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PREFACE

This volume concerns spectra with enriched multiplicative structure. It is a

truism that interesting cohomology theories are represented by ring spectra, the

product on the spectrum giving rise to the cup products in the theory. Ordinary

cohomology with mod p coefficients has Steenrod operations as well as cup products.

These correspond to an enriched multiplicative structure on the Eilenberg-MacLane

spectrum HZp' Atiyah has shown that the Adams operations in KU-theory are related

to similar structure on its representing spectrum and tom Dieck and Quillen have

considered Steenrod operations in cobordism coming from similar structure on Thorn

spectra. Kahn, Toda, Milgram, and others have exploited the same kind of structure

on the sphere spectrum to construct and study homotopy operations, and Nishida's

proof of the nilpotency of the stable stems is also based on this structure on the

sphere spectrum.

In all of this work, the spectrum level structure is either implicit or treated

in an ad hoc way, although Tsuchiya gave an early formulation of the appropriate

notions. Our purpose is to give a thorough study of such structure and its applica-

tions. While there is much that is new here, we are also very interested in

explaining how the material mentioned above, and other known results, can be

rederived and, in many cases, sharpened and generalized in our context.

The starting point of our work is the existence of extended powers of spectra

generalizing the extended powers

of based spaces X. Here Lj is the symmetric group on j letters, ELj is a contract-

ible on which Lj acts freely, the symbol l< denotes the "half smash product",

and x{J} denotes the j-fold smash power of X. This construction and its variants

play a fundamental role in homotopy theory. They appear ubiquitously in the study

of torsion phenomena.

It will come as no surprise to anyone that extended powers of spectra can be

constructed and shown to have all of the good properties present on the space level.

However, those familiar with the details of the analysis of smash products of spec-

tra will also not be surprised that there are onerous technical details involved.

In working with spectra, the precise construction of smash products is seldom rele-

vant, and I think most workers in the field are perfectly willing to use them with-

out bothering to learn such details. The same attitude should be taken towards

extended powers.
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With this in mind, we have divided our work into two parts, of which this

volume is the first. We here assume given extended powers and structured spectra

and show how to exploit them. This part is meant to be accessible to anyone with a

standard background in algebraic topology and some vague idea of what the stable

category is. (However, we should perhaps insist right at the outset that, in stable

homotopy theory, it really is essential to work in a good stable category and not

merely to think in terms of cohomology theories on spaces; only in the former do we

have such basic tools as cofibration sequences.) All of the technical work, or

rather all of it which involves non-standard techniques, is deferred until the

second volume.

We begin by summarizing the properties of extended powers of spectra and intro-

ducing the kinds of structured ring spectra we shall be studying. An Ho> ring spec-

trum is a spectrum E together with suitably related maps Dj E ... E for j O. The

notion is analogous to that of an E
oo
space which I took as the starting point of my

earlier work in infinite loop space theory. Indeed, H
oo
ring spectra may be viewed

as analogs of infinite loop spaces, and we shall also give a notion of Hn ring spec-

trum such that Hn ring spectra are analogs of n-fold loop spaces. However, it is to

be emphasized that this is only an analogy: the present theory is essentially inde-

pendent of infinite loop space theory. The structure maps of H
oo
ring spectra give

rise to homology, homotopy, and cohomology operations. However, for a complete

theory of cohomology operations, we shall need the notion of an ring spectrum.

These have structural maps D. EdiE ... Edji E for j > 0 and all integers i .
J -

While chapter I is prerequisite to everything else, the blocks II, III, IV-VI,

and VII-IX are essentially independent of one another and can be read in any order.

In chapter II, which is primarily expository and makes no claim to originality,

I give a number of rather direct applications of the elementary properties of

extended powers of spectra. In particular, I reprove Nishida's nilpotency theorems,

explain Jones' recent proof of the Kahn-Priddy theorem, and describe the relation-

ship of extended powers to the Singer construction and to theorems of Lin and

Gunawardena.

In chapter III, Mark Steinberger introduces homology operations for H
oo

(and for

Hn) ring spectra. These are analogs of the by now familiar (Araki-Kudo, Dyer-

Lashof) homology operations for iterated loop spaces. He also carries out extensive

calculations of these operations in the standard examples. In particular, it turns

out that the homology of HZp is monogenic with respect to homology operations, a

fact which neatly explains many of the familiar splittings of spectra into wedges of

Eilenberg-MacLane and Brown-Peterson spectra.

In chapters IV-VI, Bob Bruner introduces homotopy operations for Ho> ring spec-

tra and gives a thorough analysis of the behavior of the Roo ring structure with

respect to the Adams spectral sequence and its differentials. As very special
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cases, he uses this theory to rederive the Hopf invariant one differentials and

certain key odd primary differentials due to Toda. The essential point is the rela­

tionship between the structure maps DpE + E and Steenrod operations in the E2 term

of the Adams spectral sequence. Only a few of the Steenrod operations survive to

homotopy operations, and the attaching maps of the spectra DpSq naturally give rise

to higher differentials on the remaining Steenrod operations. An attractive feature

of Bruner's work is his systematic exploitation of a "delayed" Adams spectral

sequence originally due to Milgram to keep track of these complex phenomena.

In chapters VII­IX, Jim McClure relates the notion of an Hd ring spectrum to
00

structure on the familiar kinds of spectra used to represent cohomology theories on

spaces. For example, he shows that the representing spectrum KU for complex

periodic K­theory is an ring spectrum, that the Atiyah­Bott­Shapiro orientations

give rise to an ring m:p MSpinc + KU, and that similar conclusions hold with
00

d = 8 in the real case. He then describes a general theory of cohomology operations

and discusses its specialization to ordinary theory, K­theory, and cobordism.

Finally, he gives a general theory of homology operations and uses the resulting new

operations in complex K­theory to compute the K­theory of QX = colim .fr.rx as a

functor of X. This is a striking generalization of work of Hodgkin and of Miller

and Snaith, who treated the cases X = sO and X = rwll by different methods.

Our applications ­ and I have only mentioned some of the highlights ­ are by no

means exhaustive. Indeed, our examples show that this is necessarily the case. Far

from being esoteric obj ects, the kinds of spectra we study here abound in nature and

include most of the familiar examples of ring spectra. Their internal structure is

an essential part of the foundations of stable homotopy theory and should be part of

the tool kit of anybody working in this area of topology.

There is a single table of contents, bibliography, and index for the volume as

a whole, but each chapter has its own introduction; a reading of these will give a

much better idea of what the volume really contains. References are generally by

name (Lemma 3.1) within chapters and by number (II.3.1l when to results in other

chapters. References to "the sequel" or to IEquivl refer to "Equivariant stable

homotopy theory", which will appear shortly in this series; it contains the con­

struction and analysis of extended powers of spectra.

J. Peter May
Feb. 29, 1984
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CHAPTER I

EXTENDED POWERS AND Hoo RING SPECTRA

by J. P. May

In this introductory chapter, we establish notations to be adhered to through­

out and introduce the basic notions we shall be s'tudydng , In the first section, we

introduce the equivariant half­smash product of a n­space and a n­spectrum, where n

is a finite group. In the second, we specialize to obtain the extended powers of

spectra. We also catalog various homological and homotopical properties of these

constructions for later use. While the arguments needed to make these two sections

rigorous are deferred to the sequel (alias (Equivl or [51]), the claims the reader

is asked to accept are all of the form that something utterly trivial on the level

of spaces is also true on the level of spectra. The reader willing to accept these

claims will have all of the background he needs to follow the arguments in the rest

of this volume.

In sections 3 and 4, we define Hoo ring spectra and ring spectra in terms of

maps defined on extended powers. We also discuss various examples and catalog our

techniques for producing such structured ring spectra.

Sl. Equivariant half­smash products

We must first specify the categories in which we shall work. All spaces are to

be compactly generated and weak Hausdorff. Most spaces will be based; will denote

the category of based spaces.

Throughout this volume, by a spectrum E we shall understand a sequence of based

spaces Ei and based homeomorphisms ';;i :Ei + nEi +l , the notation ITi being used for

the adjoints EEi + Ei +l• A map f:E + E' of spectra is a sequence of based maps

f i :Ei + Ei strictly compatible with the given homeomorphisms; f is said to be a weak

equivalence if each f i is a weak equivalence. There results a category of spect.ra z, ,

There is a cylinder functor E A I+ and a resulting homotopy category h! The

stable category hi is obtained from h.& by adj oining formal inverses to the weak

equivalences, and we shall henceforward delete the adj ective "weak". il.& is equiv­

alent to the other stable categories in the literature, and we shall use standard

properties and constructions without further comment. Definitions of virtually all

such constructions will appear in the sequel.

Define h::1 and analogously to hJ. and hi
QX colim nnEnX, the colimit being taken with respect

&1 + Define adj oint functors

For X e:"I­ , define

to suspension of maps



and
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n"": S. + t
cc i cc

by L X = {QJ: X} and n E = EO. (This conflicts with the notation used in most of my

previous work, where Loo and nOO had different meanings and the present LOO was called

Q,.,; the point of the change is that the present LOO is by now generally recognized to

be the most appropriate infinite suspension functor, and the notation nOO for the

underlying infinite loop space functor has an evident mnemonic appeal.) We then

have QX = nOOLOOX, and the inclusion and evaluation maps n tX + nn);!):: and

£:Lnnlly + Y pass to colimits to give n:X + nOO);OOX for a space X and £:LOOnOOE + E

for a spectrum E. For any homology theory h*, £ induces the stabilization

homomorphism h*EO + h*E obtained by passage to colimits from the suspensions

associated to the path space fibrations Ei + PEi+ l + Ei+ l for i O.

Let 11 be a finite group, generally supposed embedded as a subgroup of some

symmetric group Lj• By a based 1I-space, we understand a left 1I-space with a

basepoint on which 11 acts trivially. We let 1I::S denote the resulting category.

Actually, most results in this section apply to arbitrary compact Lie groups 11.

Let Wbe a free unbased right 1I-space and form W+ by adjoining a disjoint

basepoint on which 11 acts trivially. For X £ 1I:J, define the "equivariant half-
+smash product" W"'11 X to be W 1\ 11 X, the orbit space of W x X/W x {*} obtained by

identifying (wo,x) and (w,ox) for w £ W, X £ X, and a £ 11.

In the sequel, we shall generalize this trivial construction to spectra. That

is, we shall explain what we mean by a "ll-spectrum E" and we shall make sense of

"w 1<11 E"; this will give a functor from the category 11g of 1T-spectra to i. For

intuition, with 11 C Lj' one may think of E as consisting of based ll-spaces Ej i for

i 0 together with ll-equivariant maps Ej i" sj + Ej ( i +1) whose adj oints are homeo-

morphisms, where 11 acts on sj = Sl" ••• " Sl by permutations and acts diagonally on

Ej i " sj.

The reader is cordially invited to try his hand at making sense of W"'liE using

nothing but the definitions already on hand. He will quickly find that work is

required. The obvious idea of getting a spectrum from the evident sequence of

spaces W"11 Ej i and maps

is utterly worthless, as a moment's reflection on homology makes clear (compare

11.5.6 below). The quickest form of the definition, which is not the form best

suited for proving things, is set out briefly in VIII §8 below. The skeptic is

invited to refer to the detailed constructions and proofs of the sequel. The

pragmatist is invited to accept our word that everything one might naively hope to

be true about W"'1TE is in fact true.
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The first and perhaps most basic property of this construction is that it

generalizes the stabilization of the space level construction. If X is a based 11­

space, then EOOX is a lI­spectrum in a natural way.

Proposition 1.1. For based lI­spaces X, there is a natural isomorphism of spectra

The construction enjoys various preservation properties, all of which hold

trivially on the space level.

Proposition 1.2 (i) The functor Wv
ll
( ? ) from lIJto 4 preserves wedges, pushouts,

and all other categorical colimits.

(ii) If X is a based lI­space and EA X is given the diagonal 11 action, then

WIN: (E 110X) = (W e< E)" X before passage to orbits over 11; if 11 acts trivially on X

W10<11 (EI\X) = (W 1<11 E)I\X

(iii) The functor W preserves cofibrations, cofibres, telescopes, and all

other homotopy colimits.

Taking X = 1+ in (ii), we see that the functor W (?) preserves lI­homotopies

between maps of lI­spectra.

Let F(X,Y) denote the function space of based maps X + Y and give F(W+,y) the 11

action (af)(w) = f(wa) for f:W + Y, a £ 11, and w £ W. For ll­spaces X and spaces Y,

we have an obvious adjunction

We shall have an analogous spectrum level adjunction

!(W = lI..!(E,F[W,D))

for spectra D and lI­spectra E. Since left adjoints preserve colimits, this will

imply the first part of the previous result.

Thus the spectrum level equivariant half­smash products can be manipulated just

like their simple space level counterparts. This remains true on the calculational

level. In particular, we shall make sense of and prove the following result.

Theorem 1.3. If W is a free lI­CW complex and E is a CW spectrum with cellular 11

action, then W1<11 E is a CW spectrum with cellular chains
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Moreover, the following assertions hold.

(i) If D is a n-subcomplex of E, then W is a subcomplex of W E and

(W " E)/(W IX D) = WIX (E/D).n n n

(ii) If Wn is the n-skeleton of W, then Wn-l E is a sub complex of Wn IXn E and

(wn IX E)/(wn-l IX E) = A E.
n n

(iii) With the notations of (i) and (ii),

D) I) (wn- l IX
n

E) C wn IX E.
n

The calculation of cellular chains follows from (i)-(iii), the simpler calcula-

tion of chains for ordinary smash products, and an analysis of the behavior of the n

actions with respect to the equivalences of (ii).

So far we have considered a fixed group, but the construction is also natural

in n. Thus let f:p + n be a homomorphism and let g:V + Wbe f-equivariant in the

sense that g(vo) = g(v)f(o) for v g V and 0 g p, where V is a p-space and W is a n-

space. For n-spectra E, there is then a natural map

*s « 1: VI>< (f E) +WIX E,
p n

where f*E denotes E regarded as a p-spectrum by pullback along f.

For X e nJ and Y e pJ , we have an obvious adjunction

nJ (n+ 1\ Y,X) '= p' (Y,f*X).
p

We shall have an analogous extension of action functor which assigns an-spectrum

n IX F to a p-spectrum F and an analogous adjunction
p

n,l.(n IX F,E) '= p,4.(F,f*E).
p

Moreover, the following result will hold.

Lemma 1.4. With the notations above,

W IX (n I>< F)
n p

W IX F.
p
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When p = e is the trivial group, n F is the free n-spectrum generated by a

spectrum F. Intuitively, n F is the wedge of copies of F indexed by the elements

of n and given the action of n by permutations. Here the lemma specializes to give

W "n (n F) = W" F,

and the nonequivariant spectrum W F is (essentially) just W+ 1\ F. Note that, with

p = e and V a point in the discussion above, we obtain a natural map

l:E+WIX E
n

depending on a choice of basepoint for W.

For finite groups n and p, there are also natural isomorphisms

<l:(W k E)" (V IX F) + (W x V) " (EAF)
n p n x p

s: V k
P

(W"
n

(0) 0
E) J + (V x WJ ) " I

p n

for n-spaces W, n-spectra E, p-spaces V, and p-spectra F. Here E(j) denotes the j-

fold smash power of E and pIn is the wreath product, namely p x ni with

multiplication

The various actions are defined in the evident way. These maps will generally be

applied in composition with naturality maps of the sort discussed above.

We need one more general map. If E and Fare n-spectra and n acts diagonally

on E 1\ F, there is a natural map

Ii:W (EI\F) + (W IX E)" (W IX F).
n n n

All of these maps 1,<l,S, and Ii are generalizations of their evident space

level analogs. That is, when specialized to suspension spectra, they agree under

the isomorphisms of Proposition 1.1 with the suspensions of the space level maps.

Moreover, all of the natural commutative diagrams relating the space level maps

generalize to the spectrum level, at least after passage to the stable category.

§2. Extended powers of spectra

The most important examples of equivariant half-smash products are of the form

WIX
n
E(j) for a spectrum E, where n Lj acts on E(j) by permutations. It requires

a little work to make sense of this, and the reader is asked to accept from the
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sequel that one can construct the j-fold smash power as a functor from 1. to If.l with

all the good properties one might naively hope for. The general properties of these

extended powers (or j-adic constructions) are thus direct consequences of the

assertions of the previous section. The following consequence of Theorem 1.3 is

particularly important.

Corollary 2.1. If W is a free If-CW complex and E is a CW spectrum, then W E(j)

is a CW-spectrum with

Thus, with field coefficients, C*(W E(j» is chain homotopy equivalent to

C*W Ci\(I4E)j.

Indeed, C*(E(j» _ (C*E)j as a If-complex, where (C*E)j denotes the j-fold

tensor power. This implies the first statement, and the second statement is a

standard, and purely algebraic, consequence (e.g. [68,1.lJ).

We shall be especially interested in the case when Wis contractible. While

all such Wyield equivalent constructions, for definiteness we restrict attention to

W= Elf, the standard functorial and product-preserving contractible If-free CW-

complex (e.g. [70,p.31J). For this W, we define

When If = Ej, we write DlfE = DjE. Since EEl is a point, DrE = E. We adopt the

convention that DOE = E(O) = S for all spectra E, where S denotes the sphere

spectrum E"'SO.

We adopt analogous notations for spaces X. Thus D.X = EE. K x(j) D X = X,
J J Ej '1

and DoX = SO. Since there is a natural isomorphism E"'(X(j» = (E"'X)(j) of If-

spectra, Proposition 1.1 implies the following important consistency statement.

Corollary 2.2. For based spaces X, there is a natural isomorphism of spectra

D E"'X _ E"'D X.
If If

Corollary 2.1 has the following immediate consequence.

Corollary 2.3. With field coefficients,
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In general, we only have a spectral sequence. Since the skeletal filtrations

of Eu and Bu satisfy (Eu}nju = (Bu}n, part (ii) of Theorem 1.3 gives a filtration of

DuE with successive quotients [(Bu)nj(Bu}n-l j AE(j).

Corollary 2.4. For any homology theory there is a spectral sequence with

E2 = which converges to k*(DuE).

This implies the following important preservation properties.

Proposition 2.5. Let T be a set of prime numbers.

(i) If A:E ET is a localization of E at T, then Dn(ET) is T-local and

DuA:DnE Du(ET} is a localization at T.

(E) If y:E

DnY:DnE + Dn(

is a completion of E at T, then the completion at T of

is an equivalence.

