CHAPTER V

THE HOMOTOPY GROUPS OF H_ RING SPECTRA

By Robert R. Bruner

§1. Explicit homotopy operations and relations

This section contains statements of our results on homotopy operations as well
as some applications of these results. The proof's depend on materisl in $§2 and will
be given in §3.

Note that, aside from the computations in »yS at the end of this section, all
the results here apply to the homotopy of any H, ring spectrum Y. Let E:DpY + Y
denote the structure map.

The order of results in this section is:

relation to other operations,
particular operations and relations,
Cartan formulss,

computations in =S,

remarks.

In order not to interrupt the main flow of ideas, we have deferred a number of
remarks until the end of the section.

Throughout this section let Er{X,Y) be the ordinary mod p Adams spectral
sequence converging to [X,Yly, and let E.{S,D) be the spectral sequence of IV §6
based on ordinary mod p homology. Let @ be the sequence

= i + eve 4 1 + O -
D = {Dps“ « Dpsn DS, ps“}

From the spectral sequence E.(S,D) we obtain an isomorphism between an assoclated
graded of n*DpSn and E_(S,D):

0y DS = E_(S,R).

write E9(q) for the image in E:’*(S,b) of an element a¢ w*DPSn of filtration s. By
W.7.5, E5{S,D) is free over E,(S,S) on generators e; corresponding to the cells of
DpSn. By 2.9 below, & more convenient basis over E2(S,S) is given by the elements
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end _ J
B°PY = (-1)ulndes o)

where ¢ = O or 1 (e =0 if p=2), g = 2(p-1) {g=11if p = 2), jg-e > n{p-1) and v
1 if p = 2). Thus, E{a) can be written as a

i

is the function defined in IV.2.4 (v

linear combination of the g®PJ with coefficients in E,(8,8). Recall the operation

a*: Y+ "NY associated to each element ae nNDpSn.

Relation of the o to other operations

*
Proposition 1.1. If 1:5%P » DpSn ig the natural map then 1 (x) = x¥ and

P p=2
0 _ J I
E (1) =4 P p>2and n = 2j
0 p > 2 and n odd

Propoosition 1.2. let h:mg + Hx be the Hurewicz homomorphism. If (o) = gEPJ then
% 7 X
hodo =8° oh, where g5QJ is the Dyer-Lashof operation defined in III.1.

0 v e J . -
If E{a) = a; 8 P, with each a; (€ Ey(S,5) and X €E,(5,7), we let

Pa)(x = § aj’SBSP'j x).

Proposition 1.3. (Kahn, Milgram) If x¢w,Y is detected by E'EEZ(S,Y), then o (x)
is detected by Eo(u)(f).

To see the relation to Toda brackets, suppose we have compressed o into the
np+i skeleton D;Sn and that it projects to 3 on the top cell SPP*1, ret

o 1 i_l
Q; l(x) = Dp(x)ID; 1 and 1et ;i €mypei-1Dp S be the attaching map of the np+i
cell.

* ~ i
Proposition 1.4. o (x) €< a, c, gD; 1(x) >. The set of all such a(x) is a coset

i-1 i-1.n
of gDp (x) o "NDp S .

Note: We will frequently find further that (q) = asapj where 1 = jg-e-n{p-1) and
(-1)dv(n)a detects 3. Then

2(a) (30 = 2253 = st (D),

so that q* is detected by Toda brackets in essentially the same fashion as by
Steenrod operations in E,(S,Y).
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*
Hereafter, if @ €E_(5,0) and xen Y, let o{x) = {ao (x)IEO(a) = 9}. Clearly,

the indeterminacy in o(x), defined to be

Ind(e(x)) = {o (x) - 8 (x)]E2(a) = 0 = E0(p)},

is the set of values of all homotopy operations on x whose corresponding element in
Ew(S,b)‘ has higher filtration than does 0.

Proposition 1.5 (Kahn, Milgram):

(i) BEPJ acts on w.Y
(ii) e;eE_(S,0),

(1i1) D;Sn
(iv) if p
if p

The functions

Definition 1.6.

n

is reducibdle
= 2 then n =
> 2 then ¢ =

or g =

-i-1

The following are equivalent:

i = jg-e-n(p-1)

(2¢(i));

Oand n = 2j,
land j =0 (pvii)y,

¢ and ¢y are defined in 2.5 and 2.11 below.

If p =2, let Bg = 2, By =Ny By TV and let Bj be a generator of

Im J in dimension 8a+2b—1, where j = 4a+b and 0 <b < 3. If p > 2, let ag = p, and

let a; be a generator of Im J

J

in dimension jg-1.

Theorem 1.7 (Toda, Barratt, Mahowald, Cooley): ILet p = 2. If xem,Y and
J = 4a+b, 0 < b < 3, then

8.

and Bj o Pn+1(x)

o x2 =0
J

= ax2 for some o €7 bS if n
2

nzo2l -8 -20 -2 (20*1),

Theorem 1.8. Let p > 2 and x em Y.

if n

=2 _ ga - 2b -1 (23+l)

0 (2) and

il

8a+

Let ep(a) denote the exponent of p in the prime

factorization of a. If n = 2k-1 then

If n = 2k then

a, O Bka =0

J

[+ A

J

[} 8Pk+1x =

uxp

if j=0

or j > 0 and ep(k+j) = j-1.

for some a n(j+1)q_2s
if 3 =0

or j > 0 and ep(k+j+1) = j-1.
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Theorem 1.9. The operations listed in Tables 1.1 and 1.3 exist on ny, and satisfy
the relations listed in Tables 1.2 and 1.4. In Tables 1.1 and 1.3 the columns
labelled "indeterminacy" list generators for the indeterminacy of each operation,
and the columns labelled "rp*" list the values of

. P .
Tp*'“NDpSn > 7 Sn S

N = TTN_np
thereby indicating the deviation from additivity of the given operation (by IV.7.4).

TABLE 1.1

Operations on n, for p > 2

n operations indeterminacy Tp
n = 2k-1 8Pk 0 0
hPE 0 0
glPk 0 0
n = 2k-1
gp*l noP~ 0
Xx=-1 {(p
n = 2k-1 hosPEtL o8P 0
k= -2 (p) BPk+2 glPk and 0
ngPE*L (if it exists)
n =2k pX 0 p!l
BPk+1 alPk multiple of aq
hOPk+l a2Pk multiple of oy
n = 2k gpk*2 hoPX*Y and multiple of a,

k= -2 (p) (12Pk
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TABLE 1.2

Relations among operations on L forp> 2

n relations

= 2k-1 pgPX = phyP¥ = pg,P¥ = 0
(k+1)ap 8P = 0

= 2k-1 papPk*l = _p pk

= -1 (p) 018P¥*1 = 0 mod a,sPK

= 2k-1 phosPE*l = 0 mod aysPX

= =2 {(p)

= 2k kay P¥ = pgpE*l
(k+2)a, 6" = 0

= 2k psPE*2 = _nPX*l mod o, P¥

n

-2 (p)
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TABLE 1.3

Operations on ™ for p =2

n operations indeterminacy Tox
n =0 (4) pn 2p? 2
potl np? n
pnt+3 2Pn+3,an multiple of v
hy P2 2h PA*2 PR multiple of v
nzl (4) pr 0 0
nypo*1 2p
1 LIRS Y 0 or n2
pte 2pR*e 0 or n?
h PP*5 2n,PO*5 2P0 0 or V2
h%Pn”* 2h§l’n+4, VPP 0 or v?
hipn"3 2hiPn+3, V2Pt 0 or v2
n=1 (8) pi+o 2pRte 0 or v°
nsz2 (4) R 2P 2
Pn+l nPn 6]
nyPt4 2n pOH4 0
hiPn+3 2h§Pn+3 0
nIpP+e 2n3pi*e 0
1 1
h2Pn+3 \)2Pn 0 or v2
nz2 (8 p+s 2pR*> 0
n = 3 (4) pt 0 0
han+1 0 0 or n2
+3 +3
h, Pt 2n, P8 0
hipn+2 n2h1Pn+l 0
hy P2 0 0
nz3 (8 pot4 2pit4 0
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TABLE 1.4

Relations among operations for p = 2

n+l

= (4) 2P = 0
2hlpn+2 - n,'2Pn+1
=0 (8) 2p™*3 - han+2
nPn+3 =0
2\)Pn+3 = \)han+2 =0
= 4 (8) 2p™3 2 han+2 + VPR
nPn+3 = an+1
vh Pn+2 = v2Pn
1
=1 (4) 20" = 0 2h1Pn+5 - hiPn+4
2h1Pn+1 = 2Pt 211?1—””“4 = hiPn+3
2p™2 - n Pl 2™ - o
nhan+1 =0
=1 (8) N L
2an+2 = 0
2p™0 . han+5
=5 (8) A
an+2 =0
=2 (4) 2p™ L o 0 2hlpn*4 - hiPn+3
R 2h§Pn*3 - hipn*z
WPt =0 2h§p“*2 =0
=2 (8) 2P - hlp“+4
nPn+5 = h Pn+3
2
= 6 (8) o
2h2Pn+3 o
nhan+4 = 0 mod \)2Pn
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= 3 (4}

=3 (8)

e

=7 (8)

It
(@]
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Cartan Formulas

For later computations we need the Cartsn formulas for the first operation

above the pth power.

