorem 3-3 and the reducibility and 

coreducibility given in Theorem 2.14. These are 
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2P n+l : 0 

2hl ~+2 

~pU+3 

2pn+3 

2vpn+3 

2pn+3 

npn+3 

vhlPn+2 

2pn+2 

npn+2 

2pn+6 

npn+2 

2pn+l 

2pn+5 

npn+5 

nhl Pn+4 

2pu+4 

npn+4 

= n2pn+l 1 

=0 

= hlPn+2 

= VhlPn+2 = 0 

= hlPn+2 + vPnJ 

= vpn+l 

= v2F n 

= hlPn+l 

:o } 
= hl Pn+5 

= vp n 

=np n 

= hlPn+4 } 

= h2Pn+3 

-= 0 rood v2pn 

: hlPn+3 } 

= h2Pn+2 

n ~ 0 (4) 

n ~ 0 (8) 

n - 4 (8) 

n ~ 1 (4) 

n - 1 (8) 

n -= 5 (8) 

n ~ 2 (4) 

n - 2 (8) 

n - 6 (8) 

n - 3 (8) 

For example, when n - 0 (8), the attaching map of the n+4 cell gives 2P n+3 = hlPn+2. 

Then 2vP n+3 = vhlPn+2 must be either 0 or v2P n by the E~ term in Figure 3.1. But 

pn+7 is coreducible, so v2P n is impossible. Similarly, when n =- 4 (8) the 
n 

attaching map of the n+4 cell gives 2P n+3 = hlPn+2 + vP u. (Note that, since pn+3 n 
is coreducible, vP n need not be considered a part of the indeterminacy of 2P n+3 or 

hlPn+2.) Thus 2vP n+3 = vhlPU+2 + v2P n. But vpu+3 is either 0 or v2P n by the E. 

term in Figure 3.1. Thus 2vP n+3 = 0 and hence Vhl Pn+2 = -v2P n = v2pn. 

Four more relations come from the fact that ~n+2(S n %22en+1) -= Z4, so that the 

composite of 2 and a map which projects to n c~ S n+l, lifts to n 2 on S n. These are 

2hlpn+l = n2pn 1 

2hlPn+5 h21 Pn+4 

2hlPn+4 = h21 £n+3 

2hlPn+3 . 2--n+2 = nlt, 

n -= 1 (4) 

n 5 2 (g+) 

n ~ 3 (4) 
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The relations 

2h~pn+4= h~p n+3 
n ~ I (4) 

2h~P n+3 = 0 

2h~pn+3 = ~pn+2 n : 2 (4) 

2h~P n*2 = h~F u*l n ~ 3 (4) 

nh2Pn+2 = 2pn n ~ 3 (8) 

are the only possibilities consistent with Mahowald's calculations [59] (note that 

these are not hidden extensions in his spectral sequence). 

Finally, the relation 2h2Pn+3 = 2pn when n ~ 6 (8) follows by comparison with 

_n+2 pn+4. In the the spectral sequence for the cofiber of the inclusion ~n+l ÷ n 

cofiber, 2P n+3 = ~pn is obvious from the attaching maps. // 

Now consider the odd primary case. Recall, from [55], that, in degrees less 

than pq-2, the HZp Adams spectral sequence has elements 

i ~,i 
a O 

hOE E~ 'q 
_i,iq+i-I 

and gi-I ~ ~2 

detecting pi i = 0,1,2,..., 

detecting ale ~q-l' 

detecting ai C~iq-1, for 2 < i ~ p. 

Let ~be the sequence 

L•(P-l)+ps .n(p-l)+ps-I .. g Ln(p-l)+l Ln(p-l) 
(p-l) ~ nn(p-1) = " n(p-1) ~ n(p-1) 

Since L~(p_l) has cells only in dimensions n(p-l) and greater which are congruent 

to 0 or -1 mod q, ~(S, ~) is free over ~(S,S) on generators in those degrees. 