Proof. We refer the reader to Bousfield [21] for a nice treatment of localizations

and completions of spectra. B.r application of the previous corollary with k* = n*,

we see that Dn(ET) has T-local homotopy groups and is therefore T-local. (Note that

there is no purely homological criterion for recognizing when general spectra, as

opposed to bounded below spectra, are T-local.) Taking to be ordinary homology

with T-local or mod p coefficients, we see that DnA is a ZT-homology isomorphism and

Duy is a Zp-homology isomorphism for all p E: T. The conclusions follow.

Before proceeding, we should make clear that, except where explicitly stated

otherwise, we shall be working in the appropriate homotopy categories 11:J or 11!
throughout this volume. Maps and commutative diagrams are always to be understood in

this sense.

The natural maps discussed at the end of the previous section lead to natural

maps

and

These are compatible with their obvious space level analogs in the sense that the

following diagrams commute.



8. kJ,

8

D.LOOX D. (LOOX,. LOOy) OJ
J J

LGO(X(j) ) III III
GO
L 0.

LOODl LGOD
j
ex ... Yl J

D.LOOX ... DkLGOX
<lj ,k

• Dj+kLOOX DjDkLOOX
J

II, III IIIGO
L <l,j ,k

LGO(DjX" ,\X) • LOODj+kX LOOD
j
,\X

These maps will play an essential role in our theory. Roo ring spectra will be

defined in terms of maps DjE + E such that appropriate diagrams commute. Just as

the notion of a ring spectrum presupposes the coherent associativity and commuta­

tivity of the smash product of spectra in the stable category, so the notion of an

Hoo ring spectrum presupposes various coherence diagrams relating the extended

powers.

Before getting to these, we describe the specializations of our transformations

when one of j or k is zero or one.

Remarks 2.6. When j or k is zero, the specified transformations specialize to

identity maps (this making sense since DOE = S and S is the unit for the smash

product) with one very important exception, namely 8j,0:DjS + S. these maps playa

special role in our theory, and we shall also write = 8. 0. Observe that DJ.SO
+ J J,

is just BL, the union of BL j and a disjoint basepoint 0. We have the discretiza­

tion map + SO specified by d(O) = 0 and d(x) = 1 for x BLj, and is

given explicitly as

S.

Remarks 2.7. The transformations 11' 8j,1' 81,j' and °1 are all given by identity

maps, and

The last equation is generalized in Lemma 2.11 below.
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We conclude this section with eight lemmas which summarize the calculus of

extended powers of spectra. Even for spaces, such a systematic listing is long

overdue, and everyone of the diagrams specified will play some role in our

theory. The proofs will be given in the sequel, but in all cases the analogous

space level assertion is quite easy to check.

Let r :E A F ... F ... E denote the commutativity isomorphism in h 4 •

Lemma 2.8. {aj,k} is a commutative and associative system, in the sense that the

following diagrams commute.

a .. /\ 1

and

Write ai,j,k for the composite in the second diagram, and so on inductively.

Lemma 2.9. {Bj,k} is an associative system, in the sense that the following

diagrams commute.

DiDjDkE

D.B. klJ,

DiDjkE
S. 'k

'" DijDkE

lSi j ,k
• DijkE

Write Si,j,k for the composite, and so on inductively.

Lemma 2.10. Each (;j is commutative and associative, in the sense that the following

diagrams commute.

Dj(EA.F)

Dj·l
Dj(FI\E)

and
(; .
,)

1 i\ s.
J

Continue to write (; j for the composite in the second diagram, and so on inductively.

Our next two lemmas relate the remaining transformations to the lj'



10

Lemma 2.11. The following diagrams commute.

E{j)J\, E(k) E(j+k) and

'J"k!
Ctj,k

!'J.k
DjE 1\ DkE ... Dj+kE

Lemma 2.12. The following diagram commutes, where vj is the evident shuffle

isomorphism

Our last three lemmas of diagrams are a bit more subtle and appear to be new

already on the level of spaces.

Lemma 2.13. The following diagram commutes.

Lemma 2.14. The following diagrams commute.

Dj(EI\. F) A Dk(E AF)

6 j I\. 6k1
DjE .... D/ 1\ DkEI\ DkF

and

11\.,;0.1
lI' Dj E "DkE .. D/ I\.DkF

8. kJ I

,. Dj+k(EI\.F)

16j +k
Ct. k I'Ct. k
.J. .J.,. D E I\D F

j+k j+k

8. k" 8. kJ I J I
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Lemma 2.15. The following diagram commutes.

B• •" flo kl. ,J a ,
.,. DijE "DikE

1a i j ,ik
,. Dij+ikE

When j k 1, this diagram specializes to

<I.
J

(On a technical note, all of these coherence diagrams except those of Lemma

2.15 will commute for the extended powers associated to an arbitrary operad; Lemma

2.15 requires restriction to Eoo operads.)

§3. Roo ring spectra

Recall that a (commutative) ring spectrum is a spectrum E together with a unit

map e:8 ... E and a product map <j>:E" E ... E such that the following diagrams commute

(in the stable category, as always).

E

In fact, this notion incorporates only a very small part of the full structure

generally available.

Definition 3.1. An Roo ring spectrum is a spectrum E together with maps <;j :Dj ... E

for j 0 such that <;1 is the identity map and the following diagrams commute for

J,k O.



DjE"I\E

I; j 1\ I;k1
E"'E

12

and
8. k
J I

Amap f:E + F between ring spectra is an Roo ring map if I;j 0 Djf

j > O.
f 0 I;j for

This is a valid sharpening of the notion of a ring spectrum in view of the

following consequence of Remarks 2.6 and Lemma 2.8.

Lemma 3.2. With e = 1;0:3 + E and <p = 1;2 0 12 :EAE + E, an Roo ring spectrum is a

ring spectrum and an Roo ring map is a ring map.

There are various variants and alternative forms of the basic definition that

will enter into our work. For a first example, we note the following facts.

Proposition 3.3. Let E be a ring spectrum with maps I;j :DjE + E such that 1;0 = e,

1;1 = 1, and <p = 1;212' If the first diagram of Definition 3.1 commutes, then I;j

factors as the composite

Conversely, if all I;j so factor and the second diagram of Definition 1.1 commutes,

then the first diagram also commutes and thus E is an Roo ring spectrum.

Proof. The first part is an elementary diagram chase. The second part results from

Lemmas 2.8 and 2.11 via a rather lengthy diagram chase.

The definition of an Roo ring spectrum, together with the formal properties

of extended powers, implies the following important closure and consistency

properties of the category of Roo ring spectra.

Proposition 3.4.
(i) With 1;. =

J
e :3 + E is an Roo

The following

8. 0:Dj3 + S,
J,
ring map.

statements hold, where E and F are Roo ring spectra.

the sphere spectrum 3 is an Roo ring spectrum, and

(if) The smash product E '"F is an Roo ring spectrum with structural maps the

composites

the resulting product is the standard one, ( <p A. <j» (I '" T "1) •
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(iii) The composite :E(j) + E is the j-fold iterated product on E and is

itself an HOG ring map for all j.

Proof.

(i)

(ii)

(iii)

These are elementary diagram chases based respectively on:

Remarks 2.6 and the case k = 0 and E = S of Lemmas 2.9 and 2.13.

Lemmas 2.12 and 2.14.

Remarks 2.7 and Lemmas 2.9 and 2.n.

In view of Proposition 2.5, we have the following further closure property of

the category of HOG ring spectra.

Proposition 3.5. If E is an HOG ring spectrum, then its localization ET and

completion ET at set of primes T admit unique HOG ring structures such that

A:E + ET and y:E + E
T

are HOG ring maps.

Proof. The assertion is obvious in the case of localization. In the case of

completion, + ET can and must be defined as the composite

An easy calculation in ordinary cohomology shows that Eilenberg-MacLane spectra

are ring spectra.

Proposition 3.6. The Eilenberg-MacLane spectrum HR of a commutative ring R admits a

unique HOG ring structure, and this structure is functorial in R. If E is a

connective ring spectrum and i:E + H(nOE) is the unique map which induces the

identity homomorphism on nO' then i is an HOG ring map.

Proof. Corollary 2.1 implies that t.:F(j) + D.F induces an isomorphism in
J J

R-cohomology in degree 0 for any connective spectrum F. Moreover, by the Hurewicz

theorem and universal coefficients, may be identified with Hom(nOF,R). Thus

we can, and by Proposition 3.4(iii) must, define + HR to be that cohomology

class which restricts under tj to the j-fold external power of the fundamental class

or, equivalently under the identification above, to the j-fold product on R.

Similarly, the commutativity of the diagrams in Definition 3.1 is checked by

restricting to smash powers and considering cohomology in degree O. The same argu-

ment gives the functoriality. For the last statement, the maps and from

DjE to H(nOE) are equal because they both restrict under tj to the cohomology class

given by the iterated product (nOE)j + nOE.



14

We shall continue to write i for its composite with any map H( 1TOE) ... HR induced

by a ring homomorphism 1TOE ... R. We think of such a map i:E ... HR as a counit of E.

the composite ie:S ... HR is clearly the unit of HR.

In the rest of this section, we consider the behavior of ring spectra with

respect to the functors and Note first that if E is a ring spectrum, then

its unit e:S ... E is determined by the restriction of eO:QSO ... EO to SO If the two

resulting basepoints 0 and 1 of EO lie in the same component, then e is the trivial

map and therefore E is the trivial spectrum.

Definition 3.7. An space with zero, or HooO space, is a space X with basepoint 0

together with based maps ... X for j 0 such that the diagrams of Definition

3.1 commute with E replaced by X. Note that ... X gives X a second basepoint 1.

An Hoo space is a space Y with basepoint 1 together with based maps EZ. xz yj ... y
J j

for j 0 such that the evident analogs of the diagrams of Definition 3.1 commute;

y+ = Y 1l{0} is then an space.

We remind the reader that we are working up to homotopy (Le., in Fij). There

is a concomitant notion of a (homotopy associative and commutative) H-space with

zero, or !1o-space, given by maps e:SO .. X and q,:X"X ... X such that the diagrams

defining a ring spectrum commute with E replaced by X. It is immediately obvious

that, mutatis mutandis, Lemma 3.2 and Propositions 3.3-3.5 remain valid for spaces.

A commutative ring R = K(R,O) is evidently an HooO space, being given by the

j-fo1d product with the EZ j coordinate ignored.

The isomorphisms D.ZooX 2: ZooD.X together with the compatibility of the space
J J

and spectrum level transformations 1., a. k' and S. k under these isomorphisms
J J, J,

have the following immediate consequence.

Proposition 3.8. If X is an HooO space, then is an ring spectrum with

structural maps

ZooD.X ... zooX.
J

The relationship of to ring structures is a bit more subtle since it is

not true that _ QooDjE. However, the evaluation map c : ZooQooE ... E induces

the adjoint

DJ.e::ZooDJ.QooE _ ... D E
J j ,

of which is a natural map
J

or
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Proposition 3.9. If E is an H", ring spectrum, then Eo is an Roo{) space with

structural maps

Proof. We must check that the commutativity of the diagrams of Definition 3.1 for E

implies their commutativity for EO' For the first diagram, it is useful to

introduce the natural map

for spectra E and F. The relevant diagrams then look as follows

and

flj ,k
, DjkEO

( fl,j,k) 0 1
(DjI\EJ O )0 (DjkE)O

l,Dj'J<'O
(l;j lo

!"Jk'O
(DjEl O >- EO

Dj'k1
Dj (I\El 0

Dj"k'O j
DjEO
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In the upper diagram, 1,;212 = (12)01; by the naturality of n and 12 and the compati­

bility of the space and spectrum level maps 12' The commutativity of the top

rectangles of both diagrams follows similarly, via fairly elaborate chases, from

naturality and compatibility diagrams together with the fact that the composite

EoEoon:E
oo

... EooUooE
oo

... E
oo

is the identity transformation.

The preceding results combine in the following categorical description of the

relationship between HooO spaces and Hoo ring spectra.

Proposition 3.10. If X is an HooO space, then n:X", UooEooX is a map of HooO spaces.

If E is an Hoo ring spectrum, then s:EooUooE ... E is a map of Hoo ring spectra. There­

fore Eoo and UOO restrict to an adjoint pair of functors relating the categories of

HooO spaces and of Hoo ring spectra.

The proof consists of easy diagram chases. It follows that if E is an Hoo ring

spectrum, then sO:QEO ... EO is a map of HooO spaces. As we shall explain in the

sequel, the significance of this fact is that it implies that the Oth space of an Hoo
ring spectrum is an "Hoo ring space".

§4. Power operations and

Just as the product of a ring spectrum gives rise to an external product in its

represented cohomology theory on spectra and thus to an internal cup product in its

represented cohomology theory on spaces, so the structure maps of an Hoo ring

spectrum give rise to external and internal extended power operations.

Definitions 4.1. Let E be an H.o ring spectrum. For a spectrum Y, define

For a based space X, let

= [Y,EI [DjY,E] = EODjY

by letting P.(hl oD.h for h:Y E.
J J J

the reduced cohomology of X and define

E X denote

000 000 +
P. :E X = E EX ... E E (BE." Xl
J J

(
00 *,..;, . 00

E dl for h:E X ... E, where

d D.X.
J

Of course, the main interest is in the case j p for a prime p. A number of

basic properties of these operations can be read off directly from the definition of

* = h
j

anH.o ring spectrum, the most important being that lj1j(hl , where
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hj EO(y(j)) is the external jth power of h, and similarly for the internal opera­

tions. McClure will give a systematic study in chapter VIII. While we think of

the J?j as cohomology operations, they can be manipulated to obtain various other

kinds of operations. For example, we can define homotopy operations on 1T*E param­

etrized by elements of

Definition 4.2.

a:1TqE + 1Tr E by a(h)

Let E be an Hoo ring spectrum. For cErDjSq, define

0./ Pj (h) for he 1TqE. Explicitly, a(h) is the composite

:Y. (h) .q
a rDjsqAE J "EAE­­­'l:.­..rE.

These operations will make a fleeting appearance in our study of nilpotency

relations in the next chapter, and Bruner will study them in detail in the case

E = S in chapter V. McClure will introduce a related approach to homology opera­

tions in chapter VIII.

Returning to Definition 4.1 and replacing Y by l)Y for any i, we obtain opera­

tions 1'j:E­iy + EODj Ei y • A moment's reflection on the Steenrod operations

in ordinary cohomology makes clear that we would prefer to have operations

E­iy + E­jiDjy for all 1. Howev:r, the twisting of suspension coordinates which

obstructs the equivalence of with makes clear that the notion of an Roo

ring spectrum is inadequate for this purpose. For Y = E"'x., one can set up a

formalism of twisted coefficients to define one's way around the obstruction, but

this seems to me to be of little if any use calculationally. Proceeding adjointly,

we think of Eiy as [Y,EiEl and demand structural maps + EjiE for all

integers i rather than just for i = 0. We can then define extended power operations

'J.>J :Eiy = [Y,EiEl + [D
J
Y,EJiEl = Y

by letting t:rj(h) = 0 D.h for h:Y + EiE; internal operations
J J

= EiEooX + Ej i Eoo(BE;"X) = 'Eji(BE;J\X)

for spaces are given by Pj(h) = (Eood)*J>j(h), as in Definition 4.1.

In practice, this demands too much. One can usually only obtain maps

I;;j :DjEdiE + EdJiE for all j and i and some fixed d > 0, often 2 and always a power

of 2. In favorable cases, one can use twisted coefficients or restriction to cyclic

groups to fill in the missing operations, in a manner to be explained by McClure in

chapter VIII. The experts will recall that some such argument was already necessary

to define the classical mod p Steem'od operations on odd dimensional classes when

p > 2.
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Definition 4.3. Let d be a positive integer. An ring spectrum is a spectrum E

together with maps

for all j ° and all integers i such that each is an identity map and the

following diagrams commute for all j 0, k 0, and all integers h and i.

D/diEA DkEdiE Clj,k
Dj+kEdiE

di B. k
.. DjkEdiEDjDkE E

J,

f;, .. A f;,k ·1 ·1 tt;'k .J,l ,1 J ,1 J ,1

EdjiEA EdkiE <P • Ed(j+k)iE D.EdkiE f;,,j r ki .. EdjkiE
J

and

D. (EdhE .... EdiE)
<5. dh diJ Dl EADjE E

J Dj<pl
.J, J ,1

D.Ed(h+i)E ,h+i > Edj (h+i)E < <P EdjhE'" EdjiE
J

Here the maps <j> are obtained by suspension from the product

f:E + F between ring spectra is an ring map if f;,j,iO DjEdif

for all j and L,

on E. A map

= Edjif ° ..
J,l

Remarks 4.4. (i) Taking i = 0, we see that E is an Hoo ring spectrum. The last

diagram is a consequence of the first two when i 0 but is independent otherwise.

(ii) Since DOE = S for all spectra E, there is only one map f;,i,O' namely the unit

e:SO + E.

(iii) As in Proposition 3.4(iii), the following diagram commutes.

d(iv) As in Proposition 3.4(ii), the smash product of an H
oo

ring spectrum E and an

H ring spectrum F is an Hd ring spectrum with structural maps the composites
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(v) The last diagram in the definition involves a permutation of suspension

coordinates, hence one would expect a sign to appear. However, as McClure will

explain in VII.6.1, rrOE necessarily has characteristic two when d is odd.

Given this last fact, precisely the same proof as that of Proposition 3.6

yields the following result.

Proposition 4.5. Let R be a commutative ring. If R has characteristic two, then HR

admits a unique and functorial HI ring structure. In general, HR admits a unique

and functorial ring structure: If E is a connective Hd ring spectrum and

i:E + H(rrOEl is the unique map which induces the identity homomorphism on rrO' then i
d

is an ring map.

At this point, most of the main definitions are on hand, but only rather simple

examples. We survey the examples to be obtained later in the rest of this section.

We have three main techniques for the generation of examples. The first, and

most down to earth where it applies, is due to McClure and will be explained in

chapter VII. The idea is this. In nature, one does not encounter spectra E with Ei
homeomorphic to UEi+1 but only prespectra T consisting of spaces Ti and maps

0i:LTi + Ti+l• There is a standard way of associating a spectrum to a prespectrum,

and McClure will specify concrete homotopical conditions on the spaces Tdi and

composites LdTdi + Td(i+ll which ensure that the associated spectrum is an ring

spectrum. Curiously, the presence of d is essential. We know of no such concrete

way of recognizing :H:." ring spectra which are not Hd ring spectra for some d > O.
ca

McClure will use this technique to show that the most familiar Thom spectra and

K-theory spectra are Hd ring spectra for the appropriate d. While this technique is
cc

very satisfactory where it applies, it is limited to the recognition of ring

spectra and demands that one have reasonably good calculational control over the

spaces Tdi• The first limitation is significant since, as McClure will explain, the

sphere spectrum, for example, is not an ring spectrum for any d. The second

limitation makes the method unusable for generic classes of examples.