Proposition 1.10. let p = 2, x en,Y, ye n, Y. Assume n+m is even. Then

Pn+m+1(xy)= S _(x,y) n

where Sn mifg X
b4

Pnﬂ(x)y2 + x2Pm+1(y) N mnx2y2 nzmszs 0 (2)

i

3 (4) or m= 3 (4)

i

n,m

n12y2 n

n,m mz1 (4)

Sn,m(x,y) +c

i

m * F2(n+m)+1 is an operation such that

(s, ) = POPTL . plpn

and where c
2

1 {4}

1
=]
1

nxy n

Sn,m(x’y) *

0 n

m
W

(4) or m = 3 (4) ,

n 18 an integer depending only on n and m.

Proposition 1.11. ILet p > 2, x ennY and yen Y. Then

(i)

(i1}

(ii1)

if n = 2j and m = 2k,

8P3+k+1(xy) - 3PJ+1{x)yp . ngpk*-l(y) N dn malxpyp
b

where dn,m is an integer depending only on n and m.
if n=2j and m = 2k-1,

8Pd " K(xy) = xPgpk(y)
if n = 2j-1 and m = 2k-1,

BP‘j+k(xy) = Sj’k(x,y)

where S, Y x

3,k ¢ T23-1 2k 2(j+k)p-3"
0 o3 ok L o k .
that E°(8; 1) = g o PC+ P . P and PS5 (x,¥) = 0.

lY K is an operation such
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Computations

Our final results contain extensions to all H, ring spectra of classical
results about wyS due to Toda, Barratt, Mahowald, Gray and Milgram, as well as some

low dimensional calculations at the prime 2.

Let = denote equality up to multiplication by a unit.

Proposition 1.12. If p = 2 then PX(2) = n.

Proposition 1.13. If p > 2 then gPL(p) £ a

Combined with the Cartan formulas 1.10 and 1.11, these yield the following

results.

Proposition 1.14. Let xen Y and n = 2j. If p = 2 then P**1(2x) = nx®. If p > 2

then st+1(px) - alxp and BPj+p'l(alx) = lep. The indeterminacy of each is O.

Corollary 1.15. let xem Y. If p =2, n %1 (4) and 2x = 0, then nx® = O.
If p> 2 and px = O then alxp = 0. If p>2and X = 0 then slxp = 0.
particular, a16§ = 0.

In the next proposition, the statement "an(x) = y mod A" means that A
is the indeterminacy of aPJ when applied to x. If the indeterminacy is not

mentioned, it is O.

Proposition 1.16. The following hold in myS localized at 2.

(1) PL(n) = 12

(1) P2(v) = v%, n P = no or 3, BP7(0) = o,
(111)  P?, n P4, h1P6, n’p’, end n,P’ annihilate 2v and 4v.
(1v)  p°, P7, np?, and hfpg annihilate v°.
* *
(v) P7(c) = 02, hlPB(o) =qn orn + np,
* * —_
hlPlo(c) = v  mod <2v > + <np>,

* * —
hin(o) = 2v mod <4v > + <pu>.

(vi) P'(20) = 0, nP®

(20) = 0, h,p%(20) = 0,
10 * * —
h P (20) = 2v mod <4y > + <>,

* _
h§P9(2a) =4y mod <np>.
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(vii) P/, hlPB, n%p? and n,p” anninilate 4o,

* —
hlPlo(40) = 4y mod <pp> .

Remarks: These are listed by the result to which they refer.

{1.4): The indeterminacy of the Toda bracket <3, css gD;'l(x)> in Proposition

i-1.n

. i-1 ~ . . * .
1.4 is gDP {x) o wNDP S+ {unp+.Y) o &, while the indeterminacy of a {(x) is

i
only gD;—l(x) o nND;_lsn. This reflects the fact that a*(x) uses the canonical
null homotopy Dé(x) of I%_l(x) o c;, whereas the Toda bracket allows any null
homotopy of gD;-l(x) oe; .

(1.8): Since Thg-2 is the first nonzero homotopy group of S in a dimension

congruent to -2 mod q, we get
GjBPk+1x = 0

for j < p-1 satisfying the hypotheses of (1.8).

(1.9): (i) In the range of dimensions listed, the operations and relations
given in Tables 1.1 through 1.4 generate all the operations and relations over mnyS.

For examples, when n = 0 (4) and p = 2:

(a) nPn and nan are nonzero operations because the relations listed do

not force them to be O;

{b) the relation 4h1Pn+2 = 0 follows from the listed relation
2n P2 = (2pttl
and is therefore omitted;

{c) the redundant operstion han+2 is included because the relation
2p™*3 = p P2

which makes it redundant reflects a universally hidden extension:

A

[]
w2 ||
:
]

3

2n+2 2n+3

P

ngPP*3 = 0 in E, and 2P%*3x  is detected by hyP"x,



140

(i1} The operations of degree n+3 for n = 0 {4) and p = 2 are particularly

interesting. If n = O (8) then by [59] 1:2n+3D28n = 28 C)ZS. It is generated by
vP* and P**3 with relations
2P™*3 = n pA*2
and 4PR*3 < op P2 = 2pntl,

If n = 4 (8) then [59] gives n2n+3D28n = 2, ® 2y, and 1t is generated by han+2 {of
order 4) and P2*3 (of order 16) with relations

2n P2 = 2pntl

2P*3 = P2 4 PR

4P03 = 2pntl 4 pypn

8P 3 = 4uPR.

(iii) Fniries in the « 2y

calculated 1

% column such as "0 or n“" indiecate that we have not

p
¥ Such entries simply list the elements of 73S in the relevant

dimension. Even this limited information is useful in Proposition 1.16.

(1.10) and (1.11): Let y: @ » O ® (L be the diagonal of the Steenrod algebra
(W™ =y PPN, 1

0
E{a) = § ajA;, aje E2(S,S), Aeaq

then
2lsgla)) = § agp(a).

This defines §y{a) and, hence, the formula for a*(xy), modulo higher filtration in
E(S,0).

(1.15): This proof that « Bp = 0 differs from Toda's in that Toda views the

171
product in myS as composition and studies D (" en+1)

smash product and study DpSnA Dpsm. Toda shows that

while we view it as the

p_(s°, ™) >sP,, P
o P b %y

n n+q, . np np+pa-1
DP(S . © ) 28 . € .

1
Thus, if px = O or a1%x = O then alxp =0 or Slxp = (), respectively. The proof given
in 1.15 uses the values of the operations on p and oy, rather than the structure of

Dp of their cofibvers.
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Segal {49] saw that the Cartan formula for homotopy operations should provide a

proof that a18§ = 0, but his explicit formulas were incorrect.

There is still another proof that alﬁg = ( which uses virtually none of the
machinery of homotopy operations, but does require that we have calculated enough of

xS to know that the pzq-B stem is either O or Z Given this, the relation

-
D _ P
-a, 87 = DB (8,)

from Table 1.2 implies that als§ = 0.

Remark 1.17: This is a quick survey of results on homotopy operations which are not
included here. Toda [106] shows thit the extended powers propagate several
relations. For example, if <aq,p,x> = O then Bsxp = 0mod aq for 1 < s <p. As
corollaries he shows that stg = 0 and the g, are nilpotent, foreshadowing Nishida's
proof, a few years later, that all positive dimensional elements of nyS are
nilpotent.

Gray [36] obtained results similar to 1.15 using homotopy operations which are

associativity or commutativity obstructions for ring spectra.

Oka and Toda [92] have extensive information on the cell structure of
DP(SQ\JP en+1) which they use, in particular, to show that y; # O.

+1)

Milgram [80] also uses extended powers D2(Sn\J i & to define homotopy
2

operations which can be iterated to yield infinite families of elements in nyS,

presumably related to the elements detected by K-theory.