Write x(j,s) for the element of E2(S , ~) which is x E2(S,S) in the jq-~ smmnand, if 

jq-~ ~ n(p-l). We agree to let x(j,~) = O if jq-~ < n(p-l). 

Theorem 3. 4. In Er(S ,~), d2(x(j,O)) = a0x(j,l) and 

d2p_l(x(j,1)) = -Jhox(j-l,l). 

In low dimensions E2p(S,~) is given by Figures 3.5 through 3.9. 

Notes: (I) The dotted arrows to the left represent possible d2p differentials 

which we have not computed. This is why the theorem only claims to give E2p(S , ~ ). 

The indicated d2p is the only possible remaining differential in the range listed. 

This is true for dimensional reasons except when n = 2k-1 and k ~ -2 (p). Here the 



163 

T(k+2)q-I possibility that d4p_2(l(k+2,1)) is nonzero is excluded by the fact that ~kq-I 

is reducible when k ~ -2 (p) by Theorem 2.9.(v). 

(2) Dashed vertical lines represent hidden extensions• Precisely, if x and y 

are detected by'and y, the notation 

7 
I 

lJ I 
! 

X 

means that px -- jy modulo higher filtrations. Of course, if j is 0 this means the 

e x t e n s i o n  i s  t r i v i a l .  We r e p l a c e  j by a q u e s t i o n  mark i f  we have n o t  s e t t l e d  t h e  

extension. 

ps+2 

ps 

ps-q+2 

ps-q+l 

ps-2q+l 

i ho(!k,O) 
l~k,O) ! 

kq 

:-2 

l(k+l,l) 

ho(k+l,l) 

gl(k,O) 

| 

J 

i 

ho(k+l,O) 

',-I 
: 
! 

l(k+2,1) 

(k+l)q-i (k+2)q-2 (k+2)q-i 

Figure 3-9 n = 2k, k ~ -2 (p) 

ps+2 

ps 

ps-q+l 

l(k,O) 

gl(k,O) 
! 

holk,O) ~, 
I l 

I 

ik I? 
1 : 

l ( k + l , 1 )  ho(k+ l ,O)  

kq ( k+l ) q-I ( k+2 ) q-i 

Figure 3.6 n = 2k, k ~ -2 (p) 
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ps-p+4 

Ps-p+l 

Ps-3p+4 

l(k,l) 

ho(k,l) 

ho(k,O) 
i 

l(k÷l,1) 

gl(k[ I) gl(k,O) 

! 

ho(k÷l,O) 

kq-i (k+l)q-I 

Figure 3.7 

(k+l)q-i (k+2)q-I 

n = 2k-l, k ~ -i (p) 

(k+2)q-I 

ps+p+4 

ps-p+2 

ps-3p+5 

ps-3p+4 

i 

ps-Sp+6 

l(k,l) ho(k,O) 

gl(k,l) 

i \ 

* %0 

i • 

! 

hO(k+l,1) 

gl(k,O) 

, ? 

\ 

\ 

ho(k+l,O) 

i-1 
! 

1(k÷2,1) 

kq-i 

Figure 3.8 

(k+l)q-i (k+2)q-2 

n = 2k-l, k ~ -2 (p) 

(k+2)q-I 

ps-p+4 

ps-p+2 

ps-3p+4 

l(k,l) ho(k,O) 
gl(k,l) ~,, gll k,O) 

? \\ ¢o 

i 

"ho(k+l,O) 

kq-I 

Figure 3.9 

(k+l)q-I (k+2)q-2 (k+2)q-I 

n = 2k-l, k ~ -I or -2 (p) 
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Proof of 3.4. The differentials follow from the attaching maps in Proposition 3.2 

just as 3.3 follows from 3.1. Applying them gives the values of E2p(S,~D) listed in 

Figures 3.5 through 3.9. The indicated hidden extensions all come from the 

attaching maps of the even cells of ~iL-~(p-1) " // 

Proof of 1.9 when p > 2: A permanent cycle x(j,s) corresponds to a homotopy 

operation xgSP j. Thus Table 1.1 is a llst of those elements in Figures 3.5 through 

3.9 which must be permanent cycles by Theorem 3.4. The indeterminacy is obtained 

from Figures 3.4 through 3.9 as for p = 2. The values of Xp, listed are the only 

elements of ~,S in the relevant dimensions, except for Xp,(pk) = p!, which follows 

from II.l.lO. 

