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PREFACE

This volume concerns spectra with enriched multiplicative structure. It is a
truism that interesting cohomology theories are represented by ring spectra, the
product on the spectrum giving rise to the cup products in the theory. Ordinary
cohomology with mod p coefficients has Steenrod operations as well as cup products.
These correspond to an enriched multiplicative structure on the Eilenberg-MacLane
spectrum HZP. Atiyah has shown that the Adams operations in KU-theory are related
to similar structure on its representing spectrum and tom Dieck and Quillen have
considered Steenrod operations in cobordism coming from similar structure on Thom
spectra. Kahn, Tods, Milgram, and others have exploited the same kind of structure
on the sphere spectrum to construct and study homotopy operations, and Nishida's
proof of the nilpotency of the stable stems is also based on this structure on the

sphere spectrum.

In all of this work, the spectrum level structure is either implicit or treated
in an ad hoc way, although Tsuchiya gave an early formulation of the appropriate
notions. OQur purpose is to give a thorough study of such structure and its applica-
tions. While there is much that is new here, we are also very interested in
explaining how the material mentioned above, and other known results, can be

rederived and, in many cases, sharpened and generalized In our context.

The starting point of our work is the existence of extended powers of spectra

generalizing the extended powers

- - (3 gy *
DX = Bz a; X By x, XU/EL xzj *}

J J
of based spaces X. Here zj is the symmetric group on j letters, Ezj is a contract-

] acts freely, the symbol x denotes the "half smash product”,

and X(j) denotes the j—foid smash power of X. This construction and its variants
play a fundamental role in homotopy theory. They appear ubiquitously in the study

ible space on which ¢

of torsion phencmena.

It will come as no surprise to anyone that extended powers of spectra can be
constructed and shown to have all of the good properties present on the space level.
However, those familiar with the details of the analysis of smash products of spec-
tra will also not be surprised that there are onerous technical details involved.

In working with spectra, the precise construction of smash products is seldom rele-
vant, and I think most workers in the field are perfectly willing to use them with-
out bothering to learn such details. The same attitude should be taken towards
extended powers.
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With this in mind, we have divided our work into two parts, of which this
volume is the first. We here assume given extended powers and structured spectra
and show how to exploit them. This part is meant to be accessible to anyone with a
standard background in algebraic topology and some vague idea of what the stable
category is. (However, we should perhaps insist right at the outset that, in stable
homotopy theory, it really is essential to work in a good stable category and not
merely 1o think in terms of cohomology theories on spaces; only in the former do we
have such basic tools as cofibrastion sequences.} All of the technical work, or
rather all of it which involves non-standard techniques, is deferred until the

second volume.

We begin by summarizing the properties of extended powers of spectra and intro-
ducing the kinds of structured ring spectra we shall be studying. An H  ring spec-
trum is a spectrum E together with suitably related maps IBE + E for § > 0. The
notion is analogous to that of an E_ space which I took as the starting point of my
earlier work in infinite loop space theory. Indeed, H_ ring spectra may be viewed
as analogs of infinite loop spaces, and we shall also give a notion of Hn ring spec-
trum such that Hn ring spectra are analogs of n-fold loop spaces. However, it is to
be emphasized that this is only an analogy: the present theory is essentially inde-
pendent of infinite loop space theory. The structure maps of H_ ring spectra give
rise to homology, homotopy, and cohomology operations. However, for a complete
theory of cchomology operations, we shall need the notion of an Hi ring spectrum.

These have structural maps EﬁzdlE > ZdJlE for j > 0 and all integers i.

While chapter I is prerequisite to everything else, the blocks II, III, IV-VI,
and VII-IX are essentially independent of one another and can be read in any order.

In chapter II, which is primarily expository and makes no claim to originality,
I give a number of rather direct applications of the elementary properties of
extended powers of spectra. In particular, I reprove Nishida's nilpotency theorems,
explain Jones' recent proof of the Kahn-Priddy theorem, and describe the relation-
ship of extended powers to the Singer construction and to theorems of Lin and
Gunawardena.

In chapter III, Mark Steinberger introduces homology operations for H_ (and for
Hn} ring spectira. These are snalogs of the by now familiar {Arski-Kudo, Dyer-
Lashof} homology operations for iterated loop spaces. He also carries out extensive
calculations of these operations in the standard exsmples. In particular, it turns
out that the homology of Hzp is monogenic with respect to homology operations, a
fact which neatly explains many of the familiar splittings of spectra into wedges of
Eilenberg-MacLane and Brown-Peterson spectra.

In chapters IV-VI, Bob Bruner introduces homotopy operations for H_ ring spec-
tra and gives a thorough analysis of the behavior of the H_ ring structure with

respect to the Adams spectral sequence and its differentials. As very special



cases, he uses this theory to rederive the Hopf invariant one differentials and
certain key odd primary differentials due to Toda. The essential point is the rela-
tionship between the structure maps DpE + E and Steenrod operations in the E, term
of the Adams spectral sequence. Only a few of the Steenrod operations survive to
homotopy operations, and the attaching maps of the spectra Dpsq naturally give rise
to higher differentials on the remaining Steenrod operations. An atiractive feature
of Bruner's work is his systematic exploitation of a "delayed" Adams speciral

sequence originally due to Milgram to keep track of these complex phenomena.

In chapters VII-IX, Jim McClure relates the notion of an Hi ring spectrum to
structure on the familiar kinds of spectra used to represent cohomology theories on
spaces. For example, he shows that the representing spectrum KU for complex
periodiec K-theory is an Hi ring spectrum, that the Atiyah-Bott-Shapiro orientations
give rise to an Hi ring map MSpinc + KU, and that similar conclusions hold with
d = 8 in the real case. He then describes a general theory of cohomology operations
and discusses its specialization to ordinary theory, K-theory, and cobordism.
Finally, he gives a general theory of homology operations and uses the resulting new
operations in complex K-theory to compute the K-theory of QX = colim QnZnX as a
functor of X. This is a striking generalization of work of Hodgkin and of Miller
and Snaith, who treated the cases X = L and X = rP" by different methods.

Our spplications - and I have only mentioned some of the highlights - are by no
means exhaustive. Indeed, our examples show that this 1s necessarily the case. Far
from being esoteric objects, the kindsof spectra we study here sbound in nature and
include most of the familiar examples of ring spectra. Their internal structure is
an essential part of the foundations of stable homotopy theory and should be part of
the tool kit of anybody working in this area of topology.

There is a single table of contents, bibliography, and index for the volume as
a whole, but each chapter has its own introduction; a reading of these will give a
much better idea of what the volume really contains. References are generally by
name {Lemma 3.1) within chapters and by number (II.3.1) when to results in other
chapters. References to "the sequel" or to [Equiv] refer to "Equivariant stable
homotopy theory', which will appear shortly in this series; it contains the con-
struction and analysis of extended powers of spectra.

J. Peter May
Feb. 29, 1984
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CHAPTER I
EXTENDED POWERS AND H_ RING SPECTRA

by J. P. May

In this introductory chapter, we establish notations to be adhered to through-
out and introduce the basic notions we shall be studying. In the first section, we
introduce the equivariant half-smash product of a w-space and a w-spectrum, where 7
is a finite group. In the second, we specialize to cbiain the extended powers of
spectra. We also catalog various homological and homotopical properties of these
constructions for later use. While the arguments needed to make these two sections
rigorous are deferred to the sequel (alias [Equiv] or [511), the claims the reader
is asked to accept are all of the form that something utterly trivial on the level
of spaces is also true on the level of spectra. The reader willing to accept these
claims will have all of the background he needs to follow the arguments in the rest
of this volume.

In sections 3 and 4, we define H_ ring spectra and Hi ring spectra in terms of
maps defined on extended powers. We also discuss various examples and catalog our

techniques for producing such structured ring spectra.

§1. Equivariant half-smash products

We must first specify the categories in which we shall work. All spaces are to
be compacily generated and weak Hausdorff. Most spaces will be based; J will denote
the category of based spaces,

Throughout this volume, by a spectrum E we shall understand a sequence of based

o By » @By
A map f:E » E' of spectra is a sequence of based maps

spaces E; and based homeomorphisms

the adjoints IE; - Eiye

f1:E; » B} strietly compatible with the given homeomorphisms; f is said to be & weak

the notation ¢y being used for

equivalence if each fi is 8 weak equivalence. There results a category of speciral.
There is a cylinder functor E A 1% and = resulting homotopy category h§ . The
stable category-gx is obtained from h8 by adjoining formal inverses to the weak
equivalences, and we shall henceforward delete the adjective "wesk". hd is equiv-
alent to the other stable categories in the literature, and we shall use standard
properties and constructions without further comment. Definitions of virtually all
such constructions will appear in the sequel.

Define h¥ and hY analogously to hd and hd . For X e¥, define
QX = colim an“x, the colimit being taken with respect to suspension of maps
S » $™X. Define adjoint functors
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by K = {inX} and Q°E = EO. {This conflicts with the notation used in most of my
previous work, where 1 and Q@ had different meanings and the present 1 was called
Q.; the point of the change is that the present :® is by now generally recognized to
be the most appropriate infinite suspension functor, and the notation Q¥ for the
underlying infinite loop space functor has an evident mnemonic appeal.) We then
have QX = QwaX, and the inclusion and evaluation maps n:X » QnZnX and

extfa’y - ¥ pass to colimits to give n:X » @ 5 X for a space X and €1 QE + E
for a spectrum E. For any homology theory hy, e induces the stabilization
homomorphism E*EO + h,E obtained by passage to colimits from the suspensions
associated to the path space fibrations Ef > PEjq > Esq for i > 0.

Let = be a finite group, generally supposed embedded as a subgroup of some
symmetric group Zj. By a based n-space, we understand a left w-space with a
basepoint on which n acts trivially. We let 73 denote the resulting category.
Actually, most results in this section apply to arbitrary compact Lie groups .

Let W be a free unbased right n-space and form w by adjoining a disjeint
basepoint on which v acts trivially. For X ¢ wJ, define the "equivariant half-
smash product" W x“ X to be W Ao X, the orbit space of W x X/W x {¥*} obtained by

identifying (wo,x) and (w,ox) for we W, x ¢ X, and ¢ ¢ 7.

In the sequel, we shall generalize this trivial construction to spectra. That
is, we shall explain what we mean by & "g-spectrum E" and we shall make sense of
"W X E"; this will give a functor from the category n§ of n-spectra to §. For
intuition, with » ¢ Ej, one may think of E as consisting of based w-spaces E:. for

. J1
i > 0 together with w-equivariant maps Eji'\ sd » Ej(i+l) whose adjoints are homeo-
morphisms, where n acts on Sj =glAa cii A st by permutations and acts diagonally on
Esy A s,

The reader is cordially invited to try his hand at making sense of W ®, B using
nothing but the definitions already on hand. He will quickly find that work is
required. The obvious idea of getting a spectrum from the evident sequence of

spaces W’xﬂ and maps

Eji

TWw B > Wa (Bash) oW B
is utterly worthless, as a momeni's reflection on homology makes clear {compare
II.5.6 below). The quickest form of the definition, which is not the form best
suited for proving things, is set out briefly in VIII §8 below. The skeptic is
invited to refer to the detailed constructions and proofs of the sequel. The
pragmatist is invited to accept our word that everything one might naively hope to
be true about W k. E 1s in fact true.



The first and perhaps most basic property of this construction is that it
generalizes the stabilization of the space level construction. If X is a based n-

gpace, then £“X is a n-spectrum in a natural way.

Proposition 1.1. For based n-spaces X, there is a natural isomorphism of spectra

Wi X =Wk L.
it kg

The construction enjoys various preservation properties, all of which hold
trivially on the space level.

Proposition 1.2 (i) The functor W w {?) from =4 to 4 preserves wedges, pushouts,
and all other categorical colimits.
(ii) If X is a based n-space and EAX is given the diagonal 5 action, then

Wi (EAX) = (W& E) AX before passage to orbits over n; if n acts trivially on X
Wk“(EAX)E{WuWE)AX

(iii) The functor W x (?) preserves cofibrations, cofibres, telescopes, and all

other homotopy colimits.

Taking X = ¥ in (ii), we see that the functor W Ko (?) preserves n-homotopiles
between maps of n-spectra.

Let F(X,Y) denote the function space of based maps X +» Y and give F(W*,Y) the 7
action {of}{w) = f{wg) for f:W -+ Y, 0 ¢ w, and w ¢ W. For n-spaces X and spaces Y,
we have an obvious adjunction

JW e X,Y) = T I (X, FW 100,
We shall have an analogous spectrum level adjunction
A(W x E,D) = v £(E,F[W,D))

for spectra D and wn-spectra E. Since left adjoints preserve colimits, this will

imply the first part of the previous result.

Thus the spectrum level equivariant half-smash products can be manipulated jusi
like their simple space level counterparts. This remains true on the calculational

level. In particular, we shall make sense of and prove the following result.

Theorem 1.3. If W is a free #-CW complex and E is a CW spectrum with cellular =

action, then W w, B is a CW spectrum with cellular chains



Cy(W e E) = CW@® C,E.

Moreover, the following assertions hold.

(i) If D is a n-subcomplex of E, then W & D is a subcomplex of We £ and
(Wx E)/{(Wx_ D) =Wwx_ (E/D).
ki s ™
(ii) If W is the n-skeleton of W, then wn-1 w  E is a subcomplex of W . E and
0 o B/ s E) = [00/0)/007/m0) A B
(1ii) With the notations of (i) and (ii),

Wl p- W DAaW !l x B) € W E
T m ki m

The calculation of cellular chains follows from (i)-(iii), the simpler calcula-
tion of chains for ordinary smash products, and an analysis of the behavior of the ¢

actions with respect to the equivalences of (ii).

So far we have considered a fixed group, but the construction is also natural
in n. Thus let f:p + @ be a homomorphism and let g:V + W be f-equivariant in the
sense that g(ve) = g(v)f(g) for v ¢ V and ¢ ¢ p, where V is a p-space and W is a n-

space. For n-spectra E, there is then a natural map
*
gx1l: Vx (fE)»Wx_E,
P T

where f*E denotes E regarded as a p-spectrum by pullback along f.

For X ¢ nd and Y ¢ pd , we have an obvious adjunction
+ *
md (n A, ¥,X) = o3 (Y,f X).

We shall have an analogous extension of action functor which assigns a w-spectrum

n xp F to a p-spectrum F and an analogous adjunction
w4 (x w FE) = 0 4 (F,£5E).

Moreover, the following result will hold.

lemma 1.4. With the notations above,

Wx {(rnx F)=Wwx F.
) p



When p = e is the trivial group, m x F is the free w-spectrum generated by a
spectrum F. Intuitively, m « F is the wedge of coples of F indexed by the elements

of m and given the action of 7 by permutations. Here the lemma specializes to give
W (rn x F) = W« F,

and the nonequivariant spectrum W x F is (essentially) just W AF. Note that, with

p = e and V a point in the discussion above, we obtain a natural map
1:E» Wx E
m

depending on a choice of basepoint for W.

For finite groups = and p, there are also natural isomorphisms

a:{Wx_ E) A(Vx F)» (WxV)k (EATF)
w p m X p

and, if p¢ EJ-,

() > (V x Wj) x E(j)

B: Vk (Wx_ E)
P m pfm

for n-spaces W, m-spectra E, p-spaces V, and p-spectra F. Here E(j) denotes the j-
fold smash power of E and pfn 1is the wreath product, namely p x 7l with

multiplication

(o,ul,...,uj)(r,vl,...,vj) = (o7, uT(l)vl"'°’ur(j)vj)'
The various actions are defined in the evident way. These maps will generally be

applied in composition with naturality maps of the sort discussed above.

We need one more general map. If E and F are n-spectra and = acts diagonally

on EAF, there is a natural map
§:Wx_ (EAF) » (Wx_ E)A(WK_ F).
n m ™

A1l of these maps 1,a,8, and § are generalizations of their evident space
level analogs. That is, when specialized to suspension spectra, they agree under
the isomorphisms of Proposition 1.1 with the suspensions of the space level maps.
Moreover, all of the natural commutative diagrams relating the space level maps

generalize to the spectrum level, at least after passage to the stable category.

§2. Extended powers of spectra

The most important examples of equivariant half-smash products are of the form
W o E(J) for a spectrum E, where 7 g Ej acts on E(j) by permutations. It requires

a little work to make sense of this, and the reader is asked to accept from the



sequel that one can construct the j-fold smash power as a functor from £ to v d with
all the good properties one might naively hope for. The genersl properties of these
extended powers (or j-adic constructions) are thus direct consequences of the
assertions of the previous section. The following consequence of Theorem 1.3 is

particularly importent.

Corollary 2.1. If W is a free n-CW complex and E is a CW spectrum, then W u“ E(J)
is a CW-spectrum with
(H

CelW x E07) 2 CuW ®, (CxkE).

Thus, with field coefficients, Cy(W "o E(j)) is chain homotopy equivalent to

Cxll @ (HE)S.

Indeed, C*(E(J)) ] (C*E)j as a wm-complex, where (C*E)j denotes the j-fold
tensor power. This implies the first statement, and the second statement is a

standard, and purely algebraic, consequence (e.g. {68,1.1]).

We shall be especially interested in the case when W is contractible. While
all such W yield equivalent constructions, for definiteness we restrict attention to
W = En, the standard functorial and product-preserving contractible g-free CW-
complex (e.g. [70,p.31])}. For this W, we define

- (3
DT‘E-WN_“E "
When w = Zj, we write D E = DJE. Since Ezl is a point, DiE = E. We adopt the
convention that DyE = E(0) - S for all spectra E, where S denotes the sphere
spectrum r*s0.
We adopt analogous notations for spaces X. Thus DjX = Er, x X(j), X =X,

T
JoE

(z=x) 9)

n

and DX = SO. Since there is a natural isomorphism gw(X{J)) of x-

speetra, Proposition 1.1 implies the following important consistency statement.
Corollary 2.2. For based spaces X, there is a natural isomorphism of spectra

D 27X
m

m

LD X.
™

Corollary 2.1 has the following immediate consequence.

Corollary 2.3. With field coefficients,

H,D E = Hy (s (HgE) )



In general, we only have a spectral sequence. Since the skeletal filtrations
of En and Br satisfy (En)®/n = (Bn)®, part (ii) of Theorem 1.3 gives a filtration of
D E with successive quotients [(Bn)n/(Bn)n_llnlﬁj).

Corollary 2.4. For any homology theory ky, there is a spectral sequence with
E, = H*(w;k*E(J)) which converges to ky(D E).

This implies the following important preservation properties.

Proposition 2.5. Let T be a set of prime numbers.
(i} If X:E» Eq is a localization of E at T, then D (Ep) is T-loeal and
DA:D.E + D (Eq) is a localization at T.

(i1) If y:E » ET is a completion of E at T, then the completion at T of

Dﬂy:DﬂE + Dn(ET) is an equivalence.

Proof. We refer the reader to Bousfield [21] for a nice treatment of localizations
and completions of spectra. By application of the previous corollary with ky = my,
we see that D (E;) has T-local homotopy groups and is therefore T-local. (Note that
there is no purely homological criterion for recognizing when general spectra, as
opposed to bounded below spectra, are T-local.) Taking ky to be ordinary homology
with T-local or mod p coefficients, we see that D“A is a ZT—homology isomorphism and

D,y is a Zp—homology isomorphism for all p ¢ T. The conclusions follow.

Before proceeding, we should make clear that, except where explicitly stated
otherwise, we shall be working in the appropriate homotopy categories hJ or nd
throughout this volume, Maps and commutative diagrams are always to be understood in

this sense.

The natural maps discussed at the end of the previocus section lead to natural

maps
vce9) S poE
J J
aj,k:DjEA DkE > Dj+kE
. .:D:D,E > D_E
B3,x705%" > Djx
and

§.:D.(EAF}) » D.EADF .
4 4 J J

These are compatible with their obvious space level analogs in the sense that the

following diagrams commute.



5.
D,zX DA™K AL™Y) ——— » D "X AD 7Y
1J/ J J ’ ’
=)y 13 IR IR
= 76,
. o, . @0, . .—_.——,....4———’ 00 . .
J Zl%X XDJXAY) Z(%XA%Y)
Q. B
o, @ k o @ Lk - .
D;2"X A D E"X RSN BT S Dyt X DDy X Dyt X
IR . IR R . IR
Lay I8
«© o, ® 2 — @
I (DjX ~ DkX} R ¥ S Dj+kx L DJ.DkX T Djkx

These maps will play an essential role in our theory. H_ ring spectra will be
defined in terms of maps DjE + E such that appropriate diagrams commute. Just as
the notion of a ring spectrum presupposes the coherent associativity and commuta-
tivity of the smash product of spectra in the stable category, so the notion of an
H, ring spectrum presupposes various coherence diagrams relating the extended

powers.

Before getting to these, we describe the specializations of our transformations

when one of j or k is zero or one.

Remarks 2.6. When j or k is zero, the specified transformations specialize to

identity maps (this making sense since DOE = 3 and 8 is the unit for the smash

product) with one very important exception, namely 8. O:D-S + S. these maps play a
)

J J
special role in our theory, and we shall also write ¢, = Bj o* Observe that Djso
’
is just Bzg, the union of sz and a disjoint basepoint 0. We have the discretiza-

tion map d:Bz} + & specified by d(0) = 0 and d(x) = 1 for x ¢ Bzj, and g; is
given explicitly as

o
DS = p,z"s” = 2", S _rd =0 g,

Remarks 2.7. The transformations and § are all given by identity

83,10 P,y 1
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maps, and

ul,l = 12:E'\E > DZE.

The last equation is generalized in Lemma 2.11 below.



We conclude this section with eight lemmas which summarize the caleculus of
extended powers of spectra. Even for spaces, such a systematic listing is long
overdue, and every one of the diagrams specified will play some role in our
theory. The proofs will be given in the sequel, but in all cases the analogous

space level assertion is quite easy to check.

Let T:EAF + FAE denote the commutativity isomorphism in h{ .

Lemma 2.8. {aj i} is & commutative and associative system, in the sense that the
’

following diagrams commute.

a, Al
—ed
DjE:\ DKE . DiEo\ DJEADkE Di+jEADkE

T D, . E and 1A a

/ J+k 'j’k ai+j’k
. . Qs

k,J i, j+k

DiEADj +kE Di“'j +kE

Write @ 5.k for the composite in the second diagram, and so on inductively.
2

Lemms 2.9. {53 k! 1s an associative system, in the sense that the following
H
diagrams commute.

HA.__LJ___.,,
1 DkE Dl,] Dk

l P15,k

_.__.__:_L_,
D E Dijk

Write Bi,j,k for the composite, and so on inductively.

Lemma 2.10. Each §; is commutative and associative, in the sense that the following

3
diagrams commute.

5. 5,
DJ(EAF)——J——-»DJEWJ.F and DJ.(EAFAG)—‘L—-‘*DJ.(EAF)ADJ.G
D, . A1

JT T éJ 163

5, 1AS,

D, (F AE) —-‘]—tDJFADjE D;EAD; (FAG) —“L’*"DJ,EADJ.FADJG

Continue to write § 3 for the composite in the second diagram, and so on inductively.

Our next two lemmas relate the remaining transformations to the 1 e
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lemma 2.11. The following diagrams commute.

()

EY'A E (3

w’k
D, E

Jk

) —— gl g (D, E)

ljl\lk lj+k ‘:j

a B
x /jk'
DjE A DkE ——-i““‘" Dj+kE D DkE 4

J

Lemma 2.12. The following diagram commutes, where vj is the evident shuffle

isomorphism v. ) .
Eam I g apld)
1J IJ. AIJ.

8.
DﬁEAﬂ %EA%F

Our last three lemmas of diagrams are a bit more subtle and appear to be new

already on the level of spaces.

Lemms 2.13. The following diagram commutes.

B. L AB,
} i,k i,k
DkaE ADJ. DkE » DikE ADJ.kE
*1,5 *ik, jx
B, s
ivj,k
Dy4sDicE ~ Dikegic®
lemms 2.14. The following diagrams commute.
(Xj 1%
DJ(EAF)ADk(EAF) - Dj+k(EAF)
85Ay 854k
Iatal Qs g AC
DsEA D4F A Dy EA D F ————>DE AD,E AD;FAD,F Dy ADg o F
and
Bj k
. A 2 »
DJDk(E F) Djk(E AF)
Ds6y $5x
S, 8., . A8,
. » —_._53__.....4.,. J}k J’k - A

DJ(DKE DKE) DjDkE ADjDkF DjkE Dij
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Lemma 2.15. The following diagram commutes.

8 By g™Bi x
2 1 h'. .
D, (D;EADE) —————"———=D.D.EAD,DE Dy B AD;,E
Dias x %13 ik
8. .
i,j+k
DDy, DyjopicE

When j = k = 1, this diagram specializes to

5,

D.(EAE) J —>D.EAD,E

D, ..

3t2 %5,
B: 5

D D,E = Dy¥

(On a technical note, all of these coherence diagrams except those of lemma
2.15 will commute for the extended powers associated to an arbitrary operad; Lemma

2.15 requires restriction to E_ operads.)

§3. H, ring spectrs

Recall that a (commutative} ring spectrum is a spectrum E together with a wnit
map e€:S > E and a product map ¢:EAE + E such that the following diagrams commute

(in the stable category, as always).

EaS —2€ L pap 22l  gag EaBEaE —22l L pag EAE

N
\"’/ e ¢ ‘/E

E EAE —2%—» E EAE

In fact, this notion incorporates only a very small part of the full structure

generally available.

Definition 3.1. An H_ ring spectrum is a spectrum E together with maps gj:Dj + E
for j > 0 such that & is the identity map and the following diagrams commute for
J,k > 0.
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o k .
DJEADkE——i*—w—"o-D E and DDkE————J—*—~——~D

Ik i
2 b2
E~E —> DE—5—wE DJE —————3—»«—- E

A map f£:E » F between H, ring spectra is an H_ ring map if gj o Djf =f o Ej for
J20.

This is a valid sharpening of the notion of a ring spectrum in view of the

following consequence of Remarks 2.6 and Lemma 2.8.

Lemma 3.2. With e = £4:S > Eand ¢ = £, © 1,:EAE > E, an H, ring spectrum is a
ring spectrum and an H_ ring map is a ring map.

There are various variants and alternative forms of the basic definition that

will enter into our work. For a first example, we note the following facts.

Propogition 3.3. Let E be a ring spectrum with maps gj:DjE + E such that &5 = €,
gy = 1, and ¢ = Eotpn- If the first diagram of Definition 3.1 commutes, then gj
factors as the composite

' £,
D;E = DjEAs—-l-—ﬁ-‘i»DJ.EAE —‘]-’-l*'DJ.ﬂE —tl,y
Conversely, if all Ej so factor and the second diagram of Definition 1.1 commutes,

then the first diagram also commutes and thus E is an H_ ring spectrum.

Proof. The first part is an elementary diagram chase. The second part results from

Lemmas 2.8 and 2.11 via a rather lengthy diagram chase.

The definition of an H_ ring spectrum, together with the formal properties
of extended powers, implies the following important closure and consistency

properties of the category of H_ ring spectra.

Proposition 3.4. The following statements hold, where E and F are H, ring spectra.
(1)  With Ej = Bj,O DJS + 8, the sphere spectrum S is an H_ ring spectrum, and
€:S ~ E is an H  ring map.

(ii) The smash product Ea¥ is an H, ring spectrum with structural maps the
composites

‘N E.AE,
D; (EATF) -——43-—>DJEADJ.F——3-—J—>EAF;

the resulting product is the standard one, (¢~ ¢)(LAaTAl).
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(1i1i) The composite 5313 E(J)

itself an H_ ring map for all j.

+ E is the j-fold iterated product on E and is

Proof. These are elementary diagram chases based respectively on:

(1) Remarks 2.6 and the case k¥ = 0 and E = S of Lemmas 2.9 and 2.13.
{(i1)  Llemmas 2.12 and 2.14.

(iii) Remarks 2.7 and Lemmas 2.9 and 2.11.

In view of Proposition 2.5, we have the following further closure property of
the category of H_ ring spectra.

Proposition 3.5. If E is an H_ ring spectrum, then its localization ET and
completion ET at any set of primes T admit unique H_ ring structures such that

~

X:E » ET and y:E » E, are H  ring maps.

T

Proof. The assertion is obvious in the case of localization. In the case of

completion, gj:Dj%T > éT can and must be defined as the composite

DJ.%T—Y——? TT*—-‘}—’(DE) —‘—‘L——*E .

J

An easy calculation in ordinary cohomology shows that Eilenberg-Maclane spectra
are H,  ring spectra.

Proposition 3.6. The Eilenberg-MacLane spectrum HR of a commutative ring R admits a
unique H_ ring structure, and this structure is functorial in R. If E is a
connective H_ ring spectrum and i:E » H(nyE) is the unique map which induces the
identity homomorphism on TG then i is an H_ ring map.

Proof. Corollary 2.1 implies that 1J:F(j} + DjF induces an isomorphism in
R-cohomology in degree O for any connective spectrum F. Moreover, by the Hurewicz
theorem and universal coefficients, HO(F;R) may be identified with Hom{#yF,R). Thus
we can, and by Proposition 3.4(iii) must, define gj:DjHR + HR to be that cohomology
class which restricts under Ly to the j-fold external power of the fundamental class
or, equivalently under the identification above, to the j-fold product on R.
Similarly, the commutativity of the diagrams in Definition 3.1 is checked by
restricting to smash powers and considering cohomology in degree 0. The same argu-
ment gives the functoriality. For the last statement, the maps ngji and 1g; from

DJE to H(nOE) are equal because they both restrict under i; to the cohomology class

- J
given by the iterated product (nOE)J + ToE.
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We shall continue to write i for its composite with any map H(nOE) + HR induced
by a ring homomorphism nOE + R. We think of such a map i:E +» HR as a counit of E.
the composite ie:S » HR is clearly the unit of HR.

In the rest of this section, we consider the behavior of H_ ring spectra with
respect to the functors r” and Q°. Note first that if E is a ring spectrum, then
its unit e:5 +» E is determined by the restriction of eO;QSO +> EO to SO‘ If the two
resulting basepoints 0 and 1 of EO iie in the same component, then e is the itrivial

map and therefore E is the trivial spectrum.

Definition 3.7. An H_ space with zero, or H_y space, is a space X with basepoint O
together with based maps gJ:DjX > X for j > O such that the diagrams of Definition

3.1 commute with E replaced by X. Note that go:so + X gives X a second basepo%nt 1.
An H  space is a space Y with basepoint 1 together with based maps Ezj x5 oy

for jJ > 0 such that the evident analogs of the diagrams of Definition 3.1 iommute;

v* = v1L{0} is then an H_ space.

We remind the reader that we are working up to homotopy (i.e., in nJ ). There
is a concomitant notion of a (homotopy associative and commutative) H-space with
Zero, or Ho—space, given by maps e:SO + X and ¢:XA~ X » X such that the diagrams
defining a ring spectrum commute with E replaced by X. It is immediately obvious
that, mutatis mutandis, Lemma 3.2 and Propositions 3.3-3.5 remain valid for spaces.
A commutative ring R = K(R,0) is evidently an H,, space, £; being given by the
j-fold product with the Ezj coordinate ignored.

The isomorphisms DjEwX g ZijX together with the compatibility of the space

and spectrum level transformations Ij’ a,

and g,
J,¥’ BJ

X under these isomorphisms

’
have the following immediate consequence.

Proposition 3.8. If X is an H o space, then X is an H_ ring spectrum with
structural maps
=< o @0 o«
$E.:D,2 X=22D.X+ Z X,
553 i

The relationship of &% to H_ ring structures is a bit more subtle since it is
not true that DjQwE = QijE. However, the evaluation map e:Z @ E > E induces
L <« o o
D.e:x D, E 2D,z Q E » D.E,
J J J J

the adjoint (ﬁije)n of which is a natural map

2 0
D, E+ QDE or .:D,E.+» (D,E). .
3 s 3 £5:DyEy > 1Byl
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Proposition 3.9. If E is an H, ring spectrum, then E, is an H_, space with
structural maps

(EJ.)O o z;j: DJEO > EO .

Proof. We must check that the commutativity of the diagrams of Definition 3.1 for E
implies their commutativity for EO‘ For the first diagram, it is useful to
introduce the natural map

(ena e)o

. _n . = (2™ i
C.EO"FO Q(EO’\ FO) z (z EOAZ FO)O —_— (E/\F)O

for spectra E and F. The relevant diagrams then look as follows

o

.k
DjEO A DkEO 2 » D

5+xF0

CJ"Ck ;j*'k

4

(a; )
k0
(DJ.E)OA (DkE)O S —— (DJ.EADkE)O Y, (Dj E)

+k°0
(gJ. )0“ (gk)o (‘55"5}:)0 (gj,,k)O
z
EO'*EO (E'\E)O rEO
1, (12)0 (5230
t2
DZEO (D2E)O
and
83. X
DjDkEO DjkEO
Djr,kl
4 (g, .} v
J . J.x0
Dj(DkE)O (DJ.DkE)O (D,jkE)O
Dj(gk)ol (ngk)O (Ejk)o
& (E.) ¥
J . J 0
DJEO » (D,jE)O > E,



16

In the upper diagram, = (12)0; by the naturality of n and i, and the compati-

Tat
2°2
bility of the space and spectrum level maps 5. The commutativity of the top
rectangles of both diagrams follows similarly, via fairly elaborate chases, from
naturality and compatibility diagrams together with the fact that the composite

o Lo o° o o o0 . . N .
€0f n:iZ =+ X QI » I is the identity itransformation.

The preceding resulis combine in the following categorical desecription of the

relationship between H,y spaces and H, ring spectra.

Proposition 3.10. If X is an H,p space, then n:X » Q°r™X is a map of H,o spaces.

If E is an H, ring spectrum, then eI @ E > E is a map of H_ ring spectra. There-
fore £ and @° restrict to an adjoint pair of functors relating the categories of

Hmo spaces and of H_  ring spectra.

The proof consists of easy diagram chases. It follows that if E is an H_ ring
spectrum, then €0:QEg > Eq is a map of H,p spaces. As we shall explain in the

oth

sequel, the significance of this fact is that it Implies that the space of an H_

ring spectrum is an "H_ ring space".

§4. Power operations and Hi ring sprectra

Just as the product of a ring spectrum gives rise to an external product in its
represented cohomology theory on spectra and thus to an internal cup product in its
represented cohomology theory on spaces, so the structure maps Ej of an H_ ring

spectrum give rise to external and internal extended power operations.

Definitions 4.1. Iet E be an H, ring spectrum. For a spectrum Y, define

%:EOY = [Y,E] » [D;Y,E] = EODJ-Y

¥
by letting ﬁ%(h) = Ej o Djh for n:Y » E. For a based space X, let E X denote
the reduced cohomology of X and define

P, 8% = 195%x » Eoz:""(BzJTAX) = EO(Bz;.'ax)

oy Pyin) = 270" Bjin) for n:z"X » E, where

d=1xaBEiAK = Ex, &, X » Bz, x. X9 = DXl

J N J oz, J
J J

Of course, the main interest is in the case j = p for a prime p. A number of
basic properties of these operations can be read off directly from the definition of

% .
an H, ring spectrum, the most important being that lj T}(h) = hq, where
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nd e EO(Y(j)) is the external jth power of h, and similarly for the internal opera-
tions. MecClure will give a systematic study in chapter VIII. While we think of
the @3 as cohomology operations, they can be manipulated to obtain various other
kinds of operations. For example, we can define homotopy operations on wxE param-
etrized by elements of E*Djsq.

Definition 4.2. let E be en H, ring spectrum. For g ¢E DJSq define

Z:an * ©,E by a{h) = o/ f}(h) for h emgE. Explicitly, a(h) is the composite

. P.(n)a1
S-——“—-'-DjquE EAE —b— E.

These operations will make a fleeting appearance in our study of nilpotency
relations in the next chapter, and Bruner will study them in detail in the case
= S In chapter V. McClure will introduce a related approach to homology opera-
tions in chapter VIII.

Returning to Definition 4.1 and replacing Y by ZJY for any i, we obtain opera-
tions jG:E"iY *> EODjEiY. A moment's reflection on the Steenrod operations
in ordinary cohomology mekes clear that we would prefer to have operations
E—lY + E‘JiDjY for all i. However, the twisting of suspension coordinates which
obstructs the equivalence of Dyz sy witn leDjY makes clear that the notion of an H_
ring spectrum is inadequate for this purpose. For Y = E"X, one can set up a
formalism of twisted coefficients to define one's way around the obstruction, but
this seems to me to be of little if any use calculationally. Proceeding adjointly,
we think of ElY as [Y,EiEl and demand structural maps gj:DjziE » td3E for all

integers i rather than just for i = 0. We can then define extended power operations
’%:Eiy = (x,2%8) » (0yy,29tm) = iipyy

by letting @j(h) = Ej o Djh for h:Y » EiE; internal operations
-El)( glex » w9l g (sznx) = EJl(BZJAX)

for spaces are given by P(h) = (z""d)*?j(h), as in Definition 4.1.

In practice, this demands too much. One can usually only obtain maps
gj:DjZdiE > sziE for all j and 1 and some fixed 4 > O, often 2 and always a power
of 2. In favorable cases, one can use twisted coefficients or restriction to cyclic
groups to fill in the missing operations, in a menner to be explained by McClure in
chapter VIII. The experts will recall that some such argument was already necessary
to define the classical mod p Steemiod operations on odd dimensional classes when
p > 2.



Definition 4.3. Let d be a positive integer. An Hi ring spectrum is a spectrum E
together with maps
Ej i:DjZdlE > ZdJlE
s

for all j > 0 and all integers 1 such that each g&; 4 is an identity map and the
>

following diagrams commute for all j > 0, k > 0, and all integers h and i.

. N a. . . B. .
D,s8Eap s g LK - Yy .0, 1 E —LE . p 53y
X Jrk 37k Jk
"’J,i"gk,il t%k,i ngk,il l%‘k,i
EdJlEA EdklE ¢ zd(J+k)1E EﬁxdklE jki ZdJklE
and
) 5, .
p. (sPE~z%E) d p.:Pgap 2 g
3 J J
D, ) ..
5® £5,0%85,1

Djzd(h+l)E j,h+i ZdJ(h+1)E 0y ZthE‘AZdle

Here the maps ¢ are obtained by suspension from the product £ plp O E. A map
b

f:E » F between HS ring spectra is an Hd ring map if gj 1© Djzdlf = EdJlf o Ej i
@ » 3

for all j and 1.

Remarks 4.4. (i) Taking 1 = O, we see that E is en H_ ring spectrum. The last

diagram is a consequence of the first two when i1 = 0 but is independent otherwise.

(11) Sinee DyE = S for all spectra E, there is only one map g4 5, hamely the unit
O b

e:8” + E.

{1ii) As in Proposition 3.4{(iii), the following diagram commutes.

N

3331y

(iv) As in Proposition 3.4(ii), the smash product of an Hi ring spectrum E end an

H, ring spectrum F is an Hi ring spectrum with structural maps the composites

FUP

N S, N £, .
D, (zHEAm) —-‘L—-"DjzdlE ADF B PESR BOPL NI Y
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(v} The last diagram in the definition involves a permutation of suspension
coordinates, hence one would expect a sign to appear. However, as McClure will
explain in VII.6.1, "OE necessarily has characteristic two when d is odd.

Given this last fact, precisely the same proof as that of Proposition 3.6
yields the following result.

Proposition 4.5. Let R be a commutative ring. If R has characteristic two, then HR
admits a unique and functorial Hi ring structure. In general, HR admits a unique
and functorial Hi ring structure. If E is a connective Hi ring spectrum and

i:E + H{nnE) is the unique masp which induces the identity homomorphism on mg, then i
is an HS ring map.

At this point, most of the main definitions are on hand, but only rather simple
examples. We survey the examples to be obtained later in the rest of this section.

We have three main techniques for the generation of examples. The first, and
most down to earth where it applies, is due to McClure and will be explained in
chapter VII. The idea is this. In nature, one does not encounter spectra E with Ey
homeomorphic to QEi+l but only prespectra T consisting of spaces Ti and maps
04:3Ty + Ti+l‘ There is a standard way of associating a spectrum to a prespectrum,
and MeClure will specify concrete homotopical conditions on the spaces Tas and
composites szdi > Td(i+l} which ensure that the associated spectrum is an H ring
spectrum. Curiously, the presence of d is essential. We know of no such concrete

way of recognizing H, ring spectra which are not Hi ring spectra for some 4 > O.

McClure will use this technique to show that the most familiar Thom spectra and
K-theory spectra are Hi ring spectra for the appropriate d. While this technique is
very satisfactory where it applies, it is limited to the recognition of Hi ring
spectra and demands that one have reasonably good calculational control over the
spaces Tyy . The first limitation is significant since, as MeClure will explain, the
sphere spectrum, for example, is not an Hi ring spectrum for any d. The second

limitation makes the method unusable for generic classes of examples.

Our second method is at the opposite extreme, and depends on the black box of
infinite loop space machinery. In [71], Nigel Ray, Frank Quinn, and I defined the
notion of an E, ring spectra. Intuitively, this is a very precise point-set level
notion, of which the notion of an H_ ring spectrum is a cruder and less structured
up to homotopy analog. Of course, E_ ring spectra determine H_ ring spectra by
neglect of structure. There are also notions of E_ space and H_ ring space which

bear the same relationship of one to the other. Just as the zeroh

t.

space of an H_
ring spectrum is an H_ ring space, so the zero h space of an E_ ring spectrum is an

E, ring space. In general, given an H_ ring space, there is not the slightest
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t

reason to believe that it is equivalent, or nicely related, to the zero h space of

an H, ring spectrum. However, the machinery of [71,73] shows that E_ ring spaces

th spaces of which are, in a suitable

functorially determine E_ ring spectra the zero
sense, ring completions of the original semiring spaces. Precise definitions and
proofs of the relationship between E_ ring theory and H_ ring theory will be given

in the sequel.

As explained in detail in [73], which corrects [71], the classifying spaces of
categories with suitable internal structure, namely bipermutative categories, are E_
ring spaces. Among other examples, there result E_ ring structures and therefore H_
ring structures on the connective spectra of the algebraic K-theory of commutative

rings.

The E_, and H_ ring theories summarized above are limiting cases of En and H,
theories for n > 1, to which the entire discussion applies verbatim. The full
theory of extended powers and structured ring spaces and spectra entails the use of
operads, namely sequences {,of suitably related zj—spaces CJ-. An action of & on a

spectrum E consists of maps £.: £ . k E(j) + E such that appropriate diagrams com-
J°7d 5

mute. For an action up to homotopy,z%he same diagrams are only required to homotopy
commute. If each Cj has the Ej—equivariant homotopy type of the configuration
space of j-tuples of distinet points in Rn, then { is said to be an E, operad. E,
or Hn ring spectra are spectra with actions or actions up to homotopy by an En
operad. The notions of E, and H, ring space require use of a second operad, assumed
to be an E_  operad, to encode the additive structure which is subsumed in the
iterated loop structure on the spectrum level. E, ring spaces naturally give rise
to En and thus Hn ring spectra, and interesting examples of E, ring spaces have been
discovered by Cohen, Taylor, and myself [29] in connection with our study of

generalized James maps.

Qur last technique for recognizing E, and Hy ring spectra lies halfway between
the first two, and may be described as the brute force method. It consists of
direct appeal to the precise definition of extended powers of spectra to be given in
the sequel. One class of examples will be given by Steinberger's construction of
free (-spectra. Another class of examples will be given in Lewis' study of

generalized Thom spectra.



CHAPTER II

MISCELLIANEOUS APPLICATIONS IN STABLE HOMOTOPY THEORY

by J. P. May

with contributions by R. R. Bruner, J. E. McClure, and M. Steinberger

A number of important results in stable homotopy theory are very easy con-
sequences of quite superficial properties of extended powers of spectra. We give

several such applications here.

The preservation properties of equivariant half-smash products (e.g. in I.1.2)
do not directly imply such properties for extended powers since the jth power
functor from spectra to Zj-spectra tends not to enjoy such properties. We
illustrate the point in section 1 by analyzing the structure of extended powers of
wedges and deriving useful consequences about extended powers of sums of maps.
These results are largely spectrum level analogs of results of Nishida [90] about
extended powers of spaces, but the connection with transfer was suggested by ideas
of Segal [96].

Reinterpreting Nishida's proof [90], we show in section 2 that the nilpotency
of the ring wyS of stable homotopy groups of spheres (or "stable stems") is an
immediate consequence of the Kahn-Priddy theorem and our analysis of extended powers
of wedges. The implication depends only on the fact that the sphere spectrum is an
H, ring spectrum. This proof gives a very poor estimate of the order of
nilpotency. Nishida also gave a different proof [90] which applies only to elements
of order p but gives a much better estimate of the order of nilpotency. In section
6, we show that this too results by specialization to S of a result valid for
general H_ ring spectra. Here the key step is an application of a splitting theorem
that Steinberger will prove by use of homology operations in the next chapter. His
theorem will make clear to what extent this method of proof applies to elements of

order pi with 1 > 1,

The material discussed so far dates to 1976~77 (and was described in [721}.

The material of sections 3-5 is much more recent, dating from 1982-83. The ideas
here are entirely due to Miller, Jones, and Wegmann, who saw applications of
extended powers that we had not envisaged. (However, all of the information about
extended powers needed to carry out their ideas was already explicit or implicit in
[72] and the 1977 theses [23, 10l] of Bruner and Steinberger.) Jones and Wegmann
[44] constructed new homology and cohomology theories from old ones by use of
systems of extended powers and showed that theorems of Lin [53] and Gunawardena [38]

imply that these theories specialize to give exotic descriptions of stable homotopy
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and stable cohomotopy. Jones [43] later gave a remarkably ingenious proof of the
Kahn-Priddy theorem in terms of these theories. The papers [43, 44] only treated
the case p = 2, and we give the details for all primes in sections 3 and 4. (In
fact, much of the work goes through for non-prime integers.) The idea for the
Jones-Wegmann theories grew out of Haynes Miller's unpublished observation that
systems of extended powers can be used to realize cohomologically a basic algebraic
construction introduced by Singer 52, 98]. We explain this fact and its

relationship to the cited theorems of Lin and Gunawardena in section 5.

§1. Extended powers of wedges and transfer maps

Fix positive integers J and k and spectra Yy for 1 <1 <k, let

Y=YV ---\/Yk and let vi:Y; + Y be the inclusion. For a partition

d = (jy,eee,dy) of J, J; 2 0and jy + eee Jy = §, write ag = ajlr“"jk and let fy
denote the composite
ces A
Djl v A Djkvk ay
D.%ﬁ-‘-AD.Yk — D, YA«eeAD, ¥ —es> DY ,
J1 Ji J1 Jx J

For later use, note that permutations o ¢ I act on partitions and that I.2.8
implies the equivariance formula fJ = foJ o o. Note too that, for maps hi:Yi + E

with wedge sum h:Y » E, the following diagram commutes by the naturality of oge

£
D. Y. AeeeAD, Y. ——9 DY
3l By K

Djlh_l/\ see ADjkhk lDJ_h

%y
D, EA eee AD, E —me— DjE

9 Ik
Theorem 1.1. Let Y = Y;V «ee VY, . Then the wedge sum

f.: D, T.AeeenD, ¥ ————>DY
J \J/Jll J k J

of the maps fJ is an equivalence of spectra.
Proof. By the distributivity of smash products over wedges,

19 s Vi, Aeoay,
1 3.1 1j
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where I runs over all sequences (il,...,ij) such that 1 <1, < k. Say that I ¢ J if
there are exactly jg entries i. equal to s for each s from 1 to k. For each

partition J of J, let rj = 251 X see % zjk and define

(3.1 (i}

Y, = \ Yy Aees AT =gk (Y 1/\...AYk oy,
IeJ "1 g4y

(Here the isomorphism would be obvious on the space level and holds on the spectrum
level by direct inspection of the definitions in [Equiv. II §§3-4].) Then Y; is a

Zj-subspectrum of Y(j) and Y(J) = \/ Yj. Now
J
(i} (3,)
Y=V B x_ Y end Er w Y. =Ep, k. (¥ T Aeeeny £
dJ J J Zj d Jz.,d 3
J
by I.1.2{(i) and I.1.4. Clearly f; has image in Ezj xy YJ and factors as the

S

composite

(j,) ()
(Bx, & Y 1)A--.A(EX. %, ¥ k)

(3} (i}
EZ.D(Z (Y lA s AY k) .

4%y
Here o is an isomorphism. (Technically, the smash product in its domain is
"internal" while that in its range is "external"; see [Equiv, II§3].) The map
i:EZ:J. X ees X EZJ. — EZJ. is given by the commutation with products and
1 k
naturality of the functor E and is a Ly-equivalence. Therefore i & 1 is an

equivalence (by [Equiv, VI.1.15]). The conclusion follows.

Our interest is mainly in finite wedges, but precisely the same argument

applies to give an analog for infinite wedges.

Theorem 1.2. Let {Yi} be a set of spectra indexed on a totally ordered set of
indices and let Y = \( Y;. For a strictly increasing sequence I = {il,...,ik} of
1

indices and a partition J = (jl,...,jk) of J with each j; > O (hence k < 3), let

D Yo A ees . Yo s
£3,105, Y4, ADg Y3 > Dy

be the composite of f; and the evident inclusion. Then the wedge sum
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.0\ D, Y, AeseAD, Y, —»D.Y
I it i 1y J

of the maps fJ 1 is an equivalence of spectra.
L

Parenthetically, this leads to an attractive alternative version of the

definition, I.4.3, of an Hi ring spectrum.

Proposition 1.3. An HS ring structure on E determines and is determined by an H,
di
E.

ring structure on the wedge ¥ L
Proof. If V zdiE is an H_ ring spectrum with structural maps gj, then the evident
T i
composites
£,
gj i:D.zdiE D\ z3Pgy —ls Vv zdhE*—*zdiE
PR d q h
give E an H: ring structure. If E is an Hi ring spectrum with structural maps
Ej,i’ then the maps
-1
. f. di di
£.:0 (VIHE) —d s \/ D 5 'Easeeap, z FE— V 1¥iE
Jod g 5,1 91 Jx 1

determined by the composites

. £, Aves AL, .
di di 34,1 3,1, d4i,i daj. i
; L 1E'~---AD.>: kg TU7°1 K ks llEAo--Az kkE—i—»EdrE,

D
J1 Ix

k .
r= jaia’ give \/ ZdlE on H ring structure. Thege correspondences are
a=1 i
inverse to one another.

Returning to the context of Theorem 1.1, let

gJ:Dj(Yl\f ...VYk) — D51Y1A "DjkYk
denote the Jth component of ffl. Thus g1 is the composite of the projection to
Ezj kz. YJ and the inverse of the equivalence (i x l)a in the proof of the theorem.
Tﬂe theorem is of particular interest when Y = ss» = Yk, hence we change
notations and consider a spectrum Y and its k-fold wedge sum, which we denote by

(k)Y. Recall that finite wedges are finite products in the stable category and let

p:Y —» By ang ¥y Ly

denote the diagonal and folding meps.
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Definition 1.4. Define TJ:DjY > DjlYA see ADjk’).' to be the composite

D,a ()
DjY—-J——>D ¥) ———-»D Y AeeeAD, Y .

J1 jk
Explicitly, let nJ:((k)‘I)(j) > V Y(j) be the projection and let t1; also denote
Ied
the map
B, ko (n A( ))E): [ AL A s (Vv Y(J))=Ezj txz‘f('j).
JE I RN R 3

Our original map t; is the composite of this map end the equivalence [(1& 1)al™l,
We write Ty for 13:D5Y » Y3 when k = J and each jg = 1.

We think of 15 as a kind of spectrum level transfer map. When ¥ = =X for a
space X and 7 C 23, we have

B, w9 = E, ko (YY) - 2%m, « x9)?
Jd w Jom jow

by I.1.1. We shall prove the following result in the sequel.

Theorem 1.5, When Y = X%, the map

(1) (3
JEXJ kz Y > B, wx, Y

; I

is the transfer assoclated to the natural cover

J J
ESJ KSJ X+ E}Ij xz'j X0 .

We do not wish to overemphasize this result. As we shall see, the spectrum
level maps 1y, for general Y, are quite easily studied directly.

The importance of these maps is that they measure the deviation from additivity
of the functor DJY.

For maps hy:Y + E, by +...+ Iy is defined to be V(hlv...vhk)A. Thinking now
in cohomological terms, consider the hi as elements of the Abelian group EOY = {Y,%]
of maps Y + E ing/&.

ses Ases M .
Corollary 1.6. Dj (hl + + hk J(aJ(D h1 D hk)) Moreover, the
following equivariance formula holds for g € Ek.

*
J(ctJ(D‘j hlk ---'\Djkhk)) = ‘l‘cJ(an(D. h A sssAD, h )).

J -1 J
oty o ) ot ©
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Proof. By Theorem 1.1 and the naturality diagram preceding it, the following

diagram commutes.

D.A D.(h,v ++s Vh ) D,V
DY —_— D, Ky ! " » Dj((k)E) — D,B
l (gJ) (gJ) v
VD, h, A «s«AD, h
31 Jy K VaJ
VDY——-VD YAsesAD, Y > D, EAs»es AD, E—~»\/D.E
g J 3 91 Ix J 91 Ix 7 d

The equivariance follows from I.2.8, the formula fJ = ch o o, &nd the fact that
oh = A

Taking each hi to be the identity map, we obtain the following special case.

¥
T (a ), and TJ(aJ) depends only on the conjugacy class

Corollary 1.7. D.(k) 7

J
of J under the sciion of I

3

When j is a prime number p and k = piq with 1 > 1 and q prime to p, a simple
combinatorial argument demonstrates that every conjugacy class of partitions has pis
elements for some s > 1 except for the conjugacy class of the partition J(k} =
{(1,...,1,0,...,0), p values 1, which has (p,k-p) elements. Of course, pi'l but not
pi divides this binomial coefficient. A trivial diagram chase based on use of the
projection (k) Y (P)Y shows that TI(k) coincides with TIp) T Tp DpY > Y(p) Also,
by I.2.7 and I.2.11, %3 (p) = 1 E(P) + DpE Putting these observatlons together, we

obtain the following result.

Corollary 1.8. If k = piq with p prime, 1 > 1, and g prime to p, then
Dpk:DPY + DPY can be expressed in the form pix + (p,k-p)lptp for some map i.
In favorable cases, the following three lemmas will lead to a more precise

caleulation of Dp on general sums.

Lemmg 1.9. The following diagram commutes for all Y, j, and k and all partitions

Jof j. X,

DY — »D. YAeeeAD, Y

J 1 Iy

T T, A ®eo AT,
(j,) (j,)

ey A PN "
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Proof. This follows from a straightforward diagram chase which boils down to the

factorization of A:Y » (j)Y as the composite

(j;) (. )
y b (K)y _Aveeeva UL,y Ky

{

(where A:Y » O)Y = S is interpreted as the zero map if any jr = 0).

(3 (3

> Y is the sum over g ¢ I; of the

Lemma 1.10. The composite lej2Y 3

)

(j)+Y .

permutation maps o:Y
Proof. This is an easy direct inspection of definitions and may be viewed as a

particularly trivial case of the double coset formula.

Lemma 1.11 For any ordinary homology theory Hy, the composite

Trx o
HyD.Y ——=H (D, YA+ee AD, ¥) ——p H,D.¥
J 3 Iy J
is multiplication by the multinomial coefficient (j;,...,Jy). In particular,

13*15* is multiplication by ji.

Proof. We may assume that Y is a CW-spectrum and exploit I.2.1. Since

wih = 1:¥ » ¥, where ni:(k)Y + Y is the it projection, Ax:CxY » C*((k)Y} =
CyY @ «++ @ C,Y is chain homotopy equivalent to the algebraic diasgonal. With
Y, = ese = Yy = ¥, the composite (i x l)a in the proof of Theorem 1.1 induces aj

upon passage to orbits over zj (rather than over £. x +ss x 5. ). Therefore

i Jk
ay o T3 is just the composite
] (j) 1 kow . .
W kg y(J) Lxa iy b (B G 27 oy ke ek —1—P<—V*-WJ. s 97,
i i Jor 1 i

Since there are (jl,...,jk) sequences I ¢ J and thus (jl,...,jk) wedge summands

here, the conclusion clearly holds on the level of cellular chains.

§2. Power operations and Nishida's nilpotency theorem

lLet E be an H, ring spectrum and Y be any spectrum. Recall from I.4.1 that we
have power operations GE:EOY > EODJY specified by (Eﬁ(h) = ngj(h). We use the
results of section 1 to derive additivity formulas for these operations and apply

these formulas to derive the nilpotency of nyS.
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*

lemma 2.1. For h; ¢ EOY, Pn, + eee + 1) = Tt (P () A-es AP )}, where
iemms 2.1 i i1 4 509 i1 Jye K

the product A is the external product in E-cohomology and the sum extends over all

partitions J = (j;,...,Jy) of j.

Proof. This is immediate from Corollary 1.6 and the commutative diagram

%7

D, EAeeern]d, E ——s»D.E

3 N j

E, AeesAg, £
J1 I l
KA eve AE—2 o &

Here the terms with one Ji = J and the rest zero give the sum of the Ka(hi).
When J is a prime number p, the remaining error term simplifies. The full

generality of the following result is due to McClure.

Proposition 2.2. Let hy ¢ E0Y. If p = 2, then

?

2(h

MRS S Py v eees Ry o+ T*(hi:\hj).

=1 2K ik

If p is an odd prime and Y and E are p-local, then

Bylayreeee my) = "%(hl} reees B0y + T;(;_' [ reees n)Pe (Perecamdy)).

In particular, ?p(kh) =k Pyn) + %'— (xP - k)T;(hp) in both cases.

Proof. We must show that

* * jl jk
.1 eee 3.} eoe = oo
3yl Iy ! TJ(?jl(hl)" /\/%k(hk)) {0y A An)
for a partition J = (jl,...,jk) of p with no ji = p. By lLemma 1.9,

*

¥ *
T, = 1.(1t, Aessa1, } . Thus it suffices to show that
Pod Iy

% s
1P 0 = L))
3 PJ< )=

forany j > O and h ¢ B, 1r j =0, n(0) ang Dyl{h) are to be interpreted

as the identity map of S and the conclusion is trivial. If j = 1, the conclusion is

also trivial, There are no more cases if p = 2, so assume that p > 2 and
1 <Jj < p. By lemma 1.11, the composite

T . 1.
DY —d 3] —J—ijY
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induces multiplication by j! in ordinary homology. It is thus an equivalence since
* % * 3

Y and hence also D;Y is p-local. Therefore 1j:E (DjY) + E (Y(J)) is a

monomorphism and we need only check that

*

s

*
51 =
3.13 f?(h) ]

% s
J

AhY ).
TJ( }

The left side is jlhj. By Lemma 1.10, the right side is the sum over o g Ip of

ox(hd). The commutativity of E implies that oy(hd) = nd for all o,j, and h, and the

conclusion follows.

Now recall from I.4.2 thai elements o« ¢ Er(Dqu) determine homotopy operations
E:an > n E via the formula alh) = u/’?}(h)-

Corollary 2.3. let a ¢ Er(Dqu) and h ¢ n,E, where q is even and E is p-local if p
is odd. Then

G = 6+ o P - 0 (27 ()P,

where the product is the multiplication in ngE.

Proof. The following diagram is easily seen to commute.

T.A1 P
Sr—i—-’Dqu/\E —L?SPQAE —-—}lA—]L—%E'\E

IR b
-Pq D
I (1 Al)a) Ab

E-pqsrl\ sPe P Z“pq(qu AE)AE = E AR —t o E

¥ -
Thus u/Tp(hp) = (z pqrp*(a))hp. The conclusion follows from the last statement of

the previous proposition.

Assuming that E is p-local {when p = 2 as well as when p is odd), we obtain the

following immediate corollaries.
Corollary 2.4. If plh = 0, then pi_l(z'qup*(a))hp+l = 0 for all a.

Here we have multiplied by h to kill plgih). Of course, this may not be
necessary.

Corollary 2.5. If both pih = 0 and pla = 0, then p= >

(Z—pqrp*(a))hp = 0.

One can also arrive at the last two corollaries by direct diagram chases from
Corollary 1.8 and the definition of an H_ ring spectrum, without bothering with
additivity formulae. (That approach was taken in [72], following Nishida [90, §8]).
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These relations specialize to give nilpotency assertions, the sharpest estimate

being as follows.

Corollary 2.6. let x ¢ an satisfy pix = 0, where 1 > 0 and q is even if p > 2.

Suppose that x = E’pqrp*(a) for some ¢ ¢ E (D_89Y. Then pi”lxp+2 = 0. Moreover,

pa*q p
if pla = 0, then pr 1xP*l = o,
The problem, of course, is to study Ey(D_S%) and 1

p p¥**
to an arbitrary H_ ring spectrum E, but to compute Tpx We must specialize. If E =

Everything above applies

MO, for example, then every element of nyE has order 2 and no element is nilpotent,
hence 12*:MO*(DZSQ) > MG*{qu) must be the zero homomorphism for all gq. This does

not contradict the following assertion.

Conjecture 2.7. Any element of finite order in the kernel of the (integral)

Hurewicz homomorphism nyE + HyE is nilpotent.

We shall prove the conjecture for elements of order exactly p in section 6, but

the methods there fail for general elements of order pi with 1 > 1.

When we specialize to E = S, we find that the Kahn-Priddy theorem gives

appropriate input for application of the results above.

Theorem 2.8. If p = 2, let ¢(k) be the number of integers j such that 0 < j < k and
J £0,1,2, or 4mod 8. If p> 2, let ¢(k) = [k/2(p-1)]. Let q be an integer such

that q = O mod p¢(k), where q ig even if p > 2. Then Tp*:"rD s s nrqu is a

Y
(split) epimorphism for pg < r < pg+k{p-1).

We shall prove this in section 4. Actually, the purely stable methods we use
will give surjectivity without giving a splitting. For this reason, we are really
only entitled to use Corollary 2.4, rather than Corollary 2.5. This doesn't change
the heuristic picture, but to give the correct estimate of the order of nilpotency,

we assume the splitting (from [46, 95, or 27]) in the discussion to follow.

Theorem 2.9. let x ¢ n,S satisfy pix = 0, where 1 > O and n is even if p > 2. Let
m be minimal such that mn = 0 mod p¢!(M/P-11+1)  qpey p1-100%1 = o 1nguetively,

some power of x is zero.

Proof. ILet g = m. Since n < {In/p-11+1){p-1), there exists a ¢ “pq+nDqu such
that Z"pqrp*(a) = x. With h = x®, Corollary 2.4 gives pl'lxmp+2 = 0.

i-lmp+l _ )

Using

pla = 0, Corollary 2.5 gives p

Unfortunately, m increases rapidly with n {(although our estimate for p > 2 is

sharper than Nishida's since he only knew Theorem 2.8 for r < pg+k). For example,
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the first stem in which an interesting element x of order 2 occurs is the l4-stem
{"interesting" mesning that ¥ is neither in s4J nor a product of Hopf maps). Here
m = 64 and we can only conclude that xL29 = 0, & truly stratospheric estimate. So
far, and granting that our stemwise calcﬁlations still extend through only a very

small range, we have no reason to disbelieve that 14 = () if 2x = 0. Corollary 2.6
seems to suggest that this answer might be correct. However, as pointed out to me
by Bruner, 12§;n§D28q > w*qu is not always an epimorphism and thus

Corollary 2.6 cannot be used to prove this answer.

§3. The Jones-Wegmann homology and cohomology theories

The next three sections will all make heavy use of certain twisted diagonal

maps implicit in the general properties of extended powers.

Definition 3.1. Let n be a subgroup of zj and let W be a free n-CW complex. For a

based CW complex X and a CW spectrum Y, define a map of spectra
s w Y ax 5 W (xax) ()

by passage to orbits over n from the n-map

1a4 (3

W Y9y ax 228,y y (4

yaxd) s wx (xraxytdl,

Here the iscomorphism is given by I.1.2(ii) and the shuffle n-isomorphism
Y Ax) 2 (vax)'9). Note that 4 is the identity map when X = SO and
that the following transitivity and commutativity diagram commutes, where X' is

another based CW complex.
(w N“Y(J))AX"\X’ ArT, oy MWY(‘”)AX'AX
AAl
WK“(YI\X)(J)'\X' A A

ﬂ\‘ )

W (taxax)(d) trlan o,

W (YA X! axy )

With n = L and W = Ezj, we obtain
a:(DyY)AX » Dy(YAX).

Although not strictly relevant to the business at hand, we record the relationship



32

between these maps and the maps 1y, %5 ks Bj ks and 83 of I52 and use them to
’ )
construct new examples of H_ ring spectra.

Lemma 3.2. The following diagrams commute for spectra Y and Z and spaceg X. The

unlabeled arrows are obvious composites of shuffle maps and the disgonal on X.

1,A1 §, A1
Y(J)Ax—l—»rnj‘mx D, (YA Z) AX a4 DY AD,ZAX
| b :| |
1
(Yax 9 —J—>DJ(YAx) D (YAZAX) DjYAXADZAX

| e

§
Dy(YAXAZAX) --‘j——vDJ(YAX) AD(ZAX)

a Al Bs A1
j,k Ik
DjYADkY AX Dj+kY LD 4 DjDkYAX DjkY AX

| I

DjY/\X ADkY AX A Dj(DkY AX) A

IA'\A leA
o B
(Yax)ap (YAX) —LEsp  (vax) DD (YAX) —E 5 p

D 1Pk jk(

; o YAX)

I learned the following lemma from Miller and McClure.

Lemma 3.3. Iet X be an unbased space and E be an H_ ring spectrum. Then the
function spectrum F(X",E) is an H_ ring spectrum with structural maps the adjoints
of the composiies

D.e £
DJ.F(X",E) ~X —-A——>DJ(F(X+,E) Ax) —lopx .5,

where ¢ is the evaluation map. In particular, the dual F(X*,S) of £™X" is an H,
ring spectrum.

Proof. If j =0, 4a:S8 Ax = }:mX+ —_ XQSO = 8 1is to be interpreted as $™§, where
§:x% 0 ig the discretization map sending X to the non-basepoint. The diagrams of
I.3.1 are easily checked to commute by use of the diagrams of the previous lemma.

Returning to the business at hand, observe that, with X = st , we obtaln a
natural map A:}:DjY + Dj Y. Thus, for any integer n (positive or negative), we have
the map

znA:zn"lDJz'n'lY = znzDJ):'lz"nY ——»anjz'nY.
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We shall be interested in the resulting inverse system

1 -1

soe —‘")'; DJZ Y—* see —>» 3 DJZ Y—*DJY-—"X DJZY-“”»H — DJE Y > se
(where n > 0). By the diagram in Definition 3.1, the maps
znA:(anjs‘n)Ax z zn(DJs’nAx} ——»anJ(S'nA X) = z“DJz’nz"‘x

specify a morphism of systems, again denoted a,
{(anS ) AX} — {27 Dy D ¢

We shall study the homological and homotopical properties of these systems. In this
section, we consider any j > 2. We shall obtain calculational results when j is a
prime in the following two sections.

let Ey and E* denote the homology and cohomology theories represented by a
spectrum E. For spectra Y, define

i
(]

gy = 1im E,(z"D,r™)  and ETJ)Y colim E*(znnjx'nY)

i)y = 1m E("D s A and F

. ¥ n. N
= A .
(j)Y colim E (¢ DJS Y)

Upon restriction to spaces (that is, to Y = 1*X), we obtain induced natural

transformations

g gl

*
X and A:EUX——'-’-FU)

and these reduce to identity homomorphisms when X = 0. It is clear that FiJ) is

a homology theory and F(j) is a cohomology theory on finite CW spectra. Passage
to colimits from the homomorphisms

- * i - i -
o-1 0% g (0 s ey = ER (R lDJ ™y gl D;% )

J

(z :E
yields suspension isomorphisms
i +1 i
( )zY'-~> E(.

J)Y'

and A" is easily seen to commute with suspension. The analogous assertions hold for
ELJ). With these notations, the main theorems of Jones and Wegmann [44) read as

follows (although they only consider primes j and only provide proofs when j = 2).

*

Theorem 3.4. The functor E(j} is a cohomology theory on finite CW spectra, hence
¥ ¥ *

A :E(j)x *> F(j)x is an isomorphism for all finite CW complexes X.
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Theorem 3.5. Let E be conmective and j-adically complete, with nyE of finite type
over the j-adic integers Z = x Z . Then E(J)
plJ

spectra, hence A,:F (J)X > EiJ)X is an isomorphism for all finite CW complexes X.

is a homology theory on finite CW

We defer the proofs for a moment. As Jones and Wegmann point out, these results
are no longer valid for infinite CW complexes.

0

Recall that D.S” = z”Bz;f and the diseretization map Bzg » &0

induces
g ESS +> So Upon smashing with Y, the composites

£,
anJ. gh A, D, L g0

give a morphism from the system {anjS_nA Y} to the constant system at Y. We call

this map of systems gj and obtain a map of cohomology theories

g EY——-—)F{)

commutation with the suspension isomorphisms being easily checked. We shall shortly

prove a complement to this observation.

Proposition 3.6. Let E be an H_ ring spectrum. Then the composites of the

functions

?J.;EI’Y = [£7Y,E) —> [Dj):'nY,E] = E"(z“njz‘nw

and the natural homomorphisms En(ZnDjz'nY) > E?j)Y specify a map of cohomology
theories
* *
PEY —E Y
J (J)

We thus have the triangle of cohomology theories

X—————»F

on finite CW complexes X. Since 5 (x) = g o DJ(x) we see immediately that

A ?)(1) gJ(l) where 1 ¢ EO(SO) is the 1dentity element. It does not follow that
*

A ’? j in general. As we shall see in the next section, this fails, for exam-

ple when E MO. However, as observed by Jones and Wegmann [44}, this implication
does hold for E = S,
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Proposition 3.7. The following diagram commutes for any finite CW complex X.

*
j%///ﬂ X\\i*
J
. ¥ n. _-n A* . ¥ n. 4N
whmw(z%z X%——#whmn(x%s AX)

Proof. Since A* 3} and g; are morphisms of cohomology theories, they are equal
for all X if they are equal for X = 0. Any morphism ¢:E*X » F*X of cohomology
theories is given by morphisms of 7 O modules. When E' = n" and X = SO, o(x) =
¢{lex) = ¢(1)+x, so that ¢ is determined by its behavior on the unit 1 ¢ (9.

For general E and X = SO, it is obvious that g;(x) = E;(l)x. It is not at all
obvious that (A*@E)(x) = A*’§3(1) + x We now have this relation for E = S, and we
shall use it to prove the Kahn-Priddy theorem in the next section. As we shall
explain in section 5, theorems of Lin when p = 2 and of Gunawardena when p > 2 imply
that g; and thus 3; in Proposition 3.7 are actually isomorphisms. We complete
this section by giving the deferred proofs, starting with that of Proposition 3.6.

We need two lemmas.

Lemma 3.8. The following diagram commutes for any partition J = (jl,...,jk)

of j.
T.A1
D.YAX -+ »D. YAeeeAD, Yax <SRffle)1AM)_ vy, x Ao aD, YAX
J 1 k 1 Iy
A ANeee AA
7
D, (YA X) »D, (YAX)A eee AD, (YAX)
3 3 Iy

Proof. The "transfer" T3 is specified in Definition 1.4, and the proof is an easy

naturality argument.

lLemma 3.9. For an H_  ring spectrum E, the composite

R *
[Y,E] —> (D, Y,E] -4 [szz'lY,E]

is a homomorphism.

Proof. By Lemma 2.1, we have the formula

p"l *

Lot i,p-i

Pix+y) =R +Py +
3 J i 121

)
(P aF .
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With X = Sl lemma 3.8 and the fact that A:S1 > Stagl is mull homotopic imply that
-A is null homotopic.

Ti,j-1
Thus @? in Propesition 3.6 is a natural homomorphism. It is easily checked

that fl commutes with suspension and this proves the proposition.

Finally, we turn to the proofs of Theorems 3.4 and 3.5. Clearly it only
*
remains to show that E(j) and E(J) satisfy the exaciness axiom on finite CW pairs

(Y,B). Although not strictly necessary, we insert a general observation which helps
explain the idea and will be used later.

Lemma 3.10. Iet f:B + Y be a map of CW spectra with cofibre Cf. There is a map

w:CDjf + EUCf, natural in f, such that the diagram

DY———»CDf‘——a—rzDB

L

DY—J—-DCf—l—nDzB

commutes, where 1:Y » Cf and 3:0f » IB are the canonical maps. If f is the

inclusion of a subcomplex in a CW spectrum, then the diagram

oD, £ ———‘L—a»DJ.Cf

b D.n
J

D;¥/D;B 4 D, (¥/B)

also commutes, where the maps n are the canonical (quotient) equivalences and the

bottom map ¢ is induced by the guotient msp Y + Y/B.

Proof . CDjf = DjY b r CD B and DJCf DJ(Y “p CB); ¢ is induced by the
inclusion DJY > Dij and the composite of A:CDjB > DJCB and the ineclusion

DjCB > Dij. The diagrams are easily checked.

Of course, the bottom row in the first diagram is not a cofibre sequence and y
is not an equivalence. Now let (Y,B) be a finite CW pair. For notational
simplicity, set

DJ{Y,B) = DJ.Y/DJB and Z = Y/B.
As n varies, the maps

znw:anj(z"nY,z'nB) —ranJ.z'nz
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specify a map of inverse systems, again denoted y, and we shall prove the following

result.

Proposition 3.11. For any pair (Y,B} of finite CW spectra,

*

* * = -
9 tE(5)Z —= Colin E anj(x 2y, "B

and, under the hypotheses of Theorem 3.5,

Py 1 1im E*ZnDj(Z-nY:Z—nB) - Eij)z

are isomorphisms.

Note that the assumptions on E in Theorem 3.5 imply that all groups in sight
are finitely generated Zj—modules and thus that all inverse limits in sight preserve

*
exact sequences. Given the proposition, the required E(j) and Eij) exact
sequences of the pair (Y,B) are obtained by passage to colimits and limits from the

- i -1
5% Y,L Djz B).

Following ideas of Bruner {which he uses in a much deeper way in chapters V and

E' and E, exact sequences of the pairs (D

VI}, we prove Proposition 3.11 by filtering Y{J). For 0 <s < j, define

rg = 1g(r,B) = Urpreeenyy,

where Y, = Y or Y. = B and s of the Y, are equal to B. We have

B(‘j) = I‘J- C I‘j_lC A Cl“o= Y(j)t

Each iInclusion is a zj-equivariant cofibration, and we define

n, =1

s S(Y,B) = FS(Y,B)/FS

1(Y,B).

+

Then lig = Z(j) and, for 0 < s < j, I, breaks up as the wedge of its (s,j-s) distinct
subspectra of the form Zlh es*AZ;, where Z, = Z or Zr = B and s of the Zr are equal
to B. It follows that I, is the free zj-spectrum generated by the (£, x . _.)-

. s J-s
spectrum B(S)A-Z(J“S). That is,

1. =3 K NONN Z(J—S).
s j-s

The functor Eg, MZ (?) converts zj—cofibrations to cofibrations and commutes with

gquotients, hence we have cofibre sequences

L. rr/rt Ezj kz. rr/rs

%
(*) E):‘j Xy I‘S/I‘t ~+Ezj x
dJ J J

)

for 0 <r <sg <t <j. For a based space X, the map A:DJYAX + Dj(Y AX) induces
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compatible maps

A:[EEJ uzjrs(Y,B)]AX——-EzJ. uzj I (YaXx,Bax)

and similarly for iy on passage to quotients. The following simple observation is
the crux of the matter.

lemma 3.12. For 0 < s < j, there is & natural equivalence

a:DgBAD:_Z » Ei: K

5 j n,(Y,B)

L.
J

such that the following diagram commutes for any X.

(1agal) AAB
(DBAD; 2) AX ~E228D BaX AD;_ZAX —E2E-sD (BAX) AD (ZAX)

afnl a

[E:j uz.nS(Y,BH AX

r BL. % HS(YAX,B AX)
d

L.
Jok

In particular, the bottom map A is null homotopic when X = sl,

Proof. By I.l.4 and the description of HS(Y,B} above, we have

(8} 5 n{j-s)
Ez. x_ I _(Y,B) = Ef, « B'°'AZ .
J Zj 8 J ZS X Ej-s
As in the proof of Theorem 1.1, we may replace Ezj by Eig x Ezj_s on the right side,
and it then becomes isomorphic to DsB‘“Eﬁ—sz’ The diagram is easily checked.

Now apply i® to the cofibre sequence (¥} for the pair (:~TY,z PB) with quotient
£MZ. We obtain an inverse system of cofibre sequences for 0 < r <s <t <j. On
passage to E¥ and then to colimits (or to Ey and then to limits), there results a

long exact sequence. For O < s < j, the maps between terms of the system

(2PEx. & 1_(zY,: 7B}
J I.'s
J

are null homotopic, hence its colimit of cohomologies is zerc. Inductively, we
conclude from the long exact sequences that the colimits of cohomologies associated
to the quotients PS/Pt with 8 > O are all zero and that the maps of colimits of
cohomologies associated to the gquotient maps FO/rt > PO/FS are all isomorphisms.
With s = 1 and t = p, this proves Proposition 3.11.
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§4. Jones' proof of the Kahn-Priddy theorem

We prove Theorem 2.8 here. The proof for p = 2 is due to Jones [43] and we
have adapted his idea to the case p > 2. We begin more generally than necessary by
relating the cofibre sequences {*) above lemma 3.12 to the maps tj:DjY > Y(j) of
Definiton 1.4. The idea here is again due to Bruner. Thus let (Y,B) be a pair of
finite OW spectra with quotient Z = Y/B. The map T is obtained by applying the

functor Ezj s {7) 1o the composite

’ a9 ()
YA (Niptd M«zjuﬂ,
J=1{1,...,1), and using the equivalence Ezj & Y(j) = Y(J) of nonequivariant spec-

tra (where, technically, the smash product is external on the left and internal on
the right; see [Equiv. II §3] ). The spectrum Ly i ) 45 a wedge of isomorphic
copies of Y(J) indexed on the elements of s, and nJA(j) is just the sum of the j!

permutation maps. It follows that nJA(j) restricts to a zj—equivariant map

Tg > Ej x Iy for 0 < s ¢ j. Upon passage to subquotients and application of the

functor Ei; x; (?), we cbtain maps of cofibre sequences
J

EZJ. "):.Fs/rt ——-—»Ezj K T /T —-~—>Ezj s 1“1,/rS

't .
J
I
T

s

)

J J
le le
rs/r’t —_—> T /1",C R rr/

for 0 <r<s <t <j. With t = s+l, the left map T; is nicely related to the

equivalence o of Lemma 3.12, as can easily be checked by inspection of definitions.

Lemma 4.1. The following diagram commutes for 0 < s < j, where p is the projection

onto the unpermuted wedge summand.

il -

DgBAD, 2 EL; sxzj n (Y,B)

TSA TJ._SL lTj

p'8lazli-sl oy . ARPNE AL AL )
Lgx Xj-s s

When J = 2, there is only one map of cofibre sequences above, and we obtain the

following conclusion.

Proposition 4.2. For CW pair (Y,B) with quotient Z = ¥/B,
1) T}
BaZ w—ng-DzY/DzB b epz 2 1BAz
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2+

is a cofibre sequence, where y¢ is induced by the quotient map Y » 2, zé is
the composite .
BaZ = (BAY)/(BAB) —=21 o (YAY)/(BAB) —2—-»921(/1325,
and ré is the composite
2 Al
Dzz —=»ZAZ = {(YUCB)AZ =—=1BA Z.
Proof. Combine the cofibre sequence
E):2 NZQHI(Y,B) —»DZY/DZB -—->D22 ——’zEzz k):2 nl(Y,B)
wlith the equivalence «:BAZ » Ez2 s nl(Y,B) and check that the resulting maps are
those specified. 2
Our main interest is in the pair (CY,Y).
Corollary 4.3. The following is a cofibre sequence.
It T
HYAY) —2 5D Y —2 oD 5y —2 - 5Y ArY.

2 2

Y and check the maps, using

Proof. Use the evident equivalence D2CY/D2Y = £D2

Iemma 3.10 for the middle one.

For j > 2, we have too many cofibre sequences in sight. Henceforward, let p
be a prime and localize all spaces and spectra at p without change of notation. We
shall show that, for odd primes p and pairs (CS%,59), our system of cofibre
sequences collapses to a single one like that in the previous corocllary. Recall
from Lemma 1.10 that Trlr:Y{r) > Y(r) is the sum of permutations map and
1,1.:DY » DrY induces multiplication by r! on ordinary homology. In particular,

rrir
for 1 <t <p, DY is a wedge summand of y(r),

Lemma 4.4. For 1 < r < p, Dr82q+1 is equivalent to the trivial spectrum and

1r:82qr > DrSZQ is an equivalence with inverse ;7-1 .
rl 'r

Proof. When Y = qu, Tpl, induces multiplication by r! on homology; when Y = qu*l,

it induces zero. The coneclusions follow.

Thus, when Y is a sphere spectrum, most of the spectra

L 0 (CY,Y) = DY '\DP_SZY

are trivial. P
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Corollary 4.5. Iet p > 2 and let g be an even integer. Then there are cofibre
sequences

N VNP I
and P P

sPart 2 s% A~ Dqu+1 —r 5PI2

_ _ - -1 " PR
Proof. ILet Iy = I (CY,Y) and nm =r/r . If ¥ = 894 then L, “Zpﬂs is trivial

for 2 < s < p, henee Ei, . I'/T  is trivial for 2 <r < s < p. Thus Fl/Fp > I

P L
P
and I./T_+ T./T induce equivalences upon application of Er_ x. (?) and there
O'p o2 1Y Zp

results a cofibre sequence

Ezp u):pnl ——+Ezp kzprO/rp ——aEzp K):pHO —_ ZEEP & anl’

This gives the first sequence upon interpreting the terms and maps (by use of Lemmas

3.10, 3.12, 4.1, and 4.4), Similarly, if ¥ = S%, then Ex uz Hs is trivial for

1 < s < p-1, hence Ezp uzp

and I, , + I'4/T, induces equivalences upon application of Er, x. (?) and there
p-1 Vip Py

T./Tg is trivial for 1 < r < s < p-1. Thus ro/rppl > Tlg

results a cofibre sequence

.

EL, “zp“p~1 —>=Ez, u%pro/rp —=E1, “ano —> I uzp L

This gives the second sequence.

One can also check these cofibre sequences by direct homological calculation;
compare Lemma 5.6 below. We need some further information about the spectra EnDPS'm
in order to use these sequences to prove Theorem 2.8. Proofs of the claims to

follow will be given by Bruner in V§2.

If p =2, let L = ™RP™ with its standard cell structure. (We write L rather
than the usual P for uniformity with the case p > 2.) If p > 2, let L be a CW
spectrum of the p-local homotopy type of z“sz such that L has one cell in each
positive dimension g = 0 or -1 mod 2(p-1). The existence and essential uniqueness

of such an L was pointed out by Adams [7,2.2]. Let 1X be the k-skeleton of L and

let L = L/1*! and Lg*k = 1%8/1%0 for k > 0. Let ¢(k) be as in Theorem 2.8

(and recall that it depends on p). If p = 2, then

L§+k = En4m1§+k for m = n mod 2¢(¥),

Ifp>2,e=0o0r1l, and kX > g, then

L2n*k .3

2(n—m)L2m+k
2nte

¢ (k)
2m+¢ *

for m = n mod p
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We use this periodicity to define spectra L§+k for non-positive n, so that these

equivalences hold for all integers m and n. We then have that

n+k -n-1

Ln is {-1)-dual to L—n¥1—k .
Our interest in these spectra comes from the following result (proven by Bruner in
V§2).

Theorem 4.6. For any integer n, z‘nDpSn is p-locally equivalent to Ly(p_ 1)-

We define Dﬁsn = ZnLgtg:i;+k. If p = 2, we may view Dlgsn as S° %y s, 1r
P > 2, no model for EEP has few enough cells to give as convenient a filt%ation of

DpSn. We shall shorily prove the following result.

Proposition 4.7. If p:LE)k * SO is the projection onto the top cell, then
* - -
p im q(SO) + @ q(L?k)

ig gero for 0 < ¢ < k(p-1).

Since p is (-1)-dual %o the inclusion 1:571 » LX? of the bottom cell,

1*:nq(8-1) + wq(Lﬁzl) is zero for 0 < q < k{p-1j-1. The cofibre sequences of

Corollaries 4.3 and 4.5 restrict to give cofibre seguences
T
S—l 1 Lfil A Lg—l P SO .
k-1 0 . . N

Thus, Tp*:“q(Ib )+ nq(S ) is an epimorphism for 0 < q < k(p-1l). Now let k go to
infinity. Of course, L = z""Bz; splits as the wedge z‘”B):vaO. Since
TPIP:SO + So has degree p!, the finiteness of ﬂ*SO allows us to deduce the
following version of the Kahn-Priddy Theorem.

Theorem 4.8. The restriction rpzszzp + SO induces an epimorphism
o 0
nq(z BEP) > nq(S ) ®Z(p) for q > 0.

To prove Theorem 2.8, consider the following diagram, where g = O mod p¢(k) and
q is even if p > 2.

pq pa P
PI-1_I 7 EPQL§—1 P quLg-l R, ghd

I | oo

gPa-1 XqL(p-l)q+k—1 A ZqL(p—l)q+k-1 P, gPd
(p-1)g-1 (p-1)a
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The bottom cofibre sequence is obtained by restriction from sequences in Corollaries
4.3 and 4.5. Periodicity gives an equivalence v such that the left square commutes.
Standard cofibration sequence arguments then give an equivalence  such that the

factors through t,:D. 32 5+ SP9 and is

remaining squares commute. The bottom map t )

P
an epimorphism in the range stated in Theorem 2.8.

It remains to prove Proposition 4.7. For amusement, we proceed a bit more

generally. HReeall the not necessarily commutative diagram

3>/\

X -5 F

below Proposition 3.6, where E is an H_ ring spectrum. With E = Sand X = So, the
following result is Proposition 4.7.

Proposition 4.9. ILet X be a finite CW complex of dimension less than k(p-1)-q,
where 0 < q < k(p-1). Then

0

¥ - = -
(oa) 8% = B YUsOnx) —> 510

MK

. . ry . Py *
is zero if E is a comnective H_ ring spectrum such that a @; =§ .

Proof. For n > k, the cofibre of a:z"'ip s™1 ., an s™ has dimension at most
-k(p-1), and it follows that the colimit F(g)x ie atbained as E- q(EkDpS—kI\X)

Let 1:L(_)k > L_k B ZkDpS_k be the inclusion and consider the following diagram,

where x is any map X + r 9E.

quqAXe«———»zDs AX pal
quzq}((—zDsz DSAX —P—>SAX
179 1% H
D
3 1% «
1790 E D 3" X

P
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Since A*f)p = g;, the bottom part commutes. We have

0 0
gpél = p.L“k *> S
1

since the composite is obviously null homotopic on L:k

and of degree one on the top

cell. We have

0

au = 0:L > 27D st

k

since E'quSq is O-comnected. The conclusion follows.

Replacing S by E in the deductions from Proposition 4.7 and using the results
of section 2, we conclude that, for q > 0, all p-torsion elements of upE are
* * * ¥
nilpotent if A @% = Ep' This implies our earlier claim that A ?PZ # 52 when

E = MO.

§5. The Singer construction and theorems of Lin and Gunawardena

Singer introduced a remarkable algebraic functor R, from A-modules to A-
modules, where A is the mod p Steenrod algebra, and Miller began the study of the
cohomology theories in section 3 by making the following basic observation. All

homology and cohomology is to be taken with mod p coefficients.

Theorem 5.1. Let ¥ be a spectrum such that HyY is bounded below and of finite
type. Then colim H*(EnDp£°nY) is isomorphic to 2’1R+H*Y.

We shall prove this and some related observations after explaining its
relationship to the following theorems of Lin [53, 54] and Gunawardena [38, 39].
Let & and T, denote the p-adic completions of stable cohomotopy and stable
homotopy.

¥ ¥ K3 -
Theorem 5.2. The map gp:w Y » colim g (ZnDpS BAY) is an isomorphism for all

finite CW speetra Y.

As we shall explain shortly, lim %ﬂl(ZnDpS‘n) = ZP. Realizing the unit by a
compatible system of maps gP:5~! » anpS'n and smashing with Y, we obtain a

compatible system of maps

gpzz'lY

i

slay s DS AY.

Theorem 5.3. The map EE:%*le + 1im %*(anpS_nA Y) is an isomorphism for all
finite CW spectra Y.
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*
Since gp is a map of cohomology theories and gg is a map of homology

theories, it suffices to prove these isomorphisms for Y = SO. Since
s P ™ 4 (1)-qua o zn+kng(p’1)'ls'n'k,

the theorems are esentially dusl to one another. Indeed, using the lim! exact
sequence and waving one's hands at certain compatibility questions, one finds the
following chain of isomorphisms, where m{p-1) > q.

AQ, N o~ AQ, M oM
colim w5 DpS ) = 75 DS )
Lim 730:"0ps™) - 72"y

- 1gm RPN Tg

S m+k k{p-1)-1,-m-k
=1 D S )
im n_q_l(z b

e s n. -0
= 1%m “-q—l(z DpS )

There is a map of A-modules e:R,Z and the main point of the work of Lin

> Z
P D’
and Gunawardena can be reformulated as follows; see Adams, Gunawardena, and Miller

[9].

* ;
Theorem 5.4. ¢ :EXtA(Zp’ZP) » Ext, (R Zp} is an isomorphism.

+Zp:

4n inverse system {Y,} of bounded below spectra ¥, of finite type gives rise to
an inverse limit
{Er} = 1lim {ErYn}

of Adams spectral sequences, where {E;Y} denotes the classical Adams spectral
sequence for the computation of Q*Y. Clearly
Lk
E, 2 Extylcolim H Yn,Zp).
As polnted out in [74], {E,} converges strongly to 1lim E*Yh. We apply this with
Y, = D 8. Here Theorems 5.1 and 5.4 give

Ey = Exty(5712,,25).

From this and convergence, it is easy to check that lim §~1(ZHDPS_n) = Zp. The
compatible system of maps gP:S”l > anPS'n then Induces a map of spectral sequences

{E.P}:{E.ST) » {E.).