Our second method is at the opposite extreme, and depends on the black box of

infinite loop space machinery. In [71l, Nigel Ray, Frank Quinn, and I defined the

notion of an Eoo ring spectra. Intuitively, this is a very precise point-set level

notion, of which the notion of an ring spectrum is a cruder and less structured

up to homotopy analog. Of course, Eoo ring spectra determine Hoo ring spectra by

neglect of structure. There are also notions of space and ring space which

bear the same relationship of one to the other. Just as the zeroth space of an

ring spectrum is an ring space, so the zeroth space of an ring spectrum is an

ring space. In general, given an Hoo ring space, there is not the slightest
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reason to believe that it is equivalent, or nicely related, to the zeroth space of

an Hoo ring spectrum. However, the machinery of [71,73] shows that Eoo ring spaces

functorially determine E
oo
ring spectra the zeroth spaces of which are, in a suitable

sense, ring completions of the original semiring spaces. Precise definitions and

proofs of the relationship between E
oo
ring theory and H

oo
ring theory will be given

in the sequel.

As explained in detail in [73], which corrects [71], the classifying spaces of

categories with suitable internal structure, namely bipermutative categories, are Eoo

ring spaces. Among other examples, there result Eoo ring structures and therefore Hoo

ring structures on the connective spectra of the algebraic K-theory of commutative

rings.

The Eoo and Hoo ring theories summarized above are limiting cases of and

theories for n 1, to which the entire discussion applies verbatim. The full

theory of extended powers and structured ring spaces and spectra entails the use of

operads, namely sequences Cof suitably related Lj-SpaCes An action of C on a

spectrum E consists of maps 'j + E such that appropriate diagrams com-

mute. For an action up to homotopy, the same diagrams are only required to homotopy

commute. If each has the Lj-equivariant homotopy type of the configuration

space of j-tuples of distinct points in Rn, then is said to be an operad.

or ring spectra are spectra with actions or actions up to homotopy by an

operad. The notions of and ring space require use of a second operad, assumed

to be an Eoo operad, to encode the additive structure which is subsumed in the

iterated loop structure on the spectrum level. ring spaces naturally give rise

to and thus ring spectra, and interesting examples of ring spaces have been

discovered by Cohen, Taylor, and myself [29] in connection with our study of

generalized James maps.

Our last technique for recognlzlng and ring spectra lies halfway between

the first two, and may be described as the brute force method. It consists of

direct appeal to the precise definition of extended powers of spectra to be given in

the sequel. One class of examples will be given by Steinberger's construction of

free Another class of examples will be given in Lewis' study of

generalized Thom spectra.



CHAPTER II

MISCELLANEOUS APPLICATIONS IN STABLE HOMOTOPY THEORY

by J. P. May

with contributions by R. R. Bruner, J. E. McClure, and M. Steinberger

A number of important results in stable homotopy theory are very easy con­

sequences of quite superficial properties of extended powers of spectra. We give

several such applications here.

The preservation properties of equivariant half­smash products (e.g. in 1.1.2)

do not directly imply such properties for extended powers since the jth power

functor from spectra to Ej­spectra tends not to enjoy such properties. We

illustrate the point in section 1 by analyzing the structure of extended powers of

wedges and deriving useful consequences about extended powers of sums of maps.

These results are largely spectrum level analogs of results of Nishida [90J about

extended powers of spaces, but the connection with transfer was suggested by ideas

of Segal [96J.

Reinterpreting Nishida's proof [90J, we show in section 2 that the nilpotency

of the ring 1I*S of stable homotopy groups of spheres (or "stable stems") is an

immediate consequence of the Kahn­Priddy theorem and our analysis of extended powers

of wedges. The implication depends only on the fact that the sphere spectrum is an

H.x. ring spectrum. This proof gives a very poor estimate of the order of

nilpotency. Nishida also gave a different proof [90J which applies only to elements

of order p but gives a much better estimate of the order of nilpotency. In section

6, we show that this too results by specialization to S of a result valid for

general H
oo
ring spectra. Here the key step is an application of a splitting theorem

that Steinberger will prove by use of homology operations in the next chapter. His

theorem will make clear to what extent this method of proof applies to elements of

order pi with i > 1.

The material discussed so far dates to 1976­77 (and was described in [72J).

The material of sections 3­5 is much more recent, dating from 1982­83. The ideas

here are entirely due to Miller, Jones, and Wegmann, who saw applications of

extended powers that we had not envisaged. (However, all of the information about

extended powers needed to carry out their ideas was already explicit or implicit in

[72J and the 1977 theses [23, 101J of Bruner and Steinberger.) Jones and Wegmann

[44] constructed new homology and cohomology theories from old ones by use of

systems of extended powers and showed that theorems of Lin [53J and Gunawardena [38]

imply that these theories specialize to give exotic descriptions of stable homotopy
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and stable cohomotopy. Jones [43] later gave a remarkably ingenious proof of the

Kahn-Priddy theorem in terms of these theories. The papers [43, 441 only treated

the case p = 2, and we give the details for all primes in sections 3 and 4. (In

fact, much of the work goes through for non-prime integers.) The idea for the

Jones-Wegmann theories grew out of Haynes Miller's unpublished observation that

systems of extended powers can be used to realize cohomologically a basic algebraic

construction introduced by Singer [52, 98 J • We explain this fact and its

relationship to the cited theorems of Lin and Gunawardena in section 5.

§l. Extended powers of wedges and transfer maps

Fix positive integers j and k and spectra for 1 i k. Let

+ E

Y Yl V ••• VYk and let Vi :Yi + Y be the inclusion. For a partition

J = (jl, ••• ,jk) of j, j. > 0 and jl + ••• jk = j, write aJ = a· . and let f Jl - Jl," ·,Jk

denote the composite

D. Y A··· 1\ D. Y
k

D. Y i\ ... i\ D. Y ---...;>- D.Y
J l 1 J k J l J k J

For later use, note that permutations a E kk act on partitions and that 1.2.8

implies the eQuivariance formula f J = f
aJ

0 a. Note too that, for maps hi:Yi
with wedge sum h:Y + E, the following diagram commutes by the naturality of aJ'

Theorem 1.1. Let Y Yl v ••• VYk• Then the wedge sum

of the maps f J is an eQuivalence of spectra.

Proof. By the distributivity of smash products over wedges,
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from 1 to k.
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where I runs over all sequences (il, ••• ,ij) such that

there are exactly js entries i r equal to s for each s

partition J of j, let EJ = E
j l

x ••• x E
j k

and define

(jl) Uk)
Y "VYoA ••• "yo =Eo"'E(Yl A •••AYk ).
J IeJ II lj J J

Say that I e J if

For each

(Here the isomorphism would be obvious on the space level and holds on the spectrum

level by direct inspection of the definitions in [Equiv. II §§3-41.) Then YJ is a
(0) (0)

Ersubspectrum of Y J and Y J = V YJ' Now
J

D.Y
J

by I.l.2(i) and 1.1.4.
composite

Clearly f J has image in and factors as the

(EEo x···x
J l

Here a is an isomorphism. (Technically, the smash product in its domain is

"internal" while that in its range is "external"; see [Equiv, II§) l.) The map

i: El: ° x··· x ....-.. El: . is given by the commutation with products and
J l J

naturality of the functor E and is a EJ-equivalence. Therefore i 1 is an

equivalence (by [Equiv, VI.l.l5ll. The conclusion follows.

Our interest is mainly in finite wedges, but precisely the same argument

applies to give an analog for infinite wedges.

Theorem 1. 2 •

indices and

indices and

Let {Yi} be a

let Y V y .•
i l

a partition J =

set of spectra indexed on a totally ordered set of

For a strictly increasing sequence I " {il, ••• ,ik} of

'h, ... ,jk) of j with each ji > 0 (hence k j), let

be the composite of f J and the evident inclusion. Then the wedge sum
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of the maps fJ,I is an equivalence of spectra.

Parenthetically, this leads to an attractive alternative version of the

definition, 1.4.3, of an ring spectrum.

Proposition 1.3.
ring structure on

An Hd ring structure

the :edge VEdiE.
i

on E determines and is determined by an Hm

Proof. If VEdiE is an H
m
ring spectrum with structural maps then the evident

i
composites

give E an H
d ring structure.oo

then the maps

d
If E is an Hoo ring spectrum with structural maps

-1
di f.

:D. ( V E E) --L..,. V
J J i J,I

determined by the composites

. " ...
dik jl'il jk,ik djli l djki1c Ii> dr

D.E E""·"D.E E "E EA.""E E,
J l J k

k
r = L j i ,give VEdiE on Hoo ring structure. These correspondences are

a 1 a a i
inverse to one another.

Returning to the context of Theorem 1.1, let

Thus gJ is the composite of the projection to

equivalence (i k l)a in the proof of the theorem.

Yk' hence we change= •••

EE
J
. k E YJ

j
The theorem is of particular interest when Y1

denote the Jt h component of

and the inverse

notations and consider a spectrum Y and its k-fold wedge sum, which we denote by

(k)y. Recall that finite wedges are finite products in the stable category and let

denote the diagonal and folding maps.
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1.4. Def'Ine 'tJ:DjY + DhYI\ ••• ADjkY to be the composite

D.6 (kl gJ
D.Y YI ---'--l"D

j
YI\ ••• I\D

j
Y •

J J 1 k

Explicitly, let If J: ((k)YI (j 1 + V y(j 1 be the projection and let 'tJ also denote
I e: Jthe map

El:. IX (If 6(j11:El: IX y(j) -El:
j

IX.... ( V yljl) = El: yljl.
J l:j J j l:j '"j I e J j l:J

Our original map 'tJ is the composite of this map and the equivalence ((i IX lla]-l.

We write 'tj for 'tJ:DjY + y(j) when k = j and each js =1.

We think of 'tJ as a kind of spectrum level transfer map. When Y = l:""x+ for a

space X and 11" C l:j' we have

El:. I)( yljl
J If

by Ll.l. We shall prove the following result in the sequel.

Theorem 1.5. When Y = l:""x+, the map

E.... IX y(j) + E.... y(j)
'tJ: '"j z . '"j

J l:J

is the transfer associated to the natural cover

We do not wish to overemphasize this result. As we shall see, the spectrum

level maps 'tJ, for general Y, are quite easily studied directly.

The importance of these maps is that they measure the deviation from additivity

of the functor DjY.

For maps ht:Y + E, hI + ••• + hk is defined to be l1(hl." ••• ."hk)6. Thinking now

in cohomological terms, consider the ht as elements of the Abelian group M = (Y,E!

of maps Y + E in h!.

o if
Corollary 1.6. Dj (hI + ••• + = I 'tJ(uJ(D. It. ••• A Dj I. Moreover, the

J J l k
following equivariance formula holds for a e: l:k.
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Proof. By Theorem 1.1 and the naturality diagram preceding it, the following

diagram commutes.

The equivariance follows from 1.2.8, the formula f J f aJ 0 a, and the fact that

at. '" s,

Taking each hi to be the identity map, we obtain the following special case.

of J under the action of

Corollary 1.7. D.(k) =
J

depends only on the conjugacy class

When j is a prime number p and k = piq with i 1 and q prime to p, a simple

combinatorial argument demonstrates that every conjugacy class of partitions has pis

elements for some s 1 except for the conjugacy class of the partition J(k)

(1, ••• ,1,0, ••• ,0), P values 1, which has (p,k-p) elements. Of course, pi-l but not

pi divides this binomial coefficient. A trivial diagram chase based on use of the

projection (k)y + (p)y shows that 'J(k) coincides with 'J(p) = 'p:DpY + y(p). Also,

by 1.2.7 and 1.2.11, uJ(p) lp:E(P) + DpE. Putting these observations together, we

obtain the following result.

Corollary 1.8. If k = piq with p prime, i 1, and q prime to p, then

Dpk:DpY + DpY can be expressed in the form piA + (p,k-p) lp'p for some map A.

In favorable cases, the following three lemmas will lead to a more precise

calculation of Dp on general sums.

Lemma 1.9.

J of j.

The following diagram commutes for all Y, j, and k and all partitions
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Proof. This follows from a straightforward diagram chase which boils down to the

factorization of + (j)y as the composite

(j ) (. )

Y ---.L... (k)y s v ••• v s 1 J kY v ... v y

{where + (O)y S is interpreted as the zero map if any jr 0).

( ')
Lemma 1.10. The composite 'j lj:Y J

permutation maps o:y(j) + y{j).

+ y(j) is the sum over 0 £: Lj of the

Proof. This is an easy direct inspection of definitions and may be viewed as a

particularly trivial case of the double coset formula.

Lemma 1.11 For any ordinary homology theory the composite

is multiplication by the multinomial coefficient (jl, ••• ,jk)' In particular,

lj*'j* is multiplication by j!.

Proof. We may assume that Y is a CW-spectrum and exploit 1.2.1. Since

l:Y + Y, where + Y is the i t h projection, + C*«(k)y)

C*Y @ ••• @ C*Y is chain homotopy equivalent to the algebraic diagonal. With

Yl ••• =Yk = Y, the composite (i l)a in the proof of Theorem 1.1 induces aJ

upon passage to orbits over Lj (rather than over Ljl x ••• x Ljk)' Therefore

aJ 0 'J is just the composite

(V
I £: J

Y ( j ) ) y(j)
J P'L, •

J

Since there are (jl, ••• ,jk) sequences I £: J and thus (jl, ••• ,jk) wedge summands

here, the conclusion clearly holds on the level of cellular chains.

92. Power operations and Nishida's nilpotency theorem

Let E be an Roo ring spectrum and Y be any spectrum. Recall from 1.4.1 that we

have power operations '3j:EOy + EODjY specified by 1j(h) = We use the

results of section 1 to derive additivity formulas for these operations and apply

these formulas to derive the nilpotency of
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Lemma 2.1. For hi EO EOy, :PJ.(hl + ••• + hk) = 1: ,;( Y. (hI) A··· 1\ ?J' (hk)), where
J J l k

the product A is the external product in E-cohomology and the sum extends over all

partitions J (jl, ••• ,jk) of j.

Here the terms with one ji = j and the rest zero give the sum of the 1}(hi).
When j is a prime number p, the remaining error term simplifies. The full

generality of the following result is due to McClure.

Proposition 2.2. Let hi EO EOy. If P 2, then

::P(h + ••• +h) = :f(h) + ••• + '?2(h
k)

+ 1: '2*(h. Ah.).
2 I k 2 I Id<j ..k l J

If P is an odd prime and Y and E are p-local, then

Proof. We must show that

for a partition J = (jl, ••• ,jk) of p with no ji = p. Elf Lemma 1.9,

* * *
T TJh. 1\ ••• " T.) Thus it suffices to show that
p J l J k

* .
j! 3'. (h) = T. (hJ )

J J

for any j °and h EO EO(y). If j 0, h(O) and DO(h) are to be interpreted

as the identity map of S and the conclusion is trivial. If j = 1, the conclusion is

also trivial. There are no more cases if p = 2, so assume that p > 2 and

1 < j < p. Elf Lemma 1.11, the composite
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induces multiplication by j! in ordinary homology. It is thus an equivalence since
* * * (j)Y and hence also DjY is p-local. Therefore Ij:E (DjY) + E (Y ) is a

monomorphism and we need only check that

The left side is j!hj • By Lennna 1.10, the right side is the sum over o E: l::p of

o*(hj). The connnutativity of E implies that o*(hj) = hj for all o,j, and h, and the

conclusion follows.

Now recall from 1.4.2 that elements a E: Er(DpSq) determine homotopy operations

a:ll E + 11 E via the formula ';i(h) a/ '? (h).q r p

Corollary 2.3. Let a E: Er(DpSq) and h E: llqE, where q is even and E is p-local if p

is odd. Then

;;(kh)

where the product is the multiplication in 1I*E.

Proof. The following diagram is easily seen to connnute.

II(

a
, 1\ 1
P

Thus a/,*(hP) = (l::-pq, (a))hP. The conclusion follows from the last statement of
p p*

the previous proposition.

Assuming that E is p-Iocal (when p 2 as well as when p is odd), we obtain the

following innnediate corollaries.

Corollary 2.4. If pih o for all a.

Here we have multiplied by h to kill p a(h). Of course, this may not be

necessary.

One can also arrive at the last two corollaries by direct diagram chases from

Corollary 1.$ and the definition of an Hoo ring spectrum, without bothering with

additivity formulae. (That approach was taken in [72], following Nishida [90, §$]).
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These relations specialize to give nilpotency assertions, the sharpest estimate

being as follows.

Corollary 2.6.

Suppose that x

if pia = 0, then

Let x E TIqE satisfy pix = 0, where i >

E-pq'p*(a) for some a E Epq+q(DpSq).

pi-IxP+l = O.

o and q is even if p > 2.

Then pi-lxP+2 = O. Moreover,

The problem, of course, is to study E*(DpSq) and 'p*' Everything above applies

to an arbitrary ring spectrum E, but to compute 'p* we must specialize. If E =

MO, for example, then every element of TI*E has order 2 and no element is nilpotent,

hence '2*:MO*(D2Sq) + MO*(S2q) must be the zero homomorphism for all q, This does

not contradict the following assertion.

Conjecture 2.7. Any element of finite order in the kernel of the (integral)

Hurewicz homomorphism TI*E + is nilpotent.

We shall prove the conjecture for elements of order exactly p in section 6, but

the methods there fail for general elements of order pi with i > 1.

When we specialize to E = S, we find that the Kahn-Priddy theorem gives

appropriate input for application of the results above.

Theorem 2.8. If p = 2, let </>(k) be the number of integers j such that 0 < j :: k and

j 0,1,2, or 4 mod 8. If P > 2, let </>(k) [k/2(p-1) J. Let q be an integer such

that q = 0 mod p</>(k), where q is even if p > 2. Then 'p*:TIrDpSq + TIrSpq is a

(split) epimorphism for pq < r < pq+k(p-l).

We shall prove this in section 4. Actually, the purely stable methods we use

will give surjectivity without giving a splitting. For this reason, we are really

only entitled to use Corollary 2.4, rather than Corollary 2.5. This doesn't change

the heuristic picture, but to give the correct estimate of the order of nilpotency,

we assume the splitting (from 146, 95, or 27]) in the discussion to follow.

Theorem 2.9. Let x E TInS satisfy pix = 0, where i > 0 and n is even if p > 2. Let

m be minimal such that mn =0 mod p</>( [n/p-l]+l). Then pi-lxmp+l = O. Inductively,

some power of x is zero.