Cooley, in his thesis [30], uses extended powers to compute some Toda brackets
and to derive 1.7 as well as the relation ex® = 0 if X e , n = 2,3,7 {8), which is
not in 1.7.

n

Milgram {79 and 81] computes the Coker J part of the operations on wgS and =gS
using Steenrod operations in E,(§,S).

§2. ZFxtended powers of spheres

In this section we collect the results on extended powers of spheres which are
needed to prove the results of §1. They will also be essential to our results on
differentisls in the next chapter. First, we recall the values of the K and J
groups of lens spaces. Then, we identify the spectira Disn, « cyelic, as the
suspension spectra of stunted lens spaces and determine when they are stably reduc-
ible or coreducible. Also, we show that, after localizing at p, DpSn is a wedge
summand of D"Sn, which gives a simple cell structure to DpSn.
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Throughout this section, let p be a prime, let 7 < &, be the p-Sylow subgroup

P
generated by the p-cycle (1 2++s+p), and let WX be the k-skeleton of a contractible L
or Ep free CW complex W. (Definitions 2.1 and 2.7 provide the n free CW complexes
which we shall use most frequently.)

The results for p = 2 are analogous to the results for odd primes, but are

sufficiently simpler that we state them separately. We begin with odd primes.

Definition 2,1. Iet p > 2 and let p = exp{2xi/p). Iet = act on the unit sphere
gek+l (o ck+1 by letting a generator of n send (Zi) to {pz4). Let

2K+l 2kl

S /m,
~2k ~2k+]1 .
L™ = {lzg,eer,zy ) € L | zi is real and > 0},
sn+k _ on+k on-1
and Ln = L 7/L s
where [ZO"“’ZE] denotes the equivalence class of (zg,...,%,) and $2k-1 4
*>Nn+k

embedded in f2 by setting z, = 0. We call Ln a stunted lens space.

Each representation of » on c¥*1 without trivial subrepresentations yields a

k+1 k+1/“_

free n action on &° and a corresponding lens space £

Since they are all
stably equivalent we have simply chosen our favorite. Note, however, that the

others reappear briefly in the proof of Proposition 2.4.

It is easy to see that - in'l is an open n cell. Thus fn+k has one cell
in each dimension between n and n+k inclusive. Note that i§ = 1" and ig = (th7,

the union of 1 and a disjoint basepoint.

Since T° = S%/7 is a K(w,1), H*(t“;zp) = E{x} @ P{gx}, with |x| = 1, end
the Steenrod operations are specified by

Pi(xe(sx)j) - (g)xe(ﬂx)j+i(P-l).
The isomorphisms

Hli;;*k — R gl

¥o
for n < i < n+k then determine H L2+k as an Clp module.

Definition 2.2. ILet p > 2 and let 7 act on C by multiplication by p. Let
£ eXKU(T?X*L) be the bundle

S2k+l x_ c S2k+l x"{O} - i?k+l ,

1

let Ly = r(gl) eKO(T..'Zk+ ) where r:KU » X0 forgets complex structure, let
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r= 3 JEh), andlet o= - 15« REEHT) . tet g,0,,0 and o also
+2k

denocte the restrictions of these elements to L7 .

We collect some results from [47], [48] and [58] in the following theorem.

Theorem 2.3. Let T2% » ToK*1
generated by x.

* o o
(iy 1 :KU(L2K*1) > KU(LZk) is an isomorphism and

be the inclusion and let <x> denote the cyclic group

ﬁﬁ(igk) = <g> @ <02> @D s @ <gp-1)
(11) K0 - BE) 1s an epimorphism,
RO(E2%*) = ®B(1%%) @ K3(s%XH,

and i¥ is projection onto the first summand under this isomorphism.

(ii1)  J(E") = «Ir(o)> = <¢ - 2> and has order p[k/(p'l)],

i2k+l » o2k 2k+1

3 y = T(IEH @ F(s )

and i is projection onto the first summand under this isomorphism.

Mso, J(gg) = ¢ for 1 = 1,2,...,p-1.

Proof. This is all in [47], [48] and [58] except J(;i) = ¢, which follows from the
Adams conjecture:

Izy) = Jrgi = erig =Jre =¢.  //

The extended powers Dﬁs“ are suspension spectra of Thom spaces of complex
bundles over ik = Wk/n. Thus Theorem 2.3 ensures us that the following theorem
{proved in [81]) identifies all such spectra. Note that its proof does not require

p to be a prime.

Theorem 2.4. If s > 0, the Thom complex of r + sg over f# satisfies

°T(r + s7) = z”xri‘;z*k.

Proof. The contribution of the trivial r dimensional fibration is obvious and may
be ignored. We will actually prove a much more precise result. If o is an n-
dimensional representation of 7, we let K'(a) and S71(a) denote F* and S~ with n
action given by o. If the action is free on gP-1 we obtain a closed menifold

L{a) = Sn'l(a)/w. If o and B are two such representations of dimension n and k
respectively, let «|L(B) be the bundle
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s 1ig) x Ba) —= s¥1(g) x {0} = L(B).

We claim that there is a homeomorphism

T(a|L(8)) = L(g @ a)/Lia),

where L{a) is embedded in L{g8 @ a) as the last n coordinates. This will imply
Theorem 2.4 for odd k (since L(8) is odd dimensional, p being odd). The even case
will follow by removing the top cell on each side, since the homeomorphism will be
cellular if we give the Thom complex T(a|L(g)) the natural cell structure compatible
with that of L{g).

To establish the claim, let f£:85 1(g) x E'a) » 215 ® a)/n be induced
by the natural inelusion S5 1(g) x Ra) » B5(g @ a) - {0} followed by the

radial retraction MY _ [0} 5 §*¥-l, It is easy to check that f is one-to-one and
maps onto everything except the copy of L{a) embedded as the last n coordinates.
Just as easily, one sees that f sends the zero section of a{L(B) to the embedding of
L(B) as the first k coordinates. It follows that a|L(g) is the normal bundle of
this embedding L(g) » L(8 ® «) and that its Thom complex is L(g ® a)/Lla). //

The fact that 1z ¢ J(fk) has finite order enables us to define stunted lens
spectra in positive and negative dimensionms.

Definition 2.5. Let ¢(k) = [k/2(p-1)]. If n is any integer, ¢ = O or 1, and k > ¢,
let
»2ntk _ _2{n-r) _ox2r+k

Lopee = F Llorie

for r=zn (pw(k)) such that r > O.

The following result shows that the spectrum T§+k is well-~defined up to
equivalence in T §. Recall that an n-dimensional complex X is reducible if
X/Xm'l = §* and the projection X » S has a right inverse. Duelly, an (n-1)-
connected complex X is coreducible if X = 8% and the inclusion S »+ X has a left
inverse. Let W = &, let q:W + I be the quotient map and let wk = q'l(ik). Then
we may define Dfx = Wk % X(p).

Theorem 2.6. Let S be the p-local n-sphere spectirum. Then

s k.o nen{p-1l}+k
{1) D“Sn = ZnLn(p-l) .

is coreducible iff n = O (pw(k)), while i2n+k

2n+k
L 2n+1

2n
coreducible iff k = 1.

(ii) is
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(141) Ife=0or1, k> c andn = r (p*'¥)) then

~2n+k 2(n-r) «2r+k

Lonee = 2 Lopse
~b a-1
{iv} L, end L bl 8&Te {~1) dual spectra.
s2n+k

(vl If e =0or 1l and k > ¢ then L

onte is reducible iff either kX = ¢ or k
is odd and 2n+k+1 = 0 (p¥ik}y,

Proof. If n > O then D Sn = Wk Sn(p) = 3 T(nyk) where yy 1s the restriction

1o ik of the bundle over FA Bn induced by the regular representation of =.

Sinece yy = 1 + gq + eee + g, Jlnyy) = n + nmg (where 2m = p-1). By Theorem 2.4,
nen{p-1)+k

b T(nyk) = 1 Ln(p—l)

If n < O then, by [Equiv, VI.5.3 and 5.4]
W s PP L s Nyt my )
T " k
for sufficiently large N, and since J(nyy) = n + nmg, we find that

n(p) _ =N e, _ Den(p-1)+k
wE o s = L L T(N+n + omg) = I Ln(p-l)

by Definition 2.5 and Theorems 2.4 and 2.3.(iii). This proves (i}.

By Theorem 2.4, L ~2n+k = ZMT(n;]i )« By [15], £™T{ng) is coreducible if and

only if J(nz) = 0, so the first half of (ii) follows by Theorem 2.3.{iii). For
the second part of (ii) we need only note that the Bockstein is nonzero on ol e
k> 1.

To prove (iii), note that J(nz) = J(rz) ifn=zr (p¢(k)) by Theorem
2.3.(1id4).