By Theorem 5.4 again, Ezgp is an isomorphism, and Theorem 5.3 follows by
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convergence. Theorem 5.2 can be obtained by a similar Adams speciral sequence
argument {(as in Lin [53] and Gunawardena [38}) or by dualization.

The crux of the proof of Theorem 5.1 is the following result of Steinberger,
which is proven in VIII.3.2 of the sequel. For spaces, it is due to Nishida [89];
see also [68, 9.4]. Let 7 be the cyelic group of order p. We assume familiarity
with the mod p homology HyD Y, its determination being a standard exercise in the
homology of groups in view of 1.2.3 (see e.g. [68, §1]). Suffice it to say that
H*D"Y has a basis consisting of elements of the form eq ® X Q e ® x5 and e; ® xp,
i > 0. Here the x; and x run through basis elements of HyY, the x; are not all
equal, and the X B e © Xp and xP together run through a set of n-generators for
(HyY)P. Restricting to those i of the form (2s-q){p-1)-e, where g = deg (x) and
¢ = 0or 1, and to a set of zp-generators for (HyY)P, we obtain a basis for H*DPY.
At least if HyY is bounded below and of finite type, we have analogous dual bases
for H*D“Y and H*DpY with typical elements denoted wg ® Y1 R ese @ Yp and Wy ® yp.
Theorem 5.5. Assume that HyY is bounded below and of finite type. The subspace of
H*D“Y spanned by {Wy; ®y; @ ++» ® yp} is closed under Steenrod operations and,
modulo this subspace, the following relations hold for y e Hly.

(i) For p = 2,
Jrq-1

s 2, _ i (2
Sq (wj ®y) = g oot ¥iigo2i ® (sqa7y)".
(ii) For p > 2, let §(2n+e) = ¢, m =% (p-1), and alq) = -(-1)™m!; then
] _ v li/2)+am-(p-1)1 i\p
Polu; @ y°) % o W (smpi) (po1) © (B

[§/2}+aqm-(p-1)i~1

® (BPiy)p.
sopi-1 -pi)(p~-1)

+ 8(j-1)alq) } wj—p+2(s

[N

(iii) For P> 2, Mij-l ®yp) = sz @yp-

+n
We also need to know A*:H*D“Y > H*(ED“E‘IY). Let Zn:Hq(Y) > Hq (z™Y) denote
the iterated suspension isomorphism for any integer n.

Lemma 5.6. For y ¢ HYY,
* Py . J+1 -1..p
A (wJ. ®y) = (-1) a(q)z(wj,rp_l ® (¢ "y,

Proof. We first compute ay:Hg(ID Y) > Hy(D IY). Take f to be the identity map of Y

and replace Dp by D“ in Lemma 3.10. We find that the composite of Ay and the

homology suspension Iy is the suspension assoclated to the zero segquence
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C*(DNY) — C*(D“CY) — C*(DT‘EX)-
By I.2.3 and [68,§1], we may instead use the zero sequence
P P P
W@ C (1) —> W@ C (0P — W@ Cy(zD)P,

where W is the standard s-free resolution of Zp. A direct chain level computation,
details of which sre in [68,p. 166-1671, gives the formula

Byey iy @ = (DT atale; © (2,00P

for x ¢ Hq_l(Y). Clearly A*E*(eo ® X () seo ®xp) = 0 for all X3 The conclusion
follows upon dualization (amnd a careful check of signs).

The results above determine colim H*():nDnz‘nY) as an A-module, and similarly
with D replaced by Dp. To compare the answer to the Singer comstruction, we must
first recall the definition of the latter [98,52]. When p = 2, 2'1R+M is additively
isomorphic to A @ M, where A is the Laurent series ring Zzlv,v'll,

deg v = 1. Its Steenrod operations are specified by

Sq vF ® x) = Z (;"gi) r+s-1 ®Sqix.

When p > 2, 2‘1R+M is additively isomorphic to A ® M, where A = E{u} x Zp[v,v'll,
deg u = 2p-3 and deg v = 2p-2. Its Steenrod operations are specified by

P (ue Tr-g ®x) = }: (-1 s+1((p~1)(r- - )usvr+s-i-e ® Pix
_pi

+ (1) ] (-113"1( ‘P;fl’éfii)'l) w51 @ gplx
and i

£ _T-g

glu“v ®x) = elv ®@x).

We can now prove Theorem 5.1. We define an isomorphism

¥ ] - *
aicolin K ("D ™) » yRH Y

as follows. For p = 2 and y ¢ HA(Y), let

n -1 2_ T
w(L (wr_qm®(2 y) vV ®y.

For p > 2 and y ¢ HY(Y), let

n = U r+g+{e+lin -1 WEvEE
wlZ (w(2r+n—q)(p—-l)ue® (x7y)") = (-1) v(g-n) ®v,
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where (2 + e) =(~1)9(m!)¥. Note that

-1

al@)vie-1)7F = v and (D% E = (-1)™(q).

By lemma 5.6, these y induce a well-defined isomorphism on passage to colimits. by
Theorem 5.5, we see that our constants have been so chosen that ¢ is an isomorphism
of A-modules.

Remark 5.7. When p > 2, there are two variants of the Singer construction. We are
using the smaller one appropriate to Dp’ This is a summand of the larger variant,

for which Theorem 5.1 is true with Dp replaced by D . OSee Gunawardena [39,9] for

details {but note that his signs don't quite agree with ours).

With Y = SO, Theorem 5.1 specializes to an isomorphism

- -1 . * ol o-TL
A=1Z R+Zp z colim H (g DPS ).

Since A is an A-module, A ®@ M admits the diagonal A action, which is evidently quite

different from that originally specified on 2'1R+M. For finite CW complexes X, we
have the isomorphism

* * = * -
A" :colim H (znnpz %) —> colim H (anps T AX)
of Theorem 3.2. We next obtain an explicit description of the resulting isomorphism
¥ 1 o ¥
A L R+H X+ A @HX.

Thus consider A:D“Y/\X > Dn(Y/\X). When X = Sl, we computed Ay in the proof

of lemma 5.6. When Y = S, DY = t”Br* and the effect of Ay is implicit in the
definition of the Steenrod operations; see Steenrod and Eptein [100] (or, for
correct signs, [68, 9.1]). The following result is a common generalization of these

calculations.
Propsition 5.8. let x e ﬁk(x) and y e Hy(Y). If p =2,
2 v i ,2
ale, ®y ®x) = )i, e ® (v © 807

if p > 2, let v(2j+1) = (-1)9(ml)® and e(2j+e) = e; then

= mkq i 1.4P
sele, ®3° @x) = (-1)™ (k) LD e (a1 (p1) @ 7O Fy®)

)q+m(k-l)

q i 1P
-(-1 §{r)vik-1) Z (-1)7e  ne(2pi-k) (p-1) @ (7 @ PyBx}™.
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Proof. Modulo shuffling in C*(Y)P, which introduces the signs depending on q when
P > 2, Ay is computable from the mep obtained by quotienting out the action of =

from the n-map

5 ®1:C, (W) @ TW(X) @ Cul1)P —=0, (W) @ T, (0P @ 0P

induced by a w-equivariant approximation ¢ of 1 @ a4, where 5' is a cellular
approximetion of the diagonal X » XP; see e.g. [100, V§3] or [68,7.1]. The
egssential point is that Y acts like a dummy variable, so that the standard
caleulation for Y = &0 of {68, 9.1] implies the general result.

Dualizing, and paying careful atiention to signs, we obtain the following
version in cohomology.

Proposition 5.9. Assume that HyX and HyY are of finite type and that HyY is bounded
below. Let x ¢ HS(X) and v e HUY). Ifp= 2,

A . @ly®xd) =) w ® 7 ® Sa’x
j y i j*‘k—i y @ .

If p> 2,

mk(q+1)

* Py i i
2w @y ®0P) = (-1) v T, 1) () @y ®Fx

_(-py@rmk(arl)

i i
SV T DM 4 (1) ®y ®8Px.

A check of constants gives the following consequence.

o¥
Corollary 5.10. For M = H X, the formula

x » ;
"o = 5 v e slx
i
if p = 2 and
% _ il : e ;
pSTTERx) = R Al f@Px - (l-e) Euvr * l@sPlx
i i

if p > 2 specifies a morphism of A-modules A*:z“1R+M > A QM

The same formulae give a morphism of A-modules for all A-modules M which are
either unstable or bounded above, either assumption ensuring that the relevant sums
are finite, In the bounded above case, but not in general in the unstable case,

this morphism is an isomorphism. See [98, 52, 82].
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Define ¢:R,M » M by the formulas
ez(vi 1 ® x) = Sq¥x

if p = 2 (where Sq¥(x) = 0 if r < 0) and
eslwT Ll ®@x) = P'x and ex(vF ® x) = -gPTx

if p > 2. By [98,3.4] and [52,3.5], ¢ is a well-defined morphism of A-modules.
When A* is defined, ¢ is the composite
* 1 (e ®1) ., -1
RM LRz @ HeB 57l o w - u.
Generalizing Theorem 5.4, Adams, Gunawardena, and Miller [9] proved that ¢ is an
Ext-isomorphism for any M. This leads to a generalization of Theorem 5.3 to a

version appropriate to (Zp)k for any k¥ > 1, and this generalization is the heart of
the proof of the Segal conjecture for elementary Abelian p-groups. See [9,74].

§6. Nishida's second nilpotency theorem.

If x ¢ n,E has order p, then x extends over the Moore spectrum M= gt LJPCSn.
The idea of Nishida's second nilpotency theorem is to exploit this extension by
showing that IﬁMn splits as a wedge of Eilenberg-MacLane specta in a range of
dimensions. The relevant splitting is a special case of the following result which,
as we shall explain shortly, is in turn a special case of the general splitting

theorem to be proven by Steinberger in the next chapter.

Theorem 6.1. ILet Y be a spectrum obtained from S® by attaching cells of dimension
greater than n. Assume that mf is Z or Z ; and let v e Hn(Y;Z ) be a generator.
Assume one of the following further hypothgses.

(a} p = 2 and either n is odd or g(v) # O.

(b) p > 2, n is even, and g(v) # O.

(c) p =2 and Sq3(v) # 0.

(d) p > 2, nis even, and gPl(v) # O.

H

Then EGY splits p-locally as a wedge of suspensions of Eilenberg-Maclane spectra
through dimensions r < nj + %-(2p-3)(j+1)-1. In cases (a) and (b), only
suspensions of HZP are needed.

Before discussing the proof, we explain how to use these splittings to obtain
relations in the homotopy groups of H_ ring spectra. Let Y and v be as in the

theorem above and localize all spectra at p.
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Theorem 6.2. Let E be an H_ ring spectrum, let F be a connective spectrum, and let
$:E F » E be any map (for example, the product when F = E or the identity when
F=28). Let x ¢ m,E and assume one of the following hypotheses.

(a) p=2 and n is odd; here let Y = 8",

{b) p>2, n is even, and ¥ has order 2; here let Y = M!,

{e} p =2, n is even, and x extends over some Y with qu{v) # O.

(d) p > 2, n is even, and x extends over some Y with BPl(v) # 0.

let R = Zp in cases (a) and (b) and R = 7ol in cases (c) and (d) and let y ¢ mF be

in the kernmel of the Hurewicz homomorphism qu -+ Hq(F;R). Then xjy = 0 if
q <3 (2p-3)(J*D)-1.

Proof. Our hypotheses ensure that H?j(DjY;R) =z R, We can choose a generator y such

that the composite
A AR D.f ni
gt —d Dan d » DY !

is t™e, where £:S® + Y is the inclusion of the bottom cell and e:S + HR is the
unit. Choose X:Y + E such that Xf = x. Then the solid arrow part of the

following diagram commutes and the top composite is xjy.

. R () .
Al _1ry  iap XML i 981 L pap_ ¢ E
1.,A1 1,81 ngl
" v D.xAl
% Jel\y DJ.Sni\F———J_-»*—’r DJ.E'\F
DyEAL A pgan
{ ’ J
P ER AF 2L oy A
N
N
N oAl w Al
kAl ™
~ v

N
“ (DY} _AF
7 r

Here r = nj+q, w:DjY > (DjY)r is the r'B stage of a Postnikov decomposition of DjY,

and p:{DJ-Y)r » tMHR is the unique ecohomology class such that pw = u. The previous
theorem gives <:IHR » (DjY)r such that px = 1. The complementary wedge summand
of t™HR in (DjY)r is (nj)-connected, and it follows that cesWe = “'Iﬁf"j' Since

F is connective, wal induces an isomorphism on "nj+q Since y is in the kernel of
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the Hurewicz homomorphism and the latter is induced by eAl:F = SAF » HRAF,

EnjeA y = 0. Chasing the diagram, we conclude that xjy = 0.

In particular, with F = E, ¢ = n, and y = x, we obtain ¥l -0, WithE =S
and n > 0, case (b) applies to any even degree element of order p. As observed by
Steinberger, when p = 2 case (a) applies to any odd degree element and gives a
better estimate of the order of nilpotency than that obtained by applying case (b)
to x°. While this result gives a much better estimate of the order of nilpotency of
elements of order p in wxS than does Theorem 2.9, the estimate is presumably still
far from best possible. For example, if p = 2 and n = 14, the estimate is now
20 = 0. cases (¢) and (d) apply to some elements of order pi with i > 1. The idea
is to add further cells to S, or to §" , ; CS”, so as to obtain a spectrum Y for
which the relevant Steenrod operation is non-zero. However, a given element x need
not extend over any such Y. (Conceivably some power of x must so extend.) This
explains why Nishida's second method fails to give the full nilpotency theorem and

why we cannot yet prove Conjecture 2.7.

We must still explain how to prove Theorem 6.1. The idea is to approximate Dj
through the specified range by a spectrum with additional structure and then use
homology operations to split the latter. The approximation is based on the

following observation about mod p homology.

Proposition 6.3. Let Y be an (n-1)-connected spectrum with HhY = Zp, where n is
even if p > 2. Let £:S® » Y induce an isomorphism on H,. Then the homomorphism
HiZanY > Hi,q+1Y induced by the composite

¢
DYast 22 pyay —Li.p oy
q q q+l

is a monomorphism for all i and is an isomorphism if i < n{q+l) + %—(2p-3)(q+1)-

For spaces X, a self-contained calculation of H*DqX for all q is given in
[28,I84-5]. The generalization to spectra is given by McClure in Chapter IX, and

the conclusion is easily read off from these calculations.

With the proposition as a hint, we construct the approximating spectra as

follows.

Definition 6.4. Let (Y,f) be a spectrum together with a map £:5% » Y for some
integer n and define D(Y,f) = tel z'anqY, where the n'® map of the system is
obtained by applying Z-n(q+1) to the composite

a
DYast 220 pyay —%d.p v,
q q g+l
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Now the previous proposition has the following consequence.

Corollary 6.5. With Y and £ as in the proposition, assume further that Y is
p-local of finite type. Then the natural map DjY + EnjD(Y,f) is an equivalence
through dimensions less than nj + %»(2p—3)(j+1) - 1.

Proof. By the proposition, the maps Z—n(q+1)(aq 1 © 1Af) used to construct
D(Y,f) induce isomorphisms in mod p homology and,thus in p-local homology in
degrees less than %‘(2p-3)(q+1). This fact for q > j implies the conclusion (with

the usual loss of a dimension as one passes from homology to homotopy).

Thus, to prove Theorem 6.1, we need only split D(Y,f).

The following ad hoc definition, which generalizes Nishida's notion of a
r-spectrum [90,1.5], allows us to describe the structure present on the spectra
D(Y,f). In the rest of this section we shall refer to weak maps and weakly
commutative diagrams when the domain is a telescope and phantom maps are to be

ignored.

Definition 6.6. A spectrum E is a pseudo H_ ring spectrum if
(1) E is the telescope of a sequence of connective spectra Eq, q > 0;
(ii) E is a weak ring spectrum with unit induced from a map S + Eq and
product induced from a unital, associstive, and commutative system of compatible
maps EqAEI. > Eq+r; and
(iii) For each j > O and q > 0, there exists an integer d = d(j,q) and a map

£ :D.Equ > XquE whose composite with 1j:£dquéq) E3 (quEq)(J) > DjquE is

3 q Jq q
the (c‘l,jq)th suspension of the interated product EéJ) > qu.
Examples 6.7, (i) With each Eq = E and each d(j,q) = 0, a connective H_ ring
spectrum may be viewed as a pseudo H  ring spectrum.

d*

(ii) With each Eq = E and each d(j,q) = d, a commective H_

viewed as a pseudo H_ ring spectrum; since E has structural maps gj for all q,

ring spectrum may be

negative as well as positive, we could obtain a different pseudo structure with each
d{j,q) = -d.

(iii) For an (n-l)-connected spectrum Y and map f:5% » Y such that either

2 =0:Y+ Y or n is even, D{Y,f} is a pseudo H_ ring spectrum with qth term

z‘anqX. Its product is induced by the maps

2-n(q«rr)

~ng -nr . v-nlg+r) %q,r -n{g+r}
I DqYA}: DY =} (DqYADrY) —ly Dqﬂjf ,

these forming a unital, associative, commutative, and compatible system by I.2.6 and

I.2.8 and our added hypothesis, which serves to eliminate signs coming from permuta-
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tions of spheres. With all d{j,q) = n, its structural maps are

- .n +0Q, -Nq } . g, -njq
=8, D%z ™py) =pDYD Y=Y y).
€5 % Byqilyt o7 = 5Pt > Pyg Ja

The following analog of I.3.6 and I.4.5 admits precisely the same simple

cohomological proof.

Proposition 6.8. Let E be a pseudo H ring spectrum with char n4E = 2 or all
a(j,q) even. Assume that wyE = noEq for all g > gg and, for such g, let
i:E_~+ H{ﬁOE) be the unique map which induees the identity homomorphism on wg. Then

q
the following diagrams commute, where 4 = d(j,q):

dq.
D,z 71
dq. J dq
D.z 7 7E — D, H E
5 q JZ ("O )
5 5
: djq. .
djq L dja
) qu » T H(nOE)

In the next chapter, Steinberger will use a computation of the homology
operations of the H_ ring spectrum ﬁ{ quHZp to prove the following generalization
of Nishida's result [90,3.2].

Theorem 6.9. Let E be a p-local pseudo H_ ring spectrum. If Tk = Zp’ then E

splits as a wedge of suspensions of HZP. If mpk = Z

p = 2 and SqBi #0or p>2 and BPli # 0, where i generates HQ(E;ZP), then E splits

as a wedge of suspensions of HZ ., s > 1, and HZ(
p

s T > 1, or ﬁOE = Z(p) and if

p)*

Considering the natural map 1™®Y » D(Y,f), and using the formula 8wy ® Vo) =
nwy C5v2 of Theorem 5.5 for case (a), we easily check that the theorem applies to
split D(Y,f) for Y as in Theorem 6.1.

We complete this section with some remarks about the role played by Definition
6.4 in the general theory of H_ ring spectra.

Remarks 6.10. Let (E,e) be a spectrum with unit e:S + E. Let DE = D(E,e) and let
n:E = DyE » DE be the natural inelusion. By I.2.7, I.2.9, and 1.2.13, the maps
Bj,k:DjDkE + DjkE induce a natural weak map uk:DDkE » DE sueh that the following

diagrams (weakly) commute:
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n DB, x
DkE DDkE and D?jDkE DDJkE
My U Mk
1!
DE DD, E k DE

If E is an H, ring spectrum, then, by Proposition 1.3, the maps gj:DjE + B determine
a weak map £:DE » E such that the following diagrams (weakly) commute.

Dg

E——0  »DE and DD, E X DE
\ E Uk E
E DE 3 »E

Conversely, by the same result, if y:DE » E makes these diagrams weakly commute,
then its restrictions gj:DjE + E give E a structure of H_  ring spectrum. These
assertions are analogous to, but weaker than, the assertions that D is a monad and
that an H_ ring spectrum is an algebra over this monad (compare [69, §2]). The
point is that the u fail to satisfy the requisite compatibility to determine a weak
map u:DDE » DE. By I.2.11 and I.2.15, the compatibility they do have is described

by the weakly commutative diagram

DD. EAS———bDDkEADS———vDD E

k k
Vi D(otk,1 o lAae)
DDkE —» DE € DDk+1E
where vy 1s induced by the composites
D.DkEAD.S—Bj—’ﬂf—»D. EAD.EM sy, s B
J J JE T Jk+J

and §:DF » DFADS is induced by the maps GJ:DJ-(FA S) » DJ-FADJ-S.



CHAPTER III.

HOMOLOGY OPERATIONS FOR H_, AND H, RING SPECTRA

by Mark Steinberger

Since K, ring spectra are analogs of H, spaces and Hn ring spectra are analogs
up to homotopy of n-fold loop spaces, it is to be expected that their homologies
admit operations analogous to those introduced by Araki and Kudo [12], Browder [22],
Dyer and Lashof [33] and Cohen [28]. We define such operations in section 1 for H_

ring spectra and in section 3 for H, ring spectra.

As an amusing example, we end section 1 with the observation, due independently
*
to Haynes Miller and Jim McClure, that our homology operations in H*F{Xf,s) =HX

coineide with the Steenrod operations when X is a finite complex.

For connective H, ring spectra, we show that the resulting ring of operations
is precisely the Dyer-lashof algebra. Moreover, if X is an H_ space with zero (as
in II.1.7), then the new operations for the H, ring spectrum X coincide with the

space level operations of ﬁ*X.

As will be shown by Lewis in the sequel, the Thom spectrum Mf of an n-fold or
infinite loop map f:X + BF is an H, or H, ring spectrum and the Thom isomorphism
carries the space level operations to the new operations in HyMf. This applies in
particular to the Thom spectra of the classical groups (although a simpler argument
could be used here).

In section 2 we present calculations of the new operations in less obvious
cases {with the proofs deferred until sections 5 and 6). Our central calculations
concern Eilenberg-MacLane spectra, where , in contrast to the additive homology
operations for Eilenberg-MaclLane spaces, these operations are highly nontrivial. In
fact, they provide a conceptual framework for the splittings of various cobordism
spectra into wedges of Eilenberg-Maclane spectra or Brown-Peterson spectra. The
proofs of these splittings in the literature are based on computations of the
Steenrod operations on the Thom class. We show in section 4 that the presence of an
H, ring structure, n > 2 {n > 3 for the BP splittings), reduces these computations
to a check of at most one low dimensional operation, depending on the type of
splitting. In addition, we have placed these splitting theorems in a more general
context which, as explained in the previous chapter, leads to a reproof of Nishida's
bound on the order of nilpotency of an element of order p in the stable stems. All
of our splittings are deduced directly from our computation of the new operations In
the homology of Ellenberg-MacLane spectra.
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Proposition 5.1.

§1. Construction and properties of the operations

Just as the space level operations of Araki and Kudo, Browder, and Dyer and
Lashof are based on maps
Eg, x. X+ X,
iz,
J
80 our new spectrum level operations are based on the structural maps

.:D.E E
S R e

of H_  ring spectra (see I.3.1). We consider homology with mod p coefficients for a
prime p. The following omnibus theorem describes our operations. Properties of the
operations at the prime 2 which are distinct from the properties at odd primes are
indicated in square brackets. As usual, / denotes the homology Bockstein operation,
and Pi denotes the dual of the Steenrod operations PT, with PY = &% if p = 2.

Theorem 1.1. For integers s there exist operations Q% in the homology of H, ring
spectra E. They enjoy the following properties.

(1) The Q° are natural homomorphisms.

(2) Q° raises degree by 2s(p-1) [by s].

(3) Q% = 0 if 2s < degree(x) [if s < degree(x)l.

{4) Q% = xP if 25 = degree{x) [if s = degree(x}!.

{5) Q51 =0 for s # 0, where 1 ¢ HoX is the slgebraic unit element of HyX.

{(6) The external and intermal Carten formulas hold:

®lx x y) = B Q%><§y for x x y € H(EAF);
i+j=s

Qlxy) = 3 (&xH&y) for x,y ¢ H,E.
i+j=s

(7} The Adem relations hold: if p > 2 and r > ps, then

Ff =T (D™t - r, v - (p- e - i - 1T,
i

if p> 2 and r > ps, then
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Q805 = 7 (-1 pi - ryr - (p - Ds - 1)pe" 5!
i
-1 D™ i - r - 1y - (p - Ds - 15 a0l
i

(8) The Nishida relations hold: For p > 2 and n sufficiently large,

PiQS =7 -1 - pi,pn + s(p - 1) - pr + pi)Qs_r+lPi .
i
In particular, for p = 2, Q% = (s - 1)Q5"1. For p > 2 and n sufficiently large,
P:sQS =7 1) e - pi,pn +8(p-1) -pr + pi - l)BQs_r+lP1
i
-1 -1 e - pi-1, p" + s(p - 1) - pr +pi)QS_r+lPis.

1

(9) The homology suspension c:ﬁ*EO + H,E carries the operations given by
the multiplicative H_ space structure of Ey to the operations in the homology of E.
(10) 1If E = X for an H,o-space X, then the operations in HyE agree with

the space level operations in ﬁ*X.

The statement here is identical to that for the space level operations except
that operations of negative degree can act on homology classes of negative degree
and that a high power of p is added to the right entry in the binomial coefficients
appearing in the Nishida relations. For spaces, the same answer is obtained with or
without the power of p because of the restrictions on the degrees of dual Steenrod
operations acting nontrivially on a given homology class. Our conventions are that
(a,b) is zero if either a < O or b < 0 and is the binomial coefficient (a + b)!/alb!
otherwise. The Nishida relations become cleaner when written in terms of classical
binomial coefficients since

(pn+a+b) - (a+b)

a a for a < pn and b > 0.

(a,p" + b) =
The Q5 and gQ° generate an algebra of operations. If we restrict attention to

the operations on connective H_ ring spectra, then the resulting algebra is
precisely the Dyer-Lashof algebra in view of relations (3) and (8) and application
of (10) to the H,p space obtained by adjoining a disjoint basepoint to the additive

H, space structure on QSO.

We sketch the proof of the theorem in the rest of this section. With the
exception of the proof of the Nishida relations, the argument is precisely parallel

to the treatment of the space level homology operations in (28] and is based on the
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general algebraic approach to Steenrod type operations developed in [68] and

summarized by Bruner in IV§2.

Let = be the cyclic group of order p embedded as usual in Zp and let W be the

standard n-free resolution of ZP (see IV.2.2). Let C*(Ezp) be the cellular chains

of the standard I _-free contractible space Ex_ and choose a morphism

p
JW C*(EZP) of w-complexes over Z

p
We may assume that our H_ ring spectrum E is

p*

a CW-spectrum with cellular structure maps gj:DjE + E. By I.2.1, DjE is a CW-

spectrum with cellular chains isomorphic to C*(Ezj) ®;, (C4E)J. Thus we have a
J

composite chain map

: Ex
W@, (CE)P __J_®_1_..C*(E):p) ®, (6,BP = Cy(D ) ———» C4E.
b
The homology of the domain has typical elements e; ® xP (and ) ® X @ vor ® xp),
where x ¢ HyE, and we let Qi(x) e HyE be the image of e ® ¥P. Iet x have degree q.
If p = 2 define

Q%(x) = 0 if s < q and Q%(x) = Q. .(x) if s > q.

5-q

for p > 2, define

Q%(x) = 0 if 2s <q  and QR%(x) = (-1)5v(q)Q y(x) if 2s > q

(2s-q) (p-1
- qlg-1)m/2 — 21 s s

where v(q) = (-1) (m1)9, with m = 5—(p—1). By [68] the Q° and 8Q° account

for all non-trivial Qi when p > 2. Since Ep restricts on E(P) to the p-fold product

of E and since the unit e:S + E is an H_-map, parts (1)-{5) of the theorem are

immediate from [68].

It is proven in the sequel [Equiv, VIII.2.9] that the maps 135 94 ks Bj K, and
b )
Sj discussed in I$2 have the expected effect on cellular chains. For example, §
can be identified with the homomorphism

J‘*

S (1®t®1)(a, ®u) . ;
CylFz;) ® (C,E® C,E)Y ~Cy(E2;) ® (c,E)Y ® Cy(EZ;) ® (C4F)

where A' is a cellular approximation to the diagonal of Ezj and u and t are shuffle
and twist isomorphisms (with the usual signs). The Cartan formula and Adem
relations follow. For the former, the smash product of H_ ring spectra E and F is

an H, ring spectrum with structural maps the composites
S, E.ANE,
D;(EAF) ——L»DJ.EADJ.F —J d,garF,

and the product EAE » E of an H, ring spectrum is an H_, map; see I.3.4. For the
latter, we use the case j = k = p of the second diagram in the definition, I.3.1, of

an H  ring spectrum. The requisite algebra is done once and for all in [68].
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The Steenrod operations in H*(D"E) are computed in [Equiv. VIII §3], and the
Nishida relations follow by naturality. (See also II.5.5 and VIII §3 here.)

Since ¢, :H ( ) > H,E is the composite of the identification
ﬁ*(EO) = H,(Z EO) and the natural map e*:H*(szO) + HyE and since e’XmEO + E is an
H, map when E is an H_ ring spectrum, by I1.3.10, part (9) of the theorem is a
consequence of part (10). In turn, part (10) is an immediate comparison of
definitions in view of I1.2.2 and I.3.8. The essential point is that the isomorphism
DnEwX z E”Dwx induces the obvious identification on passage to cellular chains, by
{Equiv. VIII.2.9].

As promised, we have the following observation of Miller and MeClure.

Remark 1.2. Let X be a finite CW complex. By II.3.2, the dual F(X*,8) of X' is
an H ring spectrum with pth structural map the adjoint of the composite

DFm mhx-——+nwm ,S) Ax -&¢Ds~l+&

Here Ay is computed in II.5.8, ¢4 is the Kronecker product H*X @ WX + Z_, and

£ x 1s the identity in degree zero and is zero in positive degrees. For

ype H_qF(x*,s) = X, we find by a simple direct calculation that Q Sy = P8y

for all s > O. A more conceptual proof by direct comparison of MeClure's abstract

definitions of homology and cohomology operations is also possible; see VIII §3.

§2. Some calculations of the homology operations

For R a commutative ring, let HR be the spectrum representing ordinary
cohomology with coefficients in R. We wish to compute the operations on the
homology of HZP and some related spectra. We shall state our results here, but
shall present proofs of the computations for HZp in sections 5 and 6. Recall that

the mod p homology of HZ_ is Ay, the dual of the Steenrod algebra.

P
Notations 2.1. We shall adopt the notations of Milnor in our analysis of Ay [86].
Thus, at the prime 2, A, has algebra generators £s of degree 2.1 for 1 > 1. At cdd
primes, Ay has generators gy of degree 2pi~2 for 1 > 1 and generators t; of degree

2pi-1 for 1 > 0. We shall denocte the conjugation in Ay by x.
We have the following theorems.

Theorem 2.2. For p = 2, A, Is generated by g, as an algebra over the Dyer-lashof
algebra. In fact, for i > 1,



61

i
Q? "251 = xEy -

Moreover, ngl is nonzero for each s > O and, for i > 1,

s+2i-2 i
Q gl if s 20 or -1 mod 2
S -
QXEJ’.-
4] otherwise.

i
In particular, Q% xg; = xgq,; for i > O.

Theorem 2.3. For p > 2, Ay is generated by 1y as an algebra over the Dyer-Lashof
algebra. In fact, for i > 0

Qp(i)TO - (_1)1XTi and

g” M = 1ty

where p(i) = (pi-l)/(p—l). Moreover, SQSTO is nonzero for each s > O and,
for i > Q,

'(-1)18Q8+p(l)ro if s z -1 mod p-
stEi = ¢ (-1)1+1BQS+D(1)10 if 5z 0 mod p-
LO otherwise,
while
(—1)1+1QS+"(1)TO if 5 = 0 mod p*
S -
Q Xty =
0 otherwise.

i i
In particular, QP xg; = xgq4q for i > 0 and QF yr; = yr4, for i > O.

Thus, for p > 2, the operations on the higher degree generators are determined
by the operations on the generator of degree one. A complete determination of the
operations on this degree one generator does not seem feasible. However, we do have

a conceptual determination of these classes. For p > 2, let ¢ be the total g class
g=14+ gl + g2 + e
For p > 2, let t be the total 1 class

T =1+ LIRS B
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Since the component of these classes in degree zero is one, we may take arbitrary

powers of these classes.

Theorem 2.4. For p = 2 and s > O,
Qsil ={ 5-1384.1;

that is, ngl is the (s+l)-st coordinate of the inverse of the tctal ¢ class. For
p>2and s >0,
Q1 = (-1P(e M) gg(po1yey,  and

8%ty = (-1)%(e 7001y,

that is, QSTO is (-1)® times the (2s{p-1)+1)-st coordinate of the product of the
total 1 class and the inverse of the total g class, and BQSTO is (-1)® times the
{(2s{p-1))th coordinate of the inverse of the total ¢ class.

Here we are using the H_ ring structure on HZp derived in 1.3.6. In the
following corollaries, we consider comnective ring spectra E together with morphisms
of ring spectra i:E » HZp which induce monomorphisms on mod p homology. When E is

an H_ ring spectrum, 1 is an H_ ring map by I.3.6.

For p > 2, the homology of HZ or HZ(p) embeds as the subalgebra of Ay generated
by xg; and xt4 for i > 1. For p =2, the homology of HZ or HZ(Z) embeds as the
subalgebra of Ay, generated by 2 and xg. for i > 1.

% 51 Xl

Corollary 2.5. For p > 2, the homology of HZ or Hz(p) is generated by xgp end x1q
as an algebra over the Dyer-lashof algebra. For p = 2, the homology of HZ or Hz(z)
is generated by gi and xg, as an algebra over the Dyer-Lashof algebra.

Similarly, at the prime 2, the homology of k0O, the spectrum representing real
connective K-theory, embeds as the subalgebra of Ay generated by 5?, xgg and x&y
for 1 > 2. The homology of kU embeds as the subalgebra of Ay generated by
gi, ng and XE4 for i > 2.

Corollary 2.6. At the prime 2, the homology of kO is generated by g?, ng and x£ 3
as an algebra over the Dyer-Lashof algebra, while the homology of kU is generated by
gi and ng as an algebra over the Dyer-Lashof algebra.

Proof. By the Cartan formula,
)2

2 2 2
R R
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We have analogous results for the p-local Brown-Peterson spectrum BP. ILet
i:BP » HZp be the unique map of ring spectra. By the Cartan formula, if p = 2, or
by Theorem 2.4, if p > 2, iy embeds HyBP as a subalgebra of Ay which is closed under

the action of the Dyer-Lashof algebra.

Corollary 2.7. For p > 2, HyBP is generated by xg; as an algebra over the Dyer-
Lashof algebra. For p = 2, HyBP is generated by gi as an algebra over the Dyer-
Lashof algebra.

It is not lmown whether or not BP is an H_ ring spectrum. However, suppose
that E is a connective H_ ring spectrum and that f:E » BP has the property that
if:H » HZp induces a ring homomorphism on nge Then if g an H  ring map, so

that (if)y commutes with the operations. Since iy is a monomorphism, so does fy.

We shall also examine the operations on the homology of HZ . for n > 1. Let By
be the homology of HZ and let x ¢ HIHZ n pe the element dual topthe n-th Bockstein

operation on the fundamental cohomolog§ class (so that g x = -1). Then HyHZ . is

P
the truncated polynomial algebra

By = Belx1/(x%),

as an algebra over the dual Steenrod operations. Here the inclusion of By in HyHZ n
is induced by the natural map HZ » HZ n X maps to zero in the homology of HZp, ang
x is annihilated by the dual Steenrod operations.

Corollary 2.8. For p > 2, HyHZ , is generated by x and the elements y&;
b
and xtq of By as an algebra over the Dyer-Lashof algebra. For p = 2, HHZ n is
Y
generated by x and the elements gi and XEo of By as an algebara over the Dyer-Lashof
algebra. For p > 2, the element x is annihilated by all of the operations QF.
Proof. For the last assertion, note that st is an element of Byx for all s since

Q®x maps to zero in Ay. Since x is annihilated by the dusl Steenrod operations, the
Nishida relations reduce to

P,Qx = -1 (e, p" + sp - 1) - pr)Q° T,
and
P§BQSx = (-Dr, p" + slp - 1) - pr - 1)gQ° Tx

for p > 2. Sinee Byx is isomorphic to By as a module over the dual Steenrod
operations, and since no nontrivial element of By is annihilated by P§ for r > O,
and 8 if p > 2, Q% = 0 by induction.
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§3. Homology operations for H. ring spectra, n < =

Cohen, [28], by computing the equivariant homology of the space Cnﬁj) of J
little n-cubes, completed the theory of homology operations for n-fold loop spaces
begun by Araki and Kudo, Browder and Dyer and Lashof. Since an Hj ring spectrum
(ef. [1,841) E is defined by structure maps Crﬁj) o E(j) + E, we can use Cohen's

J

calculations to obtain analogous theorems for H, ring“spectra.

Theorem 3.1. For integers s there are operations Q® in the homology of H, ring
spectra. QSx is defined when 2s - degree(x) < n-1 [s - degree(x) < n-1] and the
operations satisfy properties (1)-(8) of Theorem 1.1 and the analogues of (9) and

(10) for n < =. Moreover, these operations are compatible as n increases.

The Browder operation, A is also defined for H, ring spectra.

n-1-

Theorem 3.2. There is a natural homomorphism An_leqE<® H.E + H

q+r+n—1E’ which

satisfies the following properties.

(1) If E is an H,q ring spectrum, A,_; is the zero homomorphism,

(2) aglx,y) = xy - (-1)%yx,

(3) ap1(6y) = (_1)qr+1+(n—1)(q+r+1)xn_1(y’x); Apoq(%,x) = 0if p =2,
(4) apq(1,x} = 0 =2, ;(x,1), where 1 ¢ HyE is the algebraic unit,

(5) The analog of the external and internal Cartan formulas hold:

Ao (X @®@y,x' @y = (XD g A (vyt)

+ (-1)|y!(|x'|+|y'|+n_1)kn_1(x,X') ®yy',

where |z| denotes the degree of z,

An_l(xy,x‘y') xxn_l(y,x')y'

(o [7lta=1fxr )y
n

+

_I(X,x')yy'

Jxt {H{n-1+]x]+|¥])

+

(-1) x'xxn_l(y,y')

(_l)|y|(n—1+|y'|)+|x'||y‘|k

+

1 1
n_1(x,y Yyx

{6) The Jacobi identity holds:

(_1)(q+n—l)(s+n-l)x (X,Xn_l(y,z)) . (_1)(r+n—1)(q+n-1)

nol An_l(y,xn_l(z,x))

+ (-1)(S+n'1)(r+n“1)xn_l(z,kn-l(x,y)? =0
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for x ¢ HqE, ¥e HE, 2 e HE; oy 1(x,A, 1(x,x)) = O for all x if p = 3.

(7) BpA L (,3) = T A (Px @ Pyy),
and s
-1
B, 1(5,3) = A, (Bx,y) + (-1 Xl A7 (%,85)

(8) )\n_I(X,QSy) = 0.
There is also a "top" operation, En1®

Theorem 3.3. There is a function & 1:HeE + Hoy(n_14q)(p-1)F [(HJE » H2q+n-1]
defined when g+n-1 is even [for all q], which is natural with respect to maps of Hy
ring spectra and satisfies the following properties. Here ad(x}{y) = r,_;(y,%),
adi(x)(y) = ad(x)(adi'l(x)(y)), and ¢, ;% is defined, for p > 2, by the formula
tn-1X = BEp_1X - adP-1(x)(px).

(1) If E is an Hy,y ring spectrum, ¢ .x = Q(n-l+q)/2x lEp1% = P-ltay,

hence g x = SQ(n'l+q)/2x for x ¢ HqE.

(2) 1If we let QP-1*a)/2y (P-1*%] genote £, 1%, then g, _;x satisfies
formulas (3)-(5) of Theorem 1.1, the external Cartan formula, the Adem relations,

and the following analogue of the internal Cartan formula:

£ () = ) Qiijy + 3 xlyjri. forn > 1,
i+j=s O<i+j<p J
0<i,j

where s = E:%i& [n-1+q], q = degree(xy), and rij is a function of x and y

specified in [28, III.1.3(2)]. In particular, if p = 2,

I dxdy v m (5,305

£ L {xy) =
o-1 i+j=s

Moreover, the Nishida relations for En-] are the usual ones plus an unstable error
term given by sums of Pontrjagin products which contain nontrivial iterated Browder
operations.

(3) Ay 3(x,Eq13) = adP(y)(x) and A _4(x,5,_1¥) = O.

(4} £ q{x +¥) = gy 4% *+ E,_1¥ + & sum of iterated Browder operations
specified in [28, IIX.1.3(5)].

In the remainder of this section we sketch the proofs of these theorems.

After replacing E by a CW spectrum and replacing Cn(j) by the geometric
realization of its total singular complex, we have that Clﬁj) & E{J), is a CW

spectrum, for any = C Zj’ with cellular chains naturally isomorphic to
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Cx Cpli) ® (C4EM (cf. (Equiv., VIII. 2.9]). With field coefficients, (C4E)

is equivariantly chain homotopy equivalent to (H*E)J, so we can apply Cohen's
calculations. We define Qix to be the image under the structure mep of e; ® xp,
where e; ¢ H; Crﬁp)/ﬂp is Cohen's class, Y c Zp the cyclic group of order p.
Define Q%x and £,_1% by the formula in $1. Since £ {2) is homotopy equivalent to
s 1, we can define A, l{x,y) to be the image under the structure map of

(_1)(n g+l 1 ®x @y, where 1 ¢ H, ; §,(2) is the fundamental class and x ¢ HE.

As noted by Cohen, Theorem 3.1 is a consequence of Theorem 3.3, with 3.3(1)
immediate from the definition. With the exception of those statements involving
Steenrod operations, all of the statements in Theorems 3.2 and 3.3 follow from
equalities between the images under the structure map y of the operad Cn of the
classes in the equivariant homology of the ¢ n(j) which induce the stipulated
operations. These equalities follow from Cohen's work. This leaves Theorem 3.2(7),
the Nishida relations, and the verification that ¢, 1% is the image under the
structure map of the appropriate multiple of e{n—l)(p—l) C)xp, this last giving the

definition of ,_1X which Cohen uses in deriving his formulas.

Since the Browder operation is defined nonequivariantly, Theorem 3.2(7) follows
from the Cartan formula for Steenrcd operations. The Nishida relations follow from
the computation of the Steenrod operations in H*D E {Equiv, VIII §3}, together
with the fact that the kernel of Hy( C, L E) p > HyD F consists of classes which
are carried to sums of Pontrjagin products of %he type sgated [28, III §5 and 12.3].

For the last statement, we calculate B(e(n—l)(p—l) ® xP). let ¢ be a cheain in
Cy Cn(p) which projects to a eycle in C*Crﬁlﬂ/wp representing €(n-1) (p-1) and let a
be a chain in the integral cellular chains of E, representing x mod p. let
=pb. Let N=1 + g + ees + &1 in Z[np], where o is a generator of e Then
a(aP) = prap-l,
so that

dle ® aP) = peN @baP ™t « (de) @ aP.

it

Since ¢ projects to a cycle mod p in Cy§ alP}/ny, the transfer homomorphism shows
that eN is a cyele mod p in C*C,ﬁp)- Thus, eN C)bap'1 gives rise to a sum of
Pontrjagin products of Browder operations in gx and x (28, III. 12.3], which, by the
space level calculation, must be the appropriate multiple of adp'l(x)(sx). Since
de projects to zero in the mod p chains of Cn(p)/np, and since aP is fixed under

the action of Tp, We can find & chain § such that

(de) ®@aP = sN@aP = s @ NaP = ps @ aP

for all a. By naturality and the space level result, § must project to a cyecle
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representing €(n-1){p-1)-1 in H*(Czﬁp)/np), so that ¢ @ a®? reduces mod p to a
representative of €(n-1)(p-1) ® xF.

§4. The Splitting Theorems

We present simple necessary and sufficient conditions for a more general class
of spectra than previously mentioned to split as wedges of p-loecal Eilenberg-Maclane
spectra or as wedges of suspensions of BP. The spectra we consider are pseudo Hn
ring spectra, defined as in Definition 1I.6.6, but with [ﬁquE replaced by
Cn(J) KEj qu )(J), with n > 2.

Fix a pseudo Hn ring spectrum E = Tel E and assume that nyE is of finite type

over mgE and that nyE = WOE for q sufflclently large. let i:E » HZp be such that

ie:s0 » HZp is the unit of HZp and regard i as an element of HO(E ); under our

hypotheses i will be unique. Let Z(p) be the integers localized at D.

Theorem 4.1. If wyE = Zp, then E splits as a wedge of suspensions of HZp.

and if p = 2 and Sq3i #0orp>2
s >1, and HZ(p).

Theorem 4.2. If myE = 2 ps T2 1, or mukE = Z(p)

and spli # 0, then E splgts as a wedge of suspensions of HZ ,
P
Theorem 4.3. letn > 3. If “OE = Z( ) and H,(E;Z p)) is torsion free and if p =
and Sq i#0o0rp>2and Pll # 0, then E splits as a wedge of suspensions of the p-
local Brown-Peterson spectrum BP.

Remarks 4.4. The variocus known splittings of Thom specira are direct consequences
of these theorems. Obviously the splitting of MO and the other Thom spectra of
unoriented cobordism theories follow from Theorem 4.1. When wOMG = Z{p), the mod p
Thom isomorphism commutes with the Bockstein. At 2, the splittings of MSO and of
the Thom spectra into which MSO maps follow from Theorem 4.2 and the facts that Sq~i
is the image of w, under the Thom isomorphism and that Sqlw2 = Wj in H'BSO. The BP
splittings of MU at all primes and of MSO and MSU at odd primes follow from Theorem
4.3 and similar trivial calculations. Most strikingly perhaps, the splitting of MSF
at odd primes follows trivially from Theorem 4.2. Indeed, Pli is nonzero by
consideration of the first Wu class in MSO. Since the p-component of 7S = quF =

q
nq+lBSF is Zp for q = 2p-3 and zero for 0 < q < 2p-3,

Zp for q = 2p-2
Hq(BSF;Z(p)) =
0 for 0 < q < 2p-2.

Thus, H2p_2(BSF;Zp) = Z_, and the Bockstein

p)
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B:Hy, 1 (BSF;2,) » Hyo 5(BSF;Z;)

is an epimorphism. Thus, the dual cohomology Bockstein is a monomorphism.
We turn to the proof of the splitting theorems. Define

HZ [x,x-ll = \/ EquZ R
P qeZ P
where d = 1 if p =2 and d = 2 if p > 2. As pointed out in I.4.5 and II.1l.3,
HZp[x,x'll is an H, ring spectrum. We think of it as the Laurent series spectrum on
HZp.
Let & C H*(HZp{x,x_ll) be the homology of the zero-th wedge summand HZp.
Since HZP is a sub-H_  ring spectrum of Hzp{x,x‘ll, we know the operations on Ag.
Moreover, if x ¢ HdHZp
the homology of HZp[x,x'll is isomorphic as an algebra over the dual Steenrod

operations to A*[x,x'l],

{x,x'll comes from the canonical generator of HdEdHZ , then

the ring of Laurent polynomials in x over Ay. We could
easily calculate the operations on the powers, x", of x by use of the techniques of
the next section. However, remarkably, we shall only need the p-th power operation

on x. We should remark that multiplication by x,
Hyz99HZ, > H*zdm"l)ﬂzp,

is the homology suspension.

lemma 4.7. In A*{x,x‘ll, for p>2, i > 0 and q an integer

i 2
Pa+p Pqy . rpa
Q (Xgi e X7 = X€i+l ¢ X »
hence
2 i+l 2 3
+
QP q+p (Xgip e A D XE€+1 - S
For p> 2, 1 > 0 and q an integer,
i 2
q+p . «Pdy o . P a
QP (XTi x) XTyq X

Proof. The internal Cartan formula, together with the degree of xf; and of xP4
gives s s :

a+p” pq * Pq -1 pa+l_pq
PP (xg e P = (@ xg (@Y + @ e (P

2
By the Cartan formula, QP3*1xP1 = o, of course, QP%P2 = "9 (Theorem 1.2.(4)).
The first statement follows from Theorem 2.2 or Theorem 2.3 and the fact

2
A C A*[x,x'l} is a subalgebra over the Dyer-lashof algebra. Since xgip . x4 =
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(xgi . qu)p, the second statement now follows by the Cartan formula. The proof of
the third statement is almost identical to the proof of the first.

It should be noted that the full strength of Theorems 2.2 and 2.3 is quite
unnecessary for the computations above. They could be derived quite simply and
directly. We shall apply these computations to the proofs of the splitting theorems
by means of the following commutative diagram, analogous to that of 1I.6.8.

dq. ()
1l x x % s
: dap 0§) " " " g . dq (3)
Cali) 5 (295 €. () x Y
s . 5
Ja.
. LY, .
p4ag, ig - 53 Ay
Ja 1Y

Here, i_, is the restriction of 1:E » HZ_ to Es' the right-hand map gj is the induced

8 Y
H, ring structure of HZp[x,x_ll restricted to the {dq)-th wedge summand. The

commutativity of the diagram is an easy cohomology calculation provided tht E_ » Eg

q
induces an isomorphism of =y for s > q.
The key step in the proofs of Theorems 4.1, 4.2 and 4.3 is the following

result.

Proposition 4.8. let E = Tel Eq satisfy the hypotheses of Theorem 4.1, 4.2 or 4.3.
For the first two cases, let j:E » HnoE be such that je:S » HmgE is the unit. In
the third case, let j:E + BP be a 1ift of j above to BP. Then j induces a
monomorphism of p-primary cohomology.

Proof. We shall show that j induces an epimorphism of p-primary homology. Recall

that i is the projection of j above into HZ In the second case, if nnE = Z . for

r > 1, the nontriviality of the r-th Boekstzin operation on 1 shows that the
generator x ¢ HyHZ . = B*[x]/(xg) is in the image of jy. {Here By = H*HZ(p).)
Thus, for the secohd case as a whole, it suffices to show that By C Ay is in the
image of iy. Similarly, for the third case, it suffices to show that HyBP C Ay is
in the image of iy. The hypotheses of the theorems give us the following conclu-

sions. In Theorem 4.1, the nontriviality of the Bockstein operation on i, for g

q)
sufficiently large, shows that 19, f p> 2, or gy, if p = 2, is in the image of

igx- In Theorem 4.2, the nontriviality of P!i and gP'i, for p > 2, or of Sq%i and
Sq3

or gy and xg, for p = 2, are in the image of 1

i, for p = 2, shows that for q sufficiently large, X1 and XT1s for p > 2,

q** In Theorem 4.3, the nontriviality

of Pli, for p > 2, or of qui, for p = 2, shows that for q sufficiently large, XE1»
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for p > 2 or gi, for p = 2, is in the image of i Thus, the following con-

q¥*
sequences of Lemma 4.7 and the diagram preceding the statement will suffice.

(1) Ifp=2or if p>2andn > 3 and if x§; is in the image of idpq*' then

£ is in the image of i .
X i+l g dp2q*
{2) If p > 2 and xt4 is in the image of idpq*) then xt4,;7 is in the image of
i .
dp2q¥
2 . . . 2 e
{(3) Ifp=2,n>3, and xg; 1s in the imge of i4q%, then xg7,, is in the
imge of 18q*'

The conditions on n are just enough to ensure that He( (¢ (p) wy Equq) contains

preimages of the operations needed to carry ocut the argument.

The passage from the proposition above to the splitting theorems is well known
and has been exploited in the literature to prove the splittings of the cobordism
theories. Theorems 4.1 and 4.3 follow from the algebraic splitting theorem of
Milnor and Moore [87] together with standard properties of HZp and BP. For Theorem
4.2, H*E splits as a direct sum of suspensions of A/AB and of A as a module over the
Steenrcd algbra A. However, the E2 term of the Bockstein spectral sequence of H*E
is spanned by the A-module generators of the summands isomorphic to A/Ag. By
pairing up these generators with respect to their higher order Bocksteins, we may
construct a map of E into a wedge of p-local eyclic Eilenberg-MacLane spectra which
induces an isomorphism on mod p cohomology. In all cases, the hypothesis on “OE

ensures that § is p-loecal, and the cohomology isomorphisms yield eguivalences.

§5. Proof of Theorem 2.4; Some low-dimensional calculations

We shall exploit the following observation of Liuleviecius.

Proposition 5.1. let C = Zzix,x'll be the aslgebra over the Steenrcd algebra A which
is obtained by inverting the polynomial generator of H'RP®. Let Cx be the dual of
C, with a generator ey in degree t. Let ft:C* + Ay be the unique nontrivial
morphism of Ay comodules of degree -t {(i.e., fyey = 1). Then fie, is the component
of the t-th power of the total & class in degree n-t:

fyen = (g% 4.

~
Proof. ILet A:C » C ® Ay be the dual of the module structure of Cyx over the dual
operations. Recall that for c ¢ C and a ¢ A, if Ac = z c; ® oy, then

ac = 2 <a,a;>cy. Here < , >:AQ@ Ay » Z is the Kronecker product. In particular,
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if ax¥ = e a;, then fie, = a

N’ for a ¢ A,

*
<a,f,e > = <f,a,e >
[ A Y t77n

t
= <ax ,e_>
n
n
= <<z >y e >
2% ’n

= <a:an>;

since <xn,en> = 1, However, i is an algebra map, and Milnor has shown that

IR - TP B - SCIN
i i > 1
Thus

We also have an odd primary analogue.

Proposition 5.2. For p > 2, let C be the A-algebra cbtained by inverting the poly-
nomial generator in the cohomology of the lens space L*. Thus, C is the tensor
product of an exterior algebra on a generator x of degree one and an inverted poly-
nomial algebra on y = 8x. Let Oy be the dual of C and let ey, « Cy be dual to yn
and let ey, .1 £ Cy be dual to wh. let fi:Cx + Ay be the Ay comodule map such that
fieg = 1.

{1) If t = 2s, then fie, is (~-1)® times the (n-1)-th component of the s-th
power of the total £ class:

_ n, s
rie = (DR L.

(2) If t = 2s+l, then fie, is the (n-t)-th component of the product of the
total t class with the s-th power of the total £ class:

fie, = (gst)n—t‘

Proof. Let z; € C be the dual of €;. Suppose that Az, = ) zi<® oy The sign
convention here is that for a e A,

az, = § (-1)1(1-t)<a,ai>zi .

t
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(1)nin-t)

A eimilar argument to that when p = 2 shows that fie, = o,. Here, Milnor's

calculations are that

i
7&X=X®1+.2 N ®(r)2i_1 and
iz 1
we v e, , -
i1
Thus
s i s
AWo= D v, and
i>s 2i-2s
My® = 3z @ (5%, .
15 2841 * i-2s-1

In the remainder of this section and in the next, we shall need to evaluate

binomial coefficients mod p. The standard technique is the following.

Lemma 5.3. let a = J aipi and b = bipi be the p-adic expansions of
a and b. Then (a,b) = O mod p unless a; +b ; <p for all 1, when
(a,b) = ]TT(ai»bi) mod p.
i
Moreover, for a < pn -1,

{a,p? = 1 - a) = (-1)® mod p.
We shall not bother to quote the first statment, but shall use it implieitly.
The following proposition is the key step in proving Theorem 2.4.

Proposition 5.4. For p = 2, the map f:Cy + Ay given by
s

Qn€1 forn >0
& forn=20
fe = £
n
1 for n = -1
0 otherwise

\

is a map of Ay coalgebras. For p > 2, the map f:Cx + Ay given by

.

(-1)°0%, if n = 2s(p-1)

(-1)°%8Q%, if n = 2s{p-1)-1
fe, = § -15 forn =0

1 for n = -1

{ O otherwise
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is a map of Ay coalgebras. Thus, in either case, the map f coincides with the map

f_, described sbove.

Proof. Of course f:Cx + Ay is a map of Ay comodules if and only if £¥:A 5 Cis a
map of A-modules. But this latter condition is equivalent tokthe statement that fy
commutes with the action of the dual Steenrod operations PE for k > 0 and also

commutes with the Bockstein g when p > 2

For p > 2, Bess T 5.9 and B1g = -1. {We have adopted the covention that for
v e HY and x ¢ Hq+1X, <X, Bx> = (-1}Qfl<sy,x>.) Moreover, the subspace of Cy
spanned by ©25(p-1) and €2s(p-1)-1 for s an integer is a direct summand of Cy as a
module over the dual Steenrod operations. We have gpecified that f = O on the
complementary summand. Thus, for p > 2, it will suffice to show that the dual
Steenrod operations in Cy agree under f with the Nighida relations on the pertinent

homology operations on E] OT 14

For symmetry, we shall write y for the polynomial generator of C when p = 2.

For p > 2, the computation is divided into three cases, First, those e; which are

k
carried by Pg to an element of positive degree, second, those which have image in

degree zero, and third, those which have image in degree -1.

In the first case, we show that for p = 2 and 2K < s,

k
Pi ey = (2k,s—2k+l)e X’
s~2
and that for p > 2 and pk < s,
k
P C2a(p-1) 8- - e .
2(s-p ) (p-1)
let d = 1 when p = 2 and let d = 2 when p > 2. Then the statements above reduce to
k
Pf Cas(p-1) ° (pk,s(p—l} - pk+l)e X
d{s-p )} {p-1)

for p > 2. However, since C was obtained from the cohomology of RP® or L,

y for r = 0
Pry = yp for r = 1
0 otherwise

Thus, for n > 0, Py® = (r,n-r)y™'T{(P-1) yy the Cartan formula. Our claim follows
from the caleulation
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k k
= <pP yd(S-p ) (p-1)

k k
d{s~p ) {p-1) _p
< Py eds(p—l)> B

as(p-1)"

1

= (p5,s(p-1) -p51).

For p > 2 and s > pk, we have similarly that

k

P I < 1y K1
Py €28(p-1)-1 {p,s{p-1) - p lle

2(s-p¥)(p-1) - 1
Here, P'x = 0 for r > 0, so that

k

k
s{p-1)-p (p-1)}~1 _p _ .k k+l
<Xy Py eZs(p—l)—1> (p,s(p-1) - p 1.
On the other hand, the Nishida relations give us, for s > p¥,
k k
2.8 _ k m k+1, .8-2
Py Q g = (27,27 +s-2 )Q £y
for p =2, and, for p > 2,
k X
PP Q%r, = -(p%,0" + s(p-1) - p 1P
e K ) k . m k+1 -2 X
Py 8%, = —(p", 0" ¢ sp - 1) - - 1gaS P g

Here, the initial -1 is cancelled by the conventions in the definition of f, and the
additional high power of p in the right-hand side does not alter the binomial
coefficients unless the right-hand side would otherwise be negative. Thus, we must
check that for s > p, if s(p-1) < p*1, then (p¥,p" + s(p-1) - p**?) and

(pk,pm + 8(p-1) - pk*l k+1

=1 +Dp+ see+ pk. But since pk < s, we have s = pk +t with 0 < t < p(k). Thus,

-~ 1) are zero. Since s(p-1) <p -~ 1, we have s < p(k+l)

s{p-1) = pk(p-l) + 4y, with 0 < % < pk. Thus, the specified coefficients are zero.
k
It remains to check those operations Pg whose images have degree 0 or -1 in

Cy. However, e may not be in the image of any P; , as P'1 = O for r > 0.
PyQ'g; and P,Q"1, are zero by the Nishida relations. (Qq kills & or t;.)
For the remaining case, we shall show that for p = 2,

k
2 -
Py e2k—l e,
and for p > 2,
pk
Py e X = -e .
2p (p-1)-1

To do this, we must compute the Steenrod operations on y'l when p = 2 and on xy'l
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when p > 2. For p>2 and r > O,

1 1

0=pP(yH = %0y + ety

i

)

yPry-l . yppr-ly—l

by the Cartan formula. Thus, Pry-l = —yp—lPr_ly'l, so that
pry-1 :(_1)ryr(p~1)-1 ,

by induction. For p > 2, since P'x = 0 for r > 0,

Pr(xy-l) = (‘l)rxyr(p-l)-l_

Thus, for p = 2,

and for p > 2

k k
> = (1P P (p-l)_l,e > = -1.

-1 k
<xy " ,PP e .
2p (p-1)~1

2pk(p~1)-l

The following lemms will complete the proof.

Lemma 5.5. For p = 2,

For p > 2,
P8ty = (-1)571,

Proof. For p = 2, the Nishida relations reduce to
+1 0.1
Py Q% = (s-1,2"-8)Q Py, = 1,

by Lemma 4.3. For p > 2, the Nishida relations reduce to

—(s—l,pn—s)QOPgBr

H

8 .8
PxBQ g 0

- (_1)s—1

by Lemma 4.3, since Bty = -l.
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Proof of Theorem 2.4. For p = 2 and s > O, the fact that

Q% = (e hgn
follows immediately from Propositions 5.1 and 5.4. For p > 2 and s > O, the fact
that

s

Q%ry = (1% M) and

2s(p-1)+1

s s, -1
BQ T (-1) (¢ T)2s(p—1)

follows immediately from Proposition 5.2 and 5.4. However, all of the even degree
coordinates of g'lr come from 5'1. Thus,
] _ s, -1
8Q T = (-1)7( )25(p~l)
One can identify certain algorithms such as the following curiosity when
p=2:
. i-1 .
i 2 -1 i.
j -j-1
P = L@@ )
J=1
Thus, the actual computations can get quite ugly. We have the following low-
dimensional computations of ngl for p = 2. In the next section we shall show that
QZt'lgl = (Qt"lgl)z. Thus, we shall only list tagl. We shall write
XEi = B3 for i > 1.



QZtgl for 0 < t <15, where p = 2:

77

10

12

14

16

18

20

22

24

26

28

30

8184 + 8283 + 81 8283 + B
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§6. Proofs of Theorems 2.2 and 2.3

We shall compute the operations on H*HZp = Ax. The elements oka* are Com-
pletely determined by the effect of the dual Steenrod operations Pg for k > O,
along with the Bockstein operation if p > 2. Thus, our computations will be based

on induction arguments using the Nishida relations.

Theorems 2.2 is the composite of Lemma 5.5 and Propsitions 6.4 and 6.7.
Theorem 2.3 is the composite of Lemma 5.5, Propositions 6.4, 6.7 and 6.9, and
Corolliary 6.5,

We begin by recalling some basic facts about the dual Steenrod operations

in Ag.

lemma 6.1. The following equalities hold in Ay. For p > 2 and i > O,

k
p -
i “XE5_x if r = plk)
P*Xgl =
0 otherwise
kK
{Recall that plk) = %TT" .) Forp>2andi20,

P:xri =0 forr >0,
and

BXTs

i = XEy o

1

Here, £ is identified with the unit, 1, of A4.

Remarks 6.2. Notice that the added high power of p in the right-hend side of the
binomial coefficients in the Nishida relations allows us to make the following

simplification. For p > 2,

X . k
PP o = 7 (M p® - pi,stp-1) — p1)S P Bl L
i
For p > 2,
k s - i+l k s—pk+i i
PP 8Q® = § (-1)*"H(p" - pi,s(p-1) + pi - 1)gQ Py
i
. i*1, k s-pi+i_i
+ ) (1) (p - pi - 1,s(p~1) + pi)Q Py8 .
i

One of the key observations in our calculations is the following.
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Lemma 6.3. (The p-th power lemma). For p = 2 and s > 1,

Q2S-151 = (Qs—151)2 .

For p > 2 and &8 > O,

BQPSTO (BQSTo)p-

Proof. We argue by induction on s. We shall show that both sides of the proposed

equalities agree under Pg for X > O and under 8 when p > 2. Of course, g is no
problem, and both sides of both equations vanish under Pi. For the right hand
side, this follows from the Cartan formula. For the left-hand side, the Nishida
relations give

PiQs = (s - l)Qs"1 , and for p > 2

PreQ° = sga®t - 0% .

k
Thus, we may restrict attention to PP for k > 0. If s = P&}, lemma 5.5 god the

Cartan formula show that both sides of the equations are carried to 1 by PP

Thus, the lemma is true for p=2and s = 2, and for p > 2 and 8 = 1. In the

remaining cases, k > 0 and s > pk'l. Here for p = 2,

k k
Pi Q2s—1El - (2k,2s-1)st'2 —1El ,
while
k k-1
2 s-1 2 2 s-1 2
Py {Q l) = (Py Q cl)
k-1
= (251 s01) (052 '151}2
k
- (2k"1,s-1)Q23-2 -1El ,

by the Cartan formula, the Nishida relations and induction. For p > 2,

k-1 5 .p
(P 8Q°ty)

k
S
P} (8Q°)P

k-1
-0 s(p-1) - 18P 1P

k-1 e-pX
-(p 7 ,s(p-1) - 1T o,

by the Cartan formula, the Nishida relations and induction. The conclusion follows
easily from Lemma 5.3.
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We can now evaluate certain of the operations.

Proposition 6.4, For p = 2 and i > 1,
For p> 2 and 1 > O,

i
. . _p-l
(Again (i) o1 .)

Proof. We argue by induction on i. Again it will be suffiecient to show that both
k
gides of the equations agree under PE for k > 0. For p = 2,

k 1 i k
27 27-2 k i 27-2-2
Py Q g, = (27,27-2)Q £y -
PRI
For 0 < k¥ < i, the binomial coefficient is zero, while for k > i, Q &, = 0
for dimensional reasons. Thus, the only nontrivial operation is
i i
1.27-2_ _ 2°-3
P*Q €1 - Q 51 *

i
For 1 = 2, Q2 ’Bgl = ngl = gi. Since g1 = Xx&p, the proposition is true for
i =2 by Lemma 6.1. For i > 2,

= (Xgi—l) 3

by the p-th power lemma and Induction. ILemma 6.1 is again sufficient. For p > 2,
let i = 1. Then
Pian(l}w

1.1
o~ PLBQ Ty T 1

by lemma 5.5. Thus, SerO = -xgy. For i > 1,

k .
Pf SQp(l)t

k
= -(p5,p(5)(p-1) - 1ge? P o

0

. . k
-(pk,p1-2)er(l)-p T

O!

by the p-th power lemma and induction. The result follows from lLemma 6.1.
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Corollary 6.5. For p > 2 and i > O,

o(i) - (.11
Q T4 (~1) XTy e
Proof. We have just shown that Qp(i)ro and (-l)ixri have the same Bockstein.
However, X X
PP P = Lo e (i) (o1 P

. k
-(pk,pi-l)Qp(l)~p N

o *

. . k
For k < i, (p¥,pt-1) = 0, while for k > 1, Qp(l)-p 1, = 0 for dimensional

reasons. The result follows from lemma 6.1.

We wish now to compute the operations on the higher degree generators. By the
Nishida relations and Lemma 6.1,
k S k s-pk
PY Q%xey = -(0%,8(p-100%F x,
J

k.
Spel) Py,
i-§

CAS

o 7 19T R - pot),sp-1) + ppli))Q

J1
and for p > 2,
k k k
PE Bstri = -(pk,s(p—l) - 1)ge5P Xty - (pk-l,s(p-l))Qs-p XE;
j+l, k S—pk+p(j) pj
+ 7 (=1)° T(p" - pplJ) - 1,si{p-1) + pp(J))Q (—xgi_j).
331

However, we may simplify this expression considerably.

lemma 6.6, For p > 2 and i > O,

X

k X
P Q%xey = -(0%,8(p-100°P xg, - (0 - p,s(p-1) ¢ QS

Xy -
Forp>2and i>0,

X K X
B2 8%, = ~(0%,s(p-1) - 18P yr, - (05-1,800-100%F xg; -

Moreover, the following additional simplifications hold for particular values
of s. Forp>2, s#0mod pand k>0,

k S k s-pk
P} 8%, = -(p",s(p-1) - 1)80°F yr,
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For p > 2, 8 £ -1 mod p2 and k > 1,

pk 8 k s—-pk
Py Q XE; = -{p7,s{p-11)Q XEq -

Proof. The assertion is true for k = 0 or k = 1 because of the left-hand term of

the binomial coefficients. We shall assume k > 1. If s £ -1 mod p and j > O, then

s - pk + p(j) 2 -1 mod p. By the Cartan formula (or Theorem 1.2(5) if i = j),
k .
&P +p(J)X

1]
|
ju}

X
gg_j =0. If sZ-1mdp, p>2, k>0and j >0, p¥ - pp(J) - 1 =

mod p, while s(p-1) + po{j) # O mod p. Thus,
k . .
(p~ - pold) -1, s{p-1) + plj)) = 0.

For s = -1 mod p, but s £ -1 mod p2 {here p > 2), s = tp-1 mod p2 for 0 < t < p.
Thus

s{p-1) + pp(j) = (p-t)p+l mod p2,
while

Pk - ppl(j) = (p-1)p mod p2.
Thus,

(X - polj),slp-1) * pe(j)) = O.

It suffices to assume s = -1 mod p2. Here, for j > 1 {and kX > 1},

8 - pk + p(j) = p mod p2 .

By the Cartan formula (or Theorem 1.2(5) if i = j),

kK .03
Q5P +D(J)x£§_j = Q.

Proposition 6.7. Forp =2, 1> 0 and s > O,

i .
Qs+2 —2£1 if 8 =2 0 or -1 mod 2+
S -
Qxg, =
0 otherwise .
For p> 2, i >0 and s > O,
(-l)lﬁQS+p(l)rO if s =-1mod p
Sxgg = § (-1 i § 2 0 mod pt

0 otherwise .
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Proof. We argue by induction on s and i. For p = 2, the assertion is trivial for
i=1. Forp>2, and 0 <s < pi—l the assertion holds by dimensional reasons and
the p-th powerklemma. Of course, we shall show that both sides of the equations
agree under Pg for kX > 0 and under 8 when p > 2. Clearly both sides agree

under PL, and when p > 2, Lemma 6.1 implies that 8%, = 0 for all 1 and s by
k
induction and the Nishida relations. Thus, it suffices to check PE for k > O.

Case 1. s = O mod p, but s Z 0 mod pi.
By the preceding lemma,

k s k g K
PE Q X&;= -(p ,s(p-1))Q P XE;

k . .
By induction Qs-p xgi = 0 unless s - pk = 0 mod p*. Since s # 0 mod pl, this means
k <iand s = pk mod pi. Here (pk,s(p—l)) = (pk,pk(p—l)) = 0, Thus stgi = 0.

Case 2. s =z 0 mod pi.

Again

X s k S X
Py Qg = -(0%,s(p-1000F xe,

0 ifk<iorp > s

(-l)l(pk,s(p—l))BQS_p+p(l)ro if s > pk > Pl; p>2
k

&y

]

k s+t -2-2

(27,8)Q if s > 2k >

v
N
-
Lol
n
[aS]

by induction. On the other hand,

K sep(d) X i s+pli)-p*
PP 8Q 1y = -(p7,s(p-1) + p” - 2)8Q 5 fp>2,

and
k i . i k
Py 0% P = (2N et - 20057 R if p = 2.
Since s = 0 mod pi,
0 for 1 <k <1

(pk,s(p—l) + pi -2) =

\4
[

(pk,s(p-l)) for k >

k ;
It suffiﬁes tg show that PE BQS+Q(1)TO =0 fors < pk < g + p(i), when p > 2, and

that P2 Q' '251 =0 fors < 2¥ < g+212. These inequalities imply that

s = pk, so that (pk,s(p-l)) = 0.
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Case 3. 8 £ 0 or -1 mod p.

Again,
k s k s~ X
P} Qg = ~(p,s(p-1)0°P g, = 0

by induction.

Case 4. s = -1 mod pi
Here,
X k k-1
s k ~ +1 -
P Q% = -5, s(0-100 P g, - 0Fp,s(p-1) + p)(@ST/RIE e P
by Lemma 6.6 and the Cartan formula.
s+l k-1 k-1 i-1

H

k
For 1 <k <1, QP yg; = 0 by induction. Since T - P

1
Xgi-l =0 forl <k<i. Fork=1«<1i,

~D mod p N

Q<<s+1)/p>-pk'

(—l)i(BQ((S+1)/p)—l+p(i_l)ro)p - (_l)iBQs-p+p(i)To for p > 2

PEstgi =

i-1 i
(gl{s+1)/2)-1%2 —251)2 - g5*? "451 for p = 2

by induction and the p-th power lemma. On the other hand, for pE < s+ pli) and
P>2, X . ) K
PP 0™ e = L(p¥,s(p-1) v o - 2080% PP
and for p = 2 and 2¥ < s 212,

2 gl

. i, .k
2 g ‘, - (2K sral_p)gSt2 22

1t
Since s & -1 mod pi, the right-hand side of the binomial coefficient is congruent to
pt -p -1 mod pi. Thus, if 1 < k < i, the coefficient is zero and if k = 1, the
coefficient is -1.

k i

For 8 >p> >p-and 1 > 1,

- 15, s(p-1)) + (p%-p,s(p-1)+p](-1) 150 for p > 2

S*‘o(i)~PkT
o* s °
P* Q XEi =

k i
- -2
5-27+2 £

[(25,6) + (2%-2,8+2)10Q for p = 2,

1

by induction and the p-th power lemma. Thus, for these values of k, it suffices to
check that
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(p%,s(p-1)) + (p¥ - p,s(p-1) + p) = (p¥,s(p-1) + pi - 2)

which the reader may verify (or c.f. [101, p.54]).

Forp>2,1i=1o2and s > pk,

x s k s+1- X
Ph Q°xgp = ~(p%,8(p-1))(-60°" 1P 1)
by induction, while
X sr1-p

PP 8%, = -(p", (s41) (p-1))8Q T

and the binomial coefficients here are equal.

’

For s < p& < s+pli), when p > 2, or for s < 2k <8+ 21—2, when p =2,

calculation shows that s = pk—l. Here

k k R . .
P peP TP o (¥ pE(p-1) v piptTlo1))eP P e

K ko o1 . i
I

Py

1

Since k > i > 1, the binomial coefficient is zero.

Hi

Case 5. s & -1 mod p, but s Z -1 mod p2, i>1eand k> 1.

Here, X

k
P) Qg = ~(p%,8(p-1000°P xi,

k
by Lemma 6.6. But s-pk £ -1 mod p2, so that Q°°P XEy = 0.

2 i

Case 6. s = -1 mod p

k=1and i>1.

Here,

k k
P %y = -(0%,s(0-100P g, - (pF-p,s(p-1)4p)(Q

Now s - p¥ = -1 mod pt if and only if E%L - pk—1 = 0 med p1°1.
k-1

X
1 etther Q5P yg; ana (! (S*H/RIPT L yP

s+l g
5 # O mod p i

((s+1)/p}-pk-

for p

for p

1

1

2

, but 8 £ -1 mod p~; or s = -1 mod p but s £ -1 mod p°,

Xgi-l

Since

P

simple

are both zero or
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they are both equal to the appropriate operation on 19 if p>» 2 or & if p=2. In

the latier case, the coefficients cancel as X < i and s = pk-l mod pi.

Lemms 6.8, For p > 2, 1 > 0 and s > O,

i+1 s+p(i)T

stii = {-1)7 78Q if s 20 mod p-

Hi

0
S -
8Q Xty =
0 otherwise .
Proof. We argue by induction on s and i. The lemma is trivial for i = 1 or for
0 <8< pi. Ag%in, both sides agree under 8 and Pi. We shall show that both sides

agree under PE for k > O.
Case 1: s = 0 mod p.

k
Here Q5P Xty = Q8P x&. by induction. By lemma 6.6,

i

k 8
P 8%,

i

k k S K
-UpS,s(p-1) - 1) + (° - 1,8(p-1)1°P xz,

k S k
= -(p",s(p-1)0%7P xe,

K s
= Pg Q XE; -+

Therefore, BQSxTi = QSXEi-

Case 2. s # O mod p.

Here, by lemma 6.6,
K S k S= X
P 8Q%t; = -(p%,s(p-1) - 1" P 1, ,

k
but gQS~P xty = 0 by induction.

Proposition 6.9. For p > 2, s > 0and 1 > 0,

(-1)i+lQS+p(i)tO if s = 0 mod pl

0 otherwise.

Proof. We have shown that both sides of the prospective equation agree under the
Bockstein. By Lemma 6.1,

K s k s—pk
P} Q¥xr; = -(p,s(p-1)0% Py, .
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k
For fixed i, we argue by induction on s that PE agree on both sides of the

prospective equation. Again the assertion is a triviality for i = 0, for k = O, or
for 0 < s < pi.

Case 1: s # 0 mod p.

Here, Q%P xt; = 0 Dby induction.

Case 2: s = O mod p but s £ 0 mod pi.
. : g-p< . k i
By induction, Q5P T4 = O unless k < i and s = p~ mod p~. Here

(p5,s(p-1)) = (p%,pK(p-1)) = 0.

Case 3: s = 0 mod pi.

k
Here QP 1; = 0 by induction for k < i. Again by induction,

X o k i+l s-pk+p(i)
Py Q%xty = -(p,s(p-1))(-1)7"7Q T

for 1 <k < s. We have

K srp(i) k i s-pFep(i)
Pp QP e = (0% ,s(p-1) + pt - 1S TP

Since s = 0 mod pi,

0 for 0 <k < i
(p5,8(p-1) + pt - 1) =
(pk,s(p—l)) for k > i,

For s < pk < s+p(i), s = pk and

k )

o

k
p s+p(i) k
P* Q TO _(p ;p

i}

(p-1)10° 1t

n
o



CHAPTER IV

THE HOMOTOPY THEORY OF H_ RING SPECTRA

by Robert R. Bruner

Around 1960, Liulevieius [55] and Novikov [91] introduced Steenrod operations
into the cohomology of cocommutative Hopf algebras, in particular the E, term of the
Adams spectral sequence converging to the p-component of u*SO. During the 1960's,
Barratt and Mehowald (unpublished) studied the quadratic construction, using it to
construct homotopy operations and to derive relations in homotopy. Toda [106]
studied the mod p analog, the extended pth power construction, and used it to derive
relations in the odd primary components of n*SO. Early in the study of the
quadratic construction, it was conjectured that the quadratic construction could be
used to provide maps representing Steenrod operations. This was proved by D. S.
Kahn [45]. He also showed that this determined some differentials in the Adams
spectral sequence and related the homotopy operations to Steenrod operations.
Milgram [81] reformulated Kahn's work in a form which generalizes to the mod p case,
this formulation being exactly analogous to the reformulation necessary to define
mod p Steenrod operations. He also showed how to derive many more differentials
from the geometric construction of the Steenrod operations in the Adams spectral
sequence. In particular, he showed that the Hopf invariant one differentials follow
in this way. Milgram's work was confined to a range in which it is possible to act
as if one were operating on a permanent cycle. At about the same time, Makinen
[62], working at the prime 2, showed how to account for the fact that one may not be

operating on a permanent cycle.

In order to construct the Steenrod operations geometrically, a map from an
extended power of a sphere to the pth power of that sphere is needed. Kahn, Milgram
and Makinen obtained such maps by using coreductions of the extended powers of
spheres. As usual when studying stable phenomena on the space level, such coreduc-
tions exist only in a range of dimensions, but, by suspending everything an appro-
priate number of times, that range can be made arbitrarily large. This makes it
appear that we should be working with spectra. To do this, however, extended powers
of spectra are required. With this motivation and others, May [72] showed how to
construct them. In place of a coreduction, this allows us to use the structure map
DpY > Y of an H_  ring spectrum Y. This permits us to construct homotopy operations
which are related to Steenrod operations in the Adams spectral sequence for Y. In
addition, we get differentials in the Adams spectral sequence and relations in the

homotopy groups of any such spectrum.
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We can now indicate that part of the present work which is new. First,
everything we do applies to all H_ ring spectra, not only the sphere spectrum.
Second, we have done the homclogical algebra necessary to produce Steenrod opera-
tions in the generalized Adams spectral sequence and have shown that they come from
the H, ring structure just as in the ordinary mod p Adams spectral sequence. Third,
we have included a reasonably thorough account of the homotopy operations and the
relations between them. Undoubtedly, some of these results, especially in the mod 2
case, are known, although difficult to find in the literature. Passing references
to Barratt and Mahowald are found in [45] and some related results exist in [106]},
11041, [80] and [79]. Fourth, we have generalized the results of Mikinen to the odd
primary case, producing new formulas for differentials in the Adams speciral
sequence. This involves a detailed study of the homotopy of extended powers of
cells. Finally, it is our hope that the present account has benefitted sufficiently
from the process of refinement that occurs with each extension or generalization of
previous work, that it is simpler and clearer than previous accounts and that this
will make the results more accessible. In this spirit, we have attempted to inelude
all nontrivial details.

We have tried to maximize the extent to which all of this carries over to arbi-
trary homotopy functors [X,-]y besides the traditional ny = [SO,—]*. Of particular
interest is the case in which X is a Moore space. Much of the work in [92] can be
interpreted as calculations of the homotopy operations which apply when X is a Moore
space. The generalization to arbitrary X is only partially carried out. The
difficulty in extending it lies in our ignorance about the extended powers of spaces
other than spheres. Note, however, that VI §2 contains results which facilitate the
anlysis of extended powers of other spaces. Finally, we should point out the
remarkable fact that the key differentials needed for the computation of the stable
homotopy groups of spheres from the cohomology of the Steenrod algebra are direct
consequences of the H_ring structure of the sphere spectrum. It is appealing to
think of the H_ ring structure as a machine which encodes the destruction of
Steenrod operations, which exist unifermly in E,, converting them into more
complicated relations in homotopy. In this vein, we point out in section VI §1 that
our analysis of the differentials can be used to compute exiensions which are hidden
in E_. In summary, we feel that the results contained here should be a part of
everyone's Adams spectral sequence toolkit, and we hope that the present exposition

will make this possible.

We have organized this paper so that the general theory is in Chapter IV,
explicit computations and relations in homotopy are in Chapter V, and formulas for
differentials are in Chapter VI.

Chapter IV is organized as follows. In §1 we introduce ExtA(N,M) for comodules

N and M over a commutative Hopf algebroid A. In §2 we define and study products and
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Steenrod operations in ExtA(N,M) when N is a coalgebra and M is an algebra in the
category of A-comodules. In §3 we set up the Adams spectral sequence. In 84 we set
up an external smash product pairing in the Adams spectral sequence and use it to
define an internal product in the Adams spectral sequence converging to [X,Yl, when
X is a suspension spectrum and Y is a ring spectrum. In §5 we derive the main
conceptual result of the chapter: the H ring struecture map DPY + Y naturally
induces the (algebraically defined) Steenrod operations in ExtE*E(E*X,E*Y), the E,

term of the Adams spectral sequence converging to [X,Y] Thus, for H_ ring spectra

o
Y, the Steenrod operations in E, reflect structure which exists in [X,Y]y. In §7 we
define the homotopy operations in n,Y derived from DpY + Y and use a spectral
sequence originally due to Milgram to identify operations in Ext(nyE,ExY) which
correspond to homotopy operations and relations between them., In §6 the spectral

sequence is defined and its relevant properties are derived.

I have benefitted from conversations with many people in the preparation of
this material. Of special importance are Peter May, Arunas Liulevicius, Daniel
Kahn, Mark Mahowald, Jim Milgram, Jim MeClure, Jim Stasheff, Mark Steinberger, and
Bob Wellington.

§1. Cohomology of Hopf Algebroids

Let k be a commutative ring with unit. A Hopf algebroid (R,A) is a cogroupoid
in the category of graded commutative k-algebras. Thus R and A are graded commuta-
tive k-algebras and there are k-algebra homomorphisms nL,nR:R > A, e:A-> R,

YA > A'@h A, and y:A + A, The simplest way to recall the diagrams these satisfy is
to dualize the diagrams satisfied by a groupoid with "objects" R and "morphisms" A.
The left and right units n; and np are dual to the source and target, the
augmentation ¢ is dual to the morphism which assigns each "object" its identity
"morphism", the conjugation x is dual to the inverse, the coproduct y is dual to
composition, and the product ¢:A.@k A > A is dual to the diggonal.

The two units, ny and ngy give A two R-module struetures: a left R-action

rea = nL(r)a and a right R-action a.r = anR(r). Therefore we shall find the
category of R-R-bimodules more appropriate than the category of R-modules. The
commutativity of R enables us to embed the category of (either left or right) R-
modules as the full subecategory whose objects are those R-R-bimodules which satisfy
TreX = (-1)1x¥irlx-r for all elements x. There are two forgetful functors from R-R-
bimodules to left or right R-modules which simply forget the R-action on one side or
the other. We let Mp be the right R-module whose R-action equals the right R-action
on M. Of course, the above embedding gives M a left R-action which agrees up to

sign with the right R-action. For example, here is the left R-action on AR:
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rea-= (_1)|r||a|a .r
= (—1)!rl|a|anR(r)

nR(r)a .

Similarly, My will denote M with its right action forgotten.

We let @y denote any of the tensor products

R-R-bimodules x R-R-bimodules —— R-R-bimodules

Right R-modules x R-R-bimodules — Right R-modules

R-R-bimodules x Left R-modules — Left R-modules.
Thus, M @ N gets a left action from M if it has one, gets a right action from N if
it has one, and amalgamates the right action on M with the left action on N. It is
necessary to distinguish these three tensor products and to avoid automatically
embedding one sided R-modules in R-R-bimodules because the embeddings do not commute
with tensor products. The next paragraph contains a telling example of this. We

let x = Xp in the rest of this section.

A right A-comodule is a right R-module M with an R-linear map ¢M:M +Mx A

making

Wy Uy

M M® A M M ® A
)
\ 1® e \;,M! vy ®1
v o
M ML —R@Y . uoA®A

commute. The algebra R is a right A-comodule with yp = ng and a left A-comodule
with yp = ny. The coproduct y:A + A ® A makes Ap a right A-comodule and Ap a left
A-comodule. The module M ® A exemplifies the lack of commutativity between ® and
the embeddings of R-modules into R-R-bimocdules. If we tensor with A, then embed we
get a bimodule whose left and right actions agree, whereas, if we convert M 1o a
bimodule then tensor with A we get a bimodule with different left and right actions.
This prevents us from viewing Yy as a bimodule homomorphism unless we replace the
codomain by (M ® Alg. It is simpler to think of yy:M » A @M as existing in the
category of right R-modules. There is one situation in which we will automatically
view a one sided module as a bimodule. If N is a right R-module and we write M® N,
we mean to imply that N is first converted to a bimodule so that the tensor product

is one of the three discussed above.

We assume henceforth that A is R-flat (on either side; the two conditions are
equivalent). Then the category A-Comod of right A-comodules has kernels (which may

be computed in R-Mod) and is therefore abelian.
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If P and Q are right R-modules then Homp(P,Q) is the graded R-module whose
degree t component consists of homomorphisms which raise degrees by t. If M and N
are right A-comodules then Hom,(M,N) is the k-submodule of Homp(M,N) consisting of
comodule homomorphisms. It is an R submodule for all M and N if and only if
ny, * Np-

The forgetful functor A-Comod + R-Mod (which we denote by m i—’r;x and ;_.-f' }
has a right adjoint

{?}) ® A : R-Mod » A-Comod

which sends a right R-module to the right A-comodule P ® A with coproduct 1 @ ¢. We

call such comodules extended. The adjunction
HomR(M,P) = Homy (M,P @ A)

sends f:M»> P to (£ ® 1)y and sends f:iM » P® A to (1@ e)f.

Retracts of the extended comodules form an injective class relative to the R-

split exact sequences, and we have the usual

Comparison Theorem: If O + M » XO *> X1 + e++ 1is an R-split exact sequence of

right A-comodules and O + N » YO > Yl + ++s is a complex of injective right A-

comodules then for each A-homomorphism f:M » N there is a unique chain homotopy

class of A-homomorphisms F:X + Y extending f.

We note for future reference that we may choose the splitting homomorphisms

% %
M-t Xy & X, 4 eee

= 0.
th

91%41
i
We define ExtA to be the i

injective comodules and R-split exact sequences.

so that egy = 0 and

right derived functor of Hom, relative to

The tensor product M® N of right A-comodules can be made a right A-comodule by
the diagonal coproduct

M@NM’M®A®N®AM*'M®N®A®AMM®N®A.

[The alert reader will notice that the separate maps here are well defined only if
® = @, rather than ®;. The composite, however, is well defined with @ = @y.] When
N = AR we have the right A-comodule M ® Ap with diagonal coproduet, in contrast to
the extended coproduct on M ® A. Nevertheless, M ® Ap is isomorphic to M® A as a
right A-comodule. The isomorphism ¢ : M ® A'R + M® A is the adjoint of the R~
homomorphism 1 ® ¢ : M®AR + M. Explicitly, e(m®a) = | m' ® a"a and
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e-l(m ®a) = [ mn ®xla")a if y(m) = ] m' @ a". The isomorphism ¢ makes the

diagram
M [

commute. Both 1 ® np and gy are R-split by 1 @ ¢. Thus we may take either as our
canonical R-split monomorphisms into an injective comodule. We choose 1 @ R
because it will relate well to the Kunneth homomorphism later. It also allows the
following convenient description of the canonical injective resolution. Let

p:AR > A be Cok{ng), and write a for pla). Define t:A » AR by tp = 1 - nge.
Then for any right A-comodule M, there is a short exact sequence

1®ﬂR

02— Loy a, 28Poygh —=0
R\ 7 R&' 7
1@« 19t

of right A-comodules (solid arrows), which is R-split (dotted arrows).

Definition 1.1: Let M be a right A-comodule. The normalized canonical resolution
C(A,M) of M is the R-split differential graded right A-comodule

0 - C, 0 - I ...
'{'\_.// R’\. ,a/
9% 9

where C_ = ML ®hp, 4= 1@ n)(1@p) and o, = (1@ )1 @c). We write
m[&}_} een Iasla for m®§l @ eee ®§S 2] aeCS, and assign it homological degree

s, internal degree t = |m| + | ]ail + la], Dbidegree (s,t) and total degree t-s.

If N is also a right A-comodule, the canonical complex C(N,A,M) has

ot
Cg 4 (N,A,M) = Hom,(N,C_(4,M0)).

Proposition 1.2. Ext,(N,M) = H(C(N,A,M)).
Proof. If we let n: M+ C(A,M) and e: C(A,M) » M be
1®nR: M+»M®A-= CO(A,M) and

1®e: Cola,M) = M® A » M,

then it is easy to check that & = dn = 0, 6 = o = 0 and do + od = 1 - ne. Thus
49 4 )
O————*M——n—bco——-—*cl———»()z—-—r...

is an injective resolution R-split by o and ¢, which implies the proposition. //
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Note that we use t-s as our total degree rather than t+s. This (t-s) is the

topologically significant degree in the Adams spectral sequence
ExtS Y E X, E Y — (X,Y)
X E B T stigeg
If we regrade C(A,M) by nonpositive superscripts, it really is the total degree in

the sense of being the sum of the internal and homological degrees.