Proof. Let q = mn , Since n < ([n/p-l]+l)(p-1), there exists a E TIpq+nDpSq such

that E-pq'p*(a) x. With h = xm, Corollary 2.4 gives pi-lxmp+2 = o. Using

pia = 0, Corollary 2.5 gives pi-lxmp+l = O.

Unfortunately, m increases rapidly with n (although our estimate for p > 2 is

sharper than Nishida t s since he only knew Theorem 2.8 for r < pq-k l , For example,
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the first stem in which an interesting element x of order 2 occurs is the 14-stem

("interesting" meaning that x is neither in lI*J nor a product of Hopf maps). Here

m = 64 and we can only conclude that xl 29 = 0, a truly stratospheric estimate. So

far, and granting that our stemwise calculations still extend through only a very

small range, we have no reason to disbelieve that x4 = 0 if 2x = O. Corollary 2.6

seems to suggest that this answer might be correct. However, as pointed out to me

by Bruner, '2*; 1I*D2Sq + 1I*S2q is not always an epimorphism and thus

Corollary 2.6 cannot be used to prove this answer.

§3. The Jones-Wegmann homology and cohomology theories

The next three sections will all make heavy use of certain twisted diagonal

maps implicit in the general properties of extended powers.

Definition 3.1. Let 11 be a subgroup of Ej and let Wbe a free lI-CW complex.

based OW complex X and a OW spectrum Y, define a map of spectra

by passage to orbits over 11 from the 1I-map

For a

Here the isomorphism is given by 1.1.2(ii) and the shuffle lI-isomorphism

y(j ) '" X( j) = (Y "X) (j ). Note that II is the identity map when X = sO and

that the following transitivity and commutativity diagram commutes, where X' is

another based OW complex.

With 11 and W EE j' we obtain

Although not strictly relevant to the business at hand, we record the relationship
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between these maps and the maps lj' Bj,k' and OJ of !§2 and use them to

construct new examples of H
w
ring spectra.

Lemma ] .2 • The following diagrams commute for spectra Y and Z and spaces X. The

unlabeled arrows are obvious composites of shuffle maps and the diagonal on X.

0
1
A 1

DjIADjZAX

D/ AX "DjZ AX

o 1/\ ,,/\
-LDj(Yt-Xl ADj(ZAX)

! learned the following lemma from Miller and McClure.

Lemma ].]. Let X be an unbased space and E be an Hoo ring spectrum. Then the

function spectrum F(X+,E) is an Hw ring spectrum with structural maps the adjoints

of the composites D
+ /\ + +.it':

Dl(X ,E)" X ------ Dj (F(X ,E) "X ) ---"---" Dj E E,

where e is the evaluation map. In particular, the dual F(X+,S) of ;:wX+ is an H..,

ring spectrum.

Proof. If j 0, /\:S AX+ =< ;:wX+ __ ;:wSO = S is to be interpreted as EWo, where

°:X+ + SO is the discretization map sending X to the non-basepoint. The diagrams of

1.].1 are easily checked to commute by use of the diagrams of the previous lemma.

Returning to the business at hand, observe that, with X = 81 , we obtain a

natural map /\:EDjY + Dj;:Y. Thus, for any integer n (positive or negative), we have

the map
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We shall be interested in the resulting inverse system

n -n 1 -1 -1 -n n••• -l.: DJ.l.: Y- ••• -l.: D.l.: Y-D.Y-l.: D.l.:Y--'" -l.: Djl.: Y-.· ..
J J J

(where n 0). By the diagram in Definition 3.1, the maps

specify a morphism of systems, again denoted A,

We shall study the homological and homotopical properties of these systems. In this

section, we consider any j ::: 2. We shall obtain calculational results when j is a

prime in the follOWing two sections.

Let and E* denote the homology and cohomology theories represented by a

spectrum E. For spectra Y, define

andlim E*(l.:nDjE-fiy)

F(j ly = lim E* (l.:nD.S-n hY) and
* J

Upon restriction to spaces (that is, to Y EOOX), we obtain induced natural

transformations

and

-
SO. It is clear that F(j) is

*theory on finite CW spectra. Passage

and these reduce to identity homomorphisms when X =

*a homology theory and F(j ) is a cohomology

to colimits from the homomorphisms

yields suspension isomorphisms

and A* is easily seen to commute with suspension.

With these notations, the main theorems of

follows (although they only consider primes j and

The analogous assertions hold for

Jones and Wegmann [44] read as

only provide proofs when j = 2).

*3.4\ The functor E(j) is a cohomology theory on finite CW spectra, hence

A :E(j)X + F(j)X is an isomorphism for all finite CW complexes X.
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Theorem 3.5. Let E be connective and j-adically complete, with n*E of finite type

over the j-adic integers Z. x Z. Then is a homology theory on finite CW
J p!j p

spectra, hence + is an isomorphism for all finite CW complexes X.

We defer the proofs for a moment. AE Jones and Wegmann point out, these results

are no longer valid for infinite CW complexes.

o cc +Recall that DjS = E BE j and the discretization map
o 0

+ S. Upon smashing with Y, the composites

EnD.S-n
J J

+ + sOBE j induces

give a morphism from the system {EnD.S-nA Y} to the constant system at Y. We call
J

this map of systems and obtain a map of cohomology theories

commutation with the suspension isomorphisms being easily checked. We shall shortly

prove a complement to this observation.

Proposition 3.6. Let E be an Hoo ring spectrum. Then the composites of the

functions

and the natural homomorphisms En(EnDjE-ny) + specify a map of cohomology

theories

We thus have the triangle of cohomology theories

on finite CW complexes X. Since JPj(X) = 0 D.(x), we see immediately that
*1{') * 0 0 J J6 rj(l) = where 1 e E (S ) is the identity element. It does not follow that

* * in general. As we shall see in the next section, this fails, for exam-
J J

ple when E = MO. However, as observed by Jones and Wegmann [44), this implication

does hold for E = S.
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Proposition 3.7. The following diagram commutes for any finite CW complex X.

*

colim / (EnD.E-nX) colim / (EnD.S-n 1\ X)
J J

Proof. Since and are morphisms of cohomology theories, they are equal

for all X if they are equal for X = SO. Any morphism F+X of cohomology

theories is given by morphisms of When E* = and X = SO, $(x) =
$(l.x) = $(l).x, so that $ is determined by its behavior on the unit 1 E

0**For general E and X = S , it is obvious that It is not at all

obvious that = • x We now have this relation for E = S, and we
J J

shall use it to prove the Kahn-Priddy theorem in the next section. As we shall

explain in section 5, theorems of Lin when p = 2 and of Gunawardena when p > 2 imply

that and thus in Proposition 3.7 are actually isomorphisms. We complete

this section by giving the deferred proofs, starting with that of Proposition 3.6.
We need two lemmas.

Lemma 3.8. The following diagram commutes for any partition J

of j.

Proof. The "transfer" TJ is specified in Definition 1.4, and the proof is an easy

naturality argument.

Lemma 3.9. For an H", ring spectrum E, the composite

is a homomorphism.

Proof. By Lemma 2.1, we have the formula

p-I
'1.(x + y) = ':P,(x) +'f.(y) + L.*. .: .Lx ) l .
J J J i=l l,p-l 1 J-l
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With X = 81, Lemma 3.8 and the fact that ts:81 ... 81/\ 81 is null homotopic imply that

'i,j_in is null homotopic.

Thus in Proposition 3.6 is a natural homomorphism. It is easily checked

that Jj commutes with suspension and this proves the proposition.

Finally, we turn to the proofs of Theorems 3.4 and 3.5. Clearly it only
* (0)

remains to show that E(j) and E*J satisfy the exactness axiom on finite CW pairs

(Y,B). Although not strictly necessary, we insert a general observation which helps

explain the idea and will be used later.

Lemma 3.10. Let f:B ... Y be a map of CW spectra with cofibre Cf' , There is a map

... DjCf, natural in f, such that the diagram

commutes, where i:Y ... Cf and a:Cf ... EB are the canonical maps. If f is the

inclusion of a sUbcomp1ex in a CW spectrum, then the diagram

cn.r 'iJ \J"DoCf
J J

"! lDjlI
DoY!DoB
J J J

also commutes, where the maps 1I are the canonical (quotient) equivalences and the

bottom map is induced by the quotient map Y ... Y!B.

Proof. CD/ = DJoY '--'Do f CDJoB and D.cr = Do (Y v f CB); is induced by the
J J J

inclusion DjY ... DjCf and the composite of lI:CDjB ... DjCB and the inclusion

DjCB ... DjCf. The diagrams are easily checked.

Of course, the bottom row in the first diagram is not a cofibre sequence and

is not an equivalence. Now let (Y,B) be a finite CW pair. For notational

simplicity, set

As n varies, the maps

and z Y!B.
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specify a map of inverse systems, again denoted and we shall prove the following

result.

Proposition 3.11. For any pair (Y,B) of finite CW spectra,

and, under the hypotheses of Theorem 3.5,

are isomorphisms.

Note that the assumptions on E in Theorem 3.5 imply that all groups in sight

are finitely generated Z.-modules and thus that all inverse limits in sight preserve

exact sequences. Given proposition, the required and Ei j ) exact

sequences of the pair (Y,B) are obtained by passage to colimits and limits from the

E* and exact sequences of the pairs

Following ideas of Bruner (which he uses in a much deeper way in chapters V and

VI), we prove Proposition 3.11 by filtering y(j). For 0 s j, define

B and s of the Yr are equal to B. We have

Each inclusion is a Ej-equivariant cofibration, and we define

Then lIO = Z(j) and, for 0 < s < j, lIs breaks up as the wedge of its (s,j-s) distinct

subspectra of the form Zl'" ••• '" Zj' where Zr = Z or Zr = B and s of the Zr are equal

to B. It follows that ITs is the free [.-spectrum generated by the (Es x [j-s)-

spectrum B(s)", Z(j-s). That is, J

The functor EE. (i) converts Ej-cofibrations to cofibrations and commutes with
J Ej

quotients, hence we have cofibre sequences

(*)

for 0 r < s < t j. For a based space X, the map t; :Dj Y"'X ... Dj (Y AX) induces
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compatible maps

and similarly for ITs on passage to quotients. The following simple observation is

the crux of the matter.

Lemma 3.12. For a < s < j, there is a natural equivalence

a:DsBA Dj_sZ + EEj P<r. ITs(Y,B)
J

such that the following diagram commutes for any X.

In particular, the bottom map is null homotopic when X =

Proof. By 1.1.4 and the description of ITs(Y,B) above, we have

Er. P<E IT (Y,B)
J j s

_ EE B (s ) " Z (j -s) •
j l<E

s
x r ,

J-s

As in the proof of Theorem 1.1, we may replace EEj by EE s x EEj_s on the right side,

and it then becomes isomorphic to DsB" Dj _s2. The diagram is easily checked.

Now apply En to the cofibre sequence (*) for the pair (E-nY,E-nB) with quotient

E-nZ. We obtain an inverse system of cofibre sequences for a r < s < t < j. On

passage to E* and then to colimits (or to E* and then to limits), there results a

long exact sequence. For a < s < j, the maps between terms of the system

are null homotopic, hence its colimit of cohomologies is zero. Inductively, we

conclude from the long exact sequences that the colimits of cohomologies associated

to the quotients fs/ft with s > a are all zero and that the maps of colimits of

cohomologies associated to the quotient maps fa/ft + fa/fs are all isomorphisms.

With s = 1 and t = p, this proves Proposition 3.11.
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§4. Jones' proof of the Kahn-Priddy theorem

1fJ y{j)
---4' E

j
I< ,

I<y(j) =y{j)

(j)

We prove Theorem 2.8 here. The proof for p = 2 is due to Jones [431 and we

have adapted his idea to the case p > 2. We begin more generally than necessary by

relating the cofibre sequences (*) above Lemma 3.12 to the maps Tj:DjY + y(j) of

Definiton 1.4. The idea here is again due to Bruner. Thus let (Y,B) be a pair of

finite CW spectra with quotient Z Y/B. The map Tj is obtained by applying the

functor EEj (?) to the composite
J

EE. "'E r /r, --EE. I<E f/f t --EE. IX r If
J j s J j J Ej r s

TjJ Tj! !Tj
fs/f t -- f/ft - r/r s

for 0 < r < s < t 5 j. With t s+l, the left map Tj is nicely related to the

equivalence a of Lemma 3.12, as can easily be checked by inspection of definitions.

Lemma 4.1. The following diagram commutes for 0 < S < j, where p is the projection

onto the unpermuted wedge summand.

When j = 2, there is only one map of cofibre sequences above, and we obtain the

following conclusion.

Proposition 4.2. For CW pair (Y,B) with quotient Z = Y/B,

T'

D
2Z

---...?..- EB i\ Z
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is a cofibre sequence, where +is induced by the quotient map Y + Z, 12 is

the composite

B ... Z

and r 2 is the composite

Proof. Combine the cofibre sequence

with the equivalence

those specified.

Our main interest is in the pair (CY,Yl •

and check that the resulting maps are

Corollary 4.]. The following is a cofibre sequence.

L1 2 '2
1>oW2Y --- D2EY --l:Y "'l:Y.

Proof. Use the evident equivalence D
2CY/D2Y: J:D2Y and check the maps, using

Lemma ].10 for the middle one.

For j > 2, we have too many cofibre sequences in sight. Henceforward, let p

be a prime and localize all spaces and spectra at p without change of notation. We

shall show that, for odd primes p and pairs (CSq,Sql, our system of cofibre

sequences collapses to a single one like that in the previous corollary. Recall

from Lemma 1.10 that r 1 :y(rl + y(rl is the sum of permutations map and
r r

1r'r:DrY + DrY induces multiplication by r! on ordinary homology. In particular,

for 1 < r < p, DrY is a wedge summand of y(rl.

Lemma 4.4. For 1 < r < p, Drs
2q+l is equivalent to the trivial spectrum and

1r:s2qr + DrS
2q is an equivalence with inverse •

r : r

Proof. When Y = s2q, 'r1r induces multiplication by r! on homology; when Y S2q+1 ,

it induces zero. The conclusions follow.

Thus, when Y is a sphere spectrllm, most of the spectra

are trivial.
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Corollary 4.5. Let P > 2 and let q be an even integer. Then there are cofibre

sequences

and

Proof. Let f s = fs(CY,Y) and ITs = fs/f s+l'

for 2 < s < p, hence fr/fs is trivial
p

and fO/fp + fO/f2 induce equivalences upon

results a cofibre sequence

If Y = Sq-l, then ITs is trivial
p

for 2 r < s p. Thus fl/fp + TIl

application of (7) and there
p

(7) and there
p

III fo/f __ 1I0 -- k Ill'
Pp pp P Pp P P

This gives the first sequence upon interpreting the terms and maps (by use of Lemmas

3.10, 3.12, 4.1, and 4.4). Similarly, if Y = sq, then lIs is trivial for
p

< r < s p-l. Thus fo/f p_l + 1I01 s < p-l, hence fr/fs is trivial for 1
p

and IIp_l + fl/fp induces equivalences upon application of

results a cofibre sequence

ec II 1 -... rO/f -- 1I0 IIp_lr- P P P P P

This gives the second sequence.

One can also check these cofibre sequences by direct homological calculation;

compare Lemma 5.6 below. We need some further information about the spectra

in order to use these sequences to prove Theorem 2.8. Proofs of the claims to

follow will be given by Bruner in V§2.

If P = 2, let L with its standard cell structure. (We write L rather

than the usual P for uniformity with the case p > 2.) If P > 2, let L be a CW

spectrum of the p-local homotopy type of such that L has one cell in each

positive dimension q a or -1 mod 2(p-l). The existence and essential uniqueness

of such an L was pointed out by Adams [7,2.2J. Let Lk be the k-skeleton of Land

let T. = L/Ln-l and Ln+k = Ln+k/Ln-l for k > O. Let <j>(k) be as in Theorem 2.8n -
(and recall that it depends on pl. If P = 2, then

Ln+k for m n mod 2<j>(k).
n m

If p > 2, E o or 1, and k E, then

L2n+k E2(n-ml L2m+k for m n mod p<j>(kl.
2n+E 2m+E
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n
We then have that
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We use this periodicity to define spectra

equivalences hold for all integers m and n.

n+k -n-l
Ln is {-I)-dual to •

Our interest in these spectra comes from the following result (proven by Bruner in

V§2) •

Theorem 4.6. For any integer n, E-nDpSn is p-Iocally equivalent to Ln{p-1).

We define

p > 2, no model

Dpsll. We shall

If P = 2, we may view as Sk lXE S2n. If

for EEp has few enough cells to give as convenient a of

shortly prove the following result.

Proposition 4.7. If + SO is the projection onto the top cell, then

p*:n-q{SO) +

is zero for ° < q < k{p-l).

Since p is (-I)-dual to the inclusion l:S-l + of the bottom cell,

l*:n (S-l) + (Lk-l
l) is zero for ° q < k{p-1)-1. The cofibre sequences of

q q -
Corollaries 4.3 and 4.5 restrict to give cofibre sequences

k-1 °Thus, ) + is an epimorphism for 0< q < k{p-l). Now let k go to

infinity. Of course, LO '" E""BE; splits as the wedge E""BEp 1/ sO• Since

Tp1p:SO + sO has degree pI, the finiteness of allows us to deduce the

following version of the Kahn-Priddy Theorem.

Theorem 4.8. The restriction Tp:EooBEp + SO induces an epimorphism

"" °(E BE ) + (S ) ® Z{ ) for q > O.
q P q P

To prove Theorem 2.8, consider the following diagram, where q 0 mod p<j>{k) and

q is even if p > 2.
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The bottom cofibre sequence is obtained by restriction from sequences in Corollaries

4.J and 4.5. Periodicity gives an equivalence v such that the left square commutes.

Standard cofibration sequence arguments then give an equivalence w such that the

remaining squares commute. The bottom map 'p factors through 'P :DpSq + sPq and is

an epimorphism in the range stated in Theorem 2.8.

It remains to prove Proposition 4.7. For amusement, we proceed a bit more

generally. Recall the not necessarily commutative diagram

below Proposition J.6, where E is an H= ring spectrum. With E S and X = SO, the

following result is Proposition 4.7.

Proposition 4.9. Let X be a finite CW complex of dimension less than k(p-l)-q,

where 0 < q < k(p-l). Then

* -q -q 0(p"l):E X= E (S 1\ X)

is zero if E is a connective H= ring spectrum such that

For n >Proof. k, the cofibre of S-n-l + S-n has dimension at most

-k(p-l), and it follows that the colimit is as E-q(LkDpS-k/\Xl.