To prove (iv), first consider i§g+k with k odd. By Theorem 2.4,
~] ~X
L§§+k =3 T{ng}L }» Since k is odd, L is a closed manifold. By considering the
fibration

st . X, opl¥Rl
we see that the tangent bundle of ik is ([k/2] + 1)z - 1. Atiyah's duality
theorem [15, Theorem 3.3] implies that the (-1) dual of 12§+k
I™T(1 - (n+[k/2] + 1)) = 179071

-2n-k-1"
combinations of odd or even top and bottom cells, we use the duality between

To prove (iv) for the other three possible

inclusion of the bottom cell of a complex and projection onto the top cell of its
dual.
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Finally, (v) follows from (ii) and (iv) by the duality between reductions and

coreductions. //

Now we present the analogs of 2.1 through 2.6 for DpSn instead of DﬂSn. Since
the transfer splits DPSn off as a wedge summand of D"Sn, we can use this as a short-
cut to the resulis we need. Ilet X(p) denote the p-localization of a spectrum or

space X. The following result is proved in 17].

Proposition 2.7. There is a CW spectrum L with one cell in each nonnegative
dimension congruent to O or -1 modulo 2(p-1), such that L = (ZmBzg)(p).

Definition 2.8. Let L¥ be the k-skeleton of L and let L0 = L™¥/1* irn > o,
_ 2n+k _ _2(n-r), 2r+k - (k)
Ifn<0,e=0o0r1l, and X > ¢, let L2n+€ =z L2r+e for r = n (p¥'*!) such
that r > 0.
Note that n and k are not uniquely determined by Lﬁ+k as they are by ig+k. For

example, L% = Lg = ees = Lg-l’

1,2,...,9-2.

where q = 2(p-1), since L has no cells in dimensions

Theorem 2.9. let S” be the p-local n-sphere spectrum and let g = 2(p-1). Then
. AR 25-1  2j-1.=
(1) 089 « 17 and D8 = z“7°L] .. The maps D_S® » DS and

P Jja D ja-1 bs Upo B

Ntk n+k
>

Lh Ln induced by the inclusion = ¢ zp are projections onto wedge
sunmands .
(ii) ng*k is coreducible iff j = O (p¢(k)) while qu+k is coreducible
Ja ’ Jjg-1
iff k = -1,
(141) If e = Oor 1 and i = j (p***?¢)) then
Ok, -t dank
Jq-¢ ig-¢
. ig-§¢ . R -jgte-1
{iv) If ¢ and § are O or 1 then qu_g is (-1} dual to L—iq+5-l .

(v} If e =0 or 1 then ngiﬁ has a reducible jg+k cell iff either

k=¢g=0o0r k= ig-1and i+j = 0 (pite-1y,

Note: Part (i) shows that bottom dimensions of the form jq-e, € = O or 1, are more
natural in this context than jq+e. This accounts for the exponent y(k+2¢) in (iii),
where (k) might be expected.
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Proof. By the remark preceding the theorem, the first statement in (i) can be

abbreviated to DpSn = Y

n(p-1)° The transfer (I sz)(p) + 3§ Br splits off L” and

l;(p—l) as wedge summands of T° and i;(p—l) respectively. Similarly, the
transfer splits off DpSn as a wedge sumand of D S". The maps
t1 N0 il n.«
D s —=»p & = "L —= "L
P ) n(p-1) n{p-1)
and
n. e t2 hat & i2 n
Pl z i:Z(p—l) =D DS

where t; and t2 are transfers, and il and 1, are induced by the inclusion 7 C zp are
inverse equivalences because their composites induce isomorphisms in mod p homology.
This proves (i). Now (ii)-(v) follows from 2.6 and (i). //

The preceding theorem does not assert that W- g p) , popalp-1)+k

n(p-1) where

D
WX is the k-skeleton of a contractible free I, space, because this is not true. In

general, Wk “z Sn(p) will have homology in dimension np+k which goes to U in Dpsn
1%

and in Zn n(p-1)+k- Since we are only interested in homology which is nonzero in

D Sn, EnLn(p-1)+k is more useful to us than is Wk [ Sn(p)‘

iY n(p-1) Zp

rather than Wk o Sn(p).
p

The preceding theorem also shows thet we may ignore the distinction between
+k

n{p-1)+k

Therefore we will let DkSn =z
P n{p-1)

1% ang 8
n n
information about DPSn because J theory only gives information about coreducibility

without harm. We used iﬁ*k and D“Sn as a stepping stone to

of Thom complexes, and we need Atiyah's S-duality theorem to convert this to infor-
mation about reducibility. The S-duality theorem of Atiyah only applies to Thom
complexes of bundles over manifolds so cannot be used on bundles over the skeleta of
sz, or over the even skeleta of Brn. Conveniently, the odd skeleta of Br are
manifolds (if we use a lens space for Br). To obtain analogous information about
DS for nonprime r, a similar technique works. First, we split D.§" off of D_S"
using the transfer, where t C I, is a p-Sylow subgroup. Then the structure of 1 (a
Cartesian product of iterated wreath products of =} suggests manifolds mapping to Bt
which we can use just as the odd skeleta of Br are used here.

We now turn to the analogs of 2.1 through 2.6 for p = 2.
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Definition 2.10. Iet n > O, let » = I, act antipodally on " and let

PP o= g%y

I e Y San

We call P§+k a stunted projective space. Let £ in KO(P®) be the canonical real

line bundle and let A = g-1 ¢ KO(PP).

Remarks. (1) If p = 2 we will agree to let I and 1™ mean P* and let L2+k and
ﬁg+k mean P2+k so that uniform statements of results for all primes can be given.
The P! and Pg+k notation will still appear frequently because many of the results

are not the same for even and odd primes.

{2} It is easy to see that . Pn'l is an open n-cell so that PS*k has one
cell in each dimension between n and n+k inclusive. Since P” = S”/Z2 is a K(Zz,l),
¥ oo
H (P";25) = P{x} with |x]| = 1 and

satxd = ()t

i
The isomorphisms
H1P2+k R H1Pn+k . Hle
*
for n <1 < n+k thus determine H P;”k as an a2 module.

Theorem 2.11. Iet ¢(n) be the number of integers j congruent to 0,1,2, or 4 mod 8
such that 0 < j < n. Then §6(Pn) = <)x> and has order 2¢(n). Furthermore,

T:KO(P™) » J(P™)

is an isomorphism.

Proof. KO{P®) is computed in {1]. The computations there and the Adams conjecture
imply the last statement. //

Theorem 2.12. If s > O the Thom complex of r+s¢ over P* satisfies

sT(r + sg) = z”P§+n.

Proof. The proof of Proposition 2.4 can easily be adapted to prove this as well.

As for odd primes, we can now define stunted projective spectra starting and

ending in any positive or negative dimensions.
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Definition 2.13. For kX > O and any n let

n+k _ _n-r e _T+k
Pn =3I I Pr

for any r = n (2¢{k)), r > 0.

The following result shows that P otk is well defined up to equivalence in

nd. Let SK have the antipodal action of m. We define D X = ¥ " x?),

Theorem 2.14. Let S" be the 2-local n-sphere spectrum. Then

k. n n_n+k
(1) D,S" = I'P,
(ii) P2+k is coreducible if and only if n = O (24 (X))
(111) If n = m (2008)) then PO o pPTRIK
{iv) Pg and P_g_i are {~1) dual spectrs

{v} Pg+k is reducible if and only if n+k+l = O (20K,

Proof (i) follows for n > O from Theorem 2.12 once we observe that the regular

representation yy is 1 + §. For n < 0 we have

k.o k n ©
DZS = 2(2 8) = Ny T(N + nyk)
by VI.5.3 and VI.5.4 of [Equivl, for sufficiently large N. Hence D]?fsn N znP§+k

for n < 0 also, again by 2.12.

Parts (ii) through (v) follow exactly as in 2.6. In (iv) we use the fact that
P? is a closed manifold with tangent bundle (n+l)g - 1. //

The last results in this section identify the top dimensional component of any
attaching map of DpSn by combining Thecrems 2.6 and 2.14 with Milnor's result on
Thom complexes of sphere bundles over suspensions. First we must define the maps
under consideration. As in §1, g = 2(p-1) and ¢ = 0O or 1 (g =1 and ¢ = 0 if

=2},

Definition 2.15. Define a function Vp by

Vp(n) = max{v|1} is reducible}.

n-v+l

v-n

let v = vp(n) and define ap(n) €1my_15 to be I of the composite

Sn-l 18-V -V

in which the first map is a 1ift of the ataching map of the n cell and the second is

projection onto the top cell of P~V
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The indeterminacy in the definition of ap(n) is the kernel of the homomorphism

induced on m,_; by the inclusion of the bottom cell of Lg:i .