§2. Products and Steenrod Operations in Ext

We begin this section with a quick deseription of the product in the Ext module
we have just defined. The rest of the section is devoted to the development of the
Steenrod operations in this context. The main point is to show how the development
of Steenrod operations in {68] is carried over to the cobar complex C(N,A,M) in the

setting appropriate to generalized homology theories.

The indexing we have chosen for Steenrod operations disagrees with that of
[55],168] and [81]. Our reason is this: as noted in section 1, the appropriate
total degree for ExtS,t is t-s rather than t+s. This change converts the grading of
[55] and [68] to the grading we have chosen. With our grading, the operation pl
raises the geometrically significant total degree t-s by 2i(p-1) if p > 2 and by 1
if p = 2. This conforms to the pattern established by the Steenrod operations in
cohomology and the Dyer-lashof operations in homology. This is not merely an
analogy. We shall see that the Adams spectral sequence connects the Steenrod
operations in Ext with homotopy operations. Under the Hurewicz homomorphism these
homotopy operations correspond to Dyer-Lashof operations and our choice of indexing

leads to precise compatibility with these Dyer-lLashof operations.
In this section we let ® = @, .

In order to introduce products and Steenrod operations into ExtA(N,M) we

require more structure on N and M. The necessary definition follows.

Definition 2.1. Let [ be the category whose objects are triples {(N,A,M) such that

1)  (R,A) is a Hopf algebroid over k,

2) M is a commutative unital A-algebra (that is, an algebra with unit
ny: R » M in the category of A-comodules), and

3) N is a cocomutative unital A-coalgebra (that is, a coalgebra with counit
ey:N + R in the category of A-comodules)

and whose morphisms (N,A,M) » (N',A' ,M') are triples (f,A,g) such that
1) A:(R,A) » (R',A') is a morphism of Hopf algebroids,
2} f:M s+ M' is an glgebra homomorphism preserving units and a A-equivariant

comodule homomorphism (f{mr) = f{m)}a{r) and wM,f ={f@ A)wM), and
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3)  g:N' » N {(note reverse direction) is a coalgebra homomorphism preserving
counits and a A-equivariant comodule homomorphism {g(n'r(r)) = g{n')r and
(1® A)xpNg = (g ® l)xpN,).
If (N,A,M) is in £, we write ¢: M » M and A: N » N for the iterated product and
coproduct..

Note that (R,A,R) is in ¢ eand that the unit ny and counit ¢y induce a
homomorphism

(e }:(R,A,R) » (N,A,M)

EREY

in ¢. In turn, this induces a unit

(%) Ext,(R,R) » Ext,(N,M).

If (R,A) and (R',A') are Hopf algebroids over k then the obvious structure meps
make (R®@ R', A® A') a Hopf algebroid which we will usually call A® A'. The
functor ® defines a functor

A-Comod x A'-Comod + A @ A'-Comod.

Thus, if M is an A-comodule and M' is an A'-comodule, then C(A,M) ® C(A',M') is a
differential graded A @ A'-comodule with differential d® 1 + 1® d, unit n @ n,
augmentation ¢ @ ¢, and contracting homotopy ¢ @ 1 + ne ® 0. By the comparison
theorem, there is a unique chain homotopy class of A @® A'-homomorphisms

C(AM) @ C(A",M") » C(A® A',M® M')

extending the identity of M@ M'. If C is an A-comodule, let (% = C@ +++» ® C with
n factors C., Regard ¢® as an A-comodule by means of the iterated product ¢: A
in the usual way. For each integer n there is a unique chain homotopy class of A~
homomorphisms

$:CIA,MT 5 C(A,M)

extending the product ¢:M® » M. This implies that C{A,M) is a homotopy associative
and commutative differential graded A-comodule algebra (DGA in A-Comod). Finally,
if (N,A,M) € § , the homomorphism

Hom, (N,C(4,M)" = C(N,A,M)7
|s
Hom , (N, C(4,)™)
lHom{ﬁ,M
HomA(N,C(A,M)) = C(N,A,M)
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makes C{N,A,M) into a homotopy associative and commutative differential graded
k-algebra. (There is an Alexander-Whitney map which makes C(A,M) and C(N,A,M)
strictly associative.) This product on C{N,A,M) makes ExtA(N,M) into a bigraded
commutative associative algebra over Ext,(R,R} with unit (*} induced by
Hom(e,n) :Hom, (R,R) + Hom,(N,M).

We can now summarize the development of Steenrod operations given in [68]. let
k = ZP and let = C zp be the cyclic p-Sylow subgroup generated by the permutation

n

{1 2 e+ p). Recall the usual kn free resolution of k.
Definition 2.2. Let )Vl be free over km on one generator e;, let
dlegg) = (1 + a + a + «os +aPlleys 1 and dlepiyy) = (a - Llegy,

and let )’Y'O + k send aieO to 1.

Let ¥ be any ki, free resolution of k and let j: X > be a kr chain map
covering the identity map of k. Let = and zp act trivially on a chain complex X, by
permuting factors on XP, and diagonally on & ® XP and V'® KP respectively. We
let Wi ® (KP)1r1 have degree n-i, n being the total degree if K is bigraded. Then we
can define Steenrod operations in H(K) if K is a homotopy associative differential

k-algebra with a kn morphism 8: W ® kP + K such that
{1} eieo ® KP is the iterated product KP + K associated in some fixed order, and

(ii) ¢ is kn-homotopic to W @ K* A®L ¥y’ —L Kk for some

kzp—homomorphism ¢

A morphism (K,8) + {X',8') is a morphism f:K » K' of differential k-modules such
that fe is km-homotopic to 8'(1 ® fP). The tensor product (K,8) ® (K',8') is
defined in an evident way and the Steenrod operations satisfy the (internal) Cartan
formula if the product K @ K » K defines a morphism (X,8) ® (K,8) » (K,8)., Let UL be
a k):p2 free resolution of k and let 1 = przp Cz 5 be the p-Sylow subgroup. Let

w: N® y¢p¢ L be a ki-homomorphism extending the identity k + k where w @ ){P is
given the evident t action. Then the Steenrod operations in H(K) satisfy the Adem
relations if there is a kI ,-homomorphism £:U @ KP 5 K such that

p

2 2
(v e x") oxF W@l Y e P

shuffle X

P

is kv homotopy commutative.
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The following lemma will imply that 6,¢, and ¢ exist and make the appropriate
diagrams homotopy commute when K = C{N,A,M), giving us Steenrod operations in
Ext,(N,M}.

Lemma 2.3: 1et p be a subgroup of L.. Let 4 be any ko free resolution of k such
that 10 = kp with generator ey let M and N be A-comodules. Let

0 —» Mal=2 K =2 x s ...
3 0 o 10

be an R-split exact sequence of A-comodules and let

O—PN——YL*LO—-QML1-(L~--~

be a complex of extended A-comodules. lLet £:M° » N be a p-equivariant A-comodule
homomorphism, where p acts trivially on N and by permuting factors on M'. Iet o
also act on K¥ by permuting factors, and on¥Y ® X* by the diagonal action. Give
V' ® K* the A-comodule structure induced by that of X' and let T, ® (K) j,t bave
bidegree (j-i,t). Then there is a unique p-equivariant chain homotopy class of

p-equivariant A-comodule chain homomorphisms ¢: V® k¥ + L which extend f:

M- f N

7| Jo

ro, r ¢
KO z <ey> ® KO —-—-~——~———,LO.

Some such ¢ satisfies ¢{ 'Ui [ (Kr)j) = 0 if ri > (r-1)j.

Proof. We will define p-equivariant A-comodule homomorphisms from ?]-_ @ (x7) 3 to

extended comodules by specifying their adjoint R-maps on elements v@ k with v in a
chosen p basis of vi. It is easy to check that we get the same homomorphism by
extending by equivariance and then teking adjoints as we get by first taking

adjoints and then extending by equivariance.

Write 3,3 for | ‘Ui @ (Kr)j. We define @4 3 by induction on i and subsidiary

induction on j. The existence of @O *I<eo> @K +» L follows from the comparison
b4

theorem, so we may assume ‘I’i, constructed for all i' < i. If j < i then ‘I’i,' =0

J J
since L is a nonnegative complex, so we may assume 5 i constructed for j' < j. 1If
7

? 1is the adjoint of ¢, we let

~ ~J
(a) BT ldey s -8 (0811188
on elements v @ k with v in a chosen p-basis of ‘U’i, where

s=7 et @0 @17t
)
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is the contracting homotopy of KT {so that @S + &4 = 1 - {ne)¥). To show that this

makes ¢ a chain homomorphism we must show that

(b) d (d ®1) v ey J.(1®d).

Qi,j‘l i} Qi'l}j'l 3
It suffices to show that the adjoint of (b} is true on our chosen p-basis, and we
may assume (b) holds for smaller i and j. Thus, letting the adjunctions be under-

stood and using (a), we have

Qi—l,j—lid ® 1)+ @i’jtl ® d)
= @i_l,j_l(d @1 +doy ( ,(1@8A) -2, 4,(d® 5d)
_ T
=0y gt (e, g ,lde 1) - d@i“}.“l)u@ a5 + 1@ (ne)’ ).

Applying (b) inductively twice shows that

( (d@l)—d@i. 1l ®@d) = -dde = 0.

®.1,5-1 5-1 1,j-2

If we let f: ‘UO @MW » N be p-equivariant and satisfy f = —f"1<eo> ® M then
20,0(1 ®n") = nf. Then (q’i—l,j-l(d ®1) - dq’i,j-l)(l ® (ne)T) = 0 because
f{d ®1) = 0 by p-equivariance of f and because dn = O. This completes the
inductive construction of ¢. Now let us show that the ¢ we have constructed
satisfies °5 5 < 0 if ri > {r-1}j. This is trivial if i = 0 or jJ <1 so we use
induction on i and a subsidiary induction on j. When ri > (r-1)j the induction
hypothegis implies that (a) reduces to Qi,j = - ¢i-1,j-1(d ® 8). This implies the
result, again by the induction hypothesis, except when j = rn+l and i = j-n. In this
case we iterate (a) to obtain

(e) B, 4= (-1TF

1,3 ,j—r(d®S)p1(d®S)p2 pr_l(d®8),

T

where each p; is a sum of permutations of the factors of K' coming from the
equivariance of ¢. The number of factors ey of <:1 @ e Q cr € Kr which are
annihilated by ¢:K » K increases by at least one each time we apply S; this is where
we require 02 = g¢og = 0. Since permutations preserve this property and since d @ S
occurs r times in (¢}, it follows that %5 7 0 in this case also, completing the

induction.

Finally, we show that ¢ is unique up to p-equivariant chain homotopy. Suppose
2,0:Y@K » L both extend f. We define H; ;:¥; ® (K')y > Iy
H
adjoint be

-i-1 by letting its
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0 if j<i+lor i< O

~ ~

EEEI HE R SR

i-l,j_l(d ®111{1 @ 8} otherwise

on elements v®@ ¢ with v in a chosen p-basis of q’i‘ We must show

QHy g * By 5 0d@) +H J1@d) =0

The definition of H; ; implies that, on the p-basis, the adjoint of Hy J-(l ® 4d) is
3

1,5-1 7 %4,51

1,J
the desired expression minus

(o d H (@11 ®dS + 1@ (ne)T).

1,3-1 " ®1,5-1 7 My 51 - By 50
Now, 1®dS =0 unless j > 2 and 1 ® {ne)¥ = O unless § = 1. If j = 1 then

everything is zero unless i = O, when we get (@O 0~ % 0)(1 ® nr)(l ] ¢’). Since
H 3

% O(l ®n') = of = % 0(1 ®n') the result follows when J <1, When J > 2 we find
» >

by induetion that

( H

j1,j1d@ e = o.

®5,3-1 7 %1,5-1 - My 50 -
Hence H is a p-equivariant A-comodule chain homotopy ¢ =~ 0. //

Remark: Since ¢ is determined up to chain homotopy by £: M' » N it is easy to see
that ¢ is natural in M and N up to chain homotopy.

Suppose (N,A,M) is a triple in § defined over k = Zp. The product MP » M is
commutative, hence Lemma 2.3 with p = v and r = p implies that there is a unique n-
equivariant chein map ¢: W® CP » C, where C = C{A,M). Since ¢ is an

A~homomorphism we also have a homomorphism

"o HomA(N,C)p = ¥@ C(N,A,MP

|

Hom, (W, ¥ ® C¥) ®

Hom{a,%)

Hom, (N,C) == C(N,A,M)

and since a:N » NP is cocommutative, this ¢ is also n-equivariant.
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Definition 2.4: With the notation of the preceding paragraph, let x ¢ Exti’t(N,M).
If p = 2 define

(1) saix) = PHx) = ey le, ., @) if 1> tos.

If p > 2, define

Phix) = (1) u(t-s)e,e

P . .
(21-t+s) (p-1) ® x%) if 21 > t-s
(ii)
BPi(x) = (—1)iv(t-s)¢ (e ® xp) if 2i > t-s
(€ (21 t+g) (p-1)-1 ;
where m = (p-1)/2 and v(n) = (-1 (m!1)® if n = 2j+e.

Note that BPi is a single symbol, a priori unrelated to Pi {however, see
Theorem 2.5 vii}. By [68], the Pl ana sPi account for all the nonzerc operations of
the form x h*'¢*(ei ® xP).

If (N,A,M) is an object of & defined over k = Z such that N,A and M are all
torsion free, let N=N®2z,A=A¢ Zp and M = M@ Zp. Then (E;K;ﬁ) ¢ £ and,

p’
as usual, the sequence Zp >Z 5 > Zp induces a Bockstein homomorphism
P
g:ExtS MW - St YE D
A A

which we will use in Theorem 2.5 (vii).

We are now ready to apply Lemma 2.3 and [68] to produce the main result of this
section.

Theorem 2.5: The Pi and BPi are natural homomorphisms with the following
properties.

(1) esPlexti’t » Ext§+(t—21)(p_l)+€’pt (e = 0if p = 2)

(i1) When p = 2, P = 0 unless t-s <1 <t. When p> 2, Pl = 0 unless
t-5 €21 <t and gl = 0 unless t-s+1 <21 <t

(111) Pi(x) = xP if p=2 and 1 = t-s or if p > 2 and 21 = t-s.

(iv) The internal and external Cartan formulas hold:
Pixey) = J Px) ® P (y) and
i

g x @y) = ] 8P (x) @ PP iy) 4 3 -1 1%lpt(x) @ gp™ Ly .
i i
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(v} The Adem relations hold: if a > pband ¢ = Oor 1 {e¢ = 0 if p = 2} then

8520 = 7 (-1)%"F(pi-a,a-(p-1)b - 1-1)g5p2* P Ipl

1

if p>2,a>pband ¢ = 0 or 1 then

8°P%gP° = (1-¢) J (-1)%*(pi-a,a-(p-1)b - 1)gp®*P-Ipt
H
-3 (<10 (pi-a-1, a-(p-1)b-1)p%p2* P 1gpt
i

(vi) Suppose f:(N,A,M) » (N",A" ,M") and g:(N',A' ,M') » (N,A,M) are morphisms
in § such that C(fg):C(N',A',M') » C(N",A" M") is zero on the cokernels of

the units. Then oPi = Pio and oBPi = -ePiu where ¢ is the suspension

s-1,%

orExth; PN ,M) » Ext,

{N® ,M“)

defined as C(f)d'lc(g) on representative cyecles.

(vii) If (N,A,M) is the mod p reduction of a torsion free triple defined over 7
then gpi*l = 1pl ifr p = 2 while gPl is the composite of g and P if p > 2.

Proof. let C = C(N,A,M). Lemma 2.3 produces the necessary chain homomorphism

B N® CP + 0 and, iris a kzp free resolution of k, 6: ¥ @ ¢F » C. The
uniqueness of ¢ implies that ¢ factors through ¢ up to chain homotopy. Hence the
Steenrod operations are defined and satisfy (i)}, (iii}), and (vii). Naturality
follows from the uniqueness of ¢, lLemma 2.3 also shows ¢ = O in the cases relevant
to (ii). Commutativity of ¢:M @M » M and the uniqueness clause of Lemma 2.3 imply
that C(N,A,M) is a Cartan object and an Adem object. Hence (iv) and (v) hold. To
prove (vi) we must construct &,s' and ¢" such that equality holds in fo = ¢"(1 @ fP)
and g¢' = ¢(1 @ gp) rather than just chain homotopy. It is easy to check that this
will be true if we construct ¢,¢'and 2" as in Lemma 2.3, because C(N,A,M) is
functorial. //

§3. The Adams Spectral Sequence

This section begins with some technical lemmas about homotopy exact couples and
the associated spectral sequences for use in VI. We end the section by setting up
the Adams spectral sequence.

We will work in the graded stable category H*& « This is obtained from the
stable category h§ specified in I§1 by introducing maps of nonzero degrees. The
category K*; has the same objects as K}, and its morphisms from X to Y are the
elements of the graded abelian group (X,Yl, with [X,Y] = [Z"X,Y].
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Definition 3.1: Consider inverse sequences

i i i
Yﬁ"—O—‘Y .,_1“(‘__2_._. see

0 1 2

such that each Yg is a CW spectrum and each i_ is the inclusion of a subcomplex.

s
(This restriction is imposed purely for technical convenience., It represgents no
real restriction since any inverse sequence can be replaced by an equivalent one of
this form by means of CW approximation and mapping telescopes.) Define

= Ys/Ys+r = Cls r and let

2

i =1ii eee i Y +Y and Y
s,r § s+l g+r-1 s+r s 8,1

be a cofiber sequence with 3 p of degree -1.
s

Given a spectrum X we obtain an exact couple

i

(X,Y,] : >
® X,YS tos @ {X,YSLt_S
s,t 8,1
WN A
® [X,Y ]
5t s,1 t~-s
and hence a spectral sequence. The term Ej’t has many descriptions, of which we
will find
Es,t - lm(lx’ys,r}t-s i {X’Ys,l}t—s)
r ker(IX,Ys,llt_S > [X’Ys-r+1,r]t-s

particularly convenient.

8,n+s
If x e [X’YS,I‘ r)

gives minimal hypotheses needed to recognize differentials in the spectral sequence.

l,» we let X denote its image in E . The following lemma

lemma 3.2: Let fe [X’YS,1]D+1 and g ¢ [X’Ys+r,l]n satisfy

pef = i'g ¢ [X,Y };» where i' is induced by i Then

s+l,r s+l,r-1°
dk? =0 if k<r

af=g¢g

H

and dkg 0 for all k.

The next two technical lemmas will be used repeatedly.
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Lemma 3.3: If f ¢ [X’Ys,rmln and g ¢ {X’Ys+r+p+q]n—1 are such that
iaf = ig ¢ [X,Y .l 1, then there exist
1
He [X,Ys+r,p]n and f'e [X,Ys,r+p+q]n
such that
so = ap
if = if' e [X’Ys,r]n R
F=F o g0 for k < r+p+q ,
I
d.H = al(f) , and
% PO
dr+p+qf dr+p+qf g .
Lemma 3.4: Assume p < g < r and suppose given f e [X,Y ]

s+p,T-p’n?
ge [X’Ys+q,r—q]n and h ¢ [x’Ys,p]rﬂl such that of = 3g € [X,¥g,.1, ; and

pdh = f - ig ¢ [x’Ys+p,r-‘p]n' Then

1fp<q,dph='f‘ and dr_qg=af=8g,

while if p=q,dh=?’—g and dr-pf=af=ag=dr—-

¢

Now we turn our attention to the Adams spectral sequence based on a commutative

ring spectrum E with unit. We shall use ® to denote ®ﬂ E We assume that ExE is
*

flat as a (right or left) module over nyE. This ensures that (n4E,ExE) is a Hopf

algebroid over “OE and that EyX is an ExE comodule for any spectrum X. Here EyX =
k(XA E). The structural homomorphisms are defined as follows. Let n:S » E and
u:EAE » E be the unit and product of E, and let 1:AAB > BAA be the twist map.
Then ng = Ex(n) = {nally, np = {(1anly, e = uyx and x = 14 while

g ExE > E4E
is given by ¢(a @ 8) = (nau)(la1Al)(aaB). The coproducts yy and yy are defined

$1myE ®"OE 1,E + 7,E 1s given by ¢l{a ® 8) = ulansl, and ¢:EE ®"O

as e;lE*(ll\n) in the following diagram. In it, the homomorphisms 6, and 6, are

defined by

it

81(a®6) {(1rlapi{lacall{lansg)

(Lapal){aaB)

62(0.@8)

while 6 is the algebraic isomorphism defined in §1. (Recall that (E*E)R means EyE
with only its right nyE action.) Adams [6, Lemma 12.5] shows 6, is an isomorphism

since E4E is flat over myE.
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E,X @ (E,E)

1®n ‘(////////////////
8
1
%ﬂ)* B
1K\\\\\\\33\\\\\
¥x

E X~ E, (XaE)

4
E,X ® E,E

We have seen in $2 that ¢ is an isomorphism. It follows that §; is also an

isomorphism. Note that 9 is the Kunneth homomorphism for X and E.

Definition 3.5. An Adams resolution of a spectrum Y is an inverse sequence

1o 5
YzYO‘v——Yld——YZA—*ﬁ PR

as In Definition 3.1 such that, for each s

(1) Y 1 is a retract of X A E for some spectrum X , and
b4
(11) Ey¥g » ExYy ; is a nyE-split monomorphism.
2

A map of Adams resolutions is a map of inverse systems. The canonical Adams

resolution is defined induetively by letting Yo=Y, Ygup = Yg AE and
i =1lai: Y AE+YAS=Y
s s s 8

where the unit S + E is the cofiber of i:E + 8. The Adams spectral sequence for

[X,Y]ly is the spectral sequence of the homotopy exact couple obtained by applying
* ¥
[X,-1y to an Adams resolution of Y. It is denoted by Er’ (X,Y).

Condition (i) emsures that EyY, | 1s a direct summand of an extended comodule
?
and condition (ii) ensures that the sequences ExYg » EgYg 1 > Ex2¥ .1 are myl split
b

short exact sequences. Splicing them, we obtain an injective resolution (%) of E,Y:

(%) \E £Y B, 1°Y \
% IY) TR

To proceed, we need another assumption on E.
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Condition 3.6.
[X,YAEly = HomE*E{E*x,E*tYA E) = Homn*E(E*X,E*Y)

for any Y when E4X 1is wyE projective. By [6, Prop. 13.4 and Thm. 13.6] this
holds for E = 3, HZP, MO, MU, MSp, K, KO and BP. Note that Condition 3.6 will be

satisfied if we have a universal coefficient spectral sequence.
*
Ext"*E(E*X, 1, F) = pX

for the module spectra F = YAE over E. Also note that Condition 3.6 will be
satisfied for all Y if it is satisfied for Y = S, using the argument of [6, Lemma
12.51. Thus we have the following equivalent form of Condition 3.6:

if EyX is wyE projective then E'X = Hom p(ExX,m4E) .

Finally, if Condition 3.6 holds then the isomorphism in 3.6 will also hold with YA E

replaced by any retract (wedge summand) of Ya K.

Given Condition 3.6, Definition 3.5(i) implies that if E,X is w4E projective
then [X,Ys,ll £ HomE*E(E*X,E*YS,l). Hence E, of the Adams spectral sequence is
ExtE*E(E*X,E*Y) in this case. By {6, Thm. 15.1}, under appropriate hypotheses the

E E
spectral sequence converges to [X,Y]y, where [ , ]y denotes homotopy classes of maps

in the category obtained from the stable category E;Z by inverting E equivalences.

For future references we note the following lemma.

Lemma 3.7. The resolution (¥) obtained from the canonical Adams resolution is

isomorphic to the cobar resolution C(E4E,E,Y) of Definition 1.1. If EyX is wyE
projective then the E1 term of the resulting spectral sequence is isomorphic to
ClExX, ExE, E4Y).

Proof. The isomorphism 8, converts the cobar resolution into {(¥). If EgX is 54E

projective we use the natural isomorphism 3.6. //

In the next section we will need the following result on maps of Adams

resolutions.

Proposition 3.8: OSuppose EyX is myE projective, {Xi} and {Yi} are Adams resolu-
tions of X and Y, and each EyX  is wyE projective. Let f:X » Y and let * bea
chain homomorphism extending fy:
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0 ——=BX ——= X, | —=EX | —>

f*l %01 ?11

0 —EJY — 5.Y

I, — > B,  ——mese

0,1 *71,1
Then there is a map of Adams resolutions extending f and inducing .

Proof. Since all ExX; are wyE projective, so are all E*Xi,l (z ExX; ® EgXy,q).
Hence

IXi’l,Yi,ll* Z Hom(E*Xi’l,E*Yi’l)
and the ?‘i correspond to unique maps ?i Xy such that (?i)* =¥ i- Ve
construct fi:xi > ¥ commuting with fi—l and fi by induction. When i = O we let

+ Y
,1 i1

fo = f. This commutes with ?O since it commutes after applying Ey and

[X’YO,I]* = HOm(E*X,E*YO’l) .

Assume f,fy,...,f;_; have been constructed. Let f; be a map which makes the
following diagram commute.

1-1,1 et 1.1 1-1,1
- ; =

1 f1-1 ifi lfi—l f1—1

i-1,1 > Yy Y R

To see that fj commutes with ?i we need only check that it commutes after applying
Ex, and this holds because it holds after composing with the epimorphism ExXy_ 11 >

2
ExXj. This completes the induction. //

§4. Smash Products in the Adams Spectral Sequence

We are now ready to introduce smash products into the Adams spectral

sequence. Our main result is

Theorem 4.4: There is a pairing of Adams spectral sequences
*% *% *%
E (X,Y)®E, (X',Y') » E_(XAX',YAY')
T T T
converging to the smash product
[X,Y], ® [X',Y'], » [XaX',YaY'], .

If ExX and EyX' are wyE projective then the pairing on E, is the external product
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Ext(EeX,ExY) ® Ext(EgX',ExY') + Ext(ExX @ ExX',ExY @ EyY')
composed with the homomorphisms induced by

E(XAX') ———»EX® EX'

and EY @ E,Y' ————= E (YAY').

{Note that the preceding isomorphism is the inverse of the external produci
ExX @ Eg X' » Eg{X aX'), and is an isomorphism because E,X and EyX' are myE

projective.)
As a corollary we have

Corollary 4.5: (i) {E.(S5,5)} is a spectral sequence of bigraded commutative
algebras.

(1i1) En(X,Y) is a differential E.(S,S) module.

(iii) If X = £Z for some space Z, and if Y is a commutative ring spectrum
then {E.{X,Y)} is a spectral sequence of bigraded commutative {E,(S,S)} algebras
whose product converges to the smash product internalized by means of the diagonal
4:X » Xa X and the product u:YAY s Y. If 7 has a disjoint basepoint, then the
E.(X,Y) are unital.

In the ordinary Adams spectral sequence (E = Hzp, p prime) these results are
quite easy. If {Yi} and {Y&} are Adams resolutions of Y and Y', then their smash
product {Yi}A{Yi} (to be defined shortly) is an Adams resolution of YAY'. The
pairing in Theorem 4.4 is then obtained by simply taking the smash product of
representative maps. To get the internal product of Corollary 4.5 we need only note
that the product YAY + Y is covered by a map of Adams resolutions
{Yi}/\ {Yi} > {Yi}" In the general case, this plan of proof encounters two
obstacles. First, the smash product of Adams resolutions may or may not be an Adams
resolution. Second, a map X » Y may or may not be covered by a map from a given
Adams resolution of X to a given Adams resolution of Y. There are two facts which
enable us to avoid these difficulties. First, for spectra which have w4E projective
E-homology, everything works as in the ordinary case. Second, all the Adams
resolutions we need have the following form: spectrum to be resolved smashed with an
Adams resolution of a sphere. This enables us to reduce to the case of the sphere
spectrum, for which everything works as in the ordinary case, since EyS is m4S
projective. The details follow.
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Lemma 4.1. Let (X,A,U} and (Y,B,V) be CW triples. The geometric boundary 3 makes
the following diagram commute.

_EAY . DA 4
AAY wXAB - A B
3 (s 1) (1 3)
AANY UXAB A, Y. X B
TaT UAnbo XAV = @2 B VEAY
iy i i,
Definition 4.2. Let Xoa————xld——-—xz-n———— PP
o 3y P
and YOWHMYQM—"'

be inverse systems in which each map is the inclusion of a subcomplex. The product

{Xi} A{Yi} is the inverse system
k

k
*"'*Q"'Zl“'"l'_ cee

%y

where Z = . u XiAYj.
i+ =n

Proposition 4.3: Let {Xi} and {Yi} be Adams resolutions of X and Y. Then
{Xi}/\ {Yi} is en Adams resolution of XAY if either

{a) EgX and EyX; for each i are nyE projective
or (b) {Xi} and {Yi} are the canonical Adams resolutions.
The resolution of Eg{XAY) associated to {Xi}/\ {Ii} is, respectively,

{a} the tensor product of the resolutions associated to {Xi} and {Yi},
or (b} E,{XAY) ® C(E,E,n,E) ® CLE,E,n, E) = C(E.E,E (XAY)) @ CIE,E,n,E)

mn

CLE4E @ E4E,Ex (XA Y)).

{Recall that C{A,M) = M® C(A,R). Also, in case (a) note that the split exact
sequences

- .y

“// w\ ,/ \\\
0 ——> BX —>BX | —>BX, —0

show that if two of X ,X, 1 and X.,, have syE projective E-homology, so does the
’
third. Hence, if E4X is myE projective, then X has Adams resolutions {X;} in which

each E.X. is wyE projective. The canonical Adams resolution is one such.)
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Proof: Use the notation of Definition 4.2. The equivalence

71 * V X . AY
p*g=n

implies that Definition 3.5.(1) is satisfied in either case.
Suppose EgX, is n4E projective for each n. Then EyX, ; is also wxE projective

2
for each n. Hence E*()%’lé\ Yq,l) = E*Xp,l ® E*Xq,l' This and Lemma 4.1 imply that

0 —> B (XAY) —» ByZ) | ——> B2y | ——>eee

is the tensor product of the resolutions associated to {Xi} and {Yi}, and is
therefore wyE split since each of the factors is. This implies that {X;} A {Y;}
satisfies Definition 3.5(ii) and is therefore an Adams resolution of XAY. This

completes case (a).

Let {Ei} be the canonieal Adams resolution of S, and let {Fi} = {Ei}A {Ei}. By
(a), this is also an Adams resolution of S and its associated resolution of ExS is
ClE4E,nxE) @ C(E4E,n%E) (by Lemma 3.7). The canonical Adams resolutions of X and Y
are XA {Ej} = {XaE;} and YA {E;}, and their smash produet is XA Ya {Fs}. Since
each EyF; is wxE projective, (b) follows immediately. //

Proof of Theorem 4.4. Let {En} be the canonical Adams resolution of S and let
{Fa = {Ej1 A {En}‘ let y = {Yi}:{Fn} > {En} be a map of Adams resolutions which
extends the equivalence SA S » S. Define a pairing of spectral sequences

Er(X,Y) ® Er(X' ,10) - Er(XA X', YaY')
by composing the smash product

1 1 1 1
[X’YAEs,r]n ® [X',¥ta Es',r]n'_' (XX, YAES,I‘AY AEs',r]nd-n'

with the homomorphism induced by

TAE _ATAE, 2Tl vayiar AE,  C YAY'AF
s,T st,r s,r 8',r s

+s',r
1/\;

tA
raY Es+s' ,T

where vy 1s a map of cofibers induced by y. According to [64], this induces a

pairing of spectral sequences if
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(1) the pairing on E, induces that on E.,g

and, (2) 4, acts as a derivation with respect to it.
Condition (1} is obviously satisfied, and condition (2) is an immediate consequence
of lemma 4.1 and the fact that (1Aa3){fag) = (-l)lflf‘f\ag.

It is clear that this pairing converges to the smash product.

That the pairing on E, is as stated when ExX and ExX' are myf projective
follows from the commutativity and naturality of the following diagram

A
(XYl ® [X',Y'] [XAX' Y AT L,
E, ® Ey l By
Hom™ (B, X,E,Y) ® Hom® (E,X',E,Y') Fom™ ™' (B, (X A X'),E(Y AY'))

*
®l K
K

. 1
Homn"‘n (E*X ® E*Xl JELY @ E, Y ) ————— HOIIIIH‘n (E*X ® E*Xl :E-)(-(Y AY'))

(Here «:ExX @ ExY + Ex{X AY) is the Xunneth homomorphism.) //

§5. Extended Powers in the Adams Spectral Sequence

We are now prepared to show that if Y is a commutative ring spectrum whose rth

{(r}

power map Y + Y extends to a map

£:D.Y + ¥,

then ¢ can be used to construct a homomorphism of the type used in §2 to define
Steenrod operations in ExtE*E(M,E*Y) . Assume given such a spectrum Y and map ¢
throughout this section. As a consequence, we obtain in Corollary 5.4 an explicit
representative map for serx given a representative map for x. In chapter VI this
will enable us to compute some differentials on SEPJX.

let = ¢ L, and let W, be the n-skeleton of a contractible =« free CW complex W.
Assume that WO = 1. The skeletal filtration of W induces a filtration
py = w, «_ YT ()
kS 1 w

of W », X, where X is any 7 spectrum.

of DT(Y =W . Y and, more generally, a filtration Wi = X
let E be a ring spectrum which satisfies Condition 3.6 and for which EE is nuE
flat. Let

Y:YO+Y1(-00-
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be an Adams resolution with respect to E. Let {FS} be the r-fold smash product

{YS}(r). The = action on Fy = Yo(r) is cellular and Fg,; 1s a x subcomplex of Fg
for each s. Thus we may define

_ - (r)
Z = DWYO =W " YO =W K FO
and Zi,s = Wi o FS .
Lemma 5.1: Let B; = Wi/n.
(i) zi—l,s and Zi,s+1 are gubcomplexes of Zi,s
Zi s Bi
U AP
i-1,s i-1
i,s Bi s
(iii) 2 E A
Zi1,6¥%1,601 B Fen
{iv) The following diagram commutes.
Z. B, F
le - 1 A 8
231,69 %1, 541 Biin Fen
81 13A1V1na
%518 v 4y g0 DBt B e
7. o o7, 7. w7, =5 _MNF B F
i-2,s7 7i-1,s+1 i-1,s+1 i,s+2 i-2 s+l i-1 a+2

Proof. Parts (i), (ii) and (iii) are in Theorem I.1.3. Part (iv} is much more
delicate and is proved in [Equiv, VI. 4.9 and VIII. 2.7}. //

Theorem 5.2: If EyY, is wyE projective for each s then there exist maps

Ei,s: Zi,s + Yg_; which make the following diagrams commute.

— e - -’
DY 25 s 25 s-1 Zi s 21,8
¢ l gi,s l lgi,s-l lgi,s lgi—l,s
¢ ——————————. - -
¥ Yoi Toi1 Yot Toie1

Proof. Since Wo =1, Zyg g = Fg. Thus we may let gy o be the map of Adams
3 ’
resolutions which Proposition 4.4 ensures us is induced by Y(r) + Y. TFor induction

we may suppose £; o constructed satisfying the theorem for i < k. The maps Ek,s for
r
s < k are defined to be
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7. —»Wx F.-—23Y.
k,s g 0

2

Hence we may also assume that 8y o' has been constructed satisfying the theorem for
J
1 < . .
s s. To construct Ek,s compatible with Ek,s-l and Ek-l,sr we need 5k,s to make

the following diagram commute.

£
k-1,s-1
_—_— P S
Zk-—l,s Zk—l ,8-1 -7 Ys-k

- l teok-1

- lz %, s-1

Z Y

k,s k,s-1 s-k-1

The obstruction to the existence of such a gy o lies in [Zy s/zk—l gr Y k-1 1] and
k4 s b b
by naturality lies in the image of IZk,snl/Zk—l,s—l’ Ys—k-l,ll' By lemma 5.1.(ii),

E*(Zi,s/zinl,s) is m4E projective for each i, and hence
(2, e/ 21,80 Ysx-1,1) * Homp plEe(Zy o/Zy 1 o) Ba¥gp1,1)-

The equivalence 5.1.(ii} converts the inclusion Zk,s/zk-l,s > Zk,s»l/zk-l,s—l into
1A js_1 where J 1 Is the ineclusion Fy » F ;. Since Eyj,_; = 0, the obstruection to

the existence of Ep g 1s 0. //
z

If we define M to be my(W/We 1) and d: Wi » Wi 1 to be 2y, we obtain a
Zln]-free resolution of Z with W, = Z{x]. Let Cs,t = Ey-g¥s,1° Then
0+ CO + C1 * 02 + ++« 1is the resolution of ExY associated to {Y }. If each EyYg
is n4E projective then the Kunneth homomorphism is an isomorphism from CT to the
resolution associated to {Fgl. lLet hE:"* + Eyx be the Hurewiez homomorphism, x the
Kunneth homomorphism, and assume nnE = Zp'

Corollary 5.3. If ¢ is defined to make the diagram

h.®1

we® ¢ E w1 e QE
k 1 si,ti Ek kX "k-1 1 ti—si Si’l
: p
i Y
I
A

": Ee snctWiWye 1 g )
! £
i k,s *
i
v _— \

sk, ——— By svis-k,1

commute (where +t = t, + ss0 + tr and 8 = 8, t+ ses + sr), then ¢ is in the chain

1 1

homotopy class described in Lemma 2.3.
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Proof. The E E comodule stiructure, the = action, and the differential on W @ ¢t
are specified in Lemma 2.3. By 5.1.(iv}, ¢ respects the differential. Since g
restricts to the product {Ys}r > {YS}, ¢ restricts to the product ¢ » C. Both
gk, g+ 8nd x are comodule maps, while hE ® 1 is a comodule map because the image of
hE is primitive. ¢ is m-equivariant because Ek, s is defiend on the orbit spectrum
wk x Fo. //

Now assume X is a spectrum with a coproduct A:X + XAX. For example, X could
be a suspension spectrum with its natural disgonal. Assume also that EyX is myE

projective so that «:{EX)T » E*(X(r)) is an isomorphism.

Corollary 5.4: If e e Wy and fj € IX’YSo,llt-—S- then ¢,{e @ f1*® ver @ fr*} is
. J 4
represented by the compositie

Yox,1
t-g+k
) A T Sx,s
-k (r) s a A th‘ij —" "N AN
. eA AT,  ¥Tx177) Tso1
J AR J J
J
Proof. Consider the following diagram
® on ! =
Wy ® 5 Hom T(EX,Cq ) = m (W /Wy ;) ® @ XY 1t s
J J J J 3
t T (r)
#, ® Hom " ((E,X) ,QJ_pch) X, ) A g\ Yo 1ltsek
Hon" (BT, 00, @ @ ¢_ )
N 8,
J la,g 1
l Hom{a,%) k, s
t ~
Hom' (E,X,C_ ) o~ DO S P

The left column is the homomorphism ¢ used in §2 to define Steenrod operations in
ExtE*E(E*X,E*Y). The right column sends e @ fl ® <+ ® f, to the composite which
the corollary asserts represents dyle ® 1@+ Q@ fr*) . Thus we need only show
that this diagrem commutes. This is an easy diagram chase from the following two
facts. First, there is the relation between ® and A expressed by the diagram at the
end of §4. Second, the homomorphism

a: WV, ® Hom(M,N) » Hom(M, W, @ N)
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given by ale @ f)(m) = e @ f(m), when composed with Hom(1l,hy @ 1}, sends e@® f to

e, ®f
Mz ES@M —— Ex(W/W _,) ®N. /7

Remark 5.5: When Y = S we are in the situation studied by Kahn [45], Milgram [81]
and Makinen [62]. They worked unstably, and in place of the H  structure map
g:DPS + 3, used coreductions ei,n:D;Sn > PP, (A coreduction is a map which,
together with the inclusion 1:8%P » DpSn, splits off the bottom cell.) Such core-
ductions exist for n even and congruent to O modulo a power of p increasing with 1
(Theorems V.2.9 and V.2.14). They can be obtained by "destabilizing® £ as follows.
In V §2 we will show that DLS" = f"F'"" end that P21 g7l irnzo (2003))
(and similarly for odd primes). Thus, the following composite is a coreduction.

I
ann+i
n

lg

n
b PO
“2 . 2n
zangs ——»zan2S LB, §PTg,

This implies that we are looking at the same structure they were considering.

§6. Milgram's Generalization of the Adams Spectral Sequence

In [81) and [80], Milgram introduced a generalization of the Adams spectral
sequence and used it to study differentials of the form drserX in the mod p Adams
spectral sequence for n*SO. The essential idea behind the spectral sequence is
this. The Adams spectral sequence for maps into Z arises from a geometric con-
struction of a resolution of HyZ. Suppose that we have a filtration of HyZ of the
form

HyZ 3 HyZ; D HyZp D ove

for some sequence (usually finite) of maps Z « 2; « 2, « e+ . Milgram's idea was
to construet a geometrie resolution of Z in which we delay the resolution of HyZ; so
that it begins in filtration i. The Adams spectral sequence is then the special
case defined by Z « ¥ « ¥ « eee, When A is the N-i skeleton of an N dimensional
complex Z, the differentials are determined by and provide a clear picture of the
attaching maps.
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Continue to assume that E is a ring spectrum such that EyE is a4E flat and
which satisfies Condition 3.6.

Theorem 6.1: Let

fo f 2
}={Z=Z € I, ¢ 7, = evs}
0 1 2
be a sequence in which EyZ; is m4E projective and Eyfy 1s & nyE split monomorphism

for each 1. Then

*%
(i}  there exists a spectral sequence E, (X,a), natural with respect to maps of

such sequences, such that

5,1 - s-1,t-1
By V(X 3) (;) E, (x,ce)
*% . E
where Er (X,Cfi) is the Adams spectral sequence converging io [X,Cfi}*;

(i1) if EyY' is nyE projective and

fo L1 fl Al
}AY'Z {ZyaY' == Z A Y €= cvs }

there is a pairing
E(X, 3) ® B (X1,Y) ——> E0 (XA X', 3aY")
r 3 @ T ’ T D Iy

x,21E @ X',y 1F —2 o (xax',zav)
which is the direct sum of the smash product pairings on E2

*% * % *%
E, (X,0f,) ® E, (X',¥') ——> B, (XaX',0f; AY');

(iii) ir

is a map from } into an Adems resolution of Y, then there is a homomorphism ¢

of spectral sequences

*% ®
E, (X3 == [XZI

cl

*% £
E.(XKY) = [X¥]
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which maps the pairing in (ii} to the smash product pairing

*¥% *% *¥%
E, (X,3) ®E (X',Y') —>=E (XaX',34Y")

|0 i

%% *¥ * %
E,(X,Y) ® E, (X',Y') ——>E (XX YaY') ;

(iv) the spectral sequence E:*(X,3) converges to [X,Z]f if

(1) E and Z satisfy Adams' condition for convergence of the Adams spectral
sequence E:*(X,Z) = [X,Zlf {stated below) and
(2) Ey(Mic Z;) = O, where Mic Z; is the microscope, or homotopy inverse

limit of the Zj.

Remarks: Adams' conditions for the convergence of E:*(X,Z) = [X,ZIE are
(a) Z is bounded below,
(b) E is connective and u*:noE ® "OE * "OE is an isomorphism,
(e) if RC Q is maximal such tha% the natural ring homomorphism Z + wpE
extends to R » mpE then HrE is finitely generated as an R-module for
all r;

see [6].

The proof of the convergence will show that EgMic Z; = 0 is equivalent to
lim EyZ; = 0 = lin' EyZs.

Proof. First we will construet a new inverse system into which Z maps and from
w&ich E:*(X,}) will be obtained by applying [X,?]E. Then we will show that

E2 splits as stated. Next we will prove a statement which will imply naturality of
the spectral sequence and the first part of (iii) simultaneously. The next step is
to construct the smash product pairing and prove {(ii) and the last statement in

{iii). Finally we prove convergence.

To construct the inverse system from which the spectral sequence will be

obtained, we begin by choosing Adams resolutions

. T O LS O S
i® %0 i i,2 :
Let m; .: 2, . » Cf. . be the natural map. Since ECf. is a direct summand of E,Y.
1,d 1,4 1, 1 1
{as myxE modules), ExCf; is myE projective. Thus we may assume that EyZ; j is myE
Ed

projective for all i and j. We will inductively constiruct spectrs 73 and

maps fi: Z.

341 Zi and eyt zi + Zi such that we have a map of inverse systems
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fo f f2

1

Zy Z, Z,

l 1 [ez
f

_— — 1 —

Ly e—— I, = I,

To start the induction, let 76 = ZO and eqg = 1. Assume for induetion that we have

constructed Eb + wee e i& and ep,...,ey such that for each 1, 0 <1 < k, there is

an EyE comodule isomorphism

e

s

E*Zi = E*Zi ® E*Zi—l,l @D oo @ E*ZO,:'L

under which e; is inclusion of the first summand. This implies that E*fk is n,E
projective. Thus we may define

“k:zk e ka’ov eee ¥V CfO,k

by requiring that wyy = (g o) @ 1y 7 1 ¥ @ «o0 @ o,k * under the isomorphism,
’ > -
where ¢y:Zy + Cfy = Zy 5 is the natural map. Define fk Zk a7 Zk to be the fiber
’
of me. The definition of =y implies that the following diagram commutes, thereby
indueing €41

f [}
k K

Ly Zy " Cfy

} el J ey ("k,O’O""’O)

[} —

¥ f w
2 Kk~ X

> » eee V
B Zy Cfy,0¥ o,k

let C = C(ekfk) and D = Cey,q be the indicated cofibers, and consider the following
braid of cofibrations.

e f

/—u\ : Cff k-1
/\/\/
N ( N A

S

I3
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Since (eyfy)x is a monomorphism, r1x is an epimorphism and hence
E*C = E*Zk’0® E*Zk-l,l @ L4 Ekzo,k-

Since jyry = wy, we must have Jix = C)“i,kui ¥+ This is a monomorphism and, hence,

33 % is an epimorphism. It follows that
ED = E*Zk’1 (CEEENC] E*Zo,k+l .

Now r, y = O because (e)fy)y is a monomorphism. It follows that (r3j1)* = 0. This
implies that there is a unique homomorphism r:E¢D + ExZy4q such that

er ¥ = Tq xe Thus r,yr = 1, from which it follows that ExZysq 2 Exly,q ® ED and
that ek+1*; is inclusion of the first summand. This completes the indu;tion. We

define E, (X,g) to be the spectral sequence obtained by applying [X,?], to the

inverse system {?&}. It is clear that

s,t N g-i,t-1
E)TT(X3) = ?El PTHE,Of )

*%
To show that the same splitting applies to E

2
direct sum E)dl. For each k, ka = Cfi,k-i
and E*ka is n4E projective. Therefore, the map C?? > 2,

completely determined by its induced homomorphism E*C?i + E.C 1412

we need only show that d1 is the

is a retract of CkA E for some Ck

1 ka+1 is
which splits as

desired by construction. In other words, the sequence
0 - E*Cfo > E*Cf1 > ees
is the direct sum of the sequences

G » E*Cfi,o > E*Cfi,l > eee

with the ith sequence delayed until homological degree i1 before it begins:

0 —— E*Cfo,o E— E*Cfo,l [EE— E*CfO,Z —— s
® @ @

0 e E*Cfl,o E— E*Cfl,1 ————P s
@ @

0 ~—-—aE*Cf2’O — e

To prove naturality and the first part of (iii), we suppose given a map of
inverse systems



0 1

Y Q————~—~Y14—...

0

where, for each k, Cik is a retract of CkA E for some Ck. We shall factor this map

through the inverse system { k}.
that the following diagram commutes.

That is, we shall construct maps ci:ﬁi > Y, such

. k
Zy < el
ey Ck+1
T Ck+1
7, K Z.
k k+1
~
~
™~
ck"'l\ ~
C.;{' \‘
Ty 1 Tia1
k
We proceed by induction. Let cb = ¢q4 and assume inductively that cé,...,ci have
been constructed. We seek e£+1 such that
Crr1

Zeay
cl - -~ -
ekﬂl ’]§+/1,/ lik
. /’
Zk+1

commutes. With the notations used in the braid of cofibrations, the obstruction to

the existence of ¢! lies in the image of j;:[C,Cik] *> [D,Cik]. This image is

k+1
zero because O = J,yx:EgC + EyD while E,D is nyE projective and Ci, is a retract of

CyME.

This completes the inductive construction of the ci. Now (iii) follows by
assuming Yo « Yq < ees is an Adams resclution. For naturality, suppose given
t = ¥ ' ons = 71 . Al 5
33 {Ep < Z1 <« }. Let Yi Zi and let ci.Zi > Zi be the composite
Zi > Zi > Zi; then apply the preceding paragraph.
Our next step is to construct the smash product pairing. First note that
¥ A Y' satisfies the hypotheses of the theorem, so gives rise to a spectral sequence

*¥% *%
E, (X,37") = c;) E, (X,Cf;AY') ===[X,ZaY']; for any X. Choose an Adams
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resolution of Y' with each E*Yi projective over uyE

g, gy
Yl =Yl 4__Y‘<-———-..-
0 1
and let
= 7 [
Fn k_) Z1 A YJ .

i+j = n
As in the derivation of smash products in the Adams spectral sequence (Theorem 4.5),
we have a pairing from

E(X,3) @ L (X',Y)

- :3 T s
to the spectral sequence obtained from Fy « F; « »- by applying [X/\X',?]E, and
this pairing converges to the smash product. Thus, to show the existence of the
pairing
EX(X,2) @ B (X',Y0) > E(XAX, 2477
T ;} T y * L ’é." ;

we need only show that the sequence FO « F1 « ++e ig equivalent to the sequence

ZOA V' e ZlAY' -9+ derived from p ) Y'. To construct the latter sequence, we
need Adams resolutions of C(fil\l) = CfiA Y'. If we use the smash product of our

' T
AY' > Zn"Y

chosen Adams resolutions of Cf; and of Y' then both F,,q » F, and Zas1

have cofiber
\/ cf, . ANCg, .
i+j+k = n 79 k

Starting with FO = ZOA Y' = ZOA“Y' we obtain an equivalence

le R

1 1 ee e
ZOAY <—Z1AY “&—

by induction. This proves the existence of the pairing. It is immediate that it
operates componentwise on E;* because the pairing is defined by taking the smash
product of representative maps. This completes the proof of (ii). The second half
of (iii) is also immediate because the maps ci:Al induce a map from FO < F1 “ eee
to the smash product of the Adams resolutions of Y and Y'.

To prove convergence we refer the reader to [6, Theorem 15.1] for the body of
the proof and indicate only the changes needed to adapt Adams' proof to our
situation. The essential step is to show that (TTT fi)A.E = TTT(?&A E) so that we

i i

will have a short exact sequence

(*) 0 —>1lin' E,.7, —»E, Mic Z, —1in E,7, —0.
1 1 1

We will also want this result with 2& replaced by Z; throughout. By Adams’
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Theorem 15.2 it suffices to show n;fi =0 forr«< ny where n is independent of

i, and similarly for LSV

Since 7 = ZO is bounded below we may assume "rZO =0 for r < n,;. Then the
Hurewicz theorem and the Kumnmeth theorem imply that E.Zq = nr(Zo{\E) = 0 for
r <mn,. Since ExZ; > ExZ; is a monomorphism, E.Z; = O for r < n;. The Hurewiez
and Kunneth theorems now imply that H.Z; ®@mE = 0 for r < n,, but Adams shows
HrZi ® mpE = H.Z;. We conclude that =, Z; = O for r <ny. We therefore have a short
exact sequence

0 » lim' E,Z, » EMic Z, » lim K7, + O.
1 1 1

By hypothesis (6.1.iv.2}), E,Mic Z; = O and hence 1im? EyZ; = 0 = 1im EyZy.

By construction of ?&: §£+1 > E& we see that the inverse system
E*Eb - E*Ei + e+ 1is the direct sum of EyZy « EyZ; « +++ and an inverse system all

of whose maps are 0. It follows that 1lim E*Ei = 0 = lim E*Ei. Thus, once we have
- the exact sequence (¥*) we will know E, Mic E; = 0 from which convergence follows as

an Adams' Theorem 15.1.

It remains only to show "fzi =0 for r < ny-1. Since = Z. =0 for r <my

and all i, the exact sequence ani >

[T ]

1
nr_lzi+1 implies anfi 0 forn < nq and
all i. This easily implies that "rCfijz 0 forr < nq. Suppose, for induetion,

that "r§£= 0 for r < nl—l. The exact sequence
T+l j J,i-1 roi+l rzi

implies that "rzi+l = 0 for r < n;-1, completing the inductive step and, hence,

the proof of convergence. //

7. Homotopy Operations for H, Ring Spectra

In this section we define the homotopy operations which can be obtained from H,
ring structures and derive their purely formal properties. Calculations of extended
powers of spheres will enable us to give concrete results about thiese operations in
Chapter V. Most of our applications will deal with the case k = 1 of the following

definition.
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n n

*

Definition 7.1. If « €Y. (D, ST +es D, S5, define o tm. X see x 1+ m
Sl m'j 3 n n m

" 1 X 1 X
by letting o (fl,...,f’k) be the composite

. . Dy fyAceeaD fA
% p, S 1A eeenn, S Gy — K D, YAees AD, YaY 5> Y,

J1 Ik 91 Ix

Remarks 7.2. (i) We write ¢ for any composite of the maps g: DJ-Y + Y,
oyt DjlYA---I\DJ-nY > DJ-Y where j = J; + «+¢ J,, and u: Y(n) + Y, since they are all
homotopic.

{ii} We can obtain similar operations

*
IX,Y] x == x [X,¥] 2> [X,Y]
ny o m
1 P
parameterized by a ¢ Ym(DJ. S TA A Dj S ™) for any space X by defining
o¥(f1,..0,05) to be 1 X
1 X Dy aal_ K ny
Xa S 2% x4 A D, 8 Y 255 (A D,z TX)AY
i=1 91 i=1 Ji

J(/\D..fihl

*
a(fl"“’fk) i

k
Yeb— A D, YAY
i=1 Y1

where A is the composite of the diagonal X + X(k), a shuffle map, and the natural
transformation XADJ-Sn > Dj ™X. This is a direct generalization of the classical
derivation of Steenrod operations from the map Xa DyS » DyX.

The next proposition records fairly obvious properties of these operations.

Recall from I.§1 the natural transformation
8:D {XAY) » DX ADY.
The product u: YA Y » ¥ induces products

,AQ YJ.B _ Yi+1(AA B)
and

niY ® TI‘J.Y —_— ﬂi+jY,

both of which we denote by juxtaposition.
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Proposition 7.3. (i} « is natural with respect to H  ring maps

(i) (e + ) =o + ¢
) . .
(iii)  The natural inelusion 1:8% - DJ.Sn induces 1 (x) = x’
n n . n
(iv)  If o € ¥ (D, Staeeenn, s 5 and a, €1 (D, s ¥laciiap, 8 %)
mnod Iy 2 Jxe Iy

* * *
then  (ajay) (£1,000,8,) = ap (£1,0ee,fyday (£, 000,f))e
* *
(v) a {xy) = (§,{a)) (x,y). Thus if &, {a) =} a;8; then

Loy (208, (7).

H

a*(xy)

Proof, (i) and (ii) are obvious. (iii) follows from the fact that
v s D,Y —£ sy
is the j-fold product. {(iv) is also obvious from the definitions. (v) follows from

the commutativity of the following diagram

D, (xAay)al D,(u) Al
gh —ﬁ“———ij(snnsm) AY -—J—*——'-DJ.(YAY) AY ~J--—~DJ.Y Ay 5y

85la) §A1 § a1 u

D,xAD.Yal 1
DanA DjSmA Y D;¥ AD;AY ENE A YAY AY

Commutativity of the rectangle at the right follows from the definition of H, ring

spectrum and commutativity of the diagram

J j o2
§ s

1 133,2
DJYA DjY —-—-{-;——» Dij

3,3
by lLemma I.2.12. //

As should be expected from their essentially multiplicative origin, the
operations «" are far from being additive. In fact, their behaviour on sums is

determined by the transfer maps

7.:D,Y » D, YA +eeaAD, Y
I 3y Iy
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defined in II.l.4 for each partition J = (jy,...,Ji) of j. When J = (1,1,...,1) we

write Tj = tJ:DjY + Y(j).

Theorem 7.4. If o ¢ Y*Djsn then

a*(xl + eee + xk) = § [TJ*(a)]*(xl,...,xk)

where the sum is taken over all length k partitions J of j. If j is a prime p and
we localize at p, then for a e Y*Dpsn

0 p > 2 and n odd
¥ o _v ¥ 1 hol
a () x) =] alx)+ T Tp x(a)C(F xi)p -1 x0) p > 2 and n even
1, i)} x.x.) p=2
2 ¥ 15 17

(a1l unindexed sums are over 1 = 1,...,k).

Proof. This is an immediate consequence of Proposition I11.2.2. //

In the rest of this section we shall use the spectral sequence of §6 together
with the filtered maps obtained from §5 to describe the behaviour of homotopy
operations in the Adams spectral sequence. Let us adopt the following notations.
Let x ¢ mY be detected by x ¢ B0 C

ring theory E. Let © be the sequence

(S,Y), the Adams spectral sequence based on a

Dﬁssn . Dﬁs—lsn o aee < Disn . Snp

where n is c¢cyclic of order p and Disn = Wi K s? {p)

is the extended power of s

based on the i-skeleton W; of the standard free n» CW complex (W2i_1 = 821'1). By

Theorem 5.2, £D (x) induces compatible maps
i.n Dn(x) i

D”S » DY .
L ns ps-i

(if E*Yj is m4E projective for each j), and hence, by 6.1(iii), a homomorphism

*% * ¥
P (5,81 5 B, (8,1)

of spectral sequences provided the domain spectral sequence exists. Similarly,

smashing with Y and multiplying, we have compatible maps
(D°S") AY —= Y,
b ps-i

and, hence, a homomorphism

Plx): EL (S, B D) —rE. (8,1).
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Proposition 7.5. If .E*Di'lsn + E*D:;Sn is a n4E split monomorphism for each

*%
i < ps then the spectral sequence Er (S,ﬁ) exists and Ez(S,B) ig free over

E,(8,3) on generators e; ¢ E12)S-1,p8+pn

%%
(8,8 ). Similarly, Er (S,PaY) exists and
E,(S,B »Y) is free over E,{S,Y) on the images of the e; under the map induced by
the wnit S » Y.

Proof. The cofiber of D:;lsn *> D?[Sn is Wy/W; 4~ snip) . Snpi-i, so E*D:rsn is a

free nyxE module. Thus, Theorem 6.1(1i) implies that the spectral sequence exists and

, e .
Ej b(s, 8 )z @ 5 9t (5,57 OP

Lo

LI 1 o, -
£ 3, 4-np-8p (g o,

<o @

We let e; be the generator in Eg’ (8,3) for the j = ps-i summand. //

We think of e; as the np+i cell of Dﬂsn, or alternatively, as

€y ® 1, ® v ® 1, (this is its name in the cellular chains of D"Sn).

Note that & satisfies the hypotheses of the proposition when E = HZP' Recall
the funetion v from 2.4 (w(2j + &) = (-2)9 (m!])®).

Theorem 7.6. Assume in addition to the hypotheses of 7.5, that ExY is n4E
projective. Then P {x) sends e; to q;*(ei ® xP). Thus, when p = 2, Plx) sends ey
to PM*B(X) and when p > 2, P(x) sends (-1)3 vinle; to 8°PIX 1f 1 = (25-n)(p-1)-c
and to O if i does not have this form.

Proof. The definition of & (x) implies that ?(x)(ei) is the composite

P+l ey Wy A gh(P) a3 W Ay @ £i,ps .
Wi-l Wi~1 s,1 ps-1i,1

We choose as generator ey the map

mpri | e (0 200 (p)
s = 5tAg P, A gt P
i-1
in which ey € wg(W;/W;_ 1) = ¥ is the usual generator. Thus P(x)(e;) is exactly

the map which Corollary 5.4 asserts represents oyle; ®;p). //

Since P (x) anmnihilates elements e; with 1 not of the form (2j-n)(p-1)-¢, we

will ignore them too. In V.§2 we will see that this amounts to restricting

attention to a wedge summand of Dﬂsn which is p-equivalent to DpSn.
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Convergence of the spectral sequence Er(S,Ea) to w*DESSn implies that any
a € u*DﬁsSn is detected by an element § a8, € EZ(S,ﬁ), ay ¢ E;5(8,8).
Applying f?(x), we find that a*(x) is detected by | ak®*(ek(3 P). Similarly, for
a g Y*Dgssn detected by ae. € E2(S,EBA ¥), ay € E5(8,Y), except that if Y is
not bounded below we have no guarantee that Er(s, BAY) will converge to Y*Dis n’

Corollary 7.7. If o e Y,D P°s”

is detected by akPk+n<§ if p=2orbvy J (-l)jv(n)_lakBEPJ X if p> 2 and
k
k = (2j-n){p-1l}-<.

is detected by § aye, in E,(S, 1 aY) then o’ (x)

%
The map 3>(x):{Er (S, BAY}} » {Ei*(S,Y}} also enables us to translate

differentials in {Er(S,al\Y)} into differentials on Steenrod operations.

Corollary 7.8. If d.(aey) =} aieki in E.(S,9 AY) then

k.+n__

k+n —, _ i . _
d,.(aP x) =} a,P X if p=2 and
B CAC F UL i g
dr(as P X = y (1) a;8 "P " x ifp>2,
where k = (2j-n)(p-1)-¢ and k; = (2j;-n)(p-l)-e;. In particular, if ae, is a

permanent cycle, then so is aPX*m x  (if p = 2) or aBEszn(if p>2).

Note that Corollary 7.8 only applies to permanent cycles X. Much more general
results will be obtained in chapter VI.

The next result says that in the ordinary mod p Adams spectral sequence

(E = HZP), a homotopy operation cannot lower filtration.

Proposition 7.9. Let E = HZP' If x5 e myY has filtration s; and
n n
@€ L(D, S Ta seenD, S %) then a*(xy,...,%,) has filtration at least
1 x

Sl + eve + Sk'
Proof. First, it suffices to show that
D,Y —= DY -5»Y
J's J
1lifts to Y, for then “*(Xl""’xk) will factor through

Y_ A ceeAY AY >y AY —>Y
sl sk 31+...+sk

To obtain the lifting we need to factor Dij > DJY as the composite of s maps which
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are zero in homology. But this is easy. The factorization

Dij > Dij—l > rve > Dle + DjY

suffices since the natural isomorphism
- ()
H*(DJX) E H*(ZJ,H*X )

and the fact that HyY;,{ » HxY; is zero imply that H*DjYi+1 > H*DjYi is zero for
each i. //

Note that the proposition will hold in the E Adams spectral sequence whenever E
is such that if ExX + ExY is zero then E*Djx > E*DjY is also zero. The spectral
sequence

H*(zj;E*x(j)) —>  EDyX

only gives us this on an associated graded to E*DJX and E*DjY. I have no reason to

believe or disbelieve the result for general E.

Remark 7.10. There are two variants of P which are also useful. First, teking into
account the fact that all of D“Sn will be mapped into Y = Y, by the composite

D x
DnSn ——D Y ——>DY —E sy

we can replace DSSSn in B by all of Dpsn, giving B':
b8 « DB ( pPS2g L L plgt L g

We still get j?(x):Er(S L) E.(S,Y) for any x ¢ mxY. To get E,(S,8"') from

E,(S,®) simply replace the summand E2(S,S(n+5)p) by E,(S,z" ), which can

L;:(p—l )+ps
be obtained (through a range of dimensions) from Mahowald's tables [59] when p = 2.
Mahowald's tables have the virtue that they are derived from the cellular filtration
of the stunted projective space, so that elements are named by giving an element of
EZ(S,S) and the cell on which it occurs. Thus Theorem 7.6 and Corollaries 7.7 and
7.8 can be used with E,.(S,@') as easily as with E.(5,@).

The other variant of © requires that E = HZp. It takes account of Proposition
7.9 by putting everything into filtrations between s and ps, rather than O and ps

as ' does. That is, @©" is the sequence
D& == Dpr'l)s'lsn e e D11TSn « 5P

with D"Sn in filtrations O through s. Its F, term is similar to E,(S, 8'). It has
a copy of E,(8,8) for each cell from np to np + (p-1) - 1 together with an copy of
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N, o
B8 2 L nes) (p-1)
it has all homotopy operations (unlike E.(S, }2) which only uses the bottom ps cells

). The spectral sequence Er( S,19") is optimal in the sense that

of D“Sn) and puts them into as high a filtration as they will go universally.



CHAPTER V

THE HOMOTOPY GROUPS OF H_ RING SPECTRA

By Robert R. Bruner

§1. Explicit homotopy operations and relations

This section contains statements of our results on homotopy operations as well
as some applications of these results. The proof's depend on materisl in $§2 and will
be given in §3.

Note that, aside from the computations in »yS at the end of this section, all
the results here apply to the homotopy of any H, ring spectrum Y. Let E:DpY + Y
denote the structure map.

The order of results in this section is:

relation to other operations,
particular operations and relations,
Cartan formulss,

computations in =S,

remarks.

In order not to interrupt the main flow of ideas, we have deferred a number of
remarks until the end of the section.

Throughout this section let Er{X,Y) be the ordinary mod p Adams spectral
sequence converging to [X,Yly, and let E.{S,D) be the spectral sequence of IV §6
based on ordinary mod p homology. Let @ be the sequence

= i + eve 4 1 + O -
D = {Dps“ « Dpsn DS, ps“}

From the spectral sequence E.(S,D) we obtain an isomorphism between an assoclated
graded of n*DpSn and E_(S,D):

0y DS = E_(S,R).

write E9(q) for the image in E:’*(S,b) of an element a¢ w*DPSn of filtration s. By
W.7.5, E5{S,D) is free over E,(S,S) on generators e; corresponding to the cells of
DpSn. By 2.9 below, & more convenient basis over E2(S,S) is given by the elements
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end _ J
B°PY = (-1)ulndes o)

where ¢ = O or 1 (e =0 if p=2), g = 2(p-1) {g=11if p = 2), jg-e > n{p-1) and v
1 if p = 2). Thus, E{a) can be written as a

i

is the function defined in IV.2.4 (v

linear combination of the g®PJ with coefficients in E,(8,8). Recall the operation

a*: Y+ "NY associated to each element ae nNDpSn.

Relation of the o to other operations

*
Proposition 1.1. If 1:5%P » DpSn ig the natural map then 1 (x) = x¥ and

P p=2
0 _ J I
E (1) =4 P p>2and n = 2j
0 p > 2 and n odd

Propoosition 1.2. let h:mg + Hx be the Hurewicz homomorphism. If (o) = gEPJ then
% 7 X
hodo =8° oh, where g5QJ is the Dyer-Lashof operation defined in III.1.

0 v e J . -
If E{a) = a; 8 P, with each a; (€ Ey(S,5) and X €E,(5,7), we let

Pa)(x = § aj’SBSP'j x).

Proposition 1.3. (Kahn, Milgram) If x¢w,Y is detected by E'EEZ(S,Y), then o (x)
is detected by Eo(u)(f).

To see the relation to Toda brackets, suppose we have compressed o into the
np+i skeleton D;Sn and that it projects to 3 on the top cell SPP*1, ret

o 1 i_l
Q; l(x) = Dp(x)ID; 1 and 1et ;i €mypei-1Dp S be the attaching map of the np+i
cell.

* ~ i
Proposition 1.4. o (x) €< a, c, gD; 1(x) >. The set of all such a(x) is a coset

i-1 i-1.n
of gDp (x) o "NDp S .

Note: We will frequently find further that (q) = asapj where 1 = jg-e-n{p-1) and
(-1)dv(n)a detects 3. Then

2(a) (30 = 2253 = st (D),

so that q* is detected by Toda brackets in essentially the same fashion as by
Steenrod operations in E,(S,Y).
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*
Hereafter, if @ €E_(5,0) and xen Y, let o{x) = {ao (x)IEO(a) = 9}. Clearly,

the indeterminacy in o(x), defined to be

Ind(e(x)) = {o (x) - 8 (x)]E2(a) = 0 = E0(p)},

is the set of values of all homotopy operations on x whose corresponding element in
Ew(S,b)‘ has higher filtration than does 0.

Proposition 1.5 (Kahn, Milgram):

(i) BEPJ acts on w.Y
(ii) e;eE_(S,0),

(1i1) D;Sn
(iv) if p
if p

The functions

Definition 1.6.

n

is reducibdle
= 2 then n =
> 2 then ¢ =

or g =

-i-1

The following are equivalent:

i = jg-e-n(p-1)

(2¢(i));

Oand n = 2j,
land j =0 (pvii)y,

¢ and ¢y are defined in 2.5 and 2.11 below.

If p =2, let Bg = 2, By =Ny By TV and let Bj be a generator of

Im J in dimension 8a+2b—1, where j = 4a+b and 0 <b < 3. If p > 2, let ag = p, and

let a; be a generator of Im J

J

in dimension jg-1.

Theorem 1.7 (Toda, Barratt, Mahowald, Cooley): ILet p = 2. If xem,Y and
J = 4a+b, 0 < b < 3, then

8.

and Bj o Pn+1(x)

o x2 =0
J

= ax2 for some o €7 bS if n
2

nzo2l -8 -20 -2 (20*1),

Theorem 1.8. Let p > 2 and x em Y.

if n

=2 _ ga - 2b -1 (23+l)

0 (2) and

il

8a+

Let ep(a) denote the exponent of p in the prime

factorization of a. If n = 2k-1 then

If n = 2k then

a, O Bka =0

J

[+ A

J

[} 8Pk+1x =

uxp

if j=0

or j > 0 and ep(k+j) = j-1.

for some a n(j+1)q_2s
if 3 =0

or j > 0 and ep(k+j+1) = j-1.
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Theorem 1.9. The operations listed in Tables 1.1 and 1.3 exist on ny, and satisfy
the relations listed in Tables 1.2 and 1.4. In Tables 1.1 and 1.3 the columns
labelled "indeterminacy" list generators for the indeterminacy of each operation,
and the columns labelled "rp*" list the values of

. P .
Tp*'“NDpSn > 7 Sn S

N = TTN_np
thereby indicating the deviation from additivity of the given operation (by IV.7.4).

TABLE 1.1

Operations on n, for p > 2

n operations indeterminacy Tp
n = 2k-1 8Pk 0 0
hPE 0 0
glPk 0 0
n = 2k-1
gp*l noP~ 0
Xx=-1 {(p
n = 2k-1 hosPEtL o8P 0
k= -2 (p) BPk+2 glPk and 0
ngPE*L (if it exists)
n =2k pX 0 p!l
BPk+1 alPk multiple of aq
hOPk+l a2Pk multiple of oy
n = 2k gpk*2 hoPX*Y and multiple of a,

k= -2 (p) (12Pk
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TABLE 1.2

Relations among operations on L forp> 2

n relations

= 2k-1 pgPX = phyP¥ = pg,P¥ = 0
(k+1)ap 8P = 0

= 2k-1 papPk*l = _p pk

= -1 (p) 018P¥*1 = 0 mod a,sPK

= 2k-1 phosPE*l = 0 mod aysPX

= =2 {(p)

= 2k kay P¥ = pgpE*l
(k+2)a, 6" = 0

= 2k psPE*2 = _nPX*l mod o, P¥

n

-2 (p)
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TABLE 1.3

Operations on ™ for p =2

n operations indeterminacy Tox
n =0 (4) pn 2p? 2
potl np? n
pnt+3 2Pn+3,an multiple of v
hy P2 2h PA*2 PR multiple of v
nzl (4) pr 0 0
nypo*1 2p
1 LIRS Y 0 or n2
pte 2pR*e 0 or n?
h PP*5 2n,PO*5 2P0 0 or V2
h%Pn”* 2h§l’n+4, VPP 0 or v?
hipn"3 2hiPn+3, V2Pt 0 or v2
n=1 (8) pi+o 2pRte 0 or v°
nsz2 (4) R 2P 2
Pn+l nPn 6]
nyPt4 2n pOH4 0
hiPn+3 2h§Pn+3 0
nIpP+e 2n3pi*e 0
1 1
h2Pn+3 \)2Pn 0 or v2
nz2 (8 p+s 2pR*> 0
n = 3 (4) pt 0 0
han+1 0 0 or n2
+3 +3
h, Pt 2n, P8 0
hipn+2 n2h1Pn+l 0
hy P2 0 0
nz3 (8 pot4 2pit4 0
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TABLE 1.4

Relations among operations for p = 2

n+l

= (4) 2P = 0
2hlpn+2 - n,'2Pn+1
=0 (8) 2p™*3 - han+2
nPn+3 =0
2\)Pn+3 = \)han+2 =0
= 4 (8) 2p™3 2 han+2 + VPR
nPn+3 = an+1
vh Pn+2 = v2Pn
1
=1 (4) 20" = 0 2h1Pn+5 - hiPn+4
2h1Pn+1 = 2Pt 211?1—””“4 = hiPn+3
2p™2 - n Pl 2™ - o
nhan+1 =0
=1 (8) N L
2an+2 = 0
2p™0 . han+5
=5 (8) A
an+2 =0
=2 (4) 2p™ L o 0 2hlpn*4 - hiPn+3
R 2h§Pn*3 - hipn*z
WPt =0 2h§p“*2 =0
=2 (8) 2P - hlp“+4
nPn+5 = h Pn+3
2
= 6 (8) o
2h2Pn+3 o
nhan+4 = 0 mod \)2Pn
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= 3 (4}

=3 (8)

e

=7 (8)

It
(@]
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Cartan Formulas

For later computations we need the Cartsn formulas for the first operation

above the pth power.

Proposition 1.10. let p = 2, x en,Y, ye n, Y. Assume n+m is even. Then

Pn+m+1(xy)= S _(x,y) n

where Sn mifg X
b4

Pnﬂ(x)y2 + x2Pm+1(y) N mnx2y2 nzmszs 0 (2)

i

3 (4) or m= 3 (4)

i

n,m

n12y2 n

n,m mz1 (4)

Sn,m(x,y) +c

i

m * F2(n+m)+1 is an operation such that

(s, ) = POPTL . plpn

and where c
2

1 {4}

1
=]
1

nxy n

Sn,m(x’y) *

0 n

m
W

(4) or m = 3 (4) ,

n 18 an integer depending only on n and m.

Proposition 1.11. ILet p > 2, x ennY and yen Y. Then

(i)

(i1}

(ii1)

if n = 2j and m = 2k,

8P3+k+1(xy) - 3PJ+1{x)yp . ngpk*-l(y) N dn malxpyp
b

where dn,m is an integer depending only on n and m.
if n=2j and m = 2k-1,

8Pd " K(xy) = xPgpk(y)
if n = 2j-1 and m = 2k-1,

BP‘j+k(xy) = Sj’k(x,y)

where S, Y x

3,k ¢ T23-1 2k 2(j+k)p-3"
0 o3 ok L o k .
that E°(8; 1) = g o PC+ P . P and PS5 (x,¥) = 0.

lY K is an operation such
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Computations

Our final results contain extensions to all H, ring spectra of classical
results about wyS due to Toda, Barratt, Mahowald, Gray and Milgram, as well as some

low dimensional calculations at the prime 2.

Let = denote equality up to multiplication by a unit.

Proposition 1.12. If p = 2 then PX(2) = n.

Proposition 1.13. If p > 2 then gPL(p) £ a

Combined with the Cartan formulas 1.10 and 1.11, these yield the following

results.

Proposition 1.14. Let xen Y and n = 2j. If p = 2 then P**1(2x) = nx®. If p > 2

then st+1(px) - alxp and BPj+p'l(alx) = lep. The indeterminacy of each is O.

Corollary 1.15. let xem Y. If p =2, n %1 (4) and 2x = 0, then nx® = O.
If p> 2 and px = O then alxp = 0. If p>2and X = 0 then slxp = 0.
particular, a16§ = 0.

In the next proposition, the statement "an(x) = y mod A" means that A
is the indeterminacy of aPJ when applied to x. If the indeterminacy is not

mentioned, it is O.

Proposition 1.16. The following hold in myS localized at 2.

(1) PL(n) = 12

(1) P2(v) = v%, n P = no or 3, BP7(0) = o,
(111)  P?, n P4, h1P6, n’p’, end n,P’ annihilate 2v and 4v.
(1v)  p°, P7, np?, and hfpg annihilate v°.
* *
(v) P7(c) = 02, hlPB(o) =qn orn + np,
* * —_
hlPlo(c) = v  mod <2v > + <np>,

* * —
hin(o) = 2v mod <4v > + <pu>.

(vi) P'(20) = 0, nP®

(20) = 0, h,p%(20) = 0,
10 * * —
h P (20) = 2v mod <4y > + <>,

* _
h§P9(2a) =4y mod <np>.
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(vii) P/, hlPB, n%p? and n,p” anninilate 4o,

* —
hlPlo(40) = 4y mod <pp> .

Remarks: These are listed by the result to which they refer.

{1.4): The indeterminacy of the Toda bracket <3, css gD;'l(x)> in Proposition

i-1.n

. i-1 ~ . . * .
1.4 is gDP {x) o wNDP S+ {unp+.Y) o &, while the indeterminacy of a {(x) is

i
only gD;—l(x) o nND;_lsn. This reflects the fact that a*(x) uses the canonical
null homotopy Dé(x) of I%_l(x) o c;, whereas the Toda bracket allows any null
homotopy of gD;-l(x) oe; .

(1.8): Since Thg-2 is the first nonzero homotopy group of S in a dimension

congruent to -2 mod q, we get
GjBPk+1x = 0

for j < p-1 satisfying the hypotheses of (1.8).

(1.9): (i) In the range of dimensions listed, the operations and relations
given in Tables 1.1 through 1.4 generate all the operations and relations over mnyS.

For examples, when n = 0 (4) and p = 2:

(a) nPn and nan are nonzero operations because the relations listed do

not force them to be O;

{b) the relation 4h1Pn+2 = 0 follows from the listed relation
2n P2 = (2pttl
and is therefore omitted;

{c) the redundant operstion han+2 is included because the relation
2p™*3 = p P2

which makes it redundant reflects a universally hidden extension:

A

[]
w2 ||
:
]

3

2n+2 2n+3

P

ngPP*3 = 0 in E, and 2P%*3x  is detected by hyP"x,
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(i1} The operations of degree n+3 for n = 0 {4) and p = 2 are particularly

interesting. If n = O (8) then by [59] 1:2n+3D28n = 28 C)ZS. It is generated by
vP* and P**3 with relations
2P™*3 = n pA*2
and 4PR*3 < op P2 = 2pntl,

If n = 4 (8) then [59] gives n2n+3D28n = 2, ® 2y, and 1t is generated by han+2 {of
order 4) and P2*3 (of order 16) with relations

2n P2 = 2pntl

2P*3 = P2 4 PR

4P03 = 2pntl 4 pypn

8P 3 = 4uPR.

(iii) Fniries in the « 2y

calculated 1

% column such as "0 or n“" indiecate that we have not

p
¥ Such entries simply list the elements of 73S in the relevant

dimension. Even this limited information is useful in Proposition 1.16.

(1.10) and (1.11): Let y: @ » O ® (L be the diagonal of the Steenrod algebra
(W™ =y PPN, 1

0
E{a) = § ajA;, aje E2(S,S), Aeaq

then
2lsgla)) = § agp(a).

This defines §y{a) and, hence, the formula for a*(xy), modulo higher filtration in
E(S,0).

(1.15): This proof that « Bp = 0 differs from Toda's in that Toda views the

171
product in myS as composition and studies D (" en+1)

smash product and study DpSnA Dpsm. Toda shows that

while we view it as the

p_(s°, ™) >sP,, P
o P b %y

n n+q, . np np+pa-1
DP(S . © ) 28 . € .

1
Thus, if px = O or a1%x = O then alxp =0 or Slxp = (), respectively. The proof given
in 1.15 uses the values of the operations on p and oy, rather than the structure of

Dp of their cofibvers.



141

Segal {49] saw that the Cartan formula for homotopy operations should provide a

proof that a18§ = 0, but his explicit formulas were incorrect.

There is still another proof that alﬁg = ( which uses virtually none of the
machinery of homotopy operations, but does require that we have calculated enough of

xS to know that the pzq-B stem is either O or Z Given this, the relation

-
D _ P
-a, 87 = DB (8,)

from Table 1.2 implies that als§ = 0.

Remark 1.17: This is a quick survey of results on homotopy operations which are not
included here. Toda [106] shows thit the extended powers propagate several
relations. For example, if <aq,p,x> = O then Bsxp = 0mod aq for 1 < s <p. As
corollaries he shows that stg = 0 and the g, are nilpotent, foreshadowing Nishida's
proof, a few years later, that all positive dimensional elements of nyS are
nilpotent.

Gray [36] obtained results similar to 1.15 using homotopy operations which are

associativity or commutativity obstructions for ring spectra.

Oka and Toda [92] have extensive information on the cell structure of
DP(SQ\JP en+1) which they use, in particular, to show that y; # O.

+1)

Milgram [80] also uses extended powers D2(Sn\J i & to define homotopy
2

operations which can be iterated to yield infinite families of elements in nyS,

presumably related to the elements detected by K-theory.

Cooley, in his thesis [30], uses extended powers to compute some Toda brackets
and to derive 1.7 as well as the relation ex® = 0 if X e , n = 2,3,7 {8), which is
not in 1.7.

n

Milgram {79 and 81] computes the Coker J part of the operations on wgS and =gS
using Steenrod operations in E,(§,S).

§2. ZFxtended powers of spheres

In this section we collect the results on extended powers of spheres which are
needed to prove the results of §1. They will also be essential to our results on
differentisls in the next chapter. First, we recall the values of the K and J
groups of lens spaces. Then, we identify the spectira Disn, « cyelic, as the
suspension spectra of stunted lens spaces and determine when they are stably reduc-
ible or coreducible. Also, we show that, after localizing at p, DpSn is a wedge
summand of D"Sn, which gives a simple cell structure to DpSn.
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Throughout this section, let p be a prime, let 7 < &, be the p-Sylow subgroup

P
generated by the p-cycle (1 2++s+p), and let WX be the k-skeleton of a contractible L
or Ep free CW complex W. (Definitions 2.1 and 2.7 provide the n free CW complexes
which we shall use most frequently.)

The results for p = 2 are analogous to the results for odd primes, but are

sufficiently simpler that we state them separately. We begin with odd primes.

Definition 2,1. Iet p > 2 and let p = exp{2xi/p). Iet = act on the unit sphere
gek+l (o ck+1 by letting a generator of n send (Zi) to {pz4). Let

2K+l 2kl

S /m,
~2k ~2k+]1 .
L™ = {lzg,eer,zy ) € L | zi is real and > 0},
sn+k _ on+k on-1
and Ln = L 7/L s
where [ZO"“’ZE] denotes the equivalence class of (zg,...,%,) and $2k-1 4
*>Nn+k

embedded in f2 by setting z, = 0. We call Ln a stunted lens space.

Each representation of » on c¥*1 without trivial subrepresentations yields a

k+1 k+1/“_

free n action on &° and a corresponding lens space £

Since they are all
stably equivalent we have simply chosen our favorite. Note, however, that the

others reappear briefly in the proof of Proposition 2.4.

It is easy to see that - in'l is an open n cell. Thus fn+k has one cell
in each dimension between n and n+k inclusive. Note that i§ = 1" and ig = (th7,

the union of 1 and a disjoint basepoint.

Since T° = S%/7 is a K(w,1), H*(t“;zp) = E{x} @ P{gx}, with |x| = 1, end
the Steenrod operations are specified by

Pi(xe(sx)j) - (g)xe(ﬂx)j+i(P-l).
The isomorphisms

Hli;;*k — R gl

¥o
for n < i < n+k then determine H L2+k as an Clp module.

Definition 2.2. ILet p > 2 and let 7 act on C by multiplication by p. Let
£ eXKU(T?X*L) be the bundle

S2k+l x_ c S2k+l x"{O} - i?k+l ,

1

let Ly = r(gl) eKO(T..'Zk+ ) where r:KU » X0 forgets complex structure, let
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r= 3 JEh), andlet o= - 15« REEHT) . tet g,0,,0 and o also
+2k

denocte the restrictions of these elements to L7 .

We collect some results from [47], [48] and [58] in the following theorem.

Theorem 2.3. Let T2% » ToK*1
generated by x.

* o o
(iy 1 :KU(L2K*1) > KU(LZk) is an isomorphism and

be the inclusion and let <x> denote the cyclic group

ﬁﬁ(igk) = <g> @ <02> @D s @ <gp-1)
(11) K0 - BE) 1s an epimorphism,
RO(E2%*) = ®B(1%%) @ K3(s%XH,

and i¥ is projection onto the first summand under this isomorphism.

(ii1)  J(E") = «Ir(o)> = <¢ - 2> and has order p[k/(p'l)],

i2k+l » o2k 2k+1

3 y = T(IEH @ F(s )

and i is projection onto the first summand under this isomorphism.

Mso, J(gg) = ¢ for 1 = 1,2,...,p-1.

Proof. This is all in [47], [48] and [58] except J(;i) = ¢, which follows from the
Adams conjecture:

Izy) = Jrgi = erig =Jre =¢.  //

The extended powers Dﬁs“ are suspension spectra of Thom spaces of complex
bundles over ik = Wk/n. Thus Theorem 2.3 ensures us that the following theorem
{proved in [81]) identifies all such spectra. Note that its proof does not require

p to be a prime.

Theorem 2.4. If s > 0, the Thom complex of r + sg over f# satisfies

°T(r + s7) = z”xri‘;z*k.

Proof. The contribution of the trivial r dimensional fibration is obvious and may
be ignored. We will actually prove a much more precise result. If o is an n-
dimensional representation of 7, we let K'(a) and S71(a) denote F* and S~ with n
action given by o. If the action is free on gP-1 we obtain a closed menifold

L{a) = Sn'l(a)/w. If o and B are two such representations of dimension n and k
respectively, let «|L(B) be the bundle
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s 1ig) x Ba) —= s¥1(g) x {0} = L(B).

We claim that there is a homeomorphism

T(a|L(8)) = L(g @ a)/Lia),

where L{a) is embedded in L{g8 @ a) as the last n coordinates. This will imply
Theorem 2.4 for odd k (since L(8) is odd dimensional, p being odd). The even case
will follow by removing the top cell on each side, since the homeomorphism will be
cellular if we give the Thom complex T(a|L(g)) the natural cell structure compatible
with that of L{g).

To establish the claim, let f£:85 1(g) x E'a) » 215 ® a)/n be induced
by the natural inelusion S5 1(g) x Ra) » B5(g @ a) - {0} followed by the

radial retraction MY _ [0} 5 §*¥-l, It is easy to check that f is one-to-one and
maps onto everything except the copy of L{a) embedded as the last n coordinates.
Just as easily, one sees that f sends the zero section of a{L(B) to the embedding of
L(B) as the first k coordinates. It follows that a|L(g) is the normal bundle of
this embedding L(g) » L(8 ® «) and that its Thom complex is L(g ® a)/Lla). //

The fact that 1z ¢ J(fk) has finite order enables us to define stunted lens
spectra in positive and negative dimensionms.

Definition 2.5. Let ¢(k) = [k/2(p-1)]. If n is any integer, ¢ = O or 1, and k > ¢,
let
»2ntk _ _2{n-r) _ox2r+k

Lopee = F Llorie

for r=zn (pw(k)) such that r > O.

The following result shows that the spectrum T§+k is well-~defined up to
equivalence in T §. Recall that an n-dimensional complex X is reducible if
X/Xm'l = §* and the projection X » S has a right inverse. Duelly, an (n-1)-
connected complex X is coreducible if X = 8% and the inclusion S »+ X has a left
inverse. Let W = &, let q:W + I be the quotient map and let wk = q'l(ik). Then
we may define Dfx = Wk % X(p).

Theorem 2.6. Let S be the p-local n-sphere spectirum. Then

s k.o nen{p-1l}+k
{1) D“Sn = ZnLn(p-l) .

is coreducible iff n = O (pw(k)), while i2n+k

2n+k
L 2n+1

2n
coreducible iff k = 1.

(ii) is
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(141) Ife=0or1, k> c andn = r (p*'¥)) then

~2n+k 2(n-r) «2r+k

Lonee = 2 Lopse
~b a-1
{iv} L, end L bl 8&Te {~1) dual spectra.
s2n+k

(vl If e =0or 1l and k > ¢ then L

onte is reducible iff either kX = ¢ or k
is odd and 2n+k+1 = 0 (p¥ik}y,

Proof. If n > O then D Sn = Wk Sn(p) = 3 T(nyk) where yy 1s the restriction

1o ik of the bundle over FA Bn induced by the regular representation of =.

Sinece yy = 1 + gq + eee + g, Jlnyy) = n + nmg (where 2m = p-1). By Theorem 2.4,
nen{p-1)+k

b T(nyk) = 1 Ln(p—l)

If n < O then, by [Equiv, VI.5.3 and 5.4]
W s PP L s Nyt my )
T " k
for sufficiently large N, and since J(nyy) = n + nmg, we find that

n(p) _ =N e, _ Den(p-1)+k
wE o s = L L T(N+n + omg) = I Ln(p-l)

by Definition 2.5 and Theorems 2.4 and 2.3.(iii). This proves (i}.

By Theorem 2.4, L ~2n+k = ZMT(n;]i )« By [15], £™T{ng) is coreducible if and

only if J(nz) = 0, so the first half of (ii) follows by Theorem 2.3.{iii). For
the second part of (ii) we need only note that the Bockstein is nonzero on ol e
k> 1.

To prove (iii), note that J(nz) = J(rz) ifn=zr (p¢(k)) by Theorem
2.3.(1id4).