Let + L_k be the inclusion and consider the following diagram,

where x is any map X + L-qE.

II
x



Since t:,*Pp
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* the bottom part commutes. We have

-1since the composite is obviously null homotopic on L_k and of degree one on the top

cell. We have

since k-qD sq is a-connected. The conclusion follows.p

Replacing S by E in the deductions from Proposition 4.7 and using the results

of section 2, we conclude that, for q > 0, all p-torsion elements of npE are
* * * *nilpotent if t:,?p = This implies our earlier claim that t:, 1?2 I when

E = MO.

§5. The Singer construction and theorems of Lin and Gunawardena

Singer introduced a remarkable algebraic functor R+ from A-modules to A-

modules, where A is the mod p Steenrod algebra, and Miller began the study of the

cohomology theories in section 3 by making the following basic observation. All

homology and cohomology is to be taken with mod p coefficients.

Theorem 5.1. Let Y be a spectrum such that is bounded below and of finite

type. Then colim H*{knDpk-nYl is isomorphic to k-1R+H*Y.

We shall prove this and some related observations after explaining its

relationship to the following theorems of Lin [53, 54J and Gunawardena U8, 39].
A* A

Let n and n* denote the p-adic completions of stable cohomotopy and stable

homotopy.

Theorem 5.2. The map + colim ;;*{knDpS-n... Y} is an isomorphism for all

finite CW spectra Y.

As we shall explain shortly, lim

compatible system of maps +

compatible system of maps

(knD S-n) = Realizing the unit by a
p p

and smashing with Y, we obtain a

Theorem 5.3. The map + lim ;*(knDpS-n ...Y) is an isomorphism for all

finite CW spectra Y.
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Since 1;; is a map of cohomology theories and is a map of homology

theories, it suffices to prove these isomorphisms for Y = SO. Since

is (-ll-dual to
p p'

the theorems are esentially dual to one another. Indeed, using the liml exact

sequence and waving one's hands at certain compatibility questions, one finds the

following chain of isomorphisms, where mlp-L) > q.

lim ;q(Emuk(P-ll-lS-m)
k p

lim; l{Em+kDk{P-ll-lS-m-k)
k -q- P

lim; (EnD S-n)
n -q-l p

There is a map of A-modules E::R+Zp + Zp' and the main point of the work of Lin

and Gunawardena can be reformulated as follows; see Adams, Gunawardena, and Miller

[9J.

Theorem 5.4.

An inverse system {Yn} of bounded below spectra Yn of finite type gives rise to

an inverse limit

of Adams spectral sequences, where {ErY} denotes the classical Adams spectral

sequence for the computation of ;*Y. Clearly

As pointed out in [74J, {Er} converges strongly to lim ;*Yn' We apply this with

Yn = EnDpS-n• Here Theorems 5.1 and 5.4 give

ExtA{E-IZp,Zpl.

A n -n l>,From this and convergence, it is easy to check that lim n l{E D S ) = _ The
- p p

compatible system of maps <.;P:s-l + EnDpS-n then induces a map of spectral sequences

By Theorem 5-4 again, E2<.;P is an isomorphism, and Theorem 5.3 follows by
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convergence. Theorem 5.2 can be obtained by a similar Adams spectral sequence

argument (as in Lin 153l and Gunawardena D81 l or by dualization.

The crux of the proof of Theorem 5.1 is the following result of Steinberger,

which is proven in V111.3.2 of the sequel. For spaces, it is due to Nishida [89];

see also [68,9.41. Let w be the cyclic group of order p. We assume familiarity

with the mod p homology H*DwY' its determination being a standard exercise in the

homology of groups in view of 1.2.3 (see e.g. [68, §ll). Suffice it to say that

H*DwY has a basis consisting of elements of the form eO @ Xl <8> ••• @ and ei @ xP,

i O. Here the Xi and x run through basis elements of the Xi are not all

equal, and the Xl ® ••• ® xp and xP together run through a set of w-generators for

Restricting to those i of the form (2s-q)(p-ll-g, where q = deg (x) and

g = 0 or 1, and to a set of Ep-generators for (H*YlP, we obtain a basis for

At least if is bounded below and of finite type, we have analogous dual bases

for H*DwY and H*DpY with typical elements denoted Wo @ Yl ® ••• <8> yp and Wi @ yp.

Theorem 5.5. Assume that is bounded below and of finite type. The subspace of

H*DwY spanned by {wo ® Yl @ ••• @ Yp} is closed under Steenrod operations and,

modulo this subspace, the following relations hold for Y g Hqy.

(i) For p = 2,

I
i

j+q-i

s-2i

i 2w
j
+s _2i @ (Sq y) •

(ii) For p > 2, let 6(2n+g) 1e , m = 2" (p-l), and a(q)

I
i

Ij/2]+qm-(p-l)i ® (pi )p
. wj+2(s-pil (p-T) x Y

s-pi-l
+ 6(j-l)a(q) I

i

Ij/2]+qm-(p-l)i-l i P
wj_P+2(s_pi) (p-L) @ (ap y) •

(iii) For p > 2, A(w2j_l ®yp)

We also need to know A*:H*D Y + H*(ED E-1y). Let En:Hq(y) + Hq+n(Eny) denotew IT
the iterated suspension isomorphism for any integer n.

Lemma 5.6. For Y g

j+1 -1 P(-1) a(q)E(wj+P_1
@ (E y) ).

Proof. We first compute + Take f to be the identity map of Y

and replace Dp by Dw in Lemma 3.10. We find that the composite of A* and the

homology suspension E* is the suspension associated to the zero sequence



47

ay 1.2.3 and [68,§1], we may instead use the zero sequence

where Wis the standard s-f'ree resolution of Zp' A direct chain level computation,

details of which are in [68,p. 166-167J, gives the formula

p _ j+l P
lI*E*ej+p_1 ® x - (-1) C/.(q)ej ® (E*x1

for x e Hq_1(y). Clearly A*E*(eO® xl ® ••• ® xp1 = 0 for all xi'

follows upan dualization (and a careful check of signs).

The conclusion

The results above determine oolim H*(EnD
llE-

nY1 as an A-module, and similarly

with D
ll
replaoed by Dp' To compare the answer to the Singer oonstruction, we must

first recall the definition of the latter [98,52]. When p = 2, E-1R+M is additively

isomorphic to A®M, where A is the Laurent series ring Z2[v,v-11,
deg v = 1. Its steenrod operations are speoified by

(r-i ) r+s-i S i
L s-2i v q x.
i

When p > 2, E-1R+M is additively isomorphic to A@M, where A = E{u} x Zp[v,v-1],

deg u = 2p-3 and deg v = 2p-2. Its Steenrod operations are speoified by

and

+ (l-e:l (_11s+i ( uvr+s-i-1 ® i>pixt s-p1-1

We can now prove Theorem 5.1. We define an isomorphism

w:oolim H* (EnDpE-nY1 ... E-1R+H*Y

as follows. For p 2 and y g Hq(y), let

n -n 2 rw(E (wr_ q+n @ (E y) v @y.

For p > 2 and y g Hq(y), let

n -n p
w(E (w(2r+n_q) (p-l)-g @ (E y1 ) ( 11r +q+(g+11n ( )-1 g r-g- v q-ri u v 'CI y,
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-1 -1 q -1 mqcdq)v(q-l) = v(q) and (-1) v{q) = (-1) v(q).

By Lemma 5.6, these w induce a well-defined isomorphism on passage to colimits. by

Theorem 5.5, we see that our constants have been so chosen that w is an isomorphism

of A-modules.

Remark 5.7. When p > 2, there are two variants of the Singer construction. We are

using the smaller one appropriate to Dp• This is a summand of the larger variant,

for which Theorem 5.1 is true with Dp replaced by D
1T

• See Gunawardena [39,9] for

details (but note that his signs don't quite agree with ours).

With Y = SO, Theorem 5.1 specializes to an isomorphism

Since A is an A-module, A@M admits the diagonal A action, which is evidently quite

different from that originally specified on E-lR+M. For finite CW complexes X, we

have the isomorphism

of Theorem 3.2. We next obtain an explicit description of the resulting isomorphism

correct signs, [68,9.1]).

calculations.

A:D YI\X
n

When Y = S,of Lemma 5.6.

+ D (Y"X). When X 81 , we computed A* in the proof
1T

DnY = EooBn+ and the effect of A* is implicit in the

definition of the Steenrod operations; see Steenrod and Eptein [lOOJ (or, for

The following result is a common generalization of these

Thus consider

Propsition 5.8. Let x £ Hk(X) and y £ Hq{Y). If P 2,

£; then

2 i 2
A*{er @ y @ x) = I er+2i_k @ (y @ Sq*x) •

i

(-l)j{ml)£ and d2j+£lif P > 2, let v{2j+l)

__p mkq \' i i P
A*{er @ s: @x) = (-I) vl k ) t (-I) er+{2pi_k) (p-L) @ (Y® P*x)

_(_l)q+m{k-l)qo{r)v{k_l) L (-1)ier+p+(2Pi_k) (p-l) @ (y@
i
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Proof. Modulo shuffling in C*(YlP, which introduces the signs depending on q when

p > 2, /:;* is computable from the map obtained by quotienting out the action of 11

from the ll-map

0l:C*(Wl 0 <\(Xl (8)C*(YlP -C*(Wl 0 <\(X)p 0 C*(Y)p

induced by a ll-equivariant approximation of 10M" where /:; I is a cellular

approximation of the diagonal X XP; see e.g. [100, V§JI or [68,7.1]. The

essential point is that Y acts like a variable, so that the standard

calculation for Y = SO of [68, 9.lJ implies the general result.

Dualizing, and paying careful attention to signs, we obtain the following

version in cohomology.

Proposition 5.9. Assume that 14X and 14Y are of finite type and that 14Y is bounded

below. Let X and y If p 2,

2 iLw'+ k • 0 Y 0 Sq x,
i J -1

If P > 2,

* p mk(q+ll i __p i
/:; (wj 0 (y 0 x) ) = (-1) v(k) f (-1) wj+(k_2i) (p-L) 0 s: 0 P X

1

_(_llq+mk(q+l) o(j-llv(k) f (-lliWj+(k_2il (p-ll-l 0 yP 0 Bpix.
1

A check of constants gives the following consequence.

Corollary 5.10. For M = H X, the formula

/:;* (v r 0 xl = Lvr-i 0 Sqix
i

if P 2 and

/:;* (UEVr-E 0 xl = LuEvr-i-E 0 pix - ll-el L uvr-i-10 Bpix
i i

* -1if P > 2 specifies a morphism of A-modules /:; : 1: R+M A 0 M.

The same formulae give a morphism of A-modules for all A-modules M which are

either unstable or bounded above, either assumption ensuring that the relevant sums

are finite. In the bounded above case, but not in general in the unstable case,

this morphism is an isomorphism. See [98, 52,82].
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Define s:R+M + Mby the formulas

if P 2 (where Sqr(x) = 0 if r < Ol and

if P > 2. By [98,3.4] and [52,3.5], s is a well-defined morphism of A-modules.

When is defined, s is the composite

Generalizing Theorem 5.4, Adams, Gunawardena, and Miller [9] proved that s is an

Ext-isomorphism for any M. This leads to a generalization of Theorem 5.3 to a

version appropriate to (Zp)k for any k 1, and this generalization is the heart of

the proof of the Segal conjecture for elementary Abelian p-groups. See [9,74].

§6. Nishida's second nilpotency theorem.

If x s nnE has order p, then x extends over the Moore spectrum NP = SO

The idea of Nishida's second nilpotency theorem is to exploit this extension by

showing that DjMP splits as a wedge of Eilenberg-MacLane specta in a range of

dimensions. The relevant splitting is a special case of the following result which,

as we shall explain shortly, is in turn a special case of the general splitting

theorem to be proven by Steinberger in the next chapter.

Theorem 6.1. Let Y be a spectrum obtained from sn by attaching cells of dimension

greater than n. Assume that nnY is Z or Z i and let v s Hn(Y;Zpl be a generator.

Assume one of the following further

(a) p 2 and either n is odd or 13(v) f O.
(b) p > 2, n is even, and 13(v) f O.

(c) p 2 and Sq3(vl f O.

(dl p > 2, n is even, and 13pl(vl f O.

Then DjY splits p-locally as a wedge of suspensions of Eilenberg-MacLane spectra

through dimensions r < nj + 1. (2p-3) (j+l)-l. In cases (a ) and (bl, only
p

suspensions of HZp are needed.

Before discussing the proof, we explain how to use these splittings to obtain

relations in the homotopy groups of H"" ring spectra. Let Y and v be as in the

theorem above and localize all spectra at p.
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Theorem 6.2. Let E be an H
oo
ring spectrum, let F be a connective spectrum, and let

E be any map (for example, the product when F = E or the identity when

Let x E and assume one of the following hypotheses.

2 and n is odd; here let Y = Sn.

2, n is even, and x has order 2; here let Y = Mr.
(cl p = 2, n is even, and x extends over some Y with Sq3(v) I O.

(d) p > 2, n is even, and x extends over some Y with Spl(v) I O.

Let R = Zp in cases (a ) and (bl and R = in cases (c ) and (d) and let y E be

in the kernel of the Hurewicz homomorphism + Hq(F;RI. Then xjy = 0 if

q < 1 (2p-31(j+ll-l.
P

Proof. Our hypotheses ensure that Iflj(DjY;RI _ R. We can choose a generator IJ such

that the composite

is z;nje, where f:sll + Y is the inclusion of the bottom cell and e:S + HR is the

unit. Choose x:Y + E such that xf = x , Then the solid arrow part of the

following diagram commutes and the top composite is xjy.

D.Y AF
J

Here r = nj+q, w:DjY + (DjYl r is the r t h stage of a Postnikov decomposition of DjY,

and p:(DjYl r + z;njHR is the unique cohomology class such that pto = IJ. The previous

theor:m gives K:Z;njHR + (DjYl
r

such that pK = 1. The compkemerrtary wedge summand

of Z;nJHR in (DjYl r is (nj I-connect.ed, and it follows that K.Z;nJ e = W.D/ol j• Since

F is connective, w" 1 induces an isomorphism on +q' Since y is in the kernel of
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the Hurewicz homomorphism and the latter is induced by e/\ l:F

l:njel\ y = O. Chasing the diagram, we conclude that xjy = O.

In particular, with F = E, q = n, and y = x, we obtain xj+l O. With E = S

and n > 0, case (b ) applies to any even degree element of order p , As observed by

Steinberger, when p = 2 case (a) applies to any odd degree element and gives a

better estimate of the order of nilpotency than that obtained by applying case (bl

to x2• While this result gives a much better estimate of the order of nilpotency of

elements of order p in n*S than does Theorem 2.9, the estimate is presumably still

far from best possible. For example, if p = 2 and n = 14, the estimate is now

x30 = O. Cases (c) and (d) apply to some elements of order pi with i > 1. The idea

is to add further cells to sr, or to Sn \J i CSn, so as to obtain a spectrum Y for

which the relevant Steenrod operation is However, a given element x need

not extend over any such Y. (Conceivably some power of x must so extend.) This

explains why Nishida's second method fails to give the full nilpotency theorem and

why we cannot yet prove Conjecture 2.7.

We must still explain how to prove Theorem 6.1. The idea is to approximate Dj
through the specified range by a spectrum with additional structure and then use

homology operations to split the latter. The approximation is based on the

following observation about mod p homology.

Proposition 6.3. Let Y be an (n-l)-connected spectrum with = Zp' where n is

even if p > 2. Let f :Sn + Y induce an isomorphism on Then the homomorphism

Hil:nDqY + HiDq+lY induced by the composite

Yq q q+l

is a monomorphism for all i and is an isomorphism if 1i < n(q+l) + - (2p-3}(q+l).
p

For spaces X, a self-contained calculation of for all q is given in

[28,I§4-51. The generalization to spectra is given by McClure in Chapter IX, and

the conclusion is easily read off from these calculations.

With the proposition as a hint, we construct the approximating spectra as

follows.

Definition 6.4. Let (Y,f) be a spectrum together with a map f:sD- + Y for some

integer n and define D(Y,fl = tel l:-nqDqy, where the nth map of the system is

obtained by applying l:-n(q+l} to the composite

D Yr. fP D YAY D lY'q q q+
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Now the previous proposition has the following consequence.

Corollary 6.5. With Y and f as in the proposition, assume further that Y is

p-local of finite type. Then the natural map DjY + EnjD(Y,f) is an equivalence

through dimensions less than nj + i (2p-3)(j+l) - 1.

Proof. By the proposition, the maps E-n(q+l)(uq,l oll\f) used to construct

D(Y,f) induce isomorphisms in mod p homology and thus in p-local homology in

degrees less than i (2p-3) (q+ll. This fact for q ::: j implies the conclusion (with

the usual loss of a dimension as one passes from homology to homotopy).

Thus, to prove Theorem 6.1, we need only split NY,f).

The following ad hoc definition, which generalizes Nishida's notion of a

r-spectrum [90,1.5J, us to describe the structure present on the spectra

D(Y,f). In the rest of this section we shall refer to weak maps and weakly

commutative diagrams when the domain is a telescope and phantom maps are to be

ignored.

Definition 6.6. A spectrum E is a pseudo Roo ring spectrum if

(i) E is the telescope of a sequence of connective spectra Eq, q ::: 0;

(11) E is a weak ring spectrum with unit induced from a map S + EO and

product induced from a unital, associative, and commutative system of compatible

maps Eq I\Er + Eq+r; and

(iii) For each j ::: ° and q::: 0, there exists an integer d = d(j,q) and a map

:D.l:dqE + bdjqE
j

whose composite with 1. :EdjqE(j) :: (bdqE ) (j) + D.bdqE is
JJ q q J q q J q

the (djq)th suspension of the interated product + E
j q•

Examples 6.7. (i) With each Eq = E and each d(j,q) = 0, a connective ring

spectrum may be viewed as a pseudo Roo ring spectrum.

(ii) With each E and each d(j,q) = d, a connective Rd* ring spectrum may be
00

viewed as a pseudo Roo ring spectrum; since E has structural maps for all q,

negative as well as positive, we could obtain a different pseudo structure with each

d(j,q) -a.
(iii) For an (n-l)-connected spectrum Y and map f:sP + Y such that either

2 = O:Y + Y or n is even, D(Y,f) is a pseudo Roo ring spectrum with qth term

b-nqDqY. Its product is induced by the maps

these forming a unital, associative, commutative, and compatible system by 1.2.6 and

1.2.8 and our added hypothesis, which serves to eliminate signs coming from permuta-
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tions of spheres. With all d(j,q) = n, its structural maps are

The following analog of 1.3.6 and 1.4.5 admits precisely the same simple

cohomological proof.