The relations in Table 1.2 are all determined by the attaching maps from 

Proposition 3.2. // 

Proof of i.I0. By IV. 7.3.(v), to determine pn+m+l(xy) we must calculate the image 

of pn+m+l ~ sn+m +m . ~2(n+m)+lU2 under 6,:~,D2 Sn + ~,(D2Sn ^ D2 Sm) We need only 

consider 
pn+m+2 + pn+2 ̂  pm+2 
n+m n m 

for dimensional reasons. If Dn,m is the skeletal filtration of pn+2^ pm+2 n m ' then 

E2(S , #n,m ) is generated over E2(S,S) by elements l(j,k) with n ~ j ~ n+2 and 

m < k < m+2 corresponding to the cells of pn+2 and pm+2 in an obvious fashion. The 
n m 

attaching maps of pn+2 and pm+2 determine the differentials in low dimensions from 
n m 

which we get E(S,~n, m) . The extension questions in ~2(n+m)+l are also determined 

by pn+2 and pm+2 when n ~ m ~ 0 (2). When n ~ m ~ 1 (2) we need the fact that the 
n m 

top cell of the smash product of two mod 2 Moore spaces is attached to the bottom 

cell by n, to settle the extension question. We conclude that if n ~ m ~ 0 (2) then 

~2(n+m)+l is generated by pn+Ipm, pnpm+l, and ~pnpm with relations 

f 

2pn+Ipm = I 0 n ~ 0 (4) 

L n ~ 2 (~) 

and 2PnP m+l = 

npnp TM 

I ° 
npnp TM 

m -- 0 (4) 

m _= 2 (4) • 

If n ~ m ~ I (2) then ~2(n+m)+l is generated by an element we call Sn, m 

detected by l(n+l,m) + l(n,m+l) with the relation 

0 n ~ 3 or m ~ 3 (4) 

2Sn'm = npnp m n ~ m ~ I (4) 

which is 
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From the image of Sn, m in E (S, n,m ) we can see that 

EO(s m ) = pn+Ipm + pnpm+l. 

Finally 6,(P n+m+l) is determined modulo the kernel of the Hurewicz homomorphism by 

commutativity of the following diagram, in which the isomorphisms are Thom 

isomorphisms 

D S n+m 6, ~* 2 ~*D2 Sn^ D2 Sm 

H, D2 Sn+m H,D2 Sn ~ D2sm 

H, BZ 2 H,(BZ 2 × BZ 2) 

Since npnp m generates the kernel of the Hurewicz homomorphism we are done. // 

Proof of i.II. The co~mmutative diagram above shows that the Hurewicz homomorphism 

must map the Cartan formula for a homotopy operation into the Cartan formula for its 

Hurewicz image. Case (i), n = 2j and m = 2k, follows by an argument formally iden- 

tical to, but easier than, the proof of 1.10 when n ~ m ~ 0 (2). Case (ii) is imme- 

diate from the homology Caftan formula because in this case we're in the Hurewicz 

dimension. Case (iii) follows just as in the proof of 1.10 when n ~ m ~ 3 (4). // 

Proof of 1.12. In E2(S,S) , Sql(h O) = h I by [3]. Therefore, pI(2) = n. // 

Proof of 1.13. By definition 6pl(p) is a unit times the composite 

D(p) 
S 2p-3 BPI~D S P ~D S ~ ~ S, 

P P 

where ~pl is the inclusion of the 2p-3 cell. By 11.1.8, Dp(p) ~ ipXp mod p, and by 
I II.2.8, Tp o ~pl ~ O. Since ~tp = l, the composite and hence ~P (p) are nonzero. 