To prove (iv), first consider i§g+k with k odd. By Theorem 2.4,
~] ~X
L§§+k =3 T{ng}L }» Since k is odd, L is a closed manifold. By considering the
fibration

st . X, opl¥Rl
we see that the tangent bundle of ik is ([k/2] + 1)z - 1. Atiyah's duality
theorem [15, Theorem 3.3] implies that the (-1) dual of 12§+k
I™T(1 - (n+[k/2] + 1)) = 179071

-2n-k-1"
combinations of odd or even top and bottom cells, we use the duality between

To prove (iv) for the other three possible

inclusion of the bottom cell of a complex and projection onto the top cell of its
dual.
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Finally, (v) follows from (ii) and (iv) by the duality between reductions and

coreductions. //

Now we present the analogs of 2.1 through 2.6 for DpSn instead of DﬂSn. Since
the transfer splits DPSn off as a wedge summand of D"Sn, we can use this as a short-
cut to the resulis we need. Ilet X(p) denote the p-localization of a spectrum or

space X. The following result is proved in 17].

Proposition 2.7. There is a CW spectrum L with one cell in each nonnegative
dimension congruent to O or -1 modulo 2(p-1), such that L = (ZmBzg)(p).

Definition 2.8. Let L¥ be the k-skeleton of L and let L0 = L™¥/1* irn > o,
_ 2n+k _ _2(n-r), 2r+k - (k)
Ifn<0,e=0o0r1l, and X > ¢, let L2n+€ =z L2r+e for r = n (p¥'*!) such
that r > 0.
Note that n and k are not uniquely determined by Lﬁ+k as they are by ig+k. For

example, L% = Lg = ees = Lg-l’

1,2,...,9-2.

where q = 2(p-1), since L has no cells in dimensions

Theorem 2.9. let S” be the p-local n-sphere spectrum and let g = 2(p-1). Then
. AR 25-1  2j-1.=
(1) 089 « 17 and D8 = z“7°L] .. The maps D_S® » DS and

P Jja D ja-1 bs Upo B

Ntk n+k
>

Lh Ln induced by the inclusion = ¢ zp are projections onto wedge
sunmands .
(ii) ng*k is coreducible iff j = O (p¢(k)) while qu+k is coreducible
Ja ’ Jjg-1
iff k = -1,
(141) If e = Oor 1 and i = j (p***?¢)) then
Ok, -t dank
Jq-¢ ig-¢
. ig-§¢ . R -jgte-1
{iv) If ¢ and § are O or 1 then qu_g is (-1} dual to L—iq+5-l .

(v} If e =0 or 1 then ngiﬁ has a reducible jg+k cell iff either

k=¢g=0o0r k= ig-1and i+j = 0 (pite-1y,

Note: Part (i) shows that bottom dimensions of the form jq-e, € = O or 1, are more
natural in this context than jq+e. This accounts for the exponent y(k+2¢) in (iii),
where (k) might be expected.



147

Proof. By the remark preceding the theorem, the first statement in (i) can be

abbreviated to DpSn = Y

n(p-1)° The transfer (I sz)(p) + 3§ Br splits off L” and

l;(p—l) as wedge summands of T° and i;(p—l) respectively. Similarly, the
transfer splits off DpSn as a wedge sumand of D S". The maps
t1 N0 il n.«
D s —=»p & = "L —= "L
P ) n(p-1) n{p-1)
and
n. e t2 hat & i2 n
Pl z i:Z(p—l) =D DS

where t; and t2 are transfers, and il and 1, are induced by the inclusion 7 C zp are
inverse equivalences because their composites induce isomorphisms in mod p homology.
This proves (i). Now (ii)-(v) follows from 2.6 and (i). //

The preceding theorem does not assert that W- g p) , popalp-1)+k

n(p-1) where

D
WX is the k-skeleton of a contractible free I, space, because this is not true. In

general, Wk “z Sn(p) will have homology in dimension np+k which goes to U in Dpsn
1%

and in Zn n(p-1)+k- Since we are only interested in homology which is nonzero in

D Sn, EnLn(p-1)+k is more useful to us than is Wk [ Sn(p)‘

iY n(p-1) Zp

rather than Wk o Sn(p).
p

The preceding theorem also shows thet we may ignore the distinction between
+k

n{p-1)+k

Therefore we will let DkSn =z
P n{p-1)

1% ang 8
n n
information about DPSn because J theory only gives information about coreducibility

without harm. We used iﬁ*k and D“Sn as a stepping stone to

of Thom complexes, and we need Atiyah's S-duality theorem to convert this to infor-
mation about reducibility. The S-duality theorem of Atiyah only applies to Thom
complexes of bundles over manifolds so cannot be used on bundles over the skeleta of
sz, or over the even skeleta of Brn. Conveniently, the odd skeleta of Br are
manifolds (if we use a lens space for Br). To obtain analogous information about
DS for nonprime r, a similar technique works. First, we split D.§" off of D_S"
using the transfer, where t C I, is a p-Sylow subgroup. Then the structure of 1 (a
Cartesian product of iterated wreath products of =} suggests manifolds mapping to Bt
which we can use just as the odd skeleta of Br are used here.

We now turn to the analogs of 2.1 through 2.6 for p = 2.
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Definition 2.10. Iet n > O, let » = I, act antipodally on " and let

PP o= g%y

I e Y San

We call P§+k a stunted projective space. Let £ in KO(P®) be the canonical real

line bundle and let A = g-1 ¢ KO(PP).

Remarks. (1) If p = 2 we will agree to let I and 1™ mean P* and let L2+k and
ﬁg+k mean P2+k so that uniform statements of results for all primes can be given.
The P! and Pg+k notation will still appear frequently because many of the results

are not the same for even and odd primes.

{2} It is easy to see that . Pn'l is an open n-cell so that PS*k has one
cell in each dimension between n and n+k inclusive. Since P” = S”/Z2 is a K(Zz,l),
¥ oo
H (P";25) = P{x} with |x]| = 1 and

satxd = ()t

i
The isomorphisms
H1P2+k R H1Pn+k . Hle
*
for n <1 < n+k thus determine H P;”k as an a2 module.

Theorem 2.11. Iet ¢(n) be the number of integers j congruent to 0,1,2, or 4 mod 8
such that 0 < j < n. Then §6(Pn) = <)x> and has order 2¢(n). Furthermore,

T:KO(P™) » J(P™)

is an isomorphism.

Proof. KO{P®) is computed in {1]. The computations there and the Adams conjecture
imply the last statement. //

Theorem 2.12. If s > O the Thom complex of r+s¢ over P* satisfies

sT(r + sg) = z”P§+n.

Proof. The proof of Proposition 2.4 can easily be adapted to prove this as well.

As for odd primes, we can now define stunted projective spectra starting and

ending in any positive or negative dimensions.



149

Definition 2.13. For kX > O and any n let

n+k _ _n-r e _T+k
Pn =3I I Pr

for any r = n (2¢{k)), r > 0.

The following result shows that P otk is well defined up to equivalence in

nd. Let SK have the antipodal action of m. We define D X = ¥ " x?),

Theorem 2.14. Let S" be the 2-local n-sphere spectrum. Then

k. n n_n+k
(1) D,S" = I'P,
(ii) P2+k is coreducible if and only if n = O (24 (X))
(111) If n = m (2008)) then PO o pPTRIK
{iv) Pg and P_g_i are {~1) dual spectrs

{v} Pg+k is reducible if and only if n+k+l = O (20K,

Proof (i) follows for n > O from Theorem 2.12 once we observe that the regular

representation yy is 1 + §. For n < 0 we have

k.o k n ©
DZS = 2(2 8) = Ny T(N + nyk)
by VI.5.3 and VI.5.4 of [Equivl, for sufficiently large N. Hence D]?fsn N znP§+k

for n < 0 also, again by 2.12.

Parts (ii) through (v) follow exactly as in 2.6. In (iv) we use the fact that
P? is a closed manifold with tangent bundle (n+l)g - 1. //

The last results in this section identify the top dimensional component of any
attaching map of DpSn by combining Thecrems 2.6 and 2.14 with Milnor's result on
Thom complexes of sphere bundles over suspensions. First we must define the maps
under consideration. As in §1, g = 2(p-1) and ¢ = 0O or 1 (g =1 and ¢ = 0 if

=2},

Definition 2.15. Define a function Vp by

Vp(n) = max{v|1} is reducible}.

n-v+l

v-n

let v = vp(n) and define ap(n) €1my_15 to be I of the composite

Sn-l 18-V -V

in which the first map is a 1ift of the ataching map of the n cell and the second is

projection onto the top cell of P~V
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The indeterminacy in the definition of ap(n) is the kernel of the homomorphism

induced on m,_; by the inclusion of the bottom cell of Lg:i .

We will often omit the subscript p for typographical simplicity. The notations
v and a are intended to be mmemonic: v stands for "vector field number™ and a
stands for "attaching map". Actually, v is not quite the vector field number as
defined by Adams [1]; v,(n) is p(n-1) in Adams' notation. The function 5 tells us

how far we can compress each of the attaching maps of L”. The attaching map of the

n cell factors through I*V if and only if Lg—v+l is reducible. Thus, it factors
through L™V but not through Ln—v-l, where v = vp(n). By the definition of vp(n),
ap(n) is nonzero. We obtain a good hold on Vs and a, from the following two lemmas.

Let sp(j) be the exponent of p in the prime factorization of j.

Proposition 2.16. If p > 2 then, with q = 2(p-1),
1 €

"
o

vp(jq~e) =

q{l + ep(j)) e=1.

If p= 2 then v,(j) = 8a + 2°, where e,(j+1) = 4a + b and 0 <b < 3.

Proposition 2.17. If vp(n) = 1 then ap(n) is the map of degree p. If vp(n) > 1
then ap(n) ® 1 generates Im J @ Z(p) in dimension vp(n)—l.

Proof of 2.16. Theorem 2.14.(v) shows that v2(j) is the maximum s such

that ¢,(j+1) = ¢{s-1}. The formula for vo(j) follows easily from this. Theorem
2.9.{v) shows that if p > 2 then vp(jq) = 1 while vp(jq-l) is the maximum s such
that sp(jq) = y{s-1}. The formula for vp(jq~e) follows immediately. //

Proof of 2.17. lLet n = jq-g, v = vp(n) and a = ap(n). We wish to construct a map

of cofiber sequences

Sn—l Ln~l > 12 - P
n-v n-v

Lo

Sn—l a sn~v Ca 3

where Ca = sn—v\v,en’ b is the inclusion of the bottom cell, and a ® 1 generates
a
ImJ@® Z(p). By S-duality and Theorems 2.9.(iv) and 2.14.(iv), it is equivalent to

construct a map of cofiber sequences

S—n Lv-n—-l Lv-n-l S—n-l
-1 ~n-1
*
() ” bl l “
-1 a Vel -n-1
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in which b* is the collapse onto the top cell and a 1is as before. The lemma is
trivial when v =1 so we may assume v > 1 and hence, that n is odd. Let y be the
bundle —(n+1)g if p = 2 and -j(p-1)z if p > 2 over LV. Then L‘_’I'lf;1= T(y). By the
definition of v, y is trivial over LV~! but not over LV. This implies y = n v where
7:L¥ » LV/1%"1 = ¥ is the collapsing map and 0 # v KO(S'). By [85], T(v) has
attaching map J(v). Thus, the inclusions of the fiber s 21 into T(y) and T(v)
induce a map (*) of cofiber sequences with a = J(v). Since v is greater than 1, it
is even when p > 2 by 3.2. Thus, 2.3.(iii) and 2.9.(i) when p > 2, and 2.11 when

P = 2, imply that the kernel of LTSRS j(Lv_l) is Zp. Hence J(y) generates it,
being nonzero. Since w*(a) = 3(7), ae 1(8Y) must generate Ys") ® Z(p)' //

In the notation of 1.6, Propositions 2.16 and 2.17 are summarized by the

equations
az(J) = 862(j+1)
apjqa) = p

and ap(jQ‘l) = a1+€p(j)

where = denotes equality up to multiplication by a unit of Z(p)‘

§3. Proofs for section 1 and other calculations

This section primarily consists of proofs of results of §1 with the additional
necessary results (3.1-3.4) interspersed. Note, however, that the spectral sequence
charts in Figures 3.1 to 3.9 can be very useful in conjunction with Theorem 1.10
since they show where in the Adams spectral sequence the elements detecting the

results of homotopy operations must lie.

Proof of 1.1. 1*(x) = xP by IV.7.3.(iii). Clearly, ) = en @)1§ = ey 8O the

second statement is immediate from the definition:

end = (_q3d
g8°P (-1) v(n)ejq-e-n(p-l)'

Proof of 1.2. Recall from III §1 that the homology operations are defined by
j 2
Qx = txley , ®x7) ifp= 2,

and 8%a9x = £,((-1)3v(n) @xP) if p > 2.

€ja-e-n(p-1)

To prove 1.2 we simply calculate. If p = 2 and E%(a) = PJ then
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* *
ha (x) = [a (x)] 01

i

N

= £, (x)gay (1)

i

2
g*Dp(x)*(eJ_n @ zn)

2
= gyle;_, @n(0)%)

i

Q'n(x).
The proof is essentially the same when p > 2. //
Proof of 1.3. This is just the naturality of the spectral sequence E.(S,5). //

Proof of 1.4. Consider the following commutative diagram, in which the row is the

cofiber sequence of ¢y and a' is a 1lift of o to D;Sn.

SN
a/ \E‘
D1-1Sn _ n . SDpt+i
p
gD;-ll\\\\ y///;D;x
Y

% :
Clearly a (x) = gDp(x)a = ng(x)u' and this lies in the Toda bracket

'UUP-
6}

snp+i-1

<§,ci,ng_l(x)>. If « and § both lift to D;Sn and project to a on §P*1 then

a - 8 lifts to D; 1Sn so that « (x) ~ 8 (x) is in gD o ”ND; -1 s™.

Conversely, if vy euNDl lsn then a + y also 1lifts to DPS and projects to a' on
2NN

Proof of 1.5. By definition, BEPJ is defined on n, if and only if es is a permanent
cycle in E_(S,,3). Thus (i) and (ii) are equivalent. Let B& be B truncated at the
np+i cell. The map of spectral sequences E.(S, Py) » E.(S, gt induced by the
projection DPS sPP* gends ey to the identity map of.Snp+1. If DpS is
reducible then there is a map back which splits Er(S,Snp+l) off E.(8, &), foreing
e; to be a permanent cycle. Conversely, if =h is a permanent cycle then any map
detecting it will be a reduction. Thus (ii) and (iii) are equivalent. Finally,
(iii) and (iv) are equivalent by Theorems 2.6.(v), 2.9.(v) and 2.14.{v). //
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+v

Proof of 1.7. To show B, o x2 = 0, where ﬁj e my_ 1S, we need only show that P§+1

is reducible and P>V is not, since this implies that the n+v cell is attached
only to the n cell of P2+V, and Proposition 2.17 implies that the attaching map is
a generator of Im J in 5, 4S. If j = 4a + b then v = 8a + 2b, 50 2.14.(v) implies

that n must satisfy

n+8 +2°:z-1 (20)

and n+ 8a+ 20 7 -1 (20%]),
To show BJ o Py is a multiple of x2, we must show that Pg:¥+l is not
reducible, but pﬁ:‘z"‘l is reducible, for then the top cell will be attached to the

cells carrying %% and P®*}x, The rest of the proof is the same as in the first
case. //

Proof of 1.8. To show that aj o Bka =0, forxe Y and n = 2k-1, is trivial

when j = 0. Simply note that Lig-l is a mod p Moore spectrum. When j > O we must
{k+j)g-1 . R . {k+j)g-1

show qu is reducible, while qu—l

k+j = 0 (pd~1) but k+j £ 0 (pd).

is not. By 2.9.{v) we need
= k+1 P R .
When n = 2k, the relation aj o BP "x = o o x* for some a is also trivial
when j = 0. We need only note that kg:3_1 ig a mod p Moore spectrum. For j > O,
(k+j)q+g-l . . (k+j)q+q-1
we must show that qu+q is reducible, but qu+q-1 -

we must have k+j+1 = O (pj'l) but k+j+1 £ 0 (pj). //

is not. By 2.9.(v)

When n = 2k, if we try to show “j o xP = 0 by this technique we find we must

assume k+j = O (pj'l) and k+j £ 0O (pj'l), so that no information is available.

Before we compute the first few homotopy groups of DPSn (and hence the first
few homotopy operations}, we describe the attaching maps of the first few cells.
Exact definitions of the maps used in the following proposition can be found in the

proof.

Proposition 3.1. Let p = 2.

(1) If n =1 (4) then P2+3 =S U ey Sm2 N en+3
2 n+2
. - +3 oD n+l n+2 n+3
(1)  If n =2 (4) then B~ = 8'vs "y e e
. _ +3 n n+l n+2 n+3
(111) If n =3 (4) then BJ'° = 870" " U
(iv) If n = 0 (4) then P22 = gPv g™l ™2 v g3,
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Proof. Much of the structure of P2+3 is determined by Sq1 and Sq2 in H*Pg+3. We

will assume this information and fill in the rest. Suppose n = 0 (4). Then 2.14

implies Pﬁ+3 is both reducible and coreducible, so only the middle two cells are

attached. When n = 1 (4), collapsing the bottom cell of the previous case yields
P§+2 = Snuzen+lvsn+2. Computing Sq1 and Sq2 shows e"*> is attached to Sn+2 by a
map of degree 2, and is attached to the Moore specirum by 2 map which projects to g

on S®*1, This projection induces an epimorphism

_ n n+l n+l _
247 TS g ) T o8 T = e
n+l,

Therefore, the attaching map is a generator 7 of nn+2(Sn\J2e

When n = 2 {4), we start with P§+2 = Sn\?sn+1\Jn+2 2, e long exact
homotopy sequence of st Sn"'1 > P2+2 shows that the inclusion Sn+1 > P2+2

induces an isomorphism on =

n+2" Since qu is nonzero on Hn+1P§+3, the n+3 cell is

attached by the map

sn+2 n Sn+1 P§+2,

which we also call n.

Finally, when n = 3 (4), we start with P2+2 = snkaen+l\1nen+2. The map

Pg+2 > Sn+1v Sn+2 which collapses the bottom cell, induces on wp,, a monomorphism

+2 -
PP —22@Z>—-~>ZZ®Z*ﬂn

n+l n+2
Theofn SHECR S

+2

which sends (a,b) to (a,2b). Computing Sq1 and qu

the n+3 cell is (0,1) € Ty

simply call this map 2. //

shows that the attaching map of
+2Pg+2, which projects to the map of degree 2 on 2, We

Proposition 3.2. let p > 2.

(1) per2a-l | gda, gara-l U Ja%a U oJat2a-1
Jq —Ja+t P -(J*2)ay )

jara | el da \J o jerer U Ljara
(@) Ijgn = 7 U -(J+1)a,© ~Jape® ’

Proof. Recall that the first three nonzero homotopy groups of S localized at p are

T T Z, "q—l = Zp generated by ay, and Tog-1 = Zp generated by a,. Thus

e X e % s
L'j.éﬂi 1. 809, 9991 15 the only possibility. Computing g and P* in H ng*‘q
shows that L§g+q B Squ/SJq+q_1 ;§~1peJq+q' Finally, the long exact homotopy
; . ] :

sequence of v glare-l | I§3+q shows that the inclusion of S49%Q~1 jnduces an
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isomorphism of Tjq+2q-2° Thus the attaching map of the jq+2gq-1 cell factors through
§99%9-1 ang is determined to be -(j#2)a; by computing pl.

Collapsing the bottom cell and redefining J we find that
Jare-l | Ja-1, ) o U _Jate-l
a1 =5 upe -(3F1)q,® :

qu-l'_’ ngig_l shows that the attaching map of the jg+q cell is determined by its

projections onto S92 and $99*94-1, Computing P and g shows these to be -jaq and p

The long exact homotopy sequence of

respectively. //

Diagrams of the cohomology with Sql and qu or 8 and pl indicated are

convenient mnemonic devices. For p = 2 we have

.
n+3
= I
.
n = 1 2 3 4 (4}
For p > 2, we have
(j*+2)1g-1 Jarq _ja
-(j+2)al 1
Jatg
and ja
. ~{j+1)a
-Jal 1
Ja

We can also think of these diagrams as indicating cells by dots and attaching maps

by lines, and this is how we have labelled the diagrams for p > 2.

The spectral sequence E.(S, B) will enable us to glean a maximal amount of
information from Propositions 3.1 and 3.2. We begin with p = 2. Recall, from [66],
the initial segment of the H22 Adams spectral sequence for wgS.
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[ d
4 t /
3 o
1~
8 2 h%
1 / by h, h3

tws >

Vertical lines represent multiplication by by, detecting the map of degree 2, and
dlagonals represent multiplication by hy, detecting n. We shall only use the first
8 stems (t-s < 8). let B be the sequence

Pn+8 4———-Pn+7 ‘— see 4— Pn+1
n n n

—.
(Omitting the " from D;Sn = ZRP§+1 means a class in E.(S, ) will have stem
degree equal to the amount by which the corresponding homotopy operation raises

degrees.)

Proposition V.7.5 says that E2(S,s) is free over E»{S,8) on generators in each
degree from n to n+k. Write x(i) for the element of EZ(S,ﬁ) which is xe¢ EQ(S,S) in

the 1 summand, if 1 > n. ZIet x(i) mean 0 if 1 < n.

Theorem 3.3. In E,(85,8), for t-s < 6,
dox{i) = hpx(i-1) ifi=z90 2},
dsx(1) = hyx(i-2)  if 1z 0,1 (4,
and d5x(i) = hyx(i-4) if 1 = 0,1,2,3 (8).

In the same range, E_{S,§9) is given by Figures 3.1 through 3.4.

Note: Dotted vertical lines indicate "hidden extensions". That is, they represent
multiplications by 2 which cause an increase of more than 1 in filtration.
Similarly, dotted diagonals indicate the effect of multiplication by n when this
causes an increase in filtration of more than 1. See the proof of 1.9 for their
derivation.



1(n)

1{n+1)

2
hz(n)

h2(n+3)

1(n)

n+l
nz=0 (4)

Figure 3.1

/

n+5

*) hit by ds(1(n+7)) iff n =z 4 (8)

*¥*¥) 2 times 1(n+3) is hl(n+2) if n
and it is "h)(n+2) * hy(n)" if

=2

h2(n+2)

m o

n+é

(8)
4 (8)

n+l

n =1 (4)

Figure 3.2

n+5

*) differential iff n = 5 (8)
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M 2
hz(nl
h,(n) n3(n+2) |
/‘= 2 1y '
1(n) i h,(n+1) i L%
: | :
1(n+1) nZ(n+3) :
¥ i
k] t
x § hz(n’*fB)
hl(fl%) ”,’
H ke
S
M
1{n+5
n n+l n+2 n+3 n+4 n+5 n+6
nz2 (4) ¥) differential iff n = 6 (8)
¥*) ifnzé (8)
Figure 3.3 ¥%%¥} if n = 2 (8)
2
' hz(n)
J /
1 ,
1 K¢
h2(n) : /'4
1(n) n (n+1) n2(n+2) e x
1 ,’
% § n,(n+2)
h (n+3) /"
1 1 A%
i ,/"l h2(n+4)
v/
1{n+4)
n n+l n+2 n+3 n+4 n+5 n+6
n = 3 (4) ¥) differential if n = 7 (8)

**) if n = 3 (8)
Figure 3.4

Proof of 3.3: The differentials listed correspond to attaching maps which can be

detected by Sql , qu and Sq4, and they hold in the spectral sequences for 9' s B and

9" below
)3, 31-3{-}2 el Si 1 %
" Sl—2U ei -— 81—2 . 81_2 - x
" s 'l’uv B e Tt L



159

The differential dpx(i) = hyx(i-1) if i = 0 (2) is immediate, since 1(i) ¢ E,
and by dimensional considerations dy1(i) = hy(i-1) is the only possible d, on 1(i).
The module structure over E,(S,S) now gives dyx{i) = hgx{i-1}.

The d3 differential is slightly more complicated. There are two cases. If
iz 1 (4) then the i cell is not attached to the i-1 cell, but is attached to the
i-2 cell by n; d31(') = hq(i-2) follows as for d,, and this implies d3x(i) = hyx(i-2).
If i 0 (4) then 1(1) ¢ E3 since d;1{i) = hy(i-1). However, the map of spectral
sequences induced by ¢ » p

e si-2y gi- Un+2ei si-2, i1 si-2
" 81—2 unel - Si—2 U 81—2

shows that elements of EB(S,C) must satisfy d3x(i) = hyx{i-2) + k where k is the
kernel of EB(S,C) ¥ EB(S’ O"), that is, k must have the form y(i-1). By inspection
k must be O in the dimensions considered. Now, by truncating P at the 1 cell, then
collapsing the i-3 skeleton we can compare EB(S,p) to E3(S;C }. Again we have
d3X(i) = hyx{i-2) + k, where k is now a sum of elements coming from the i-3 cell or
below. The first possibility is when n = 0 (4). We must decide between d3h1(n+4) =
n?(n+2) and dghy(n+4) = hy?(n+2) + hy(n+l). Let P°, PO*L, nPP*2, ana PP*3 denote
elements detected by 1(n), 1(n+l), hy(n+2), and 1(n+3), respectively. Comparing
with Nahowald’s caleculations [59], we find that 2 o A han+2 or

h Pn + v o Pn depending on n mod 8. Composing with n yields n o hlP o2 0.
But if d3h1(n+4) were h (n+2) + h (n+1) we would have ¢ o hlP o2 voP +1.
Therefore we must have d3h1(n+4 = h (n+2) The same argument, with minor varia-

tions, finishes all the d3 differentlals.

Finally, the d5 differentials follow by similar comparisons with E5(S, pT. In
all but one case, there is nothing in filtrations less than or equal to the filtra-
tion of hzx(l -4) so the compamson with E5(S P™) is sufficient. The one remaining
case 18 when n = 1 {(4). Here h (n+3) lies between h,(n+4) and h (n). Since the
n+4 cell is not attached to the n+3 cell, the d5h2(n+4) = hg(n) is right here also.

There are no further possible differentials by inspection. The hidden exten-
sions here are all evident from Mghowald's computation in [59] of the Adams spectral
sequence of P:. //

Note. The spectral sequence E.(S,R ) has far more hidden extensions than Er(S,P:)
since the cells are spread apart in Er( S, B) whereas they all occur in the same
filtration in Er(S,P:) . By IY.7.6, the same hidden extensions occur among the
elements generated by the BEP‘]x for a fixed x.
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Proof of 1.9 when p = 2: A permanent cycle x(i) corresponds to an operation xpl,
Thus, Table 1.3 is simply a list of the elements of E_ (38, 8), omitting most of those
which are multiples by elements of nyS of other elements of E_ (S, f). The inde-

terminacy of an operation consists of those elements in the same stem and higher
filtration, so it too can be read off Figures 3.1 through 3.4. With the exception
of 12*(Pn) and 12*(Pn+1), the values of 7,y listed are the only elements of =4S in
the relevant dimension. Since 1r2nD28n = Z, when n is odd, 12*(Pn) = 0 in this case.
When n is even; 1:5°0 5 DZSn induces an isomorphism of mp,. By II.1.10, the
composite 11,:D,8% » DyS™ is multiplication by 2 on Hy, = myp. Thus to4(PP) = 2.

To caleculate 12*(Pn+1), first suppose n = 2 (4). By Theorem 3.3, n2n+2D28n = 0.
Therefore, nP*1l = 0 and hence nrz*(Pn+l} = 0. This forces 12*{Pn+1} to be 0, not
n. When n = 0 (4}, Theorem 3.3 gives n2n+1D23n = 2y C)Z2 with generators Pn+1 and
nP*. By II.2.8, rz*(Pn+1) is not zero and hence must be n.

Determining the relations in Table 1.4 amounts to determining the nyS module
strueture of n*DZSn. The indeterminacy of the operations in Table 1.3 induces a
similar indeterminacy in the relations of Table 1.4. The relations are to be
interpreted as asserting equality modulo the sum of the indeterminacies of the two
sides. Thus, in order to prove that they hold, we need only show that they hold for
some choice of representatives. The E_ terms in Theorem 3.3 force the following

thirteen relations:

2P = 0 n = 1,3 {4)
nh PP = 0 nzl (4
2vPR*2 = ¢ n=1 (8)
vPR*2 = ¢ nz=5 (8)
4P = 0 nz2 (4)
a1 = o nz2 (4)
vP*l = o nz6 (8)
Pt = 0 ]
20, Pl = 0 ) nz3  (4)
2n,P%2 = 0 |
vBR = 0 )
nhan+3 =0 ¢ nz?7 (8)
P2 = 0

Another eighteen relations follow by considering the attaching maps given in
Proposition 3.1, the spectral sequences in Theorem 3.3 and the reducibility and
coreducibility given in Theorem 2.14. These are
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2Pl - g

2}1an*2 _ 2l n =0 (4)
nP*3 = o ]
2P*3 = pypit2 s n =0 (8)
2vP™*3 = yn P2 = 0
2p0*3 - han+2 + an‘
nPi*3 = ypitl nz4 (8)
vh P2 = \2p0 )
2p*2 = p potl nzl(4)
nP*2 = 0
Lot han+5 nz1l (8)
nP*2 = ypft n =5 (8)
2petl - PR n z 2 {4)
25 - han+4
n?”5=lbﬁ"3 ns2 (8)
nhan+4 = 0 mod VP2 neé6 (8)
2PI*4 = pA*3
P h2Pn+2 n = 3 (8)

For example, when n = O (8), the attaching map of the n+4 cell gives 2P%*2 = han+2.
Then 2vPR*3 = vhan*'z must be either O or v2P® by the E_ term in Figure 3.1. But
P§+7 is coreducible, so PR is impossible. Similarly, when n = 4 (8), the
attaching map of the n+4 cell gives 2P%*3 = hy PO*2 + yPU.  (Note that, since Pn+3
is coreducible, vP® need not be considered a part of the indeterminacy of 2Pt 3 or
1Pn+2.) Thus 2vP*3 = vhy P2 4 2P0 But vPO*3 45 either O or VPR by the E,

term in Figure 3.1. Thus 2an 3 = 0 and hence vhyP™*? = VPP = 2PR,

Four more relations come from the fact that m (S uzenﬂ) = Z,, so that the
composite of 2 and a map which projects to n on Snﬂ', 1ifts to n2 on 8%, These are

2h1Pn+1 = n2Pn

2n,PA*5 = p2ptté mEL
2n, PIY4 = hi?’1+3 nz2 (4)
2n P32 = hipn’z nz 3 {4)
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The relations

2n2p™*4 < 23

nzl {4)
2hiPn+3

"

0

2h§P“+3 - hipn"'g nz2 (4
2h§1=n+2 - h%Pnﬂ =3 (4)
qh2Pn+2 = van n =z 3 (8)

are the only possibilities consistent with Mahowald's calculations [59] (note that
these are not hidden extensions in his spectral sequence).

Finally, the relation 2142?“’r3 = v‘?‘Pn when n = 6 (8) follows by comparison with

the spectral sequence for the cofiber of the inclusion PE:"IZ > Pﬁu’. In the

cofiber, 2Pn+3 = yP? is obvious from the attaching maps. //

Now consider the odd primary case. Recall, from {55}, that, in degrees less
than pg-2, the HZp Adams spectral sequence has elements

ag‘)s }:;’1 detecting pi, i = 0,1,2,...,
1,9
ho € EZ’ detecting aj e Tg-19
and gy B T detecting oy engqy, for 2 < < p.

Let © be the sequence

n(p-1)+ps n(p-1)+ps-1 n(p-1)+1 n(p-1)
Lip-1) 7 7 a1 = hipn T e
Since L:(p—l) has cells only in dimensions n{p-1) and greater which are congruent

to 0 or -1 mod g, E,(S, ®) is free over E,(8,8) on generators in those degrees.
Write x(j,s) for the element of E,(S, B) which is x E,(S,S) in the jq-¢ sumand, 1f
Jg-e > n{p-1}. We agree to let x{j,e} = O if jg-e < n{p-1).

Theorem 3.4. In E.(S,P), dy(x(j,0)) = agx(j,1) and
d2p~l{X(j’l)) = —jhox(j-l,l)-

In low dimensions EZP(S’ D) is given by Figures 3.5 through 3.9.

Notes: (1) The dotted arrows to the lefi represent possible d2P differentials

which we have not computed. This is why the theorem only claims to give EZp(S’ 8.
The indicated d2p is the only possible remaining differential in the range listed.
This is true for dimensional reasons except when n = 2k-l and k = -2 (p). Here the



possibility that d4p_2(1(k+2,1)) is nonzero is excluded by the fact that Ly
is reducible when k = -2 (p) by Theorem 2.9.(v).

{2) Dashed vertical lines represent hidden extensions.
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are detected by X and 5% the notation

means that px = jy modulo higher filtrations.

extension is trivial.

[

W] -mmm=

(k+2)q~1
q-1

Precisely, if x and y

Of course, if j is O this means the
We replace j by a question mark if we have not settled the

extension.
ps+2 . glak,o)
i ho('k,O) ;
ps 1tk,0) § é
. 5-2 E?
: : i
ps-q+2 % ho(k+1,1) §
ps-g+l 1(k+1,1) h,(k+1,0)
ps-2g+1 1(i+2,1)
kq {k+1)g-1 (k+2}q-2 (k+2)g-1
Figure 3.5 n=2k, k= -2 (p)
ps+2 . glik,O)
l h (k,0) §
ps 1(k,0) : i
: %k '?
ps-g+1 l(ﬁ+l,l) h0£k+1,03
kq {k+1)qg-1 {k+2)q-1
Figure 3.6 n=2k, k% -2 (p)
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ps-p+4 g, (k,1)
hy(k,1) ~, g,(k,0)
\‘ [
Ps-p+l | 1(k,1) ho(X,0) . i
. ' S P
. 1-1 (AN H
pS-3p+4 1(k+1,1) hy (+1,0)
kq-1 (x+1)gq-1 {k+1)q-1 (k+2)q-1 (k+2)q-1
Figure 3.7 n=2k-1, k= -1 {(p}
ps+pts gl(k,l)
PR
A
; \ gl(k,o)
AN !
ps-p+2 | 1(k,1) hy(k,0) 12 2 .
: ! N
: oo
ps-3p+5 hy(k+1,1) \\ ;

\A
ps-3p+4 h,(k+1,0)
: o1

)
ps-5p+6 1(k+2,1)
kqg-1 (k+1)q-1 (k+2)q-2 (k+2)q-1
Figure 3.8 n=2k-1, k= -2 (p)
PS-pt4
g- (k,1)
ps-p+2 | 1(k,1) n, (k,0) 1 . g,(k,0)
~ [l
. P ‘9
\\\ E
PS-3p+4 ‘ho(k+1,o>
kq-1 {(k+1)g-1 (k+2)q-2 (k+2)g~1

Figure 3.9 n=2k-1, k#-1or -2 (p)
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Proof of 3.4. The differentials follow from the attaching maps in Proposition 3.2
just as 3.3 follows from 3.1. Applying them gives the values of Ezp(S,;D) listed in
Figures 3.5 through 3.9. The indicated hidden extensions all come from the
attaching maps of the even cells of L n(p-1)" //

Proof of 1.9 when p > 2: A permanent cycle x(j,e) corresponds to a homotopy

operation XBEPJ. Thus Table 1.1 is & list of those elements in Figures 3.5 through
3.9 which must be permanent cycles by Theorem 3.4. The indeterminacy is obtained
from Figures 3.4 through 3.9 as for p = 2. The values of Tp listed are the only
elements of wyxS in the relevant dimensions, except for Tp*(Pk) = p!, which follows
from II.1.10.

The relations in Table 1.2 are all determined by the attaching maps from
Proposition 3.2. //

Proof of 1.10. By IV. 7.3.(v), to determine P*™1l(xy) we must calculate the image
of Pn+m+1€“2(n+m)+1DZSn+m under 6*2W*D2Sn+m > ﬂ*(DZSnl\DZSm). We need only

consider
+m+ + +
an2 nZAPmZ
n+m n m

n+2 . Pm+2

for dimensional reasons. If D is the skeletal filtration of P then

’
E, (S, an.m) is generated over E2(S 3) by elements 1(j,k) with n < j < n+2 and
m < k < m+2 corresponding to the cells of Pn +2 and Pm 2 in an obvious fashion. The
attaching maps of Pn 2 and Pm 2 determine the dlfferentlals in low dimensions from
which we get E (S 13 m e The extension questions in my(y,ny,; &re also determined
by Pn+2 and Pm when nz=mz0 (2). Whennz=mz=1 (2) we need the fact that the
top cell of the smash product of two mod 2 Moore spaces is attached to the bottom
cell by n, to settle the extension question. We conclude that if n = m = O (2) then

To(nem)+1 1S generated by pitlpm  pipm*l - ang nPPP™ with relations

p
0 nz0 (4)
2P o
L PP nz2 (4)
0 m=0 (4)
and 2@#M1=
Inpn#“ m=2 (4) .

If n=m=z1 (2) then my(n4p)4; is generated by an element we call Sn,m which is
detected by 1(n+l,m) + 1{n,m+l) with the relation

0 nz3ormz 3 {4)

i

Hi

nP P n =1 (4) .
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From the image of Sn,m in E_(S, n,m) we can see that

P, ) = PR P

n,

Finally 6*(Pn+m+1) is determined modulo the kernel of the Hurewicz homomorphism by

commutativity of the following diagram, in which the isomorphisms are Thom

isomorphisms
7 D,ST > nyD,8" A D, 5"
§ §
HyD,s" " . HyD,5" A D,S"
ngZ A* H (;Z x BZ,)
*772 *1T2 2

Since nP?P" generates the kernel of the Hurewicz homomorphism we are done. //

Proof of 1.11. The commutative disgram above shows that the Hurewicz homomorphism
must map the Cartan formula for a homotopy operation into the Cartan formula for its
Hurewicz image. Case (i), n = 2j and m = 2k, follows by an argument formally iden-
tical to, but easier than, the proof of 1.10 when n = m = 0 (2). Case (ii) is imme-
diate from the homology Cartan formula because in this case we're in the Hurewicz

dimension. Case (iii) follows just as in the proof of 1.10 whenn=m= 3 (4). //
Proof of 1.12. In E,(S,S), Sql(ho) = hy by [3]. Therefore, P 2) = n. //
Proof of 1.13. By definition sPl(p) is a unit times the composite

1 D_(p)
3 B Lps P Lps—fas,
P p

where sP1 is the inclusion of the 2p-3 cell. By II1.1.8, Dp(p) =1 mod p, and by

T
PP
11.2.8, rp o BPl # 0. Since glp = 1, the composite and hence ePl(p) are nonzero.
The fact that BPp’l(al) = 8 follows from the fact that in the Adams spectral

sequence, BPp-l(hO) = bi

directly from the definition of BPp”l using the definitions

using the notation of [66]. The latter can be computed

1 1, +v¢.Pi,. D]
h. = [g,], bl = = (1,31 es " exv]
0 1’ 71 14 2 p1 P ’ 1 | 1

in the bar construction. Alternatively, we may refer to Liulevicius' computation
[55, pp. 26, 30] using [66, 1I-6.6] to translate it into our notation. //
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Proof of 1.14. This is now immediate:

PP+l (0y)

PL(2)x° + 4P L(x) + ACOnnxz

= nx2

2

since 2P"*1(x) is either O or nx° by 1.10. Similarly,

g9 (px) = gpt(p)x® + pPapdtl(x) 4y 0 PP
gp (p}xp + jpp'la PJ(X)

1
g

i

since pgPd*l(x) = Jale(x). Finally 3P3+P—l(alx) = xpBPp”l(al) = XPBl- The
indeterminacy is always zero because where it is not automatically zero it is 4nx

or pPa xP,  //

2

Proof of 1.15, If p = 2 then nx2 = 0 by Theorem 1.10 when n = 3 (4) {even if

2x # 0) while 0 = PP*1(2x) = nx° by Proposition 1.14 when n z 0 (2). If

p > 2 then xP = 0 if n is odd, while if n = 2j, Proposition 1.14 implies that

0= 6P (px) 2 0 x® and 0 = gPI"P~L(a x) = gxP. When x = g the second of these
formulas is alef =0. //

fle

Proof of 1.16. Several of the computations follow from PR{x) = %2 if

n» Others from “A = s =My, T n13 = 0. Similarly, several indeterminacies are

zero from Theorem 1.10 or because they lie in filtrations which are 0. We will

X oem

prove the remainder of the results.

Since P4(hy) = By, B1P4(v) is detected by hihy so is either no or v. By 1.10,

h§P5(v) = 2h1P6(v) = 0 since 2myg = 0. Similarly, h1P4(2v) = 0 by calculating

Steenrod operations in Ext. Since 12*(h1P6) = 0, we get h1P6(2v) = 2h1P6(v) =

and since 1,x(hyP?) = 0, we get h,P?(2v) = 2h,P7(v) = 0. By 1.10,
6

2P5(2v) = 2h1P {2v) = 0 also. The operations on 4v can all be calculated from the
% * ¥
additivity rule o (4v) = 2a {2v) + 12*(a)(2v)2 = 20 {(2v).
Since 2myn = O, the relations h P {v } o= 2hlplo( 2) and h3P (v } = 2h P (v )

foree these elements to be 0 mod O.

Since P8(h3) = h4; hlP8(o) is detected by hlh4 so must be n* or n* + np. Since

2h2P9 = n2h1P8 and n?h,P8(0) is detected by h3h4 = hthhA, it follows that

1

10 2,9

2P7(0) 1s detected by hghphy. Since 20,0 = n%P? it follows that nP0(o) is
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detected by hoh,. Thus hlPlo(c) = v¥ or v¥ + nu modulo <2v*>, which is its

indeterminacy, and similarly for hinic).

Since P7(20) = 4o® = 0, we have

0
nP(20) = 20 PPo) + Jory P =0+ 0= 0.
2
n
The remaining operations are additive except for
0
8 _ 8 2 _ -
hlP (4o) = 2h1P (20) + € or » 46" =0+0=0. //
2

n



CHAPTER VI

THE ADAMS SPECTRAL SEQUENCE of H_ RING SPECTRA

by Robert R. Bruner

In this chapter we show how to use an H_ ring structure on a spectrum Y to pro-
duce formulas for differentials in the Adams spectiral sequence of wyY. We shall
confine attention to the Adams spectral sequence based on mod p homology, although
it is clear that similar results will hold in generalized Adams speciral sequences

as well.

The differentials have two parts. The first is the reflection in the Adams
spectral sequence of relations in homotopy like those in Chapter V. For example,
when x ¢ m,Y and n = 1 (4), there is no homotopy operation PP*1ly since the n+l cell
of P: is attached to the n cell by a degree 2 map. In the Adams spectral sequence
therizis a Steenrod operation Sqn+1 X and a differential dZSqn+1 X = hOSgn X

= hOx . Therefore hd§2 = 0 in E_, This in itself only implies that 2x

filtration greater than that of hy¥ in the Adams spectral sequence, but by

has

examining its origin as a homotopy operation we see that 2x2 = 0. Thus, the
formulas we produce for differentials are most effective when combined with the
resulis about homotopy operations in Chapter V. The differential dZSqn+3 X =
hOSqn+2 Y, still assuming n = 1 {4), is a perfect illustration of this. The
corresponding relation in homotopy is 2P%*% = han*lx where hIPn+1 is an indecom-
posable homotopy operation detected by hlsqn+l in the Adams spectral segquence. The
differential on Sqn+3z'represented geometrically 1s the sum of maps representing

hOSqn+2f'and h18¢n+li; but since hISqn+li'has filtration one greater

-

st ix T \
n+2—

Sq° x \Sqn+33_(_
than does hOSqn+2x; it does not appear in the differential. This reflects a hidden
extension in the Adams spectral sequence: 2P0t 2y appears to be 0 in the Adams
spectral sequence (i.e. hOSqn*22"= 0 in E_) only because of the filtration shift.
In fact, 2PP*%x = han+lx. The moral of this is just the obvious fact mentioned
above: the differentials should not be considered in isolation but should be
combined with the homotopy operations of Chapter V. Further examples will be given
in section 1.

The second part of the differentials arises when we consider Steenrod opera-

tions on elements that are not permanent cycles. If x in filtration s survives
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until Er we can make x into a permanent cycle by truncating the spectiral sequence at
filtration s+*r. Thus the differentials of the type just discussed apply to x until
we get to E,. However, by analyzing the contribution of d.x we can show that it
wil} not affect the differentials on g®RJx until Epr—p+1
sePJdrx. Thus the differentials of the first type apply far beyond the range in

where it contributes

which we are justified in pretending that x is a permanent cycle. (To be precise we
should note that d.x can occasionally affect differentials on gPx through a term
)

P p_l N
containing x* *d x in E_ ;.

The first results of this type were established by D. S. Kahn [45] who showed

(2)

that the H_ ring map 52:W Xy S + S (obtained through coreductions of stunted

2
projective spaces) could be filiered to obtain maps representing the results of

Steenrod operations in ExtA{ZZ,Zz) and that some differentials were implied by this.
Milgram [81] extended Kaehn's work to the odd primary case and introduced the
spectral sequence of IV.6 which is by far the most effective tool for computing the
first part of the differential. His work was confined to the range in which it is
possible to act as if one is operating on a permanent cycle. Nonetheless he was
able to use the resulting formulas for differentials to substantially shorten
Mahowald and Tangora's calculation [61] of the first 45 stems at the prime 2 and to
catch a mistake in their cealculation. The next step was taken by Makinen [62], who
showed how to incorporate the contribution of drx in the differentials on qux for
p = 2. Unfortunately, he apparently did not apply his formulas to the known calcu-
lations of the stable stems, for one of his most interesting formulas {(published in
1973},

dBqux =089 %% + sfdx  ifn=1 (4),

combined with Milgram's calculation of Steenrod operations [81], implies that d361 =
hyt, contradicting Theorem 8.6.6 of Mahowald and Tangora [61]. This application was
left for the author to discover in 1983. Note that the differentisl is out of
Milgram's range since a nonzero d,x prevents us from calculating dBqux unless we
incorporate terms involving d2x. The argument in [61] that ey is a permanent cycle
is an intricate one, involving the existence of various Toda brackets, while the
proof that dBSqu = hIqu'zx + Sqqdzx if n z 1 (4) is relatively straightforward.
This appears to be convincing evidence that the H_ structure in the form of Steenrod

cperations in Ext is a powerful computational tool.

One other piece of related work is the thesis of Clifford Cooley [30}. He
obtains formulas similar to Milgram's [61] by using the speetral sequence connecting
homomorphism for a cofiber sequence of stunted projective spaces to reduce them to
dl’s which he gets from a lambda algebra resolution of the cohomology of the
appropriate stunted projective space. Calculating differentials this way or by the

spectral sequence of IV.6 is probably a matter of indifference. The most
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interesting aspect of Cooley's thesis is that he works unstably, examining the
interaction of the Steenrod operstions and the EHP sequence. As in all other
earlier work on this subject he views the H_  ring structure in terms of coreduetions
of stunted projective spaces. The interaction of the Steenrod operations and the
EHP sequence had been discovered by William Singer [97] using the algebraic EHP

sequence obtained from the lambda algebra.

In the work at hand, we extend the ideas of Makinen to the odd primary case to
obtain comprehensive formulas for the first nontrivial differential on BEij, which
we state in §1. These apply to the mod p Adams spectral sequence of any H_  ring
spectrum. The remainder of §1 consists of calculations using these formulas in the
Adams spectral sequence of a sphere, including the differential discussed above.
These are intended to illustrate especially the interaction between the homotopy
operations and the differentials, specifically to obtain better formulas in partic-
ular cases than hold in general. One of these is d3r = hldg, which forces hi to be
a permanent cycle. This is the shortest proof we know of this fact.

In §82 and 3 we describe the natural Zp equivariant cell decomposition of

(ZX)(P) and use it to relate extended powers of X and of zX.

In §4 we start the proof of the formulas in §1, using the results of §32 and 3.
We also prove that the geometry splits naturally into three cases, which we deal
with one at a time in the remaining §§5-7.

1. Differentials in the Adams spectral sequence

In this section we state our theorems concerning differentials, explain some of
the subtleties involved in understanding what they are really saying, and calculate
some examples in order to illustrate their use and demonstrate their power.

Localize everything at p. let Y be an H_ ring spectrum. Let Ei’n*s

{S,Y) =>
n,Y be the Adams spectiral sequence based on ordinary mod p homology. We shall adopt
the following shorthand notation for differentials. If A is in filtration s and Bl
and 82 are in filtrations 841y and s+r, respectively, then

dyA = B + B,

means that d;A = O for 1 < min{ry,r,) and

drlA = B1 if ry <r,
a.A = Bl + By if ry =r =ry and
dp A =B, if ry > 1,
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Note. This does not mean that this differential is necessarily nonzero. Nor does
it mean that if B, happens to be O, then drzA = B, regardless of whether r, > 1y or
not. More likely, B1 is zero because it comes from a map which lifts to filtration
s+ry+l or more and, hence, By could conceivably lead to a nonzero 4, ,jA. The point
is that you can't tell what B1 is contributing to the differential if all you know
is that it is zero in filiration s+ry. However, when we explicitly state that

Tp = 0 in Theorem 1.2 we mean that it is to be treated as having filtration =.

The geometry behind the formula dyA = By + B2 will make it clear exactly what
the formula can and cannot tell you. The formula means that for some rpy > max(rl,rz),
A is represented by a map whose boundary splits into & sum B1 + B2 + BO’ where each
B; lifts to filtration s+ry, and where‘Bl and B, represent By and B, respectively.

It is irrelevant what BO represents because B1 + B2 lies in a lower filtration.
This is fortunate, since in general By is very complicated. In particular cases
however, we can often analyze BO in order to get more complete information about
dgA. For examples of this, see Proposition 1.17(1i) (the formula d3ro = hldg) and
Proposition 1.6.

Two remaining points about the formula are best made using examples. The
formulas we will shortly prove say that, under appropriate circumstances,
Jy = sgd e
d*Sq x = 5qQ drx + axdrx
J -3 2
and d,5q drx a(drx)
where 8 e E,{S,5}). The algebra structure also implies that
- -7 2
dp(axd.x) = aldx)”.
If the filtration of qux is s, then the filtration of qudrx is s+2r-1, while that

of axd.x is s+#r+f+k (f is the filtration of a and k will be defined shortly).
The three ways these differentials can combine are illustrated below

r<f +k+l r=1f+k+1 r>f+k+1
alax)? a(d,x)?) aldx)?
. &
Y\ d N \rekel
\ T d \
\ — r \ j
\ axd x dp\ Sa'dpx
\
d \ e —
f+k+l\\‘ axdrx + Sq-jdrx axdrx
L
Sq:J dpx
d drrpax = \dor-1 drefk
2r-1

S@x S@x S@x
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Taken individually, the terms qu d,x and Exdrx do not always appear to survive long
enough for qux to be able to hit them. For example, when r > f+k+1, the
differential d..p.Soix = axdx is preceded by the differential d,(axd,x) = ald.x)?,
which would have prevented axdrx from surviving until Er+k*f’ had it not happened
that a still earlier differential (dg,y,Sd0d.x = a(d,x)?) had already hit a(d.x)?.
This is completely typical. The formula dyA = By " B,, as used here, carries with
it the claim that the right-hand side will survive long enough for this differential
to occur, and even shows the "coconspirator" which will meke this possible when it
seems superficially false.

The other point illustrated by this example occurs when qu dpx and xd.x are
permanent cycles and r > f+k+l. Then the differential d, +k*f8qj X = ;xdrx reflects
a hidden extension: a(xd.x) is zerc in E  because of a filtration shift. It is
actually detected by qu d.x. Relations among homotopy operations typically cause
such phenomena. Note that the cell which carries qux is also the cell which pro-
duces the relation in homotopy. In a suitably relative sense this is the meaning
of all differentials in the Adams spectral sequence ("relative" because the terms
in a relation corresponding to a differential will typlcally be relative homotopy
classes which do not survive to E_ to become absolute homotopy classes).

8,n+8

™ and consider the

We can now state our main theorems. Assume given x €E
element 8¢Pix (as usual, ¢ = 0 and B =qu if p= 2}, Let

j-n p=2
(2j-n)(p-1)-e p>2,

so that %R x eEgs‘-k,p(n*rs), which lies in the k+np stem. Using the functions v
and & of V.2.15, V.2.16 and V.2.17 we define v = vp(k+n(p-l)) and
a = &p(k+n(p-1)) ¢n,_1S. Recall that a 1is the top component of an attaching map
of a stunted lens space after the attaching map has been compressed into the lowest
possible skeleton. ILet

e Ef ,f+v-1

o0

(8,8}

detect a (this defines { as well}. BRecall that a, eEi’l detects the map of
degree p when p > 2.

**%
Theorem 1.1. There exists an element T €E2 (S,Y) such that

(1) if p = 2 then dySoix = Sdddx + 1,
(11) 4if p > 2 then

dppyPx = dp %P = agxPlax  if 2 =n,

P x = agaPlx if 2 > n, and

+
3
.

d*BPJx = —BPj d,x 3
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Theorem 1.2. .
0 v > k+tl or 2r-2 < v <Xk
T, = ¢ axd x v = k+1
asqd Vx v=k or (v<kandv <10)
If p > 2 then '
0 v >k+l or pr-p <v<k
T, = (-1)¢ Ekp-ldrx v = k+l
L(—l)e-l EBPJ'e-l X v <kand v <Dpq.

where e is the exponent of p in the prime factorization of J.
Note. When p > 2, k and v have opposite parity so that v = k never occurs.

Theorems 1.1 and 1.2 give complete information on the first possible nonzero

differential except when
pq < v < min(k,pr-p+l) if p > 2,
or 10 < v < min(k,2r-1) if p = 2.

The sketch of the proof given in Section 4 should make it clear what the obstruction
is in these cases. We do have some partial information which we collect in the

following theorem.

Theorem 1.3. If p > 2 and v > q then diBij =0 if 1 < v+2 < pr-p+l, while
dpp_ps18PIx = -gPJdpx if v+ 2 > prpsl. If p=2and v > 8 then d4;5¢%% = 0
if 1 < y+#2 < 2r-1, while &, S@x = Sgdd.x if v+2 > 2r-1.

To apply these results we must know the values of the Steenrod operations in
E, = ExtA_(Zp,H*Y). For our examples we will concentrate primarily on p = 2 and
Y = SO, since this ig a case in which there are many nontrivial examples. We cannot
resist also showing how useful the Steenrod operations are in the purely algebraic
task of determining the products in Ext.

n_ T
2’2 1 Gusl to the S¢° . Parts (i) and (iii)

of the following propositon may also be found in [88].

We begin with the elements hnc E

Proposition 1.4. (i) (Adams [3]) S¢°h_ = h ,; and S¢® ~tn, = 12
froposition lL.4. +]1 q hn hn'

(11) (Adems (2]) hhy,; = 0, b, =h’h . and h b2, = O.
n n
1z . 2.2 272 _ . 2 _
(iii) (Novikov [911}) hnhn+3 =0, hy n 5 = 0 and, if n > 0, hy h = 0.
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yil
Proof qu '1hn = hi because the first operation is always the square. If we let

S:ExtS* 5 ExtS* be S** on ExtS'1*S| then Proposition 11.10 of [68] shows that in
the cobar construction Slxyles|x;] = (x2

- 3= il

[gl ], it follows that qunhn = 8(h,) = h,,7+ For dimensional reasons, the Carian

--~]x§). Since hy is represented by

formula reduces to S(xy) = S(x}S8(y). Thus, to show (ii) we need only show hghy =

hi = hghg’ and h h2 0. These occur in such low dimensions that they may be

checked "by hand". In fact, only the first and third must be done this way since

5q%(hghy) = g h, + hl. The relation h2h2 .3 = 0 follows similarly from
g § Sq (h h2) = 0. The only nonzero operation on h2 o 18 Sq2n+3h§+2 = h§+3
since (ii) implies that hi+2 = hn+2(hn+1hn+3) = 0. The relation hgnhz w2 = 0 then
follows by induction from hghg = 0. Finally, hgnhn = 0 follows by induction from
h%hl = 0 since - 1

s mdn) =) h. .

As is well known, the preceding proposition implies the Hopf invariant one
differentials.

Corollary 1.5. dyhy,; = hgh2 for all n > O.

Proof. By Theorems 1.1 and 1.2 we find that

211 2!} . 2
dxhpey = dxSQ7 by = Sq7 dyhy + hohy
2
so that d2hn+1 = hohn
T
since qu dzhn is in filtration 4. (It follows, of course, that

n

Sq° @ = sq hohn_ hghi,)

The next result shows how we may use the relation with homotopy operations to
get stronger results than the differentials themselves give.

Proposition 1.6. hlh4 and h2h4 are permanent cycles.

Proof. Since hlh4 = ng(hOhB)’ it is carried by the 9-cell of P9 The attaching

e
map is n, to the 7-cell, and hence its boundary is n(2o)2 0. Similarly, h2h4
Sqlo(hlhB), s0 h2h4 is carried by the 10-cell of P;O xS V(Sg\JZ 10 }» The 9-cell
carries Pg(nc), which has order 2 by the Cartan formule in Theorem V.1.10. Thus,

the boundary of the 10-cell maps to O and h2h4 is a permanent cycle.
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Before turning to other families of elements we should note that the Hopf

invariant one differentials of Corollary 1.5 account for only a few of the non-
i

trivial differentials on the hOhn+1' In fact, Proposition 1.4 implies
i _ i+l 2 . io s n-2 i
d2h0hn+l = hO h 1is 0 if i1+l > 2°7°, On the other hand, hOhn+1 # 0 for

i< 2n+1’ and from the known order of Im J, there must be higher differentials on
i

many of the hOhn+l

higher differentials in terms of the Steenrod operations, though Milgram [81] has

indicated that it may be possible with a sufficiently good hold on the chain level

which survive to EB' It seems difficult ito determine these

operations. More disappointing is the fact that it doesn't seem possible to pro-
pagate these higher differentials. That is, even if we accept as given a differ-

ential like dshgh, = hydg, we don't seem to get any information on d3h3h5.

The operation we c¢all S in Proposition 1.4 will be very useful so we collect

its properties before proceeding.

Proposition 1.7. If S = Sq™*S:ExtS:™*S , mxtS:2(0*S) then

---IXZ] in the cobar construction

= X2 2

(1) S[x1]~--|x 11

k
S{x)S{y}

#

(i1} S{xy)
(ii1) Sgisx = 58I Sy
(1v)  S<xgyXq,vee,X5> € <Sxg,8%9,+0.,5%>

Proof. (i) is Proposition 11.10 of [68], while (ii) and (iii) are immediate from
the Cartan and Adem relationg since all the other terms must be O for dimensional

reasons. Part (iv} is proved in [78].

For our remaining sample calculations we will explore the consequences of the
squaring operations on the elements s do, eq and fo. The key elements we will be
concerned with are collected in Table 1.1 along with Massey product representations.

With the exception of fO and yg, the Massey products have no indeterminacy.
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8 n = t-8 Name Massey product
2
3 8 g <h,hy,h5>
2 2
4 14 dg <h0,h2,h0,h2>
2.2
4 17 eq <hy ,h3 shy,h >
2.2
4 18 £y <hg,h3,hy>
4 20 gl ———————
2.,2.2.2
6 30 Ty <h0’h3’h3’ho>
7 3 m <hg,hy,Tg>
6 36 tg e
> 3 Xg <hg,h,,do>
4.2
() 38 Yo <ho,h4,h3>
TABLE 1.1

Also, note that the elements Mshowald and Tangora call r,m,t,x and y, we are
calling ry, my, by, Xy and yn. The reason for the subscript will be apparent from
the following definition.

Definition 1.8. If i > O and a ¢ {c,d,e,f,g,r,m,t,x,y}, let ag = a and
84,9 = S84.

Applying Proposition 1.7{iv) we find immediately that

2
1427
2

By 054>

¢, e <h,

1€ Dyyqshgo0

2
dg € hy,hy5,

ee<h?h? h >

1€ Biohiegs
2 2

feDyhyghso>
2.2 2 2

Ty€ <hi’hi+3’hi+3’hi>

141704

h

ms € <hy,5,0547,75>
xi € <hi+3:hi+4:di>
4.2
and v € <hi’hi+4’hi+3> .

However, we shall not make any use of these Massey product representations here.
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From the calculations of Mukohda [88] or Milgram [81] we collect the values of
the Steenrod operations on co,do,eo and f. The following abbreviation will be very
convenient: if x eExtS™*S let S¢*(x) = (Sq®x, Sq®*%,...,5¢%"x) = (x2,...,5x)

*

Theorem 1.9. Sq e )

0~ (°o’ 0%07%1

* 2
8a'dy = (d3,0,14,0,d;)

)

* 2
Sq ey = (eo,m ,to,xo,e1

*
Sq fo = (O’hBrO’yO’O’fl)

The indeterminacy in the Massey product representations of fo and yq, suggests

that we should define them by the squaring operations above:
= Sqloco and yy = quofo.

Applying Proposition 1.7.(iii) we immediately obtain the following corollary.

¥ 2
Corollary 1.10. Sqey = (ci hiel,fl,c1+l}
¥ 0
Sq di = (di,O,ri,O,di+l)
* .2
Sqge, = (e elm by Xy, 1+1)

*
Sq fl = (O,hi+3ri,yi,0,fi+1).

Before computing the differentials that this corollary implies, it will be
useful to obtain a number of relations in Ext. This also gives us an opportunity to
illustrate how powerful the Steenrod operations are in propagating relations. The
relations we will assume known are all calculated by Tangora [103] by means of the
May speciral sequence. In general, this technique only yields relations modulo
terms of lower weight. However, the particular relations we need do not suffer from

this ambiguity, since there are no terms of lower weight in their bidegree.

Proposition 1.11 (i) hgeg = 0, hyey = O, hseq = 0, hgey = 0, Iyfy = 0,
hyry = 0, hymy = O.
(i1}

h.e h.e

2 .2 .
= hydgs Dydy = e, ey = bty

_ 2
g 14gs h h&l,hd P%
hzto = Clglo
(ii1) hér =0, hf. =0, hd- =0, h,d, =h g h6x = 0, h = b2
’ » g8y = B DR T Y, Bflg T Dgies

g0 40
_ L2
hOf1 = hlel’
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These relations are grouped as follows: (i) holds because the relevant bidegree is
0 or is not annihilated by hy, as multiples of hy must be; (ii) follows from [103]
since, again by [103], there are no elements of lower weight in the given bidegrees;
{iii) now follows either by applying Steenrod operations to relations in (i} and
(ii) or by the same argument as (ii). {(The point is that the relations in (iii) are
dependent on those in (i) and (ii) under the action of the Steenrod algebra.)

Corollary 1.12. (i) hye; = 0, hy,pe; = 0, hy, s = O, by jey = 0, by f; = 0,
hy,qTy = 0, hy,qmy = O.

iy L2 .2 _ _
(11) ef = h],;d;, b, ,d; = h.e,, h, e, = hf., h

1+2%1 T Di814q
Biaobs = C5418541-

(ii1) h, ,f. =0, h,.. 4% =0, h,..d. = = 1n%y., b2 .f, = h,.

ivgls 70 By g 70 By ady S By £y yomy = ByYys By Ty T Ry

Proof These are immediate from Proposition 1.11 since S is a ring homomorphism by

Proposition 1.7(ii).

A comparison of the preceding proposition and corollary will show that if we

view the periodicity operator as a Massey product

r 2r+1
Px = <hr+2’h0 JX>

b

then we have only Milgram's theorem (Proposition 1.7.(iv}) to use in calculating
S(PFx), and this generally leaves us with too much indeterminacy. For example,

1 I 1 - 2 _ R 1 =
PThyhg = cO so S(P h1h3) = Sco = cl. On the other hand, S(P hlhj) =

p
S<h3, O,hlh3>e <h ,0 h2h4> = 0 modulo indeterminacy which is divisible by hA' of
course, since c1 # 0, it follows that hoh g = c? since hA(th) is the only

possible nonzero element divisible by h,. This example shows that to calculate
S(Prx), we need another representation of P'x. It also shows that the Massey
product representation can lead to useful information (although in this case the
product h2h4g 2 was already true in the associated graded). Accordingly, we
provide the followzng formula for the interaction of the Sq and the periodicity
homomorphisms Pr.

Proposition 1.13. let Sq, = sa¥ et 5 Bttt Modulo the ideal generated

2
by {hr+1,hr+2,8q0x,...,Sqix} we have
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0 i< 2f
Squr_lx =
r 2 2r+1 T
P &q Xt <hr+1’h0 ,5q r x> i>2.
i-2 12" -1

If 1 = 0, the indeterminacy (of Sg, = S) is generated by h and Sqq%.
0 r+2 0

Proof. This is a special case of Milgram's general result [78], which, for three-

fold Massey products says

Sqob Sqoc
sq1.<a,b,c>c<<5qia,...,3qoa), : . R : > s
Sqib cee Sqob Sqic

since Sqhf = ) = 0 forn > 4, Sqnd - hg“,

1 and Sqihn = 0 otherwise.

0

»

8.2 2 _ .4 . . .
Corollary 1.14. <h4,h0,h3> P2h3 = hOrO with no indeterminacy.

Proof. By Proposition 1.11, Plhg = hgdo. By Theorem 1.9 we have

16,2 _ 4 22 _ .4 . 2 NP 22
Sq hod = horo + hldO = horo, since h;df must be divisible by hy so hydj = 0. By
Proposition 1.13, SqléPlh% = Sq4Plh§ = chg with indeterminacy generated by h% and

h4. For dimensional ressons the indeterminacy is O.

Combining Proposition 1.11 with Theorem 1.9 we can produce a number of

relations in Ext which do not hold in the associated graded calculated by Tangora.

Proposition 1.15. (1) barg = 8g and hence hsry = 84

i
(i)  hgrg = hyty + h%xo and hence hy,gry = By by + h%xi
(ii1)  hped = ndx, and hence  hy,.ef = 0if 1 >0
(iv) h%dl = hyxg and hence h§+1di = hyXy 4
(v} hyyg = hotg and hence hy3¥ = hyaoty
{(vi)  hpxg =0 and hence hs0%3 = O
(vii) hyfy = h%cz and hence hyfy = h§_101+l
(viii) hoyp =0 and hence hi,oy; = O

: 2
tix)  haxy = higy and hence hi, qx; = higs4n
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Note. Mahowald and Tangora [61] found (i)-(iii) by other techniques. Barratt,
Mahowald and Tangora [20] also found (iv), (vii), and (ix) by other techniques.
Milgram [81] found (i) and (ii) by using the Steenrod operations. Mukohda [88]
found (iv)-(vi) and (ix), partly by using the Steenrod operations and the cobar

construction, and partly by means of a minimal resolution.

Proof. Given (ii), (i) follows because hohgrq = hgxo # 0, from which it follows
that horo # 0. The only possibility is hary = s3.  To prove (11), apply Sq20 to the
relation hody = hgeg. To prove (iii), apply Sq,l9 to the relation

hleo = hOfO and use the fact that hlmo = 0. To prove (iv)}), apply qul to the
relation hody = hgey and use the fact that h%e1 = 0. To prove (v), apply qu1 to
the relation hleO = hOfO and use (iv) to show that h%xo = hl(hgdl) = 0. To prove

2

(vi), apply S¢°° to the relation hjey = hyfy to show that hoxy = hie; + h3f, and

apply Proposition 1.11.(iii) to show that this is O. For (vii), we apply Sq22 to

hoe; = O. Similarly, Sqt

applied to hyfy = 0 yields (viii). Finally, (ix) follows
by applying Sq24 to the relation h2eo = hogl to get h%g2 = h3xo + h%el, and noting
that h%el = hy(hyfy) = 0. The calcultion of Sq24(hogl) is possible because Sq24gl =

g, by definition, while Sq23g1 = 0 for dimensional reasons.

Now we examine the differentials implied by the squaring operations in the s
d;, e; and f; families. The results we obtain for t-s > 45 are all new. In the
range t-s < 45 they are due to May [66], Maunder [65], Mahowald and Tangora [61],
Milgram [81] and Barratt, Mahowald and Tangora [20] with the exception of dgeq =
h,t, which is new and corrects a mistake in [20]. As noted by Milgram [81] the
proof's using Steenrod operations are usually far simpler and more direct than the
original proofs. In addition, when they replace proofs which relied on prior
knowledge of the relevant homotopy groups we obtain independent verification of the
calculation of those homotopy groups.

s,n+s : .
If xe Er’ , let us write xe (s,n) or xe (s,n), for convenience. Theorems

1.1, 1.2 and 1.3 imply that

0 v > k+l or 2r-2 < v < k
B D s = -
dySQx = Sq drx + axdrx v = k+1
asq? Vx v=kor (v <kandv <10

where kX = j-n, v = 8a + 2P if j*l = 2[“a+b(odd), and a detects a generator of Im J
; 0
in 'nv_lS .

We start with a general observation about families {a;} with a;,q = S(a;). If
ay e(s,ni) then

n; +s =255 +s) = 25ng + ).
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If N is the integer such that M1 ¢ ose2 < 2% then the differentials on the elements
quai depend on the congruence class of n; modulo 2N. Clearly, n; = -s modulo 2N if
i > N. Thus, the differentials on all but the first N members of such a family
follow a pattern which depends only on the filtration in which the family lives.

Consider the c¢; family. We have cqy €(3,8),, so in general c; e(3,21-1l~3).

w?

Proposition 1.16. (i} ¢ €E_ while dyey = hpfy 5 for i 22

(i1) dyfy = hfey, f; €Eg, and dgfy = Mqyg g for 122

(111) dgef = ndhy,ors ) for 1> 2

. _ .2 . cas
Note. We will shgw shortly that thOyi—l = hOhi+2ri-1' This, together with (iii)
implies that dBGi = 0.
Corollary 1.17. d2e0 = c% and ve4 # 0, where 94 is the Arf invariant one element
detected by hi.

Proof. Since cy¢(3,8),, Sq*co = (c%,hoeo,fo,cl) is carried by

28P21= 16v (Slikjb e18)\1819. Therefore cq ¢E_and dzfo = hgeo. Applying
Proposition 1.11 we find that dyhjeq = dyhgfy = hfeg = hidy = hyef, from which it

follows that d2e0 = c%.

Since ¢4 € (3,19) , Sq*cl = (c%,hlel,fl,cz} is carried by ZlgPig =
(838 —, e?? A *0) Vs L. Therefore dyey = hofy and dafy = hlc% = hlh%dl = 0,

8o that f;e¢ E5 for dimensional reasons. Since ¢, = <h3,h2,h§> and ey (E@, the Toda
bracket <c,v,64> does not exist. We shall show in the next proposition that hie E”
so that 8y exists. Since gv = 0, it follows that v, # 0.

Now assume for induction that d,ey = and that 1 > 2. We can arrange the

2
hofia
relevant information in the following table.

- Joy I (n £° a
j (mod 4) Sqey Sq (hofi_l) X v a
2 2
1 ey hOhi+2ri—l 0 2 hy
2
2 hse; hoyi-l + hlhi+2ri-1 1 1 hg
3 £5 By 2 24
2

4 Ci+l hafy 3 1 hg
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2 _ .2 2 B
It follows that dBCi h0h1+2 io10 dzhle1 h s 3f‘ hiys 1 and dpeyyq =

hofi. This completes the inductive step and flnlshes the proof of Propositon 1.16
and Corollary 1.17 Note that we have omitted d2hiei

proposition because it will follow from our calculation of dses below.

from the statement of the

Proposition 1.18. (i} dyk = hodg

2
(11) dgrg = hydy and Y €,
(1i1) vy €E; for i > 1

(iv) djeEy for i1

Note. Mahowald and Tangora show [61] that d; is actually in E_, not just E3' Also,
the proof given here that hA is much simpler than the proof in [61].

Proof. Since djye (4,14),, Sq*do = (d%, 0, rg, O, d1) is carried by 214Pi§, which
has attaching maps as shown

18 dl
17
16 Ty
15

2
14 dO

Now d3hoh4 = hpdy implies hod% = (0 in E4. The only possibility is that dk =

hOdS. This implies that 2n29 = 0. Since the boundary of the 16 cell carries hld%
plus twice something, we get dqrg = hld%. Nothing is left for n? to hit, so n? €E .
Finally, dy{dj) = hp+0 = O s0 dy ¢ EB‘ Now assume for induction that 1 > 1 and

dy e E3' The terms SquBdi in the differentials on Squi will not contribute until
E5, so will not affect the proof of {(iii) and {iv). Since Sq*d (d 50,74 ,0 d1+1)
we find that dyry = hyeO = O and dy{(d;,4) = G0 = O, proving (1ii) and (iv) and
completing the induction.

Proposition 1.19. (i) dymy = hoed, t, €E;; and dge; = hyty
(11) ef eEs5, dgmy = Sa¥n %y, dyty = hgmy, dgx; = hymy and dgep = hgxy.
(131) If 1 > 2 and n = 25221 - 4 then d362 = nle.x, | + Sa™n
n+

- 1 R = as D+ -
dgng =S¢ hgxy g, dpty = hgmy, dgxg; = S Ingx; p, and dge; = hoxg .

0%i-1’

Proof. By Corollary 1.17, doey = c%. The information needed to calculate the

differentials on the SqJeO is most conveniently presented in a table.



J queo k v a qucz conclusion

17 & o 5 By 0 dged = 0

18 m, 1 1 hg nged  domg = hgeh

19 tO 2 4 h2 0 d3to = 0

20 %0 3 1 ho 0 do%o = hglp = O
21 e 4 2 hy 0 dgeq = Dytg

We omit d3e02 and doxy = 0 from the proposition because they also follow simply for
dimensional reasons. Similarly, since ty is in E 5, it must be in E,q for dimensional
reasons. Thus (i) is proved.

Since d3e1 = hytg, the term quhlto will contribute to d5quel if quel lives
that long. Again, the information is most conveniently organized into a table.

J quel k v " conclusion
2 2
38 ey 0 1 by d_{}el = hoelhlto =0
39 my 1 8 hy dgmy = 5a%%n 1
40 ty 2 1 hy dpty = homy
41 X 3 2 hy de1 = hlml
42 e, 4 1 hO d2e2 = hoxl

A1l of (ii) follows immediately . Now assume for induction that doeq = hpxy 1 and
1 > 2. Again we organize the information in tabular form. Ilet n = 21-21 - 4 so

that e; ¢ (4,n),.

J quei k v N conclusion

n e? 0 1 ng dge? = ndesx; 1 + SaPhoxs )
n+l my 1 2 hy dqmy = Sqn*lhoxi_l

n+2 by 2 1 hy dyty = hymy

n+3 x4 3 4 hy dqxg = Sqn*Bhoxi_l

nHe ein 4 1 ho 428541 = ho¥g

This establishes (iii) and completes the induction.
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Hote that three of the 5 entries in the above table satisfy v = k+1. The
corresponding differentials therefore contain terms of the form gkdrx, specifically

;hoeixi—l in this instance.

Only one of the differentials on the qufi is interesting.

Proposition 1.20. For all i > 0, dyyy = hghs 447y

Proof. The terms in d*qux involving d.x do not contribute to d28qjx.
If n = 21.22 - 4 so that fj € (4,n) then Sq"*1f; = hy,4r; and S*2r; = y;. Since
n+2 is even the proposition follows immediately.

This completes our sampler. We have calculated only about one fourth of the
differentials found by Mshowald and Tangora, but they include some of the most
difficult. The remaining differentials follow more or less directly from those

calculated here just as in Mahowald and Tangora's original paper [61].

2. Extended Powers of Cells

In order to study Steenrod operations on elements of the Adams spectral
sequence which are not permanent cycles, we need a relative version of the extended
power construction. The extended power functor En " X(P), for = ¢ zp, factors as
the composite of the functors

Xi___u,'x(p)
and Y+ Enr x“ Y

If we replace X by a pair (X,A) then X(p) is replaced by a length p+l filtration

X1y o YaP) of 1 spectra and we may apply En x_ (7) to this termwise. The

resulting diagram is the relstivization which we nee;. While the formalism applies
to any pair {X,A), we will confine attention to pairs (CX,X), where CX is the cone
on X, both for notational simplicity and because the pth power of such a pair has
special properties which we shall exploit. In particular, note that lemma 2.4 is
the geometric analog of the fact that & +trivial one-dimensional representation
splits off the permutation representation of « ¢ I, on RP. Most of this section is

P
devoted to this fact and its consequences.

+
An element xe¢ Es,n 8

v (X,Y) can be represented by a map of pairs

(CX,X) — (Y_,Y_, ).

Extended powers of (CX,X) can be used to construct a map representing gSPJx. The
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final bit of the section establishes the facts about extended powers which will

enable us to construct and analyze such a map.

We shall work first in the category of based w-spaces and based r-maps and the
homotopy category of based n-spaces and n-homotopy classes of based n-maps with weak
equivalences inverted. The results are then transferred to the category of n-spectra

by small smash products, desuspensions, and colimits.

Let I be the unit interval. We choose O as the basepoint, justifying our
choice by the resulting simplicity of the formulas in the proof of lLemma 2.4. For a
space or spectrum X, let CX = X al. The isomorphism X = X A{0,1} and the
cofibration {0,1} € I induce a cofibration X » CX with cofiber IX.

Definition 2.1. For a space X, define a I -space I;(X) by

p

ri(X) = {e A cseA cp e(CX)(p) | at least i of the c3 lie in X}.

If X is a spectrum, define a Iy spectrum T, (X) = x(PIa ri(SO).

lemma 2.2. (i) For a space X, I';(X) is naturally and I equivariantly homeomorphic

P
to X(Pla 1, (s9).

n

(ii) r4(2%X) = £™ry(X) if X is a space.

(iii) 1,

j+1(X) » 1;(X) is & z -cofibration.

P
{1v) ry{%)/r3,1(X) is equivalent to the wedge of all (i,p-i) permutations

of X(i)'\(ZX)(p_i). In particular, if (p) is the permutation

representation of £_ on RP then ro(X)/ry(x) = (zx){P) = gipixlp)

P

and r,(X) = x(P)-
(v) 1(X) = P-1x(P) 4q Lp Spaces or spectra, where SP=1 nas the Ip action
inherited from the p-cell FO(SO) = 1{P),

Proof. (i) follows immediately from the shuffle map

A ses A see ees .
(xl tl)A (XPAtP)k~+(xlh Axp}n{tlu Atp)

(ii) 1is a consequence of the commutation of £* and smash products.

(iii) follows for spectra if it holds for spaces. By (i) it holds for spaces
if it holds for 0. For SO, it follows because Fi{SO) is the {p-1i) skeleton of a CW
decomposition of FO(SO) = 1P,

Similarly, (iv) holds in general if it holds for SO, for which it is immediate.

(v) follows from the fact that r1(S%) is the boundary of the p-cell Io(s?).
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Remark 2.3: We will complete what we have begun in (iv) and (v) above in Lemma 3.5,
which shows that

P (X) = \Y pip-iy (p),
i A
(p-i,i-1)

The next lemms is the key result of this section. ILet I and S1 have trivial g

el

actions so that if X is a Ep space or spectrum then CX = XAl and X = Xast are

also.
Lemma 2.4. There are natural equivariant equivalences I'p(X) = Crq(X) and
irq(X) = (2X) (P} such that the triangle
Cr, (X)
C 1
ry(X) It
commutes. ¢ FO(X)

Proof. By definition and by 2.2(i) we may assume X = SO. We define a Ip
homeomorphism FO(SO) > CFI(SO) by

’Ll _tP_
1;1A ...Atp e (TA.”A‘t At

where t = max{tj}. The inverse homecmorphism is given by

tyA e AL )AL P2ttt AL, Aces AL
{1y p) P

—t

2

Commutativity of the triangle is immediate. The equivalence IT({X) = (zX)(P)
follows since Iry{X) = Cr{(X)/r{(X) = r{X)/r(X) = (EX)(p), the latter equivalence
by 2.2(iv).

Lemma 2.5. For any 7 c:zp and any w-free n space W, there are natural equivalences
w % FO(X) z C(W x rl(X))
" (p)
and Wk T (X)) 2 W (2X)
T 1 4

such that the following triangle commutes.

W xn rl(X)

/WK" PO(X)
iy
C(w x rl(X))
Proof. By Lemma 2.4, W o PO(X)
W (I (X)AI) = (We_ T (X))AI
1 ¥ 1

similarly. Commutativity of the triangle follows from naturality with respect to
{0,1} € 1.

i

W« (I7(X)aT) and by I.1.2.(i1)
c(w i Fl(X)). The second equivalence follows

i
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In the remainder of this section we shall restrict attention to the special
case of interest in section 4. The general case presents no additional difficulties

but is notatiocnally more cumbersome.

et n C zp be cyclic of order p and let W = S° with the cell structure which

makes G W = W, the usual Zin] resolution of Z. Let WX be the k-skeleton of W.
As in V 2, Wk/w is the lens space Lk and, by I.1.3.{(i1), if r =T (Sn l then
W LR /W = zkri. By lemmas 2.2 and 2.5 we then have the follow1ng

i
corollary of Theorems V.2.6 and V.2.14.

_ . 01 »(n-1)(p-1)+k
Corollary 2.6: W P Tp = 2 (n-1)(p-1)
. 0" -1 »n(p-1)+k
and Wktxn Iy =1z t(p 1) "

Now note that lLemma 2.5 also implies that wE LI U Wt o is the

-1 0
cofiber of the inclusion Wk ry Wk kT Ey Corollary 2.6 or by Lemma 2.2
and I.1.3.(ii) it follows that

R

17

To get this equivalence in a maximally useful form, first consider a more general
situation. In order to analyze the Barratt-Puppe sequence of a map a:A + X one

constructs the diagram below.

A
\
{2.1)

X CA = X\ CA
l “a
CA B P . ¥ i{i(a})
a
az\» 2
CX +(Ci{a) = X\_ﬁ CAV:.(&) cx

In disgram (2.1) the front and back squares are pushouts, &g is an equivslence,
a2 = Ca = aal, a; is the obvious natural inclusion, and the maps a, i{s), and

-1 1(i(a)) are the beginning of the cofiber sequence of a. The following obvious
fact about such diagrams will be used repeatedly.

lemma 2.7. Let B+ Y Ve a cofibration and let n:Y » Y/B be the natural map. For
any map
f:(Ci(a),X) » (Y,B),

we have nfa3 = ?55 - ?Eé in [$A,Y/B], where ?Eg is the mep A » Y/B induced by

(fa;,fa):(CA,A) » (Y,B).
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Proof. The only question is whether we should get ?Ei - Taé or its negative. We
choose ?Ei - ?Eé for consistency with the Barratt-Puppe sequence signs. The point
is that a3 is a homotopy inverse ito the map from Ci{a) to fA which collapses CX,

and the orientations on the two cones are determined by this fact.

Returning to the special case which prompted these generalities, let
.ghptk-2 | k-l s X
a: > o ry be the attaching mep of the top cell of W" & TIy. Then
diagram (2.1) becomes diasgram (2.2} below.

Snp+k~2 . enp+k—1
a
ka—l N
(2.2) kn I|l W " r1
enp+k-1 . Snp+k—1
NKmN\\\\\~ , a3
a -1 TSNk -1
2 Wk % N w o rlxzwk 6 Ty
Corollary 2.8. let B+ Y and n:Y » Y/B be as in Lemms 2.7. For any map
W ok oW, Wl 1) s (Y B) we have nfa, = fa, - fa, in
: 7 1 T 0’ 7 1 ’ 3 1 2

Tfnp+k_l(Y/B) .

Let v = vp(n(p~l)+k) in the notation of Definition V.2.15, so that

-1 k-v
ace "np+k—2 Ko rl factors through W &  Ty. Then we may replace the front

face of diagram (2.2) by

W 1 WY pou MR
w1 1

-V K-V np+k-1
Wk xn rO » W K" ro\je

in which the np+k-l cell is attached by a 1ift of a. This gives us a version of
Corollary 2.8 in which f need only map wk—v % Ty into B and the map ?Eé factors
through W % Tpe



190

§3. Chain Level Calculations

In this section we define and study certain elements in the cellular chains of
W % ro(Sn'l). In sections 5-7 they will be used to investigate the homotopy groups
of various pairs of subspaces of W ix FO(Sn'l). Here we use them to determine the
effeet in homology of a compression (1ift) of the natural map wk X FP(Sn'l) >
W e T (1),

Let 15 = Fi(Sn_l). Give &% = C(Sn"l) the cell structure with one n-cell x and
one (n-l)-cell dx. Let Cx{?) denote cellular chains and C4(?;R} = C4{?) ® R. Then

C*ro = <x,dx>P, the p-fold tensor product of copies of C*(en) = <x,dx>, and
C,T i < np-j

0 i>np-j .
We shall find it convenient to omit the tensor product sign in writing elements of
C*I‘j , so that, for example, xP~1ax denotes X®X® »++ ®X®dx. Let W = 5° with
the usual n-equivariant cell structure. Then CyW is the minimal resolution W of 2
over Z(x]. Let
I
)Y(k)j =

so that W(k) = Cy(WX), where WX is the k-skeleton of W. Then by I.2.1,
C*(Wk " I‘i) = wik) ®" C_)eI‘i .

Let o be the p-cycle (1 2 e+« p) in w ¢ L., and let v and Zp act on

p
Cyly by permuting factors. Following (68, Theorem 3.1] we define elements
t; & C4Ty as follows. Define a contracting homotopy for Cyl'y by s(ax) = O

and s(adx) = (—l)lalax.

Definition 3.1. If p = 2, let tg = dxz, ty = xdx, and ty = x2. If p > 2, let

2 + e + ap—l. let

N=1+a+q
to = axP ty = dxp—lx,
tyy = sla™t - 1)ty 1), and

t21+1 = S(Ntzi)‘

Lemma 3.2. (i) If p = 2 then d(ty) = (a + (-1)™)t; and d(ty) = tg.

(ii) If p > 2 then d(tl) = tg,
- -1
d(t’Zi) = (Q - l)tZi—-l
and d(t21+1) = NtZi if 1 » O.
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(11i) If p > 2 then t; = (-1)™nixP  and

tpy = nixPlax + (m-1)1(a"? - 1)axPlax
T2
where m= (p-1}1/2 and Q = (a+l} 7§ dia" .
i=1

Proof. (i) and (ii) are easy calculations, by induction on i for d{t,;) and
d(tpy,1) using (a™1-1)N = 0 = N(a™1-1) end ds + sd = 1.

= (=1)™nixP and that

P2, Since P =m + (a”! - 1),

In [68,Theorem 3.1} it is shown that t

3 %

tp—l = (m-—l)!Pxp'ldx, where P =qa + 07 + see @

(iii) follows.

Lemma 3.3. If p = 2, then in Cy(W "l & 1)

(-n'e, ® atx®) n#i(2)
2
€41 ® 4dx" ~ . )
(-1) ei®d(x ) - 29i®xdx nzi (2)
Proof. We have d(ei) = (a0 + (-1)i)ei“1 and d(x2) = dx x + (-1)® x dx. Therefore
dle;, ®xdx) = (a + (-l)i+l)ei®xdx + (—1)i+1ei+1® ax®

i+1 2

i+l
ei®xdx + (-1) ei+1® ax” ,

ei®dx x + (~-1)

from which we obtain

2 i
€y, @& ~ (-1)7e; ®dx x - e, ® xdx

= (bl ®at®) - 1+ (-1 Me, @ xax

i+p-1 x

lemma 3.4. et p > 2. If i is odd then, in C,(W . I'i),

)mnﬂn

€ip1 ® axf ~ (-1 mle, @ d(x").

If i is even then, in C*(Wl+p"l x_ I‘l),

p-1 s
® a ~ (1™t e @axP) -p § (-1)H/2le

®t,
=1 B

“14p-1 1+p-j

Hence, for any i,

P Tm+m P
€{4p-y ® I ~ (1) m! e, ® d(x)

in o, WP 1, Z).
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Proof. By Lemma 3.1 and the definition of W we find that if i is even then

[ Niej,, s 1@ty * ey @t q) Jodd, § £
d(ei+p—j ® tj) = T(ei+p—j—l ® tj - ei+p-j ® tj-l) j even
L Neiip2 @t * ey 1®% J=1
and if i is odd then
( Tei+P_J_l ®1 - Nes o 3 ® t 1 jodd, j #1
d(ei+p—j ® tj) =9 Nei‘rp—j—l ® tJ_ + :L+p -3 ® t j even
[ Teap2 ® b - €541 ® B i=1,

where N=l+a+a2+---+up_l and T = o - 1.

Suppose i is odd. We define

(-1)97
1

Q
1l
ne~—1g

; €iap-2j+1 @ o517 Cqup_oy @ oyl

A routine calculation then shows that

= m
d(e) = 'ei+p-l® tg + (1) ei®N1:p_1 s

and hence, by Lemma 3.2.(ii) and (iii)
m _ m _ m-+m p
Ci4p-1 @ Bp v (-1, @NL ;= (-1)7ey @ dlt) = (-1) m! e; @ d(x").

This establishes the result for odd i.

Now suppose i is even. We define

m 21
e = (-1)97 (e, ; ® by )

4 1+p-2] iep-2j+1 @ t251
where M = 4P + 2,073 4 L 4 (p-2)a + (p-1). One easily checks that
N=TM + p = Ml + p. A routine calculation then shows that

m
j-1
8(e) =ey 1@ty +p ] (=1)97 ®t

1 ®14p-2) @ Y251 7 Ciepzy-1 @ boy)

m
- (-1) ei®th_l ,

from which the result follows for even i by lemma 3.2.(ii) and (iii) just as for
odd i.
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In order to prove the compression result {(lLemma 3.6) we need to show that,

ignoring the 1, action, ry{x) is just a wedge of suspensions of x{p),

1Y

Lema 3.5. T nd ornd, 1 x)~ VPP
(p-i,1-1)

Proof. By Definition 2.1 and lemma 2.2.{i) we may assume X = 0. Again let
ry = 1;(89). Since Io = ¢ is contractible, CyIy is exact. It follows that

CuT'y is exact except in dimension np-i and that

Q k # np-i

Hry =

ker(C } k = np-i

np~iPO T cnp-i-lFO

Thus th-iri is free abelian, being a subgroup of the free abelian group Cnp—irO'
By the Hurewicz and Whitehead theorems ry is a wedge of np-i spheres. Splitting

CxI'y into short exact sequences shows that

rank th-iri + rank an-i-lri+l = rank Cnp-iro = (p-i,1i).
(Recall (a,b) = (a+b)!/albl). Since an—lrl has rank 1 by Lemma 2.2(v), we see by

induction on i that

rank an_.ll‘l = (p~—i,i—l).

We are now prepared to prove the key result.