Proposition 6.8. Let E be a pseudo H
oo
ring spectrum with char nOE = 2 or all

d(j,q) even. Assume that nOE = nOEq for all q and, for such q, let

i:Eq + H(,IOE) be the unique map which induces the identity homomorphism on <o- Then

the following diagrams commute, where d = d(j,q):

Dr J.

In the next chapter, Steinberger will use a computation of the homology

operations of the Hoo ring spectrum l:dqHZp to prove the following generalization

of Nishida's result [90,3.2].

Theorem 6.9. Let E be a p-local

splits as a wedge of suspensions

p = 2 and Sq3i f 0 or p > 2 and

as a wedge of suspensions of HZ

pseudo H
oo
ring spectrum. If nOE = then E

of HZp' If 1l0E = Z r' r > 1, or 1l0E Zip) and if
p

BP1i f 0, where i generates IP(E;Zp) , then E splits

s 1, and HZ(p)'

Considering the natural map l:-ny + D(Y,f), and using the formula B(wO@ v2 ) =
nWl ® v2 of Theorem 5.5 for case (a), we easily check that the theorem applies to

split D(Y,f) for Y as in Theorem 6.1.

We complete this section with some remarks about the role played by Definition

6.4 in the general theory of Hoo ring spectra.

Remarks 6.10. Let (E,e) be a spectrum with unit e:S + E. Let DE = D(E,e) and let

n:E = DIE + DE be the natural inclusion. By 1.2.7, 1.2.9, and 1.2.13, the maps

Bj,k:DjDkE + DjkE induce a natural weak map + DE such that the following

diagrams (weakly) commute:
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and
Ds 0 kJ,

If E is an Roo ring spectrum, then, by Proposition 1.3, the maps E determine

a weak map E such that the following diagrams (weakly) commute.

E and

DE -----'''-----..... E

Conversely, by the same result, if E makes these diagrams weakly commute,

then its restrictions E give E a structure of Roo ring spectrum. These

assertions are analogous to, but weaker than, the assertions that D is a monad and

that an Roo ring spectrum is an algebra over this monad (compare [69, §2]). The

point is that the fail to satisfy the requisite compatibility to determine a weak

map DE. B,y 1.2.11 and 1.2.15, the compatibility they do have is described

by the weakly commutative diagram

• DDkE"DS .. DDkE

IVk jD'ok,l o ll\e)

.. DE < DDk+1E

II

where vk is induced by the composites

So k" Doe
J, J >-D E"DE

jk j

aOk 0

J ,J D E
jk+j



CHAPTER II1.

HOMOLOGY OPERATIONS FOR Hoo AND RING SPECTRA

by Mark Steinberger

Since ring spectra are analogs of Hoo spaces and ring spectra are analogs

up to homotopy of n-fold loop spaces, it is to be expected that their homologies

admit operations analogous to those introduced by Araki and Kudo 112], Browder 122],

Dyer and Lashof 133] and Cohen 128]. We define such operations in section 1 for H..

ring spectra and in section 3 for ring spectra.

As an amusing example, we end section 1 with the observation, due independently

to Haynes Miller and Jim McClure, that our homology operations in I4F(X+ ,S) = H*X

coincide with the Steenrod operations when X is a finite complex.

For connective ring spectra, we show that the resulting ring of operations

is precisely the Dyer-Lashof algebra. Moreover, if X is an H.. space with zero (as

in 11.1.7), then the new operations for the Hoo ring spectrum EWX coincide with the

space level operations of H*X.

As will be shown by Lewis in the sequel, the Thom spectrum Mf of an n-fold or

infinite loop map f:X + BF is an or Hoo ring spectrum and the Thom isomorphism

carries the space level operations to the new operations in I4Mf. This applies in

particular to the Thom spectra of the classical groups (although a simpler argument

could be used here).

In section 2 we present calculations of the new operations in less obvious

cases (with the proofs deferred until sections 5 and 6). Our central calculations

concern Eilenberg-MacLane spectra, where , in contrast to the additive homology

operations for Eilenberg-MacLane spaces, these operations are highly nontrivial. In

fact, they provide a conceptual framework for the splittings of various cobordism

spectra into wedges of Eilenberg-MacLane spectra or Brown-Peterson spectra. The

proofs of these splittings in the literature are based on computations of the

Steenrod operations on the Thom class. We show in section 4 that the presence of an

ring structure, n 2 (n 3 for the BP splittingsl, reduces these computations

to a check of at most one low dimensional operation, depending on the type of

splitting. In addition, we have placed these splitting theorems in a more general

context which, as explained in the previous chapter, leads to a reproof of Nishida's

bound on the order of nilpotency of an element of order p in the stable stems. All

of our splittings ara deduced directly from our computation of the new operations in

the homology of Eilenberg-MacLane spectra.
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Proposition 5.1.

n. Construction and properties of the operations

Just as the space level operations of Araki and Kudo, Browder, and Dyer and

Lashof are based on maps

so our new spectrum level operations are based on the structural maps

of ring spectra (see 1.3.1). We consider homology with mod p coefficients for a

prime p. The following omnibus theorem describes our operations. Properties of the

operations at the prime 2 which are distinct from the properties at odd primes are

indicated in square brackets. As usual, R denotes the homology Bockstein operation,

and denotes the dual of the Steenrod operations pr, with pr = Sqr if p = 2.

Theorem 1.1. For integers s there exist operations QS in the homology of ring

spectra E. They enjoy the following properties.

(1) The QS are natural homomorphisms.

(2) QS raises degree by 2s(p-1) [by sJ.

(3) QSx 0 if 2s < degree(x} [if S < degree(x}].

(4) QSx xP if 2s = degree(x} [if s degree(x}].

(5) QS1 0 for s I 0, where 1 £ HeX is the algebraic unit element of

(6) The external and internal Cartan formulas hold:

QS(x x y) I Qix x Qjy for x x y e H*(EA F);
i+j =s

QS(xy) I (Qix1(Qjy) for x,y £ H*E.
i+j=s

(7) The Mem relations hold: if p :? 2 and r > ps, then

r s r+i . . r+s-i i
Q Q = I (-1) (pt - r, r - (p - Lls - 1 - l}Q Q ;

i

if P > 2 and r ps, then
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I (_l)r+i(pi - r,r _ (p - lIs _ iISQr+s-iQi
i

- I (_l)r+i(pi - r _ ll,r - (p - lIs _ iIQr+s-iSQi.
i

(8) The Nishida relations hold: For p 2 and n sufficiently large,

pi,pn + s(p _ 1) _ pr +

In particular, for p (s - lIQs-l. For p > 2 and n sufficiently large,

(_llr+i(r n +' .
I pi,p + sIp - II - pr + pi l)SQs-r
i

- I (_l)r+i(r - pi-I, n sIp - 1) . s-r+i ip + +plIQ P*S.
i

(9) The homology suspension a:H*EO + H*E carries the operations given by

the multiplicative Hoo space structure of EO to the operations in the homology of E.

(10) If E = LOOX for X, then the operations in agree with

the space level operations in

The statement here is identical to that for the space level operations except

that operations of negative degree can act on homology classes of negative degree

and that a high power of p is added to the right entry in the binomial coefficients

appearing in the Nishida relations. For spaces, the same answer is obtained with or

without the power of p because of the restrictions on the degrees of dual Steenrod

operations acting nontrivially on a given homology class. Our conventions are that

(a,b) is zero if either a < °or b < °and is the binomial coefficient (a + bll/alb!

otherwise. The Nishida relations become cleaner when written in terms of classical

binomial coefficients since

for a < pn and b > 0.

The QS and SQs generate an algebra of operations. If we restrict attention to

the operations on connective ring spectra, then the resulting algebra is

precisely the Dyer-Lashof algebra in view of relations (3) and (8) and application

of (101 to the space obtained by adjoining a disjoint basepoint to the additive

Roo space structure on QSO.

We sketch the proof of the theorem in the rest of this section. With the

exception of the proof of the Nishida relations, the argument is precisely parallel

to the treatment of the space level homology operations in [28] and is based on the
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general algebraic approach to Steenrod type operations developed in [681 and

summarized by Bruner in IV§2.

Let be the cyclic group of order p embedded as usual in Lp and let Wbe the

standard resolution of Zp (see IV.2.2). Let C*(ELp) be the cellular chains

of the standard Lp-free contractible space ELp and choose a morphism

j:W + C*(ELp) of over Zp. We may assume that our ring spectrum E is

a CW-spectrum with cellular structure maps + E. By 1.2.1, DjE is a CW-

spectrum with cellular chains isomorphic to (C*E)j. Thus we have a

composite chain map J

The homology of the domain has typical elements ei l8> xP (and "o l8> Xl l8> •••
where x E: and we let Qi (x) E: be the image of ei l8> xp• Let x have degree q ,

If P = 2 define

for p > 2, define

and

where v(q) = (_1)q(q-l)m/2(m!)q, with m =i (p-l). By [68J the QS and SQs account

for all non-trivial Qi when p > 2. Since restricts on E(P) to the p-fold product

of E and since the unit e:S + E is an parts (1)-(5) of the theorem are

immediate from [68J.

It is proven in the sequel [Equiv, VIII.2.91 that the maps lj' aj,k' Sj,k' and

OJ discussed in I§2 have the expected effect on cellular chains. For example, 0j*

can be identified with the homomorphism

where is a cellular approximation to the diagonal of ELj and u and t are shuffle

and twist isomorphisms (with the usual signs). The Cartan formula and Adem

relations follow. For the former, the smash product of ring spectra E and F is

an ring spectrum with structural maps the composites

and the product E AE + E of an ring spectrum is an map; see 1.].4. For the

latter, we use the case j = k = P of the second diagram in the definition, 1.3.1, of

an ring spectrum. The requisite algebra is done once and for all in [68].
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The Steenrod operations in are computed in [Equiv. VIII §3J, and the

Nishida relations follow by naturality. (See also 11.5.5 and VIII §3 here.)

Since a*:H*(EO) + H*E is the composite of the identification

H*{EO) =H*(EooEO) and the natural map £*:H*(EOOEO) + and since £:EooEO + E is an

Hoo map when E is an Hoo ring spectrum, by 1.3.10, part (9) of the theorem is a

consequence of part (10). In turn, part (10) is an immediate comparison of

definitions in view of 1.2.2 and 1.3.8. The essential point is that the isomorphism

DnEooX = EooDnX induces the obvious identification on passage to cellular chains, by

[Equiv. VIII.2.9J.

As promised, we have the following observation of Miller and McClure.

Remark 1.2. Let X be a finite CW complex. By 11.3.2, the dual F(X+,S) of EooX+ is

an Hoo ring spectrum with pth structural map the adjoint of the composite

<.;

P

Here 11* is computed in II.5.8, £* is the Kronecker product H*X 0 + Zp' and

<.; * is the identity in degree zero and is zero in positive degrees. For
p
y £ H_qF(X+,S) = we find by a simple direct calculation that Q-Sy = pSy

for all s O. A more conceptual proof by direct comparison of McClure's abstract

definitions of homology and cohomology operations is also possible; see VIII §3.

§2. Some calculations of the homology operations

For R a commutative ring, let HR be the spectrum representing ordinary

cohomology with coefficients in R. We wish to compute the operations on the

homology of HZp and some related spectra. We shall state our results here, but

shall present proofs of the computations for HZp in sections 5 and 6. Recall that

the mod p homology of HZp is the dual of the Steenrod algebra.

Notations 2.1. We shall adopt the notations of Milnor in our analysis of [86 J •

Thus, at the prime 2, has algebra generators of degree 2i_l for i 1. At odd

primes, has generators of degree 2pi_2 for i 1 and generators Ti of degree

2pi_l for i O. We shall denote the conjugation in by X.

We have the following theorems.

Theorem 2.2. For p = 2, is generated by

algebra. In fact, for i > 1,

as an algebra over the D,yer-Lashof
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Moreover, is nonzero for each s > 0 and, for i > 1;

for i > O.2iIn particular, Q

{

s+2 i_2

Q

o

if s _ 0 or -1 mod 2i

otherwise.

Theorem 2.]. For p > 2, 4 is generated by '0 as an algebra over the Dyer-Lashof

algebra. In fact, for i > 0

QP{i l '0
i

{-ll X'i and

where p{il

for i > 0,

{pi-ll!{p-ll. Moreover, eQs'O is nonzero for each s > 0 and,

\ l_ll "Q,·,I1',
if s -1 mod ip

s ifs o mod i
Q P

otherwise,

while

1.:-""'0" ' 1" ' 0 if s o mod ip

s
Q X'i

otherwise.

i i
In particular, QP for i > 0 and QP X'i = X'i+l for i O.

Thus, for p 2, the operations on the higher degree generators are determined

by the operations on the generator of degree one. A complete determination of the

operations on this degree one generator does not seem feasible. However, we do have

a conceptual determination of these classes. For p 2, let be the total class

For p > 2, let, be the total, class

r = 1 + '0 + '1 + •••
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Since the component of these classes in degree zero is one, we may take arbitrary

powers of these classes.

Theorem 2.4. For p 2 and s > 0,

that is, is the (s+ll-st coordinate of the inverse of the total class. For

p > 2 and s > 0,

and

that is, QS,O is (_l)s times the (2s(p-l)+1)-st coordinate of the product of the

total, class and the inverse of the total class, and SQs,O is (_lls times the

(2s(p-l»th coordinate of the inverse of the total class.

Here we are using the H", ring structure on HZp derived in 1. 3.6. In the

following corollaries, we consider connective ring spectra E together with morphisms

of ring spectra i:E + HZp which induce monomorphisms on mod p homology. When E is

an H", ring spectrum, i is an H", ring map by 1.3.6.

For p > 2, the homology of

by and XCi for i 1. For

sUbalgebra of A* generated by

HZ or HZ(pl embeds as the subalgebra of A*

=2, the homology of HZ or HZ(2l embeds as

and for i > 1.

generated

the

Corollary 2.5. For p > 2, the homology of HZ or HZ(p) is generated by and X'l

as an algebra over the Dyer-Lashof algebra. For p = 2, the homology of HZ or HZ(2)
2is generated by and as an algebra over the Dyer-Lashof algebra.

Similarly, at the prime

connective K-theory, embeds

for i > 2. The homology of
2 2 and for i > 2.

2, the homology of kO, the spectrum representing real
4 2as the subalgebra of A* generated by and

kU embeds as the suba'lgeb ra of A* generated by

2Corollary 2.6. At the prime 2, the homology of kO is generated by , and

as an algebra over the Dyer-Lashof algebra, while the homology of kU is generated by
2

and as an algebra over the Dyer-Lashof algebra.

Proof. By the Cartan formula,
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We have analogous results for the p-Local,

i:BP + HZp be the unique map of ring spectra.

by Theorem 2.4, if p > 2, i* embeds as a

the action of the Dyer-Lashof algebra.

Brown-Peterson spectrum BP. Let

By the Cartan formula, if p = 2, or

subalgebra of which is closed under

Corollary 2.7.

Lashof algebra.

Lashof algebra.

For p > 2, is generated by as an algebra over the Dyer-
2For p = 2, H*BP is generated by as an algebra over the Dyer-

It is not known whether or not BP is an H
oo
ring

that E is a connective Hoo ring spectrum and that f:E

if:H + HZp induces a ring homomorphism on 110' Then

that (if)* commutes with the operations. Since i*

spectrum. However, suppose

+ BP has the property that

if is an H
oo
ring map, so

is a monomorphism, so does f*.

We shall also examine the operations on the homology of

be the homology of HZ and let x E: HIHZ be the element dual
pn

operation on the fundamental cohomology class (so that BnX =
the truncated polynomial algebra

HZ n for n > 1. Let B*

toPthe n-th Bockstein

-1). Then H*HZ n is
p

as an algebra over the dual Steenrod operations.

is induced by the natural map HZ + HZ ,x maps to
pn

x is annihilated by the dual Steenrod operations.

Here the inclusion of B* in n

zero in the homology of HZp'

generated by x and the elements

Dyer-Lashof algebra. For p = 2, H*HZ n is
p

and of B* as an algebara over the Dyer-Lashof

Corollary 2.8. For p > 2, n is
p

and XTI of B* as an algebra over the

2generated by x and the elements

algebra. For p 2, the element x is annihilated by all of the operations QS.

Proof. For the last assertion, note that QSx is an element of B*x for all s since

QSx maps to zero in Pq.. Since x is annihilated by the dual Steenrod operations, the

Nishida relations reduce to

and

for p > 2. Since B*x is isomorphic to B* as a module over the dual Steenrod

operations, and since no nontrivial element of B* is annihilated by pr for r > 0,

and B if p > 2, QSx = °by induction.
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§]. Homology operations for Bn ring spectra, n <

Cohen, [28], by computing the equivariant homology of the space 'n(j) of j

little n-cubes, completed the theory of homology operations for n-fold loop spaces

begun by Araki and Kudo, Browder and Dyer and Lashof. Since an Hn ring spectrum

(cf", [I, § 4J) E is defined by structure maps t; (j) ex E(j) + E, we can use Cohen's
n I:.

calculations to obtain analogous theorems for Hn ringJspectra.

Theorem ].1. For integers s there are operations QS in the homology of Hn ring

spectra. QSx is defined when 2s - degree(x) < n-1 [s - degree(x) < n-1J and the

operations satisfy properties (1)-(8) of Theorem 1.1 and the analogues of (9) and

(10) for n Moreover, these operations are compatible as n increases.

The Browder operation, An_1' is also defined for Hn ring spectra.

Theorem ] .2.

satisfies the

(1)

(2)

(J)

There is a natural homomorphism Au-I :HqE® + Hq+r+n_lE, which

following properties.