We will often omit the subscript p for typographical simplicity. The notations
v and a are intended to be mmemonic: v stands for "vector field number™ and a
stands for "attaching map". Actually, v is not quite the vector field number as
defined by Adams [1]; v,(n) is p(n-1) in Adams' notation. The function 5 tells us

how far we can compress each of the attaching maps of L”. The attaching map of the

n cell factors through I*V if and only if Lg—v+l is reducible. Thus, it factors
through L™V but not through Ln—v-l, where v = vp(n). By the definition of vp(n),
ap(n) is nonzero. We obtain a good hold on Vs and a, from the following two lemmas.

Let sp(j) be the exponent of p in the prime factorization of j.

Proposition 2.16. If p > 2 then, with q = 2(p-1),
1 €

"
o

vp(jq~e) =

q{l + ep(j)) e=1.

If p= 2 then v,(j) = 8a + 2°, where e,(j+1) = 4a + b and 0 <b < 3.

Proposition 2.17. If vp(n) = 1 then ap(n) is the map of degree p. If vp(n) > 1
then ap(n) ® 1 generates Im J @ Z(p) in dimension vp(n)—l.

Proof of 2.16. Theorem 2.14.(v) shows that v2(j) is the maximum s such

that ¢,(j+1) = ¢{s-1}. The formula for vo(j) follows easily from this. Theorem
2.9.{v) shows that if p > 2 then vp(jq) = 1 while vp(jq-l) is the maximum s such
that sp(jq) = y{s-1}. The formula for vp(jq~e) follows immediately. //

Proof of 2.17. lLet n = jq-g, v = vp(n) and a = ap(n). We wish to construct a map

of cofiber sequences

Sn—l Ln~l > 12 - P
n-v n-v

Lo

Sn—l a sn~v Ca 3

where Ca = sn—v\v,en’ b is the inclusion of the bottom cell, and a ® 1 generates
a
ImJ@® Z(p). By S-duality and Theorems 2.9.(iv) and 2.14.(iv), it is equivalent to

construct a map of cofiber sequences

S—n Lv-n—-l Lv-n-l S—n-l
-1 ~n-1
*
() ” bl l “
-1 a Vel -n-1
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in which b* is the collapse onto the top cell and a 1is as before. The lemma is
trivial when v =1 so we may assume v > 1 and hence, that n is odd. Let y be the
bundle —(n+1)g if p = 2 and -j(p-1)z if p > 2 over LV. Then L‘_’I'lf;1= T(y). By the
definition of v, y is trivial over LV~! but not over LV. This implies y = n v where
7:L¥ » LV/1%"1 = ¥ is the collapsing map and 0 # v KO(S'). By [85], T(v) has
attaching map J(v). Thus, the inclusions of the fiber s 21 into T(y) and T(v)
induce a map (*) of cofiber sequences with a = J(v). Since v is greater than 1, it
is even when p > 2 by 3.2. Thus, 2.3.(iii) and 2.9.(i) when p > 2, and 2.11 when

P = 2, imply that the kernel of LTSRS j(Lv_l) is Zp. Hence J(y) generates it,
being nonzero. Since w*(a) = 3(7), ae 1(8Y) must generate Ys") ® Z(p)' //

In the notation of 1.6, Propositions 2.16 and 2.17 are summarized by the

equations
az(J) = 862(j+1)
apjqa) = p

and ap(jQ‘l) = a1+€p(j)

where = denotes equality up to multiplication by a unit of Z(p)‘

§3. Proofs for section 1 and other calculations

This section primarily consists of proofs of results of §1 with the additional
necessary results (3.1-3.4) interspersed. Note, however, that the spectral sequence
charts in Figures 3.1 to 3.9 can be very useful in conjunction with Theorem 1.10
since they show where in the Adams spectral sequence the elements detecting the

results of homotopy operations must lie.

Proof of 1.1. 1*(x) = xP by IV.7.3.(iii). Clearly, ) = en @)1§ = ey 8O the

second statement is immediate from the definition:

end = (_q3d
g8°P (-1) v(n)ejq-e-n(p-l)'

Proof of 1.2. Recall from III §1 that the homology operations are defined by
j 2
Qx = txley , ®x7) ifp= 2,

and 8%a9x = £,((-1)3v(n) @xP) if p > 2.

€ja-e-n(p-1)

To prove 1.2 we simply calculate. If p = 2 and E%(a) = PJ then
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* *
ha (x) = [a (x)] 01

i

N

= £, (x)gay (1)

i

2
g*Dp(x)*(eJ_n @ zn)

2
= gyle;_, @n(0)%)

i

Q'n(x).
The proof is essentially the same when p > 2. //
Proof of 1.3. This is just the naturality of the spectral sequence E.(S,5). //

Proof of 1.4. Consider the following commutative diagram, in which the row is the

cofiber sequence of ¢y and a' is a 1lift of o to D;Sn.

SN
a/ \E‘
D1-1Sn _ n . SDpt+i
p
gD;-ll\\\\ y///;D;x
Y

% :
Clearly a (x) = gDp(x)a = ng(x)u' and this lies in the Toda bracket

'UUP-
6}

snp+i-1

<§,ci,ng_l(x)>. If « and § both lift to D;Sn and project to a on §P*1 then

a - 8 lifts to D; 1Sn so that « (x) ~ 8 (x) is in gD o ”ND; -1 s™.

Conversely, if vy euNDl lsn then a + y also 1lifts to DPS and projects to a' on
2NN

Proof of 1.5. By definition, BEPJ is defined on n, if and only if es is a permanent
cycle in E_(S,,3). Thus (i) and (ii) are equivalent. Let B& be B truncated at the
np+i cell. The map of spectral sequences E.(S, Py) » E.(S, gt induced by the
projection DPS sPP* gends ey to the identity map of.Snp+1. If DpS is
reducible then there is a map back which splits Er(S,Snp+l) off E.(8, &), foreing
e; to be a permanent cycle. Conversely, if =h is a permanent cycle then any map
detecting it will be a reduction. Thus (ii) and (iii) are equivalent. Finally,
(iii) and (iv) are equivalent by Theorems 2.6.(v), 2.9.(v) and 2.14.{v). //
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+v

Proof of 1.7. To show B, o x2 = 0, where ﬁj e my_ 1S, we need only show that P§+1

is reducible and P>V is not, since this implies that the n+v cell is attached
only to the n cell of P2+V, and Proposition 2.17 implies that the attaching map is
a generator of Im J in 5, 4S. If j = 4a + b then v = 8a + 2b, 50 2.14.(v) implies

that n must satisfy

n+8 +2°:z-1 (20)

and n+ 8a+ 20 7 -1 (20%]),
To show BJ o Py is a multiple of x2, we must show that Pg:¥+l is not
reducible, but pﬁ:‘z"‘l is reducible, for then the top cell will be attached to the

cells carrying %% and P®*}x, The rest of the proof is the same as in the first
case. //

Proof of 1.8. To show that aj o Bka =0, forxe Y and n = 2k-1, is trivial

when j = 0. Simply note that Lig-l is a mod p Moore spectrum. When j > O we must
{k+j)g-1 . R . {k+j)g-1

show qu is reducible, while qu—l

k+j = 0 (pd~1) but k+j £ 0 (pd).

is not. By 2.9.{v) we need
= k+1 P R .
When n = 2k, the relation aj o BP "x = o o x* for some a is also trivial
when j = 0. We need only note that kg:3_1 ig a mod p Moore spectrum. For j > O,
(k+j)q+g-l . . (k+j)q+q-1
we must show that qu+q is reducible, but qu+q-1 -

we must have k+j+1 = O (pj'l) but k+j+1 £ 0 (pj). //

is not. By 2.9.(v)

When n = 2k, if we try to show “j o xP = 0 by this technique we find we must

assume k+j = O (pj'l) and k+j £ 0O (pj'l), so that no information is available.

Before we compute the first few homotopy groups of DPSn (and hence the first
few homotopy operations}, we describe the attaching maps of the first few cells.
Exact definitions of the maps used in the following proposition can be found in the

proof.

Proposition 3.1. Let p = 2.