Lemma 3.6. The natural inclusion Wj'\*l X Pj*l > Wi+l " rj is homotopic to a map

il i . _ Atp-1 i
e:W o rj+l > W x rj. In integral homology e = ee «»» et u“rp + W x Iy
satisfies

. Py . 4 imm P . .

(i) e*(ei*p_1 @ (d&x)F) = (-1) mle; ® d{x*) if p > 2 and i is odd,

(1) e le . ® (a0?) = (-Die, ® a(x¥ ifp=2edndi (2)

¥ Ui+ i >

where we denote homology classes by representative cycles. In mod p homology, (i)
and (ii} hold for all i and n. In integral homology e:WP—1 > rp > WO x Ty=T,
satisfies

s Py . o7yl .

(ii1) e,‘(ep_2 ® (dx)7) = (-1)" "Tey ® tp2 if p > 2.

1

Proof. The map compresses because Wt x is np+i-j dimensional while

r.
- . A T o J+l
W1+lun I‘J./W1 Lo rj =V gPPr gl by the preceding lemma. In order to evaluate ey,

first assume p > 2 and consider the commutative triangle,
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i+p-1 % T
ki

in which the unlabelled maps are the natural inclusions. In mod p homology the
vertical map is an isomorphism, so it suffices to note that
L ® &P~ (-1) by 3.4.

1 D
ei+p— mle, ® d(x*)
map is the quotient map Z » ZP’ and the mod p case implies ey is correct up to a
i+l i
to W x r

Now assume i is odd. The vertical

multiple of p. The indeterminacy of the 1ift from W ®o rl 1
consists of maps

Wi+p—1 ® T _c_’sanri—l __b_,snpﬁ—l _a_’wi‘x r

TP T 1

in which ¢ is projection onto the top cell, b is arbitrary, and a is the attaching
map of the np+i cell. On integral homology ¢y is the identity and ay is multiplica-
tion by p. Thus it is possible to choose the 1ift e such that ey is as stated in
integral homology. (This is a general fact about maps obtained by cellular approxi-

mation, but we only need it here so do not bother with the general statement.)

The argument for p = 2 is exactly analogous to that just given.

§4. Reduction to three cases

In this section we start with an overview of the
notations which we shall use in the remainder of this
proof of Theorems 1.1, 1.2 and 1.3 by showing that it

proving some results which will be used in all three.

If r. =
FJ

proof, then establish
chapter, and finally start the
splits into three parts and by

rj(Sn”l) as in Section 2, we would like to prove Theorems 1.1, 1.2 and

1.3 by doing appropriate calculations in a spectral sequence E.(S, P) where D is an

inverse sequence constructed from the wh o r,'s.

difficulties which have prevented this.

lines, it should immediately imply that Tp

However, there are technical

If a proof can be constructed along these

(see Theorem 1.2) is a linear combination

of 881y ang xp'k(drx)k for various §, i and k, with coefficients in E,(8,S). The

coefficient of the lowest filtration term would be g;
other coefficients would give complete information on

gifferential on 8€Pix.

The proof we give runs as follows.

of W o r.,nCcz:2 ecyclic of order p.

The spectrum W T,

and the determination of the
the first possible nonzero

5 is a wedge summand

In a very convenieRt abuse of notation, we

will write DT, for the np + i-j skeleton of this summand. There is a homotopy
equivalence of (ek+np, SK*IP=1) yin (DkrO,Dk"er &;Dkrl). The element 8¥PVx is
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represented by a map of {Dkro, Dk'lro y)Dxrl) intc the Adams resoluton of our H_
ring spectrum Y. Thus, we must study lifts of the boundary Dk'lro \/Dkrl in order
to compute d*BEPJx. Since Dkrl is homotopy equivalent to the stunted lens space

n(p-1)+k K. . X k-1 koo k-1,
Ln(p-l) and D°Ty is the cone on D°ry, D Iy w D Ty = Dkrl/D Ty = S

Now Dk+p‘11‘p is also a stunted lens space and the natural inclusion

k+np-1
2:n np-=L .

k+p~1r

D D

1 factors through Dkrl (Lemma 3.6). The resulting map

Dk+P-1Fp > Dkrl is equivalent to the cofiber of the inclusion of the boitom cell of

k+p-1
T
p+

Dk*P‘lrp. Thus Dkrlka—lrl = Dk+p_lfp/Dk*p"2rp. The top cell of DK+P'1rp carries

the element SePddrx and this is where this term comes from. The other term comes in
because we are given a map of Dk'lro\d Dkrl, not Dkrl/Dk‘lrl, into the Adams
resolution. Thus we must find another cell whose boundary is the same as the
boundary of the top cell of DXy or DK*P‘lrp, and we must 1ift it until it detects
an element in homotopy or until it has filtration higher than that of BEPUdrx.

Since Diro 3 CDirl, we can simply cone off the attaching map of the top cell of Dkr1
as long as this cell is nontrivially attached. This produces the terms gﬁj'vx,
EéPj'e'lx and aOBFJx. If the top ecell of Dki’1 is unattached, the top cell of
DP7lr may still be attached to the cell s
ecell in Ty which carries xp'ldrx. This is the source of the terms ﬁxp'ldrx.

. There is a nullhomotopy of this

Finally, when the top cell of Dk+p'lrp is unattached, it carries the entire
boundary.

There are two complications to the above picture. First, the map Dk+p'1rp >
Dkrl is & lift of the natural inclusion Dk+p‘lrp > Dk+p'lr1 and does not commute
with the maps into the Adams resolution until we pass tc a lower filtration. This
necessitates extra work at some points. Second, the attaching map ataches the top
cell to the whole lens space, not just to the cell carrying pI=Vy or BPj"e'lx. As
the filtration of & increases, the possibility arises that a piece of the attaching
map which attaches to a lower cell will show up in a lower filtration than the term
7P Vx or EBPJ'e‘lx. This possibility accounts for the cases in which we do not

have complete information.

Now let us establish notation to be used in this and the remaining sections.
As in section 1 we assume given a p-local H, ring spectrum Y and an element

S,n+s
X e E’
r

(S,Y), the E. term of the ordinary Adams spectral sequence converging to
7xL. We wish to describe the first nontrivial differential on Berx in terms of x

and d.x. (Here ¢ = 0 if p = 2.) Recall from §1 the definition

J-n p=2

(2j-n)(p-1) -~ ¢ p>2
Let
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Y :YO‘—-Y].Q'-—Yz-G"- Ry

be an Adams resolution of Y and let

{p) _ ,{p) _ —-—
Y —YO —FO-*--Fl F24— sen

be its pth power as in IV.4. Represent x by a map (en,Sn"l) > (Ys’Ys+r) and let
ry = 1;(s%71) ve the i*M filtration of Iy = €% as in Definition 2.1. Recall that

the spectrum W “E Fi is a wedge summsnd of W x I‘i where 7 C ):p is cyclic of

order p. In the remainder of this chapter, DkI‘i will denote the np+k-i skeleton of

this summand. Let us use g generically to denote the composites

(1 wxp):Dkl’i +Wko<ﬁ T, +Wkp<

Ex,ps+ir i x Tps+ir * Tpe+ir-k
2

the maps of pairs and unions constructed from them, and their composites with the
maps Yj T YJ- . We will use the following conseguence of Lemma 3.6 repeatedly.
Recall that e is defined in Lemma 3.6.

lemma 4.1. The following diagram commutes.

Dk+p-l r e X

——» ']
P
|
€

Ypsﬂ‘-k

1

B b

Yps+pr—k—p+1 ps+r-k-1

Proof. 1In the diagram below, the triangle commutes because r > 1 and the
quadrilateral commutes by Lemma 3.6.

k+1 k

st ost e GO
Dl 1’j +1 Dlr‘j
Yps+(j +1ljr-k-1 Y1:>s+j r-k

|

Yps+ (j+1)r-k-2 Yps+,j r-k-1
The lemma follows by composing the diagrams for j = 1,2,...,p-1.
In IV.2 we constructed a chain homomorphism &: W ® Cp + [ , where is the

cobar construction, which we used to construct Steenrod operations, and in IV.5 we

showed that ¢ induces such s homomorphism. In particular, Definition IV.2.4 says
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gEpiyx

j D

(-1)v(n)ey(e, @ x°)  p > 2
and Sq‘jx=¢ (e ®x2) P = 2.

¥ 7k
The following relative version of Corollary IV.5.4 gives us maps which represent
these elements. In it we let { be the cobar construction C(Zp,/{p,H*Y) so that
€s,nvs = T {¥e/ Mg & ny (¥, Yo ) and let W= Cy(W) so that My = C (W)
WALy = W)

13

lemma 4.2. If e ¢ JVk is represented by e e nk(wk,wk’1> then ¢,(e ®@ ®) s
represented by the composite

P
?.(e ®x%)
np+k np+k-L 0 ¥ =" "
(e IZ,S ) Rl LA SRR
- A
(eklx ro,ek [ l‘lusk 1y ro)

e x 1
' 1 £

(Wk x FO,Wk‘x rlx/Wk- u FO)
u

Vr —l
(Wk x ro,Wk X I‘lu\‘a’k KT

) —— (W F W oW lu )
O ho! k4 7

1« x ps’ i Fps+f ps
X

where u is the passage to orbits map.

Note: If e ¢ M is a Z[w] generator (e.g. e = qiek for eome 1) then the vertical
composite in the diagram is an equivalence by the same argument which was used to
construct diagrams (2.1) and (2.2).

Proof. This is simply the relative version of Corollary IV.5.4. The natural
isomorphism n4{X,A) g ny(X/A) for cofibrations A » X enable one to pass freely

between this version and the absoclute version of IV.5.4.

We shall refer to the boundary of the map in Lemma 4.2 so frequently that we
give it a name.

Definition 4.3. let 8¢ € my .\ 1Y 4,y De the restriction to SP™8~1 of the map

ox(ex ® xP) of Lemma 4.2. Let 1 e "np+k-1(DkrluDk~lFO) be the map with Hurewicz

image



198

0 k=0 or k odd, p > 2
0 k+n odd, p = 2
(-1)kek ®d(xp) + 9 Pey 1 @xp O# keven, p>2
k 2 _
L(«l) 2e, | ®x k+n even, p = 2

Lemma 4 .4. (1) 8@ = gx(1)
(ii) 1 is an equivalence
{(iii) Orienting the top cell of Dkrl correctly, the homotopy class 1

contains the map a, of diagram (2.2).

Proof (i) holds because we are in the Hurewicz dimension of Dkrl\J Dkﬁlro = goprk-l
so the Hurewicz image of 1 is suffieient to determine 1, and iis Hurewicz image is
the boundary of the cell ¢ ® P, Statement (ii) is immediate from the Hurewicz
isomorphism, and statement (iii) is immediate from the fact that ag is an

equivalence.

The differentials on g x are given by the successive lifts of (-1)d v(n)as
when p > 2, and of 3¢ when p = 2. Corollary 2.8 and the discussion following it
show that the attaching maps of lens spaces, and hence elements of Im J, enter into
the question of lifting this boundary. In the remainder of this section we
establish various facts about the numerical relations between the filtrations and
dimensions involved, the last of which will enable us to split our proof into three

very natural special cases.

lemma 4.5. If p > 2, the generator of Im J in dimension jg-1 has filtration < j.
If p = 2 the generator of Im J in dimension 8a+e (e = 0,1,3,7) has filtration ¢
batg if ¢ # 7, and € 4a+4 if ¢ = 7.

Proof. The vanishing theorem for Ext g (ZP’ZP) says that xtSt = 0 ir
0 < t-s < U{s}, where U{s) = gqs-2 if p ? 2 and

8a - 1 e=0

8a + 1 e =1
Ul4a+e) =

8a + 2 e = 2

8a + 3 e=3

if p = 2 by [4] and [56]. First suppose p > 2. The Im J generator in dimension

ts,t

jg-1 is detected by an element of Ex where t-s = jg-1. Hence jg-1 > U{s) =

s8q-2, which implies j > s. Now, suppose p = 2. A trivial calculation shows that if
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8>4a +e,e=0,1,3,4, then U(s) > 8a + ¢ if ¢ # 4, 8a + 7 if ¢ = 4. This
immediately implies the lemma.

We apply this to prove the following three lemmas. As in §1 let v be
vplk + n(p-1)), and let f be the Adams filtration of the generator of Im J in
m SO

v-1* *

Lemma 4.6. Assume p > 2. If v = k+1 and f > r-1 then pr-p-k+1 < 2r-1.

Proof. Equivalently, we must show k > {p-2){r-1). By Lemma 4.5

k+1

q

.

£

0 |

Thus k+1 > qf > q(r-l) and hence it is sufficient to show that

q(r-1) - 1 > (p=2)(r-l). This is immediate since r > 1.

Llemma 4.7. Either min{pr-p+l,v+f} < v+¢r-l orr =p =2 and v = 1 or 2.

Proof. Suppose p > 2. Then f < v/q. If pr-p+l > v+r-l then
v < {p-1)(r-1) + 1 and hence

o

r-1
2

f < + =< r-1,

fte]

Now suppose p = 2. We must show that if r > v then f < r-1. It suffices to
show f < v-l. This follows from Lemma 4.5 except when v = 1,2, or 4. In these
cases £ = 1 so the lemma holds when v = 4. If v =1 or 2 then £ < r-1 unless
r = 2. This completes the lemma.

Lemma 4.8. Exactly one of the following holds:
(a) v >k + p-1,
(b) v

(e) v < k.

#

k+1l and if p > 2 then n is even,

Proof. There is nothing to prove if p = 2, so assume p > 2. We must show that if
k <v < k+p-1 then v = k+1 and n is even. Reeall that k = (2j-n}(p-1)-c and

v = vp{k+n(p~l)) = vp(23(p—l)-s)- If ¢ = Othen v =1, Hence Xk = Oand n = 2j so
thet {b) holds as required. If ¢ = 1 then v = g{1 + ep(j}). Dividing the
inequalities k < v < k+p-1 by p-1 yields

1 : s
2j-n- 'ﬁ < 2(1+€p(,])) i 2J‘n -

which has only one solution: 2(1 + ap(j)) = 2j-n. Hence n is even and
v = allvey(j)) = (2§-n)(p-1) = k+l.
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Lemma 4.8 is a consequence of the splitting of the mod p lens space into wedge
summands, the summand of interest to us being the zp extended power of a sphere. To

see the relation, recall that v tells us how far we can compress the attaching map
of the top cell of wE x Ty = gh-t iggg:i§+k
Wk'v u“ rl and no further. When v > k it is not attached to Wk un Tye However,

. When v < k, it compresses to

recall that there are equivalences

+p=-1 . n-1 =n(p-1)+k
WI o TN Mae-n)

R

n-1 ~n(p-1)+k
Wk M Tl I Ln(p-l)

by Corollary 2.6, and that the top cell of Wk 3 rl is the image of the top cell
-l "

of x_ T
TP

The first possibility is that it goes no further, and in this case the wedge summand

vy Lemms 3.6. When v > X this cell compresses to Wp—2 u“ Pp.

of the lens space we are interested in has cells in dimensions n(p-l) and n{(p-1)-1
so that n must be even. By the splitting of the lens space into wedge summands, the
next possibility is v = k+p-1, which would have the top cell of Wk+p—l up Fp
attached to the bottom cell. In fact this cannot happen because the attaching map
is in Im J and thus is not in an even stem. So v > k+p-l is the only possibility if
v > k+1, and this says that top cells of WPl b Ty and WS x Ty
This "geometry" explains why the differentials on g€Px are so different in these
three cases. We shall start with the simplest of the three cases, and proceed to
the most complicated.

are unattached.

§5. Case {a): v > k+p-1

Since v > k+p-1 > 1, it follows that ¢ = 1 if p > 2. Thus Theorems 1.1 and 1.2
say that

d

1
[AS]

Zr_lP}x = PJdrx if p

i )
and dpr”p+18PJx gp drx if p > 2.

Theorem 1.3 follows automatically from these facts, so these are what we shall
establish.
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By Lemma 4.1, the following diagram commutes.

k+p-1 e k k k-1
———
D I‘p D ry D I‘l\JD g
£ 13 £
Eps+r—k

. :

————i B e
Eps+pr»k~p+l pe+r-k+1 ps-k+1

Because v > k+p-1, the top cell of pk+p-1 Ty is not attached {(Corollary 2.6 and
Definition V.2.15}. Thus there exists a reduction p "np+k-1(Dk+p_1rp) whose
Hurewicz image is ek+p-—1 ® axP (it is easy to check that ek+p—l (] ax? generates
an+k—1)' Also, v > k+p-1 > 1 immplies that k is odd if p > 2 and that k+n is odd
if p = 2 by Proposition V.2.16. Combining lemmas 3.6 and 4.4 we find that g£4(p) is
a 1ift of 3¢ when p = 2, and of (-1)™*=Lp ) 55 when p > 2. Applying Lemma 4.2 or
Corollary IV.5.4 we see that g4(p) represents ®*(ek+p"l ® ax®). Thus, if p = 2 we
have

2, pq)
x dx)™= P d Xy

dy. 1Px = gyl0) = ley

If p > 2, we have

= 3 mn+m~1 1
dpr_pﬂspjx = (1) win) (-1) ST £y (p)
_ mn+m-1 PJ
= (-1} (v(n)/mlvin-1})8P d x.
It is easy to check that v(n)/m!v{n-1) = (-1)™™ mod p so that d_._ gPlx =
pr-p+l

Yy dpx.

§6., Case (b): v = k+1

We will begin by considering p = 2. Theorems 1.1 and 1.2 say that

d2r_lex = P'jdrx if 2r-1 < r + £ + Xk,
dpp Mx = Pax +amdx if 2r -1 =r+f +k and

g x = Txd_x if 2r-1> 71 + £ + k.

Since the filtration f of ¥ is positive and r > 2, Theorem 1.3 follows from Theorems
1.1 and 1.2.

Let N = k+2n-1 and let C, ¢ my(DX*1ry,r,) be the top cell of DE"lr, with its

boundary compressed as far as it will go. Then the Hurewicz image
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S2n—2

= 2 = = = Y i =

n{Cs) el?fxﬁl® d§n~ind 302 a az(km) e my 4oz 1S, Since r, and
I‘:‘_/l"2 = S v S by Lemma 2.2, the Hurewicz homomorphisms in

w, AT ,T,) —— B o H (r,,I.)

2n-1""17"2 2n-1""1°"2

aJ' )
h

"on-212 Hon-2l2
are isomorphisms. Let R ¢ "2n-l(F1’F2) satisfy h(R) = x dx = eg® x dx in the
notation of §3. Then 3R ¢ Ton-olo is an equivalence since h(3R) = dx2 = e0® dx2.

Let a also denote (Ca,a) ¢ “N(e2n-l’52n—2)_ Let i be the natural inclusion
1:(ry,Tp) » (057lrg,rp) 4f k > 0 and let 1 = 1:(ry,Fp) » (Pq,Fp) if k = 0. Let eC,
denote (e,1)4{C,) ¢ “N(Dkrl'r,?)'

Lemma 6.1: 8¢ = gx(eCy o iRa) in my¥o 1 .q-

Proof. First note that eCyu iRa is defined since 3C, = 8{iRa) = a ¢ .10 BY

Lemma 4.4, 3¢ = E*(eczu iRa} will follow if e82 iRa ¢ wN(Dkl‘lv Dk_lro) has

Hurewicz image (-1)kek ® d(xz), since v2(k+n) = k+1 implies that either k+n is odd

or k= 0. If k # O then n:DkI‘lu Dk_lro > Dkl“l/Dk_lI‘l is an equivalence and Lemma

= k k-1
2.7 says that ﬂ(eC2 w iRa) = e02 € myD I‘l/D r

DE"1r.. Then h(sC.) = e h(C.) = (-l)ke ® d(xz) by Lemma 3.6 (since k+n is odd)
1 2 * 2 k

since iRa factors through

and we are done. If k = O then n is even, since v,(n) =1, and eCy s Raeny, 7.
- . 2 2
Also, a = - 2¢ 1r2n_282n 2 since h(aCz) = d(e1® dx™) = (a—l)eo® dx”~ =
2 R .
= —2e0® dx”. To compute h(eC, (,Ra), project to I'y/T, sinee H, Iy » Hy 1I1/T,
is the monomorphism which sends e ® d(xz) to e ® xdx + eq ® dx X. By Lemma 2.7,
2n-1 N =

1‘1 +r1/r2 equals eC, - Ra so

n(eCzu Ra}:8 5

i

h(n(eC,  Ra)) h('e_czz - h{Ra)

#

e*(e1 ® dxz) + Zeo ® xdx

= ey ® (dx)x - ey @ xdx + 2e, ® xdx

#

eo® (dx)x + eo® xdx.

Therefore h(eC, . Ra) = en ® d(x?) and we're done, proving lemma 6.1.
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Since £43C, € my¥oq,on, Ex(eCy U iRa) = g4(eCy) - £4(iRa) in
T Yog k41 Tngepp)+ By Lemma 4.1 (or 3.6), £y(eCy) and £4Cy have the same image
i 1 (Yog_y1,Ypgepp)e Since D(C,) = ey 1 ® dx%, £4C5 € 1x(Yog 1ion 1/ Y0gs0p)
represents Pddrx by lemma 4.2. Similarly, h(R) = e;® x dx implies that
ExR e me(Yoqin, Yo 00,) represents xd x, and hence gx{Ra) € myu(Yoo rirsToginp)
represents Exdrx. This completes case (b} when p = 2.

When p > 2 (and v = k+1) we will treat k = O and k > O separately. First
suppose k = 0. Thenv =1, n=2j ande = 0. Also, f =1, a = a, ¢ Ei’l(S,S) and
ae "OS is the map of degree p. Thus, we must show

dpayx® = aoxp'ldrx.

Heuristically this is exactly what one would expect from the fact that drxp =
p(xp'ldrx). That this is too casual is shown by the fact that we have just proved
(for p = 2) that

d3x2 = hoxdyx + Pldox.

The extra term arises because when we 1ift the map representing 2xd,x to the next
filtration, we find also the map representing Pndgx which we added in order to

replace xdox + (dzx)x by 2xd2x. Thus, our task for p > 2 is to show the analogous
elements can always be lifted to s higher filtration than that in which aoxp'ldrx

lies. The following lemma will do this for us.

lemma 6.2. There exists elements
1 1
Cl € ’irnp__lrl Y ¢ Tlnp_l(D Tz,rzuD TB)
1
X emy 1(0,Tp) Z ¢ my 1 (DPrg,D ryD?r,)
such that

_ . 1 2 2 1 2
Cy=pX +pY +Z in wnp_l(D TpoDT,, I D I‘BVD I‘A},

h(Cy) = eq ® d(xP), and

n(X) = eg ® Plax.

Proof. Since np-1 is the Hurewicz dimension of all the spectra or pairs of spectra
involved, we may define Cl,X,Y and Z by their Hurewicz images. Thus C1 and X are
given, and we let

nY) =fe ®MEPNax - ire @ t, » and

.
MZ) = -iTe, ®N .
; m . .
As in section 3, N = § of and Q= (a+1) ] ia°*. We also let M = J 1aP"1-! ang
i=1
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note that M(a-1) = N-p. Define
=1 bl p-1
C—mI (Mel®tp_l+e2®tp_2) +mel@Q,x dx

in C*(Dlrl\, D2P2,F1 \)I}F \,DZP }. By lLemma 3.2 it follows that

2 3

a{C} = hiCy) -ph{X) - ph(Y) - n(Z)

which shows that Cl =pX + pY + 2.

By lemmas 4.4 and 6.2, 3¢ € wyY Lemma 6.2

pe+l is the image of g*cle iyl

ps+r’®
glso implies that

) and

s+21

in Tr*(Yp g+2r-1?

sr-1Ypgrop) s Since &Y & my(Y) 1,

Egd € my(Y ) it follows that g,C; = pg,X in mylY ) and

ps+3r—2’Yps+3r—1 ps+r—1’Yps+2r

that 8¢ = pgxX in “*(Yps+1:Yps+2r)‘ lemma 4.2 implies that

ExK e my(Y

ps+r’Yps+2r) represents xp'ldrx and hence pgyX 1lifts to wy(Y Y )

ps+r+l’ ps+2r

where it represents aoxp'ldrx. Finally, IV.3.1 implies
j -1
dr+1FJx = dr+1xP = aoxp d.x.

Now suppose that k > O. Then v = k+1 is greater than 1 and hence congruent to
0 mod 2({p-1) by V.2.16. Also by V.2.16, ¢ = 1 and k = (2j-n)(p-1)-c is therefore
odd. Lemma 4.4 then implies 3¢ = £4(1) with h(1) = -e, ® d(xP). The next three
lemmas describe the pieces into which we will decompose 3¢. In the first we define

an element of Tap-1 of the cofiber of e:DP™°r_ » Ty, which we think of as an element

P
of a relative group nnp_l(rl,Dp'2rp}. In order to specify the image of such an

element under the Hurewicz homomorphism, we use the cellular chains of the cofiber
in the guise of the mapping cone of e*:C*DP'er + Cyl'y» That is, we let
-2 _ -2
Cy(ry,DP7*ry) = €47y ® G5 1 DP~ 1y

with d(a,b) = {(d(a) - eyx(b), - d(b)).

Lemma 6.3. There exists R ¢ "np—l(rl»Dp-zrp) such that
(1) n(R) = (-1 Teg@t, 1, e, ® t) ¢ Helry,DP7r))
(i1) h(aR) = e, > ® by = ep , ® (dx)P, and

(i1i) 3R ¢ "np—2Dp_2r is an equivalence.

p
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Proof. S8ince dleng® tp-l) =Teqg ® tp__2 by lemma 3.2 and e*(ep_2 ® tg) =
m-1 s _ .
(-1) Teo C)tp_2 by lemma 3.6.(iii), and since d(ep_2 ® tyl = 0, it follows that

((-l)me0 @)tp_l,ep_2 @)to) is a cycle of (rl,DP'zrp). Since ry = Snp—l

and
Dp—ZTp = Snp—2’ the Hurewicz homomorphism is onto and R satisfying (i) exists. Now
{ii) is obvious since the boundary homomorphism simply projects onto the second

caay s : -2
factor. Part (iii) is immediate from the fact that ep-2 ® 1ty generates an_sz rp.
Now we split R into a piece we want and another piece modulo Ty

Iemma 6.4. There exist X ¢ wnp_l(rl,rz) and Y ¢ nnp_l(Dlrz,rz) such that

(1) h(X) = (-1)®lnle; ® xP~lax, and
(i1) (i,e)4(R) = 3,X + J,¥ in ny(Dlry,r,) where
i:Ty » Dlrl, j:D1r2 > lel and e:Dp"2I'p + Io.

Proof. We are working in the Hurewicz dimension of all the pairs involved so it

suffices to work in homology. We define X by (i) and define Y by
n(Y) = (-1)™ N m-1)le; ® Qa(xP1)ax.
On cellular chains, the map (i,e):(rl,Dp'2rp) + (Dlrl,rz} induces the homomorphism

i
*
= C. Dll"

-2 1
€l ® ck_lr)p I, —= 0T, KD Ty —= G DT /C, T,

in which the unlabelled maps are the obvious quotient maps. Thus, denoting
equivalence classes by representative elements,

1

h(i,e),R) = (-1)" e @t

]

p-1

m-1

= (D)™ Mmtey ® x*lax + (1) m-1)1Te, ® & Hax

by Lemma 32.2. Since
dle; ® @Pldx) = Tey ® axPlax - e; ® Qa(xP1)ax,

it follows that h{(i,e)xR) = h{iyX + jyY).

In our last lemma we split 3¢ into two pieces modulo Dp‘zrp. Let N = k+np-1.

Lemma 6.5. If v = k+1 and k > 0, and if C_ e wy(DX*P~Ir_ DP=2r ) is the top cell
LETmE .2 P N P P

(h(Cp) = exup-1 ® dxP) with its boundary compressed as far as possible, then aCp =
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3Ra in my_DP~2r and

m-1 1

3¢ = (-1) o E*(eCp v iRa) in #,¥

pe-k+1 °

Proof. Since v = k+l, the attaching map of the top cell factors through Dp'zrp.
Since 3R is an equivalence by Lemma 6.3.(iii), the definition of a = ap(k+n(p—l))
ensures that an = (3R}a = 3Ra. Now Dkrl\; Dk_lro = Dkr /Dk_lr

Ra factors through i C Dk“lrl. Hence, in H*(Dkrl\; Dk"lro),

1 and, since k > O,

h(eC
(e P)

= P
e*(ek+p-1 ® dx*)

h(eC iRa
( pt )

i

(-1)mm1ek® a(x™)

by Lemma 3.6 {since k is odd and n is even). By Lemma 4.4, it follows that

m-1 1 .
3e = (-1) ﬁﬁ‘g*(ecpkj iRa).

We are now ready to prove Theorems 1.1, 1.2, and 1.3 in this remaining case
(p>2, v =ktl, and ¥ » 0). We must show that

d*BFJX = -SPJdrx $-n® g'xp_ldrx.

By lemma 6.5, d*BFdx is obtained by lifting

(-1 vmyae = (-1 um) Lr gy (ec w iRa)
from “*(Yps—k+
common boundary in Yps+pr—p+2’ g*(ecp \JiRa) = g*(ecp) - £x(iRa} in

"*(Yps—k+1’Yps+pr—p+2)'

1)} to the highest filtration possible. Since g*(eCp) and f£y{iRa} have

By naturality of g, £4(iRa}) is the image of

gyRa € "*(Yps+r’Yps+pr—p+2)

and by Lemma 4.1, 5*(eCp) is the image of

&% & M pgupr gpe1 Tpssprope2’”

Lemma 6.4 implies that 4R = £4X in wy(Y Yps+2r—l) since g£xY is in filtration

pe+r-12
2r-1 or higher. (Note that since 3R is mapped into T, by e in 6.4.{1ii), Lemma 4.1
forces us to work modulo filtration 2r-1l, the filiration into which ¢ maps D1F2.)

Thus
g*(eCka iRa) = g*Cp - gyXa in “*{Yps-k*l’yps+2r—l)’

and, since @ has filtration f, gyXa comes from "*(Yps+r+f’Yps+2r)' By lemma 4.6,
either r+f or pr-k-p+l is less than 2r-l, so that at least one of g*Cp and £,Xa is
nentrivial in "*(Yps—k+l’Yps+2r—1) in general. Since h(cp) = ek+p-1 ® ax® and

n(x) = (-1)™* nle, ® ¥ 7'dx, Lemma 4.2 implies that
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g*CP represents (19 (1 BPJdrx , and

vin-1)
g% represents (-1 Im1 Ekp‘ldrx.

It then follows that

4,8Px = (-1)3v(n)ae
= DI hm) L (5,0, - g%a)
=t el Logpla x - i) @ P
= -glax (1% 7 Ll x
since v(n)/vin-1) = (-1)® m! (mod p) and since v = k+1 implies 2(e+l)(p-1) =

(2j-n}(p-1) so that n = 2(j-e-1) and hence
-y = ittt - e,

This completes case (b)}.

§7. Case (c): v < k.

In this case the boundary 3¢ splits into a piece which represents the same
operation (Pj or BQPJ) on d.x and another piece which is an operation of lower
degree applied to x times an attaching map of a stunted lens space. We begin with
the lemma needed to identify this latter piece exactly. Recall the spectral
sequence of IV.6, and recall the notations established in §1.

Lemma 7.1. let o ¢ nk+np“lnk‘vsn(p} be the attaching map of the top cell of

DXs™(P) gng 1et £ be the filtration of pyla) = a?(k+n(p—l)), where p:Dk—vSn{p) >

SE*DP-V 5 projection onto the top cell. Let £ be the sequence

pk-venlp)  pk-v-lgnip} . .., . gnlp},
In the spectral sequence E.(3,0) the following hold:

(a) 1 < filtla) < f,
(b) if filt(a) = £ then o is detected by

k-v-1

ae + c. e,
k-v .Z i7i
i=0

for some ¢; ¢ EZ(S,S),
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(¢) if p=2and v <10 or p > 2 and v < pq then filt(qa) = f

and o is detected by aék—v'

Proof. (a) Since oy = O in mod p homology, filt(a) > O. Note that this fact
(applied to all the attaching maps of Dk—vsn(p)) ensures that the spectral sequence
can be constructed. Since p induces a homomorphism from Er(S,I3) to ET(S,S), and

px{a) has filtration f, o must have filtration < f.

(b) By IV.6.1(i), every element has the form
k-v
Y e.e,
i=0 *
for some c;. If filt(a) = f then the element detecting o projects to & in the Adams
spectral sequence of the top cell. Hence Cpy = s (In fact this argument shows
that if ¢y . # O then filt{a) = £ and ¢y, = &.)

(¢} Under the stated hypothesis, aey_, is the only element of filtration < f
in degree k+np-1l.

To prove Theorems 1.1, 1.2 and 1.3, let us first assume that v = 1. Then k is

even and ¢ = 0 if p > 2, and k+n is even if p = 2. Theorems 1.1 and 1.2 say that

a,Mx = ngP ~Ix if p = 2, and
d,Px = aerx if p > 2.

Theorem 1.3 follows from Theorems 1.1 and 1.2 in this case. The first step is to

split the element 1 of Definition 4.3 into two pieces. Recall that

nh(1) = (—l)k(ek ® alxP) + pe, , x zP).

Lemma 7.2: If k>v =1and C e nkmp_l(nkrl,nk‘lrl) is the top cell, oriented so

- Lk D . k-1, k-1
that h(Cy) = (~1)%e) ® d(xP), there exists Ae "k+np-1(D Iy,D" 7r;)  such that
h(A) = (—l)k'lpek_l ® xP
- k k-1
and 1= Cpuhe "k+np-1(D ryuD FO).

Proof. Let N = k+np-l. To see that A exists, consider the boundary maps and

Hurewicz homomorphisms

—_—— -— -
my(D" T, DTy 5 "™w-1D T 3 my(D7ry, D)
h h h =
k-1 k-1 = Y1 k. k-1
- _ = ¥~ -
Hy(D™ "ry, D™ 7rp) 5 T Hy D e Hy(D'ry, D" 7ry)
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The isomorphisms are isomorphisms because Dk—l‘? = ¥ by Lemma 2.4 and because

0
D “l/Dk' r, = S¥™1. Certainly A exists satisfying A = 3C;. It follows that

3(n(A) = 3(n(0))) = 3((-1)"Tpe, @ xP),

showing that h(A) = (-1)¥lpe, ; ® xP.

To show that 1 = C; « A, it 1s enough to show h(:) = h(C; A), since

D WDy = 8PTL With N = kenp-1, note that EyD*"lry = 0. This implies
that the homomorphism
i,
Kool el
Hy Dkr ro —~w-H (bt D fysD rl)

is injective, so that we need only show ixh{:1) = i4h{C;._ &). By lemma 2.7,
i4h(C) «+A) = h(C]) - h(A) and the result follows.
We now have 3% = gy1 = £,(C; s A) = £,0) - g4A modulo Vg, 4y since

E*(Dk_ll‘ Y ¢ Y Applying Lemma 7.1 we find that gyA represents

ps+r-k+1°

k-1 R . s
(-1} <i>*(ek 1 ® L) in ny (Y ps—k+27 ps+r-k+1) (with ag = hy if p = 2). Sorting
out the constants, we find usmg Definition IV.2.4 that -f£4A contributes aOsPJ x, if
P> 2, and hOPJ lx, if p = 2, to the differential on Pix. Thus, it remains only to
show that g£4C; is in a higher filtration than gyA.

lemma 7.3. If i1 and 12 are the maps

(Dkrl,Dk'lr

(D Ty D 1 \,E%r )

then there exists X such that i14Cq = p(iseX).

Proof. Since k+np-1 is the Hurewicz dimension of the domain and codomain of 12, it
suffices to work in homology. First suppose p > 2. We let hi{X) = e, ® xp'ldx,
which is obviously a cyecle modulo Dk'lrluDkrz. Then, in the codomain of i1 and 12
we have
Py . p-1
ek®d(x ) ek® Nx* ~dx

Tek ® Mxp-ldx + pek ® xp-ldx

?

-1, ..p-1 -1
ey ®M AT )ax + pe, @ ¥ Tax

p-1

pek®x dx,
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p-1

where N = § «f, T=a-1, and M = ) 1P 17 e homology is due to
d(ek+1 ® Ivhcp~ldx) and the congruen%e holds modulo Dk ! Ty Dk-lrl. This implies

Now suppose p = 2. We ggain let h{X) = e ® xdx and again this is obviously a

cycle. By lemma 3.3 we have

4

k 2 2
(-1} ek®d(x ) €y ® dx” + 2ek® xdx

th

2ek ® xdx,

where the congruence holds modulo Dk+1r2 kL

ry. This implies that 174Cq = 2i,4X.

We can now finish the proof of Theorems 1.1-1.3 for v = 1. By Lemma 7.3, the
image of £4Cy in n*(Yps-kﬂ’Yps-k-r-r«Ll) is zero, since it is the image of £,pX,
with £, X €1 (Yoo yar s Tpsoker+l ps-k+r+1?Tpg_ker+1) - O- THUS
the entire differentisl is given by -f4A and we are done.

} so that £,pX en (Y

Now suppose 1 < v < k. Then, since v = vp(km(p—-l)), Lemma V.2.16 implies that
k+n is odd if p = 2 and that k is odd and ¢ = 1 if p > 2. Also, by Definition 4.3,

h{1) = (—l)kek® a(xP). Let N = k+np-1.

Lemma 7.4. If Cp e myl Dk*"p -1p Dk+p -1-vp p is the top cell, oriented so that h(C )
= Cpep-1® dxP, then there ex1sts Ae nN(Dk VI‘O DX~ Vl‘l) such that 34 = e*ac and

1€ nN(Dkrl\,/Dk 11‘0) is the image of

k+mm—]—'—-(ec\,A} D> 2

(-1}
k -
€ “N(D Fl\JD r

eCzuA p=2

Proof. To see that A exists consider the following diagram, whose upper square

commutes and whose lower square anticommutes.

k+p~lev_ 3 k+p~1 k+p-1-v
"N'lD rp 'KN(D I‘p,D I‘p)
le* = |{e,e]),
kv 3 k. kv
"Nl Ty MERFTLEIR Y
ET 3 (-1} 19
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The isomorphisms are isomorphisms because Dkro = ¥ o= Dk'vro

is an equivalence by lemma 3.6. Thus, we may define A = a'le*acp. To see that 1 is
the image of the claimed elements, it suffices to work in homology, as in Lemma 7.2.

by lemma 2.4 and (e,e)

Here, h(eCP\J A) = e*h(Cp) - h{4a} = e*h(Cp} since HN_IDk'vrl = O for dimensional
reasons. By hypothesis, h(CP) = ek+p_]'Q§ axP, so

mi+m

{-1} m!ek(a al?) P

v
N

h(eC A) =
(epu )

(-1)%e, ® a(x*) P

t
™o

by Lemma 3.6. Comparing this with h(i)= (-1)kek(9 a(xP) finishes the proof.

Now,
(-1)Jv(n)5*1 p>2

Exl p=2

so, up to a scalar multiple, our differential is g*iecp A e "Nyps—k+1' By
Corollary 2.8 and lemma 4.1 we find that

#

£4(eC_ts4A)

D g,eC - g,A in # (Y

ol N ps—k+1’Yps—k+r+v)

= g*cp T Exh in "N(Yps-k+1’Yps-k+r+v-l)'

It follows from the definition of Cp that g*Cp lifts to “*(Yps~k+pr~p+1’ ps-k+r+v)‘
p : epd

k+p-1.6§ ax”), which equals 8 Fﬂdrx up Fo a

scalar multiple. When p = 2 this shows that Ex0y contributes derx to d*PJx. When

p > 2, the coefficient of BPJdrx is

Y
By Lemma 4.2, E*Cp represents ¢,(e

2j+k+m+m _v(n) -
(-1} Sy ET G -1 {mod p}.

The congruence follows from the definition of v, v{2a+b) = (-1)%m1HP if b = 0 or 1,
and the congruence (m!)2 = (-1)™1 (mod p). This almost proves Theorem 1.1, with
Tp consisting of -g,A ¢ "N(Yps-k+l’Yps—k+r+v
“N(Yps-k+r+v-1’Yps—k+r+v) coming from the use of lemma 4.1 above. "Almosi" because
this decomposition is only valid modulo filtration ps-k+r+v and we must still show
that either BSPJdrx or Tp will be a filtration lower than this in order to finish
the proof of Theorem 1l.1. To do this, we must identify g4A. Referring to the

) plus a possible "error term" in
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diasgram in the proof of lemma 7.4, the element C_ in the upper right corner goes to

P
A in the lower left corner if we follow the top and left arrows, while it goes to

(_1)k+mn+mm!a p>2

[V1 p =2,

where a is the attaching map of the cell ey ® xp, if we follow the bottom and right
arrows. Since the lower square anticommutes and since k is odd if p > 2, it follows

that (-1)™" g1 p>2

-0 p=2.

Applying lemma 7.1(a) we see that ¢£,A has filtration less than or equal to ps-k+v+f.
lemma 4.7 implies that, unless r =p = 2 and v =1 or 2, one of g*Cp and gyA will
occur in a filtration less than ps-k+v+r-l. Thus Theorem 1.1 is proved unless
r=p=v =2 (since v = 1 has already been deslt with). Applying the rest of Lemma
7.1 we find that

m+m

(-1 B oyle, @ xP) p> 2

Eyh =

F oy le,_ ® 1) p=2

if v =k (since Dk'vI'O/I‘l = Sn(p) has only one cell in this case) or if'p = 2 and
v <10 or if p > 2 and v < pg. Combining constants, we find that T, = a9 Vx and
that T = (-1% L 389 Ly if p > 2 (recall that e = ep(d)). The constant in the
odd primary case comes from the fact that v = vp(k+n(p—1)) = vp(ZJ(p—l) -1) =
2(p-1){(1+e) by V.2.16, so k-v = (2(j-e-1) =~ n)(p-1) - 1. This completes the proof
of Theorem 1.2 except when r = p = v = 2 (as noted above} or when pr-p < v <k. In

the latter case, Lemma 7.1.{a) still ensures us that

filt(g*A) > ps-k + v+l

> ps-k + pr - p+l

£116(g,C ).
ilt(g, p)

Hence the term contributed to d*seFJx by g*cp appears alone in this case. This
completes the proof of Theorem 1.2 except when r = p = v = 2. Deferring the latter
case until the end, we shall now prove Theorem 1.3. If p = 2 we may assume v > 8,
while if p > 2 we may assume v > q. The attaching map o of Lemma 7.1 must then have

filtration 2 or more. This is so because

(i) all but the top two cells are in filtration 2 or more,
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(ii) +the next to top cell component is the product of a positive dimensional
element of E,(S,8) (since v > 0) and a cell in filtration 1, so has
filtration at least 2,

(iii) +the top cell component is a permanent cycle (being the image of the
permanent cycle o), hence has filtration at least 2 by the nonexistence

of Hopf invariant one elements in dimension v-1.

This implies that gyA has filtration ps-k + v+2 or more. Since E*Cp has filtration
ps-k + pr - p+l and 3¢ splits into these pieces modulo filtration ps-k + r +v-1, we
have d;8°Plx = 0 if

i < min{v+l,pr-p,v+r-2}

min{v+l,pr-p} ,

the equality holding because v+r-2 < v+l implies r = 2, so that pr-p = p < v = v+r-2

by our assumption on v. This proves Theorem 1.3.

It remains only to prove Theorems 1.1 and 1.2 when r = p = v = 2. Together,

they say d;Px = Playx + 1P 2x. Let N = k+2n-1 and let cp ¢ wN(Dkrl,Dk_zl“l)
11‘2,Dk_11‘2) be the top cells, oriented so that h(C;) = (-l)kek(g a(x?)

and

c, ¢ nN(Dk+

and h(Cz) = e ® ax2.

k-2r k-

Lemma 7.5. There exists A ¢ nN(D O,D —2r1) such that sA = 301 and

1= 0w A in my(D¥ry O D% g

Proof. Since Dk'zro ~ ¥ we may define A = a"lBC

1
k k-2 3 k-2 3 k-2 k-2
nN(D rl,D rl) _—’"N-lD I, <z nN(D rO,D rl).

Clearly, h(A) = 0, so h(C{ «w A) = h(Cy) = h(x). Thus 1 = C; A,

It follows that

3¢ = g1 = g*(cluA) = 5*01 - E4A € "N(st-k+1’Y2s—k+4)'

As before, we wish to replace Cy by C, plus an error term which we can ignore.
ExLy Exlo

The following lemma is what we need in order to do this.

Lemma 7.6. Let i,:D°°r, + D r2 oD T

and J:D T, » DT
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k-1 k-1 k-2

be the natural inclusions. Then there exists X ¢ wN(D rl,D r, R rl) with
positive filtration in the Adams spectral sequence, such that in
nN(DkI’l,D ’11“2 uDk'Zrl)
(l,il)*cl = (e,iz)*cz + {J,10,X
Proof. Since p:(Dkrl,Dk‘2r1\‘/Dk‘1r2) > (Dkrl,Dk—lrl) is the cofiber of (j,1), we

need only show p*(l,il)*C1 = p*(e,iz)*C2 in order to establish the existence of X
satisfying

(1,1)),0; = (e,1,),C, + (§,1),X.

The filtration of X is necessarily positive because

Dk'lrl/Dk'lr2 uDk‘?'r1 = Vatt

by I.1.3 and lemma 2.2. Since N is the Hurewicz dimension of (D¥r,,DX~lp) it
suffices to show h(p*(e,iz)*cz) = hip,(1,i )*Cl)' This is immediate from Lemma 3.6.
With Lemma 7.6 we can now finish the proof of Theorems 1.l and 1.2. The
element £4X is in “N(Y2s-k+3’YZS-k+4)’ but since X has filtration greater than O,
ExX = 0 in “N(Y2s~k+3’Y28~k+4)' Thus 5*01 = g*(l,il)*ol = g*(e,i2)*02 in
“N(YZS-k+2’Y2S—k+4). By lemma 4.1, tx{e,is)xCs = £4Cs %n ”N(Y2s-k+1’Y2s-k+4)’ and
£xCy 1ifts to "N(YES-k*B’Y2s-k+4) where it represents Fddzx by lemma 4.2. Finally,
ExA also lifts to “N(Y2s-k+3'Y2s—k+4) where it represents hlPJ"gx by Lemma 7.1.
Thus

d3P3x = Pdayx + nyp 7.



CHAPTER VII

H, RING SPECTEA VIA SPACE-LEVEL HOMOTOPY THEORY

J. E. McClure

Our main goal in this chapter is to show that the spectrum KU representing
periodic complex K-theory has an H_, structure. The existence of such a structure is
important since it will allow us to develop a complete theory of Dyer-Lashof
operations in K-theory, including the computation of Ky(QX); this program is carried
out in chapter IX. Of course, we already know that the connective spectrum kU has
an H, structure since it has an E, structure by [71, VIII. 2.1]. However, it is not
known whether KU has an E, structure, and the distinction between kU and XU is
crucial for our work in chapter IX. We therefore require a new method for

constructing H_ ring spectra.

As usual, the case of ordinary ring spectra provides a useful analogy. The
easiest way to give KU & ring structure is to use Whitehead's original theory of
spectra [108]). We use the term "prespectrum” for a spectrum in the sense of
Whitehead [108, p. 2401, reserving the term "spectrum" for the stricter definition
of I§81. The Bott periodicity theorem for BU gives rise at once to a prespectrum
([108, p. 241]; more work is needed in order to get a spectrum), and the tensor
product of vector bundles gives this prespectrum a ring structure in the sense of
[108, p. 270]. Now the Whitehead category is not equivalent to the stable category
ns , but it is a quotient of it, and one can 1ift structures in this category to

1 1

hA as long as certain lim™ terms vanish. These lim~ terms do vanish for KU and we

obtain the desired ring structure.

In order to carry this through for H  structures we must give the Bott
prespectrum a "Whitehead” H_ structure (which is fairly easy) and show how to 1lift
it to nd (whicn is considerably more difficult). Our main concern in this chapter
is with the lifting process, which is called the cylinder construction and denoted
by Z. We begin in Sections 1 and 2 by giving a careful development of the ecases
already mentioned, namely the passage from prespectra tc specira and from ring
prespectra to ring spectra. Our account is based on that in [67] and [71, II §3]
but is adapted to allow generalization to the H_  case to which we turn next. In
section 3 we give a general result allowing construction of maps D“E > F in nd from
prespectrum~level data. Although the basic idea is similar to that of section 2
this situation requires new hypotheses and methods. Section 4 is a digression which

1

gives a convenient sufficient condition for the vanishing of the lim~ terms

encountered in sections 1, 2, and 3. In section 5 we define H_, structures on

prespectra (for technical reasons, these are called HS structures) and show that

1

they 1ift to H, structures in hd when the relevant 1lim' terms vanish. In section 6
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we observe that spectra obtained in this way actually have Hg structures as defined
in I.4.3 and that there is in fact an "approximate equivalence" between HS
structures on spectra and prespectra. Section 7 gives the application to K-
theory. The necessary Hg structure on the Bott prespectrum is obtained from the E_
structure on kU; a more elementary construction not depending on E_ theory (but
still using the results of this chapter) will be given in VIII §4. Section 8 gives
a technical result which is used in section 3. Except for section 8 and one place

in section 1 we use only the formal properties of nd and Dn given in I§1 and I82.

This chapter and the next are a revised version of my Ph. D. dissertation.
I would like to take this opportunity to thank my advisor Peter May for his warm
support and encouragement both in the course of this work and in the years since. I
would also like to thank my colleagues Gaunce Lewis and Anne Norton, my friend
Deborah Harrold, my parents, and a person who wishes to remain anonymous for their
no less valuable support. However, the views expressed in these chapters are my own

and do not necessarily reflect their opinioms.

§1. The Whitehead category and the stable category

In this section we deseribe the relation between the Whitehead category,
denoted.;;f3 , and the stable category'¥;£ . The results are well-known, but we give
them in some detail in order to fix notation and because we need particularly

precise statements for our later work.

We begin by defining ;i? . An object T, called a prespectrum, is a sequence of
,; in nd (see I$1; the use of hJ here
is technically convenient but could be avoided by systematic use of CW-

spaces T; (for i > O) and maps o i, » T,

approximations). If the adjoints Ei:Ti > QTi+l are weak equivalences we call T an
Q-prespectrum. A morphism £:T + U is a sequence of maps fi:Ti + Ui such that
fi+l°°i ® 09,0 Zfi in hJ . This should be compared with the much stricter
definition of morphism in h# given in I8§1; it is precisely because morphisms in
w® are defined in terms of homotopy that this category is a useful intermediate
step between space-level and spectrum-level homotopy theory. The set of maps in
w® from T to U is denoted [T,Ul,. If U is an Q-prespectrum then this set is an

abelian group and is equal to the inverse limit 1lim;{7,,U;] with respect to the maps

~¥ ~ -
Q oy (Gi)*l
iUy | 100,00 T = 11500, ) 1 ———> (1,0, 1

There is an evident forgetful functor z: hd » WP . Although there is no
useful functor in the other direction, there is an "approximately functorial

construction Z, called the cylinder construction. This can be defined in several
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essentially equivalent ways (see I86 of the sequel). For our purposes it is easiest

to define
ZT = Tel £ 12°
i

Ty
where the telescope is taken with respect to the maps

i-1

i ® -1 -1 il @ - w
+ : T, T T

Lt T, =% "L "z Ti = 0 {41 °
We write ¢; for the inclusion "Iy » s12T. If £:T » U is any map in w§ there

exists a map F:ZT + ZU induced by f in the sense that the diagram

commutes for all i > O. Unfortunately, this map is not in general unique. To

clarify the situation consider the Milnor 1im1 sequence

1 [ 1-1 e,

0 —=1lin (377 271,;,20) —= [21,20] —>1lin[z"2"1,,20] — O.

1 term vanishes. We

Clearly, the map induced by f is unique if and only if the lim
shall use the notation Zf for this map when this condition is satisfied (and not

otherwise). We have Z(f o g) = Zf o Zg whenever all three are defined.

The liml term just mentioned is only the first of many which will arise in our
work. For applications we wish to know when they vanish. This question will be
considered in detail in §4; for the moment we simply remark that for the cases of
interest to us (namely Bott spectra and certain bordism spectra) all relevant 1im?

terms do in fact vanish.

Although Z is not a functor, it has several useful properties. In fact, one
may think of the pair (z,2) as an "approximate adjoint equivalence" between hd and
the full subcategory of Q-prespectra inw® . The following result makes this
precise.

Theorem 1.1. For each T ¢ w® and E € WA there exists maps x:T + 22T and A:Z2E + E
with the following properties.
(1} « is natural in the sense that 2Zf o « = ¢ o f whenever If is
defined.

(ii) « is an equivalence whenever T is an Q-prespectrum.
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(11i) A is natural in the sense that f o A = A o Zzf whenever Zzf is
defined.
(iv) A 1s an equivalence for all E ¢ nd .
{v) zA © x 1is the identity map of zE.
{vi} The map t:{ZT,E] » {T,zE}w defined by «f = zf o ¢ 1is an isomorphism
whenever 1imlEi“lTi = 0.
{vii) The map 2f, whenever it is defined, is uniquely determined by the

equation t(Zf) = ¢ o f.

The rest of this section gives the proof of 1.1. In order to construct « and i

we need an alternative description of the i-th space functor from hd tohJ.

lemma 1.2. There is a natural equivalence Ei = Q"r'E. If ei denotes the adjoint

map szi > ZiE then the following diagrams commute.

o i «“ o
EEi = I LE b ZEi = Lz Ei
b y
{1) 101 l (2} [Y o5 IZG
6\
o J+1 i+1 i+l
se1 2z E T Ei+1 E

For the proof see I§7 of the sequel. The fact that such an equivalence exists
should not be surprising since it is well-known that the reduced E-cohomology groups
EXX of a based space X can be defined either as [5%X, z1E] or as [X,Ei]. The
diagrams of lemms 1.2 (which are adjoints of each other) simply say that one obtains

the same suspension isomorphism with either of these two definitions.

Given T ¢ w® we can now define w:T » 2ZT by letting the i-th component xy:T; »
(ZT)i be the composite
ww, EO 44
Iy =T, — a1l PANIE {ZT)i.
We note for later use that the following diagram commutes.

Z T —v—————————————z (ZT)

N

The verification that « is in fact a w® -map is a routine diagram chase using
diagram (1) above. It is clear that « satisfies 1.1(i); in fact it has the stronger
property that zF o ¢ = ¢« o f whenever F:ZT » ZU is induced by f. For part {ii) we
first compute
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uk(ZT)i = nk_iZT = co;lm nk—i+j£ ?3
- . . 2
colim colim “k—i+j+2 L Tj .
J 2
A cofinality argument shows that the inclusion of colim « T, in the last

k-i+j 7j
group is an isomorphism. If T is an Q-prespectrum, then the inclusion

%, T
i

e eo%im [ Y

p k-i+j 7]
is an isomorphism and the result follows.
Next we define X:ZzE + E to be any map obtained by passage to the telescope
from the maps
PRETYIEE et SN
i i
Part (v) is immediate, and (iv) follows from (ii) and (v). For (iii) it suffices,
by the definition of Zzf, to show that A-l of o A : ZzE » ZzE' 1is induced by zf,
i.e., that the diagram

-1 =
r L f, .
s~ i*g, = £ E!
1
i -i
£7e, 1o,
A f A

commutes for all i > O. This in turn follows from the definition of A and the
naturality of ei.

For part (vi)} consider the 1im? sequence

0 —» lim (32751, ,E] — (21,E} T Limlz 27T, B} —= O.

The map ;'agrees with 1t under the isomorphism
linlz™Y:®1, E) * 1im(T,,E,) = [T,zE]
1mZZi, = limidy, byl = »Zh ]y

and the result follows.

Finally for (vii) we calculate
t{Zf} = 22f o «x =k o f.

The uniqueness follows from (vi).
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§2. Pairings of spectra and prespectra.

In this section we give a multiplicative version of the results of §1 which in
particular will gllow us to produce a ring spectrum in h§ from suitable input in
wP . Again the results are well-known.

For the rest of the chapter we fix an integer d > 0 and consider prespectira
indexed on nonnegative multiples of d. This is convenient in the present section

(for dealing with Bott spectra) and will be crucial in §3.

Let E,E',F ¢ nAk. By a pairing of E and E' into F we mean simply a map
$:Ea E} » F. Although the category .‘;33 has no smash product, a suitable
prespectrum-level notion of pairing has been given by Whitehead {1(8, p. 255]; we
recall it here.

Definition 2.1. Let T,T',U e w® . A pairing y:(T,T') » U consists of a
collection of maps
. t
Y15 7% Tay 7 Vacieg)

such that the following diagram commutes in nJ for all i g > 0.

a o 1
AT t
ETy" Ty Tar1en)™ a5
4
-1 .
It - Y141,
}.‘.dtp g
d i, .d 14
Ty N Ty ) e B gy T Ugaag e
It
a1 dj a1’ tag+n) »

If $:EAE' + F is a pairing in h4 and f:ﬁ + E, f':fi' > E', and g:F » F are
maps in h4 there is an evident pairing
go ¢ o (FAaft): E~E ' » F.
Similarly, if ¢:(T,T') + U is a pairing in wy and f‘:% + T, f':'i" + T', and

g:U» U s&are maps in WP there is a composite pairing

~

goyeo (f,f"):(’i‘,"f") + U.

Next we show how to 1lift pairings from w® tond . If $:{T,T") » Uis a
pairing then ZT A ZT' is equivalent to
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-2di ,
Tel 1771 (T, A Ty, )

and we can obtain an induced pairing ZT AZT' + ZU by passage to telescopes from the

maps E'Zdiz“’wi’i. The induced pairing is unique if the group

2di-1(

1in® (20) T ')

di di

vanishes, and we denote it by Zy when this condition is satisfied. Note that we now
have two distinct, but analogous, meanings for the symbol Z, and we shall give
another in section 3. There is no risk of confusion since the context will always
indicate whether Z is being applied to a map in w? , a pairing, or an extended

pairing as defined in section 3. Clearly we have
Zg o Zy o (ZfAZf') = Z(g o y o (f,f'))

whenever both sides are defined.

Next, given a pairing ¢:EA E' » F in w4 we wish to define a pairing
2z¢:(2E,2E") » zF (again, this use of the notation z is distinet from that in section
1). In contrast to section 1, it is inconvenient to do this directly from the
definitions since the definition of EA E' is too complicated. Instead, we use the
maps provided by lLemma 1.2. First let

© a(i+)
. N 1
¢i,j‘ T (Edi Ed,j) > I F
be the composite
w - o O MBS 4 g a(i+) a(i+)
B Byy) = BB Al E('ij——-—~'1——>5: EasNE = 3 EAL —»g F

Then the diagram

o, 4 ' o 1
2720y A By ) ———> 17(Ey,)n By
¢ (-1 %

a
b, . .
o, d d o . i d(i+j+1)
T (Eg; A B ) EZ(EdiAE.)——"L’Z F

dj
IZ a /.+l
~« ' @ f 1,J
L (Edil\z El,) ———»z (Edi" By

dj (3+1)

i

commutes by Lemma 1.2. We now define

1
(z¢)i,j :Egqh Edj > Fd(i+j)

to be the composite
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o, . -
{NEY) 55 IS A B I

' -_’mw -
Fai® By &t (E a(i+)

di (51
The fact that z¢ is a pairing follows from the diagram above and another application
of Lemma 1.2. We clearly have

z(g o ¢ o (£af')) =2g 0 2y o (af,zf').

Finally, given a pairing ¢:4T AZT' » F we can define a pairing

t{¢):{T,T'} » zF by (¢} = 2¢ o (x,«x). In analogy with Theorem 1.1 we have

Proposition 2.2 (i) If y is a pairing in w® then 23y o (k,x) = x o § whenever Zy
is defined.
(ii) If ¢ is a pairing in nd then Ao Zz¢ = ¢ o {2 1) whenever Zz¢ is
defined.
(iii) If limlFZdi'ldeiA Téi) = 0 then T is a one-to-one correspondence
between pairings ZTA ZT' » F and pairings (T,T') » zF.
{iv) The pairing Zy, whenever it is defined, is uniquely determined by the
equation <{Zy) =« o .

The proof is completely parallel to that of 1.1 and will be omitted.

As a special case we consider ring spectra and prespectra. Let S be the zero-
sphere in nA and let S be the prespectrum whose di-th term is Sdi {(with the evident
struetural maps). A ring spectrum is a spectrum E with maps ¢:EAE > E and ¢:S + E
satisfying the usual associativity, commutativity and unit axioms. Similarly, a
ring prespectrum is a prespectrum T with a pairing ¢:(T,T) » T and a map e:8 + T

satisfying associativity, commutativity and unit axioms. The unit axiom in this

case is the commutativity of the following diagram in nd .

. e,.»1 1a e, .
s, B T gpoap, A gAY
dai | "4 di

\ "’i,j [

Td(i+j)

There are also evident notions of morphism for these structures. As a consequence
of Proposition 2.2 we have the following.

Corollary 2.3. (i) If E is a ring spectrum then zE is & ring prespectrum. If { is

a ring map in hA then zf is a ring map in w ¥ .

2di-1

(11)If T is a ring prespectrum with liml(ZT) (TdiA Tdi) = (O then ZT

is a ring spectrum and «:T + 2ZT is a ring map. If in addition £:T » T' is a ring
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map and

1 2di-1 o1
1im* (ZT") (TgiA Tgy) = lim™(ZT')

2d1-—l(TI

g1 Tag! = O

then Zf is a ring map. If E is a ring spectrum and 1imlE2dl-1(EdiA E

di) = 0 then

x:Z22E » E is a ring map.

§3. Extended pairings of spectra and prespectra

let 7 be a fixed subgroup of I In this section we generalize the results of

3 _
section 2 by relating maps of the form f:D E» F in h4 to certain structures in
w® called extended pairings. This is our basic technical result, which will be
applied in this chapter and the next to various problems in the theory of H_ ring

spectra.

First we need a generalization of Definition 2.1. The difficulty is that,
unlike the smash product, D, does not commute with suspension. The situation
becomes clearer when one realizes that Dﬂzdx is a relative Thom complex. For if p
is the bundle

En x“(ﬁg)j > Bx

and Py is the pullback of this bundle along the map
Ex e ¥ o B,

then DﬁZdX is the quotient T(pX)/T(p*), where * denotes the basepoint of X. The
failure of D1T to commute with suspension arises from the faet that the bundle p is
nontrivial. This suggests that we consider theories for which this bundle is at
least orientable and replace the suspension isomorphisms which were implicitly
present in section 2 with Thom isomorphisms. Note that the orientability of p with

respect to a certain theory may well depend on the positive integer d.
Definition 3.1. Let F be a ring spectrum. A wn-orientaticn for F is a map
wd s » £ Yr

such that the diagram

(sd)(j) 1 Qde
0 _ |
s 1Ye sUr

commutes in hd . If U is a ring prespectrum, a wn-orientation for U is a map

v:D"Sd > qx
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such that the diagram
d)(j) i 1 d

e [ 8

(s

12 lv

a e..
S _d Udj

commutes in }EJ . A ring spectrum F or a ring prespectrum U with a fixed choice of
w-orientation is called w-oriented. A ring map of wn-oriented spectra or prespectra

is w-oriented if it preserves the orientation.

It is now easy to give an analog for Definition 2.1. Recall the natural map §
defined in I§2.

Definition 3.2. Let T be a prespectrum and let (U,v) be a n-oriented ring

prespectrum. An extended pairing

g:{w,T) » (U,v)

is a sequence of maps
1 D;Tgs * Uiy

such that the following diagram commutes in hd for all i > 0.

D (T~ &%) J =D Ty~ D s
l D“a lciA v
DrTa(s41) Yais™ Yy
;M‘ /“’ij 3
Ya(i+1)j

We shall usually suppress the orientation v from the notation.
Definition 3.1 is general enough for our purposes, but it could be made more
general by allowing U to be a module prespectrum over some wn-oriented ring pre-

spectrum. Everything which follows would work in this generality.

If g:U + U' is a n-oriented ring map and £:T' + T is any map in ;2? we define
the composite
gog o {n,f):{n,T"} » U*

by letting (g o g o (u,f))i o Dn(fdi)' We also have composites in the

=g .. O L.
dji i
n-variable: 1if p is a subgroup of = and U has a p-orientation consistent with its

w-orientation then the maps
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3 © vD Tas > Ugys
form an extended pairing denoted ¢ o (:1,1).

There is an evident stable version of 3.2: if F is a wn-oriented ring spectrum

we define an extended pairing from E to F to be a map £:D E > F. We do not assume

any relation between £ and the orientation u, but the presence of u is necessary for
the comparison with the prespectrum level., We can define composites

gogo an and £ o 1 as in the prespectrum case.

To complete the program of section 2 must show how to define zf and Zg with
suitable properties. Both of these will be defined by using a spectrum-level
variant of the Thom homomorphism to which we turn next. If F is a n-oriented ring

spectrum end £:D E + IPF is any mep we write ¢(f) for the composite

DTIZdE —SS-"DT[E ’\D,n_sd .,Lﬁ.)ﬁ,.’ EnF /\Zd'JF LE n+dJF-

Since each class in Fn(DnE) is represented by some f we obtain a homomorphism
o:7( B) » PV (0 1%)

called the Thom homomorphism. We write ®(i) for the iterate
Fn(DnE) -+ Fn+d1J(D“Zd1E). If E = "X for some space X then it is easy to see that ¢

is the relative Thom homomorphism for the bundle py and is therefore an isomorphism.

Thus the following result should not be surprising.
Theorem 3.3. ¢ is an isomorphism for every E ¢ h d .

The proof of this result, while not difficult, involves the definition of D

and not just its formal properties and is deferred until section 8.

We can now define 2zt for an extended pairing g:D“E + F. Give zF the

orientation
2(0):D 8%~ 8% = 0" ¥ " VFar,, .
i E n aj
For each 1 > O let (zg); be the composite
o
& Dnedi

DE,, —»Q D1 E,, —2E2 0o
n i

: w (i) .
di, 2 ¢ "'t = dij. |
L Eai a4 E—-——=q i “F=F

dij °

The verification that zg is in fact an extended pairing is completely similar to the
analogous verification in section 2. Further, z is natural in the sense that

z(g o g o an) =2g o 2 o (w,zf) and =2(f o 1) =2£ o (1,1). Note that zf¢ depends
not just on the map g but also on the orientation u.
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Unfortunately, Zr cannot be constructed directly as in sections 1 and 2.
Instead we observe that we could have used 1.1{vi} and 2.2{iv) to define Zf and Zy
by means of the equations <(Zf) = « o £ and 1(Zy) =« o . If ¢ is an extended
pairing from ZT to F let (&) be the extended pairing

2§ o {w,x): {(n,T) » zF.

At the end of this section we shall prove

Theorem 3.4. If limlF‘l(D“E“dizdei) = 0 then 1t is a bijection between extended

pairings D ZT + F and extended pairings («,T) + zF.

We can now define Zy for an extended pairing g:(=,T) » U when the relevant 1imt

terms vanish. Give ZU the w-orientation

2(v):p. s = £™p s » U, » ¥z,
k1 n 4j
and let Z(z) be e o z).
Corollary 3.5. (i) =2Zg o (m,c) = «x o ¢ whenever Zr is defined.
(ii) Z(gog o (w,f)) =Zg 0 Zr © D"Zf and Z(z o (1,1)) = Zz o 1 whenever

both sides are defined.

{iii) X o Zzg = o D“A whenever Zzf is defined.

Proof of 3.5. (i) is the definition of Zz. For the first equation in (ii) we

calculate

1(Zg o Z¢ o D"Zf) 2Zg o zZr o (m,zZf) o (m,«)
= 2Zg o zZz o {n,c} o {n,f)

=zZg ok oz o {n,f)

kogoygo (n,f)

t(Z2(g o g o (n,f}));
the result follows by 3.4. The verification of the other equation in (ii) is

similar. For part (iii) we have

"o g oD = ato zE o {®,zx) o {(m,x)

=x o2t = 1(Z8)

with the second equality following from 1.1{v); the result follows by 3.4.
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Next we make some observations that will be important in sections 5 and 6.

Part (iii) of our next result gives an alternate description of Zg which is similar

to the definitions of Zf and Zy in sections 1 and 2.

Corollary 3.6. Let £:D 2T » F be an extended pairing.
(i) r{g)i is the composite
Q’D e, . e () s
@@ ndi o din Q9 o dij o
DTy —= @D 1T o, —=—sq"p x¥zr £ 5 o7 F . Fai
(ii) If g':D 2T » F 1is another extended pairing and t is a bijection then
g = g' if and only if

(i) _ (1)
¢ 7' o Duei =9 gt o Dnei

for all 1 > 0.

(iii} If g:{=,T) + U is an extended pairing and Zg is defined then Zg is the

unique map for which the following diagram commutes for all i > O.

D 6 .
o w di - di
D 2"T,, b stz
™ (1)
z DﬁTdi [ A4
- Saij ai]
I gy -3 gy

Proof of 3.6. Part (i) is immediate from the definition of t and diagram (3) of
section 1. Part (ii) follows at once from part {i). In part (iii) the
commutativity follows from part (i) and the definition of Zr, while the fact that Zg
is the only such map follows from {(ii).

Remark 3.7. Let D be a functor which is naturally equivalent to DTT for some n.
More precisely, we assume that there are space and spectrum level functors , both
called D and compatible with EW, and space and spectrum level equivalences D = D,
mmhmeMmcmmﬁMemwrf;mew%sdiMM%tme%A%mm%%.We
can clearly carry through everything in this section with Dﬂ replaced everywhere

by D. The necessary maps

§:D{XAY) » DXADY

1:X(j) +> DX
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may be obtained from those for D, by means of the given natural equivalence. Of
course, D may already possess transformations § and 1 compatible with those for I%;
this is the case for D = th D and D = QjDk’ If 7 is a subgroup of p C zj and 1’
denotes the composite

D=D ~+-®D
w P

then (provided that 1' preserves the orientations) we can compose an extended
pairing g:DpE + F with 1' to get an extended pairing in the new sense from DE to F.
Clearly z and Z will preserve such composites. The examples of interest for 1' are
the maps a5 and 8j,k defined in I§2.

We conclude this section with the proof of 3.4. If £:D ZT » F is an extended
pairing we write [g] for the element of FOD“ZT represented by £. Now Dﬁ preserves

telescopes by I1.1.2(iii) so
~di =
D“ZT =~ Tel D"Z z Tdi .
Hence the liml hypothesis implies
% 21 = 1im FOp 3 857 .
™ s di
The image of [g] in the i-th term of the limit is (Dﬂx_dlei)

14

*[g}-

On the other hand if z:(x,T) » 2F is an extended pairing then each T3
represents an element [gi} € FdijD“Tdi, and Definition 3.2 says precisely that

*
olgs) = (Do) lgg 4.

Hence the extended pairings (n,T) + 2F are in one-to-one correspondence with the

elements of
. dij
lim F JDani’

where the maps of the inverse system are the composites

*
. . (D o} . . -1 .
d{i+1}) W d{i+l}j .4 @ dij
F D Tac141) -F Dz T4 »FD Ty -
Thus t gives a map
lim F°(0 171 ) —rim P D 7).
b di ) ndi

We claim this map is lim é(i), from which the result follows by 3.3. For by 3.6(1)

and the naturality of ¢ we have

* ! i *
(xg);1 = (0o ) e Mgy = @(1)”’%%1) eh.
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S4. A vanishing condition for lim! terms

In order to apply the results of sections 1,2, and 3, one must have some way of

showing that the relevant 1im?

terms vanish. In this section, which is based on a
paper of D. W. Anderson [10], we give a simple sufficient condition which is

satisfied in our applications.

If F is a spectrum and X is a space we denote the F-cohomology Atiyah-
Hirzebruch spectral sequence of X by Er(X;F). We say that the pair (X,F) is Mittag-
Leffler (abbreviated M-L) if for each p and q there is an r with
Eg’q(X;F) = Eg’q(X;F); in particular this is true if the spectral sequence

collapses.

Definition 4.1. A pair (T,F) with T e w® and F ¢ hd is lim'-free if
(i) F and each Tdi have finite type.
(11) The pair (T44,F) is M-L for each i > O.
(iii) If d is odd then Hn(Tdi) and n F are finite for all n. If 4 is even
they are finite for odd n.

We say that T ¢ w® is limi-free if the peir (T,2T) is.

The integer d in part (iii) is the one which was fixed at the beginning of

section 2.

In practice it is easy to see whether a particular pair satisfies (i) and
(iii). It is sometimes easier to deal with condition (ii) in the following
equivalent form ([10, p. 291}).

Proposition 4.2. Suppose E,(X;F) has finite type. Then the pair (X,F) is M-L if
and only if for each p and q the infinite cycles ZE’q(X;F) have finite index in
B UXE).

Proof. Fix p and q. Let cﬁ’q be the quotient of Eg’q by its infinite cyeles. If

Zg,q has finite index in Ep,q then €P>9 is finite. Since Cgiq is a subquotient of

2 1
Cg’q there must be an Ty with Cg’q = Cg’q for all r > Tge But then clearly
% = 0, hence EP’% = g9, ©
To Yo ©

For the converse we recall that the rationalization F » FQ induces a rational
isomorphism of E, terms. Since FQ splits as a wedge of rational Eilenberg-Mac Lane
spectra the spectral sequence Er(X;FQ) collapses. Hence an element of infinite
order in Eg’q(X;F) cannot have as boundary another element of infinite order. It
follows that zg’q has finite index in EP’Y and that the projection zﬁ’q N Eiicll has
finite kernel. But if Eg’q = 82°% then Cg’q = 0 and hence CP»9 is finite as

r 2
required. 0 0



230

Corollary 4.3. Suppose Er(X;F) and ET(X‘;F') have finite type. If

£:E.(X;F) » EL(X';F') is a map of spectral sequences which induces a rational
epimorphism in each bidegree of the E,-terms, and if the pair (X,F) is M-L, then so
is the pair (X',F').

As a consequence we get a way of generating new lim-free pairs from known

ones.

Corollary 4.4. Let (T,F) be s limlnfree pair and let f:F » F' and g:T' + T be maps
inducing rational epimorphisms onto w4F' and H*Téi for each i. If F!' and each Téi

have finite type then the pair (T',F') is liml-free.

Proof. The pair (T',F') clearly satisfies 4.1(iii), and it also satisfies 4.1(ii)
since

*
- . i o B g |
fyBqs Byl TaqsF) » By (T 57N
is a rational epimorphism in each bidegree.

In the remainder of this section we show that liml terms arising in previous
sections do in fact vanish for liml-free pairs. The reader willing to believe this

can proceed to section 5.

By a filtered group we mean an abelian group A with a descending filtration
A=00al> A25 .

A is complete if the map A » lim A/An is an isomorphism (this includes the Hausdorff

property), or equivalently if lim A" = 1imlA® = 0. Filtered groups form a category

whose morphisms are the filtration preserving maps.

1
filtration of A;. Let GRA; = A3/AR*l. ¥e need an algebraic fact ([10, Lemma

1.131]).

Let {Ai}->o be an inverse system of filtered groups, and let A? be the n-th

Proposition 4.5. Suppose that lim1

GnAi = 0 for each n and that A; is complete for
each i. Then lim® A; = 0. 1

Using this we can prove the standard result about convergence of the Atiyah-
Hirzebruch spectral sequence ({10, Theorem 2.1}). Recall that the skeletal
filtration of F®X has as its n-th filtration the kernel of the restriction to the
{(n-1)-skeleton X(n-1). The associated graded groups of this filtration are the E_-

term of the Atiyah-Hirzebruch spectral sequence.
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Corollary 4.6. If the pair (X,F) is M-L then
i) 1lim F™X(n) = O for each m,
(ii) The map FPX » lim F®X(n) is an isomorphism, and
(11i) The skeletal filtration of F'X is complete.

Proof. Clearly (i} = (ii) => (iii) so we need only prove (i}. Iet Ay = (1)
with its skeletal filtration. This filtration is discrete, hence certainly
complete, so by 4.5 it suffices to show lim1 Ez’q(X(i);F) = 0 for each p and q.

Now the restriction l

B Ux;F) » B Yx(4)5F)
is an isomorphism for p < i, hence the map
2 UF) » BB X ) ;F)

is an isomorphism for p < i-r+l. Thus, if ry is such that Ez’q(X;F) = Eg’q(X;F)
we see that Ei’q(X;F) * EE’Q(X(i);F) is an isomorphism for i > p+ry-1, 88 that
1in B Ux(1);F) = 0.

i

1

Now we can deal with the 1lim~ term of section 1.

Corollary 4.7. If the pair (T,F) is liml-free then 1im* Fdi-lr . = o.

Proof. Give Fdi'lei the skeletal filtration, which is complete by 4.6. Then each
group of the associated graded is finite by 4.1(iii), hence the hypothesis of 4.5 is
satisfied and we conclude that lim® Fdi'lei = 0,

Next we consider the relation with multiplicative struetures.

Proposition 4.8. [10, p. 291] Suppose that F is a spectrum of finite type having
the form ZU for a ring prespectrum U {in particular F may be a ring spectrum). If X
and Y are spaces of finite itype and the pairs (X,F) and (Y,F) are M-L, then so is
{XAY,F},

Proof. The hypothesis on F makes F-cohomology a ring-valued theory on spaces (but

not necessarily on spectra). For each p and ¢ the resulting product map

3 1
® (8 O(x,F) « £ AtE)) > By UK AYGE)
p'+ p'=p
: : . »',0 p",q is . .
is a rationsl epimorphism. Now Z  ’ (X;F}) and Z  **(Y;F) have finite index in
1 # 1 "
124 O(%;F) and Eg 'UY;F) by 4.2, and the image of Z¥ 0 g z2»% is contained in
22 UXAY;F). Hence ZPUXAY;F) has finite index in Eg’q (XA Y;F) and the result
follows by 4.2.
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1

This allows us to handle the 1lim~ term in section 2.

Corollary 4.9. If (T,F) and (T',F) are liml-free and F has the form ZU for & ring
prespectrum U then limt F2d1_1(TdiA T4;) = 0.

Proof. The skeletal filtration of FPI1~1(T . AT!.) is complete by 4.6 and 4.8,
and each group of the associated graded is finite by 4.1(iii). The result follows
by 4.5.

We now consider extended powers.

Corollary 4.10. If X and F have finite type, F has the form ZU for a ring
prespectrum U, and the pair (X,F) is M-L, then so is (DﬂX,F) for any = € Ej'

Proof. The transfer, which is a stable map from DX to X(j), gives a rational
epimorphism

P,y (), P, x.

E2 (XY °;F) » E2 (DHX,F).

The result follows by 4.2 and 4.8.
Next we dispose of the 1im! term of section 3.

Corollary 4.11. If (T,F) is 1im1—free and F is a w-oriented ring spectrum then

1im'F i 5o = 0.
kil di

Proof. The proof of 3.4 shows that the given inverse system is isomorphic to the

m
isomorphism ¢ preserves the skeletal filtration so we have a filtered inverse system

. - %
inverse system pdii-1p T4i with structural maps ¢ 1o (D“o) . Now the Thom

of groups which are complete by 4.10. The associated graded groups are finite by
4.1(1ii) and the proof of 4.10. The result follows by 4.5.

Finally, we record a result of Anderson which generalizes 4.6.

Proposition 4.12 {10, Corollary 2.4]. Suppose that X and F have finite type and
(X,F) is M~-L. If X is a countable CW-complex then the map

F'X > lim ana ,
a

where {Xa} is the set of finite subcomplexes of X, is an isomorphism for each n.
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§5. H_ ring spectra and prespectra

In this section we show that H_ ring spectra can be obtained by 1ifting the
following structures in wP .

Definition 5.1. An Hi ring prespectrum is a ring prespectrum U with maps

25,1 D5%s1 » Vaij

for all i, > O such that each ¢1 4 is the identity map and the following diagrams
p— b4
commute in hJ for all i,j,k > O.

o]

Dila* Dlas = B0l DiDyUas —t Dy Uas
lcj itk lcj +K,1 [chk,i S5k,1
Yais ~ Yaix —t— Ya1(j+x) D Ug:x —Li Vatsx
D (Ugs * Ugy) w--mﬁ——————wkudia D Ugs
le“’ Cx,i" Pk,
Pla(i4g)

Yaix™ Ya5x
Ck,i"‘j /

. 4 . d . :
A ring map f:U » U' between Hw ring prespectra is an H°° ring map if

25,1 ° P5fas * fagy © %51

Ya(i+j)x

for all i,j > O.

The significance of the positive integer d in this definition is that a
prespectrum may have an Hi structure but not an HS' structure for 4' < 4. (Some
examples of this phenomenon are given in the next section.} The third diagram in
Definition 5.1 has no analog in the definition of H_ ring spectrum since in that
situation the analog of the third diagram follows from the other two by (ii) and
{iii) of I.3.4.

Definition 5.1 has several consequences. The first diagram implies the
commutativity of
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—————————————4-D U
for all i and j. In particular the composite

is a Zj-orientation for U. These orientations are consistent in the sense that the

diagrams

d, d d 8 d
— 8 o
D, 5%~ D s Dy i D, Dy Dy S

(1) vn Yy tvj " (2) iDjvk f}jk

z :
-y . _ d.k
U3 * Yax Ya(j+k) D Ugie U5 x

commute for all j and k. Now the unit diagram in the definition of a ring
prespectrum and the third diagram in Definition 5.1 imply that for each fixed j the

maps gj 3 give an extended pairing

cj:(zj,U) > (U,vj).

Theorem 5.2. If U is a liml-free HS ring prespectrum then the maps
:D, Z2U » ZU
give 2U an H  ring structure. If f:U » U' is an HS ring map and U,U' and the pair
(U,2U') are lim'-free then Zf is an H_ ring map.
The proof will occupy the rest of this section. We write F for ZU, Ej for
Z(cj) and ¢ for the multiplication Zy. Let B be the orientation
Z(vj):Dde + Zd'JZU = Ed'JF;

as defined after Theorem 3.4. First we claim that the “j are consistent in the

following sense.
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Iemma 5.3. The diagrams

d a d d B d
—_— >
D.STAD S ———A--*»DJﬂ{S DjDkS Dij
(3} uy Aty luj X {4) le by ) Lujk
d(g +X} . ] {g.) .
pNpa gy 27 70 4k DjzdkF R RPN

commute for all j,k > O.

Proof . For diagram (4) recall that y; is the composite o, o ):mvi, where

: ai
841 1s the natural map 1*Ugy - $33F,  Hence

“jko g = edjk oz (\’jk o B)

dek oI (Cj,k) oz Djvk by diagram (2)

Q(k)(Ej) o D,8., o Djz“’v

;6 by Corollary 3.6(iii)

k

k)
(Ej) o D.U] .

The proof for diagram (3) is similar.
Next we need another preliminary result.

lemma 5.4. The diagranm

Dk(FA F) D FaAaDF
le¢ lgk“ Ek
DkF FAaF

X\ /
F

commutes for all k > O.
In order to prove 5.4 we need the following variant of 3.6(ii).

lemma 5.5. Let nq and Ny be two maps

D“(ZT/\ ZT') » F,
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where F is & m-oriented ring spectrum and the pairs (T,F} and (T',F) are limi-
free. Then L ) if and only if the equation

(21) _ {21y
{5) ¢ (nl) o Dﬂ(einei) =3 (nz) o D"(ei:\ei)

holds for all 1 > 0.

Proof of 5.5. The composite isomorphism

0. _-2di (21)

FO(DN{ZTAZT’)) —— Lin F%D im ¢ lim ZdiJD (Tg A !

(T AT a1

a1) )

takes n to 6(21)(n1) ) DH(BiA ei), and similarly for n5.

Proof of 5.4. Let ny be the counterclockwise composite in the diagram and ny the
clockwise composite. Consider the following diagram of spectra, where we have
suppressed ©” to simplify the notation and the unlabeled arrows are all induced by

maps B4;.

Dy (Vg3 A Uq4) 2 > D Uqs ADyUgs
. ® —
D, (z¥F A pp) J p,2%%F ap 2%
D, ¥ ® Dk22d1¢ ( )(Ek)”’( )(51()
k,1 % fk,4
LAk,

21:\\\\\\\\t ‘/////552;
z2dlkF
\ s

D Uoqik © x N Uaix

%x,21 v

U2dik

It is easy to see that the counterclockwise and clockwise composites in the
inner pentagon are 9(21)(n1) and ¢(2i)(n2). To verify equation (5) it suffices to
show that the ocuter pentagon and parts A, B, ¢, D and E commute. But the outer
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pentagon is the third diagram of Definition 5.1. Part A commutes by naturality of
§, parts C and E by definition of ¢ = Zy, and parts B and D by 3.6(iii).
We now turn to the main part of the proof of 5.2. We shall show that the

following diagram commutes; the other is similar.

Xk
(6) legk l Ejk
£,
D,
J

We shall apply Remark 3.7 with D = DjDk' First orient Dj Dde using either of the
two equal composites in diagram (4) of Lemma 5.3, and denote the associated Thom
isomorphism by ®. We write ny and n, for the counterclockwise and clockwise
composites in diagram (6); these are extended pairings in the sense of Remark 3.7.
By 3.6(ii) it suffices to show

—(1) _ =(1)
(7) [ oDJ.D 8, = ¢ “2°DjDkei
for each i > O. Consider the following diagram, where we have again suppressed
z

@

and the unlabeled arrows are all induced by maps 831"

D, D, U 8

R —» D, . U..
Jj Tk di @ jkTdi
D, D EdiF —:B———>D ZdiF
J K jk
(1) (i)
D, . D¢ (g, ) ¢ (g, ) RO
i%%,1 0 (D 3 Elz_k) %k Sk, i
i
. ) (g.) <o
D, ZdlkF — 4 Edl‘] kF
J
*L T. .
j,ik
DiUgik ™ Vaijx

In the inner square the clockwise composite is clearly E(i)(nz). Using Lemma 5.4
one can show that the counterclockwise composite is 5(i)(nl). To verify equation (7)
we must show that the outer square and parts A, B, C and D commute. The outer
square is the second diagram of Definition 5.1. Part A commutes by naturality of B8

and parts B,C, and D by 3.6(iii). This completes the proof.
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§6. HS ring spectra.

Theorem 5.2 gives a useful relation between H  structures in nd and Hz
structures in ;TP . However, it does not provide a satisfactory analog for
Corollary 2.3 since an arbitrary H_  ring spectrum F need not possess the Zj-
orientations necessary to give an HS structure for zF. For example, if F = § then
zF is not an Hi prespectrum for any d > O (ef. Proposition 6.1). What is needed
is a notion of H_ ring spectrum with built-in orientations. It turns out that the
right objects to lock at are Hi ring spectra as defined in T.443.

If F is an H_ ring spectrum we say that a sequence of zj—orientations is
consistent if the dlagrams of Lemma 5.3 commute. If F has an HS structure let H3

be the composite D.Zde

£, .
DJ.Sd d rDjzdF J.l A,

Then each ¥ is a zj—orientation by I.4.4(iii) and an easy diagram chase shows that
the uy are consistent. On the other hand, some H, ring spectra do not even have I,-
orientations, and thus are certainly not Hi. This is illustrated by our next

result.

Propogition 6.1. (i) The sphere spectrum S is not an HS ring spectrum for any
d > 0.

(ii) If F is an H: ring spectrum for d odd, then wyF has characteristic 2.
If, in addition, F is connective and ToF is augmented over 22 then F splits as a

wedge of suspensions of HZ,.

Proof. Let pd be the bundle

EL., x (Rd)2->B)32.

Then pd is the d-fold Whitney sum of p1 with itself, and p1 is the sum of the Hopf

bundle with a trivial bundle. The Thom complex of pd is DS, and so pd is F-

orienteble if and only if F has a I,-orientation (for the given value of d).

For (i) we recall (e.g. from [71, III.2.7]) that a bundle is S-orientable if
and only if it is stably fibre-homotopy trivial. But pd clearly has nontrivial
Stiefel-Whitney classes for every 4 > 1.

(ii) Let R = mof and observe that F-orientability implies HR-orientability by

virtue of the canonical map F +» HR. Consider the spectral sequence with
BPy9 = #P(z,;H3(s? sdjm))
2 2

converging to H*{Dzsd;R). There is only one nonzero row and so H2d(D28d;R) is
isomorphic to HO(22;H2(SdA Sd;R)), which is the Z,-fixed subgroup of
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sz(SQA Sd;R) = R. But Z, acts on R as multiplication by -1, so we conclude that
H2d(D2Sd;R) is isomorphic to the 2-torsion subgroup of R. If on the other hand p1
has an HR-orientation then HZd(DZSd;R) = R, so that R must have characteristic 2.
If in addition F is connective and R is augmented over %5 then the proof of
Steinberger's splitting theorem III.4.1 gives the splitting of F.

Now let F be an HS ring spectrum. An easy diagram chase shows that the

equation

= g(1) s
Ej,i = (Ej,O)ZDjEdiF > ):dl'JF

holds for each i and j, where ¢'1) is the Thom isomorphism determiend by the induced
Ej-orientation of F. Thus the HS structure on F is uniquely determined by its

underlying H_ siructure and the set of induced Xj-orientations. Conversely, we have

Proposition 6.2. If F is an H_ ring spectrum with consistent Xj-orientations then

the maps gj 4 defined by gj i = ¢(i)(gj) give F an Hd structure.
2 H ©
Using this, we can give a precise analog of 2.3.

Corollary 6.3 (i) If F is an HS ring spectrum then 2F is an HS ring prespectrum.
If £ is an Hg ring map in h4 then zf is an HS ring mep in w®.

(i1) If U is a lim'-free Hg ring prespectrum then ZU is an Hg ring spectrum
and «:U » 22U is an HS ring map. If in addition f:U » U' is an Hg ring map and U'
and (U,20') are lim'-free then Zf is an Hg ring map. If F is an Hﬂ ring spectrum

and zF is liml-free then A:ZzF » F is an Hg ring map.

Proof of 6.3. For part (i), the adjoint of the composite

" o, D934 ai. 55,1 _dij
£°D,F.. = D,5°F,, 4 pUF A2t ;N
Jhai 3 di 3
is a map gj i:Qdei > Fdij‘ An easy diagram chase shows that the Cj,i satisfy
7’
Definition 5.1. Part (ii) is immediate from 5.2, 5.3 and 6.2.