If E is an Hn+1 ring spectrum, An_1 is the zero homomorphism,

AO(X,y) xy - (_l)qryx,

An_1(x,y) (_1)qr+1+(n-1)(q+r+1)Au_1(y,x); Au_1(x,x) = 0 if P = 2,

o = Au_1(x,1), where 1 E is the algebraic unit,

(5) The analog of the external and internal Cartan formulas hold:

A
n_1(x@y,x'

®y') (_1lIx'I(lyl+n-1) xx ' @A
n_1(y,y')

+ (_1)lyl(lx'I+ly'l+n-1\ (x x ") @yy'
n-1 ' ,

where Izi denotes the degree of z,

An_1 (xy,x'y') xA
n_l

(y,x' )y'

+ (-1) Iyl (n-1+ lx' I)A (x x' )yy'
n-1 '

+ (-1) [x' I(n-1+lxI+lYI )X'XA (y y')
n-1 '

+ (_1)lyl(n-1+ly'I)+lx'lly'I A (xy')yx'
n-1 '

(6) The Jacobi identity holds:

(_1)(q+n-1) (s+n-1)A
n_1(x,An_1(y,z))

+ (-1)(r+n-1)(q+n-llAn_l(y,An_1(z,xl)

+ (_1l(s+n-1)(r+n-l\ l(z,A l(x,y)) 0
n- n-
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and

\ i j
L An_l(P*x@P*y),

i+j=s

A
n_l

(sx,y) + (-1) Ixl+n-lAn_l(X,SY)

There is also a "top" operation, i;n-l'

Theorem 3.3. There is a function i;n_l:HqE + Hq+(n_l+q)(P_l)E IHqE + H2q+n-l]
defined when q+n-l is even [for all q! , which is natural with respect to maps of Hu

ring spectra and satisfies the following properties. Here ad(x)(y) An-I (y,x),
adi(x) (y) = adt x ) (adi-l(x) (y)), and 1;n_lx is defined, for p > 2, by the formula

1;n_Ix = Si;n_lx - adP-l(x)(Sx).

(1) If E is an Hu+l ring spectrum, Q(n-l+q)/2x

hence 1;nX = SQ(n-l+q)/2x for x E HqE.

(2) If we let Q(n-l+q)/2x rAn-l+qx] denote c x then
<.< "n-l '

formulas (3)-(5) of Theorem 1.1, the external Cartan formula,

and the following analogue of the internal Cartan formula:

i;n_lx satisfies

the Adem relations,

for n > 1,I QixQj y +
i+j=s

I ..
O"i+j"p
O"i,j

where s [n-l+q], q = degree(xy), and r i j is a function of x and y

specified in [28, 111.1.3(2)]. In particular, if p = 2,

i;n_l (xy) = . QixQjy + xAn_l (x,y)y.

Moreover, the Nishida relations for i;n-l are the usual ones plus an unstable error

term given by sums of Pontrjagin products which contain nontrivial iterated Browder

operations.

(3) An_l (x,i;n_lY) = adP(y)(x) and An_l(X,1;n_lY) = 0.

(4) !;n_l(x + y) = i;n_lx + i;n-lY + a sum of iterated Browder operations

specified in [28, 111.1.3(5)].

In the remainder of this section we sketch the proofs of these theorems.

After replacing E by a CW spectrum and replacing Cn(j) by the geometric

realization of its total singular complex, we have that I; n(j) 1><1[ E(j), is a CW

spectrum, for any 1[ C Ej , with cellular chains naturally isomorphic to
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C*'n{j) @lI(C*Elj (cr , lEquiv , , VIII. 2.9J). With field coefficients, (C*E)j

is equivariantly chain homotopy equivalent to (H*Elj, so we can apply Cohen's

calculations. We define Qi x to be the image under the structure map of ei @ xP,

where e i EO Hi 'n(p)h,p is Cohen's class, lip C Ep the cyclic group of order p ,

Define QSx and <;n_lx by the formula in §l. Since 'n(2) is homotopy equivalent to

sn-l , we can define in_l(x,yl to be the image under the structure map of
(n-l)q+l

(-1) I @x@y, where I EO is the fundamental class and x EO HqE.

As noted by Cohen, Theorem 3.1 is a consequence of Theorem 3.3, with 3.3(1)

immediate from the definition. With the exception of those statements involving

Steenrod operations, all of the statements in Theorems 3.2 and 3.3 follow from

equalities between the images under the structure map y of the operad I:n of the

classes in the equivariant homology of the Cn(j) which induce the stipulated

operations. These equalities follow from Cohen's work. This leaves Theorem 3.2(7),

the Nishida relations, and the verification that is the image under the

structure map of the appropriate multiple of e(n-l)(p-l) @xP, this last giving the

definition of which Cohen uses in deriving his formulas.

Since the Browder operation is defined nonequivariantly, Theorem 3.2(7) follows

from the Cartan formula for Steenrod operations. The Nishida relations follow from

the computation of the Steenrod operations in H*DlI E [Equiv, VIII §3J, together

with the fact that the kernel of Cn(pl El E consists of classes which

are carried to sums of Pontrj agin products of type ;fated [28, III § 5 and 12.31.

For the last statement, we calculate 8(e(n_l)(p_l) @xp). Let EO be a chain in

c*l;n(p) which projects to a cycle in C*'n(p)/llp representing e(n-ll(p-l) and let a

be a chain in the integral cellular chains of E, representing x mod p. Let

da = pb. Let N = 1 + a + ••• + aP- l in Z[lIpJ, where a is a generator of lip' Then

P- lpNba ,

so that

Since EO projects to a cycle mod p in C*1; n(pl/lIp' the transfer homomorphism shows

that EON is a cycle mod p in C* t;n (p) • Thus, EON @ baP-l gives rise to a SUlll of

Pontrjagin products of Browder operations in 8x and x [28, III. 12.31, which, by the

space level calculation, must be the appropriate multiple of adP-l(x)(Bx). Since

d EO proj ects to zero in the mod p chains of (: n (p l / lip' and since aP is fixed under

the action of lip' we can find a chain 0 such that

for all a. By naturality and the space level result, 0 must proj ect to a cycle
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representing e(n-ll(p-l}-l in t4('n(plhp)' so that o@aP reduces mod p to a

representative of e(n-l}(p_l} @xp.

§4. The Splitting Theorems

We present simple necessary and sufficient conditions for a more general class

of spectra than previously mentioned to split as wedges of p-local Eilenberg-MacLane

spectra or as wedges of suspensions of BP. The spectra we consider are pseudo

ring spectra, defined as in Definition 11.6.6, but with DjEdqEq replaced by

J' (J' l IX (EdqE) (j ) with n _> 2.
IOn E. q'

J
Fix a pseudo ring spectrum E Tel Eq, and assume that 1T*E is of finite type

over 1TOE and that 1TOE = 1TOEq for q sufficiently large. Let i:E + HZp be such that

ie:SO + HZp is the unit of HZp and regard i as an element of under our

hypotheses i will be unique. Let Z(p} be the integers localized at p.

Theorem 4.1. If 1TOE Zp' then E splits as a wedge of suspensions of HZp'

Theorem 4.2. If 1TOE = Z r' r > 1, or 1TOE
and Bpli f 0, then E as a wedge of

Z(p) and if p = 2 and Sq3i f 0 or p > 2

suspensions of HZ s' s 1, and HZ(p)'
p

Theorem 4.3. Let n 3. If

and Sq2i f 0 or p > 2 and pli f 0,

local Brown-Peterson spectrum BP.

Z(p) and H*(E;Z(p» is torsion free and if p = 2

then E splits as a wedge of suspensions of the p-

Remarks 4.4. The various known splittings of Thorn spectra are direct consequences

of these theorems. Obviously the splitting of MO and the other Thorn spectra of

unoriented cobordism theories follow from Theorem 4.1. When 1TrJIll = Z(p}' the mod p

Thom isomorphism commutes with the Bockstein. At 2, the splittings of MSO and of

the Thom spectra into which MSO maps follow from Theorem 4.2 and the facts that SqZi

is the image of Wz under the Thom isomorphism and that Sqlw2 = w3 in H*BSO. The BP

splittings of MU at all primes and of MSO and MSU at odd primes follow from Theorem

4.3 and similar trivial calculations. Most strikingly perhaps, the splitting of MSF

at odd primes follows trivially from Theorem 4.2. Indeed, pli is nonzero by

consideration of the first Wu class in MSO. Since the p-component of = 1TqSF
1Tq+lBSF is Zp for q = 2p-3 and zero for 0 < q < 2p-3,

for q = 2p-2

for 0 < q < 2p-2.

Zp' and the Bockstein
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is an epimorphism. Thus, the dual cohomology Bockstein is a monomorphism.

We turn to the proof of the splitting theorems. Define

V
qE:Z

where d = 1 if p = 2 and d = 2 if P > 2. As pointed out in 1.4.5 and 11.1.3,

HZp[x,x-ll is an H", ring spectrum. We think of it as the Laurent series spectrum on

HZp '

Let C 14(HZp[X,x-
lj) be the homology of the zero-th wedge summand HZp '

Since HZp is a sub-Hoo ring spectrum of HZp[x,x-ll, we know the operations on

Moreover, if x E: HdHZp[x,x-ll comes from the canonical generator of Hd);dHZp, then

the homology of HZp[x,x-1l is isomorphic as an algebra over the dual Steenrod

operations to the ring of Laurent polynomials in x over We could

easily calculate the operations on the powers, xn, of x by use of the techniques of

the next section. However, remarkably, we shall only need the p-th power operation

on x, We should remark that multiplication by x,

is the homology suspension.

Lemma 4.7. In for p 2, i > 0 and q an integer

hence

For p > 2, i 0 and q an integer,

The internal Cartan formula, together with the degree of X;i and of xpq

iii
</q+p (X;i" xpq) = (c! + c! -IX;i)(QPq+lxPq) •

2
By the Cartan formula, QPq+lxpq = O. Of course, QPqxpq = xP q (Theorem 1.2.(4»).

The first statement follows from Theorem 2.2 or Theorem 2.3 and the fact
2

C is a subalgebra over the Uyer-Lashof algebra. Since X;iP " xP q

Proof.

gives
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(X;i • xpq)p, the second statement now follows by the Cartan formula. The proof of

the third statement is almost identical to the proof of the first.

It should be noted that the full strength of Theorems 2.2 and 2.3 is quite

unnecessary for the computations above. They could be derived quite simply and

directly. We shall apply these computations to the proofs of the splitting theorems

by means of the following commutative diagram, analogous to that of 11.6.8.

U;dqE ) (j )
1 P< Edqi (j)

(EdqHZ ) (j )en (j ) P< •
q .. (: (j ) P<q n Ej p

J'j
Edj qi.

I,!
EdjqE. Jq Edj qHZ

Jq P

Here, is is the restriction of i:E + HZp to Es' the right-hand map Sj is the induced

ring structure of HZp[x,x-1J restricted to the (dq)-th wedge summand. The

commutativity of the diagram is an easy cohomology calculation provided tht Eq + Es
induces an isomorphism of TIO for s > q.

The key step in the proofs of Theorems 4.1, 4.2 and 4.3 is the following

result.

Proposition 4.8. Let E = Tel Eq satisfy the hypotheses of Theorem 4.1, 4.2 or 4.3.

For the first two cases, let j :E + HTIOE be such that je:S + HTIOE is the unit. In

the third case, let j:E + BP be a lift of j above to BP. Then j induces a

monomorphism of p-primary cohomology.

Proof. We shall show that j induces an epimorphism of p-primary homology. Recall

that i is the projection of j above into HZp' In the second case, if TIOE Z r for

r > 1, the nontriviality of the r-th Bockstein operation on i shows that the p

generator x £ 14HZ r = B*[xl/(x2) is in the image of h. (Here B* = H*HZ(p)')

Thus, for the secoRd case as a whole, it suffices to show that B* C A* is in the

image of i*, Similarly, for the third case, it suffices to show that H*BP C A* is

in the image of i*. The hypotheses of the theorems give us the following conclu-

sions. In Theorem 4.1, the nontriviality of the Bockstein operation on i q, for q

sufficiently large, shows that '0' if p > 2, or ;1' if p = 2, is in the image of

i q*. In Theorem 4.2, the nontriviality of pli and BPli, for p > 2, or of Sq2i and

Sq3i, for p = 2, shows that for q sufficiently large, X;l and X'l' for p > 2,

or ;i and XS2 for p 2, are in the image of i q* . In Theorem 4.3, the nontriviality

of pli, for p > 2, or of Sq2i, for p = 2, shows that for q sufficiently large, X;l'
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for p > 2 or for p = 2, is in the image of i q*. Thus, the following con­

sequences of Lemma 4.7 and the diagram preceding the statement will suffice.

(1) If P = 2 or if p > 2 and n > 3 and if X;i is in the image of i dpq*' then

X;i+l is in the image of i 2
dp q*

(2) If P > 2 and X'i is in the image of i dpq*' then X'i+l is in the image of

i
dp2q*

(3) If P = 2, n 3, and

imge of i Sq*'

is in the imge of i 4q*, then is in the

The conditions on n are just enough to ensure that 14 (en (p) "'l:

preimages of the operations needed to carry out the argument. p

l:dqE ) containsq

The passage from the proposition above to the splitting theorems is well known

and has been exploited in the literature to prove the splittings of the cobordism

theories. Theorems 4.1 and 4.3 follow from the algebraic splitting theorem of

Milnor and Moore [S7J together with standard properties of HZp and BP. For Theorem
* .4.2, H E splltS as a direct sum of suspensions of AlAe and of A as a module over the

Steenrod algbra A. However, the E2 term of the Bockstein spectral sequence of H*E

is spanned by the A­module generators of the summands isomorphic to AlAe. By

pairing up these generators with respect to their higher order Bocksteins, we may

construct a map of E into a wedge of p­local cyclic Eilenberg­MacLane spectra which

induces an isomorphism on mod p cohomology. In all cases, the hypothesis on

ensures that E is p­local, and the cohomology isomorphisms yield equivalences.

§5. Proof of Theorem 2.4; Some low­dimensional calculations

We shall exploit the following observation of Liulevicius.

Proposition 5.1. Let C = Z2[x,x­lJ be the algebra over the Steenrod algebra A which

is obtained by inverting the polynomial generator of H*RPro
• Let C* be the dual of

C, with a generator et in degree t. Let ft:C* + be the unique nontrivial

morphism of comodules of degree ­t (Le., ftet = 1). Then ften is the component

of the t­th power of the total class in degree n­t:

,.
Proof. Let A:C + C@ be the dual of the module structure of C* over the dual

operations. Recall that for c e C and a e A, if AC I Ci @ ai' then

ac = L <a,ai>ci' Here <, + Z2 is the Kronecker product. In particular,
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*<fta,en>

<axt,e >
n

«a,a. >xn,e >
n n

1. However, A is an algebra map, and Milnor has shown that

Thus

AX
iI X ®

i 1

tit
AX I X ® )i-t'

i t

We also have an odd primary analogue.

Proposition 5.2. For p > 2, let C be the A-algebra obtained by inverting the poly-

nomial generator in the cohomology of the lens space L<x>. Thus, C is the tensor

product of an exterior algebra on a generator x of degree one and an inverted poly-

nomial algebra on y = ax. Let C* be the dual of C and let e2n C* be dual to yn
and let e2n+l C* be dual to xyfi. Let ft:C* + be the comodule map such that

ftet = 1-

(1) If t = 2s, then ften is (_l)n times the (n-t)-th component of the s-th

power of the total class:

(2) If t = 2s+1, then ften is the (n-t)-th component of the product of the

total T class with the s-th power of the total class:

Proof. Let zi C be the dual of ei• Suppose that AZt
convention here is that for a A,
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A similar argument to that when p 2 shows that ften
calculations are that

Here, Milnor's

AX

AY

and

Thus

AY
S I i s andy ® (f; )2i-2s

i .. s

A(XYS) = I z. ® i-2s-1 .i .. 2s+1 l

In the remainder of this section and in the next, we shall need to evaluate

binomial coefficients mod p. The standard technique is the following.

Lemma 5.]. Let a I aipi and b = I bipi be the p-adic expansions of

a and b. Then (a,b) =0 mod p unless ai + b i < P for all i, when

(a,b) = mod p.
l

Moreover, for a 5 pn - 1,

(a,pn _ 1 - a) _ (_l)a mod p.

We shall not bother to quote the first statment, but shall use it implicitly.

The following proposition is the key step in proving Theorem 2.4.

Proposition 5.4. For p 2, the map f:C* + A* given by

for n > 0

;1 for n = 0
fen

1 for n = -1

0 otherwise

is a map of coalgebras. For p > 2, the map f: C* + given by

(-1) sQS1O if n = 2s(p-l)

(-1)sI3Qs10 if n = 2s(p-l)-1

fen -10 for n 0

1 for n -1

0 otherwise
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is a map of coalgebras. Thus, in either case, the map f coincides with the map

f_ l described above.

Proof. Of course f:C* + is a map of comodules if and only if f*:A + C is a

map of A-modules. But this latter condition is equivalent tokthe statement that f*

commutes with the action of the dual Steenrod operations pi for k 0 and also

commutes with the Bockstein S when p > 2

For p > 2, se2s = e2s-1 and STO -1. (We have adopted the covention that for
qY c H X and x c Hq+IX, <x,SX> = (-1) <Sy,x>.) Moreover, the subspace of C*

spanned by e2s(p_l) and e2s(p-I)-1 for s an integer is a direct summand of C* as a

module over the dual Steenrod operations. We have specified that f = 0 on the

complementary summand. Thus, for p 2, it will suffice to show that the dual

Steenrod operations in C* agree under f with the Nishida relations on the pertinent

homology operations on ;1 or TO'

For symmetry, we shall write y for the polynomial generator of C when p = 2.

For p 2, thekcomputation is divided into three cases. First, those ei which are

carried by to an element of positive degree, second, those which have image in

degree zero, and third, those which have image in degree -1.

In the first case, we show that for p = 2 and 2k < s,

k k+l
(2 ,s-2 )e k'

s-2

and that for p > 2 and pk < s ,

pk (k ( ) k+l)
P* e2s(p_l) = p ,s p-l - P e k

2(s-p )(p-l)

Let d 1 when p = 2 and let d = 2 when p > 2. Then the statements above reduce to

k
pP e* ds(p-l)

( k ( k+l)P ,s p-l) - P e k
dIs-p )(p-l)

for p 2. However, since C was obtained from the cohomology of RPoo or Loo ,

for r °
for r 1

otherwise

Thus, for n > 0,

from the calculation

by the Cartan formula. Our claim follows
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'* ds(p-l)
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k k
<pP dLs-p l Ip-L) e >

y , ds(p-l)

k k+l(p ,s(p-l) -p ).

For p > 2 and s > pk, we have similarly that

kP _ k k+l
p* e2s(p-l)_1 - (p ,s(p-l) - P - lIe k

2(s-p )(p-l) - I

Here, prx 0 for r > 0, so that

k ks(p-l)-p (p-l)-l p
<xy ,P* e 2s (p- I )- 1>

k k+l(p ,s(p-l) - P - 1).