(1) If n =1 (4) then P2+3 =S U ey Sm2 N en+3
2 n+2
. - +3 oD n+l n+2 n+3
(1)  If n =2 (4) then B~ = 8'vs "y e e
. _ +3 n n+l n+2 n+3
(111) If n =3 (4) then BJ'° = 870" " U
(iv) If n = 0 (4) then P22 = gPv g™l ™2 v g3,
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Proof. Much of the structure of P2+3 is determined by Sq1 and Sq2 in H*Pg+3. We

will assume this information and fill in the rest. Suppose n = 0 (4). Then 2.14

implies Pﬁ+3 is both reducible and coreducible, so only the middle two cells are

attached. When n = 1 (4), collapsing the bottom cell of the previous case yields
P§+2 = Snuzen+lvsn+2. Computing Sq1 and Sq2 shows e"*> is attached to Sn+2 by a
map of degree 2, and is attached to the Moore specirum by 2 map which projects to g

on S®*1, This projection induces an epimorphism

_ n n+l n+l _
247 TS g ) T o8 T = e
n+l,

Therefore, the attaching map is a generator 7 of nn+2(Sn\J2e

When n = 2 {4), we start with P§+2 = Sn\?sn+1\Jn+2 2, e long exact
homotopy sequence of st Sn"'1 > P2+2 shows that the inclusion Sn+1 > P2+2

induces an isomorphism on =

n+2" Since qu is nonzero on Hn+1P§+3, the n+3 cell is

attached by the map

sn+2 n Sn+1 P§+2,

which we also call n.

Finally, when n = 3 (4), we start with P2+2 = snkaen+l\1nen+2. The map

Pg+2 > Sn+1v Sn+2 which collapses the bottom cell, induces on wp,, a monomorphism

+2 -
PP —22@Z>—-~>ZZ®Z*ﬂn

n+l n+2
Theofn SHECR S

+2

which sends (a,b) to (a,2b). Computing Sq1 and qu

the n+3 cell is (0,1) € Ty

simply call this map 2. //

shows that the attaching map of
+2Pg+2, which projects to the map of degree 2 on 2, We

Proposition 3.2. let p > 2.

(1) per2a-l | gda, gara-l U Ja%a U oJat2a-1
Jq —Ja+t P -(J*2)ay )

jara | el da \J o jerer U Ljara
(@) Ijgn = 7 U -(J+1)a,© ~Jape® ’

Proof. Recall that the first three nonzero homotopy groups of S localized at p are

T T Z, "q—l = Zp generated by ay, and Tog-1 = Zp generated by a,. Thus

e X e % s
L'j.éﬂi 1. 809, 9991 15 the only possibility. Computing g and P* in H ng*‘q
shows that L§g+q B Squ/SJq+q_1 ;§~1peJq+q' Finally, the long exact homotopy
; . ] :

sequence of v glare-l | I§3+q shows that the inclusion of S49%Q~1 jnduces an
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isomorphism of Tjq+2q-2° Thus the attaching map of the jq+2gq-1 cell factors through
§99%9-1 ang is determined to be -(j#2)a; by computing pl.

Collapsing the bottom cell and redefining J we find that
Jare-l | Ja-1, ) o U _Jate-l
a1 =5 upe -(3F1)q,® :

qu-l'_’ ngig_l shows that the attaching map of the jg+q cell is determined by its

projections onto S92 and $99*94-1, Computing P and g shows these to be -jaq and p

The long exact homotopy sequence of

respectively. //

Diagrams of the cohomology with Sql and qu or 8 and pl indicated are

convenient mnemonic devices. For p = 2 we have

.
n+3
= I
.
n = 1 2 3 4 (4}
For p > 2, we have
(j*+2)1g-1 Jarq _ja
-(j+2)al 1
Jatg
and ja
. ~{j+1)a
-Jal 1
Ja

We can also think of these diagrams as indicating cells by dots and attaching maps

by lines, and this is how we have labelled the diagrams for p > 2.

The spectral sequence E.(S, B) will enable us to glean a maximal amount of
information from Propositions 3.1 and 3.2. We begin with p = 2. Recall, from [66],
the initial segment of the H22 Adams spectral sequence for wgS.
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[ d
4 t /
3 o
1~
8 2 h%
1 / by h, h3

tws >

Vertical lines represent multiplication by by, detecting the map of degree 2, and
dlagonals represent multiplication by hy, detecting n. We shall only use the first
8 stems (t-s < 8). let B be the sequence

Pn+8 4———-Pn+7 ‘— see 4— Pn+1
n n n

—.
(Omitting the " from D;Sn = ZRP§+1 means a class in E.(S, ) will have stem
degree equal to the amount by which the corresponding homotopy operation raises

degrees.)

Proposition V.7.5 says that E2(S,s) is free over E»{S,8) on generators in each
degree from n to n+k. Write x(i) for the element of EZ(S,ﬁ) which is xe¢ EQ(S,S) in

the 1 summand, if 1 > n. ZIet x(i) mean 0 if 1 < n.

Theorem 3.3. In E,(85,8), for t-s < 6,
dox{i) = hpx(i-1) ifi=z90 2},
dsx(1) = hyx(i-2)  if 1z 0,1 (4,
and d5x(i) = hyx(i-4) if 1 = 0,1,2,3 (8).

In the same range, E_{S,§9) is given by Figures 3.1 through 3.4.

Note: Dotted vertical lines indicate "hidden extensions". That is, they represent
multiplications by 2 which cause an increase of more than 1 in filtration.
Similarly, dotted diagonals indicate the effect of multiplication by n when this
causes an increase in filtration of more than 1. See the proof of 1.9 for their
derivation.



1(n)

1{n+1)

2
hz(n)

h2(n+3)

1(n)

n+l
nz=0 (4)

Figure 3.1

/

n+5

*) hit by ds(1(n+7)) iff n =z 4 (8)

*¥*¥) 2 times 1(n+3) is hl(n+2) if n
and it is "h)(n+2) * hy(n)" if

=2

h2(n+2)

m o

n+é

(8)
4 (8)

n+l

n =1 (4)

Figure 3.2

n+5

*) differential iff n = 5 (8)
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M 2
hz(nl
h,(n) n3(n+2) |
/‘= 2 1y '
1(n) i h,(n+1) i L%
: | :
1(n+1) nZ(n+3) :
¥ i
k] t
x § hz(n’*fB)
hl(fl%) ”,’
H ke
S
M
1{n+5
n n+l n+2 n+3 n+4 n+5 n+6
nz2 (4) ¥) differential iff n = 6 (8)
¥*) ifnzé (8)
Figure 3.3 ¥%%¥} if n = 2 (8)
2
' hz(n)
J /
1 ,
1 K¢
h2(n) : /'4
1(n) n (n+1) n2(n+2) e x
1 ,’
% § n,(n+2)
h (n+3) /"
1 1 A%
i ,/"l h2(n+4)
v/
1{n+4)
n n+l n+2 n+3 n+4 n+5 n+6
n = 3 (4) ¥) differential if n = 7 (8)

**) if n = 3 (8)
Figure 3.4

Proof of 3.3: The differentials listed correspond to attaching maps which can be

detected by Sql , qu and Sq4, and they hold in the spectral sequences for 9' s B and

9" below
)3, 31-3{-}2 el Si 1 %
" Sl—2U ei -— 81—2 . 81_2 - x
" s 'l’uv B e Tt L
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The differential dpx(i) = hyx(i-1) if i = 0 (2) is immediate, since 1(i) ¢ E,
and by dimensional considerations dy1(i) = hy(i-1) is the only possible d, on 1(i).
The module structure over E,(S,S) now gives dyx{i) = hgx{i-1}.

The d3 differential is slightly more complicated. There are two cases. If
iz 1 (4) then the i cell is not attached to the i-1 cell, but is attached to the
i-2 cell by n; d31(') = hq(i-2) follows as for d,, and this implies d3x(i) = hyx(i-2).
If i 0 (4) then 1(1) ¢ E3 since d;1{i) = hy(i-1). However, the map of spectral
sequences induced by ¢ » p

e si-2y gi- Un+2ei si-2, i1 si-2
" 81—2 unel - Si—2 U 81—2

shows that elements of EB(S,C) must satisfy d3x(i) = hyx{i-2) + k where k is the
kernel of EB(S,C) ¥ EB(S’ O"), that is, k must have the form y(i-1). By inspection
k must be O in the dimensions considered. Now, by truncating P at the 1 cell, then
collapsing the i-3 skeleton we can compare EB(S,p) to E3(S;C }. Again we have
d3X(i) = hyx{i-2) + k, where k is now a sum of elements coming from the i-3 cell or
below. The first possibility is when n = 0 (4). We must decide between d3h1(n+4) =
n?(n+2) and dghy(n+4) = hy?(n+2) + hy(n+l). Let P°, PO*L, nPP*2, ana PP*3 denote
elements detected by 1(n), 1(n+l), hy(n+2), and 1(n+3), respectively. Comparing
with Nahowald’s caleculations [59], we find that 2 o A han+2 or

h Pn + v o Pn depending on n mod 8. Composing with n yields n o hlP o2 0.
But if d3h1(n+4) were h (n+2) + h (n+1) we would have ¢ o hlP o2 voP +1.
Therefore we must have d3h1(n+4 = h (n+2) The same argument, with minor varia-

tions, finishes all the d3 differentlals.