The rest of this section gives the proof of 6.2. Let wy denote the composite
D.e £,
qjs ——J——»IBF‘wALo F

F; 1in particular u;l) = yu,. Then gj 1 is the
2

(1) _ (4, SRS ,3

and let ;5 z

composite EoA u(i) aij
D, D J DjFADjsdl ) o pagdlp 20, Ay
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It clearly suffices to show the commutativity of the following diagrams for all

i,j,k.
di di o di di 8 di
D, S ADkS thj +kS DjDkS —_— Dij
(1), (1) (1) (1) (i)
(1) MiTTA by e (2) Dj“k Mk
. (ik)
A . di(j+k) . . [ (g.) ‘s
s pa ):dlkF z ¢ zdl(j *rk)F Dj ):dlkF j Zle L
ai  .dj § ai dj
Dk(S A S ,DkS I\Dk
(1) ()
l 1 By Ay
(3) p,st(1) p3ikp A4 ¥p
(i+j) .
Zd(J.*q] )k¢

Z<l(i+,)' )kF

In diagram (3} the clockwise composite is Q(‘j)uf{i) = @tj)éii)mk = @”‘ﬁ )wk' Hence
the diagram commutes. Diagrams (1) and (2) commute when i = O since

e:5 + F is an H  ring map. They commute when i = 1 by the consistency of the .,
and for i > 1 by induction. A similar induction shows that they will commute for
all negative i if they do for i = -1. We prove commutativity of {2) when i = -1;
the proof for (1) is similar. We apply Remark 3.7 with D = DjDk' Give Dj Dksd
either of the two equal orientations indicated in the second diagram of Lemma 5.3
and let ¢ denote the associated Thom isomorphism. Let ny be the counterclockwise
composite in diagram (2) and let ny be the clockwise composite. Clearly, we have
¢(ny) = P o 8, and since Wy o B = gj ) Dj“’k (this is the case i = 0 of diagram
(2)) it suffices to show

a(nl) = E’:j o Djwk-

This is demonstrated by the following commutative diagram.
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D, §
-a, 4 -d a § - -4 d
DjDk(S A st —L—’Dj(DkS A D, S%) > DDy ADjDkS
(-1) (-1}
= D, D, D,
J(nk " uk) !J“k A Juk
D D s 5 -dkp AzdkF) 8 -dk dk

D.z "FADELF
J J

\ / © Q(—k)(gj),\q)(k)(gj)
Y

g Wkp , ;A kp

A\

5]

A
e

Here part @ is D‘j applied to one case of diagram (3), part commuteg by
naturality of 3§, and part @ follows from diagram (3) and the fact that ¢ is an H

ring map (see parts (ii) and (iii) of I1.3.4). This completes the proof.

§7. K-theory spectra

For our work in chapter IX with Dyer-Lashof operations in K-theory it will be
essential to know that the spectrum KU representing periodic complex K-theory is an
H, ring spectrum. This is immediate from Corollary 6.3 once one has the necessary
space-level input. We begin this section with a quick proof using as input the fact
that the connective spectrum kU has an E, ring structure. This in turn raises a
consistency question which is settled in the remainder of the section. In VIII §4
we shall use Atiyah's power operations as input to give a more leisurely and
elementary proof that KU is an H_  ring spectrum. Although we concentrate on the
complex case in this section, everything goes through in the orthogonal case with

the usual changes.

First recall from [71, VIII §2] that the spectrum kXU representing connective
complex K-theory is an E_ ring spectrum. Hence {as explained in I§4) it is an H,
ring spectrum. Throughout this section we will write Ej for the struetural maps
Dj kU » kU. Now by I.3.9 the zero-th space of kU, which we denote by X, is an H,,
space with structural maps DjX + X which will be denoted by gy. The space X is of
course equivalent to BU x Z, and by Bott periodicity we can define an Q-prespectrum
KU with XU,; = X. We give XU an Hi structure by letting each map
DjKUzi + KUyy; be 4 :D;X » X. We define KU to be ZXU. At this point we need to

5 |

know something about lim™ terms.

Proposition 7.1. XU and XO are liml_free.

Proof. The pair (XU,KU) clearly satisfies 4.1(i) and (iil). Sinece E.(BU x Z;KU)

collapses for dimensional reasons it also satisfies 4.1(ii) and hence is 1im1-
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free. The result for X0 follows from 4.4 by letting f:KU » KO be realification and
g: %0 » XU be complexification.

Now we can apply 6.3 to get
Theorem 7.2. KU is an Hi ring spectrum and KO is an HS ring spectrum.

Remark 7.3. {i} We shall see in VIII§6 that the HS structure of KO extends to an
E
(i1} It is shown in [71, VIII. 2.6 and VIII. 2.9] that the Adams operation wk

induces an E_ ring map of kU when completed away from k. We shall see in VIIIS7

stiructure.

that wk also induces an H, ring map of KU(p} for p prime to k but that this is not
an Hi ring map. Since the methods of the present section can only give Hi ring

maps they cannot be applied directly to this question.

Next we wish to show that the H, structure on KU is consistent with the
original structure on kU. The point is that (as we shall see in a moment) kU
inherits an H, structure from that just given for KU, and we would like to know that
the inherited structure is its original one. The proof will occupy the rest of this

section.

First recall the n-connected-cover functors in hA (171, I1.2.11]). We write ¢
for the connective (i.e., -l-connected) cover functor. These functors have the
usual property that any map from an n-connected spectrum lifts uniquely to the n-

connected cover of its target ([71, II.2.10]). In particular, we have

Proposition 7.4. If F is an H  ring spectrum then cF has a unique H_ structure for
which the map ¢F » F is H_.

We shall prove

Proposition 7.5. There is an H_ ring map from kU (with its E_  structure} to cKU

{with the H_ structure given by 7.2 and 7.4) which is an equivalence.
The snalogous comparison of ring structures was given in ]71, II§3].
First we observe that the iterated Bott map
B:2k0 > xU
is equivalent to the (2i-1)-connected cover of kU. We can therefore define

.D. 82 23
uj.QjS > kU
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to be the unique 1ift of the composite
2
D.t7e D, B £,
}3332 ~l——p, 2%k —dw D, k0 — L kv,

The B are consistent ):j ~orientations in the sense of 6.2 and hence kU is an Hi

ring spectrum. It follows that zkU is an Hi ring prespectrum. We write
nj ,i:DJ (kU)Zi + (kU)Qij

for its structural maps.

Now define a map
vizkU » XU

by letting y,; be the composite

o

B

g 2B 0%y = x = (R0),, .

(ZkU)Zi = Q5

We claim that y is an Hi ring map. This is demonstrated by the commutativity of
the following diagram.

Djyi
Dj (kU)Zi %DJ.X
\ 7o, /
0 00 w o
Q3 DJ. (kU)2i — e 0”r Dj (kU)O
12 wm R
© 8 D5y, w
QD% (kU)Q:.L »Q D, T (kU)O
CI 2°D,8! z
M, 1Q Dy6og - © i 370 J
. Q D,B
2D, 22 iy J > 2D, kU ©
QE . 2k,
l S5, © l 5
“r*lwu 9 B - 0 KU
¥ y

Parts F and G commute by definition of Ny, and Ty Parts A and B commute by

E]
naturality, parts C and E by the definition of y. Commutativity of part D follows
from the definitiion of Uy

1

Next we need more lim™ information.
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Proposition 7.6. zkU, zkO and the pairs (zkU,KU) and (2k0,K0) are 1im! free.

Proof. The Serre spectral sequence shows that the pairs (zkU,kU) and (zkU,KU)
satisfy the finiteness requirement of 4.1(i) and (iii). Now by [10,4.3] and the
proof of [10,3.13] (specifically the fifth line on p.301) we see that the pair
({kU)54,kU) is M-L for each i and hence zkU is liml-free. Since

p,q JER. 1| .
B3’ (kU 5KU) = B2 R((KU) 5, 5k0)

for g < 0 it follows that zf'q((k0)2i);KU) has finite index in Eg’q({kmzi;m)
for q < 0, hence for all q by Bott periodicity. Thus the pair {(kU,KU) is liml—

free. The orthogonal case follows as in the proof of 7.1.

We can now define
r:kU » KU

1o be ZY [*] A-l, where Z and A are as in §1. Then I is an Hi ring map by 6.3 and
is clearly an equivalence of zeroth spaces. Hence the unique 1ift of I to cKU is an

Hi ring map and an equivalence. This completes the proof of 7.5.

The fact that I' is an Hi ring map, and thus preserves the orientations, has

the following additional consequence which will be used in VIII $§4.

Corollary 7.7. Dy s° » 3% KU is the composite

2
D.t7e D, B . ~2j .
DJ.SZ d DJZZKU d D, KU gy B, 3Rk,

§8. A Thom isomorphism for spectra

In this section we prove Theorem 3.3. This is the only place in our work where
we need the actual definition of D, instead of just its formal properties. We
accordingly begin by giving a form of the definition; for a general discussion see
the sequel.

Let XL(j) be the space of linear isometries from (B} to K°. Then Z{j) is a
free contractible n-space and hence there is a w-map x:Enx » L{(j). Choose an
increasing sequence W; of finite w-subcomplexes of En with JW, = Er. If

Vv € (F*Y is a finite-dimensional subspace then (since W; is tompact) the union

U xwmcr

weW,
1
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is contained in a finite-dimensional subspace. In particular, if we let Ai be the

standard copy of R@i

with

in E° then there is a finite-dimensional subspace Ai of K°

)((W)(Ai ® .- @Ai) c A

for every w ¢ Wi' Let ay be the dimension of Ai. We may assume that the A{ form an
increasing sequence, and we write B; and Bi for the orthogonal complements of A; in
L '
Aj,q and of Ay din Ay,
Now consider the map from Wy ox (Ai)j to Wy x Ai which takes (w,xl,...,xj) to
(W, x (W) (x; @ +++ @ X }). This gives an embedding of the trivial bundle

. J
{1} Wi % (Ai) > Wi
in the itrivial bundle

(2) W, x A » W, .
i i i

The orthogonal complement is a nontrivial vector bundle over Wi' We let Ny be the
associated sphere bundle (obtained by fibrewise one-point compactification). We
write S(ny) and T(ny) for the total space and the Thom complex of nj. If we let n
act through permutations on (Ai}j and trivially on Aé we obtain diagonal actions
on the bundles (1) and {2) and hence on S(ni) and T(ni}.

Next observe that the diagram of embeddings

J J
W:.L x (Ai) ’wi+l x (Ai)
J
]
Wy x Ay Wi = (8440
1 1
Wy x A Wi % A

commutes. Hence there is a bundle map
: k!
ni® B+ nj ® (Bi)

covering the inclusion Wi Wi+1.

Bi Bi
T(ni)'\S —»T(ni+l)A(S )

The induced map
()
By
of Thom complexes is a w-map if we give each side the diagonal wm-action; here S - is
the one-point compactification of Bi’ ete.

Now let U be a prespectrum (indexed on multiples of d as usual). We define a
X .
new prespectrum U indexed on the set {a;} as follows {(we haven't previously

considered prespecira indexed on sets like {ai}, but everything in section 1 goes
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X
through with the obvious modifications}. Let (U )a- be the space
i

R

with the structural maps ¢ indicated in the following diagram.

21 30 2 ras ha o) e (1 s 1)) a (g, )W)
LAt = VAN At tad Ni+1 7 odi
I Tt
() a. ). i ()
T(ni+1)An(Ud(i+1) é—TWni+l)A"(Z Udi) = T(ni+1 "(S A Udi)

Finally, given E ¢ h4 we choose a prespectrum U with ZU = E {for example, we could

let U = zE)} and define
X _ai P
DE=2Z{U)=Tel z “1r {Tln,} a_ (U
n 5 i’

)
di) I
This agrees up to weak equivalence with the more sophisticated definition given in

the sequel, and in particular it does not depend on the choice of x or U.

Now we can give the proof of 3.3. First we observe that the Thom isomorphism
theorem holds in F-cohomology of spaces for any F-orientable bundle. This 1s well-
known when the base space is finite-dimensional (see e.g. [71,III. 1.4]) and the
general case follows since the Thom homomorphism induces a map of Milnor 1im1
sequences. Similarly, the relative Thom isomorphism theorem holds for any F-

oriented bundle over a pair (X,Y). For example, let U be a prespectrum, let
X = S(ng) %, (Ugq)

and let Y be the subspace in which at least one coordinate is a point at = or the
basepoint of Uyj. Note that X/Y is (Ux)a_. let g be the pullback of the bundle
i

p:En xn(Rd)J + Bp
along the map
)

X = S(ni) . (U + En L ¥ = Bu.

di
Then the relative Thom complex T{q)/T(ql|Y) is

: X
G-l
i

d
T(ni) . (z Udi)

Let 84 denote the composite indicated in the following diagram.
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doyx _ d ) arl + 4
(z U)a._ T(ni)Ajﬁz Udi) —————’(T(ni)“ﬁh ) A“(Z Udi)

i
15,
i

tXAD S
a. k4
1

(3)

a_ (3) e el @)
= [T(ny) A (U )0 TA B A (sHY)

If F is a w-oriented ring spectrum then the relative Thom isomorphism for q is the

composite

’

. §¥ .
FHUX ) — P X p gy . P (5l )
ai al n B.i

where the first map is multipliecation by the w-orientation u. We denote this

composite by ?;.

Next, we note that if E = ZU then sz B Z(EdU). It is shown in the sequel

that the map

§:D 3%E » p EaD 8¢
H kil "

is obtained by passage to telescopes from the §;. We therefore have a map of Milnor

lim1 sequences

1 n+ai-l n+a,
0 —=lim" F (vX ) g FUD E — 1im F l(Ué)——-»O
i i T i i
1 )
lllm @i 1@ lllm @i
n+dj+a, -1 . n+dj +a,
0 —»lin® F i ((zdu)g —> Y y%E — Lin ¥ l((sz)é ) —=0
i i i i

The result follows by the five lemma.

We conclude this section with a technical fact which will be needed in VIII §6.

let z:{w,T) » U be an extended pairing and suppose that the pair (T,ZU) is 1im!-

free. Then Zy exists and is clearly determined by the composites
(Zc)a'
) A (1)) = X Eop g —— Lz
1 1 i
for i > O. It is natural to ask for an explicit description of the elements

8. .
2y ¢ (30) H(T(ny)m (74949 ))

represented by these composites. We shall give such a description by calculating

the image of z; under the relative Thom isomorphism

20 T (109 ez T (i a0,
¥ Ny ALt las HERAMA IR At :
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Let y; € (ZU)dij(W; h“{Tdi){j)) be represented by the composite

+ (i) i ©
Wy Ao (Tgy) " G DTy —— = Uggy — (200444

and recall the homeomorphism

3)
di)

. . a,
T(ni)hﬂ(zdl’l‘di)(a) z 1 W;A“(T .

a,
Proposition 8.1. ¥z, = L 1y .
Proof. Write a for a;. It will be shown in the sequel that the following diagram

commutes for any space X.

N . K
T(n,) Aﬁ(idl}i) Gr & . (0_z™X),

R R

a,wt () a *a %
WA (Tg)7) [, D Tyy — = (2D X),

Letting X = Tdi gives the commutativity of the left square in the next diagram.

a

. . D8,
o di {j) a_ . a8, . 7 di _.a.  di
bt {T(ni)A“(x Tgq) ° ) —: D& Ty = 1Dz 2T
R (i) (1)

=8t 3 . a {i

Tz (wil'\“(’rdi) ) = ¢ T Zg
a_w a
IL g R S .

®.a = a_w i__a.= d a+dij

Lz Dani L'z DﬂTdi———rZ L Udij ——&J—D z U

The right square commutes by Corollary 3.6(iii), and we therefore have equality of
the two composites around the outside. But the counterclockwise composite is
clearly 2ayi, and the proof of Theorem 3.3 given in this section shows that the

clockwise composite is ¥z, . This completes the proof.



CHAPTER VIII

POWER OPERATIONS IN Hi RING THEORIES

by J. E. McClure

It was shown in Chapter I that an #a

o0

ring structure on a spectrum E induces
certain operaticns i} in E-cohomology. In this chapter we investigate these
operations in some important special cases, namely ordinary cohomology, K-theory,

and cobordism.

In section 1 we collect the properties of the 3% and their intermal wvariants
PB; most of these have already been shown in Chapter I. We also show that the
results of Chapter VII allow one to construct an HS structure on E by giving space-
level operations with certain properties. The section concludes with a brief
account of a multiplicative transfer in E-cohomology which generalizes the norm map

of Evens [35].

In section 2 we show that the general facts given in section 1 are strong
enough to prove the usual properties of the Steenrod operations without any use of
chain-level arguments. In section 3 we show that the same arguments applied to the
pl\X give the Dyer-Lashof operations in Hy(X;Z_ ) with all of their usual
properties; in particular, we give new proofs of the Adem and Nishida relations

spectrum HZ

which involve less calculation than the standard proofs.

In section 4 we show that the power operations in K-theory induced by the HS
structures on KU and KO are precisely those defined by Atiyah [17]; this gives a
rather concrete description of these Hg structures. In section 5 we show that
cobordism operations defined by tom Dieck in [31] lead to Hg structures on the
classical cobordism spectra which agree with their E_ structures; again, this fact
gives a rather concrete homotopical description of the E_ structure. In section 6
we show that the Atiyah-Bott-Shapiro orientations are Hi ring maps; it is still an

open question whether they are E_ maps.

In section 7 we show that questions about Hg ring maps simplify considerably
when the gpectra involved are p-local. We use this to show that the Adams
operations are H, ring maps {(a fact which will be important in Chapter IX) and that
the Adams summand of p-local K-theory is an Hi ring spectrum. We also give a
sufficient condition for BP to be an Hi ring spectirum; however the question of

whether it actually is an Hi ring spectrum remains open.

Notation. In chapters VIII and IX we shall write X for st AX, instead of
XA S1 as in chapters I-VII. We shall also use ¢ to denote the suspension
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isomorphism o S “Emﬂ)i . In particular, if E is a ring spectrum the fundamental
class in B°S™ will be denoted by ™1,

§1l. General properties of power operations

Let E and F be spectira, let n be a subgroup of Iy, and let d be a fixed
positive integer. By a power operation on n4 in the most general sense we mean

simply a sequence "Pn of natural transformations
gdix » pdikp x,

one for each i ¢ Z, which are defined for all X e }1“5 . We shall also call "S’" an
(E,n,F) power operation when it is necessary to be more specific. In this section
we consider the relation between power operations, extended pairings, and H: ring
structures. In particular, we collect the properties of the canoniecal power opera-

tions associated to an Hi ring structure and of the related internal operations.

The most important class of power operations for us will be the operations
/S) . Ed1X N Edl‘)D X
m L

determined by en Hi ring structure on E. As usual, we abbreviate @Z by ?} .

. Joaa
Recall the definition from I84: if x ¢ £y ig represented by f:X » XdlE then
)
§ 4 is represented by the composite

D f . £, s .
D X —t» DX —£,p p¥p Tl pdig,

Our first result collect the properties of these operations.

Proposition 1.1. Let E be an H. ring spectrum and let x ¢ EVX, y ¢ E¥Y, v ¢y,
(1) @ Ppx = (PP B2 xaD 0.

(i1) s*@jkx = 33“] Pox e Ed‘jki(DjDkX)

(111) s U (] = P () ¢ B (xavy,

(1v) R x = e 2z

(v)  If 1 ¢ EOS is the wnit then P1 is the wnit in E(D,S) = E0(Br™).

(vi) If X =Y and i = j then

) ) : * D
@k(x +y) Skx+$ +O(%(ktg’k_g[(:?g'x)(ék_ly)]

in E4KDX, where
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: A
Tl,k—Q'DkX — DQX Dk-zx

is the transfer defined in II.l.4.

. . 1 %k ) ) .
(vii) If E is p-local then S%x = T;T-rﬂx whenever |v| is prime to p, where t_ is

the transfer DX » X'¥) of I1.1.4.
(viii) If E is p-local then

@5(x+y) = E;x + @%y + r;{%fv((x fP o xP o yP

Proof. (i), (ii}, and (iii} are immediate from Definition I.4.3. Part (iv) follows
from Remark I.4.4. Part (v) follows from I.3.4{i). Parts (vi) and (viii} were
shown in II.2.1 and II.2.2, and part {vii) follows from the proof of the latter.

We shall also want to go in the other direction, that is, to start from a set
of operations having certain properties and deduce the existence of an HS ring
structure. Let E be a ring spectrum. We say that a set {'§G}j2 0 of (E, Zj,E)
power operations is consistent if it satisfies 1,1(1), (ii), and (iii). Given a

consistent set of operations 33 on E we can define maps

ai aij
. D,z E z E
55,1 ”

e 1t 1e

by applying 3% to the classes represented by the identity maps zdiE + I
eagy to see that the gj,i form an H: ring structure on E whose induced power
operations are the given 33 . On the other hand, two HS ring structures on E
which determine the same power operations are clearly equal. Thus there is a one-
to-~one correspondence between HS ring structures on E and consistent sets of
(E,Zj,E) power operations.

Next we consider a more general situation. ILet n be a subgroup of Iy and let F
be a w-oriented ring spectrum with orientation u:D“Sd > deF (see VII§3). The
class in de(DﬂSd) represented by the orientation will also be denoted by pu. An

(E,n,F) power operation E?" is stable if the equation
%
(1) CACE S IR RGP

nolds in FAUI*DK(p 5dy) ror a11 x ¢ EYX. 1.1(iii) implies that the (E,n,E) power
operations determined by an Hg ring structure on E are stable. More generally, let
g:DNE + F be any mep {in the terminclogy of VII§3, ¢ is called an extended pairing).
If x ¢ EdiX is represented by f:X » XdiE define f?nx € FdianX to be the element

represented by the composite

D f . (1) .
DX —Twp s¥E . (D“sd)(i)/\ D E A Bk (i) g 0, pdikp,
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where ¢ is the product map for F. ’I‘hen’?1T is a stable power operation.
Conversely, given a stable operation‘?Tr we obtain a map g:DﬂE + F by applying Sbﬂ
to the identity map E + E. Clearly, this gives a one-to-one correspondence between

maps g:DﬂE + F and stable power operations. To sum up, we have shown

Proposition 1.2. {i} There is a one-to-one correspondence between consistent sets
of (E,XJ,E) power operations and HS ring structures on E.
(i1} If F is a w-oriented ring spectrum and E is any spectrum, there is a one-

to-one correspondence between stable (E,n,F) power operationg and maps g:DTr E+ F.

For applications of 1.2 it is usually easiest to work with space-level instead
of spectrum-level power operations. Our next result will allow us to reduce to this
case. Let [ be the homotopy category of finite CW complexes. Let {(Eﬂ)a}aEA be
the set of finite n-subcomplexes of En. By an (E,n,F) power operation on [ we mean

a sequence 3% of natural transformations

F4y 5 14m 7K (En); A, x
a

one for each i ¢ Z, which are defined for all X ¢ . :P" is stable if it satisfies

),

equation (1). A set {P'}'>O of (E,z:,E) power operations on G is consistent if
it satisfies 1.1(i),(ii) and {iii). Recall the cylinder construction Z from VII§1.

Proposition 1.3. (i) Let T be & prespectrum and suppose that each Ty; has the
homotopy type of a countable CW-complex. Let F be a ring spectrum. If the pair
{T,F) is limt-free in the sense of VII.4.1 then every stable (ZT,n,F) operation
on € extends uniquely to a stable operation on };3 .

(ii) 1let E be a ring spectrum and suppose that each Eq; has the homotopy type
of a countable CW-complex and that zE is liml—free. Then every consistent set { @3}

of (E,z,,E) operations on § extends uniquely to a consistent set of operations on

nd.

Proof. For part {i}, let {X B} be the set of finite subcomplexes of Tg; and let
~di >

X, € B X be the class of the inclusion map X + T,:+. The elements
i,8 i,8 ~dik . b8 di ~dik
TPn(xi’B) determine an element of %%@ F2((Em) A Xi,B) and hence of F 7D T,.

by VII.4.10 and VII.4.12. It is easy to see that the maps Ci:Dani > Faix
representing these elements form an extended pairing of prespectra as defined in
VII.3.2. Part (i) now follows from VII.3.4. For part (ii), a similar argument
shows that the set (§§} determines an Hg ring structure on the prespectrum zE and
the result follows from VII.6.3.

The definitions we have given are closely related to tom Dieck's axioms for

"generalized Steenrod operations" [31]. Let E be a ring spectrum. In tom Dieck's
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terminology, a generalized Steenrod operation is what we have called an (E,rn,E}
power operation. His axioms Pl and P2 are 1.1(iv) and 1.1{ii} respectively. In
particular, if E% satisfies Pl then S%xdl is a w-orientation for E. Axiom P3 is
equation {1) above with u = \§%zdl. Thus an operation satisfying Pl and P3 is
stable in our sense (but not conversely). tom Dieck's final axiom P4 will also be
of interest in what follows. If g is a vector bundle over X then Em < qk is a
vector bundle over Em x_ Xk whose Thom complex is homeomorphic to D“T(q). Ify is
an E-orientation for q and §% is an operation satisfying P1 then ﬁ%(v) is clearly
an E-orientation for Er x_ qk. Axiom P4 is the statement that E has canonical
orientations for some clags of vector bundles and that E% takes the canonical
orientation for q to that for En Xy qk. This axiom will be satisfied in all of the

particular cases considered in this chapter.

From now on we fix an Hg ring spectrum E and let ’?; denote the associated

power operations. Let X be a space. Let A be the diagonal map

xaBrt = xap ¥ 5 D (xas%) =D x
" ™ i

defined in II.3.1. We define the internal power operation

~di ~dik

A (X ABr")

to be the composite

YIC .
Ele U 'ﬁdlk

* -
D X A g K x AT,
Since X*A Bx* = (X x Bn)™ we obtain an unreduced operation

Pn:Edlx » B (% « By

Our next result summarizes the properties of the unreduced operations; similar
statements hold for the reduced ones.

Proposition 1.4. Let x ¢ EMX, y ¢ E¥X, « ¢ 7y.
(1) %P x = x¥ e 2k
(i1) Pl =1 e EQ(X x By)
(111) P (xy) = (Px)(Py) e ESHIR(X « By)
(iv) If 1 = j then

¥

P lx+y) =Px + Py + | | ]

(P x)(P
0<e<k

Ty kg k-ly)

. - . _ 1 k¥
(v) If E is p-local and |n| is prime to p then an T T X rnl.
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{vi) If E is p-local then
P (x+y) = Px + Py + 2 [(x+y)® - x® - yP)1(r 1),
D P D p! P

{vii) If = C I is generated by a k-cycle and x' C I, is generated by an ¢-

£
¢cycle then

dikze

*
(1 xy) PP x=P Pxe¢ekE (X x Br x Br'),
m™w w w

where vy:Bwm x Br' » Bn' x By switches the factors .

Proof. A1l parts except (vii) are immediate from 1.1. For (vii} we use the
argument of [100, VIII.1.3]. If we give the set ¢ x ' its lexicographic order we
obtain a faithful action of Ty On it., Let g e Iy be the element which switches
the factors » and +'. The following diagram is readily seen to commute.

g
1" d ﬂfﬂ'( 1 zkle_._.lgli;-z

X kg
c

LY By x Lg
n‘Xn*—d—"'ﬂ'fnC—“”Z Iz ,__2;:_,2

Here d is the evident diagonal and cy is conjugation by g. By 1.1(ii) we have

P LI S @ ( *
v k; E 34 k) L kg
and Slmllarl}’

*
P“P“'x = {1 x Bﬁ,k o1 o0d} szx'

But (1 x cg)*Pklx = Pk x since ¢ :szz > szl is homotopic to the identity.

z g

We conclude this section with a brief description of another kind of operation
induced by Hi structures, namely a multiplicative version of the transfer for
finite coverings. The definition is due to May. First recall the definition of the
ordinary (additive)} transfer. If p:X + B is a j-fold covering then one can
construct a map .
’E:B »> EZJ x. X

I;
d

as in [8, p.1l12}. If x eFiX is represented by f:X + Fi then p,x eFiB is represented
by .
B—Pogr x ® g . (Fy ——F,
J L. j oz, 1 i
J J
where the last map is the Dyer-Lashof map determined by the infinite loop space

structure on Fy. B Now if F is an Hd ring spectrum and if x e Fdix is repre-
o

sented by f:o(x") + zdiF we define Pg* € gdiip to be the element represented by

. . . ., Df . B ..
=57y 22 ). (B3 x, Wyt e D, £ x* -J“vnjzdlr* A FESNPLS
J
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If F is merely H, one can give the same definition in degree zero. Our next result

records some properties of By *

Proposition 1.5 (i) R@} =1, By 0=
(ii) p@(xy) = (pgr) (pyy)
(iii) If q:Y » X is a k-fold covering then (pq)@)= Bede

(iv) ¥ p' gzg for a pullback diagram

X —— & ox

P,k

B— B!

(v) If Y is any space and x ¢ Fdix, ¥ e FA%y then

(1% Dlgly x ) = 111 x 1) Pyl () « pd (14K) (v gy

®

where h:B »+ sz is the classifying map of p.
Proof. Part (i) is trivial and parts (iii) and {iv) have the same proofs as in the
additive case. For part (ii) let £:3°(X") » 19iF ang g (X)) » 1 dkp represent x
and y. It suffices to show commutativity of the following diagram, in which £ has
been suppressed to simplify the notation.

~t D, A D, (f g) :
B 5 X —_J_,Dj (xtaxh) 2 D, (3, 1 %F) o p 310

. J
l A }'6 id \Edj(i*rk)F
t b D.faDl. g /

B'ap’—RAP DX ADX—J—~J~>D2 F»DjzdkF—>szlF'~E®kF

The pentagon commutes by I.4.3 and the remaining pieces by naturality. For part (v}
it suffices by (ii) to show

% . *
(1 x p%a(n ¥) = (1 x h) Py

where w:Y x X + Y is the projection. An inspection of [8, p.112] shows that the

disgram
Fga g

+ + {1 )+ + +
Y AB xR > D (Y7 AX )
luh“ lD.x’

. 3
Y‘I-ABE:k A =D.Y+
3 3

commutes and the results follows.
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Remarks 1.6.(1) Formula {v) is due to Brian Sanderson {also cf. [35, remark 6.2]).
If we let p:X » BZJ be the j-fold cover associated to Ezj + sz and let x = 1 then
the formula gives

(1 x p)@;y x 1} = sjy,

80 that the internmal operation Pﬁ is completely determined by the multiplicative
transfer, an observation alsc due to Sanderson.

(ii) If p:X + B and q:Y + C are any two coverings then p x q is a covering
which factors as (p x 1)(1 x q). We can therefore compute (p x q)ég(x x y) in
principle by using formulas (ii), (iii) and (v), but there is no simple external
analog of formula (ii).

(iii) If F is Hi then \/ XdiF is H by II.1.3. Thus we can define a map
ieZ
o 1 e TI rdip
i'e 2 i'e 4

which agrees on homogeneous elements with that already given. We leave it as an
exercise for the reader to show that if x has nonzero degree then 33(1 + x) has
components p;x in degree [x| and p,x in degree j x| (ef. [35, Theorem 7.11).

{iv) In the case F = Hzp a multiplicative version of the transfer was first
defined by Evens, who called it the norm [35]. It seems likely that this agrees
with Py but we shall not give a proof. Note that in this case one always has

p!p*x = jx, but it is not true that pep*x =x. For example, formula (v) gives
(1 ) (1 [ 1) {1 h)*P y
X X X = X Y
b ] Py J

which is certainly not equal to y~j x 1 in general.

2. Steenrod Operations in Ordinary Cohomology.

In this section we use the framework of §1 to construct the Steenrod operations
in mod p cohomology and prove their usual properties. The construction will be
similar to one given by Milgram [37, Chapter 27], except that we use stable extended
powers instead of space-level ones. On the other hand, the proofs will be quite
close to those of Steenrod and Epstein [100] except that we make no use of chain-

level argumenis.

Throughout this section and the next we write H for HZp, g for mod-p
cohomelogy, and n for the subgroup of Zp generated by a p-cycle. If p is an odd
prime we write m for E%l as usual. For odd primes the spectrum HZp is Hi but

not Hi (see VII.6.1), hence the power operation ‘P_ can be defined in even degrees

p
but not in odd degrees (unless one uses some form of local coefficients). The

operation ??ﬂ does extend to odd degrees, as we shall now show.
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i i .
Proposition 2.1. For each i e Z there is a unique map g:DﬂZ H > Ep H for which
the diagram

(z H) ————“————————’D b H

commutes, where ¢ is the iterated product map. For each i, € Z the diagram

D (slEAzdn) —6——;13“211{ /\D“E'JH
lDﬂcp Eng
D (z ¥ Piy APy

\ Zp(l+J ) ‘¢/

commutes up to the sign (-1ymij |

The proof is the same as for I.4.5. One can in fact replace 7 in this result

by any subgroup of the alternating group Aj, but we shall have no occasion to do so.

Using the map ¢ we obtain an external operation
P itx - #®Ip x
™ b
and an internal operation
P oHX » BT (X ABA ")

as in 81. The unigueness property in 2.1 implies that these operations agree with

those already defined when i is even.

% o
Since 1 5221 e PP is the canonical generator P1, we see that E;zl is an

orientation for the real regular representation bundle
Ew x“(Rl)p + Bm.

It follows that the element y e Hp"an defined by
Iy = PHZI

is the Euler class of the real reduced regular representation (i.e., the sum of the
nontrivial real irreducibles). In particular, y is nonzero since each nontrivial

real irreducible has nonzero Euler class.
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Our next result gives the basic properties of the operation P, . Note that
¥
H (XABt') is an H'(Br)-module.

Proposition 2.2. (i) z*P"x = xP

(1) P xy) = (-0 R 0 (P y)
(iii) P ix = (-1)m|xlx(ZP"x)
(iv) P (x +y) = P x + Py

{v) 8P,x = 0 if p is odd or |x| is even.

Proof. Parts (i) and (ii) are immediate from 2.1 and part (iii) follows from part
(ii). For part (iv) we assume first that |x| is even. Then we may apply l.4(vi) to

get 1 P_ D _ Py *
Pp(x +y) = pr +Ppy + T [(x + ¥y} -x -y ](Tpl)-

* * ¥
But Tpl =1 11=pll =0 and the result follows in this case. If |x| iz odd this

gives
P"(Ex + 1y) = Pﬂzx + P“Ey.

Applying part (iii) gives the equation
1P ap ey = 0Pl x v py)

*
and the result follows since x is not a zero divisor in H Br. For part (v) we need

a lemma. Let g:H + IH represent the Bockstein operation.

Lemma 2.3. The composite
2pi

Dﬁzle & .popig B, ;2pivly
factors through the transfer

7 _:D Z2iH — (EZiH)(p)
St

The proof of 2.3 is rather technical and will be given at the end of this
section. For the moment we use it to prove part (v). Let x e ﬁ21X be represented
by £:1%X » £%3H and consider the following diagram, where we have suppressed I” to

simplify the notation.

D f 2pi

XABrh A _.px ki D }:ZiH £ 22p1H L 8, ZZpJLHH
w w PPt
l 1 Ty ltﬂ lT“ ’,/,’
{p} . e
X A X(p) £ (221H)(p)

The dotted arrows exist by 2.3 and the diagram commutes. The top row represents
8P x. Thus BP x is in the image of the transfer
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* ¥ ok
(16":“) HX > H (Xa B;r+).
But the composite of (1 At“)* with the restriction
* % o
(1a) B (XABr") » H X

is multiplication by p and hence vanishes. Since (1 At)* is clearly onto we
see that (].AT“)* = 0 so that 8P x = 0 as required. Finally, if p is odd and
x ¢ B 1% we nave

0 = 3P“(Ex) = 8(x - ZP“X) = -xoz(sPﬂx}

since Bx = 0. The result follows in this case since y is not a zero divisor. This
completes the proof of 2.2.

Now let x e HIX., 1If p = 2 we define Pix € Hq+iX to be the coefficient of
x31 in P .x. If p is 0dd we define Pix ¢ HI2L(P-1y 1o pe (-1)™1*ma(a-1)/2 tipes
the coefficient of 321 in P x. We also define an element u € BP=?Br for p odd by

the equation Bw = x.

Proposition 2.4. (i) Pi(x +y) = piy + Piy
(i1) Plzx) = zpix
(1i11) Plx = xP if q =21 and pis odd or if q = i and p = 2. Pix = 0
if q < 21 and p is odd or if q < i and p = 2.
(iv) % = x.
(v) If p =2 then szix = P21+lx; in partieular, gx = Plx.

(vi) If p = 2 then P_x = £(Ptx)x3"t. If p is odd then

Pox = 2(-1)PHIAUAL/2(ply)y a2t 4 (1) %gplr)uydTREL,
(vii) Pixy = E(P’jx)(Pi-jY)-

Proof. (i), (ii) and (iii) follow from 2.2(iv), 2.2(iii) and 2.2(i) respectively.
For part (iv), we observe that P is a stable operation of degree O and hence
represents an element of HOH 2 Zp' Thus PO is a constant multiple of the identity
and the result follows since P°1 = 1P = 1 by part (iii). In part (v) we can use
part (ii) to reduce to the case where q is even. The result follows in that case
from 2.2(v) and the relation B8y = xz. In part {vi) the p = 2 case is true by
definition. If p is odd we can use part (ii) and 2.2(iii) to reduce to the case
where q is even. We then have P x = 1*pr. We recall from [68, Lemma 1.4] that the
image of

on*Bs > #¥Br

P

is nonzero only in dimensions of the form 2i(p-l) and 2i(p-1)-1. Thus this Image is

generated as a ring by x and w and we have



260

an =3 (_1)mi+mq(q—1)/2[(Pix)xq~21 vy

iqu-21—1]

for some elements Vi € Hq+2i(p-1)+1X‘ Now 2.2{v) imples that y; = (—l)quix as
required. Finally, part (vii) follows from 2.2{(iv} and part (vi). This completes
the proof of 2.4.

Next we shall prove the Adem relations for p odd. We use the method of proof
of Bullett and MacDonald [26, 541, where the case p = 2 may be found. However, in
our context the relations arise more naturally in the form given by Steiner [102].
let U and V denote indeterminates of degree 2p-2 and define S and T by

s = (1 - vigp-1

"

+3
[}

V(1 - uttvyP-l,

We shall prove that the equations

(1) ;o eptoudet oy eletgvisT
i,] i,3
(2) R T L 1

(1 - v 3 erlptovds™ s vl g (Pertavis”
13 '

i,,} i,]

hold for all x. The usual Adem relations can easily be obtained from these as in
[102, p. 163]; the basic idea is simply to expand the right sides of (1) and (2) as
power series in U and T and compare coefficients. The proof of {1} and (2), like
any proof of the Adem relations, is based on the relation

(3} Y*PvP“X = PP x

given by l.4(vii). In order to compute Pnan in terms of the Pi we need to know
more about the element x « HP~1Br. We have mentioned that x is the Euler class of
the real reduced regular representation of =, and that this representation is the
sum of the nontrivial real irreducibles of w. Choose one such irreducible, and let
u ¢ H2Bn denote its Euler class. Then the Euler classes of the remaining
irreducibles {suitebly oriented) are 2u, 3u,...,mu, and thus y = smiu®. The
ambiguity in the sign arises from the question of whether the various orientations
have been chosen consistently, but it turns out that we shall not need to eliminate
this ambiguity. Thus we shall assume y = m!u® (it is in fact possible to choose the
orientations so that this holds) and leave it to the reader to check that the other
possibility leads to the same relations (1) and (2). We define b e HYBr by the
equation gb = u, so that w = mlbu =1, Then the equation 2.4(v) may be written as
follows.

(4) Px = ) (-MPUED20npte o (1) 3(gplope (47,



261

Since both sides of (1) and (2) are stable we may assume that q has the form 2r with
r even. We define U = —u2m, so that (4) becomes

(5) Px =] (-1)7Phx + (gplaputiom R

Now 2.2(ii) and 2.2(iv) give

6) PPx=J (-DTP P + (-1 gPix) (P b)(Pw P 1T
kA " K 1 " " T

in H*X ® H*Bvr ® H*Bu. We denote the copies of b and u iIn the second copy of Brn by ¢
and v, and we let V —vP-1, Equation (4) gives the following formulas.

(7) Pb=mllb - uev~ L]y

(8) Pou=uP - wPl = wv - v

9 PU = ~(PwPL = yv - pyPL = yP-ls

(100 ppix = 7 (-1Trpdplx + (gplptyyevh vt

1) e gptx = T (1w Peplx - ((gPY g ey VIR,

We therefore have
(12) PPX= (vPs)* Z[P‘]Pix + (gpIPin) v te (P‘]BPix)(bu_l - o vy - m
+ (gPPixven v vy - ;v dgt,

Now we apply equation (3). We have y*u = v, Y*U =V, and Y*S = T. Since
vPs = UPT = Y*(VPS) we have

* T ooiod Sl vy -1
(13) PPx=yPPx= (P | P/Px - (8P'P'x)DU
+ (Pgptx) (v - pu o - 7 - gpdsptyben v u(uory eI

Collecting the terms in (12) and (13) which do not involve b or ¢ gives equation
(1), and the terms which involve ¢ but not b give (2). This completes the proof.

Finally, we give the proof of lemma 2.3. Let M be the Moore spectrum Sup el
and let 1:S » M be the inclusion of the bottom cell.

lemma 2.5, Hl(D"M) has a basis {x,y} such that (D“i)*x =0, (D“i)*y # 0, and x is
in the image of the transfer

* 1.(p} 1

T _H'M + H"D M.

m ™
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Proof of 2.5. We use the spectral sequence
B (1 (u(P))) = 5D M

of I.2.4. Each of the groups Eg‘l and E%’O is generated by a single element.

The generator of the latter group clearly survives to E_ and represenis an element
Y e HIDNM. Since (i{p))*:HOM(p) > HOS is an isomorphism, so is the map induced by
D“i on El’o. Hence (D"i)*y # 0. Now let z ¢ HMP) be a generator of

H1M® HOM® ves @ HOM and let x = r:z. Clearly, x is represeneted by a generator of

* %
Eg’l, and (Dﬁi)*x = (D i)tz =1 (1(p)) z which is zero since H1S = 0.

Proof of 2.3. Let HZ be the spectrum representing integral cohomology. Then
H= HAM. Let e:S » HZ be the unit and let n be the composite

D (enrl)
DM = D (SAM) —"———=D (HZAM) = DnH—-g—#H.

Let w be the element of HOD“M represented by n. Then {Dﬁi)*aw = ( gince B vanishes
on HOD“S = HOBs. Hence by Lemma 2.5, gw is a multiple of x and in particular it is

in the image of the transfer. Thus we have a factorization

Now consider the diagram

Ay . T’“(EZiHZAM) —L»D £°14z AD M _Ean 2Py .p .8, ;2Piy

2p1
2p1+l
g “ ®

(22 (P = (pPlap A (P o (pRipg) (PIa () 18, 21HZAM(p) éim—»):zPlHZAZH

Dz
ki

The uniqueness clause in 2.1 imples that the composite of the top row is
[ D §21H > zzle, so it suffices to show that the diagram commutes. Part (:)
eommutes by VI.3.10 of the sequel, and the other parts clearly commute.



263

§3. Dyer-lashof operations and the Nishida relations

An interesting feature of the treatment of Steenrod operations in §2 is that is
generalizes to give the properties of Dyer-Lashof operations; thus homoclogy opera-
tions are a special case of cohomology operations (ef. [68]). The use of stable
instead of space-level extended powers is crucial for this since homology does not
have a simple space-level description. We give the details in this section; IX§1
will give another approach to homology operations which generalizes to extraordinary
theories. We continue to use the notations of §2, so that H denotes HZP.

First let M be any module spectrum over H and let Y be an arbitrary spectrum.
There is a natural transformation

AMYY + Hom(H,Y,m,M)

defined as follows: if y ¢ 'Y is represented by f:Y » ZiM then Aly) is the

composite ()

*
HY = n (HAY) ——T 7, (HAM) —> 1M,

which is a homomorphism raising degrees by i. Clearly A is a morphism of cchomology

theories. Sinece it is an isomorphism for Y = S we have
lemma 3.1. A is an isomorphism.

Now let X be a fixed H_ ring spectrum with structural maps 63 (for example, X

might have the form 1°z% for an infinite loop space Z) and let M = HaX. Then M is

an Hi ring spectrum with structural maps

. . [ Y] ..
D, (z2im A x) ——6—ij g2iy AD X A PSS IS S PO

and we obtain power operations
Ry 5 ¥ Np y
J J
and Ry MY 5 P (1 « Bz, ).

The operation 72“ can be extended to odd degrees by means of the maps

DwziM = D (HAX) L, D, HAD X €29, ;PlHax
where £ is the map given by 2.1. The unit of X gives an Hi ring map h:H » HAX = M

and hy also preserves :?“ in odd degrees.

Define 5; ZL X and & in M*Bn to be the images under hy of the elements b,u,x
and w in H*Bw defined in §2. Thus i{ = R“Zl. lLemma 3.1 gives the following
isomorphisms for any space Y.
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MY x Br) = (M*Y)[Ix]] if p = 2.

I

M¥(Y x Br) = (M'Y)[[b,ull if p is odd.

Thus we can define operations Riy for y ¢ ﬁqY as follows: if p = 2 let Riy be the
coefficient of Y3~T in Ry, and if p is odd let Rly ve (-1)™*ma(a-1)/2 tines the
coefficient of iq-2i in Ry. Now if Y = &0 there is an isomorphism HqX 2 &'QSO
which we shall always denote by x —>x . We define the Dyer-Lashof operations

QL:H X > HyyyX when p = 2
i, i
Q .HqX > Hq+2i(p~1)x when p is odd

by the equation Qix = R-iz: The properties of Qi will follow from those of R, and
Rl. Our next result gives the basic facts about R

Proposition 3.2. (i) i*Rvy = yP

PEIE

{11} R (yz) = { Ry} R 2)

m
(-1) v X IRy

(iii) RW(Zy)
(iv) R, (y + 2) = Ry +R 2.

(v} B8Ry =0 1if p is odd or |y| is even.

Proof. (i) and (ii) are immediate from the definitions and (iii) follows from

(ii). In the proof of 2.2(v) it was observed that the transfer
* % *
rﬂ:H Y+ H (Y x Br}
vanishes for all spaces Y., By 3.1 it follows that
* % *
T“:M Y+ M (Y % Br)
also vanishes. In particular, the map
* % *
:M (pt. M (B )
5 pt.) > M { P

vanishes. Part (iv) now follows by the proof of 2.2(iv). To complete the proof of
part (v) it suffices to give a suitable substitute for Lemma 2.3. That lemma gives
a map

i (x20) (P), ;PP Y

such that F o T is the composite

. . 2pi .
D“z‘?lH B, poPiy 2T B, PPty
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Consider the following diagram

2 i

1Y .
D (Z H/\X) ——(S——)D 221}{ AD X “L’ZZle AX gaAal 22p1+1HAX
lr T\j:T\\\\‘ ////ﬂ:j o
n n

GRaan® . PP ax(P) 1A, By Plap x

The left part commutes by VI1.3.10 of the sequel and the right part commutes by
definition of F. Thus the top row of the diagram factors through 1,. Using this
fact in place of ILemma 2.3, the proof of 2.2(v) now goes through to prove part (v).

If we now replace Pi, x and w in Proposition 2.4 by R Y and » then every
3
part except (iv) remains true with the same proof. If we replace U,V,S and T in the
Adem relations (equations (1)} and (2) of Section 2) by U = hU, V=1V,

g = h,S and T = h*T then these relations remain true and have the same proof.

Proposition 3.3. (i) Qi(x +y) = Qix + Qiy

(ii) If p is odd then Qlx = O for 2i < |x] and aly = xP for 21 = |x

2 then Qx = 0 for i < x| and olx = x° for i = |x|.

i

If p

(111) 8e*% = @*5 1 irp =2
(iv) olixy) = 7 (@x)(Q ¥y
i
(v) The Adem relations hold: if U and V are indeterminates of dimension
2-2p, S = U1 - v 10)PL ana T = v(1 - Utv)P~! then the equations
;oo - 3 el ovis
i,] i,
and if p is odd
5o@ledonty - a - vty eetdovte
i,,j 17j

Uy 1 (Q:‘LBij)'\fiSj
i,]

are valid for all x.

(vi) If X has the form :”Z% for an E_ space Z and

o:HqQZ > Hq+12

is the homology suspension then Qic = aQi.
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Proof. We shall prove part (vi); the remaining parts are immediate from the
properiies of R'. For any space Z the retraction of Z to a point splits the cofibre

sequence

0 A

178" —» 572" A5z
and gives a map

vig’7 + ZmZ+

Now let Z be an E_ space and let X = 172°, X =372, Ww=:"2)", ¥ =702, Then X
and W are H_ ring spectra but X and ¥ are not. Let g denote either of the

composites
D v A
D“x —r D"X P QUL ¢
L D N
and D W —JL-‘-D“w —W 2w,

where the unmarked arrows come from the H_ structures on X and W. We can use the
maps ¢ to define operations ?{“ in the theories represented by HAX and HAW and it
is easy to see that

(1) (Lav)Ey =R (1av)y

for all y. Now if x e ﬁqszz then x ¢ (HAW) %S c (BaW)™9S, and (1) and the
definition of Qi give
) ﬁn =] (_l)m1+mq(q+l)/2gii x21-q

1

since (1A v)y is monic. The natursl map e:107 + 2 induces a map W » X which
will also be called e. A fairly tedious diagram chase (given at the end of IX§7)
shows that the following diagram commutes.

D W —B D W

T k1
lD €
"
Lz D“X
a ~

z

FEL lw—e————

LW e K

Henee the following diagram commutes, where £:S + £ %H W represents X.

D f
Br’ —T» 2D (7 ¥) D2 % 1D ¥ —w 1 P ALH Lte ; Py, %

A LA llAA 1Az

D zf
D S L D"(E'qﬂﬂa W) —» Dﬂz'qﬂ AD ¥ —> £ Py D %
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The top row of this diagram represents (l,As)ﬂ£§n§_ and the other composite

represents ﬁn(l Ac) Ix . Thus we have

(3) (1me) 2R x = B (1 4e),zx.

Combining this with (1) gives

(4) (1Ave)*2§“§ =R (1ave):zx .

Now the definition of ¢ gives

(5) Tox = (1 Ave),Ix .

Combining (5) and (2) gives

(6) ClAva)*X§ﬁ§>= )} (-l)mi+mq(q+l)/2£g§E§_XZi—q
i

Finally, by 3.2(iii) we have

(7) R (1ave),zx = R zox = (-1)™ 9" (zR ox)
o m L

"

) {_l)mi+mq(q+1)/2zQic

X X21—q.

1

The result follows from (4}, (6), and (7}. This completes the proof of 3.3.

We conclude this section with a proof of the Nishida relations in the form

given by Steiner:

(8) ;o Fdovid - 7 @Faxuird
1,3 i,j
and if p is odd

(9) ] Bledavisd - - wh ) eeBaovitd
i, i,
I RNE o B
+ UV Y (QU8PxUTY
1,

where ?i is the dual of the conjugate Steenrod operation ?i and U, V, Sand T
are as in 3.3{(v}. The usual Nishida relations can easily be obtained from these by
first translating from ?i to Pi and then writing both sides as power series in U
and V; see [102, p. 164]. We shall prove (8) and (9) for p odd; there is a similar
proof for p = 2. The basic idea will be to show that the total Steenrod operation
B — \ z'H
ieZ
is an H_  ring map, and this in turn will follow easily from l.4{vii). To make this

i .
work, however, we need a particular H, structure on \/ $"H which we now construct.
ieZ
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let E*X be the functor H*(X x Bw) on the category of spaces. We denote the
generators of Han and H2Bn by ¢ and v, so that E*X is the polynomial ring
(H*X)[c,vl. E* is a multiplicative cohomology theory and hence is represented by a
ring spectrum E. The projection X x Bnm + X gives a natural transformation
H*X > E*X which is represented by a map g:H » E. Of course, E is equivalent to
\/ £"H with its usual ring structure and g is the inclusion of H in this wedge.
i<0

E

J

Next we define power operations in E*. let ¥ be the composite

. - 3 r3 * I3 .
#ix = ¥xas®) —-']—vﬁzi‘](Dj (XAaBrt)) -A—-ﬁZiJ((DJ.X)ABn*) - “E’lenjx.

It is easy to see that the fP? are consistent in the sense of Definition 1.2 and
thus they determine an Hi ring structure on E by 1.3 (compare II.1.3). The
operation 335 extends to odd degrees since 3% does, and g is an Hi ring map which
also preserves'@% in odd degrees. An inspection of the definitions gives the

following description of the internal operation /?“.
E * o~ + ~pi + +
(10) P1T = {1lAy) P":H (XABr ) » H (XA Brn A Br )

Note that, with the conventions we have adopted, ¢ and v are the generators in the
second copy of Brm in this situation. As in Section 2 write b and u for the

generators in the first copy of Bw; thus g*:H*Bn > E*Bn takes v to u and ¢ to b.

- - * .
Now let F'X be the Laurent series ring (H*X)[[c,v,v Ly = E*iivlny. Fisa
multiplicative cohomology theory and hence is represented by a ring spectrum F, and
the inclusion H*X > F*X is represented by a ring map H + F which we again call g; of

course F is equivalent as a ring spectrum to i?; ziH and g is the inclusion of H

in this wedge. Now observe that the element f??v (H*BEJ)[[c,v,v_lll is a Laurent
series which is bounded above, and that by 1.1(iv) it has leading coefficient
1 ¢ HOBZJ. Hence SDFV is invertible, and it follows that we can extend the
operations @;I to operations §>§ in the F-cohomology of finite complexes. The iag

are consistent in the sense of 1.2 and hence give an Hi structure for F by 1.3.

Next we define the total Steenrod operation t:H » F by letting ty be the
composite p
HIX — T #P4(X x Br) = BP% ——F%,
where the last map is multiplication by (-1)™A"1)/2(51)=q ,"M9 gy 2.4(vi) we
have the formula

i

(11) tyx = ] [g*Pix + (-1)qg*(sPix)cv_1]V‘ s
i

where V = —vP~1 ag in Section 2. In particular, the projection of +t: » \/ I'H on
ieZ
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zzk(P“l)H is PX, Either from the definition or from formula (11) we get the
following equations.

(12) tyec = b - cuvt

(13) tev = u + wPv Lt = w1 - o

(14) 1V = P~ - g hyP-l - g - Pl oo,

t is clearly a ring map, but it turns out not to be an Hi map. However, we have

Proposition 3.4. Let Y be any spectrum and let y ¢ H¥Y. et w = (1 - wv-1ym,  Then
Py = wq@ﬁt*y-

This fact will suffice for our purposes but we remark that by combining it with
7.2 below one can show that t is actually an H_ map. It is certainly not Hi since

it does not preservelga.

For the proof of 3.4 we need a standard lemma.

lemma 3.5. For any space Y the map

* ¥ % ~¥ (D) ok +
U @A :HDY > HY® ®H (YABr )
is monic.

For completeness we shall give a proof of 3.5 at the end of this section.

Proof of 3.4. Since both sides of the equation are stable (H,n,F) operations in the
sense of 1.2 and 1.3 it suffices to show that they agree on finite complexes. By
3.5 it suffices to show

* * F
1 t* ?ﬂy =1 Wq @“t *y
and

- o3pF
(15) t*P"y =y P" b,y

for all y. Since *w = 1and t is a ring map the first equation follows from 1.1
(iv). For the second, we first let y = £l. Then

tyP Il = %, (xo21) = (t,x)«(t,z1) = xw-Il
while

F F ~
WP" t,I1 = an gyl = wg*Pﬂzl = wy+2l.

Since xw is not a zero divisor, it suffices to show (15) when q is even, say
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q = 2r. Then as elements of (H*Y)[[b,c,u,v,v'lii we have

= (_1yF, \—2r -2mpr _ ypr
Py (-1 {ml) Tv P“P“y v P“P“y
and
2r F __2r * -r
w P“t*y =W (1Ay) PW(U P“y) by (10)
-’ — - *
= WPl oo )T ) PPy

= V'prPnP“y by 1.4(vii),

and the result follows.
If we let y be the class of the identity map H » H we obtain
Corollary 3.6. The diagram

D H e H
"

e l
o

D R — o
w
commutes, where the unmarked arrows come from the H_ structures of H and F.

Now let X be an H, ring spectrum. Then, as we have seen, HAX is an Hi ring

spectrum and there is an operation
R :(HaX)Y > (Ha X)PID ¥
for Ye hd . Similarly, FAX is an Hi ring spectrum and we obtain an operation
RY:(FAX)% » (FAXPD Y,
The unit of X induces H ring maps h:H + HAX and h':F » FaX,
Corollary 3.7. If Y is any spectrum and y ¢ (HAX)YY then the equation
(tALRY = Wit al)y
* - *
holds in {FaX)Pdy,
Proof. For q = O this is immediate from 3.6. If y = £l we have
F
(tAl)*’}a”El = (LAl)y R DyIl = hyty oL = wR (tAl)yzl

by 3.4. For gemeral y let z = £ %y « (H~rx)%(z"%). Then v = (z1)% and we have
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(bal)y 2y = (141),6 (R 1192 2]

¥ q oF .q F
8 [wi(R 11)°R (tal)yz]

apF
w R"(t Al),y

as required.

Corollary 3.7 gives the following relation between the internal operations.
(16) (tA1) By = wirl(tal),y
¥ " *

To prove the relations {8} and (9) one simply evaluates both sides in the special
case when Y is a point. Flrst we recall that the operatlon in homology induced by
Pl » 3210~y 16 pot P but its conjugate P* Since B = -8 we have in
partieular 8z = -8z . Thus (11) gives

(17} (tal),z = § [g*Fiz - (~1)qg*B_P;i‘z ev hivt
i [——

for any z ¢ HqX. Now let x ¢ HqX, ¥y = x. Then we have

(BAL)R y = (tal)y | (-1)PHED2 (0 gl o (1) 3pe )ou ™ 1y
A]

o

= (-1)PHO2 013795 ((4a2), 0 x-(-1) (A1) 8@ x (4,0) (£,v) L] (8,0) 5,1

J
(18) = (-l)mq(q+1)/2(ml)_qu-mq-w_q‘i. [@‘inx - (-l)qsﬁinxcv_l
i
- (—1)q?iBij(bu—l— v hya - wh s sﬂi‘BQ‘j woeu w1 - o siyt
On the other hand, we have
w—qRi(thl)*y = w-qRijz [g*%)i - (—1)qg*fﬁ"i;xcvml1V"j

w9y (R Fx - (-1 Ry (Pfe) ey hypivy I
J

(19) = (c)PUWD2 (0% P9y iRy - (<199 polBxou
i,

+ (1% B xmuov ) (107t T ogeteB e e (107t ot

If we collect the terms in {18) and (19) not involving b or ¢ we get (8}.
Collecting the terms involving b but not ¢ gives (9).
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It remains to show 3.5,

Proof of 3.5. Let p be odd; the p = 2 case is similar. We use the spectral
sequence 1.2.4
i B xP) ) — Y (D X).
¥
let {x } ., be an ordered basis for H X. ILet [af denote the degree of x . The
o oo
graded group K (X(p)) = B (0% has the basis {Xa ® ¢+ ® X | apseendy €A} and
1 p
the E,-term has a basis consisting of representatives for the elements
1 = mina, # max ai}

{in particular, the spectral sequence collapses, as we also know from I.2.3). Hence

{beul@"xa| «ch, e=0o0rl,i>0} and {rﬂ(xﬁ@ e ®x e

P’ ¥
these elements form a basis for H (D"X). let 2 € H D"X be a nonzerc element with

* *
12 =A2=0. Since 1"z = 0, z is a finite sum of the form

e i
) Aa,E’ib u ?"xa.
[

x o,€e,1
Since Az = 0, we have
(20) 0= ) A __ PP x
oy, ©€ T
=y pdmlelUal-i/zylaly o imfal-2ime oy gy ladgply ypal
a,e,1 a a
by equation (4) of section 2., Now let K be max{i+mla] Ixa .4 70} and let S be
i
the set of triples {a,e,i) with 2 ., # 0 and i+m|o] = K. Then the coefficient
4 a,e,1
of u¥ in line (20) is
) (-pymlaltal-D72 el 0 ey

< i o
{a,e,i) ¢ S %8s

sinee all other terms in line (20) involve smaller powers of u. But this is a

contradiction since the X, are linearly independent.

§4. Atiyah's power operations in K-theory

In this section we show that the power operations in KU and KO defined by
Atiyah [17] give HS structures for these spectra which agree with those con-

structed in VII §7. We shall work with complex K-theory, but everything is similar
for KO.

We begin by recalling the definition of Atiyah's operations. Let G be a finite

group. If Y is a G-space let Vect,Y be the set of isomorphism classes of
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equivariant vector bundles over Y; we write Vect Y for the case where G is the

trivial group. If Y is a free G-space there is a natural bijection
VectoY = Veet{Y/G)
(see [18, 1.6.1]). If Y is any G-space we write A for the composite
VectgY + Vectn{EG x ¥) » Vect(EG xg 1),

where the first map is induced by the projection EG x Y » Y. The map A is additive

and hence if Y is a finite G-complex we obtain a map
KGY > K{EG Xa Y)

which will also be denoted by A. Now if X is a finite nonequivariant complex and we

let zj act on ¥ by permuting the factors then the j-fold tensor power gives a map

/3). Veet X » Veot_ ¥ + K_ ¥
3 z. b
J J
which however is not additive. In order to extend it to virtual bundles and to the
relative case we must use the "difference construction®™ [94, Proposition 3.11. Let
(Y,B) be a G-pair and consider the set of complexes

d d
0 «— EO -&JL~ El _—— eee 4 En 4~— 0

of G-vector bundles E; over ¥ which are acyclic over B. We write pG(Y,B) for the
set of isomorphism classes of such complexes. Two elements Ey and Ej of IBG(Y,B)
are homotopic, denoted Ey = E;, if there is an element Hy &o(Y x I, B x I) (with G
acting trivially on I) which restricts to Ey and E} at the two ends. We say that Ey
and E}f are equivalent, written Ey ~ E;, if there are complexes Fy and F; which are
acyclic on Y such that

Ex @ Fy ~ E! @ Fl.
It is shown in [94, appendix] that there is a natural epimorphism

r:8,(Y,B) » Ky(Y,B)

which induces a bijection from the equivalence classes in Jg(Y,B) to K5(Y,B). If B
is empty T is easy to describe: it takes Ey to (-1)iEi. I is additive and
multiplicative if we define addition and multiplication in ‘3G to be the direct sum
and tensor product of complexes. Now if (X,A) is any pair of finite CW complexes
the j-fold tensor product of complexes give a map

p(X,8) > B ((X,8))),
J
If Ey and E; in B(X,A) are homotopic by a homotopy Hy then the restriction of

}gfga along the diagonal map
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(X,A8 x I » (x,8) x I

gives a homotopy between Eg)jand (E;)C)j. If Fy is acyclic on X then the inclusion
(E*fj I, (£, ® F*fa I s I, -equivariantly split and is a homology equivalence by
the Kanneth theorem, so that ﬁg‘j ~ (E*(D F*)@)j. It follows that the j-fold
tensor product preserves equivalence and we can pass to equivalence classes to

obtain a map

333 K(X,A) > Kg((X,000).
Letting A be the basepoint * of X we write 3% for the composite

B = K(EL,%) —= K (%)) 3‘*—»1{(Ezj x, (X,%)9) = %D, X.
3 3
We can extend @5 to all even dimensions by letting it take the Bott element

be K_Z(SO) to od. It is easy to see that the @3 are consistent in the sense of
1.3, so by 1.2 and 1.3 we have

Theorem 4.1. KU (resp. KO) has a unique Hi (resp. Hﬁ) ring structure for which

the power operations are those defined by Atiyah.

3

We shall see in Section 6 that the Hi gtructure on KO extends to an H4

structure. Our next result answers an obvious question.

Proposition 4.2. The structures on KO and KU given by 4.1 are the same as those
given by VII.7.2.

For the proof we need a lemma.

Lemma 4.3. Let X be a based space and let 2:X" + X be the based map which is the
identity on X. Then
(D, 1) FD.x » F (D, (x1))
2 : X .
J J J
is a split monomorphism for any theory F.

Proof of 4.3. If vir™X » £"X' is the map given in the proof of 3.3 then
* * w0 *

D, v) {D,A) = (D. = 1.

{ Jv) { ) ) { J(E X o v}

\

Proof of 4.2. Let '53 be Atiysh's power operation and let @3 be that given by
VIi.7.2. By VII.7.7 we have

?j'(zzb) = %'2:21)-1)3

while by 1.1{(iii) we have
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\ o\ oy
(22‘0) = 33.221)- Po.
Since .P b 1 is an orientation for the Thom complex D 52 this 1mp11es

j}b = tp ='$3b. It therefore suffices by 1.3 to show that f? and 5 are equal on

® for any finite complex X, and by 4.3 it suffices to show that they agree on
K(X+) = KX. They do agree on Vect X by [71, VIII.1.2]. But any element x of KX

can be written in the form V-W with V,W ¢ Vect X, and we have
Pw ®
®jv=?j(x+w) Dx + w+i£1 RIS ACC IR}

by 1.1(vi), and similarly for i?: Hence
J

Pr-Pv-Pu-'] P P
PR A TCA TR R NN ISR

im 1A
i ! 1
and similarly for j}. We therefore have ng ={ng by induction on j.

By analogy with Section 2 we now ask what operations in K-theory can be

obtained from the internal power operation
P.":KX » K(X x Bm)

The structure of K(Bm) has been determined by Atiyah [16): X(Br) is a 2p4modu1e
and the composite
A®1

m(n)®%p K(Bﬂ@%p——-K(Bn)

is an isomorphism, where IR(w) is the augmentation ideal. If p is the automorphism
group of 7 then the invariant subgroup K(Bw)°? is generated by A(N-p), where N is
the regular representatlon of m. Atiyah also shows that Kan = 0. In particular,

k*Br is flat over K" (pt) and we obtain a Kunneth isomorphism
KX ® K(Brn) = K(X x Bw)

for finite complexes X. Since P" is the restriction of P_ we see that PTr actually

lands in the invariant subring XX ® K(Br)P. We can there?ore define operations
¢P KX » KX

and oP:KX > KX x ip

by the equation

(1) Px=¢Px®1+ePx®A(N-P).

By 1.4(i) we have
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(2) ¢px = xP,
Atiyah proves the relation
(3) pePx = xP - ¢Px

in [17]. 8ince the representation N of 7 is induced from the trivial representation

of the trivial group we have A(N) = t 1 and therefore (1), (2) and (3) give
(4) Pox = Wr®l+6Px® 1,

an equation which will be used in §7.

We can in faet 1ift 6P to XX by using the equivariant internal operation ?%.
This is the composite =
KX ]

*
K (xP) Lk X,
m m

where A is the diagonal map from X with its trivial m-action to XP with its
permutation action. Clearly P, =ho ?;. Since n acts trivially on X, we have
K"X = K{ ® Rn. The p-invariant subring of Rn is generated by 1 and N-p, so we may

define 6Px as an element of KX by the equation
?ﬂx=xp®1 + 6Px @ (N - p).

The operation ?; satisfies the obvious analog of 1.4 and one can use its properties
to obtain additivity and multiplicity formulas for 6P and yP {using equation (3) as
the definition of wp), One can also obtain the G-equivariant Adams operations in
this way by starting with a G-complex X and constructing operations

. J
GZ.KGX > KZjIG X

exactly as before. The reader is referred to [34] for details.

§5. tom Dieck's operations in cobordism

In [31], tom Dieck constructed "Steenrod operations" (power operations in our
terminology) for the cobordism spectra associated to the classical groups. In this
section we use these operations to give Hg structures for these spectra. 4 wider
class of cobordism spectra will be investigated by lewis in the sequel, and he will
show that they have not just H_ but E  structures. His resulis do not quite include
those of this section, however, since his methods do not give the "d-structure"

{i.e., the Ej-orientations) for the classical spectra.

Throughout this section we write G for any of the classical groups 0, SO,
Spin®, U, SU, Sp or Spin. Let d = 1,2,2,2,4,4,4 respectively. We depart somewhat
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from standard notation (in this section only) by writing G(i) for the group which
acts on RY, Iet Py be the universal G(i)-vector bundle over BG(i), let S(pi) be
its fibrewise one-point compactification, and let T{p;) be the Thom complex obtained
by collapsing the points at ». We shall always identify prineipal G{i)-bundles with
free G{i)-spaces, so thet the principal bundle associated to p; is EG{i). If q is
any G(i)-vector bundle with principle bundle @, there is a bundle map F:q + P; and
induced maps S(F):5(q} » 8{p;) and T(f}:T(q) » T{p;). If F' is another such map we

shall need to know that T(F') is homotopic to T{F) ({of course this is well-known
di
1) B

for the maps of base spaces induced by F and F'). Now F has the form F ox
Sd1 , and similarly for

for some G(i)-map F:Q » EG(i) and S(F) is equal to F Xa(1)
F' and S(F'). It is shown in [32] that there is at most one G(i)-equivariant
homotopy class of G(i)-maps from any G(i)-space into EG(1), so it follows that S(F)
is homotopic to S(F') by a homotopy preserving the base points in each fibre, and

hence T(F) = T(F') as required.
Now we define the Thom prespectrum TG by letting (TG)di = T(pi) with

!
0:L T(Pi) > T(pi+1

)

induced by any bundle map from Py @ i 1o Pj+1+ We wish to show that TG is an

Hi ring prespectrum. For this we need some bundle theoretic observations.

let p be a G(i)-vector bundle over X with associated principal bundle P. Then

Ezj xz‘;J is a vector bundle over Ezj xz.xig we wish to give it a canonical G{ij)-
J J

bundle structure. Iet H = G(1)9. Then p) is an H bundle over ¥ with principal

bundle PJ, and Zj acts on everything on the left. However, its action on P does

not commute with the right H-action (¥ is not a “zj—equivariant principal H-

bundle"). Instead we have o(ph) = (op)(ch) for o €Iy, P er, h e¢H. Now let

Q=H xn G(ij). This is a principal G(ij)-bundle over ¥ with associated vector

j on (Rdi)j 1lifts

to a homomorphism Iy + G(ij) denoted o >3, and we have g(h) = Ghe 1 for all

bundle }J. Because of our choice of d the permutation action of &

h e H. We define a left action of zj on Q by olp,g) = (cp,;é); it is easy to check

that this action is well-defined and that it commutes with the right action of
G(ij). Thus Q is a %; ~equivariant principal G(ij)-bundle and hence so is its

pullback Ezj x @ to Ezj xz‘xﬂ. Since zj acts freely on EEj x @ and commutes with

G(ij ) we can divide out by its action to get a principal G(ij)~-bundle Ezj %5, @& over

ELy x5 ¥ . The reader can check that the associated vector bundle is Ezs x%' .
J J

Since T(Ezj xE_;J) is naturally homeomorphic to QjT(p) we obtain maps
J

Cj,i‘Dj(TG’di = (B, XXJ_ p’i) —-'-T(pij) = (frc;)d].J

for all i,j > 0. The diagrams of Definition VII.5.1 commute since in each case the
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two composites are induced by bundle maps into a universal bundle. Thus we have
shown

Proposition 5.1. The maps ¢j,i are an Hd structure for TG.
LA LAt AL , w

Now define MG = Z(TG). Every G(i)-vector bundle q has a canonical Thom class
in this theory represented by the map

T(q) —= T(p,) L (MG) 44

At this point we need some liml information.

Lemma 5.2. Allof the pairs (TG,MG'), (TG,KU), (TG,KO), (TG,ku) and (TG,k0) are

liml—free.

Proof. First consider (TG,MG'). The pair (TU,MU) is clearly liml-free since the
spectral sequence Er(TU213MU) collapses for dimensional reasons. For each other
choice of G and G' there are maps f:MU » MG' and g:TG +» TU satisfying the hypotheses
of VII.4.4, hence each pair (TG,MG') is liml-free. A similar argument gives the

remaining cases.
Corollary 5.3. MG is an Hg ring spectrum.

On the other hand, it was shown in [71,IV$2] that MG has an E_ ring structure.
Such structures always determine H_ structures, as mentioned in I§4; see [Equiv,
VIIS2] for the details. Let g?:?jMS + MG be the structural maps cbtained in this
way and let g? be those obtained from 5.1 and 5.3. As one would expect, the two

structures agree:

Proposition 5.4. For each j, g? = g?.

Proof. We use the notations and Definitions of VII§8. Fix i and let a = as- It
suffices to show that the elements z? and z? in cobordism represented by the
composites (EE)
() «x ja
T(ni)/\zj T(pi) —>(DJ.M})a (MG)a

(g.)
T(ny) A, T(p )9 o (Dae) —125 (o)
5 i j a a
are equal. An inspection of the proofs of [71, IV.2.2] and [Equiv. VII.2.4]
shows that the second composite is induced by a bundle map from Ny C)(pi)j into
the universal bundle Dy, hence z? is the canonical Thom class in

MGa(T(ni)/xz T(pi)(J)). On the other hand by Proposition VII.8.1 there is a
J
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relative Thom isomorphism

. a () a+dij &, J
¥:{MG) (T(ni) A (T(pi) ) ——» {MG) (z T(E):J. le(pi) B

J J
which takes zg to the canonical Thom class in the target group. Since the
canonical Thom class of a Whitney sum is the product of the Thom classes, the
relative Thom isom?rphism ¥ takes the Thom class of T(ni)’\z.(T(Pi}(j)) to that
of :MEr, x; (p;))). Thus vz = vz’ and the resuts rollowb.
d

We conclude this section with a discussion of cobordism operations related to
P“. The situation in unoriented cobordism is quite simple: there 1s a
Kinneth isomorphism

MO¥(X x BZy) = (MOX)[lx]]
where y is the MO® Euler class of the Hopf bundle, and we can define operations

. +1
rlamox » ot X
for i ¢Z by the equation

_ ot i q-i
Px = % (Rx)y ™ .

One can prove various properties of the rl exactly as in §2 {see [31, §15]).

To deal with the case of complex cobordism we need some formal-groups notation.
let F(x,y) be the formal group of MU and let [n](x) be the power series defined
inductively for n > 0 by [11(x) = x and [n+1]}(x) = F([n)(x),x). There is a
Kunneth theorem due to Landweber [491:

MUS (X x Ba) = (MUTX) [{ull/(pl(w),

where u is the Euler class of a nontrivial irreducible complex representation of w.
The power series [p](u) has leading term pu but is not divisible by p, so that in
particular MU*Bn is torsion free. We cammot continue as in the unoriented case
since the power series [pl(u) and the ring MU*Br admit no simple deseriptions.
There is however a relation between Pﬁ and the Landweber-Novikov operations 8y which
is due to Quillen and was used by him to give a proof of the structure theorem for
M. Let aj(x) for j > 1 be the coefficient of yj in the power series

o [

p-1
| ] F([il(x),y). For a multi-index o = {ay,.+.,0;) let a(x)® = a. (x) .. ak(x) K,
i=1

Define y eMUQP_2Bw by the equation x-zzl = P"zzl; thus y is the Euler class of

the complex reduced regular representation.
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Proposition 5.5. For any finite complex X there is an integer m > O such that the

equation

(1) (Px)" = ] (Sax)a(u)axm_lal
laf <m

holds for all x € MU23X.
For the proof see [93] or [11]. There is a similar relation between PTr and Sy

in the unoriented case. Since the right side of equation (1) is additive in x we

have

Corollary 5.6. (P ) (x+y) - Pox —Pny)-xm = 0 for large m.

86. The Atiyah-Bott-Shapiro orientation.

It is well-known that the KU and KO orientations constructed by Atiyah, Bott

and Shapiro in (19} give rise to ring maps
¢U:MSpinc + KU
and $9:MSpin » KO

In this section we shall prove

Theorem 6.1. ¢U is an Hi ring map and ¢O is an Hi ring mep.

Remark 6.2. MSpin actually has an H4

©

with VII.6.2 we see that the Hi structures for KO and kO constructed in §4 and in
VII§7 extend to Hi structures.

structure, as shown in §5. By combining 6.1

We shall give the proof of 6.1 only for ¢O, which will henceforth be denoted by
¢; the remaining case is similar. If p is a Spin(8i)-vector bundle we denote its

Atiyah-Bott-Shapiro orientation in KO(T(p)) by u(p).

First we translate 6.1 to a bundle-theoretic statement. As usual, let pg; be
the universal Spin(8i)-vector bundle. If X € BSpin(8i) is any finite complex, we

obtain an orientation class

u(pgq [X) %(T(p8i|x)).

These classes are consistent as X varies, hence by 5.2 and VII.4.2 they determine a

unique class in Eé(TSpingi) which is represented by a map

ui:TSpin8i + BO x Z.
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The sequence {u;} is & map of prespectra, and ¢ is defined to be Z{us} (see
VII§1). The multiplicative property (19, 11.1 and 11.3] of the Atiyah-Bott-Shapiro
orientation implies at once that {ui} is a ring map, and hence so is ¢ by 5.2 and

VII.2.3. Similarly, Theorem 6.1 is a consequence of the following property of u.

Proposition 6.3. If p is any Spin{8i)-vector bundle then

u(Ez, xzj P o= ®.up),
o)

where dj is the power operation defined in §4.

In the terminology of §1, Proposition 6.3 says that 3} satisfies tom Dieck's
axiom P4. +tom Dieck gives a simple proof of the analogous statement for the KU-

orientation of complex bundles in [31, §12].

For the proof of 6.3 we need to recall several technical facts from {19]. The
first is the "shrinking" construetion in £(D,Y). Let

d d
E,: 0 d4—F. 42 E s ree €« § e—0
* 0 1 T

be a complex of real vector bundles over X which is acyclic over Y. Choose

Euclidean metrics in each E; and let 8;:E; ; » E; be the adjoint of d; with respect
to the chosen metrics. ILet

D

s(E,): 0 +— s(E),«— s(E) «— 0
be the complex with s(E)O = ® B, s(E), = ® E, , and differential
i even i odd

D(el, 83,---) = (dleL, 6261 + d3€3, 6493 + d565’°")

Then s(E) is in #(X,Y) and it defines the same element in KO(X,Y) that E does (see
[19, p.22]). The same construction works G-equivariantly provided that the chosen
Euclidean metrics are G-invariant.

Next we need the Clifford algebra Cy. By definition, Cj

tensor algebra T(r}) by the ideal generated by the set {x® x - ﬂxn2-1}x e R'}. The

is the quotient of the

grading on T(Ri) gives Gy a Z,-grading by even and odd degrees and we will write
B for the Z,-graded tensor product of two Z,-graded objects. By a module M over
Ci we mean a Zz-graded real vector space with a map

C;y B M+ M

satisfying the usuel properties. Equivalently, such a structure is given by two
maps

R:.L®MO+M1
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and Rl oM 50,

each denoted by x ® mi—» xm, such that
2

(1) x(xm) = -ix1'm

for all x,m. In particular, the latter description shows that if M is a Ci~module

and N is a C,j ~-module then M N is a Ci+j ~-module with

(x®y)m@n) =xmen + (—1)|m|x®yn

for all XERi, ¥y st, meM, neN. If M is any module over C; we can define a

complex

E(M) : 0 — £ (u) <& E, (M) «— 0

of real vector bundles over R- by letting Ey(M) = R x MO, B (M) = B Ml, and
d(x,m) = (x,xm). Equation (1) shows that this is acyclic except at 0, and in

particular it defines an element of KO(Di,Si"l).

We can now define two complexes over (rly ,namely E{M J) and the external
tensor product E(M) ® J. The first has length 2 and the second has length j+l. We
need to be able to compare them.

) ®J

Lemma 6.4. The inmer product in E(M can be chosen so that S(E(M)® J) is

: B

isomorphic to E(M ) .

Proof. It is shown in [19,p. 25] that one can choose immer products in M and M so
that the adjoint of x> M is -x:M° » M} for each x € RL. We define an inner
product in M ®J by

ses ! ses ! = I> ese '
<Inl ¢4 @mj s m1 @ 2 mj> <ml,ml> <m'j ’mj>

. Then s(E(M) *J) and
EM®J) clearly Involve the same two bundles, but they have different

with the understanding that <m,m'> = O if |m| # |m’

differentials, say 4 and d'. The definition of the shrinking construetion gives

d{x,m, ® <+ ®mj) =

|ml|+...+|mi|-1

B
kzl (~1) (X,m) @ eec ®m;_; @XM @M, & +o0 ®mj)

: 14 . s ®J :
if =% @ +.. 8 Xy e¢{R")¥, while the definition of M as a ij -module gives
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d'(X,ml R see ®mj) =

3 lm 1+...+lm_ i
} (- ! -1

k=1 om @ +e @my ; @x;m Bmy,y @ oo Omy e
The required isomorphism is given by taking (x,ml @ e ® mj) to itself if
fmy] + «oe ¢ ]mj] is congruent to O or 1 mod 4 and to its negative in the remaining

cases.

Next we recall that Spin{i) is a subgroup of the group of units of C; (in faet
this is the definition of Spin{i) in [19, p.8]) and that the resuliing conjugation
action on RF C C; agrees with its usual action on RE, We can therefore define an
action of Spin(i) on E(M) through automorphisms by g{x,m) = (gxg'l,gm). Now if P is
a principal Spin(i)-bundle over X with associated vector bundle

p:V » X we can define a complex E(M,P) over V = P Xspin(i) r by
E(M,P) = P Xspin(i) E(M).

This complex defines an element of J¥(BV,SV) and hence of I'{\é(T(p)). If P is a
G-equivariant principal bundle for some G (i.e., G acts from the left on P and
commutes with the right action of Spin(i)) then E(M,P) has a left G-action and
defines an element of fK‘éG(T(p)). If G acts freely on P we can divide out by its
action , and it is easy to see that the quotient complex E(M,P)/G is just E(M,P/G).

Atiyah, Boit and Shapiro specify a module X over 08 for which E(\) represents
the Bott element in %(88) (see [19, p.15]), and if P is a principal Spin(8i)-bundle
they define p{p) ¢ I?G(T(p)) to be the element represented by E 1p).

From now on we fix 1, P and p and denote A i by M. Let q = p5I with its
permutation action by 23 and let Q be the associated ):j -equivariant Spin(8ij)-bundle
as defined in Section 5. To prove 6.3 it suffices to show that E(MJ,Q} and the
external tensor product E(M,P) ®J define the same element of %B;j (T{q)). We can

describe these complexes more simply: the first is

P« ru®J)
Spin(81)
and the second is

(EM) ®);
* Spin(8i)d

in each case L acts through permutations of both factors. Now it is shown in [19,
p. 25] that the inner products on MO and Ml used in the proof of Lemma 6.4 can be
chosen to be invariant under Spin(8i), hence the inner product on E(M) ®J used in
the proof of that lemma is invariant under both (Spin(81'.))j and Zj , and so is the
isomorphism s(EM®J) = g B ). It follows that s(E(M,P) ®'j) is isomorphic to
E(m B ,Q) as required.
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§7. p-local H  ring maps.

In this section we make some general observations about p-~local H_ ring maps
and apply them to show that the Adams operations are H_  ring maps and that the Adams
summand of KU(p) is an Hg ring spectrum. We also obtain a sufficient condition for

BP to be an Hi ring spectrum.

Throughout this section we let p be a fixed prime and let » C I, be generated

p
by a p-cycle.

Lemma 7.1. Let F be a p-local spectrum and let Y be any spectrum. The map
* % *
P (D, Y F{D.D Y
B (Jp)+ (.]n)
is split monic, and if j is prime to p the map

* ¥ *
a ﬁ‘%Y<>F(YAD. Y}

3-1

is split monic.
Proof. The subgroup Zj f w of ij has index prime to p, and hence the composite

B (5, ;M) —=H (5, /2 ;M) —Sw H (2, ;M)
ip’ i*tp’ Jjp’

is an isomorphism for any p-local ij—module M. Thus

* 1* *
FD Y—»FD Y
ip L. Jr
J
is split monic by I.2.4. The result for B* follows since g factors as

D,DY =D
b

Y =D Y
3 "

.S Y

Jd

and the result for o is similar.
As an application, we have

1
Proposition 7.2. ILet E and F be HS ring spectra with power operations ?% andlgg.
Suppose that F is p-local. Let f:E + F be a ring map such that the equation

~1
(1) £, 0%, =8 o,
nolds on E4Y for a1l i ¢Z and all spectra Y. Then f is an HS ring map.

\
Proof. We shall show that f, o G’J =’% o f, for all j by induction on j. This is

trivial for j = 1 since 1 is the identity. Suppose it is true for all k < j. If
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' t
is prime to p we have a*f*@jy = (f‘*y)(f‘*@j _,y) end a*@jf*y = (£, (f)j_lf*y)
E3 ¥ t E] t
If j has the form kp we have B8 f*<§3y'= f*f?k<§;x and 8 <?jf*x =<§&’§;f*x. In

either case the result follows from 7.1 and the inductive hypothesis.

Under the usual limt hypotheses, it suffices to check equation (1) for spaces
of for finite CW complexes. However, for actual calcualtions it is much easier to
deal with the internal operation P7r than with (Ei. Our next result allows us to
reduce to this case when we are dealing with spectra like XU or MU.

Proposition 7.3. Let F be a p-local spectrum such that n.F is free over Z(p) in
even dimensions and zero in odd dimensions. Let X be a space such that Hy(X;Z) is
free abelian in even dimensions and zero in odd dimensions. Suppose that X end F

have finite type. Then the map

* * % ~¥ ~¥
v ®a :FD X F P o ¥ xamh
is monic.

¥
Proof. First let F = HZ(p). The Bockstein on H (DHX;ZP) is given by II.5.5 and

~¥
it follows that E, = E_ in the Bockstein spectral sequence. Thus H (DKX;Z } is a

(p)

direct sum of copies of Zi ] and Z,, so it suffices to show that the maps

’
h*@;)®deh @a)@% ;emMm %r&eﬁmtmo&wwtﬁtﬁ@Q
is a split injection by a simple transfer argument. For the second we use 3.5 and
the universal coefficient theorem. Thls completes the proof for F = HZ( ) For the
general case, we observe that (D A induces a monomorphism on E2 of the Atiyah-
Hirzebruch spectral sequence and that the spectral sequences for X(P) and XABr*
collapse for dimensional reasons.,

Our first spplication is to the Adams operation

X,
$ 'KU(p) > KU(p)

with kX prime to p. This is well-known to be a ring map.

Theorem 7.4. If Y is any spectrum and y ¢ KU?DY then ¥ Q? y = k_jn(§3(kpwky). In

particular, w is an H_ ring map but not an H ring map.

Proof. Let @y 'Jn(? Ky for y K°UY. We must show ? @ ;p The(? are

consistent in the sense of 1.2 and thus define another Hz structure on KU(p) (Whlch

ggrees with the standard H_ structure but has different za~or1entatlons). By 7.2 it
suffices to show w GDw , and by 1.3 it suffices to show this for finite com-
plexes. Since w is a ring map we clearly have 1*wK§; = 1*<?;wk’ so by 7.3 it

suffices to show
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(2) kaﬂx - P;‘zpkx

for all x eKan whenever X is a finite complex. If x is the Bott element b then
wkb = kb and P b = bP sc (2) is satisfied in this case. Thus we may assume n = O.
Since wk is a stable map it commutes with the transfer, and thus (2) will follow
from equation (4) of section 4 once we show that wk commutes with 6P. It suffices
to show this for the universal case BU x Z, and since K(BU x Z) is torsion free it
suffices to show that wk commutes with pep. But this is immediate from equation (3)
of Section 4.

Next we recall the Adams idempotents

E + KU a

a %) () 2%

defined in {5, Lecture 4]. These idempotenis split off pieces of KU(p) which we
shall denote by LO""'Lp-E' Thus the idempotent Ea factors into a projection map
and an inclusion map:

r s
KU 2,1 —E.gy
{p} a {p)
i = . i 3 = o eee V .
with rps, = 1. Since ) Ea 1 we have KU(p) LOV Lp—2 The E,
ae Z
p-1
satisfy the formulas Ejl = 1,
a 0 if n # a mod p-1
(3} Eb =
a
b™  otherwise
and
{4} Ea(xy) =73 (Ea,x){Ea_a,y).

In particular, the image of Ey is a subring of K*X and hence Ly has a unique strue-
ture for which sy is a ring map. On the other hand, (3) implies that the kernel of
Ey is not an ideal and hence there is no ring structure on Lo for which ry is a ring

map.

Proposition 7.5. Ly has a unique Hi ring structure for which sy is an HE ring map.

Proof. We must show that(EB takes the image of E, to itself, i.e., that the

equation

holds on Kan for every n ¢ Z and every spectrum Y.
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Let ch be the Chern character and let X be a finite complex. We have
en(yPE x) = ch(E,yFx) for all ac Zp.1 a0d all x ¢ KK by [5, p.84-85] and [1,
5.1(vi)]. Hence waa = anp by {5, Lemma 4 of lecture 4]. As in the proof of 7.4
it follows that Eaep = epEa and that EP x = P E;x for all xeXX. Now let neZ and

let a be the class of n in Z Then we have

p-1°

I I
EP, Eq(bPx) = EgP (VPE_ x)

n

T
Ey(bP'P E_ x)

348 T
bPUE_ P E_x = bPPP E_.x

u

n _ n
Pn(b E_gx) = P Ey(b"x)

for all x¢KX. As in the proof of 7.4 it follows that (5) holds on the space level
w1th? replaced by ? Sinece both sides of (5) are stable in the sense of 1.2 and
1.3, 1t follows that (5) holds on the spectrum level with ?. replaced by ? The
rest of the proof is an induction on j just like that in the proof of 7.2. We give
the inductive step when j has the form kp:

* *
- S E PP
By ¥y By = By 3 Ey = BB Oy

= ? (E,P & oY) = ? Ey )P “Eyy by inductive hypothesis

*,
?k@nEOy =8 @jEOy ,
so that (5) holds in this case by 7.1. The remaining case is similar.

It would obviously be desirable to have an analog of 7.5 for BP. In this case
the Quillen idempotent ¢ factors into a projection and an inclusion

T.pp - S.wu

MU (p) (p)

which are both ring maps. We could therefore attempt to factor the operations

:% either through the inclusion {(as in the proof of 7.5) or through the projection
{or both}. The proof of 7.5 shows that the (@ factor through sy if and only if the
following equation holds for all finite complexes X and all xe MU21X

(6) eP ex = P ex.