The fact that Bpp-l(ml ) = ~l follows from the fact that in the Adams spectral 

6pp-l(ho) 1 using the notation of [66]. The latter can be computed sequence, = b I 

directly from the definition of ~pp-I using the definitions 

ho = [~1]' bl = i+j = p-i ~ 

in the bar construction. Alternatively, we may refer to Liulevicius' computation 

[55, pp. 26, 30] using [66, II-6.6] to translate it into our notation. // 
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Proof of 1.14. This is now immediate: 

pn+l(2x) = pl(2)x2 + 4pn+l(x) + 4ConnX2 

= nx 2 

since 2pn+l(x) is either 0 or nx 2 by i.i0. Similarly, 

spj+l(px) = Bpl(p)x p + ~6pj+l(x) + dOnal~X p 

: spl(p)x p + jpp-lGlpJ(x ) 

; ~I xp 

since p~Pj+l(x) = JaiPJ(x). Finally ~PJ+P-l(alX) = xPspp-I(~ I) = xP~ I. The 

indeterminacy is always zero because where it is not automatically zero it is 4nx 2 

or pP~ixP. // 

Proof of 1.15. If p = 2 then nx 2 = 0 by Theorem 1.10 when n ~ 3 (4) (even if 

2x ~ O) while 0 = pn+l(2x) = nx 2 by Proposition 1.14 when n ~ 0 (2). If 

p > 2 then x p = 0 if n is odd, while if n = 2j, Proposition 1.14 implies that 

0 = 6PJ+l(px) ~ ~l xp and O = 6PJ+P-l(al x) = 61xP. When x = 61 the second of these 

formulas is ~16~ = O. // 

Proof of 1.16. Several of the computations follow from pn(x) = x 2 if 

x ~n, others from ~4 = w5 = wl2 = ~13 = O. Similarly, several indeterminacies are 

zero from Theorem 1.10 or because they lie in filtrations which are O. We will 

prove the remainder of the results. 

Since p4(h 2) = h3, hlP4(v) is detected by hlh 3 so is either no or L-. By 1.10, 

h2pS(v) = 2hlP6(v) = 0 since 2~10 = 0. Similarly, hlP4(2v) = 0 by calculating 

Steenrod operations in Ext. Since T2,(hlP6) = 0, we get hlP6(2~) = 2hlP6(v) = O, 

and since ~2,(h2 PS) = 0, we get h2P5(2v) = 2h2P5(v) = O. By l.lO, 

h2p5(2v) = 2hlP6(2v) = 0 also. The operations on %v can all be calculated from the 

additivity rule a*(4v) = 2~*(2v) + T2,(~)(2v) 2 = 2~*(2v). 

~2~9, 2 Since 2~17 = O, the relations nit ~v ) = 2hlPIO(v 2) and hl3P8(v2) = 2hl2Pg(v 2) 

force these elements to be O mod O. 

Since p8(h 3) = h4, hlP8(o) is detected by hlh 4 so must be n* * or n + qp. Since 

2h2p9 = q2~p8 and n2hlP8(o) is detected by hl3h4 = h~2h4, it follows that 

h2p9(c) is detected by hoh2h 4. Since 2hlPlO = h~P 9 it follows that hlPlO(G) is 
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detected by h2h 4. Thus hlPIO(G) = v or v 

29 indeterminacy, and similarly for hiP (o). 

Since p7(2o) = 4~ = O, we have 

+ n~ modulo <2v*>, which is its 

(°I hlPS(2c) = 2hlP8(c) + or 

0 2 

(~2 = 0 + 0 = O. 

The remaining operations are additive except for 

hlPS(4o) I°l = 2hlPS(2o) + or 

n 2 

4(~ 2 = 0 + 0 = 0 . // 