Finally, the d5 differentials follow by similar comparisons with E5(S, pT. In
all but one case, there is nothing in filtrations less than or equal to the filtra-
tion of hzx(l -4) so the compamson with E5(S P™) is sufficient. The one remaining
case 18 when n = 1 {(4). Here h (n+3) lies between h,(n+4) and h (n). Since the
n+4 cell is not attached to the n+3 cell, the d5h2(n+4) = hg(n) is right here also.

There are no further possible differentials by inspection. The hidden exten-
sions here are all evident from Mghowald's computation in [59] of the Adams spectral
sequence of P:. //

Note. The spectral sequence E.(S,R ) has far more hidden extensions than Er(S,P:)
since the cells are spread apart in Er( S, B) whereas they all occur in the same
filtration in Er(S,P:) . By IY.7.6, the same hidden extensions occur among the
elements generated by the BEP‘]x for a fixed x.
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Proof of 1.9 when p = 2: A permanent cycle x(i) corresponds to an operation xpl,
Thus, Table 1.3 is simply a list of the elements of E_ (38, 8), omitting most of those
which are multiples by elements of nyS of other elements of E_ (S, f). The inde-

terminacy of an operation consists of those elements in the same stem and higher
filtration, so it too can be read off Figures 3.1 through 3.4. With the exception
of 12*(Pn) and 12*(Pn+1), the values of 7,y listed are the only elements of =4S in
the relevant dimension. Since 1r2nD28n = Z, when n is odd, 12*(Pn) = 0 in this case.
When n is even; 1:5°0 5 DZSn induces an isomorphism of mp,. By II.1.10, the
composite 11,:D,8% » DyS™ is multiplication by 2 on Hy, = myp. Thus to4(PP) = 2.

To caleculate 12*(Pn+1), first suppose n = 2 (4). By Theorem 3.3, n2n+2D28n = 0.
Therefore, nP*1l = 0 and hence nrz*(Pn+l} = 0. This forces 12*{Pn+1} to be 0, not
n. When n = 0 (4}, Theorem 3.3 gives n2n+1D23n = 2y C)Z2 with generators Pn+1 and
nP*. By II.2.8, rz*(Pn+1) is not zero and hence must be n.

Determining the relations in Table 1.4 amounts to determining the nyS module
strueture of n*DZSn. The indeterminacy of the operations in Table 1.3 induces a
similar indeterminacy in the relations of Table 1.4. The relations are to be
interpreted as asserting equality modulo the sum of the indeterminacies of the two
sides. Thus, in order to prove that they hold, we need only show that they hold for
some choice of representatives. The E_ terms in Theorem 3.3 force the following

thirteen relations:

2P = 0 n = 1,3 {4)
nh PP = 0 nzl (4
2vPR*2 = ¢ n=1 (8)
vPR*2 = ¢ nz=5 (8)
4P = 0 nz2 (4)
a1 = o nz2 (4)
vP*l = o nz6 (8)
Pt = 0 ]
20, Pl = 0 ) nz3  (4)
2n,P%2 = 0 |
vBR = 0 )
nhan+3 =0 ¢ nz?7 (8)
P2 = 0

Another eighteen relations follow by considering the attaching maps given in
Proposition 3.1, the spectral sequences in Theorem 3.3 and the reducibility and
coreducibility given in Theorem 2.14. These are
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2Pl - g

2}1an*2 _ 2l n =0 (4)
nP*3 = o ]
2P*3 = pypit2 s n =0 (8)
2vP™*3 = yn P2 = 0
2p0*3 - han+2 + an‘
nPi*3 = ypitl nz4 (8)
vh P2 = \2p0 )
2p*2 = p potl nzl(4)
nP*2 = 0
Lot han+5 nz1l (8)
nP*2 = ypft n =5 (8)
2petl - PR n z 2 {4)
25 - han+4
n?”5=lbﬁ"3 ns2 (8)
nhan+4 = 0 mod VP2 neé6 (8)
2PI*4 = pA*3
P h2Pn+2 n = 3 (8)

For example, when n = O (8), the attaching map of the n+4 cell gives 2P%*2 = han+2.
Then 2vPR*3 = vhan*'z must be either O or v2P® by the E_ term in Figure 3.1. But
P§+7 is coreducible, so PR is impossible. Similarly, when n = 4 (8), the
attaching map of the n+4 cell gives 2P%*3 = hy PO*2 + yPU.  (Note that, since Pn+3
is coreducible, vP® need not be considered a part of the indeterminacy of 2Pt 3 or
1Pn+2.) Thus 2vP*3 = vhy P2 4 2P0 But vPO*3 45 either O or VPR by the E,

term in Figure 3.1. Thus 2an 3 = 0 and hence vhyP™*? = VPP = 2PR,

Four more relations come from the fact that m (S uzenﬂ) = Z,, so that the
composite of 2 and a map which projects to n on Snﬂ', 1ifts to n2 on 8%, These are

2h1Pn+1 = n2Pn

2n,PA*5 = p2ptté mEL
2n, PIY4 = hi?’1+3 nz2 (4)
2n P32 = hipn’z nz 3 {4)
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The relations

2n2p™*4 < 23

nzl {4)
2hiPn+3

"

0

2h§P“+3 - hipn"'g nz2 (4
2h§1=n+2 - h%Pnﬂ =3 (4)
qh2Pn+2 = van n =z 3 (8)

are the only possibilities consistent with Mahowald's calculations [59] (note that
these are not hidden extensions in his spectral sequence).

Finally, the relation 2142?“’r3 = v‘?‘Pn when n = 6 (8) follows by comparison with

the spectral sequence for the cofiber of the inclusion PE:"IZ > Pﬁu’. In the

cofiber, 2Pn+3 = yP? is obvious from the attaching maps. //

Now consider the odd primary case. Recall, from {55}, that, in degrees less
than pg-2, the HZp Adams spectral sequence has elements

ag‘)s }:;’1 detecting pi, i = 0,1,2,...,
1,9
ho € EZ’ detecting aj e Tg-19
and gy B T detecting oy engqy, for 2 < < p.

Let © be the sequence

n(p-1)+ps n(p-1)+ps-1 n(p-1)+1 n(p-1)
Lip-1) 7 7 a1 = hipn T e
Since L:(p—l) has cells only in dimensions n{p-1) and greater which are congruent

to 0 or -1 mod g, E,(S, ®) is free over E,(8,8) on generators in those degrees.
Write x(j,s) for the element of E,(S, B) which is x E,(S,S) in the jq-¢ sumand, 1f
Jg-e > n{p-1}. We agree to let x{j,e} = O if jg-e < n{p-1).

Theorem 3.4. In E.(S,P), dy(x(j,0)) = agx(j,1) and
d2p~l{X(j’l)) = —jhox(j-l,l)-

In low dimensions EZP(S’ D) is given by Figures 3.5 through 3.9.

Notes: (1) The dotted arrows to the lefi represent possible d2P differentials

which we have not computed. This is why the theorem only claims to give EZp(S’ 8.
The indicated d2p is the only possible remaining differential in the range listed.
This is true for dimensional reasons except when n = 2k-l and k = -2 (p). Here the



possibility that d4p_2(1(k+2,1)) is nonzero is excluded by the fact that Ly
is reducible when k = -2 (p) by Theorem 2.9.(v).

{2) Dashed vertical lines represent hidden extensions.
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are detected by X and 5% the notation

means that px = jy modulo higher filtrations.

extension is trivial.