Similarly, the TSDJ factor through ry if and only if the equation

(7} ePex = P x

holds. In either case the resulting structural maps on BP would be the composites

D, s £, r
g/ D, BP d D, MU do My —Z— BP.
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The point is that, while these maps 55 clearly satisfy the first and third
diagrams of Definition I.4.3, the diagram involving 8 is much harder to verify and
equations (6} and {7) give two sufficient conditions for it to commute. We conclude

this section by giving some weaker sufficient conditions.

lemma 7.6. Equation (6) or (7) holds in general if it does when x is the Euler
class v €MUSCP® of the Hopf bundle over CP™.

Proof. Suppose anev = ePnV- Since ¢ is a ring map we have ¢ @"ev =g @%v by
7.3 (with X = CP®). Now e® ¢ and ef?“ both satisfy tom Dieck's axioms Pl, P2,
and P3, so Theorem 11.2 of [3l] implies that they are equal, hence eP“ € = eP" for

all spaces as required. The other case is similar.

Next we need some notation. Let f{x) = 19%151»5 MU*(IX}} where [pl{x} is the
power geries defined at the end of Section 5. Let [pl*{x) e BP*([x]] be relplix)
and let £'(x) = ryf(x). Let u' e BP*Brr be ryu, so that u' is the BP-Euler class of
a nontrivial complex irreducible representation of 7. Landweber's Kinneth theorem
for MU* (X x Bn) given in Section 5 implies
%

BP (X x Br) = (BP'X)[{u'}l/[p')(u")

Lemma 7.7. Equation {7) holds for all X if and only if equation
(8) TgP ¢ [cPR] = r*Pn[CPn] mod f'(u')
holds in BP*Br for all n > O.

Proof. Assume that (8) holds. We shall show that ryP ev = ryP v, where v is ag

*
in 7.6. Let M*X denote the even-dimensional part of MU(p)X and let P be the

composite
* Pﬂ * * *
MX——>MBrz (MX)[{ull/[pl(u) — (M X)[[u]ll/f(u).

1f M*X has no p~torsion then, since f(x) has constant term p, u is not a zero-
divisor in M*(X)[[u]]/f(u). The element y of Corollary 5.6 has leading term
(p-l)!up'l, hence y is also not a zero divisor. Thus 5.6 implies that P is additive
for such X. It is also multiplicative by 1.4{iii). In particular we have a ring
homomorphism

P:M (pt) » M (pt)) [[ull/f(u).

Since the elements [CP%] generate M*(pt) ® Q as a ring and since MU*(Bn) is torsion

free, equation (8) implies
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(9) ryP ex = ryP x mod £'(u')

for all x ¢ MU™(pt).

Now let ev = bivl. Since ¢ is an idempotent we have by = 1 and eb; = O for
i=1
i > 2. Hence (9) gives
= t t
ryP by = 0 mod f'(u')
for all i > 2. Now the ring homomorphism

PiM (CP®) » M (CP” x Bn) = M'[lv,ull/f{u)

is contimuous with respect to the usual filtrations by [31l, Theorem 5.1] and hence

we have

0 e~ 8
o
«
it
it~ 8

_ i
r*Pnev (r*Pﬂbi)(r*P“v) = r*Pﬂv mod £'{u'}.

[

e}
*

jav]

Finally, we observe that the map
¥ * * *
BP (CP x Bm) = BP [[v',u']]/Ip]'(u') » BP {(v',u'li/u* @ BP [{v',u']]1/f'(u'}

is monic since u' and f'{(u') are relatively prime. We have shown that
r*(P"ev - an) goes to zero in the second summand, so we need only show that

it goes to zero in the first. But the map
BP"(CP® x Br) » BP*[[v',u'll/u' = BP [[v']]
can be identified with the restriction
(1 x 0*:BP*(cP™ x Br) » BP¥CP®
and the result follows since

{1 x 1)*r*(Pﬂev -Pyv) = ryellev)P - vP) = (rev)P - (rev)P = 0.

We can now use Quillen's formula 5.5 to give a very explicit equation which is

equivalent to (7).
Corollary 7.8. Equation {7) holds for all X if and only if the element

o ) (ca,b-n-l)r*{CPn-IatIr*(a(u)a)(r*x)n-iqi‘
al <n

of@%uhz&o%r%@nnﬁofme%mpkb %mtm(%&mJ)Mewmﬂn

numerical coefficients defined in [6, Theorem 4.1 of part Ii.
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Proof. This is immediate from 5.5, 7.7, and [6, Theorems I.4.1 and II.15.2].

There is no obvious reason for the elements specified in 7.8 to be zero. If
they were zero, it would be evidence of a rather deep connection between 1"1r and €.
The author's opinion ig that there is no such deep connection and that neither

equation {7) nor equation (6) holds in general.



CHAPTER IX

THE MOD p K-THEORY OF QX

by J. E. McClure

In this chapter we use the theory of H_ ring spectra to construct and analyze
Dyer-Lashof operations in the complex K-theory of infinite loop spaces analogous to
the usual Dyer-Lashof operations in ordinary homology. As an application we compute

K*(QX;ZP} in terms of the K-theory Bockstein spectral sequence of X.

Dyer-Lashof operations in K-theory were first considered by Hodgkin, whose
calculation of K*(QSO;ZP) [41] led him to conjecture the existence of a single
operation analogous to the sequence of operations in ordinary homology. He con-
structed such an operation, denoted by Q, for odd primes [42]; a similar construc-
tion for p = 2 was given independently by Snaith, who later refined Hodgkin's
construction for odd primes and analyzed the properties of Q. The construction of
Hodgkin and Snaith was based on the E* term of a certain spectral sequence (namely
the spectral sequence of I1.2.4) and therefore had indeterminacy, and Hodgkin showed
that in fact any useful operation in the mod p K-homology of infinite loop spaces
must have indeterminacy. He also observed that the Dyer-Lashof method for calcu-
lating Hy{QX;Z_ ) by use of the Serre spectral sequence completely failed to
generalize to K-theory. The indeterminacy was a considerable inconvenience, but the
operation was still found to have applications, notably in the calculation of
K*(QBPn;ZZ) given by Miller and Snaith {84]. This result, which was proved by using
the Eilenberg-Moore spectral sequence starting from Hodgkin's calculation of
K*(QSO;Z ), was the first indication that K*(QX;ZP) might be tractable in the
presence of torsion in X. The main technical difficulty in the proof was in
determining exactly how many times Q could be iterated on a given element, since Q
could be defined only on the kernel of the Bockstein g. (Incidentally, a joint
paper of Snaith and the present author showed that the odd-primary construction of Q
contained an error and that in this case as well Q could only be defined on the
kernel of B.) The answer for RP™ was that Q could be iterated on an element exactly
as many times as the element survived in the Bockstein spectral sequence.
Unfortunately, the methods used in this case did not extend to spaces more
complicated than RPP,

In view of these faets, it is rather surprising that there is in fact a theory
of primary Dyer-Lashof operations in K-theory for which practically every statement
about ordinary Dyer-Lashof operations, including the caleulation of Hy(QX;Z_.), has a
precise analog. We shall remove the indeterminacy of Q by constructing it as an
operation from mod p2 to mod p K-theory, and more generally from mod pr+1 to mod pt

K~theory. It follows that Q can be iterated on any element precisely as often as
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the element survives in the Bockstein spectral sequence. There are also operations
ZQand R taking mod pr to mod pr+1 K-theory in even snd odd dimensions respectively

{ 92 is the K-theory amalog of the Pontrjagin p-th power [57, 28], while R has no
analog in ordinary homology). These will play a key role in determining the proper-
ties of the Q-operation and in our calculation of Ky (QX;Z ). They also give
indecomposable generators in the K-theory Bockstein spectral sequence for QX.l The
operations Q,éﬁ and R form a complete set of Dyer-Lashof operations in the sense
that they exhaust the possibilities in a certain universal case; see Section 8. The
key to defining primary operations in higher torsion is the machinery of stable
extended powers, which gives a very satisfactory replacement for the chain-level
machinery in ordinary homeology; more precisely, it allows questions about the
operations to be reduced to a universal case in the same way that chain-level

arguments allow reduction to Br_. In applying this machinery to K-theory we mgke

P
essential use of the fact that periodic K-theory is an H_ ring spectrum, as shown in
VII §7 and VIII §4, and the fact that the Adams operations are p-local H_ maps as

shown in VIII §7.

This chapter is largely self-contained, and in particular it does not depend
logically on the earlier work of Hodgkin, Snaith, Miller and the author. The
organization is as follows. In section 1 we give a very general definition of Dyer-
Lashof operations in E-homology for an H_ ring spectrum E. When E is HZP we recover
the ordinary Dyer-Lashof operations. In section 2 we use some of the properties
developed in section 1 to give a new way of computing H*(QX;ZP) for connected X
without use of the Serre spectral sequence, the Kudo transgression theorem, or even
the equivalence QQIX = QX; instead the basic ingredients are the approximation
theorem and the transfer. In section 3 we give the properties of Q, ZLamd R and the
statement of our caleulation of K,(QX;Z ); up to isomorphism the result depends only
on the K-theory Bockstein spectral sequence of X, but for functoriality we need a
more precise description. Section 4 contains the calculation of K*(QX;ZP), which is
modeled on that in seetion 2. Sections 5 through 8 give the construction and
properties of Q, 2, and R. In section 5 we lay the groundwork by giving very
}. Section 6 gives enough information

r
about Q to calculate K*(DPX;ZP), a result needed in section 4. The argument differs

preecise descriptions of the groups K*(DpSn;Z

from that in {77] in three ways: it is shorter (but less elementary), it gives a
more precise result, and it applies to the case p = 2. Sections 7 and 8 complete

"It was asserted in the original version of this work ([76, Theorem 5]) that certain
composites of Q and R gave indecomposable generators in K,{QX;Z ). Doug Ravenel has
since pointed out to the author that this is incorrect: his argument is given in
Remark (ii) following Theorem 3.6 below. The corrected versions of [76, Theorems 5
and 6] are also given in Section 3. (The mistake in the original version was in the
proof of Lemma 4.7 for M = zMr, where it was asserted that the r > 1 and r = 1 cases
are similar. They are not.}
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the construction of Q,4, and R. In section 9 we prove a purely algebraic fact
needed in section 4; this fact is considerably more difficult than its analog in

homology because of the nonadditivity of the operations.

I would like to thank Viec Snaith for introducing me to this subject and for the
many insights I have gotten from his book and his papers with Haynes Miller. I
would also like to thank Doug Ravenel for pointing out the mistake mentioned above.
I owe Gaunce lewis many commutative diagrams, as well as the first version of
Definition 1.7. Finally, I would like to thank Peter May for encouragement and for
his careful reading of the manuscript.

1. Genersliged Homology Operations

let E be a fixed H_ ring spectrum. In this section we shall construct
generalized Dyer-Lashof operations in the E-homology of B ring spectira X. When E
is HZp these are {up to reindexing) the ordinary Dyer-Lashof operations defined by
Steinberger in chapter III, and for E = S they are Bruner's homotopy operations.
When E is the spectrum K representing integral K-theory we obtain the operations

referred to in the introduction which will be studied in detail in sections 3-9.

For simplieity, we shall begin by defining operations in EyX, although
ultimately (for the application to K-theory) we must introduce torsion coefficients.
Fix a prime p. For each ne¢Z the operations defined on EnX will be indexed by
E*(Dpsn), i.e., for each e eEm(DpSn) we shall define a natural operation

Qe:EnX + EmX

in the E-homology of H_ 1ing spectra called the intermal Dyer-Lashof operation

determined by e. As usual, Qe will be the composite of the structural map

(gp)* : EmDpX > B, X
with an external operation

Qe ¢ EnX > EmDpX

which is defined for arbitrary spectra X and is natural for arbitrary maps X » Y.

Throughout this chapter we shall use the same symbol for corresponding internal and
external Dyer-Lashof operations, with the context indicating which is intended. In
this section we shall be concerned only with the external operations, and thus X and

Y will always denote arbitrary spectra.

In order to motivate the definition of the external operation Q, we give it in
stages. Fix m,n ¢Z and e eEmDpSn. let u EEOS denote the unit element. We define
Qe first on the element :lu eEnSrl by Qe(znu) =e. If x eEnX happens to be
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spherical, then there is a map g:Sn + X with g*(zn‘u) = x, and naturality requires
us 1o define Qex = (ng)*e. Now any element x ¢ EnX is represented by a map

£:5% > EAX, and to complete the definition of Qe it suffices to give an analog for
general x of the homomorphism (ng)* which exists when x is spherical. It is useful
to do this in a somewhat more general context, so let Y be any spectrum and let

f:Y » EAX be any map. First we define fy, to be the composite

(1A£), (pal),

—~# T {EAEAX) ——=n, (EaX) = EX,

E Y = m(EAY)

where ¢ is the product on E. Note that fy,i™u = x if £:8° » EA X represents x.

: to be the composite

Next define _I;nf for any w ¢ ZJ

D f
DY —" D (EaX) =D EaD x E20pap ¥,
m T ks ks n

where ¢ comes from the H_ structure of E. Combining these definitions we obtain a
map

(Dﬂf)** :E*DHY — E*D“X .

Definition 1.1. If x E X is represented by £:5% 5 E~ X and e is an element of
EmDpSn then
Qex = (Dpf)**(e) eEmDpX.

Of course, this agrees with the definition given earlier when x is spheriecal,
and in particular when E = S we recover the external version of Bruner's operation.
Next let E = HZP. The standard external operation (as defined by Steinberger) is

1

{recall that Zp(n} is Zp with D acting trivially if n is even and via the sign

representation if n is odd). Now it is easy to see that the map

denoted ey ® %P, where e. is the generator of Hi(zp;Zp(n)) defined in [68,section 1]

Q:Hi(ZP;Z (n)) —=H,

1
p 1+2pn(DpS ’ZP)

given by e »—»ei ® (Znu)P is an isomorphism, and we have

Proposition 1.2. If e = @(ei) then Q.x = ey ® P for all x.

The proof of 1.2 will be given later in this section.

It is possible to put Definition 1.1 in a more categorical context. Let CE be
the category in which objects are spectra and the morphisms from X to Y are the
stable maps from X to EAY. The composite in Cy of f:X » EAY and g:Y » EAZ is
the following composite of stable maps
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RS YRR LI - TR LEG

The construction Ew on morphisms, combined with Dw: on objects, gives a functor

D“:C E +& £’ and we can also define a smash product Aon E by letting fy N £, be
the composite

foaf
1772
~ A .
XlAX2 Hee=eEA X AEAX, = EAEAX1'~X2 —»El\Xl X2
Finally, E homology is a functor on é:E which takes f to fyy, and the following
lemma shows that both Qe and the external product in E-homology are natural

transformations.

Lemma 1.3. (i) (5pf)**Qey = Qfyyy for any y e ExY and any f:Y + EAX.
(1) (f71) ® (Fh,¥,) = (F) A L) 0 ly; ®,)-

As one would expect, the maps 1,a,8 and § of I§1 also give natural

transformations.

Lemma 1.4. (1) 1,(D f),, = (ﬁpf) 1, if wcop.
(11) a,(D f ADf)
(ii1) 6*(D""D—pf)** = (D, f)

(1v) 8, (D (f] Af,))yey = (D £ AD

We shall need two further transformations, namely the "diagonal® A:}:D“X > DX
and the transfer «::DQX + D X. The first of these was constructed in II83. The
transfer was defined in II81 for certain special cases, and will be defined in IVS3
of the sequel whenever = ¢ p.

Lemma 1.5. (1) (T)'"zf)

wxby = A*(ZD"f)**.

(11) 14D Flyy = (D £)yyry -

The proofs of 1.3, 1.4 and 1.5 are routine diagram chases {using [Equi.,VI.3.9}
for 1.4(ii) and (iii) and [Equi.,IV.§3] for 1.5(ii}).

Next we would like to define Dyer-Lashof operations in E-homology with torsion
coefficients. We shall always sbbreviate Ey(X;Z ,.) by Ey(X;r). If M, denotes the
Mcore spectrum S'lu r SO and E. denotes EAIM, I1?,hen by definition we have E (X;r) =

P

Th(E AaX). Thus if E. is an H, ring spectrum (for example, if E is ordinary

integral homology) we can apply Definition 1.1 directly to E.. However, it is a
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melancholy fact that in general En is not an H_ ring spectrum, as shown by the
following, which will be proved at the end of section 7.

Proposition 1.6. Kr is not an H  ring spectrum for any r.

Thus we must generalize 1.1. First of all, if £:Y + EAX is any map we define
fyx to be the composite

(1A1)
By (Y37) = m(E AY) —— > (E AEAX) —> 1, (E AX) = E(X;).

Next observe that the Spanier-Whitehead dual of IM, is M,, so that there is a
natural isomorphism

E (X;r) 2 [z"M,,EAXI].

In particular, any X En{X;r) is represented by a map f:anr + EAX and there
results a homomorphism

(I—)'pf}**:E*(ngnMr;s) > Ey(D X;8)

for any s > 1. Note that f**znur = x, where u, 1s the composite

M, = SAM, ual g AM_. We shall call u, the fundamental class of M.

Definition 1.7. Ilet ece Em(Dpanr;s). Then

Qe B, (X;r) Em(DpX;S)

is defined by Qex = (f%f)**(e), where f‘:ZnMr + EAX is a map representing x.

lemmas 1.3, 1.4, and 1.5 remain valid in this generality.

When E is integral homology and r = s = 1 Definition 1.7 provides another way
of constructing ordinary Dyer-Lashof operations, which are of course the same as
those given by Definition 1.1. However, even in this case 1.7 has certain technieal
advantages; for example, it gives the relation between the Bockstein and the Dyer-
Lashof operations, and by allowing r and s to be greater than 1 one obtains the

Pontryagin p-th powers.

We conclude with the proof of 1.2. We write E for HZP' The result holds by

definition when x = Znu,eEnSn,so it suffices to show that

(D f) gy ey ®@YP) = e, ® (£,

for all f:Y » EAX. We shall do this by a direct comparison with the mod p chain

level. If Ay is any chain complex over Zp we write DPA* for W(@z (A*fj p’ where W
is a fixed resoclution of Z_ by free Z [Ep]—modules. We let Cy deRote the mod P

P D
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cellular chains functor on CW-spectra, and we have a natural equivalence DPC* = C*Dp

by I.2.1. If Iy denotes the trivial chain complex with Zp in dimension zero then
there is a natural equivalence between EOX and the chain-homotopy classes of degree
zero maps from CyX to I'y. In particular, we obtain chain maps 6:C4E + I'y and
e':DPC*E + I'y representing the identity £ » E and the structural map DpE + E. If e
denotes the composite Dpr* = W/zp + T'y {(in which the second map is the augmentation)
then ¢ o D & is a chain map which, like 6', represents an element of EO(DPE)
extending the product map P) , g, But the proof of I.3.6 shows that there is only
one such element, hence we have we have ¢ o Dpe =~ §'. Next, observe that fyy is
equal to the composite

E,Y —>E (EAX) —=EX,

where the second map is the slant product with the identity class in EOE. Hence fyy

is represented on the chain level by the composite

R

h:C,Y —>C (EAX) = C,E® X 2841 @ c.x = ¢ .x.

Since h is a chain map we have

(D h)yle; @Y7 = e; ® ()® = e, @ (£, 1),

so it suffices to show (Bﬁf)** = (Dph)*. Now (Bﬁf)** is equal to the composite

6*
ByD)Y —>E, (D (EAX)) —»E (D EADX) —=EDX,

where the last map is the slant product with the structural map in EODPE. Hence
(Eﬁf)** is represented on the chain level by the composite H around the outside of

the following disgram

d
D CyY ———>D Cy(EAX) = D (C,E® C,X) —=—D C,F ® D 0,X
H D,(Ty x C,X)

e®1
DOk = Ty @D CyX «=22 D1 @ D C,X

Here d is the evident diagonal transformation and the diagram clearly commutes.

Inspection of the piece marked (:) shows that H = Dph as required.
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2. The Homology of CX

Our main aim in this chapter is the computation of Ky{CX;1). In this section
we illustrate the basic method in a simpler and more familiar situation, namely the
computation of the ordinary mod p homology of CX. (All homology in this section is
to be taken with mod p coefficients for an odd prime p; the p = 2 case is similar.)
This result is of course well-known, but in fact our method gives some additional
generalily, since both the constiruction CX and our computation of HyCX generalize to
the situation where X is a (unital) spectrum, while the usual method of computation

does not.

We begin by listing the relevant properties of this spectrum-level construction
(which is due to Steinberger); a complete treatment will be given in [Equi., chapter
VII}. By a unital spectrum we simply mean a spectrum X with an assigned map S » X
called the unit. For any unital spectrum X one can construct an E_ ring spectrum
CX, and this consiruction is functorial for unit-preserving maps. In particular, X
might be I®Y" for some based space Y, and there is then an equivalence CX = en”*
relating the space-~level and spectrum-level constructions. There is a natural

filtration F .CX of CX and natural equivalences F,CX = X and
F CX/Fy 1 CX = D {X/S).

Finally, there are natural maps gjcx»‘chx > gj+kCX and QijCX +> ﬁjkCX for which the

following diagrams commute.

CXAlX ——————— CX DJ.CX —rserree——tn CX.
Fj CXAFKCX —— Fj ﬂ{CX Dj FkCX —-—~———er kCX
o 8
Dj (X/8) ADK(X/S) ——»Dj +k(X/S) Dj Dk(X/S) -———Djk(X/S)

Now let X be a unital spectrum and assume the element n eHOX induced by the
unit map is nonzero. We can then choose a set A € HyX such that A o {n} is a basis
for HyX. let CA be the free commutative algebra generated by the set

(% | x €A, I is admissible and e(I) + b{I) > |x|}

{here |x| denotes the degree of x; see [28, I.2] for the definitions of admiss-
ibility, e{I) and b(I)). The elements of this set, which will be called the

standard indecomposables for CA, are to be regarded simply as indeterminates since

the QI do not act on HyX. The basis for CA consisting of products of standard
indecomposables will be called the standard basis for CA. Using the inclusion
X + CX and the fact that CX is an E_ ring spectrum we obtain a ring map
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A:CA » HyCX
and we shall show

Theorem 2.1. A is an isomorphism.

We shall derive this theorem from an analogous fact about extended powers. let
Y be any spectrum and let A be a basis for HyY. CA is defined as before, and we
make it a filtered ring by giving sz filtration pQ(I). Let DA = F,CA/Fy ,CA for
k > 1; this has a standard basis consisting of the standard basis elements in
FCA - Fi_1CA. There is an additive map

A DA+ HyDy Y

defined as follows. If all Dyer-Lashof operations and products are interpreted
externally then a standard basis element of represents an element of
H*((Dp)')lY A ees A(DP)JSY) with le + ees + S = k; here (Dp)j denotes the j-th
iterate of Dp. Applying the natural maps oy and 84 gives an element HyD,Y which by

definition is the value of A, for the original basis element. We then have
Theorem 2.2. X, 1s an isomorphism for all k > 1.

Assuming 2.2 for the moment, we give the proof of 2.1. lLet X be a unital
spectrum and let A U {n} be a basis for HyX. Let Y = X/S. Then A projects to a
basis for HyY which we also denote by A. For each k > 1 the map x]FkCA 1ifts to a
map A(k):FkCA + HyF,CX and the following diagram commutes.

0 ——F,_,CA > F, CA =D, A 0

(k-1) {x)
A A Ap

HyFy CX ——>H,F (X — > H,D ¥

Since Ay is an isomorphism, the map y is onto and hence the bottom row is short
exact. It now follows by induction and the five lemma that A(k) is an isomorphism
for all k, and 2.1 follows by passage to colimits.

We begin the proof of 2.2 with a special case

lemma 2.3. AP is an isomorphism for all Y.

The proof of the lemms is & standard chain-level calculation which will not be

given here (see [68, section 1]). It is interesting to note, however, that one can
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prove 2.3 without any reference to the chain-level using the methods of section 6

below.

Next we use the machinery of section 1 to reduce to the case where Y is a wedge
of spheres. For each x ¢ A choose a map f S|x| » HA'Y representing x. Let
2 = Vsl*l and 1et £:2 » HaY be the wedge of the f,o Then fye:HyZ » HyY is an
isomorphism. We claim that 2.2 will hold for Y if it holds for Z (where HyZ is
given the basis B consisting of the fundamental classes of the Slxl). To see this,

consider the following diagram

Dy (Fy)

D, B ————————» D A

k k

A A

k k

(5kf)
HyD, Z —k HyD Y
The map D, (fyy) is induced by fyy, which clearly takes B to A. Thus Dy (f,y) is an
isomorphism. The diagram commutes by 1.3 and 1.4(ii) and (iii). The claim now

follows from

lemma 2.4. Let h:W » HA X be any map. If hyy is an isomorphism, so is (E&h)** for
all k.

Procf. The proof is by induetion on k. First suppose that X = jp. Since the case

= p of 2.4 follows from 2.3 we may assume j > 1. Let 5 = Zj s Ep and consider the

following diagram

Ty By Bs o
HyD W > H,D W HeD, D W —E—s D W
(Dh) oy (D h)yy (DyDoh) (D)
Ty By By x
HyDyX > HyD X = HyD; D X —E— D W

The diagram commutes by 1.4(i) and (iii) and 1.5(ii). The map B¢ is an isomorphism.
The map (E;h)** is an isomorphism by the case k = p, hence so is (Eiiglﬂ** by
inductive hypothesis. Our assumption on k implies that 14 is monic and g, 5 p* is
onto, hence (th xx 1s monic by inspection of the first square and onto by
inspection of the third. The proof is the same when Xk is prime to p, except that we

let mbe ) 4 x Iy.

Next we reduce to the case of a single sphere. To simplify the notation we
assume that Z is a wedge of two spheres STy S"; the argument is the same in the
general case. Let B; and B, be the bases for H*Sm and H*Sn consisting of the
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fundamental classes, so that B = By w B,. There is an evident map CB; ® CB, » CB
and passing to the associated graded gives a map
k
qp:iz:o(DiB1 ® Dk-iBZ) —= D, B.
Recall the equivalence

k
n m O, _
i\=/O(1:>is“‘/s Dy_18) = D (s"vSh) = Dz

constructed in IIS§1.

Lemma 2.5. « is an isomorphism, and the diagram

X
. ¥
%O(DiBl ®D,_;B)) — > DB

1

IOy @) Ay
k

L

J1
. O(H*Disméc)H*Dk_iS ) ——>HD Z

X
commutes.

Proof. <« is an isomorphism since it takes the standard basis on the left to that on

the right. The commutativity of the diagram is immediate from the definitions.

By lLemma 2.5 we see that 2.2 will hold for Z once we have shown the following.
Let x ¢H,S" be the fundamental class.

Lemma 2.6. Ayp:Dyp{x} » H*DkSn is an isomorphism for all k > 1 and all

integers n.

Proof. By induction on k. First assume that k = jp for some j > 1. For the proof

in this case we use the following diagram, which will be denoted by (¥).

|
D.Cx b » D, {y,2}
J 2 s
IB(ngi)* Dk(gi)*
']
Dja, » Dy {x}
9 R
(*) =% A M Ay Ay
8:
H,D, D & J2X » KD, 8"
‘L / (D, Dyg; ) (Dkgzk ¢

B,D,D (v %) d2 1D, (s7v ).
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Here y,ze¢ Hn(SnV S") are the fundamental classes of the first and second summands.
The set L C H*Dpsr is {8°Q%x|2s-¢ > n}. (The reader is warned as this point to
distinguish carefully between the Bockstein 8 and the natural map 8 of section I.1.
This is made easier by the fact that we never use the latter map per se, only the
homomorphism 8, induced by it.) The set Q' € H*I')p(SI.lVSn) is {8%Q%,8%Q5%z|2s-¢ > n}
if n is odd and is the union of this set with {y?zP™1|1 < i < p-1} when n is even.
Lemma 2.3 implies that (L and U are bases, and hence the maps )\j are isomorphisms
by inductive hypothesis. The maps g;:S"v 8" » S% are defined for i = 0,1 and 2 by
gy = 1v1, g = 1lv* and g, = ¥v1, where 1 and * denote the identity map and the

trivial map of S". To complete the construction of the diagram we require

Lemma 2.7. There exist maps Yj and yj', independent of i, such that diagram (¥*)

commutes for i = 0,1 and 2.

The proof of 2.7 is given at the end of this section; all that is involved is
to "simplify" expressions in Dj a.' and Dja. using the Adem relations and the Cartan
formula in a sufficiently systematic way.

Now consider the inner square of diagram (*). By assumption on k we see that
ij* o1, is an iiomorphism, hence A, is onto. Let e:Dk{x} > Dk{x} be the
composite Yj o )‘j— o T, © )‘k’ Clearly Ay will be monic if ¢ is. In fact we shall
show that 6 is an isomorphism. We claim first of all that & takes the subspace

pc Dk{x} generated by the decomposable standard basis elements isomorphically into
itself. To see this we use the outer square of diagram (*). Let

Ty O >‘k‘ let o' ch{y,z} be

8':D,{y,z} » D {y,2} be the composite yj' o Aj-l °
k—‘l U

the image of Z (Di{y} ® Dk i{z}) under the map tpof Lemma 2.5. Then A is the
i=1 -

kernel of the map

D (g )y ® Dgy)y : D (y,2} — D (x} ® D (x}

and hence 6' takes p' into itself. But D (gylx(®') = 8 and
Dk(go)* o @' =860 Dk(go)*, hence ¢ takes O into itself and we have the commutative
diagram
D (g.)
' *
o k=0 . D 0
5’ D, (gy)« o .o

Since both & and &" have finite type 6: 8 »£8 will be an isomorphism if

6': &' + &' is monic. But Ay is monic on H' by 2.5 and the inductive hypothesis,

hence 6' is also monic on @' since >‘k o f' = (ij* o 1*) ) Ak.
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Now let o = D {x}/# . This has the basis {QIx!I admissible, p’“l) =

e(I) + b{I) > n}. We wish to show that the map 6: J >3 inauced by 6 is an

k,

isomorphism. The basic idea is to use the homology suspension, or rather its
external analog which is the map A,(Z:HiDpSn > Hi+1DpSn+1, to detect elements of J .
Let X ¢ I-IIN_]_S]Ml be the fundamental class. We define r:J + Dk{i} by I‘(QIX) =
Qli', where we interpret QI}' as zero if e{I) < n+l and as a p-th power in the usual
way if e(I) = n+l and b(I) = O. The key fact is the following, which will be proved

at the end of this section.
Lemma 2.8. The diagram
d— & .

D, {X}

8 ~
D, {X}
commutes.

We also need the fact that the evident action of the Bockstein on j commutes
with 8; this will be clear from the proof of 2.7.

Now let "gn be the subspace of -o spanned by the set {QIXII admissible,

p“l) =k, e(I) + b(I) < n+m}. We shall show first that © is monic on .01. let &i
be the subspace of Jl spanned by the set {QIXII admissible, pl(n =k, e(I) = n+l,
(1) = 0). Then 4, = &} ®gJ;. From the definition of I we see that sd. is
the kernel of I', that I' is monic onpi and that r(‘ai) =rd)AR . Letwbea
nonzero element of Ji . We claim that gw lies in -91, so that it can be written
uniquely in the form w' + gw" with w',w"Ji, and furthermore we claim that w' # O.
To see this note that I'w 1s a nonzero decomposable, hence oTw is also a nonzero

decomposable, hence 6w = 9Fw is a nonzero element of I'{J)n & = r(ﬂi). Thus there

is a nonzero element w' of 3{ with Tw' = rew, so that ow - w' is in ker T = sJi as
required. Now let W1,W, be any elements of -Qi with gwl = wi + ng and

§w2 = w4 Bwh. Suppose that v = w; + gw, is the kernel of 0. Then

0 =%y = Wi + BW] + gwi, hence W) =0 and w + wj = 0. But w} =0 implies

wy = O, hence w{ = 0. Thus w2' = 0, whence Wy, = 0 and v = O, showing that B is
monic on Jl‘

Next we claim that 6 is monic on ﬂm for a1l m > 1. Iet we Jm with ew = O.
Let o = D {¥}/& snd let T be the composite J » D (X} » v . Then I'w is in the
subspace ¥ _; generated by QI§ with I admissible, p“I) = k and
e(I) + b(I) - (n+l) <m-1. Since 6 I'w =T 8w = O and since (by induction on m) o
is monic on m-1 We see that Tw = 0. Now the kernel of F is precisely -?1, and we

have shown already that E is monic on Jl: hence w = O as required. Thus 9: 4
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is monic, and since has finite type ¥ is an isomorphism. This completes the

proof of 2.6 for the case X = jp.

Now suppose X is prime to p and consider the following disgram

D {y,2} @ D, _,{y,2} . = D, {y,2}
Dilgsly ® D lgs)y D (g5
Y -
D, (x} ® D_, {x}  (x)
= 1M® M =My l A A
{a )
Hy(S"A D &) Lk-1 ¥ H,D, s"
1 (1A D1 ) (Dye; ¥ v
(a )
(S S A (SPv &) Lkl ? » 1,0, (S v ")

Here v and y' are obtained from the products in C{x} and C{y,z} by passage to the
associated graded. The diagram clearly commutes. The analysis of this diagram
proceeds as before, except that in this case the map Dy (gyly takes the kernel of
Dilgy)x ® Dilgs)x onto all of Dy{x},so that we can conclude at once that Ay is an

isomorphism without having to consider indecomposables.

This completes the proof of 2.6, and thereby of 2.2, except that we must still
verify 2.7 and 2.8. For these we need certain properties of the external Q®. First
of all these operations are additive, and Q%% = 1*(x(p)) if 2s = |x|. The external

Cartan formula is s )
5,8°x®y) = ) dxed® .
i=0
The external Adem relations are obtained by prefixing 5pp* to both sides of the
standard Adem relations. All of these relations can be obtained directly from the
definitions of section 1, without any use of internal operations {(compare sections 7
and 8 below). They can also be derived from the corresponding properties for

internal operations by means of the equivalence

o]
C(xvs’) = V DX
k>0
proved in [Equi., VII§5].

Proof of 2.7. Every standard indecomposable in CA has the form QI(ngsx). We can
formally simplify such an expression by means of the Adem relations into a sum of

admissible sequences acting on x (for definiteness we assume that at each step the
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Adem relations are applied at a position in the sequence as far to the right as
possible). The result is an element of C{x}, where we agree to interpret all
sequences with excess less than ]x[ as zero, and we extend multipleatively to get a
map FjCCL > FkC{x}. The map Yy is obtained by passage to quotients. The map yj is
obtained in the same way except that we use the Cartan formula to simplify
expressions of the form QI(yizp'i) with 0 < 1 < p. The inner and outer squares of
diagram (*) commute as a consequence of the external Cartan formula and Adem
relations, and the upper trapezoid clearly commutes when i1 is 1 or 2. When i is
zero the element yizp'i of (' goes to Qn/2x, and so it is necessary to check that
the result of simplifying QIQn/Zx with the Adem relations is the same as using the
Cartan formula on QIXP; the result in each case is zero unless all entries of I are
divisible by p, in which case it is (Q1/Px)P.

Finally, we give the proof of 2.8. We need two facts about Ax:Hy(IDX) »+
Hy(D,IX), namely that 442Q% = Q%Ix if k = p and that 8520y 1_g)x(x ®y) is zero
for 0 < i < k. The first of these, which is the external version of the stability
of QS, was proved in II.5.6. For the second, which is the external amalog of the
fact that the homology suspension annihilates decomposables, we use the third
diagram of II.3.1 with X = Sl, noting that the diagonal a:st s slasl ie
nullhomotopic. Now 2.8 is immediate from the commutativity of the following
disgram.

J ~
IB DK{X}
I‘" I‘ 1
Y.
o
[3 -4~Dk{x}
N l N Ay Ay
B,
I § A A
He D) DS B,D S
| AE A*E ‘
Y
8,
+1 JP* o +7
HyDy DPSn - HIDkSn

Here v is the map constructed in the proof of 2.7 and T' is the composite

D {x} ——a-g —£-Dk{§}. We define T'" to take decomposables to zero and QI(BSQSX) to
Q§(B€Qsi). Commutativity of the left and right trapezoids follow from the two
formulas given above. Commutativity of the upper trapezoid is obvious except on
elements of the form QL{g5QSx) with e(I) = n+l + 2s{p-1) - ¢ and b(I) = 0, and it
follows in this case from a simple calculation.
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3. Dyer-lashof Operations in K-Theory

In this section we give our main results about K-theory Dyer-Lashof operations.
We begin by fixing notations. We shall work in the stable category, so that X will
always denote a spectrum. Homology operations are to be interpreted as internal
rather than external. We use Z)-graded K-theory, with |z] denoting the mod 2 degree

of x. There are evident natural maps

L Ka(x;r) ——->Ku(X;r-1) ifr>2

] R
Pyt Ku(x;r) ———vKa(X;r*rs) if s

v
—

B, Ka(X;I‘) ——-*-Kaﬂ(x;r)

I KG(X;r) -—%le(zx;r) .

(Recall that IX means stA X in this chapter, not XaSh as in chapters I-VII.)

B1 will usually be written simply as . We write n° for the s-th iterate of =.

It will often be convenient to denocte the identity map either by no or pg. We write

7~ for the reduction map Ku(X;Z) +> KQ(X;r). Our first two results give some useful
elementary facts about mod p* K-theory; the proofs may be found in [13] (except for
3.2(iii), which is Lemma 6.4 of [63], and 3.2(iv), which will be proved in section
7).

Proposition 3.1. (i} Ky(X;7) is a Z .-module.
P
: s s -
{ii) If s > 1 then x BrsgP, = Bp-
(1i1) wp, and p.v are multiplication by p.
(iv) 8.8, = O.

Proposition 3.2. For each r > 1 there is an external product
KQ(X;r) ®Ka,(Y;r) * Kam,{Xz\ Y;r),
denoted by x ® ¥, which has the following properties.
{i} ® is natural, bilinear and associative.
(ii) If u KOS is the unit then x® Tu = TIWU@X = X.
(111) 71(x®y) = @y and 1 (x @ y) = X ® n°y.

(iv) px(x ® my) = (pyx) ® ¥y.
x|

(v) Br(x®y) Brx®y+(-l) 1®B.Y-

(vi) 1(x®y) = Ix®y = (-1)|x|x® LY.
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If p is odd then the following also holds, where T:XAY » Y aX switches the factors.
(vii) T,(x®y) = (—1)ly|lx|y®x

If p = 2 there are two external products for each r satisfying (i), (ii), (v) and

(vi). If these are denoted by ® and ® ' the relation
(viii) z®@y=x®@!' y+2r_1 BrX®Bry

holds. Relations (iii) and (iv) hold when either mod 2T product is paired with
2r-1 product. If r > 2 then (vii) holds for both ® and® ', while
if r = 1 then the following holds.

either mod
(vil)' T,x®Y¥) =y®'x =y ®x + 8y ® Bx.

We shall actually give a canonical choice of mod 2T multiplications in Remark
3.4(iv) below. When X is a ring spectrum we obtain an internal product denoted xy.
We write ne KO(X;r) for the unit in this case, reserving the letter u for the unit
of KOS.

Our next result gives the properties of our first operation, which is denoted
by Q. In order to relate Q to the K-homology suspension we must restrict to the
space level, and we fix notations for dealing with this case. If Y is any space we
write Ky (Y;r) for K*(EQY+;r) and, if Y is based, we write KT(Y;r) for K*(ZwY;r).
The homology suspension ¢ is the composite

(Y;r) C Ka+1(Y;r)-

o~ . b Py . ~
R (a¥;r) —— & (av;r) ——F

If Y is en H_ space then QY is also an H_ space and Y is an H, ring spectrum; see
I.3.7 and I.3.8.

Theorem 3.3. ILet X be an H_ ring spectrum. For each r > 2 and o€ Z, there is an
operation
Q:K (X;r) + K (X;r-1)
a o

with the following properties, where x,y Ky (X;r).
(i) Q is natural for H_ maps of X.
(ii) Qn = O.

(iii) Qmwx = =Qx if r > 3.
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P if |x| =0eand r =1
pxQx - (PP - 1)xP  if [x| = O and r > 2
(iv) Qpgx =
0 if [x] = land r =1
Pxlx if |x] = 1landr >2
QB x - pn(xp_lﬁrx) if |x] = 0
(v) s, 0x =
(ﬂBrx)P + paB x if |x| = 1.
p-l g i p-i
Qx + Q@ - x| o ? )xyPH if p is odd and |x| = |y| = ©
i=1
(vi)  Qlx+y) =qQx + & - nlxy) + Er_z(nBrx)(nBry) if p=2and |x| = |y] = 0
Qx + Qy if |x| = |y} = 1.

Q{kx) = kQx -

LN

(xP-x) (x)? ir x z, |x] = 0.

(vii) Iet |x| = |y| = 0. ‘hen

Qren(y2) + 1(x2)eQy + 2(Qx) (Qy) + 2P_2w(xsrx}n(y8ry)

xen(y®) + (xP)eQy + p(Q)(Qy) if p is oad
Qlxy) =
. 22r-4

(QBrx)(QBry) if p = 2.

let |x| =1, |y] = 0. Then

{ Qx'w(yp) + p{Qx){Qy) if p is odd

Qixy)
Qeen(y?) + 2(Qx) (Qy) + 22r‘4(nsrx)2(qsry) if p = 2.
Let |x| = |y| = 1. Then
{(Qx)(Qy) if p is odd
Qxy) =9 (@)(@) + 27 (xs xnlysy) + 227 (ns 0% (@8 y)

+ 22r_4(QBrx)(n8ry)2 if p =2.
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(viii) If Y is an B_ space and «x eka(szy;r) then Qxeﬁa(m;r-l) and

Qox if |x] =0
aQx =
(vox)® + pQox if |x| = 1.
(ix) If k is prime to p then kax = kax, where wk is the k-th Adams operation.
(x) If p=2and |x| =1 then

Q822*X if r=1

r-2 .
2 STZ*QX if r

v
N
.

In particular {ur-lx)z GKO(X;I) is zero if r > 3 and is equal to (n82x)2

if r = 2.

Remarks 3.4. (i) There are no analogs for the Adem relationms.
(ii) We shall write QS:KQ(X;r) > KG(X;r—s) for the s-th iterate of Q when
r > s (and similarly for the operations R and 2 to be introduced later).

(iii) If x e K4(X;1) has 8x = O then x 1lifts to y €Ky(X;2). Thus one can
def'ine a secondary operation ahon the kernel of 8 by & = Qy. The element y is
well-defined modulo the image of py and thus 3.3(iv) shows that Qx is well-defined
modulo p-th powers if |x| = O and has no indeterminacy if |x} = 1. This is
essentially the operation defined by Hodgkin and Snaith [42,99] (although their

construction is incorrect when p is odd, as shown in (77]].

(iv) When p = 2, parts {vi) and (vii) are corrected versions of the
corresponding formulas in [76]. Note that 2°T~4 - 0 mod 21”'1 unless r = 2. The
formula for Q(xy) with |x| = |y| = 1 and p = 2 implicitly assumes that the mod 27
multiplications for r > 2 have been suitably chosen, since the evaluation of
Qlxy + 2r'1(8rx)(8ry)) by means of 3.3(vi) and (vii) gives a different formula.
Thus we may (inductively) fix a canonical choice of mod 2r multiplications by
choosing the mod 2 multiplication arbitrarily and requiring the formula to hold as

stated for r > 2. From now on we shall always use this choice of multiplications.

Our next result shows that, in contrast to ordinary homology, Ky(X;1l} will in
general have nilpotent elements.

Corollary 3.5. If X is an H_ ring spectrum and x K;(X;r) then (= -
KolX51).
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Proof of 3.5. (By induction on r). If r = 1 then
(80P = (n8,0,x)P = BQp,x = 0

by 3.1{i1i), 3.3(v) and 3.3{iv). If r > 2 then

T r-1 r-1
r-1 P _ r-1 PP _ . r=2 P _
(w BrX) = [{n Brx) ] = {x Br—lQX) = 0

by 3.3(v) and the inductive hypothesis.

It turns out that iterated Q-operations on r-th Bocksteins are also
nilpotent. In order to see this we must make use of the operation R described in

our next theorem.

Theorem 3.6. Let X be an H_ ring spectrum. For each r > 1 there is an operation
R:Kq{X;r) » Ky (X;r+l)

with the following properties, where x,y eK,(X;r).
(1) R is natural for H_ maps of X
(i1)  wRx = Qpgx - x(8,x)P7L, and if r > 2 then Rrx = Qpyx - PP x(gx)P~L
(i1i) pyRx = Rpyx

. _ 2

(iv) By BX = Q8r+2P*X
L i-1

Bx + Ry - iZl {5( i )(p*X}(Sr-rlp*X) (Br+lp*

{(v)  Rix+y) y)p"i

. i1 -i-1
+ (P18, pe ) (8, 0,0 B ) PTT

(vi) If Y is an H_ space and x ¢ KI(Y;r) then

pyl(ox)P1  if r =1
oRx =
p*[(ox)p] + piQox if r > 2.
(vii) If k is prime to p then y*Rx = Ry*x.

(viii) If r > 2 then QRx = RQx. If r = 1 then QRx = O.

Remarks (i) Le% x e K;{X;r) and let s > 1. By 3.3(v) we have
(g, B%0P = o%7hg "Rk But QPRSx = ESTIQR(QTIx) = O by 3.6(viid). We

therefore have the following nilpotency relation.

r
("r+s—18r+sﬁsx)p = 0.
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Note that this is a smaller exponent than would be given by 3.5. In terms of the G-
r
operation this relation may be written ("r-s—leBrx)p = 0 for s < r and

S s-r+l .p° _
(Q Bos1Px x)¥ = 0 for s > r.

{ii) The second statement of 3.6(viii) was not in the original version of this
work (cf. {76, Theorem 3(iv)]). The decompossbility of QRx when r = 1 (which
actually implies its vanishing, as we shall see in Section 8) had been asserted by
Sneith when p = 2 ({99, Proposition 5.2{ii)]), but was not included in [76] because
the author erroneously thought he could prove QBx to be indecomposable in Kl(QX;l)
whenever x ¢ K;(X;1) had nonzero Bockstein (ef. [76, Theorem 4]). This point was
recently settled by Doug Ravenel, who observed that if one starts with the deserip-
tion of Ky(Q(stu .
Steenrod spectral sequence {which collapses) then one can see that the only

indecomposable in Kl(Q(S2 LJp eB);l) is the generator of K1(82 U

e2);1) given in {76, Theorem 4] and applies the Rothenberg-

P e3;1), and in
particular QR of this generator is decomposable. This contradicts part of [76,
Theorem 4] and & corrected version of that result will be given later in this
section. We shall give a completely different argument in Section 8 to show that

QRx is decomposable, and in fact vanishes, for all x eKl(X;l).

We next introduce an operation & which is the K-theoretic analog of the
Pontrjagin p-th power [57, 28]. This operation is a necessary tool in our
calculation of Ky (QX;l) and will also be used to give generators for the higher

terms of the Bockstein spectral sequence.

Theorem 3.7. Ilet X be an H_ ring spectrum. For each r > 1 there is an operation
Q:KO(X;r) + KO(X;r+1)

with the following properties, where x,y ¢Ky4(X;r).

(i) 2 is natural for H_ maps of X.

(i1) 72x = xP, and if r > 2 then mx = xP.
(i11) Qpyx = PP lpe 2 x.
(iv) w8 ,dx = xp_lsrx
L 1 p-i
3x+:},y+i£1—§ i)p*(xyp ) if p is odd or v > 2

(v) 2x+y) =

2x + 2y + 2,(xy) + (8,2,%)(B,2,y) if p=2andr = 1.

(vi) et |x| = ly|l = 0. Then Z{xy) = (2x)(2y) if p is odd, while if p = 2

there is a constant €p € Z,, independent of x and y, with
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(2y) + (1 + 251)(823)()(82337) if r =1

(2x)(2y) + 2% (8, 2%)(8,,,27) if ¢ > 2.

let |x| =1, |y| = O. Then

/
(Rx)(Qy) if p is odd and r = 1

+ p*[(QX)(Qy)] if pis odd and r > 2

(Rx)}(Q¥y)
Rlxy) =4 (Bx)(2y) - (1 + 2e))(B,Rx)(B,e?y) if p =2 and r =1
(23) + 4,0 (@y)] + 272 (8, 4,000 (B, 2)

r . _
+ 2% (B, Rx)(e ,Ay) if p=2andr > 2,

and R(yx) = (2y)(Rx) + (1 + 251)(621Y)(82Rx) if p=2andr =1. Let
[x] = |y| = 1. Then there is a constant €Le Zp, independent of x and y, with
(r
ol eI“(Rx)(Ry) if p is odd
(1 + 2e])(Rx)(Ry) - (1 + 2e) + 2e)(B,Rx) (B Ry) if p =2 and r =1
Hxy) = J
2% (Bx) (By) + 272 (Rx) (4,Qy) + 252 (4,Q0) (Ry)
21‘ 4 . _
(8r+l Qx) ( r+14 ) if p=2and r > 2.
(vii) ILet Y be an H_ space and let x eT(O(Y;r). If p =2 then o4 x = 2rR(cx),
x, with oc@x = pre;R(ax)-

while if p is odd there is a constant e;, independent of

(viii) If k is prime to p then wk,Q X = Jlbkx.

0 if r =1

(ix) Q2x =

. 2 . .
(2 )pt 2P Pp a0t arr 2.
1

il e~

i

The undetermined constants € in part (vi) depend on the choice of multipli-
cations; they can be made equal to zero for a suitable choice but it is not clear
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what their values are for our canonical choice. It is quite possible that the

e, ¢! and €" are all zero.
r’ “r r

Next we shall use the operations Q and R to describe K4(CX;1) for an arbitrary
unital spectrum X. If Y is a based space then the homology equivalence of [28,
Theorem I.5.10] is also a K-theory equivalence (by the Atiyah-Hirzebruch spectral
sequence), hence

Ke(QT;1) = (mg¥) "R (CY;1) = (npl) 1Ry (C2°(Y7);1)

so that our calculation will also give Ky (QY;1).

First recall the K-theory Bockstein spectral sequence EiX (abbreviated BSS)
from [13, section 11]. X was assumed to be a finite complex in [13] but we wish to
work in greater generality. The finiteness assumption is necessary for those
results which deal with the E” term, since in general there is no useful relation
between E:X and K X (for example, E:RPoo is concentrated in dimension zero, while
K4«RP® is concentrated in dimension one). On the other hand, the results of [13]
which deal with E¥ for r finite remain valid for arbitrary spectra X. In partic-
ular, any (r-l)-cycle x can be lifted to an element y ¢ Ky(X;r) and we have d.x =
nr’lsry. The element y has order pr if and only if x is nonzero in ET. If we write
K¢ (X;) for the inverse limit of the Ky(X;r) then an infinite cycle always lifts to
Ky (X;=); we shall frequently use this notation. Our next definition gives the kind

of data necessary for the description of Ky(CX;1).

Definition 3.8. ILet 1 <n < w. A set A

U A, with A.C Ky(X;r) is called a
l<r<n
subbasis of height n for X if for each s < n the set

-1 -
% | x €A, s <r<n}uin 1Brx | x eAr, s <r <n}

projects to a basis for EiX.

If the height of a subbasis is not specified, it will always be assumed to be
infinite. Subbases with finite height will occur only in sections 7 and 8. It is
not hard to see that any spectrum has a subbasis of any given height. The term
subbasis is motivated by our next result, which is an easy consequence of the
results of [13,§811]. Recall that a subset S of an abelian group G is a basis for G
if G is the direct sum of the cyclic subgroups generated by the elements of S.

Proposition 3.9. If A = k,) A _ is a subbasis of height n for X and if s < n
lkr<n
(with 8 < » if n = ») then the set
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r-s r-s
{m Txlxe A,s<r<npuin Brxl X eh , s <r <n}

s-r g-1
ulp, x| x EAr’ r < s} tJ{BSp* x | xe Ar’ r < s}

is a basis for K,(X;s). The elements of the form pi'rx and Bspi_rx have order p¥

and the remaining basis elements have order ps.

Now let X be a unital spectrum. Let ne K. .(X;»)} be the unit and suppose that

0
7°n is nenzero in KO(X;I). Then we may choose a set A = k,) Ar such that
1<rge
A U {n} is a subbasis for X. We write Ar o and Ar 1 for the zero- and one-
3 b

dimensional subsets of A.. Let p be odd, and let CA be the quotient of the free

commutative algebra generated by the three sets

(nr's'lex | xeh , 0<s <r <w}
r-s-1 s
{n Br—sQ X | X € Ar,O’ 0 <5 <1 < w}
r+s-1 s
and {m BLgR ¥ | x EAr,l’ r<w, 0 <s <=}

by the 1deal generated by the set

{(nr+s—l ] r

BB X)P | xeh |, T <o, 0<s <a).

,1

The elements of the first three sets will be called the standard indecomposables of
r-s-1

CA. Here symbols like = Q°x are simply indeterminates, since the Dyer-Lashof
operations are not defined on Ky¢(X;r). However, by means of the ineclusion X +» CX

we may interpret these symbols as elements of K,(CX;1). Thus we obtain a ring map
A:CA » K (CX;1).

Our main theorem is
Theorem 3.10. A is an isomorphism.

We could have defined CA in terms of the Q-operation alone, without using R,

since the third generating set is equal to

s-r+]l

r-s-1.s8
{‘W Q 84,1?*

erlxe A, r<ew, 0<s <rlw Q% xixe A r <o, s>r}
s -Fa

1’ r,1’

The definition we have given is more convenient for our purposes, however, since it

allows us to treat the cases s < r and s > r in a unified way.

Theorem 3.10 also holds for p = 2, but the definition of CA in this case is

more complicated since mod 2 K-theory is not commutative. Recall from 3.2{vii)’
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that the commutator of two elements is the product of their Bocksteins. To build

this into the definition of CA we define the modified tensor product C1 é§ C1 of

two Z,-graded differential algbebras over Z, to be their Z,-graded tensor product
with multiplication given by

xey)x'®y") = x' @yy' + x(dx') ® (dy)y'.

We can define the modified tensor product of finitely many C; similarly and of
infinitely many Ci by passage to direct limits. Now for each xe¢ Ar o Ve define Cx

b
“r-s-leXIO < s <r} and

if r < o, {nr's'lBr_stxl 0 < s <r}. Give this the differential which takes Qr'lx

to be the free strictly commutative algebra generated by {

to BQr_lx and all other generators to zero. For each x EAT 1 we define Cx to be the
b
commutative algebra generated by the sets {"r—s-lexlo <s <r} and, if r < =,

{wr+s_16r+sRSx|O < s < r}, with the relations

T
(1) (T8l BSx)2 = 0

and
0 if 0 < 8 < r-2
r-1
(11)  (+7-571g8x)2 = 4 (+771g x)? if § = T-2
r-1
(1781 RX)? if s = r-1.

(Relation (ii) %s motivated by 3.3(x)). Give C, the differential which takes or-1x
r-

to (nr'lsrx)2 and all other generators to zero. Finally, we define CA to be the

modified tensor product ® Cy. There is an evident ring map A:CA » Ky(CX;1) and

X €
with these definitions Theorem 3.10 and its proof are valid.

Remarks 3.11. (i) When X = SO, or when p = 2 and X is a sphere or a real projective
space, we recover the calculations of Hodgkin [41] and Miller and Snaith [(83,84].

(ii) We can describe the additive structure of CA more explicitly as

follows. When p = 2 we define the standard indecomposables of CA to be the same

three sets as in the odd-primary case. If we give these some fixed total ordering
then CA has an additive basis consisting of all ordered products of standard
indecomposables in which each of the odd-dimensional indecomposables occurs no more
than once and each nr*s"13r+SRSx occurs less than 2T times. This basis will be
called the standard basis for CA. We define the standard basis in the same way when
p is odd.

Next we discuss the functoriality of the description given by 3.10. If X and
X' are unital spectra with subbases A (_{n} and A' ({n} then a unit-preserving map
f:X » X' will be called based if f*Ar(: A; {0} for all r > 1. Such a map clearly
induces a map fy:CA » CA', and we have A o f = (Cf), o A. If f is not based, it
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is still possible in principle to determine (Cf)y on Ky (CX;1) by using 3.3, 3.6 and
3.9 {although in practice the formulas may become complicated). For example, if
£:8% 5 82 is the degree p map and x eKO(SZ;z) is the generator then

(Cf)4@x = Qfyx) = Q(px) = a(xP) # 0

in KO(Csz;l). Since f*:K*(Sz;l} + K*(SZ;l) is zero this gives another proof of
Hodgkin's result that Ky(CX;1) cannot be an algebraic functor of Ky (X;1l). A similar
calculation for the degree p’ map shows that Ky(CX;1) is not a functor of Ky(X;r)
for any r < «. Finally, the projection Sl \“b e2 > 82 onto the top cell induces the
zero map in integral K-homology but is nonzero on K*(C(S1 p e2);1) so that
Ke{CX;1) is not a functor of Ky{¥X;Z). Thus it seems that the use of subbases cannot

be avoided.

We conclude this section by determining the BSS for CX.

Theorem 3.12. For 1 <m < », E® CX is additively isomorphic to the quotient of the
———— et - ? %
free strictly commutative algebra generated by the six sets

("5 "1g% | x A, m<r-s, 0<s <r}

{nr's'lsr_stx | xe Ar g, mSr-s <=, 0<s <71}

WWJQWTW§XIXeArO,15r4~Cm}

’
{T\‘m_lﬁmg,m—r+sQSX l X e Ar,O’ 1 <r-s <m}
{“m-lRm-r+stX | x¢ Ar,l! 1 <r-s <m}

{nr+s-18

and regBX | xe Ap 1) m S THS < )

by the ideal generated by the set
t
{(aF*s=1g , RSP | x €hp 1, M S THS <, t = min(r,r+s+lom)}.

If p is 0odd or m > 3 the isomorphism is multiplicative.

The proof of 3.12 is the usual counting argument, and is left to the reader.

In order to determine the differential in E?CX one needs the formula

r-g+t-1 t.s_ _ , r+t-l
b = {n

t pS
6r—s+tR Qx Br+tR x)

for x €A, 1, 0 £8 <T <w, t>0; this is is a consequence of 3.3(viii) and 3.3(v).
b4

4. Calculation of K4(CX;Z..)

In this section we give the proof of Theorem 3.10, except for two lemmas which
will be dealt with in Sections 6 and 9. The argument is very similar to that given
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in Section 2 for ordinary homology, and in several places we shall simply refer to
that section.

First we reformulate 3.10 as a result aboui extended powers. let Y be any
spectrum and let A be a subbasis for Y. We define CA with its standerd indecom-
posables and standard basis as in Section 3. We make CA a filtered ring by giving
elements of A filtration 1 and requiring Q and R to multiply filtration by p. let
DkA = FkCA/Fk_ch for k > 1; this has a standard basis consisting of the standard
basis elements in F CA - Fy_,CA. There is an additive map

MDA+ Ky (D, Y1)
defined as in Section 2 by interpreting Q,R and the multiplication externally and
then applying oy and Byx. We shall prove

Theorem 4.1. X, is an iscomorphism for all k > 1.

Remark 4.2. Using 4.1 and the external versioms of 3.3(v), 3.6(iv) and 3.7(iv)
(which will be proved in sections 7 and 8) one can determine the BSS for DY as
follows. If m > 1 let C™A denote the algebra whose generators and relations are
given in 3.12. We make CPA a filtered ring by giving elements of A filtration 1 and
requiring R, Q and 2 to multiply filtration by p. If Di& is the k-th subquotient of
C®A there is an isomorphism DEA > ETDKX. The proof is similar to that for 3.12 and
is left to the reader.

The derivation of 3.10 from 4.1 is the same as that given for 2.1 in section 2.
We therefore turn to the proof of 4.l. We need the following special case, which
will be proved in section 6.

Lemma 4.3. A is an isomorphism for all Y.

P

We shall reduce the proof of 4.1 to the case where Y is a wedge of Moore

spectra. First we need some notation. As in section 1 we write M, for S—I\J r e0.
P

The set {ur} is a subbasis for Mr‘ We write M_ for the colimit of the Mr with
respect to the maps M, » M,,; having degree p on the bottom cell. Then Ky (M,;r) =0
for all r and KO(Mm;r) is a copy of Z . generated by the Image of w,. Iet

u_e Ko(Mm3”) be the element which projects to the image of u, for all r. Then {u }
is a subbasis for M.

For each xe¢ A, we can choose a map fx:)zllef > KAY representing x. (If r = =
we let f, be any map which restricts on each z}x M. to a representaive for the mod

p’ reduction of x.) Let Z = \/ v zlxIMr and let £:Z » KAY be the wedge
1I<rge X eAr

of the f . We give Z the subbasis B consisting of the fundamental classes of the
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Eller. Then fyy:Ky(Z;r) » Ky(Y;r) gives a one-to-one correspondence between B, and

A, and in particular it is an isomorphism for all r. Now consider the diagram

D B P ) D A

—_——

k X

M B l A
(B, ) e

Ky (D Z;1) —————K, (D Y¥;1) ,

which commutes by 1.3 and 1.4(ii) and (iii). If 4.1 holds for Z, its validity for Y

will be immediate from the diagram and the following lemma.

Lemma 4.4. Let h:W » KAX be any map. If hyy:Ky(W;1) » Kg(X;1) is an isomorphism,
then
(1) fyx:Kg(W;r) » Ky(X;r) is an isomorphism for all r, and

(i) (5£f)**:K*(DkW;1) > K*(DkX;l) is an isomorphism for all k.

Proof. (i) By induction on r. Suppose the result is true for some r > 1 and
consider the short exact sequence
0—7Z —»72 —> 7 » —0 .

r+l
p P

This gives rise to the following commutative diagram with exact rows.

Ka+l(w;r) ———e-Ka(W;l) —n KG(W;r+1) — KG(W;r) ———a»Ka_l(W;l)

lf** lf** f.<)(--)(- 1 f** lf**

Ka+1(X;r) —— Ka(Xgl) —_—> KG(X;r+1) — Ka(X;r) ——-Ka_l(X;l)

Part (i) follows by the five lemma. The proof of part (ii) is now completely
parallel to that of Lemma 2.4.

Next we reduce to the case of a single Moore spectrum. We assume for
simplicity that Z is a wedge of two Moore spectra zmMr\lans; the argument is the
same in the general case. Let B1 and B2 be the subbases {zmur} and {znus}, so that
B = BI\J B2. There is an evident map CBJAQQ CB2 + CB which on passage to the

associated graded gives a map

k

q):iZO(DiBl ® D,_;B,) » D, B.
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Lemma 4.5. @is an isomorphism, and the diagram

¥ ®
iEO (D;B, ® D_,B,) »D, B
B ® A ) Ay
]S m]\d nM o
i%O(K*(DiZ P31 @K (D B ML) ————> K, (D, Z;1)

commutes

The proof is the same as for 2.5. The lemma implies that 4.1 will hold for Z

once we have shown the following. We write x for 2nur € K(EnMr ;T).

Lemma 4.6. Xk:Dk{x} + K*(Dkanr;l) is an isomorphism for all k > 1 and all n.

Proof. By induction on k. First let k = jp with j > 1. We need the commutativity
of the following diagram for i = 0,1 and 2.

v
Dj o J — D, {v,2}
Fi Dk(gi)*
i
Do D, {x}
(%) = iy zj A lxk Ay
B 4
Ky (DyD M;1) ———LP s, (D, 31)
/Dijgi)* '\Z)kgi)*
h 7 8.

*
Ky (DD (M M) 1) JP >K, (D, (MvM);1)

Here M denotes ):nMr and ¥,z ¢Ky(M M;r) are the fundamental classes of the first and
second summands. The sets Qh and (L' are subbases for DPM and DP{MVM) which will be
specified later. The maps gi:MvM > M are defined by go = 1vl, gy = 1v¥*, and

gy = *¥v1, and the F; are determined uniquely by the requirement that the left-hand

trapezoid commute. To complete the diagram we need

Lemma 4.7. There exist (, Q_’ s Y3 and yj‘ independent of i such that diagram (%)
commutes for i = 0,1 and 2.
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The proof will be given in Section 9. Like the proof of 2.7, it consists of
systematic simplifications of the elements of DA and IECL'. The details are much

J
more complicated, however, because of the nonadditivity of the operations.
Now consider the inner square of the diagram. Since B8, <] is an
isomorphism, we see that A is onto. letting 6 = Yj o X 0T, 0 we see as in
section 2 that 9 induces an isomorphism of the subspace & of Dy {x} spanned by the

decomposable standard basis elements. In particular, Ay is monic on & .

The remainder of the proof differs from that in Seetion 2, and is in fact
considerably simpler since there are only a few indecomposables. It suffices to
show the following.

lemma 4.8, Let we . If n = 1 then

(i) Ak(wr—s’lex - w) # O, where k = ps, 2<g<r<e=
s r+g-1 s s
{ii) kk(n Bosgh ¥ = W) £ 0, where K = p°, T <=, 2 <8 <w.

If n = 0 then

(iii) Xk(wr"sulex - w) # 0, where k = ps, 2<s<r<w

(iv) Ak(ﬂr—sulﬂr_sQSx - w) # 0, where k = ps, 2<8<r <™,

Proof. We need two facts sbout the map A*:K*(XDkX;r) > K*(Dkxx;r) , namely that
A*z(ai,k_l)*(xcay) =0 for 0 <i <k and that, when k = p,

Q{zx) if |x| = 0
A, ZQx =

)(p}

un
ot
.

Ty {Ix + pQex  if x|
The first fact is shown as In the proof of 2.8, while the second, which is the

external version of 3.3(viii), will be shown in seection 7.
Now consider part (i). We have AyIw = 0 and

s
“r-s—l s r—ll*(zx)p .

AT Qx =1

8
But nr_ll*(Zx)p is nonzero since Ay is monic on decomposables.

Combining part (i) with the fact that Ay is onto and is monic on decomposables,
we see that

Ak:Dk{x} + K*(DkZMr;l)

is an isomorphism in degree 1 and is onto in degree zero. It is monic in degree O
if and only if part (ii) holds. But if not then Ko(DyIM ;1) and Kq(DyIM; ;1) would
have different dimensions as vector spaces, and therefore the Bockstein spectral
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B! . beds ED, M, in
sequence *(DkzMr) would be nonzero for alllm But the transfer embeds *Dk M,
EiDBDPZMr, and the latter is zero for p™ ' © > j by Remark 4.2 and the inductive
hypothesis of 4.6.

Finally, part {(iii) follows from (i) and the equation

r-g-1 r-g-1_.8
E i

Ayl Q°x = Q°zx,

while (iv) follows from (iii) using the argument given for (ii).

This completes the proof of 4.6 for the case k = jp. The remaining case, when
k is prime to p, is handled exactly as in Section 2.

5. Calculation of R,(D S%;Z )
——————— * o) T
P
In order to construct and analyze the Q-operation we shall need & precise
description of K*(Dpanr;r~l). In this section we give some facts about K*(Dpsn;r)
which will be used in Sections 6 and 7 to obtain such a description. We work with
K-theory on spaces in this section.

If X is a space there is a relative Thom isomorphism
2:%, (D X;r) — &, (D 5°X;r)
Py ’ * ’
P P
corresponding to the bundle

Br x. (xP) x 8Py, Bz« x(P!
P Pz,

and the inclusion

{p}

*

EEPXX()—)EZPXEX .
P 1Y

As we have seen In VII$§3 and VIIS§8, this isomorphism can in fact be defined for an
arbitrary spectrum X. 1In calculating ﬁ*(DpSn;r) we may therefore assume n = 0 or

n = 1; in the former case we have DPSO = Bzg .

. . _ o 1. ,
Iemma 5.1. Ka(sz,l) is zero if o« = 1 and Zp(D Zp if a = O. Ka(DpS ;1) is zero if

a = 0 and Zp if o = 1.

Proof. We use the Atiyah-Hirzebruch spectral sequence for mod p K-homology. By
40, III.1.2] the differentials d; vanish for i < 2p-1 and d2p—1 is BPi - PiB

(here P' denotes Sq2 if p = 2). For spaces of the form DPX, a basis for the E°-term
consisting of external Dyer-Lashof operations is given in [68, 1.3 and 1.4]. The

differential dzp-l can be evaluated using the external form of the Nishida relations
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[68, 9.4]; the explicit result is that d2p—1(ei ® yP) is a nonzero multiple of

p
(Bey,p op) ®FF - e ® (8y)

i+l-p

for any y ¢ Hg(X;1)., Letting X = 0 or s! we see that P is generated by eg ® uP
and ezp_2<g uP in the former case and by ep_1 @)(zu)p in the latter. Then E2p = B

for dimensional reasons and the result follows.

Using 5.1 and the K-theory BSS we conclude that K*(sz;r) is free over Z , on

~ p

two generators in dimension zero and that K*(Dpsl;r) is free over Z p On one
generator in dimension one. We wish to give explicit bases. It ig convenient to

work in K-cohomology, as we may by the following.

Lemma 5.2. The natural map

¥ n ~ hed
K (DpS iv) - Hom{K*(DpS ;r),2 r)
P
is an isomorphism for all r < «.

Proof. When r = 1 a cell-by-cell induction and passage to limits gives the resultis
for an arbitrary space; in particular it holds for DpSn. The result for general r
follows from the BSS.

Next we give a basis for KO(BZp;r). We write 1 for the unit in this group and
l(e) for the unit of Ko(pt.;r). let t be the transfer Ew(Bz;) + zw(Be+) = 8.

Proposition 5.3. K*(sz;r) is freely generated over Z .. by 1 and r*l(e).
P

Proof. Let n = Zp and denote the inclusion = ¢ xp by 1. Then Kl(BW;T) = 0 and the
natural map
Br ® 2, > KO(Br;r)
1Y
is an isomorphism. If p is the group of automorphisms of n then a standard transfer

argument shows that the restriction

* %
1K (BXp;r) * K*(Bn;r)
is a monomorphism whose image is contained in the invariant subring K*(Bw;r)p. Now
1*1 is the unit 1, of KO(Bw;r), while the double coset formula gives
* % *
= (p-1)1(¢"
1T l(e) (p~1)!(x") l(e s

T'l(e) form a basis for K (Bu;r)P the result follows.

where 1' is the transfer :™(Bn*) » S. Since 1, and
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*

In order to give a specific generator for ¥ (stl;r} we consider the map
* o *
P (Dpsn‘“l;r) > % (szSn;r).

Lemma 5.4. The composite

* *
KO(Dps2;r) _A.Ko(wpsl;r) -(-’3-4‘-)--”Ko(z2npso;r) = K0(Br ;)

*
takes 8(1) to —=— (p! ~ 11

*
o171 ()) @d e(r'1)) to zero.

As an immediate consequence we have
* * 1
Corollary 5.5. £A ¢(1) generates &K (DpS 5T
Before proving 5.4 we give the desired bases for K*(sz;r) and K*(Dpsl;r).

Definition 5.6. The canonical basis for K*(sz;r) is the dual of the basis

* o
{1’*T5:%7T (p! -1 1(e))}‘ The canonical basis for K*(Dpsl;r) is the dual of

{za &(1)}.

Note that the unit n in KO(BZp;r) is the first element of the canonical basis
for this group. We shall always write v for the remaining element and v' for the
basis element in Kl(Dpsl;r).

Proof of 5.4. Consider the subset of Ezp x5 (32)9 consisting of points for which

the sum of the R°-coordinates is zero. The projection to BZP makes this subset the

o Now Dp82 is homeomorphic to the second
suspension of the Thom complex Tt of ¢, and under this homeomorphism the map

A © 2A:£2DPSO > Dp32 is the second suspension of the inclusion Bz; C Tg, while
2{1} agrees with the Aityah-Bott-Shapiro orientation for £. Thus it suffices to
show that the Euler class of ¢ is Ti:%TT-(p! - T*l(e))'* If = = Zp gnd 1: «w c,zp is
the inclusion it suffices to show that the pullback (Bi) g has Euler class

D - (r’)*l(e) in X9(Br) = Ra C)Zﬁ, where t' is the transfer 7°(Br’) » S. let

x € R be any nontrivial irreducible. Then (B1)*g is the sum of the bundles over Bnm
induced by x,xz,...,xp'l. These bundles have Euler classes l-x,...,l-xp"l, hence

(Bt)*g has Fuler class (1—x)'~~(l-xp'1). Evaluation of characters shows that

total space of a bundle g over Bf

"n

(1-x) oo (lwxp'“l) =P o~ (1L + X + oo + xp_l)

and the result follows.
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Next we collect some information about the elements n,v and v' for use in

section 7.

Proposition 5.7. (i) n:K*(DpSn;r) > ﬁ*(DpSn;r-l) takes v to v and v' to v'.

~

(i) ay:K (Z(BE;);r) + £ (DpSl;r) takes In to zero and v to v'.

1
s 5 1 -
(iii) A*:KO(EDPS ;) > KO
{iv} r*:ﬁ*(QpSn;r) > ﬁ*((Sn)(P);r) takes n to plu and v to ~(p-1)}!u when

1
(Dpsz;r) takes Iv' to ¢(n + pv).

n = 0 and takes v' to zero when n = 1.

(v) 6*:KO(BEp;r) > KO(BZp x sz;r) takes n ton ® n and v to
Vn+n®v +plv®v).
. P 1 ~ 1 +
{vi) 6*:K1(DPS ;T) > Kl(DpS A sz;r) takes v to VI ®n + plvI ® v).
. o 2 o 1 1
{vii) 6*:KO(DPS ;7)) > KO(DPS ADpS ;r) takes @(n) to zero and ¢(v)

tovi ®@v'.
For the proof we need a preliminary result.

Lemma 5.8. (i) If X is a spectrum with El = E in the K-theory BSS and if Y is any
spectrum then the exiernal product map

Ko (X;7) @ Ky (Y;7) + Kg{XAY;T)

is an isomorphism, where the tensor product is taken in the Z,-graded sense.

(i) If in addition K, (X;1) and K.(Y;1) are finitely generated then the
external product map
K (X;r) @ K (Y;7) » KN (XaY;T)

is an isomorphism.

Proof When r = 1 the first statement is well-known (see [13, Theorem 6.2], for
example}. It follows that the external product induces an isomorphism of K-theory
Bockstein spectral sequences. Hence if B is a basis for Ky({X;r) and A is s subbasis
of height r for Y then the set {n "x®y | xeB, y €A} 1is a subbasis of height r
for XAY and part (i) follows. The case r = 1 of part (ii) follows from part (i) by
duality, and the general case follows from it as in part (1).

Next we turn to the proof of 5.7, which will conclude this section. In each
case it suffices by 5.8 to show the dusl. Then (i) is immediate and (ii) and (iii)
follow from 5.4. The first and second statements of part (iv) are trivial, as is
the third when p = 2. When p is odd we observe that t4v' must be invariant under

the Ep action on K*((Sl)(p);r). Clearly zero is the only invariant element.
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For part (v) we observe that T*l(e) ® T*l(e) is T*(‘*T*l(e)) by Frobenius

* ¥
reciprocity. Now 1 1 1(e) = p!l(e), and thus

1 * 2__p_ X
(-3t P! = v 1 )17 = ot o - T ley!

in KO(BZP;I‘); the result follows by duality.

For part (vi), consider the composite
R (2855 ;) X . (D_8%;7) — 2o €. (_8% A BT s)
1)1 Zp,r lp’r 1405 ):p,r.

We have AyIv = v', and

4

= (AAL), 18,V

= (A,W) @+ (AIn) @Y + p(AIV) BV

vI®n+plv @v).

For part (vii) observe that part (iii) implies that the map

o 1
(an 1)*:K1(2Dps

1 2 1
ADPS B Kl(DpS /\DPS ;T)
is monic and that (AAL) (v'®V') = ¢(n) @ v' + pe(v) @V'. Hence 1t suffices
to show that (AAl), (z6,¢(n)) 1is zero and that

(Aaal) z6,8(v) = ¢(n) x v' + pelv) @v'.
Now let

n:st 82 = sta (sla st = (staslyast = g?a st

be the associativity transformation and consider the diagram

D s° L¢ gD St AaD s
P j
A
1, &2 D h 2.
N
o8 D (s'r )——R—»Dp(s s | a1
8
2 2 1an 2 1

D S°A B, — D A Br. —2L »p AD S
P D D D D P

The upper part clearly commutes, and the lower part also commutes since h is

homotopic to the map switching the factors sl and 82. Now

2, 2, oot
6*.KO(DPS ;T) > KO(Dps A BL;T)
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clearly takes ¢(n) to ¢(n) ® n and ¢(v) to

IRV +elv)®n + pelv)® V.
Hence

(A1) (28,0(n)) = (1Aaa),(e(n) ® In) = O

by the diagram and part (ii), while

(A1) (£6,8(v)) = (1an),le(n) @ Iv + 2(v) ® In + pe(v) ® vl

it

n) @ v' + peiv)® vV .

6. Calculation of ¥ (D ¥;Z )
— ¥ "p'p

In this section we define Q on Ky(X;2) and prove Lemma 4.3. We work with
K-theory on spectra in this section.

Our first result collects the information about K*(Dpanr;l} which will be used
in this and later sections. We let i and j respectively denote the inclusion of the
bottom cell of "M, and the projection onto the top cell. Note that jyi™u, = i
and iyt lu = g™, where u, and u are the fundamental classes of M, and 0.

Lemma 6.1. (i) For any n ¢Z and o €25, Ka(DpEan;l) has dimension 1 over Zp
(ii) For any neZ, a ¢, and T > 2, Ka(DpZnMr;l) has dimension 2 over Z.
(111) (DG )x:Ko(DMy;1) KO{DPSO;J.) is monic, and if T > 2 it is an

isomorphism.

z
(iv) (Dpj)* C)T*:Kl(DpEMr;l) > Kl(Dpsl;l) C)Kl((EMr)(p);l) P is monic, and is

an isomorphism if r > 2.

{(v) (Dpi)*:KO(DpSO;l) + K(DM ;1) is omto. If © =1 it has kernel generated
by nand if r > 2 it is an isomorphism.
(vi) The sequence

(D_1}

T z
Kl(DpS—l;l) —J——*»Kl(Der;l) —f--Kl((Mr)(p);l) P o

is exact, and if r > 2, (Dpi)* is a monomorphism.

z
In parts (iv) and (vi), Kl((anr)(p)51) P denotes the subgroup invariant under

the evident zp—action; this subgroup can easily be calculated using 5.8(i)}. The

proof of 6.1 is similar to that of 5.1 and is left to the reader.



327
We can now define elements vy ¢ KO(DpM2 ;1) and vi € Kl(})pzM2 ;11 by the
equations (Dyjlgvy = v, (Dpj )yvi = V', and 1,v] = O. We use definition 1.6 to

1
construet Q.

Definition 6.2. Q: K, (X;2) » K (D X,l) is the generalized Dyer-~Lashof operation Qv
if o = 0 and Q\r' 1fa—l.
1

Observe that v; = Qu, and vi = Q):uz-

Next we turn to the proof of 4.3. We use the spectral sequence of I1.2.4 with 7
equal to Zp or ):p and E = X. This spectral sequence will be denoted by Eg c’.(Tr;)();
s
by Bott periodiecity it is Z x Z,-graded, so that o € Z,.

We can describe }3:’(21 {(m;X) = Hq(n'K (X'l)® P) as follows. When q =0 1%
is just the coinvariant quotient of Ky(X; 1)® P, ety = Z with p odd. If
X ¢ K (X;1) then P Ky(X; ;197 generates a trivial w—submodule and we write

eq ® xp for the image of e, ¢ H (Bw;1) under the inclusion of this submodule. Now

qQ
Ky(X; 1)® P can be written as a dlrect sum of trivial w~modules of this kind and free

n-modules generated by X ® e ® %, with not 211 x;'s equal. Hence the map

K (X;1) » B (Z_;X)

a q,0 P’
taking x to eq ® xP is an isomorphism if q > O and p is odd. We continue to write
€ ® xP for the image of this element under the natural map

E (2 ;%) » B (5500

q,a P q,a

By [68,1.4]) we see that this map is onto in all bidegrees, is an isomorphism when
= {2i-a)(p-1) or (2i-a){p~1)-1 for some i > 1, and is zerc in all other bidegrees
with q > O, Finally, if p = 2 then by 3.2(vii)' the Z,-action on K*(X;l)® 2 is
given by x® yhH—>y ® x + 8y ® 8x; in particular, x2
Bx = 0. Using this it is easy to see that the map taking x to eq ® x2 induces an
isomorphism from ker g/im g to Eq,0(223x) if q > 0, while Eq,,l(ZZ;X) = 0 for q > O.

is invariant if and only if

Our next two results describe the groups EZ G(E p;X). let A be a subbasis for
—- 2
X and let A2c K, (X;2) be the set

{nr—zx 1 Teh, 2<r < w}u{nrnzsrx ! Xeh, 2 <r <=},

Let A2,O and A2,l be the zero- and one-dimensional subsets of A2

P

Proposition 6.3. (i) The kernel of the epimorphism E2 £ (I 5X) » EB *(EP;X) is
B
generated by the set {{Bx) p | x eK (X;1)} if p is odd a.nd by

tng0)? + (n0? | x € K (K;2)) if p = 2.
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(ii) The terms EZ u(zp;X) with q > O are freely generated by the sets

s

{ezp__2 ® (nx)p|x EK.?,O}

{ep—l® (w)? | xeKz’l}

and, if p is odd, fe, , ® | xea 1,1}

Proposition 6.4. (i) If x ¢ E% o then Qx is represented in E:*(zp;x) by a nonzeroc
b4

multiple of €rp.2 * {nx)P.

(i1) If x eKZ 1 then Qx is represented by a nonzero multiple of €51 ® (wx)P.
2
(1ii) If x ¢&y 1 then QBopyx is represented by a nonzero multiple of
H
epmz ® XP.

Note that Lemma 4.3 is an immediate consequence of 6.3, 6.4 and the external
versions of 3.3(iii}, 3.3(v}, and 3.6{(iv).

When p is odd, Proposition 6.3 is Corollary 3.2 of [77]. We shall give a
different proof, using the methods of Section 1, which also works for p = 2. First
observe that there are itwo equivalent ways of constructing the spectral sequence
Ei*(n;x); one can either apply mod p K-theory to the filtration of DPX given in
Section 1.2 or one can apply mod p stable homotopy to the corresponding filtration

of KADPX. The latter procedure has the advantage that the map

D“f:D“Y + KA D"X
induced by any mep f:Y » K~ X clearly gives rise to a homomorphism

(D, £) 4 iEyy (m5Y) » Eyy (m;X)

of spectral sequences.

Lemma 6.5, If w = Zp or ZP and ye Ke(¥;1) (with gy = 0 if p = 2} then

(T P gxley ®F°) = e ® (£y)P.

Proof of 6.5. It suffices to consider the case 7 = ZP.

0

The composite
_ O, &
DX=D(Xa3") —»DXADS
ki1 kil n k3
induces a coproduct
¥:ED, (1;X) » BN, (n3%) @ ELy(n380)
and we have

¥ o (D fly = 1D, ®1] 0¥,
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The lemma clearly holds for g = O, and it follows for all q since the component of
. 2 0, .
ve, @) in B (1) @ Foy(ms) is (@) @e -

Proof of 6.4. (1) Let x be represented by f:My » Ka X. Then fyyu; = X,

B = T Dy = p

(Dpf)**(;lu2 Qx, and (Dpf‘)**(ep__2 ® u2) ezp_2 ® x*. Hence we may assume that
X = M2 and x = Uy, and it suffices to show that vy = Qu2 is not in the image of

(p), .
Ko7' 51) » KO{DpMz,l).
But this is clear since (Dpj Jxvq = V.

Part (ii) is similar. For part (iii) we may assume that X = IM; and x = Luy.
In this case it suffices to show that QB,pyu; is nonzero. But Bopyu; = iyu, where
u eKO(SO;2) is the unit, and Qu = v. Hence QB,pyuy = (Dpi)*v is nonzero by
6.1(iii).

Proof of 6.3. First let p = 2. Since every element of ker § 1lifts to Ky{(X;2},
Proposition 6.3 will be a consequence of the following facts.
(a) dy =0
(b) d5lepq 4 ® (1)%) = epq 4 4 ® (n5 )2
{e) dglenq o ® (1)2) = ep0 2 ® L(mx)? + (n8x)?].
Note that, when 8,x # O, formulas (b) and (e¢) differ from those given in
199, 3.8{a){ii}}.

First consider the case X = SO. Then the spectral sequence of I.2.4 is
isomorphic to the Atiyah-Hirzebruch spectral sequence, so that (a), (b) and (e¢) hold
in this case by 5.1.

Next we need the coproduct ¥ defined in the proof of 6.5. this has the form

2 q
?(eq@x )= 3

2
L (ei®x }®eq-i R

and it follows that if x and y satisfy

d3(e3 ® x°) = e ® 32
then we also have

d3(62s+1 ® XZ) = Bos. 0 ® y2

and dalepgin @ x?) = €25-1® (y° + %°1

for all s > 1.

Now let X = Sl. In this case d, = O for dimensional reasons, and there are

only two possibilities for d3 consistent with the coproduct, namely
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dslegg ® (20)%) = ey 3 ® (z0)?

or dslegqy ® (BW2) = ey, ® (2u)°

Only the second is consistent with 5.1, and hence (b) and {c¢) hold in this case.

Next observe that, by 6.5, d, vanishes in general if it does for z% and IM,.

5,00 304 the

only element that could be hit is (nzauz)(nszzauz) in Eg 1 But the correspond-
s

In each of these cases, d, is zero for dimensional reasons except on

ing element of Kl(Dzzumz;l) is nonzero since its transfer it nonzero in
Ky ((3%)(2)).  Hence 4, = O.

Finally, (b) and (e¢) will hold for all x if they hold for x = up and x = IUj.
First consider Iuy. It suffices to show that
2, _ 2 2
dB(GB(@ (muy)™) = ()™ + (wBou,)".
From inspection of the maps
3 g0 3 .
E**(Zz,S ) E**(ZZ’EMZ)

3y . 3 g st
and Eyx(Zo3IM,) > B{,(2,;87)

we see that 4 (e3<® (nszzuz)z) is zero and that d3(e3(8 (nzuz)z) projects to (zu)?

3 (Z,;S"). Hence

in EO,O 55

dyle, ® (nmu)%) = (azu,)” + elng,ru,)?

for some ¢ €Z, and there are no further differentials. But by the external version
of 3.3{x)} we have 1*(1r):u2)(2) = 1*(1r522:u2)(2) in KO(DZEM251)’ hence ¢ = 1 as

required.

It remains toc show that

dyle, ® (1u,)%) = (nu,)%

For this we use the map

¥UEL(Z,50My) > EL(2,58T) @ Ejy (Z;M,)
induced by

1
6.D2£M2 * D28 A D2M2 .

We have
¥ (e ® (\'2\1 ) ) - } (e- ® ([ZL\) )® (e s X (l'u ) )
q 2 i =0 1 g-1 2

and therefore

d¥'(e, ® () = (e, ® (w)?) ® la le, ® (m)?) + ey ® (ru,)?]
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while  ¥dle, ® (n20)?) = (e, ® (10)°) ® leg ® (my)° + e ® (x8,u,)°]
and the result follows.

Next let p be odd. We must show the following
(! d4; =0 fori <p-2
| Py = p
{b) dp—l(eq ® xF} €q+1l-p ® (8x)
{e} d4; =0forp <1 <2p-2
(@) dppqleq ® ) = egy_on @ xF
(e) d; =0 for i > 2p.
As before, when X = SO the spectral sequence is isomorphic to the Atiyah-
Hirzebruch spectral sequence so that (a)-(e) hold for 5.1. They also hold for

X =gt by 5.1 and the coproduct. Now 6.5 implies that (a) and (b) will hold for all
X if they do for X = M1 and X = EMl. Inspection of the maps

r o1 I
Epx (2387 7) > B (2 52%M))
and Eex (15,2} > By (5 587)

and the coproduct shows in each case that either (a) and (b) hold or (a),(ec),(d),
and (e) hold with dp-l = 0. Only the former gives an E_ term compatible with
6.1(i). Hence (a) and (b) hold for all x.

Now applying 6.5 again we see that (c¢), (d) and (e) will hold in general if
they hold for M, and 2M2. But one can see that they do by inspection of the maps

r -1 r a

E**(ZP;S ) > E**(Zp;z M,)
r r o

and E**(xp;zamz) > By (235,

and the proof is complete.

7. Construction and properties of Q.

In this section we complete the construction of Q and prove external and
internal versions of Theorem 3.3.

As in section 6, we shall construct Q by specifying elements v, _; eKO(Dp ;r=-1)

and v;e Kl(DpZMr;r—l). In order to do this we need a stronger version of 6.1.

Lemma 7.1. Let r > 2. The maps

3 . . O._,
(Dp])* : KO(Der,r-l) + KO(DpS ;r-1)
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T
. . i 1. (p), P
([Eg)* C)T*.Kl(DpZMr,r-l) + Kl(DpS ;r=1) C)Kl((zMr) ;r=1)

and (D _1),:K

0
b (Dps ;e=1) » K

(DpZMr;r-l)

0 0

are isomorphisms, and the sequence
(D 1} T T
1, p_ ¥ . ¥ (p),__ 4y P
0 ——»Kl{DpS ;7-1) —————-+-K1(Der,r~1) -~»—K1((Mr) ;r-1) 0

is exact.

Note that the terms in 7.1 which involve iterated smash products may be
calculated by using 5.8. Assuming 7.1 for the moment we may define v, , and v;_l by
the equations {Dpj}*vr_l =v, (Dpj)*v;_l =v', and t4vy_y = O-

Definition 7.2. Q:K {(X;r) » KQ(DPX;r—l) is the operation er-l if « = 0 and Qv‘ .
if o = 1. -

Observe that Vp-1» ¥V, Vy_y and v' are equal respectively to Qu,., Qu, QCu,., and
QzZu. From now on we shall always use the latter notations for these elements.

We shall prove 7.1 by showing that El = Er'1 in the K~theory BSS for Dpanr
when r > 2. For this we shall require a formula for the Bockstein of the external
Q-operation, and this in turn depends on the other formulas collected in the

following lemma.

lemma 7.3. lLet x,y eKa(X;r) with r > 2.

0 if o =1
(1) T,Qx = —(p-l)!nx(p) if « = 0 and p is odd
x4 02" e 0 it a=0andp =2,
Here w Z, is independent of x.
(ii) 7Qx = Qux if T > 3.
p-1 . s
& + Qy - iyl J %—[?)x(l)(@y(p']’)} if @ = 0 and p is odd
i=1
(111) Qlx+y) =4@x + @ - 1, (x ®y) *+ w2 mi, [(8,x) ® 8.y)] if a = 0 and p = 2
QU + Qy if o = 1.

{(iv) Let k ¢ Z. Then
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KQx - % (6P )1, x P! if =0
Qlkx) =
kQx if o = 1.
Qrx 1if 0 =0
(v} Dy IQx =
ﬂl*(ZX)(p) + pRIx if a = 1.
QB.x - pm (x(p—l) ®Bx) ifa=20
r Py r
(vi) Brale =

it

nx*(srx)(p) + strx if o = 1.

The constant « in parts {i) and (ii1) will turn out to be 1, as required for
3.3{(vi). In order to avoid circularity, we shall prove 7.1 and 7.3 by a simul~
taneous induction. More precisely, we shall assume that 7.1 holds for r < ry and
that 7.3 holds for r < ry (vacuously if ry = 2) and then prove 7.3 for r = r; and
7.1 for r = ry + 1. Before beginning, we need two technical lemmas.

lemma 7.4. Let Y —»2 E»0f +3Y be a cofiber sequence in hd and let

r > 2. Suppose that 8, ; venish on K;(Z;r-1). Let y K, (I¥;2r-2), ze K5(Z;7-1)
and w €K, (Cf;r-1) be any elemenis satisfying nr'ly = hyw and pg'l(ZZ) = fyy. Then
Bp.1W = BxZ.

Proof Conslder the following diagram in i .

gkace t-Bogazgy L o papr L 2E x ascr
*’

w Tz:y e Tzw
i
1

zM2r—2 2Mr-l zzMr

k -1

Here the bottom row is the evident cofiber sequence, with the first map induced by
the inclusion Z 1 € Z 5n_> and the second by the projection Z 5. 5 + Z 53¢
Precomposition with the first, second, and third maps in this sequence induces the

transformations nr"l, p§"1 and {because of the suspension) -B,,1, respectively. The

left~hand square commutes up to homotopy since aF-1

y = hyw. Hence there exists an
element ¢ making the other two squares commute, and we have -g._;IW =(1g)xz+ Now
the map

Lz zMr_1 + KA 2
makes the middle square commute, hence r - Iz restricts trivially to IMs. o. Thus
¢z - 1z extends to a map

E:EZMr + KALZ
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with 8 _,& = ¢ - Zz. Since 8,_; vanishes on Ky(zZ;r-1) we have ¢ = 1z. Thus
-B,_1Iw = L{gyz) and the result follows.
lemma 7.5. If £:X > KAY is any map then fyy commutes with =, 8,, Py and I.

The proof of 7.5 is trivial. Before proceeding we use 7.5 to dispose of
3.2(iv).

Proof of 3.2(iv). For any x ¢Ky(X;r-1) and y Ky(Y;r) there exist maps

f:z'xIMr_l » KAX and g:zmMr > KAY with f**z|x|ur_l = x and g**E|ylur =y.
Thus by 7.5 and 1.3(ii) we may assume X = z‘ler_l and Y = Zlyer with x = Z‘xlu.r_l

and y = ):lylur. By 3.2(vi) we may assume |x| = |y| = O. Clearly the set

{ur-l ® s Uy ® ﬂsrur}

is a subbasis for M, ;”~M,. Hence by 3.9 we have
(1} (P*ur-l) ® u, = zaLlp*(uI_“1 ® mxr) + azsrp*(ur_l ® wsrur)
for some ay,a, ¢ Zpr—l’ Applying 7 to each side gives
pur—l ® "y, = a1pur-1 ® ™, * aZBr—l(ur—l ® "Bur)
S L | ® ™y, * a261‘—1ur-1 ® TrBrur *
Hence a, = 0. Now applying (jA J)x to each side of equation (1) gives
plu®u) = a;py{u®u) = a;p(u@® u)

in KO(DPS'\ Dps;r) £ Zpr‘ Hence a; = 1 in Zpr—l'

Next we give the proof of 7.3 for r = rg. The proof of each part will be quite
similar to that just given for 3.2{iv). First we observe that by 1.3, 1.4, 1.5 and
7.5 we may assume in each part except {iii) that X is E“Mr and that x is the
fundamental class r®u..

(i), If o = 1 the result holds by Definition 7.2. Suppose o = 0 and consider
the map 5

j§P>:KO(M£P);r-1) P, KO(SO;r-l).

This is monic when p is odd and has kernel generated by 2r'21r(8rur)(2) when p = 2.
The result follows since jip)uz(.p) = ue KO(SO;!‘) and
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1Plequ = T (D,1),Qu, = 1, = ~(p-1)Iu;
the last equality is 5.7(iv).
(1i}. Let o = 1. By 7.1 it suffices to show that

(Dpj)*wQZur = (Dpj)*QnEur
and that

T*KQZur = t*QnXur .

This second equation follows from part {i) and the first from 5.7(i). The case
= 0 is similar.

{111). Let o = O with p odd. By 1.3, 1.4 and 7.5 we may assume that X is
Mrwlmr with x and y being the fundamentsl classes of the two summands. Let

Y
F: DMAD M »D(MvM)
ito r p-iTr

be the equivalence of II,1.1 and let f:Mr + Mpv Mr be the pinch map. Then
(Dpf)*Qur = Q(x + y), and 1t suffices to show that

-1 Pl D
Fe (Dpf),Qu. = u @u+u®@@u, - | =

(1)
Ll

m*uT @71

(p i)
U T

since Fy applied to the right side of this equation clearly gives the right side of
the desired formula. Now the projection of F'lo Dpf on the i-th wedge summand is
the transfer

Ti,p-i : Der + DiMrA Dp—iMr .

When i is O or p this transfer is the evident natural equivalence, hence it suffices
to show

I S (i) (p-i)
(2) (Ti,p-i)*Qur - 5‘(i)n\*u @ migu
for 0 < i < p. Now the transfer

{p}
13 p-i DM A Dp FLEES

induces a monomorphism since the order of Ei x Xp-i is prime to p for 0 < i1 < p.

We have

(1} pog)lTy pog)e@uy = TyQ, = ~(p-1 1P
i,p-i'* p-i"*¥"p **p T

by part (i) while

o pgdelmgt © P = g1 (p-n) 1P



336

by the double coset formula. Equation (2) follows. The proof when p =2 ora =1
is similar.

Part {iv) follows from (iii) by induction on k. When p = 2 and a = O we need
to know that 2r_2n1*(8rx)(2) = 0. If r > 2 this is evident since 1*(srx)(2) has
order 2 by 3.2{viii}., If r = 2 then by 6.4(1ii) we have

(2)

1*(382X) = Q822*n82x = Q.

{(vl. Let a = 0. By 7.1 is suffices to show
(zDPj)*a*mur = Qtu
and TybyIQu = O.

The first equation is immediate from 7.2 and 5.7{ii). For the second, consider the
disgram

1 A 1
B —
S '\Der D (8 '\Mr)
l lart t l
sta MI(‘p) A sta Mr)(P) .

Here the map A' is induced by the diagonal of Sl. By definition, the map A is

obtained by aplying the functor Ez; Ay () to the map of 3
p

Sy A ) P s (s A M) (P)

-8 tra
p pec

induced by the diagonal of Sl. Hence the diagram commutes by naturality of <. But
the diagonal map of st is nonequivariantly trivial, hence txAx IQu. = O as
required. The proof when o = 1 is similar.

{vi). Suppose first that o = 1. Consider the following diagram

Pof g h
D S > DS c > 5D_S
D 0
D i A

p ‘lY

D_j y
DM ——EesD 5
»r D

Here f:S » S has degree pr and the top row 1s the cofiber sequence of Dpf. The map
v 1s that constructed in II.3.8, where it was called y, and the diagram commutes.
For any s > 1 the map

(Dpf)*‘KO(DpS58) > KO(DPS;S)
is given by the formula (Dpf)*q = pP'y and

r-1
(Dpf)yQu = Q(pw) = pfQu - (P - p™1in
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In particular, when s = r-1 the map {Dpf)* is zero, and since Kl(Dps;r-l) = 0 we see
that
hy:Kp (C;r-1) » Kl(ZDpS;r-l)

is an isomorphlsm. Thus there is a unique w ¢ K;(C;r-1) with hyw = IQu. ILetting

¥y = iQu eKl(*EDpS;Zr-2}
and z = pQu + ne KO(DPS;r—l)
we have nT~1 = hyw and p: 1zz = (Dpf)*y, hence by lemma 7.4 we conclude that

Bp.1W = g%z in Ky{C;r-1).

Next we shall show that yyw = Qfw,. Assuming this for the moment, we have

_ = _ . _ (p)
Br-leur = YxBo (W = YyEy2X = (Dpl)*z = pQBrur + wt*(Brur)

which gives (vi) when « = 1. To show yyw = Qfu,, we must show that (Dpj)*y*w = QLu
and txyyw = O. The first equation is immediate from the diagram and part (v). For
the second, we observe that Dpf and y are obtained by applying EX; AZ { } to
certain Zp-equivariant maps F and T, so that by naturality of t we hav® the

following commutative diagram of nonequivariant spectra.

oot (p} (p}
DPZMr = E):p/\z (zM ) _—t (zM )P

D
Thus it suffices to show TIy1, = 0 on K{(C;r-1). As a nonequivariant map F is the
map S » S of degree PP, hence the cofiber CF is nonequivariantly equivalent to
szr. The resulting Zp-action is clearly trivial on KO(ZMpr;pr), hence also on
Kl(ZMpr;pr) since the Bockstein 8
Thus

or is an isomorphism between these two groups.

F*:Kl(szr;pr) > Kl((ZMr)(p);pr)

lands in the zp~invariant subgroup. We claim that this subgroup is generated by the
element

P2 ) ® (5 2w )P

when p is odd and by this element together with

r-1 r
27 TRy lzu ) ® (zu))
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when p = 2. From this it will follow that wpr-r+1 vanishes on this subgroup and

pr-r+l maps onto the latier

therefore that I'y vanishes on Kl(szr;r~1), since n
group; thus we will have shown TIytyw = O as required. To verify the claim we
observe that the set

(Tn ®x, ® «- ®xp | x; = zu, or g Iu}

is a subbasis for (ZMr)(P). Using the basis for Ki((ZMr)(p);pr) given by 2.9, we

see at once that the elements

= pr T (p-1)
% [(Zu ) ® (SrEur) ]
I Pt (1) (p-i-1)
and z, = prp* [Eur<® ) (Brzur) ® 1u, @)(grgur) 1
i=1

are a basis for the Iy x Ly g invariant subgroup. Now if T is the map switching the

first two factors of (ZMT)%p) we have Tyz, = z, and

Tyzy = 2y - 28, 0% w1 @ (s zu ) P2y,

the claim follows.

Finally, we must prove part (vi) with « = O. By 7.1 we have
(3) BpqQu, = 2,Q8 0 + ajmy, (u ()B )
for some ay, a, ¢ Zpr—l' Applying Ay2 and using part (v) gives

= {(p)
sr_lQZur = 81(ﬂ1*(6r2ur) + pQBrZurl.
Comparing this with the case o = 1 of (vi) gives a; = 1. Now applying 1y to (3} and
using part {i) gives

~(p-1)108,_7(uP)) = o (p-1)101 z WP @5 u @ulPit).

But Sr—l“{uip}} = pwsr(uip)) and it follows that a, = -p as required.

This completes the case r = Ty of 7.3. Next we must show 7.1 for r = ro+1 > 3.
It suffices to show that E1 = 51 g the K~-theory BSS for Der and DpEMr. We shall
give the proof for D

D
elements wu, and 7B, w.. by 6.1,7.2 and 7.3(ii) we see that the set

, the other case being similar. Let x and y denote the

r-2 (p) r-3

(S, 30x, "r—ZI*(x(p—l)

®y), m “Q}

is a basis for Ky(D Mr 1). Since all elements of this basis 1lift to Ku(D Mr r-2) we
have E' = E'™2 in the BSS. The elements n'~2x!P) ang +7-2(x(P-1) ® y) are (r-2)-
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cycles since they clearly 1lift to Ko(Der;r—l). Next we have

d 7P =" 28 ax = "2 x = «" Qpy = O,

-2 r-2 r-1

where the 209 ang 4th equalities follow from 7.3{vi) and 7.3(iv) respectively.
Similarly,
-3, _ r-3 _ r-2 (p) _
d. " "= Bp o =7 (Br_ly) 0.

This completes the inductive proof of 7.1 and 7.3.

Next we shall prove the external version of 3.3. BRather than write out the
complete list of external properties, we give rules for changing the internal
statements to their external amalogs. All internal products and Dyer-Lashof
operations are to be changed to external ones, with the map 14 prefixed to any
p-feld product which is to lie in K*(Dpx;r). The map 6x is to be prefixed to the
left~hand side of each Cartan formula. In the stability formulas, ¢ is to be
changed to I and Ay prefixed to the left-hand side. These conventions give the
correct external analog for each part of 3.3 except for part {ii1) which has no
external analog.

Proposition 7.6. The external Q-operation satisfies the external versions of each
part of Theorem 3.3 except part (ii).

Before beginning the proof we need a lemma to deal with the prime 2. (See
I1.4.3 for another proof of this lemma.)

lemma 7.7. let X be any spectrum. The sequence

2
T s 52 (X AX) ——2——va2sz

A
ED2X

» D22X

is a cofibering.

Proof. Consider the cofiber sequence

(4) st Lsstagt —Pa® P

of Zz—spaces. Here Z, acts trivially on the first and fourth terms and by switching
factors (respectively, wedge summands) in the second and third terms. Now stasl 1s
the one-point compactification sV of the regular representation V of Z,, and it is
easy to see that the second map in the sequence (4) stabilizes to the transfer

SV + ZE'»SV. The sequence of the lemma is obtained by applying the functor

m;AZ(?AXAm to the sequence (4)}.
2
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Next we turn to the proof of 7.6. Part (i) is trivial and parts (iii), (v} and
{viii) are contained in 7.3.

(1v). We may assume X = 1®M,, x = 3%uw,. Suppose o = 1. By 7.1 and 7.3(vi) we
see that the set
(@, 1,lu) ® (850 ) P08 pyru}
T’ ¥ T r““r [ Sl e o
is a subbasis of height r for DPEMT, hence the set

tpyQmu, 1l (zu) ® (5 zu) Py

is a basis for Kl(Dpor;r). It follows that the map
(D.J), ® 1, ¢ K, (DM _;r) —=K, (D.S5r) + K, () P);r)
pYo¥ L S - 4 1"7p 7 1 r ?
is monic. Now

(Dpj)*Qp*Zur = Q(p*j*zur) = Q(pru) =pQzu

0 if r =1
(Dpj)*p*Q):ur ifr>2,

and  1,Qp,tu, = 0 for all r. The result follows, and the case a = 0 is similar.

Next we prove part (x). The proof is by induction on r. If r =1 we have
1*1(2) = QBp2¢x by 6.4(iii). Suppose r > 2. We may assume X = Iu.. The set

{Qou,, 1, (fu, ® 8.7 ),Q8 42,5}

r+l
is a subbasis of height r for D,IM,,, hence by 3.9 we have

(2) _

(5) 1*(2ur) alﬁr2*QZur + 32Q3 2,1u

r+l T

with a; ¢ Z2r-1 and a, ¢ er. Applying tx to (5) gives
0 = —ay(guruy) (3

hence a, = 0. Now applying w to (5) gives

y(2) .

(6) 1y {miuy, = a1Bn_1QCuL.

If r = 2 the induetive hypothesis gives

,(2) 2) . s

1*(n2u2, = Q822*(n2u2) = Q(Zszzuz) = w1*(822u25 5

(where the third and fourth equalities follow from 7.3{iv) and 7.3{vi}) and we
conclude that a; = 1 as required. If r > 3 the inductive hypothesis gives
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z*(nZur)(Z) = oT3

S
Br_12*Q(wEur) =2 Br_lQZur

= T2

and comparing with (6} gives ay as required.

Next we show part (vi). This will follow immediately from 7.3(iii) and 7.3(iv}
once we show that o = 1 in 7.3(i). Ietting X = IM, in 7.7, we have

0 = (321)*I*Q22ur

(Fo,mi=2a ) ) e 2™ 0p g )12

@, (2)

= Pyl w2 (p_tu 11?0,

By part (ix), we have

(2)

my o) 2 = 22

r-2

- (2)
Br_lQEur = 2 1*(n8riur) # 0.

Hence w # O as required.

(vii) Let p = 2; the odd primary case is similar and somewhat easier. First
let |x| = |y| = 1. We may assume x = fu,, ¥ = fu,. We assume by induction on r
that we have chosen mod 2% multiplications for s < r such that the desired formula
holds. We begin by giving s basis for

Ko (DozMy, A DosM,;r-1) .
The set

(2)
r)

{n1y(Zu, ® 8 Tu ),m,(8 Iu »Qru_,Q8_Tu }

is a subbasis of height r-1 for DyIM, and in particular it is a basis for
Ky(DyiM,;r-1). By 5.8 we have

Ky (DyM AD,IM 5r-1) = K, (D,EM ;7-1) © K, (D,oM ;7-1)

with the tensor product taken in the ZQ-graded sense. We therefore obtain a basis
for Ky{DyoIM, ~ADyIM,;r-1) by taking all 16 external products of the elements in the
set given above. It will be convenient to denote Iw, by x in the first factor and
by y in the second factor. let ay,...,ag ezzr-l be the coefficients of §Q{x® ¥y)
with respect to this basis, so that we have

(7 QX ®Y) = amy (x ® B .x) @ myly ©®8y) + a,&x @ my,y® 8y}

faymy(x@8x) O + 8,0 ® & + agmy (s x)?) @ niy (e )@

+%mﬂ%ww)®%ﬂ+aﬁ%x®mﬂ%wm)+%%#®Q%%

We claim first that 2a5 = 0, so that a5 is elther 2T™2 or 0. When r = 2 this is
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trivial, while for r > 3 it follows from the inductive hypothesis and the equation
1Q(x ®y) = Qwx @ wy). Now as in Remark 3.4(iv) we see that changing the choice of
mod 2% multiplication changes the value of a5 without changing the other a;. We can
therefore choose the mod 2T multiplication for which ag = 0. {When p is odd the
commutativity of the multiplications gives ag = 0.)

It remains to determine the other coefficients in equation (7). If we apply
the map (Doj ADyj)y to this equation, the left side becomes Qtu @ Qiu by 5.7(vii)
while the right side becomes a4Qzu ® Qru., Hence a 4= 1. Next consider the
following diagram

D, (X AY) > D,X aD,¥
1 T TAl
XAYAXAY SATAL 5 XAy Ay —l—"—%xAxADZY

The commutativity of this diasgram will be proved in VI.3.10 of the sequel. With
X=Y= ZMT we obtain

(1A1),6,x ®F) = (1a1),(1aTal),r,Qx®y)

r-2

QA QATAlLal-x@®y®@x®y +2 8 (x@y) @8 (x® )]

r-2x(2)

(2) ®:),(2) )(2)

(L ar)nlx + 2 ® (Bry

+ 2 x0x0y @8y + 2" 08 x @8y Oy + 2725 0P @@

e (2) , ,r-2_(2)

® M,y ® m*(Br‘y)(z)

r-2 (2)

+ 2P, (@8 ) @ myly @8 y) + 27 a0 P @y

r-2

-2 2t (p ) 2 ) 2))

Tyl (X ® B.X) @ my(y®py) +2 ® my (B y

with the last equation following from part (x). Now applying (t» 1)y to the right
side of (7) and comparing coefficients gives a; = 2r-2, 83 =0, ay = 2T~ and

ag = 2ag. Similarly, applying (1 at)y to equation (7) gives a, = 0 and g¢ = 221"4,
whence ag = 2ag = 0. This completes the proof of part (vii) when |x| = |y| = 1.
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Next let |x| = 1, |y| = O. Consider the following commutative diagrem

18
):DZ(X Ay} LD, X AD,Y
A TAl

L 2 v

DZ(ZXAY) D XAzD Y

Dz(TAl) laa

) 8
D, (XA 2Y) g DZX A DZZY

If we let X = M, Y = "M, we obtain

(10) 6x (D (T 1) Ly iQ(-zu, ® 1700 ) = (1aa),(Ta1),(28),Q(-2u ® 17 u )

r

Wie can evaluate the left side of (10) using 7.3(v); the result is G*Q(Zur ® ur).
On the other hand we can evaluate the right side of (10) by using 7.3(v) and the
part of 7.6(vii) just shown; the result is

(21)

4
QZur ® m*ur

+ 20t @ + 2274w, (8 10 @ 0 u .

Thus equation (10) gives the desired formula when x = fu, and y = w,, and therfore
this formula holds in general.

Finally, let |x| = |y| = O. We may assume x = w,, y = w,. The set

{m*x(p) ® m*y(p),Qx ® m*y(p), m*x(p) ®Qy, &x ® Qy,

T (x®@8.X) @My (y®8.y),08 x® m,ly® 8y,

T (x ®B8.X) ®QBY, QB X ® Q8 ¥}

is a basis for Ky(D,M, ADM ;r-1}. let ay,...,ag De the coefficients of §,Q{x ® y)
in this basis. By 5.7{(v] we have

(D JAD08,Qx ®y) = 6,Qu®@u) = u@n +n@Qu + pu® Qu,
hence a; = 0, a, = a3 = 1 and &, = 2. Diagram (8) gives
(1AL, 8, Qx ®@y) = (1A 1)y 8,1,z @y)
and it follows that a; = 27~2 end ag = O. Similarly,
(1A 8,Qx ®y) = (14 1),6,1,Q(x ® ¥)

and hence ag = 0. Thus we have
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(1) 6,0x®y) = @ ® 1,52 + mx? @ oy + 200 ® oy

r-2
* 2 Ty (x @B8x) @ my(y ®8.Y) * a8 x ®QRY
and it remains to determine ag. Consider the following commutative diagram

Ls

ID, (X AY) — ID,X AD,Y
(12) lA A Al
D, (IX AY) § D, IX AD,Y
With X = Y = Mr we have
(13) (AA1),268,Q(x x ¥) = 8,4, 0(x @¥).

We evaluate the left side of (13) using 7.3(v) and equation (11); the result is

(2) (2)

QIX @ myy '+ 2Qix @ Qy + agmi, (g ix) ®QB.Y *+ 22508, 1x @ QB.¥-

Evaluating the right side of (13) using 7.34(v) and the part of 7.6(vii) already
shown gives
Qx ® m*y(z) + 2QIx ® Qy +22r_4m*(6r):x)(2) ® QBry.
Hence ag = 2°T~4 g required.
(ix) We have seen in VIII.7.4 that wk is an H_ ring map of K(p) for k prime

to p. Hence we have
(D _f) ko k(D ), :K (D Y;r-1) » K, (D X;r-1)
P *x¥ v p R pT * ' Tpt?

for any map f:Y + KAX. Thus we may assume x = ):°‘ur with ¢ = O or 1. First let
a = 0. Since the map

(Dpj )*:KO(DPMP;I‘—I) > KO(DPS;I‘-I)

is monic and since wku = u, it suffices to show ¢kQu = Qu. Dually, it suffices to
show that wk is the identity on KO(BZp;r-l). But this is immediate from 5.3 since

wk commutes with 1. Now, if o = 1 we have

X _ ok - k = =
YQIu, = A*ZQur = ATy Qu = A TQu QZur.
This completes the proof of 7.6.
Next we must prove 3.3. Each part of this theorem is in fact an easy

consequence of the corresponding external formula except for parts (ii) and

(viii). For part (ii) we may clearly assume X = S, and it suffices to show that Qu
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goes to zero under the nontrivial map from Bz; to SO. But the induced map
ﬁo(so;r) > KO(BZp;r)

takes 1 to 1, and <1,Qu> = O by Definition 5.6, whence the result follows.

The proof of part (viii) is more difficult. First recall that if X is any
nondegenerately based space and Xt s X is the identity on X then the cofiber
sequence

X

is naturally split by the evident retraction p:X' » 0, m particular, there is a
natural transformation

viz®x > o%*
and the inclusion
K, (X;7) C K (X;r)
can be identified with vx. Now let Y be an H_ space, let Z = QY, and let e:2Z » Y
be the counit. Then
o:Ka(QY;r) *> Ku#l(Y;r)
is the composite vyexZ.

Llet x eﬁO(QY;r); the case |x| =1 is similar. First we must show that Ox is
in KQ(QY;r—l), i.e., that uyQx = 0. But pr®ien)’t - waO is clearly an H_ ring
map, and therefore ,,Qx = Qu*x = 0. Next we state the required formula more

precisely as follows:
(14) Ay @vyx = QoX.

Since uy applied to each side of (14) gives zero, it suffices to show that Ay makes
the two sides of (14) equal, i.e., that

ex Ay QueX = A, Quye BX.

This in turn follows at once from 7.3{v) and the commutativity of the following
diagram in nd (where we suppress 1* to simplify the notation).
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(15)

v

(2

Here ¢ and ¢ are the H_
that {15} commutes we need two further diagrams.

catgory of spaces.
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—»D L7
P

D e

!

DY
D
D

L%
D (¥
Lt
Y+

J»

»Y

D v
P
v
+
)
Iz

)

structural maps for z* ana Y respectively. In order to see
The first is the following in the

D (z°) = sl(Ex_ x. 2ZP)") —tr kg (D)P
P T
p P ,'
p_1(z2)*1/8°
£y p
(16) -
Dp(e+)
2z") — sz B ey b B, %, 1° = 1%1/8%)
p
Here A is the evident diagonal map. This diagram commutes by definition of ¢; see
{69, Lemma 1.5}. Next we have the following diagram in.i;x (where we again suppress
®).
WADZ 4 *» D (WAZ)
P b4
anl ﬁul)
P
A
D Z —»
D P
(17)
ZDpv C)
1AD IZ D (1Av)
oV p [zz)” o v
+ 2 l+ 0
tD Z D [(£2 S
o p[( )1/
|/ |

waD (27)
P

+
D {(WaZ )
p(
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Here W = (Sl)+ and the unlabeled arrows are the evident quotient maps. It suffices
to show that the inner square of this diagram commutes, since combining it with
diagram (16) gives diagram (15). Since

AALl:WADZ » D Z
A D P

is a split surjection, the commutativity of the inner square will be a consequence
of the commutativity of the rest of the diagram. Each of the remaining parts
clearly commutes except that marked (:). To show that (:) commutes it suffices to
show that the composites

WAz 22% wazt = (st )t —>(stam)”
and Waz 221 glag Yo stan)?

are equal. But is is easy to see that these composites agree when composed with
either of the maps x:(Sll\Z)+ > S'az ana u:(SlA ANES SO; they are therefore
equal since wedges are products in h8. This completes the proof of 3.3.

We conclude this section with the proof of 1.6. First we calculate

= - (p)
B PyQZu, = 8 .Qp,Tu. = 1,(8 Tu ) *PQ8 1 Pyl

in KO(DpzMr;r). Multiplying by pT~1 gives

-1 -1
0=7p" B PyQru, = ph 1*(8rzur)(p),
hence 1*(8rzur)(p) has order < pr'l. Now suppose K. has an H, structure. Let
u:S » K, be the wnit map for this structure. Then u = cu € Ky(S;r) for some e
prime to p. Let f be the composite

M= Samm. 221e kasm = K
T r b od T

and let F be the composite

(D_f), Ex
Ko (D 2M, ;7) —L*KO(DpKr;r) —— Ky (K ;7)) —>K(S;T),

where the last map is induced by the product for Kr’ We claim
cp+lF1*(Br2ur)(p) = E, which contradicts the fact that 1*(8r2ur)(p) has order

< pr'l. The claim is a consequence of the commutativity of the following diagram
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- {p}
S _ sasl® uled) *KI.A(ZMr){p)
\\ ilnx 1A
uaD_(ei)
sas—2%E& gaps b > K_nD_IM
_ r “pr
m - - -
uAu uADpu il AD £
D
¥ Lag
Kr < Kr'\Kr =Kr« DpKr

Here the composite (1a1) o [EA(ci)(p)] represents cx*(cBTZur)(p) and the

diagram commutes since U is an H, ring map.

8. Construction and properties of Rand & .

In this section we construct R and J and prove the external and internal
versions of 3.6 and 3.7.

We begin with the construction.

Lemma 8.1. The map
Brﬂ:Kl(DpZMr;rﬂ) *-*KO(DPXMP;NI)

is an isomorphism.

Lemma 8.2. The map
(DPJ)*:KO(Der;s) —-’-KO(DPS;S)

is monic if s = r or 8 = r+1, and n ¢ KO(DPS;rﬂ) is in the imsge of {Dpj)*.

Definition 8.3. let ee¢ Kl(DpZMr;rd) be the unique element with

- 2 1 . : "=
Bre1® Q8r+2p*2ur. Let e'¢ Ko(Der,rﬂ) be the unique element with (Dpj)*e ne
Then

R:Kp (X57) » Kl(DpX;r*l)
and 2:K(Xr) » KO(DPX;r*l)

are the operations Qe and Qe, .

Note that e and e' are equal to Rzu,, and 2,% respectively. We shall always
use the latter notations for these elements. Also note that Qu = n in KO(BEp;r+1).

Proof of 8.1. Iet r > 2; the case r = 1 is similar. Consider the K-theory BSS for
DyiMy.. By 6.1 the set
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{nr”zQzur,nr‘zQBrzur,nr‘lx*Izur<® (Brzur){P-l) },nr"lz*(srzur)(P)}

is a basis for EL. By 7.6(v) we have

(1) dr_lnr'zQzur = ﬂr_11*(8r2ur){P),

while clearly d, ;= 2Qg.Iu, = O and

4

r_lnr-ll*[Zur(E (Brzur)(p—l)] = 0;

hence the set
r-2 r-1 -1
{78 zu_,nTylre, ® (8 5w )P
is a basis for E'. Now drwr“ZQgrzur = 0 by 7.6(v), and

a “r-l

(p-1)y _ -1 {p)
T

1*[Eur® (Brur) n 1*(Br2ur) ,

which is zero in E'. Thus there is an element x in Kl(DpzMr;r+1) with

r r-1

"X =5 1*Izur @}(BrZur)(P-l)],

2 .
and the set {Qzur,x,QBr+2p*zur} is a subbasis of heiggt r+l for DpEMr. In
particular the group Ka(DpzMr;r+1) has the same order p*T for o = 0 and o = 1. The
lemma will follow if we show that 8., ® Zp maps onto KO(DpzMr;r+l) ® Zp. But the
map
T - .
r® ZP.KO(DPZMr,rﬂ) ®z, > Ko (D EM ;1) @ 2, = KO(DpzMr,l)

is an isomorphism, hence it suffices to show that ﬂrﬁr+1 maps onto KO(DpZMr51)‘ Now

equation {1) shows that “r~11*(8r2ur){p) is in the image of nr3r+1, and it
remains to consider nr'zQBrEur. By the exact sequence
ur3r+l Pi*l
Kl(DpEMr;r+1) KO(DpEMr;l) ———-—»KO(DPZMr;r*Z)

r+l r-2
kLl

it suffices to show p,

QBrZur = 0., But 7.6(vi) gives

+1 1 +p-1 2 (p)
0= Br+3p32ur = p QBP*szzur - (PP pr)x*(6r+2p*2ur) P

r+l 3 _ _r+] r-2
LI L

i

erzur

which completes the proof.

- r-1 {p-1}
Proof of 8.2. It is easy to see that =% 15r1*ur(9) and 1 Srl*[urp ® Brur} are
zero, hence by the exact sequence
Trr-l
K (DM_;r+l) —%=K (D M_;r) —K (D M_;1)
a pr a pr a-l " "pr
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there exist elements x and y with x = 1*u§p) and 7y = I*Iul(.p—l) ®sul.
Clearly the set {x,y,Qur} is a subbasis of height r+l for Der’ In particular the
set {x,piQur} is a basis for KO(Dp ;r+1). Since {n,Qu} is a basis for
KO(DPS;r+1) we have

(2) (Dpj)*x =an + agQu.
where a,, a, Zpr+l' Applying w to both sides of (2) gives

- ; {p)
n = (Dp,))*x*urp

=an + aQu
in KO(DpS;r), hence &, =1 + aipr and a, = aépr for some aj,ay «¢ Zp. This fact,
together with the equation (Dpj)*piQur = pZQu, shows that (Dpj)* is monie on
KO(DP ;r+1). A similar argument shows that (Dpj)* is monic on KO(Der;r). I
r > 2 we have
. r-l {p} r-2 2 _

(Dp,})*{x - ajp Pyigu,. - atp PyQul =n
80 that n eKo(DpS;r+1) is in the image of (Dpj)* as required. If r = 1 we must show
aé = 0. For this we need the map j': M1 + M, induced by the inclusion Zp <z g+ Ve
have j' o j = j:M1 + S, hence P

{Dpj)*(Dpj‘)*(x) {1+ aip)n + aépQu

= (Dpj)*((l + aip)uép) + aép*Quzl .

Since (DPJ)* is monic we conclude

(Dpj')*(x) = (1 + pai)uép) + alpyQu, .

Hence
(3} nBZ(Dpj')*(x) = aéBQuz = éQSzuz .

On the other hand, 6.1(vi) implies that 1*Iuip_l)<® Bull generates Kl(Dle;l),

p-1)

N (
hence TBoX = c1*(u1 @)Bul) for some c ¢ Z_ and

P

(4) 18,(D51 (0 = (D31, (rex) = enyl(Gu) P @ gypuy) = 0

gince j;su1 = 0. Comparing (3) and {4) gives aé = 0 and thus

s (p)
(DpJ)*[X - aip*x*ulp ]l =n

which completes the proof.

Next we shall prove the external analogs of 3.6 and 3.7. The conventions
preceding 7.6 give the correct external version of each statement except for
3.6{viii) and 3.7(ix). For 3.6(viii) we must prefix (Bp,p)* 1o both sides, where
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Bp P is the natural map QPDPX + D 2X defined in I.2, and for 3.7(ix) we prefix
3

P .
(BP;P}* to the left and (“p,p,...,p)* to the right.

Proposition 8.4. The operation
R:Kl(X;r)-—»KliDpX;r+1)

satisfies the external analog of each part of 3.6.

Proposition 8.5. The operation
2: Ky (X57) > KO(DpX;r+1)

satisfies the external analog of each part of 3.7.

Theorems 3.6 and 3.7 will follow at once from 8.4 and 8.5 by the same proof
given for 3.3. The rest of this section is devoted to the proofs of 8.4 and 8.5.

Proof of 8.4. Part (i) is trivial. In each of the remaining parts except (v) we
may assume X = ):Mr with x = Zu,; part (iv) now follows from Definition 8.3.
Observe that by the proof of 8.1 the set {Qzur,REur} is a subbasis for DPZMr if

r > 2 while {Riu is a subbasis for D, M.

1} P
(iii). The map

8., :K, (D ZMr;r+2) > KO(DpzMr;r+l)

r+2°71 7 p

is an isomorphism since it takes the basis for the first group to that for the
second. Now

= 3 - 2
7B RPyIU, = nQ6r+3p*Eur = QB Pyll,

it

[ Rzur = w8r+2p*RZur

r+l
and the result follows.
{iv). The map

Br+1p*:Kl(DpzMr;r) *> KO(DPXMr;r+1)

is monic since it takes the basis elements nRfu, and (when T > 2) pyQIu, %o
2
pBr+lRZur and 6r+1p*QEur respectively. We have

_ _ 2
Bre1PymREU, = DB REUL = DOB.,PyIu,

"

2 (p)
Bren@OxIU, = 14 (B Pylu )

-1
= 8, Pxlyu, - 1,0 ® (8 zu) (P
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which gives the first formula. For the second formula, we have

sr+1p*Rw§:ur = sr+lﬂp*wzur =B szur

r+l

2 2
er+2p* ( pZur) = Qp6r+2p*2ur

_ 2 p-1 {p)

= PQB_,,Dylu, - (p - 1)1*(8r+1p*zur)

- 2 p-1 (p)

= B WeBu, - P T (B pyru )

- p-1 (p-1)

= B, qPxlApgiu, - 7 Ty (Zu, ® (8 ru ) )]

and the result follows.

(v). Iet z denote fu, and fix i with O < i < p. As in the proof of 7.3(iii)
it suffices to show that the equation

(5) (g pog)efx = ayn,l02 ® (8,10, 1 @ 1y ta g0y P
i-1 -i-1
+a,8 sl 2@ 6.2 ) @ a @ (5 o) (P
. . 1 -1
Bolds in Ky (DyM A Dy _ssMy;rel) with a) = - = P) eand a, = (P77 ). First

observe that the group K,(D;iM.;1) is the I;~-coinvariant quotient of K*(():Mr)(i);l)
- Ly @i (1-1) . .

= K*(ZMr,l) , 80 that the set {1,(z® (Brz) } 1is a subbasis for DyIM..
Thus the set

2o 8,2 M 06 P e 6 el e e P

is a sutbasis for DjIM.* D,_;IM. and we see that equation (5) holds for some

, .
ay,85¢ Zpr' Now applying ('{i,p—i)*ﬁrﬂ to both sides of (5) gives

- (p)
T*Br+lRZ = i!(p—i)!al(srﬁp*z) .

On the other hand we have

2 (p)
TxbBryq B2 = 14Q8  opyz = -(p-1)1(B_, pyz) Pl

SoJde=) 1D
hence a; TT(p-171 o { 3 J. Next we apply v to {5) to get

(i-1) (p-1)
(6) (1 o)z = =( § )ilz @ (82) 1 ® 1,(8,2) P
)(i) (p—i—l)]

* ey, (82 ® 1,1z ® (8 2)

- ayils ® (5 2) 1

1® 1,(8,2) P,

But we have
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-1
(ty g )xmRE = (55 0410 = 1e(2 ® (8,2) 7))

-(

U

) ixlz ® (82) P

Ta s
i,p-i

-tz (60 ) @ (s ) BT

- Pyt M @ 2@ (5 P,

where the last equality follows from the double-coset formula; comparing with (6)

. - _ g p-1
gives a, ( 5

{vi}. Let r > 2; the case r = 1 is similar. Let f be the composite

} as required.

-2
rh, = 57a i Erl, ;=% amM_ 223k ™,

1

where B is the Bott equivalence. We have fyurn”™ U, = Zu,, hence it suffices to prove

-1 (p) 2
b,IR(E ur) = p*x*urp + p*Qur.
Now

(Dpj)*A*R(Z_lur) = A*ZR(Z_lu) = A*XR(wZ_lu)
= A*ZQpZ—lu = pA*ZQZ-lu

= pl*u(P) + szu

(p)

. 2
= (%pJ)*(p*1*ur + p*Qur);

the result follows since (Dpj)* is monic by 8.2.

. s k k k 2
(vii) Brrq¥ RZur " sr+1R2ur =y Q8r+2p*zur

Lroky =
QB rypPyl¥ 0y, = By RIU,
the last equality following from the fact that wkur = u,. The result now follows
by 8.1.

iiij. i
{viii). Tet z denote Iu,, and abbreviate (Bp,p)* by 8y and (ap”..’p)* by ay

{the reader is requested to remember that B4 is not a Bockstein). We must show

0 if r=1
B4QRx =
8,RQz if r > 2

in Kl(Dp2 IM.;r). We shall need the equation

n . . 2
(7 G*Qx(n) ) (?)pl'l(wx*x(p))(n'l) ® (o'
i=1
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which holds in KO((DPX)(n);r—l) for each x eKO(X;r) provided that p is odd (the
proof is by induction on n from 7.6(ii)).

First let r = 1. The set {QRz,RRz} is a subbasis for qupol, and it follows
easily from Proposition 3.9 that the map

2 -
B3Py 1Ky (DD My 51) —> K, (D D 2, 53)

is a monomorphism. Since K,(D , £M;;1) is imbedded in K,(D.D iM,;1) by the transfer
1 p2 1 1V pT ™

we see that
2 .
83p*.Kl(Dp22 Ml,l) ——>KO(Dp2 le,B)

is a monomorphism. It therefore suffices to show that S*BBpiQRz is zero. We have

84850502 = 6,8,Q0, (Rp,z) by 7.6(iv) and 8.4(11i)

= B*BBIRan*z + pphll*(Rp*Z® (BBRP*Z)(pnl))]
(p-1))y pp_ls*t*(BBRp*z)(p),

B*BBR[Qpiz - 14(pyz ® (B,Dy2)

where the last two equalities follow from the second and first parts of 8.4(ii).
Now Qpiz = 0 by 7.6{iv), and

B4B;R14(Dyz ©® (8213*2)@-1)) = ayS4B,R(Dy2 ® (sz*z)(p-l)) by 1.2.12
= 5,6,0((8,032)'P)) vy 8.4(5v)
= pp_la*(QB4pzz)(p) by 7.6(vii) when p = 2 and equation (7) when p is odd
= PP Y8,1,(8,R0,2) P! by 8.4(1v) ena L.2.11.

We coneclude that 3*63p§QRz = 0 as required, which concludes the case r = 1.

Next let r = 2. We have

"8,(QRz - RAz) = £,1Q1Qpyz - 1,(z @ (5 2) P

- @y% *+ 1,( ® (8,_00) P

= 5yl-Quy(z® (8,20 ") 4 (e @ (s 02) P

1)) L e (sr_le)(p'l)l by I.2.11
and 1.2.12.

= a,l-6,Q{z ® Brz)

agl-02 ® (r1,(8,2) PP - 1z @ 5,008 _2) (P

+ Q2 ® (1,018 2)? + pog_2)P711.
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When p = 2 the last expression is clearly zero, while if p is odd it is zero by (7).
Hence we have

(8) n8x(QRz - RQz) = O.

A similar calculation gives

(9) 6,028, (QRz - RQz) = O
r+2Px Py *

To proceed further we need the case k = p2 of 4.1. First we must check that the
argument is not circular, since the present result is certainly used in the proof of
4.1. However, it enters only through the proof of 4.7, to be given in Section 9. An
inspection of Section 9 will show that only the case r = 1 of the present result is
used in proving the case k = p2 of 4.7. Thus we may proceed. We suppose r > 3; the
case r = 2 differs only slightly. By Remark 4.2 we obtain a subbasis

A=A oAy A WAL,

for Dp2 IM, with A, 5 = {By4QQz},
(i) (p-i-l)]

g g = {oyl02® (800" @ (+%5, o) | 0<1<p-2),

By o= (o102 ® 2 ® (020 P @ (P, me) P 1< < opay,

A, = {B4RQz} and A.,, = {ByRRz}. Therefore the set

-3 r-1 r+l r-2 r-2
{7 “BxQQz,m TB,RQz,n "B RRz} v Ar_1,1\/ T Br-lAr-l,O

is a basis for Kl(Dpor;l), and the subset “rwzsr-lAr—l o 1s a basis for the image
’
of nr‘zsr_l, hence for the kernel of pial. By (8) we see that §,(QRz - RQz) is

in the image of pi-l, hence there exist constants a,b,c,dg,...,dp_z Zp with

r-1

(10)  84(QRz - RQz) = pi tlan’ ,Q0z + b’ '8,R0z

-2

P 3 -1
-2 1, aee (8,400 ) @ (n%5_, ra) P11y,

r+l
+ e ByRRz + aum

If we apply Br+2p§ to both sides of {10) then the left side becomes zero by (9},
hence we have

- _ .
0 -’ 33r+2PiB*QQZ + pp™t PiB*RQz + ep™ B 4B 4RRZ
p-2 ~ »
' izo dipr 2Br+zpza*[QZ @ (Sr_le)(i) ® (ﬂ28r+1Rz)(p i-1),

Since the set A is a subbasis this gives a = b = ¢ = dy = «-- dp—2 = 0 as required.
This completes the proof of 8.4.
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Proof of 8.5. Part (i) is trivial.
(1ii) We may assume x = u,. We have

(D, yr2u, = 0 = 1,0l = (0,110

hence nﬁ-ur = 1*ui.p) by 8.2, If r > 2 then

(Dpj)*iﬂur = Qwu =2y = (Dpj )*1*121(?) ,

{p}

hence J.qu = i*ur by 8.2.

{(v) As in the proof of 7.3(iii) it suffices to show

(p-l)lp*ul(‘P) if p 1s odd or r > 2
Tedl =

2 u(2)

{2}
xup 0t (B2 )

ifp=2eandr-=1.

We prove this when p = 2; the odd primary case is similar. The element r*,‘).ur ig in

(2)

the I,-invariant sgbgroup of K (M ;T+l), and this subgroup has & basis

consisting of 24w,  with order 2” and 27~ 1(3 Z*ur)(z) with order 2. Thus we have

(11) du_ = a2 P 0 2™ g

)(2)
17%r 2

r+1*r

with 8y € Z2r and a, ¢ 22. Now

jiz)r*lur = 14 (DyJ)y By, = T4 = 2u;

(2)

thus applying J, to both sides of (11) gives 2u = 2a,u in KO(S;r+1) so that

8, = 1. Next we have
(2)

2ur if r>2
TI"I.'_X,JJUr = T*l*ui‘g) =
(Bul)(‘?) if r =1,
hence applying w to (11) gives a; = 0 if r > 2 and a, = 1 if r = 1.

(iv) We may assume x = .. let r > 2; the case r = 1 is similar. The set

{p} {p-1)
{Qu,,14u P i*(urp ® b u )}

T

is a subbasis of height r for Der, hence we have

(p-1)
(12) 82, = ap,(uPT @6 ) + a8 pLou

with a, ¢ Z rr € zpr-l' Let j':M, » M.,; be the map induced by the inclusion

z €2
r

. pe1s ThEDm jo §' = J:M_» S, hence M)y, = wap, and (§')Bou, =
P
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PrBrelUpsy - Thus

; - - {p)
(Dpd ") amBryg 2 Uy = g DT,y = By txtp

(p-1)
pm*(ur‘*l ® Br+lur+l)

and comparing with (12) gives a; = O. Next we have

{p-1}

8, 2, =18, (-1 p® = (p-1)1g P = 1 P @ u )
and comparing with (12} gives a; = 1.

(111) By part {iv) we see that the set {Qur,& ur} is a subbasis for Der if

r > 2, while {&ur} is a subbasis for Dle' It follows that the map

(Dpj)*:KO(Der;r*Z) > KO(DpS;r‘rZ)

is monie. But
(D 1)y A pyu_ = 3(pu) = J (npu) = 1,(pw) P! = pP o0 = (D ),0° b, 2u
53V xol Pyt = 3 (pu mpu) = 1,(p P" T Dyn o3 1¥PT Py U,

and the result follows.

H
o

(vi). Let p = 2; the odd primary case is similar. First let [x| = ly|
with r > 2. We may assume x = W, ¥ = u,. The set

( (2)

{2x® 3y, myux 2) B, xB®my  ,x®QW,2x®8.,,27,

3X @B, 4,0 ® 18, 87,00 ® 6y}

is a subbasis for DM, A DoM., hence we have

(13) 52X ®Y) =2, 2x@ 2y * 8,2%X @ 4, + 834xQx ® 2Y

*abQx@Qy) +aB ., ax® 5,27

r+l
TR X0 8r+14*%' * 3'781'«“14*Qx ® Bray 3
* 8B 4K @ B, 4%

with 87,85 ¢ er,,l and 82,87,8,,8¢,87,88 ¢ er-l . Since

18, 2{x @ y) = d*z*(x®y)(2) = z*x(Z) ® l*y(2)

we have ay = a7 = ag = 0. The equation

(D2JAD2j)*5*8a(X®y) = 8,2U=8,mn=n@®n

implies a; = 1 and 8y = 83 = g, = 0. Hence we have
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(14) 8 2(x ®y) =2x @Iy + a8 12X ® 8,1 2Y

with as depending on r. A similar argument shows that (14) holds also when r = 1.
Now let T; and T2 switch the factors of MrAMr and D2MrAD2M,r. Then

52T (x®Y)) = T8, (x ®y) =dy ®x - 8,8 4y ® B, Ix.
On the other hand, if r > 2 then
Sy T (x 7)) = 6,2(y @ x) =2y @Zx + a8, 4y ® 8, &%,

hence 235 = 0 as required. If r = 1 then

ST (x ®y)) = 5,2y ©®x + 8y ® 8x)

8,2 (y ®x) + 282:).y ® Bzaxa

Hence in this case -85 = ag + 2 mod 4, so that a5 = 1 mod 2 as required.

Next let |x| = 1, |y| = O with r > 2 we may assume x = fu, ¥ u

e Choosing a

subbasis for D,IM,AD,M, as in the preceeding case, we see that

(15) §R(x ®Y) = a;Rx @2y + a,Rx ® 4y + aBA*Qx ®a2y
+ a44*(Qx ® )+ 5B B ® 8,127
t B X ® Br-rl‘i’*Q‘Y ¥ a7Br+l4*QX ® Bra1 27
*oagB A ® B 4,0

with a,,a¢ Z2r+l and the remaining a; in Z2r_1. If f denotes the composite

1AD.j
2 0 1A 0 _
DyIM, A DM, ——=—= D,iM_AD,S LhE, DyIM_ AS® = DyIM_
then the diagram
8
Dl( zMr A Mr) —_— DzzMr A D2Mr
1 D,(1AJ) J’f
p (M A8’y —— DM
2 T _ 2%

commutes. Applying fy to {15) and using the equation ¢,Qu = O (which was shown in
the proof of 3.3({ii)) gives
Rx = aRx + a34*Qx,
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hence 8y = 1 and aq = 0. To determine a5 and a, we calculate

178, SR(X ®F) = 6,08 (x @) = 176, [Bx ©2y + 4 (Qx ® &)1,

Br+1

hence ay = 0 and 8, = 1. Next we calculate
8, R{x ®y) = SxmR(x ® )

r-2

= Rx @y + 4, (Qx @ Qy) + 2 BrZ*Qx® n8 2y

r+l

2r-3 (2)

+ 2 g (8 %) @ QB 27

r+l

Now the element 22r'31*(8rx)(2) is zero when r > 3 since 2r-3 > r while when r = 2

we have

0 = 28,2,Qx = 28,QRux = 21*(82)()(2).

Thus applying = to both sides of (15) gives 2a5 = ag = ag = 0 and ay = T2, 1t
remains to show ag = 2rer, where ¢, eZ, 1s the constant in the formula for

842 (x ®y). But this follows from the equation
(16} (6A1)*6*R((Eur ® ur) ® ur) = (1A 6)*6*R(Zur ®@ (ur ® ur))
if we expand both sides using the formulas already shown.
Next let x = Zu; , ¥ = u;. A suitable choice of subbasis for D,iMy AD,M, gives
§,R(x®@y) = a, Rx ®ady + a,8,Rx ® B2Y

and we see as before that a; = 1. Evaluating both sides of equation (16) in this

case gives ap = -(1 + 251). Finally, we have

§,R(y ® x) G*R(Tl*(x ®y + Bx ® By))

= T2*5*R(X ®y + Bx ® By)

2y @ Bx + (1 + 2¢))8, 27 ® B,Rx

as required.
Now let x = fu, and y = fu,, with r > 2. We have
(17) 8 (x@y) = aRx @Ry + a,Rx @ 4,Qy + a34,0x @ By
+ 8.44*(QX ®Qy) + a8, Rx ® 8 Ry + aB . Rx @ B, 4,Qy

* 8B 4xQX © B Ry * agh o 4,Qx @ B 4Qy
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with ay,8, 622r+l and the remaining ay in 2 The equation

2r-1'

(2) (2) (2) _ ,2r-4

(18) My (X@y) = s, (x@y) = ,x T @,y = B 25 ® 8 2,0y

shows that ag = ay = 0, ag = 221"4, and also that a; = 0 mod 2T and that
ay = a5 28, = 0md 2772, Next we apply (DpJ 4Dyj)y to both sides of (17).

The left side becomes
(D2j AD2j )8y 2(x @ y) = 8, A(zu ® zu) = 15, 2(Iu @ Iu),
which is zero by (18). By 8.4(ii) we have
(Dzj)*RZur = Rfu = Rmiu = 2QIu,

hence (since 8a, = 8a, = 8&13 = 0 mod 27*1) the right side of (17) becomes
0

48,Qry x Qiu, so that a, =0 1in Z2r-1‘ Next we calculate

2725, [Rx © 4,0y + 4,0x ® Ry,

(X ®Y)

hence a, = ay = 2r—2. Finally, if we expand both sides of the equation

(éAl)*G*Q((Zur® fu) ®@u ) = (1 AG)*d*J(ZurGD (zu,®u)))

using the formulas already shown, it follows that ag = 0. The proof when r = 1 is

similar.

(vii). We may assume x = u,. Let r >2; the case r = 1 is similar. Then
(19) AyZ2u_ = a Riu_+ a pZQZu
* r 1™""r 25 ¥ T p

with a;¢ 2 .,y and ay ¢Z . ;. Applying « to (19) shows that a; = O mod p¥, hence
applying (Bpj)* to (19) gives a; = 0. It only remains to show that A*Za?-ur # O when
p = 2. But Lemma 7.7 gives the exact sequence

(zv)y Ay
Kl(ZMrAMr;rﬂ) — Kl()ZDzMr;Nl) — K1(D22Mr;r+1).

Since ):'7‘“1' has order 2r+1, it cannot be in the image of (IZi1)y and the result

follows.

(viii). We may assume x = w.. We have
s k k k k
(Dp,])*q; Jur =y du=y¢yn=n-= (Dpj)*:w u,

since wkur =u,; the result follows by 8.2.

(ix) By equation (7) in the proof of 8.4(viii) and I.2.14 we have the
following equation in K5(D X;r-1) when p is odd and r > 2.
Y
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{(p) (p)

- - R pyinl
(20) BxQuyX © = 1,6,Qx 7 = [ ]

(1, x PH P g (g (3,

When p = 2 this equation follows from 7.6(vii) since 1*(x ® BX ®Xx® BrX) and
1*(Q3rx ® QBrx) are zero by 7.6(x).

X = uy. The set {3 uy} is a subbasis for Dle, hence by 4.3 the set

let r =21
) ;1) Lemma 4.3 also implies that the set

b
{Qaul,x*u( } is a basis for KO(D p My ;

v .
Q%u,1,u ¢ KO(Dprs,l)

is linearly independent. Hence (Dprj J¥ is monic on KO(DprM:'51)‘ Since the
transfer

K (D o M5 1) - K (D D MI 1)

is monic and (Dprj)* o1 =1 0{D Z'j)*’ it follows that (D , j)yx is monic on
1Y
KO(Dp2 M ;1). But

(Dpz 3)x8xQ2uy = BxQdu = sxQiu®),

which is zero by (20), hence gyQ uy = 0 as required.

Next let r > 2 and let y denote the element

P . . .
-2 (p),(p-1i) (1)
BQ2u, - 1y izl[li))pl 11*111,p P ®pyllQu,) 7]
in Ko(D 5 M,;r). Then (20) implies that my = O and (D , j)yy = O, and we must show
p 1Y

y = 0. Since qy = O we see that y is in the image of pr 1. To proceed further we
need the case k = p of 4.1; we may use this result w:Lthout circularity since only
the case r = 1 of the present result is used in proving it (see section 9). Now as

in the proof of 8.4(viii) we see that the union of the sets

el P @ (7 20u )P 0 <5 <y
el P B g 1 (P g g )

© (") P 9% qul (1< <)

r-3

and, if r > 3, {« B*QQu }, is a basis for KO(D 2MT;I). The second of these sets

generates the kernel of pi -1 and also the kernel of (D 2 g, and it follows that
(D 2 J)s is monic on the image of p . Since (DPZ 3 )*y = 0 we conclude y = O as

required.
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9. Cartan formulas

In this section we shall prove lemme 4.7. As in the proof of 2.7, the basic
idea is to "simplify" each expression in CQ (respectively CQ') to obtain an expres-
sion in C{x} (respectively C{y,z}). We shall refer to the simplified expression as
a Cartan formula for the original one. Some explicit examples of such formulas will
be given below. However, some of the formulas we need are too complicated to give
explicitly, and instead we shall use an inductive argument to establish their

existence.

In order to do so it is convenient to work in a suitable formal context. Let

E1s+se,Ey De indeterminates and suppose that to each has been assigned a mod 2

dimension denoted Igii and two positive integers called the height and filtration
and denoted ugiu and vgi. Intuitively, g4 should be thought of as an element of
K|€-|(DV§ X;ugiu) for some spectrum X. We wish to consider certain finite formal
combinatidns E(g1,++4,84) Involving the g; and the operations of section 3, namely
those combinations which would represent elements in one of the groups Ku(DjX;r)
when interpreted "externally" as in section 4. More precisely, we define the
allowable expressions E(£;,...,ty) end assign them dimensions, heights and
filtration by induction on their length as follows.

Definition 9.1. (i) Each indeterminate £; 1is an expression of length 1. For each

% eZy, T >1, J >1 there is an expression O {called zero sub «,r,j) having

C‘7r)j
length 1, dimension «, height r and filtration j. These are the only expressions of

length 1.

(1i) Suppose that the expressions of length < 2 have been defined and assigned
dimensions, heights and filtrations. The expressions of length &+l are the follow-
ing, where E ranges over the expressions of length %.

(a) pxE. We define |[pyE| = |E|, Ip,El = 1El + 1 and v(p4E) = vE.
(b} B.E if IEI = r. We define |8 E| = |E|-1, g El = IEl and
v(B,.E) = vE.
(e) wE 4if 2 < WEI. We define [vE| = |E|, unEt = 1Ei-1 and v(«E) = vE.

(d) B + Ey, where E; and E, are any expressions whose lengths add up to £+l
and which satisfy |E| = |E], WE, 4 = WE,l, and vE; = vE,. We define
[E, + B5] = |51, VE, *+ By = 1E 4 and v(Ey + Ey) = vE.

(e} E{+E, {the formal product) where E; and E, are any expressions whose
lengths add up to 2+1 and which satisfy uElu = uEzu. We define
iEi.Ezl = |E1| + |E2|, 1E »E, 0 = WEj, and v(E;+Ey) = vE) + vE,.

(f) QE if 2 < UEN. We define |QE| = |E|, WQEN = IE4-1 and vQE = pvE.
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(g} 2Eif |E| = 0. We define |QE| = 0, 12 El = 1Et+1, and v2E = pvE.

{n) RE if |E} = 1. We define |RE| = 1, &RE# = #Es+l, and vRE = pvE.

Note that we have not required formel addition and multiplication to satisfy
commutativity, associativity or other properties. However, in writing down
particular expressions we shall often omit some of the necessary parentheses, since
their precise position will usually be irrelevant. We shall also abbreviate Oa,r,j
by O.

We have given Definition 9.1 in complete detail as a pattern for other indue-
tive definitlons about which we will not be so scrupulous. For example, let E be an
expression in the indeterminates £,,...,64. If By,...,E are expressions in another
set of indeterminates ny,...,ng with {E;| = |g;}, VE( i = g, 0, and vE; = vu; for
1 <i <t then we may (inductively) define the composite expression E(El"“’Et) in

N1sesv,ng- Again, if X is any spectrum and xieK| I(DV X;ﬂgin) for 1 <i <t then
i

. 4
we can define b

E(Xl"°°’xt)€ K X;0EL)

1e| PuE
as in section 4 by interpreting Q, 2, R and the multiplication externally and
applying ay and By to formal products and composites.

Definition 9.2. Let Eqsvresby be a fixed set of indeterminates. Eguivalence,
denoted by ~, is the smallest equivalence relation on the set of expressions in
€1,++,&4 which satisfies the following.

(1) ~ is preserved by left composition with Q,d ,R, =, px and 8. and by formal
addition and multiplication.

(2) For each r > 1 the equivalence classes of expressions of height r, graded

by dimension end filtration, form a Z, x Z graded ring {(without unit) with the

15, 115,
s . 11172 s
Oa,r,j as zero elements. The relation El-E2 = (=1} E2 El is satisfied and

left composition with =, B, or Dy 1s additive.

(3) If x and y denote expressions E and E, having height r and the required
dimensions then the following hold with = replaced by ~: 3.1; 3.2(iii),(iv) and
(v); 3.3(1i1), (iv), (v), (vi), (vii) and (x); 3.6(ii), (iii), (iv), (v) and (viii);
3.7(41), (111}, (dv}, {v), {(vi) and {(ix).

Roughly speaking, two expressions are equivalent if one can be transformed into
the other by using the relations of Section 3.

It is easy to see that equivalent expressionsg must have the same dimension,
height, and filtration but not necessarily the same length. An inductive argument

shows that E(El,...,Et) and E'(Ei,...,Eé) are equivalent if E ~ E' and Ei ~ Ei



364

for 1 <i <t. A similar inductive argument using 3.1, 3.2, 7.6, 8.4 and 8.5 gives
the following.

Lemma 9.3. Let E and E' be equivalent expressions in Eqpvensbye Let X be any

spectrum and let X; be an element of K X;ugiu), for 1 <i <t. Then
i

(D
igil v§
E(xl,..,xt) = E‘(xl,...,xt).

If A = {gl,...,gt} is any set of indeterminates we can define the filtered
algebra CA and the subquotient groups DjA with their standard bases exactly as in
sections 3 and 4. If A' is another set of indeterminates and f:A » A' v {0}
preserves degree, height and filtration we say that f is subbasic. Clearly, the
constructions CA and D;A are functorial with respect to subbasic maps. We can think

J
of the elements of D:A as expressions in €1,+--,&4 Dy Inserting parentheses so that

addition and multiplication are treated as binary operations. (Of course, up to
equivalence it doesn't matter how the parentheses are inserted.) This identifies
IBA with a subset of the expressions of height 1 and filtration j in E1revvsbye By
a Cartan formula for an expression E of height 1 we mean simply an equivalent
expression in DvEA' The next result, which will be proved later in this section,
provides some examples which will be useful in the proof of 4.7. We say that two

expressions E, and E, are equivalent mod p if there is an expression E' with

IIElII—l IIElll-l
E,

El ~ E2 + pE'; in particular this implies E1 ~ e

Proposition 9.4. Let E1s &2, 53, £ be indeterminates of height r with dimensions
0, 0, 1, 1 respectively. ILet 1 < s < r and let t > 1.
s s
(1) 8, Qg ~QBE; mog p.
. S, (.8 s
(ii) Br-sQ EB (w Br£3; mod p.
(1i1) Qs(£1£3) ~ (nsgl)p QSEB mod p if p is odd or r > 3.

(iv) QS(53£4) is equivalent to (ngB)(ng4) if p is odd and to

s-1 s-1

2 s-1 s 2
) (nQ 54)(ﬂ BrEA)

s s r-s-1 s~-1 s
Q 53)(Q 64) +2 (nQ 53)(n BnEq
if p=2and r > 3.
s
() Sleege,) ~ (n%g)P (@%)(Q%,) 1f p 1s odd.
(vi) If 1 <i < p-1 then

s, p-1, _ s s \p°i-1), s p3(p-i)
BogQ (E185 7) i(Br_sQ g0 (rgy) (w 52)

)ps (p-i-1)

s
- 1% (s ag,) (n%, mod p
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. r+t-1 % i-1 p-i
(vii) If 1 <i < p-1 then « BratR [(Brgl)gl 4 ] is equivalent to
10 r-1 )(i-l)pt( r-t-l Qt Y r-1 )(p-i—l)pt( r--t--lB Qt )
LIS " Bt 81T 6 n r-t 52

if t < r and to gzero otherwise.
(vii1) 8d& g ~ 0.

(ix) If s <t then Q°pb¢; is equivalent mod p~5*2 to
g-1 8
t~g+l, g-1 -
N A SO
where
1if pisodd or s < %

-1 if p=2and s = t.

Qsps'lgl is equivalent mod p to

s-1 ps—l a s
(1°77Qg P+ o, (%P,
where

0 if p is odd

l1ifp= 2.

There remain expressions, such that QT2 g1, for which the Cartan formula is too
complicated to give explicitly. Our next result will guarantee the existence of
such formulas. let A = {€15+2+48¢}. We say that an element of IEA,is homogeneocus
if it is a sum of standard basis elements each of whieh involves every Eqe Note
that such elements are in the kernel of Iﬁf whenever f:A + A'w {0} tekes at least
one gy to 0.

Proposition 9.5. Any expression £ of height 1 in g£4,...,£, 1s equivalent to an

expression In D;A for some j. If the £; have height r and degree O then the

r-s-lns
Q

expression = (gl---gt) is equivalent to a homogeneous expression In EBA for

each s < r. If the g; have height r and degree 1 then
r+s-1 s
w Br+sR (gl(ﬁrgz)---(srgt)) is equivalent to a homogeneous expression in EHA

for each t > O,

The proof of 9.5 will be given at the end of this section. Unfortunately,
there seems to be no direct algebraic proof that the Cartan formulas provided by 9.5
are unique, that is, that distinet elements of EBA cannot be equivalent as
expressions. If we had uniqueness in this sense then Lemma 4.7 would be an

immediate consequence of 9.5. Instead we shall have to give a much more elaborate
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construction of Yj and yj, making use of the explicit formulas of 9.4 in order to
avold appealing to uniqueness. (A similar difficulty in ordinary homology is
implicit in ocur proof of 2.7). On the other hand, it is easy to see from 4.1 and
3.3 that uniqueness does hold, but of course such an argument cannot be used in
proving 4.7. However, we can and shall use uniqueness in filtrations less than k in
the following inductive proof of 4.7.

Proof of 4.7. We shall give the proof for r < ». The case r = =, which is similar
and somewhat easier, requires some straightforward modifications in Definition 9.1
to allow for infinite heights; details are left to the reader.

First let M = M, with r > 2 (the r =1 case is similar and easier). We
define & to be {Qx,x}. Iet uy and v, respectively denote y"zP™ and (Sry)ym'lzp'm
for 1 <m < p-1 and define &' to be

{,9,2y,22) oy | 1<m<pl} wiv | 1<mg<pl}.

Lemma 4.3 implies that (L and (L' are in fact subbases for Der and DP(Mr v M.
Note that (ngl)* takes Qr and 2 y to Qx and 2 x and takes all other elements of 4!
to zero. In particular (ngl)*’ Q' » A u{0} is a subbasic map and hence

Fy = Dy(Dygy)x. Similarly, F, = Dj(ngz)*° On the other hand, (ngo)* is not
subbasic since 1t takes w; to wdx and Y, Yo wBL,q 2%, hence Fy is not induced by
functoriality from (ngo)*. It is determined by (ngo)*, however, in the following
way. If

EQy,Qz, v, az, ul,...,up_l,vl,...,vp_l)
is any expression in Dj ' and E' is an expression in Dja, equivalent to

E(Qx,Qx, 2%, 2%,7 2X%, ...,n.?.x,nsrﬂa,x, cve,mB_ .2 X)

r+l
then by 9.3 we have AJ.(FO(E)) = )\j(E‘), hence FuE = E'.

Next we shall construct Yj and y‘%. We assume inductively that Y, and yé with
the required properties have been constructed for all 2 < j. By using the values of
Yy and YI'L on indecomposables and extending multiplicatively, we can define
Yj and y';. on the decomposables of Dj & and Dj Q' so that the diagram commutes when
restricted to decomposables. It remains ito define yJ. and yé on the standard
indecomposables of Dj A and Dj QA'. We may assume that j = ps for some s, since

otherwise there are no indecomposables in filtration j.

let gl,...,gp be indeterminates with dimension zero, height r, and filtration
1. If s <r we use 9.5 to choose a homogeneous expression E in Dk{gl,...,gp}
equivalent to “r-s-—le{gl_“gp}. If s = r, let E be an expression in Dk{gl,..,gp}

equivalent to QT2 £y We define subbasic maps
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fpilEyseensgy) > &1 2 {0}
for O <m < p by
y for g <m
fm(gl) =
z for g >m.

Finally, we define h:{gl,...,gp} + A by h(ggl = x for all ¢. Note that
(ggly o £, =1 for all m.

We define Y; and yj on indecomposables in table 1. The first columm lists the
standard indecomposables in DjCl', and the second colum (we claim) gives the value
of ¥y on each. The first four entries in column 2 are precisely the standard inde-
composables in Iﬁ (. , and the corresponding entries in columm 3 define Yy on each.
The remaining entries in column 3 then give the resulting values of Y; on the other
entries of column 2. Finally, column 4 defines yj on each entry in columm 1.

Note that we have denoted iterates of n in the table simply by m; the precise
iterate intended can easily be determined since all entries in the table are to have
height 1.

The values of FO claimed in column 2 are either obviously correct or follow

easily from 9.4 or the formulas of section 3. For example, in line 10 we have

r-s s r-s s r-s+l s
n Br-s‘rlQ TLX ~ T B R 2X ~ pr Br-—s+2Q 2% ~ 0

r-s+l
and in line 12 we have

r+s-1 s r+s-1.8 2s
L Sr+sR n8r+1lx ~ 0 Q 8r+25p* n8r+12x ~ 0.



3.

5.

9.

10.

11.

12.

and

wQS{Q,y)

1Br_g1195(27)

wQS(Qy)
"8p_g_1Q°(Qy)
wQ%Jz2)

"Br—s+1QSQ22)

1Q5(Qz)
"8r_g-1Q°(Q2)
wQBuy

"Br-sQS“m

8,
vy

s
"Brygf vy

listed generators occur only for certain values of s.

%o

Q%2 x)

"Br-s+1QS(:"' x)

Q3 (Qx)
1Bp_g.1Q5(Qx)
QEO.x)

By _ge1Q° 2%

Q% (Qx)
1Bp_g.195(Qx)
Q%(3x)

0

7By _ge1 Q5 (@)

Table 1

yl o FO

(Dh) (E)

(wx)(p_m-l)JwBr_

O ifs=r
"Qs+1x

619" 1

(D) (E)

same as line 2

"Qs*lx
nBr__s-lQSH‘x

(D) (E)

o]

(nx)(p“m'l)JwBr_

0

11, 8 £ r-1; and in lines 3,4,7 and 8, 8 < r-2,

s
RAhs <

s
9

Ii
(D £, ) (E)
( "y) (p—m—l ).} “51-

if s<r —Sst ife<r

Oifs=r
WQS+1y

+
87519 Yy

(Dy foH(E}
(“Z)(p—m—l)jnsr‘stz ifs<r
Oifs=r
"QS+1Z

nsr_s_lQS+1z

(D, ) (E)
m(8,._gQ%) (ry) (M1 () (P
~m(ny)nu (BI._SQSZ)(uz)(p'm”l)J
(ny)(m_l)J(nz)(p-m)jnﬁr*Sst
m(ay) 01 () (P10 (0 Q5y) (np,,_Q%)

if 8 < r, O otherwise

In lines 1,2,5 and 6 we require s < r; 1n lines 9, 10,

89¢
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To complete the proof of 4.7 for M = M, it remains to show that diagram (¥} of
section 4 commutes for 1 = 0, 1, 2. In order to see that the immer square commutes
it suffices, by Lemma 9.3, to show that the first four entries in columns 2 and 3
are equivalent as expressions in x. This is clear for lines 1, 3 and 4 and for line
2 1if s = r (by 9.4(viii)). If s < r in line 2 we have

r-g r-g=-1_.8
B8 7

T Trr-s-—‘i{‘gs(xp—l

Q®tax) ~ 2% ~

T r-g+l r+1 SrX)

which is equivalent to the required formula by 9.4{iii).

To see that the outer square commutes, we must show that the entries in columns
1 and 4 are equivalent as expressiong in y and z. The first eight cases follow as
in the preceding paregraph. Line 9 follows from the definition of E, line 10 from
9.4(vi}, line 11 from 9.4(iii), and 1line 12 from 9.4(vii).

For commutativity of the upper irapezoid when i = 1, we must show that Dk(gl)*
takes the first four entries in column 4 to the corresponding entries in colum 3
(which is obvious) and takes the remaining entries in column 4 to zero. This
follows in line 9 from the fact that E is homogeneous (since (gl)* o f = takes at
least one gy to zero if 1 < m < p-1) and the remaining cases are clear. Similarly,
we see that the upper trapezoid commutes when i1 = 2. Finally, we observe that each
entry of column 4 goes to the corresponding eniry of column 3 under Dk(go)*, and
hence the upper trapezoid commutes when i = 0. This completes the proof of 4.7 for
M=M.

Next suppose M = iM,.. We define A= {Rx} when r = 1 and = {Qx,Rx} when r > 2.
let uw = y(Bry)m-l(ﬁrz)p"m and v, = y(Bry)m'lz(Brz)p'm'l for 1 <m < p-1. We define

(L' = (Ry,Rz} o {ypfl <m <p-1} O {vgll <m < p-1}
when r =1 and
A' = {¥,Q, Ry,Rz} © {uy|l <m < p-1} v {vp|l <m < p-1}

when r > 2.

Then (ngl)* and (ngz}* induce subbasic maps from (' to @ and we therefore
have F; = Dj(ngi)* if 1 = 1 or 2. The map (ngo)* takes u, to -nRx when r = 1 and
1o pyQx ~ 7Rx when r > 2. 1t takes v, to zero when p is odd. When p = 2, 3.3(x)
implies

#
—

QBZZ*X uf r
(ngo)*vm =

\'
n

"% 2,0x if >

We begin with the case r = 1. We define Y3 and 73 on decomposables by
induetive hypothesis as in the M = Mr case. To define Yj and yj on indecomposables
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we use Table 2.

Table 2
EQ Y. © FO Ii_
1. Q(Ry) Q(Rx) 0 0
2. wBgypRS(RY)  wBg, RS (Rx) 8apRS X 8RS Ly
3. Q(Rz) Q(Rx) 0 0
4o mBgoRS(R2)  mBg, RS (Rx) BeoR® 1x 1854 oR5 1z
5. mBge1Rouy Folu8gs1R5uy) 0 0

Here the first column lisits the indecomposables of Q§Cl, and the second column {(we
claim) gives the value of Fy each {note that lines 1 and 3 are relevant only when s
=1, i.e., when k = p2). The first two entries in column 2 are the indecomposables
of Iﬁd., and the corresponding entries in column 3 give our definition of Y3 on
each, while the remaining entries in column 3 are claimed to be values of Y3
determined by the definition we have just given. The entries in column 4 define Yj
on indecomposables. The necessary verifications are similar to those in the case
M = M., and they are straightforward except in line 5. Here we must show that

that ijo(nsBs+1Rsum) is equal to zero and that nSBs*lRS(y(sy)m_l(Bz)p-m) is
equivalent to zero as an expression in y and z. For simplicity we assume that p is
odd -- the case p = 2 differs only slightly. First recall that to calculate
FO(nSBS+1RSum) we need only find an element of Qjél which is equivalent to

—nBS+1RSw(Rx) as an expression in the indeterminate Rx. Now

s s S8 28 .
-1 Bgy ROw(Rx) ~ -nQ78, Py n(Rx) by 3.6(iv)

~ Q%8 , 5 ().

We see by induction on % using (3.3(vi) and 3.3(vii) that Qt of a multiple of p is
equivalent to a sum of terms each of which has either p or a p-th power as a factor.
Hence FO(nSBS+IRSum} is a sum of terms each of which has a p-th power factor, and
the same is true for the element YjFO(wsgsflﬁSum) of Dk{x}. But by definition all
p-th powers in C{x} are zero when r = 1, so that ijo(nSBS+1RSum) = 0 as required.
The proof that usss+lRS(y{sy)m-l(gz)p“m) is equivalent to zero is similar. We
have
s s m-1 p-m 8.8 28 m-1 p-m
T B B (yley) T (82)T) ~ QTR Py (yigY)T T(ez)T )
3 s_\m S _\D-m
~ QLB PyY ) (B Py2)” )

H
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and 3.3(vi) and 3.3(vii) show that Q% of a product of elements of degree zero is
equivalent to a sum of terms each of which has either p or a p-th power as a factor.
But again p-th powers in C{y,z} are zero and we see that

nsss+1RS(y(By)m"l(sz)p-m) ~ 0 as required. This completes the proof of Lemma 4.7
for M = IM, .

Next let r > 2. We can define Y and yj on decomposables precisely as before.
In defining Y and Yj on indecomposables when r > 2, it will be convenient to modify
the standard basis we have been using as follows. Let m and o be indeterminates

with dimension 1, filtration p and heights gl = r-1, ol = r+l. We use 9.5 to

obtain an expression E(ny,n,) in Qj{“l’“2} equivalent to JTF8-1g
We claim that the coefficient of = ° °g

r+SRS(p*n1 - gl .
r+s—1RS”1 in E(ny,np)} is 1. To see this,
write E(“l’”2) as E1 + EZ’ where El involves only ny and every standard basis

element in E2 involves no. If f:{nl,nz} > {nl} «J {0} takes ny to itself and n,
to gero then (ij)(E{nl,nz)) = El’ On the other hand,

r+s-~2 s

+g5-1
r+s—lR n

(D, £)(B(ny,my)) ~ Elny ,0) ~ W, BOpyny o~ w

1°
Since uniqueness holds (by inductive hypothesis) in filtration j we have

. T+s-2 s
By = Bres-1Rny 4

proving the claim. We can therefore give new bases for the indecomposables of D

J
. r+s-2 s r+8-2 s
and D; (L' when r > 2 by replacing = Brpg g B (QX), = Bryg1l () and
r+s-2sr+s_1R§(Qz) in the standard bases by E(Qx,Rx), E(Qy,Ry) and E(Qx,Rz)
respectively.

Next let gl,...,gp be indeterminates with dimension 1, height r and filtration
1. We use 9.5 to choose a homogeneous expression E’(gl,...,gp) in Dk{gl,...,gp}

equivalent to
s
“r+s—13r+sR (51(8r52)"‘(8r‘5p))’
Finally, we define the subbasic maps f; and h exactly as in the case M = M.,
We can now define Y; and yj on indecomposables by means of Table 3. The first
colum lists the new basis for the indecomposables of QiCl '. The second zolumn (we

claim} gives the values of Fy on each basis element.



Table 3

E,:Q ’YLO FQ ) Ij_ )

1. QSay) QS (Bx) <% (g P ir s < r 0 [(a®) tre ) P ar s <

0 if s =r 0if s =1
2. Bp,ee RS(RY) By RE(RX) Y Bregi RS LY
30 RS(Qy) Q% (Qx) Q5+ 051,
4. E(Qy,Ry) E(Qx,Rx) (D) (E") (Dy L) (E)
5. Q%(R) nQS (Rx) Q%) (g P se s < [ (4% (nape) PTI 4 s < p

O fs=r Oif s =1
6.  mBpygsqRS(RZ) 7Bprgs RS (RX) Bpege1 RS 1K MBpage1RS 1z
7. 1Q5(Qz) Q% (Qx) 5 1x 1051z
8. E(Qz,Rz) E(Qx,Rx) (D) (E) (D, fo) (E")
9. 1Sy, Q5 (Rx) (7Q%x) (g} (P71 (283 (g ) (M1 (g 2) (P01
10, w8, gR%uy E(Qx,Rx) (Dh) (E') (Dy ) (EY)

28 2s+1
11, wSvy (nBp_1 (@) if p=2, s =12 (wgx)
s-1 8 -1)j3 -
(n8 (@2 4r p =2, 5 = r1 [ (wa, B0)? (%) (re_y) ™1 (1%) (g z) (P01
0 otherwise 0
j -1

12, w8, Q5% 0 0 (re )™ (1°2) (rg z) P

~(10%y) (ray) PN (g _ay (PN

The elements listed in lines 3 and 7 occur only when s < r-Z. In lines 9, 11, and 12 they occur only when s < r-1, and in lines
1 and 5 only when s < r.

cLE
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The first six entries in this column are the new basis for the indecomposables
of Qja" and the first six entries in colum 3 define Yo while the remaining
entries in column 3 give the values of v; on the remaining entries in column 2. The
entries in column 4 define yj. The verifications necessary to prove 4.7 in this
case are agein similar to thoge in the case M = M.. The less obvious ones are the
following. If s < r we have

nr—stRx N ﬂr-s—le"Rx ~ nr—s—le+lp*X R Trr—s-le(X(Brx)P—l)

~ =TT (7 ) (P

in lines 1,5 and 9 by 9.4{iii). (In particular we observe, as claimed in the proof
of 8.4(viii), that the relation 3.6(viii) is not used in the present proof when
g§=1land r>2.) If s=r we have

Q%Rx ~ QR Yx ~ O

in lines 1 and 5 by 3.6{viii). In line 11 with p = 2 we apply 9.4(ix) to show

F (nr-s—lev } o~ “r~s-1

s, -2
0 m Q(

2 3r2*Qx)
0 if ¢ < r-2

r-2
~ (nr_ler*Qx)z if 8 = p=2

r-2 r-2

2 r-1 2 -
+ (7 BrZ*Qx) if 8 = r-1

(nr_zQBrQ*QX)

and the claimed values of Fj follow from 3.1(ii), 3.5 end 3.6{iii}) and (iv). This
concludes the proof of 4.7.

Proof of 9.4. let =~ denote mod p equivalence. Parts (i), (ii), (iii), and (iv)
follow easily by induction from 3.3(v) and 3.3(vii). For part (v) we have
s
s L o5 s o (-S; 4P (8 8
Q ((5152}54) Q (gliB)Q (54) (r7g )" (Q 53)(Q 54)

by (iii) and (iv). For part (vi) we have

s ip-i, .8 i p-i
BogQ (E785 ) =~ Q8 (6765 7)

s i-1_p-i

. i i-1
1(Sr51)51 £, = (p—z)g;(srgz)p'l 1

r

Q

7

p—i-1]

8 i-1 p-~i :~Sp. 1
10708 g ey Ty 1 - 1Q g (B E))ES

]

i-1 s _ S
1(0% g, ) (o5, ) P (8 ) (PP

S i e 0P (6% ) (n%,) (PIFLID]
1 r°2 2
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and the result follows by part (i).
(vii) First we c¢laim
T
(*) Q Bri1Pxéy ~ 0.
This is true when r = 1 by 3.3(iv) and 3.3(v). If r > 2 we have
QB PeEy ~ Q@18 QpyE
r+1P%5 r ¥Rl
r-1 p-1 P
~Q TB.IpyQe, - (p - 1)l
r~1
~ Q@ T8 DyQe,
and the claim follows by induction on r.

Now we have

r+t-1 % 1-1 p-i r+t-1t 2t i-1 p-i
w BB (B E)E] Tey T~ @ Q78.,,4Px (B E1)E] 55 7]
THt-l % 2t . 2%, i-1 p-i
M QB By Py By IRk (6] T8 T
r+t-1.t 2t r+t-1.t 2%, 1-1 p-i
QB P ) [T Qe (8] 6
If t > r then
r+t-1 % 2t t t-r
w Q BI"+2tp* 51 ~ Q B't‘*lp*(p* El)’
which is equivalent to O by (¥). Otherwise we have
r+t-1_1 2t r+t-1_t 2t, i p-i
(w QB4 Py £p) [ Q78 ,0¢Px (E1E5 ]
r-t-1.% r-t-1.t , i p-i
~ = Q Bril){ﬂ Q Br(iliz b3

and the result follows from part (iii).

For (viii), we have

r r-l
BQJ«El ~ Q SQ.Zil

2
( g )(“r-lx)(p ‘P)(r-l)Qr-lsrp*Qx ifr>2

ko Bt

0 if r =1,

but the expression for r > 2 is also equivalent to zero by (¥).

Finally, part (ix) follows from 3.3(vi) by induction on s.

)]
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It remains to prove 9.5. In order to keep track of when an element of
Ig{gl,...,gt} is homogeneous, we make the following definition. Iet S be a fixed
set and suppose that we have assigned to each gi a subset h(gi) of S called the
homogeneity of £;. Then we define the homogeneity of an arbitrary expression in
€15+e+564 DY requiring that Oa,r,j have homogenelty S, that py,8,,7,Q, 2 and R
commute with h and that h{E + E'}) = n(E) N h{E') and h(E.-E') = h{E) v h(E'}). We say
that an expression E(gl,...,gt) of height 1 is reducible with respect to h if
there is an E' Dj{gl"":gt} with E' ~ E and h(E') 2 h(E).

Proposition 9.6. If S is any set and h(gy),...,h{gy) are any subsets of 8§ then
every expression of height 1 in E1seeerby is reducible with respect to h.

If 8= {g,+.-,8;} and hlg;) = {g4} for 1 < i <t then the expressions listed
in 9.5 have homogeneity S, while an expression in Iﬁ{gl,...,gt} has homogeneity S
if and only if it is homogeneous. Thus 9.5 follows from this case of 9.6. The
extra generality allowed for S and h is teechnically useful in proving 9.6.

In the remainder of this section we prove 9.6. We fix a set S and assume from
now on that any indeterminates mentioned have been assigned homogeneities contained
in S as well as dimensions, heights and filtrations. It will be convenient to let
£, n and 6 denote indeterminates and to let E, F, G and H denote expressions. We
say that two expressions (possibly involving different sets of indeterminates) match
if they have the same dimension, height, filtration and homogeneity. We shall
frequently use the fact that a sum or produet of reducible expressions is reducible
and that homogeneiiy is preserved by substitution, i.e., if F is any expression in
Nyseeesng &8nd Ey, ..., E matching ny,...,ng respectively then h{(F({E;,...,E )] = h(F).
Note, however, that equivalent expressions generally have different homogeneities;

for example, pt is equivalent to O if 1zt = 1 but hi{t) is not necessarly equal to S.

For our next two results we fix a set {nl,...,ns,ni,...,né,ng,...,n;} of inde-
terminates such that each ni matches Qni and each ng matches R“i‘ Here and else-
where we shall interpret Qni as 01}1’1 if Hniu =1 and Rni as Ol,l,l if |ni| = 0.
We say that an expression is elementary if it does not involve Q or R.

lemma 9.7. Let G be an elementary expression of length 2 in Npyeseyng and let 8
match G.

(1) If Fis n'%" g or L1001

B 8 then there is an elementary

(3
expression G! DvG{nl,...,ns} with G' ~ F(G) and hG' D hF.

(ii) If F = Q6 or F = Re then there is an elementary expression

G'ny,eeeyngond,eee,n,nd, oee,nf) with hG' D BF and

F(G) ~ G'(nl,...,nS,in,...,Qns,Rnl,...,RnS).
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IE ninj and ny. The
result can be checked in each case from the formulas of section 3.

Proof. The possibilities for G are TN, PN, Bpnys ni+n

Next we define the complexity c(E) of a standard indecomposable E in
Is{ﬂl,..-,ns} to be the total number of Q's and R's that appear in it. We define
¢{E) for an arbitrary expression E in Eﬁ{"l"'°’“s} to be the maximum of the

complexities of the indecomposables that appear as factors in the terms of E.

Lemma 9.8. Iet H eEg{nl,...,ns,qi,...,né,nx,...,ng}. Then there is an
H' Erb{nl""’ns} such that h{H') D h{H), c(H'} < e¢(H) + 1 and E' is equivalent to

H(nl,...,nS,in,‘..,QnS,Rnl,...,Rns).

In particular, the latter expression is reducible.

Proof. We may assume that H is a standard indecomposable and hence that it involves
only one of the indeterminates. If it involves one of the ny the result is

trivial. Otherwise H has one of the forms

Nniﬂ—t-2 £ Hniﬂ—t—2 Hniﬂ~t " Hniﬂ+t-2

t
1 ] 1 1
" Qng, 7 Suniu-t-zQ Nis ® Qng, Rong, or

B -
ing 1+t-1

in, I+
ny 1

i B Rtn;. In each case the result follows either trivially or from the

Hniﬂ+t+l

formulas of section 3.

Lemma 9.9. let E,...,E, be elementary expressions in Eyseessby and let
el""’er match El,...,Er respectively. Let F ¢D {81,..,0r}. Then there is an
H Etﬁ{gl""’gt} such that c(H) < ¢(F), h(H) D h(F) and H ~ F(E,...,E). In
particular, F(E;,...,E.) is reducible.

Proof. Let 2 be the maximum of the lengths of the K. If ¢ = 1 the result is
trivial. We shall prove the result in general by induction on c¢(F} with a
subsidiary induction on %. We may assume that F is a standard indecomposable, and
hence that it involves only one of the 64, say 6. Now by Definition 9.1, E; can be
written in the form G(Eyq,E;,), where Elligl,...,gt} and E12{E1""’gt) are
elementary with lengths less than ¢ and G(nl,nz} is elementary with length 2. If

iy n-1 16, -1
¢{F} = O then F has the form =« 1 or = B and the result

18,1-1°%1
follows by 9.7(i) and the subsidiary inductive hypothesis. Otherwise F has the form
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F'{F"), where F¥ = Qg or B9, and c(F'} = c(F} - 1. Thus

F(El) = FY{F'{G(E 11,E12})). Ir ni,né,n{,qg are as in 9.7 then by 9.7{1i) there
is an elementary expression G'(nl,nz,ni,né,ng,ng) such that h(G') h(F") and
G'(nl,nz,in,Qn2,Rn1,Rn2) ~ F“(G(nl’nZ))’ Thus

F(G(nl,nZ)) ~ F‘(G'(nl,nz,in,an,Rnl,an)).

Now sinece ¢(F') < c¢{F)} the inductive hypothesis gives an expression
HeDj{nl,nz,ni,né,nK,qg} with c¢(H) < e(F') < ¢(F), n{H) O £f{F'} D h{F), and

H ~ F'(G'(nl,ﬂz,ni,ﬂé:ﬂ,ﬂg))
S0 that
F(G(n1:n2)) o~ H(nl,n2,in,Qn2,Rﬂl;Rn2)-

Now by lemma 9.8 there is an expression H! Giﬁ{nl’nz} such that

e{H') < e(H) + 1 < c{F) end h{H') D h(H} ) h{F) with H' ~ F(G{ny,n,)). Hence F(E,)
~ H'(Ey,,E5). Since Ej; and E, both have lengths less than £, the result now
follows by the subsidiary inductive hypothesis.

Finally, we complete the proof of 9.6. Iet G(gl""’€t> be any expression of
height 1. The proof is by induetion on the length of G, which we may assume is >
2. It is easy to see from definition 9.1 (by another induction on the length of G)
that G can be written in the form G'(f,...,54,E}, where G'(£q,...,,Ey,n) has length
less than ¢ and E has length 2. Then (' has height 1 and h(G') = h(G). By
induetive hypothesis we may assume G'¢ DVG{gl,...,gt,n}. If E is elementary the
result now follows by 9.9, while if E is Qn or Rn the result follows by 9.8. This
concludes the proof.
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