[

W] -mmm=

(k+2)q~1
q-1

Precisely, if x and y

Of course, if j is O this means the
We replace j by a question mark if we have not settled the

extension.
ps+2 . glak,o)
i ho('k,O) ;
ps 1tk,0) § é
. 5-2 E?
: : i
ps-q+2 % ho(k+1,1) §
ps-g+l 1(k+1,1) h,(k+1,0)
ps-2g+1 1(i+2,1)
kq {k+1)g-1 (k+2}q-2 (k+2)g-1
Figure 3.5 n=2k, k= -2 (p)
ps+2 . glik,O)
l h (k,0) §
ps 1(k,0) : i
: %k '?
ps-g+1 l(ﬁ+l,l) h0£k+1,03
kq {k+1)qg-1 {k+2)q-1
Figure 3.6 n=2k, k% -2 (p)
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ps-p+4 g, (k,1)
hy(k,1) ~, g,(k,0)
\‘ [
Ps-p+l | 1(k,1) ho(X,0) . i
. ' S P
. 1-1 (AN H
pS-3p+4 1(k+1,1) hy (+1,0)
kq-1 (x+1)gq-1 {k+1)q-1 (k+2)q-1 (k+2)q-1
Figure 3.7 n=2k-1, k= -1 {(p}
ps+pts gl(k,l)
PR
A
; \ gl(k,o)
AN !
ps-p+2 | 1(k,1) hy(k,0) 12 2 .
: ! N
: oo
ps-3p+5 hy(k+1,1) \\ ;

\A
ps-3p+4 h,(k+1,0)
: o1

)
ps-5p+6 1(k+2,1)
kqg-1 (k+1)q-1 (k+2)q-2 (k+2)q-1
Figure 3.8 n=2k-1, k= -2 (p)
PS-pt4
g- (k,1)
ps-p+2 | 1(k,1) n, (k,0) 1 . g,(k,0)
~ [l
. P ‘9
\\\ E
PS-3p+4 ‘ho(k+1,o>
kq-1 {(k+1)g-1 (k+2)q-2 (k+2)g~1

Figure 3.9 n=2k-1, k#-1or -2 (p)
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Proof of 3.4. The differentials follow from the attaching maps in Proposition 3.2
just as 3.3 follows from 3.1. Applying them gives the values of Ezp(S,;D) listed in
Figures 3.5 through 3.9. The indicated hidden extensions all come from the
attaching maps of the even cells of L n(p-1)" //

Proof of 1.9 when p > 2: A permanent cycle x(j,e) corresponds to a homotopy

operation XBEPJ. Thus Table 1.1 is & list of those elements in Figures 3.5 through
3.9 which must be permanent cycles by Theorem 3.4. The indeterminacy is obtained
from Figures 3.4 through 3.9 as for p = 2. The values of Tp listed are the only
elements of wyxS in the relevant dimensions, except for Tp*(Pk) = p!, which follows
from II.1.10.

The relations in Table 1.2 are all determined by the attaching maps from
Proposition 3.2. //

Proof of 1.10. By IV. 7.3.(v), to determine P*™1l(xy) we must calculate the image
of Pn+m+1€“2(n+m)+1DZSn+m under 6*2W*D2Sn+m > ﬂ*(DZSnl\DZSm). We need only

consider
+m+ + +
an2 nZAPmZ
n+m n m

n+2 . Pm+2

for dimensional reasons. If D is the skeletal filtration of P then

’
E, (S, an.m) is generated over E2(S 3) by elements 1(j,k) with n < j < n+2 and
m < k < m+2 corresponding to the cells of Pn +2 and Pm 2 in an obvious fashion. The
attaching maps of Pn 2 and Pm 2 determine the dlfferentlals in low dimensions from
which we get E (S 13 m e The extension questions in my(y,ny,; &re also determined
by Pn+2 and Pm when nz=mz0 (2). Whennz=mz=1 (2) we need the fact that the
top cell of the smash product of two mod 2 Moore spaces is attached to the bottom
cell by n, to settle the extension question. We conclude that if n = m = O (2) then

To(nem)+1 1S generated by pitlpm  pipm*l - ang nPPP™ with relations

p
0 nz0 (4)
2P o
L PP nz2 (4)
0 m=0 (4)
and 2@#M1=
Inpn#“ m=2 (4) .

If n=m=z1 (2) then my(n4p)4; is generated by an element we call Sn,m which is
detected by 1(n+l,m) + 1{n,m+l) with the relation

0 nz3ormz 3 {4)

i

Hi

nP P n =1 (4) .
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From the image of Sn,m in E_(S, n,m) we can see that

P, ) = PR P

n,

Finally 6*(Pn+m+1) is determined modulo the kernel of the Hurewicz homomorphism by

commutativity of the following diagram, in which the isomorphisms are Thom

isomorphisms
7 D,ST > nyD,8" A D, 5"
§ §
HyD,s" " . HyD,5" A D,S"
ngZ A* H (;Z x BZ,)
*772 *1T2 2

Since nP?P" generates the kernel of the Hurewicz homomorphism we are done. //

Proof of 1.11. The commutative disgram above shows that the Hurewicz homomorphism
must map the Cartan formula for a homotopy operation into the Cartan formula for its
Hurewicz image. Case (i), n = 2j and m = 2k, follows by an argument formally iden-
tical to, but easier than, the proof of 1.10 when n = m = 0 (2). Case (ii) is imme-
diate from the homology Cartan formula because in this case we're in the Hurewicz

dimension. Case (iii) follows just as in the proof of 1.10 whenn=m= 3 (4). //
Proof of 1.12. In E,(S,S), Sql(ho) = hy by [3]. Therefore, P 2) = n. //
Proof of 1.13. By definition sPl(p) is a unit times the composite

1 D_(p)
3 B Lps P Lps—fas,
P p

where sP1 is the inclusion of the 2p-3 cell. By II1.1.8, Dp(p) =1 mod p, and by

T
PP
11.2.8, rp o BPl # 0. Since glp = 1, the composite and hence ePl(p) are nonzero.
The fact that BPp’l(al) = 8 follows from the fact that in the Adams spectral

sequence, BPp-l(hO) = bi

directly from the definition of BPp”l using the definitions

using the notation of [66]. The latter can be computed

1 1, +v¢.Pi,. D]
h. = [g,], bl = = (1,31 es " exv]
0 1’ 71 14 2 p1 P ’ 1 | 1

in the bar construction. Alternatively, we may refer to Liulevicius' computation
[55, pp. 26, 30] using [66, 1I-6.6] to translate it into our notation. //
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Proof of 1.14. This is now immediate:

PP+l (0y)

PL(2)x° + 4P L(x) + ACOnnxz

= nx2

2

since 2P"*1(x) is either O or nx° by 1.10. Similarly,

g9 (px) = gpt(p)x® + pPapdtl(x) 4y 0 PP
gp (p}xp + jpp'la PJ(X)

1
g

i

since pgPd*l(x) = Jale(x). Finally 3P3+P—l(alx) = xpBPp”l(al) = XPBl- The
indeterminacy is always zero because where it is not automatically zero it is 4nx

or pPa xP,  //

2

Proof of 1.15, If p = 2 then nx2 = 0 by Theorem 1.10 when n = 3 (4) {even if

2x # 0) while 0 = PP*1(2x) = nx° by Proposition 1.14 when n z 0 (2). If

p > 2 then xP = 0 if n is odd, while if n = 2j, Proposition 1.14 implies that

0= 6P (px) 2 0 x® and 0 = gPI"P~L(a x) = gxP. When x = g the second of these
formulas is alef =0. //

fle

Proof of 1.16. Several of the computations follow from PR{x) = %2 if

n» Others from “A = s =My, T n13 = 0. Similarly, several indeterminacies are

zero from Theorem 1.10 or because they lie in filtrations which are 0. We will

X oem

prove the remainder of the results.

Since P4(hy) = By, B1P4(v) is detected by hihy so is either no or v. By 1.10,

h§P5(v) = 2h1P6(v) = 0 since 2myg = 0. Similarly, h1P4(2v) = 0 by calculating

Steenrod operations in Ext. Since 12*(h1P6) = 0, we get h1P6(2v) = 2h1P6(v) =

and since 1,x(hyP?) = 0, we get h,P?(2v) = 2h,P7(v) = 0. By 1.10,
6

2P5(2v) = 2h1P {2v) = 0 also. The operations on 4v can all be calculated from the
% * ¥
additivity rule o (4v) = 2a {2v) + 12*(a)(2v)2 = 20 {(2v).
Since 2myn = O, the relations h P {v } o= 2hlplo( 2) and h3P (v } = 2h P (v )

foree these elements to be 0 mod O.

Since P8(h3) = h4; hlP8(o) is detected by hlh4 so must be n* or n* + np. Since

2h2P9 = n2h1P8 and n?h,P8(0) is detected by h3h4 = hthhA, it follows that

1

10 2,9

2P7(0) 1s detected by hghphy. Since 20,0 = n%P? it follows that nP0(o) is
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detected by hoh,. Thus hlPlo(c) = v¥ or v¥ + nu modulo <2v*>, which is its

indeterminacy, and similarly for hinic).

Since P7(20) = 4o® = 0, we have

0
nP(20) = 20 PPo) + Jory P =0+ 0= 0.
2
n
The remaining operations are additive except for
0
8 _ 8 2 _ -
hlP (4o) = 2h1P (20) + € or » 46" =0+0=0. //
2

n