On the other hand, the Nishida relations give us, for s >

for p 2, and, for p > 2,

and

k m k 1 k-(p ,p + s(p-l) - P + )QS-P TO

k m k+l-(p ,p + sip - 1) - p

Here, the initial -1 is cancelled by the conventions in the definition of f, and the

additional high power of p in the right-hand side does not alter the binomial

coefficients unless the right-hand side would otherwise be negative. Thus, we must

check that for s > pk, if s(p-l) < pk+l, then (pk,pm + s(p-l) _ pk+l) and

(pk,pm + s(p-l) _ _ 1) are zero. Since s(p-l) pk+l - 1, we have s p(k+l)

= 1 + P + ••• + pk. But since pk < s, we have s = pk + t with 0 < t p(k). Thus,

s(p-l) = pk(p_l) + t l, with 0 < t l < pk. Thus, the specified coefficients are zero.
k

It remains to check those operations pi whose images have degree 0 or -1 in
k

C*. However, "o may not be in the image of any , as prl = 0 for r > O.
r r r r

P*Q and P*Q TO are zero by the Nishida relations. or Tl')

For the remaining case, we shall show that for p = 2,

and for p > 2,
k

p; e k = -e-I'
2p (p-1)-1

To do this, we must compute the Steenrod operations on y-l when p 2 and on xy-l
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when p > 2. For p ::: 2 and r > 0,

r -1 P r-l -1yPy +yP Y

by the Cartan formula. Thus, pry-l = _yp-lpr-ly-l, so that

by induction. For p > 2, since pr x = 0 for r > 0,

Thus, for p = 2,

_12k
<y ,P* e k >

2 -1

and for p > 2

2k_l
<y ,e k >

2 -1
1

1 k
<xy- k >

2p (p-l)-l

k k
(-l)P <xyP (p-ll-l,e k > -1.

2p (p-l)-l

The following lemma will complete the proof.

Lemma 5.5. For p 2,

(_lls-l.
For p > 2,

pS+lQS
* 1.

Proof. For p = 2, the Nishida relations reduce to

n 0 1
(s-1,2 -s)Q = 1,

by Lemma 4.3. For p > 2, the Nishida relations reduce to

(_ll s-1

by Lemma 4.3, since 8'0 = -1.
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Proof of Theorem 2.4. For p 2 and s > 0, the fact that

follows immediately from Propositions 5.1 and 5.4. For p > 2 and s > 0, the fact

that
s s -1

Q '0 = (-1) ')2s(p-l)+1

s s -1
6Q '0 (-1) ')2S(P-l)

and

follows immediately from Proposition 5.2 and 5.4. However, all of the even degree

coordinates of come from Thus,

)2S(P-1) •

One can identify certain algorithms such as the following curiosity when

p 2:

Thus, the actual computations can get quite ugly. We have the following low-

dimensional computations of for P = 2. In the next section we shall show that

= Thus, we shall only list We shall write

= 6i for i 1.
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for 0 < t 15, where p = 2:

2 132

4
2

131132

6 (33

8 (3fS3 + (33
2

10 4
(31 (33

12 2
(32 (33

14 (34

16 2 + 2 4 2
+ +

8 6
13213 + (3 3)(31(34 (32(33 + 131 (32(33 (31((31 132 + 1 3 2

18 4 + 12 4(31(34 131 13 3 + 13 213 3

20 822 3
131(32133 + 132134 + 13 3

22 8
131134

24 4 2
+ 134 13 3 + 6

131 132 134 1 3 132 13
3

26 4
(32 134

28 2
13 3134
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§6. Proofs of Theorems 2.2 and 2.3

We shall compute the operations on [4HZp = The elements of are com­

pletely determined by the effect of the dual Steenrod operations for k 0,

along with the Bockstein operation if p > 2. Thus, our computations will be based

on induction arguments using the Nishida relations.

Theorems 2.2 is the composite of Lemma 5.5 and Propsitions 6.4 and 6.7.
Theorem 2.3 is the composite of Lemma 5.5, Propositions 6.4, 6.7 and 6.9, and

Corollary 6.5.

We begin by recalling some basic facts about the dual Steenrod operations

in

Lemma 6.1. The following equalities hold For p ;:: 2 and i > 0,

if r = p(k)

otherwise

(Recall that p(k)

and

p ­
.) For p > 2 and i ;:: 0,

o for r > 0,

Here, is identified with the unit, 1, of

Remarks 6.2. Notice that the added high power of p in the right­hand side of the

binomial coefficients in the Nishida relations allows us to make the following

simplification. For p ;:: 2,

'+1 kL (_Ill (p ­ pi,s(p­ll
i

For p > 2,

k
pi)Qs­P +i

+ \ '+1 k s_pk+i i
L (_Ill (p ­ pi ­ l,s(p­l) + pi)Q P*S
i

One of the key observations in our calculations is the following.
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Lemma 6.3. (The p-th power lemma). For p " 2 and s > 1,

For p > 2 and s > 0,

equalities agree under

problem, and both sides

side, this follows from

relations give

We shall show that both sides of the proposedProof. We argue by induction on s ,
k

pi for k > 0 and under

of both equations vanish

the Cartan formula. For

fl when p > 2. Of course, fl is no
1under P*. For the right hand

the left-hand side, the Nishida

P;flQs sflQs-l _ QS-1S

k
Thus, we may restrict attention to pi for k > O. If s = pk-l, Lemma 5.5 fld the

Cartan formula show that both sides of the equations are carried to 1 by pi .
Thus, the lemma is true for p = 2 and s 2, and for p > 2 and s = 1. In the

remaining cases, k > 0 and s > pk-l. Here for p = 2,

while

k-l
(2k-l,s_1) {Qs-2

k
{2k- l,s_1)Q2s-2 '

by the Cartan formula, the Nishida relations and induction. For p > 2,

k-l-t p ,s{p-l)

k-l k
= -(p ,s{p-l) - llflQPs-P '0 '

by the Cartan formula, the Nishida relations and induction. The conclusion follows

easily from Lemma 5.3.
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We can now evaluate certain of the operations.

Proposition 6.4. For p " 2 and i > 1,

For p > 2 and i > 0,

(Again p(i) " .)

Proof. We argue by induction on 1. Again it will be sufficient to show that both
k

sides of the equations agree under for k O. For p 2,

For

for

2 i_2_2ko < k < i, the binomial coefficient is zero, while for k i, Q

dimensional reasons. Thus, the only nontrivial operation is

o

2iFor i " 2, Q

i " 2 by Lemma 6.1.

1 2
Q Since
For i > 2,

the proposition is true for

by the p-th power lemma and induction. Lemma 6.1 is again sufficient. For p > 2,

let i "1. Then

by Lemma 5.5. Thus, For i > 1,

_(pk,p(il(p-ll

by the p-th power lemma and induction. The result follows from Lemma 6.1.
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Corollary 6.5. For p > 2 and i > 0,

QP(i )'0
i

(-1) X'l

Proof. We have just shown that

PPkQP(i )* '0

However,

QP(i l i'0 and (-1) X'i have the same Bockstein.

_(pk,P(il(P_l»)QP(i)-pk,O

( k i llQP(il-pk
- P ,p - '0

F k . (k i l QP(i)_pk ° f d' . 1or < 1, P ,p -1 = 0, while for k i, '0 or amensaona

reasons. The result follows from Lemma 6.1.

We wish now to compute the operations on the higher degree generators. By the

Nishida relations and Lemma 6.1,

+ I
j>l

and for p > 2,

k
-(p ,s(p-l)

k s- k
(p -l,s(p-l»Q p

+
. 1 k k (. l jI (_l)J+ (p - pp(j) - l,s(p-ll + pp(j»Qs-p +p J .l.

j>l 1-J

However, we may simplify this expression considerably.

Lemma 6.6. For p 2 and i > 0,

k s k s- k k s- k+l
Q = -(p ,s(p-l»Q p - (p - p,s(p-l) + p)Q p

For p > 2 and i 0,

k s- k
(p -l,s(p-l))Q P •

Moreover, the following additional simplifications hold for particular values

of s. For p > 2, s j °mod p and k > 0,

ks-pn so X'i'
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For p 2, s -1 mod p2 and k > 1,

k kP s k
P* Q XSi = -(p ,s(p-l))Q xSi'

Proof. The assertion is true for k = 0 or k 1 because of the left-hand term of

the binomial coefficients. We shall assume k > 1. If s t -1 mod p and j > 0, then

Elf the Cartan formula (or Theorem 1.2(5) if i = j),

If s t -1 mod p, p > 2, k > 0 and j 0, pk - pp(j) - 1 = -1o.

s - pk + p(j) t -1 mod p.
k (0) k

QS-P +p J sP
X i-j

mod p, while s(p-l) + pp(j) 0 mod p. Thus,

(pk _ pp (j) _ 1, s (p-Ll + po (j ) ) o.

For s _ -1 mod p, but s t -1 mod p2 (here p 2), s = tp-l mod p2 for 0 < t < p.

Thus

s(p-l) + pp(j) = (p-t)p+l mod p2,

while

pk _ pp(j) = (p-l)p mod

Thus,

(pk _ pp(j),s(p-l) + pp(j)) O.

It suffices to assume s = -1 mod p2. Here, for j > 1 (and k> 1),

s - pk + p(j) = p mod

Elf the Cartan formula (or Theorem 1.2(5) if i j),

O.

Proposition 6.7. For p 2, i > 0 and s > 0,

{

QS+2i_2S1 if s =0 or -1 mod 2i

QSxs. =
l

o otherwise

otherwise

if s

ifj

i_ -1 mod p

i_ 0 mod p
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Proof. We argue by induction on s and L, For p = 2, the assertion is trivial for

i = 1. For p 2, and 0 < s pi_l the assertion holds by dimensional reasons and

the p-th powerklemma. Of course, we shall show that both sides of the equations

agree under for k 0 and under B when p > 2. Clearly both sides agree

under P;, and when p > 2, Lemma 6.1 implies that = 0 for all i and s by
1 k

induction and the Nishida relations. Thus, it suffices to check for k > O.

Case 1. s = 0 mod p, but s j 0 mod pi.

By the preceding lemma,

k k s- k
-(p ,s(p-l))Q P

s- k .
By induction Q p = 0 unless s - pk = 0 mod pl. Since s j

k < i and s = pk mOdlpi. Here (pk,s(P_l)) = (pk,pk(p_l)) = O.

Case 2. s = 0 mod pi.

Again

o mod pi, this means

Thus = O.

k s- k
-(p ,s(p-l))Q P

1

if k < i kor p > s

if pk i
P > 2s > P ,

if s > 2k > 2i P = 2,

by induction. On the other hand,

_pk s+p(i) k i
BQ '0 = -(p ,s(p-l) + p

and

if P 2.

Since s - 0 mod pi, !0 for 1 < k < i

(pk,'(P_l( • p' - 2) 0 k

(p ,s(p-l)) for k > i

It show that = 0 for s < pk < s + p(i), when p > 2, and

that P; QS+2 = 0 for s 2k < s+2i_2. These inequalities imply that

s = pk, so that (pk,s(p_l)) = O.
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Case 3. s '/. 0 or -1 mod p ,

Again,

k s- k
-(p ,s(p-l»Q p 0

by induction.

Case 4. s:= -1 mod pi

Here,

k a- k (( ) ) k-l
-(p ,s(p-l»Q p - (pk_p,S(P_l) + p)(Q s+l /p -p

o for 1 < k < i. For k = 1 < i,

by Lemma 6.6 and the Cartan formula.
k

For 15k < i, QS-P = 0 by induction. Since

(( k-l
Q s+l)/p)-p

X"'i_l

k-I x-i i-IP - P _ -p mod p ,

for p > 2

for p = 2

by induction and the p-th power lemma. On the other hand, for pk < s + P (L) and

p > 2,

and for p = 2 and 2k < s +2i_2,

k . i k
= (2k,S+2i_2)Qs+2

Since s -1 mod pi, the right-hand side of the binomial coefficient is congruent to

pi _ P _ 1 mod pi. Thus, if 1 < k < i, the coefficient is zero and if k = 1, the

coefficient is -1.

For s > pk pi and i > 1,

for p > 2

for p = 2,

by induction and the p-th power lemma. ThUS, for these values of k, it suffices to

check that
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(pk,s(p_l)) + (pk _ p,s(p-l) + p) = (pk,S(p_l) + pi _ 2),

which the reader may verify (or c.f. [101, p.54]).

For p > 2, i = 1 and s > pk,

by induction, while

k s+l
!{' I3Q TO

k s+l- k
-(p ,(s+l)(p-l))I3Q P TO

and the binomial coefficients here are equal.

For s < pk s+p(i), when p > 2, or for s < 2k < s + 2i_2, when p =2, a simple

calculation shows that s = pk_l• Here

!{'kI3QPk_l+P(i)TO = _(pk,pk(p_l) + p(pi-l_l))I3QP(i)

k k i . i
Q2 -1+2 -21;1 = (2k,2k+21._3)Q2 -31;1

Since k i > 1, the binomial coefficient is zero.

Case 5. s -1 mod p, but s t -1 mod p2, i > 1 and k > 1.

for p > 2

for p 2

Here,
k s- k

-(p ,s(p-l))Q p Xl;i

by Lemma 6.6.
k

But s_pk t -1 mod p2, so that QS-P Xl;.
1. O.

Case 6. s or s _ -1 mod p but s t -1 mod p2,

k = 1 and i > 1.

Here,

k s- k
-(p ,s(p-l))Q P xl;i

Now s - pk -1 mod pi if and only if

s+l ,J i-I s pk
prO mod p either Q - xl;i and

s+l k-l 0 d pi-l--p ;: mo
p k-l
(Q((s+l)/P)-P I;.)P

X 1.-1

Since

are both zero or
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they are both equal to the appropriate operation on '0 if P > 2 or Sl if P 2. In

the latter case, the coefficients cancel as k < i and s = mod pi.

i
ifs=Omodp

otherwise

Proof. We argue by induction on s and i. The lemma is trivial for i = 1 or for

° < s < pi. Agiin, both sides agree under 8 and P;. We shall show that both sides

agree under pi for k > O.

Case 1: s = 0 mod p.

Here
ks-p

8Q X'i
k

QS-P Xs. by induction.
l

By Lemma 6.6,

kk k-!(p ,s(p-l) - 1) + (p - 1,s(p-1))]Q XSi

k s- k
-(p ,s(p-1))Q P xs.

l

Case 2. s t °mod p.

Here, by Lemma 6.6,
k
8Q\'i

k
but SQs-p X'i 0 by induction.

k k
-(p ,s(p-1) - l)SQs-P X'i

otherwise.

Proposition 6.9. For p > 2, s > ° and i 0,

s = {o(_l)i+lQS+
P(i),o

Q X'i

if s i_°mod p

Proof. We have shown that both sides of the prospective equation agree under the

Bockstein. By Lemma 6.1,

k s- k
-(p ,s(p-l))Q P X'i
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k
For fixed i, we argue by induction on s that agree on both sides of the

prospective equation. Again the assertion is a triviality for i = 0, for k = 0, or

for 0 < S < pi.

Case 1: s j 0 mod p.

Here, o by induction.

Case 2: s = 0 mod p but s j 0 mod pi.

k
By induction, QS-P Ti = 0 unless k < i and s = pk mod pi. Here

k
Here QS-P Ti 0 by induction for k < i. Again by induction,

for i < k < s. We have

Since s _ 0 mod pi,

for 0 < k < i

for k > i.

For s pk < s+p(i), s = pk and

o .



CHAPTER IV

THE HOMOTOPY THEORY OF Hoo RING SPECTRA

by Robert R. Bruner

Around 1960, Liulevicius [55] and Novikov [91] introduced Steenrod operations

into the cohomology of cocommutative Hopf algebras, in particular the E2 term of the

Adams spectral sequence converging to the p-component of 1T*SO. During the 1960's,

Barratt and Mahowald (unpublished) studied the quadratic construction, using it to

construct homotopy operations and to derive relations in homotopy. Toda [1061

studied the mod p analog, the extended pth power construction, and used it to derive

relations in the odd primary components of 1T*SO. Early in the study of the

quadratic construction, it was conjectured that the quadratic construction could be

used to provide maps representing Steenrod operations. This was proved by D. S.

Kahn [45]. He also showed that this determined some differentials in the Adams

spectral sequence and related the homotopy operations to Steenrod operations.

Milgram [81] reformulated Kahn's work in a form which generalizes to the mod p case,

this formulation being exactly analogous to the reformulation necessary to define

mod p Steenrod operations. He also showed how to derive many more differentials

from the geometric construction of the Steenrod operations in the Adams spectral

sequence. In particular, he showed that the Hopf invariant one differentials follow

in this way. Milgram's work was confined to a range in which it is possible to act

as if one were operating on a permanent cycle. At about the same time, M8.kinen

[62], working at the prime 2, showed how to account for the fact that one may not be

operating on a permanent cycle.

In order to construct the Steenrod operations geometrically, a map from an

extended power of a sphere to the pth power of that sphere is needed. Kahn, Milgram

and M8.kinen obtained such maps by using coreductions of the extended powers of

spheres. As usual when studying stable phenomena on the space level, such coreduc-

tions exist only in a range of dimensions, but, by suspending everything an appro-

priate number of times, that range can be made arbitrarily large. This makes it

appear that we should be working with spectra. To do this, however, extended powers

of spectra are required. With this motivation and others, May [72] showed how to

construct them. In place of a coreduction, this allows us to use the structure map

DpY + Y of an Hoo ring spectrum Y. This permits us to construct homotopy operations

which are related to Steenrod operations in the Adams spectral sequence for Y. In

addition, we get differentials in the Adams spectral sequence and relations in the

homotopy groups of any such spectrum.
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We can now indicate that part of the present work which is new. First,

everything we do applies to all H"" ring spectra, not only the sphere spectrum.

Second, we have done the homological algebra necessary to produce steenrod opera­

tions in the generalized Adams spectral sequence and have shown that they come from

the H"" ring structure just as in the ordinary mod p Adams spectral sequence. Third,

we have included a reasonably thorough account of the homotopy operations and the

relations between them. Undoubtedly, some of these results, especially in the mod 2

case, are known, although difficult to find in the literature. Passing references

to Barratt and Mahowald are found in [45 J and some related results exist in 11061,

[104J, [80] and [791. Fourth, we have generalized the results of Makinen to the odd

primary case, producing new formulas for differentials in the Adams spectral

sequence. This involves a detailed study of the homotopy of extended powers of

cells. Finally, it is our hope that the present account has benefitted sufficiently

from the process of refinement that occurs with each extension or generalization of

previous work, that it is simpler and clearer than previous accounts and that this

will make the results more accessible. In this spirit, we have attempted to include

all nontrivial details.

We have tried to maximize the extent to which all of this carries over to arbi­

trary homotopy functors [X,­]* besides the traditional n* = [SO,­J*. Of particular

interest is the case in which X is a Moore space. Much of the work in [92J can be

interpreted as calculations of the homotopy operations which apply when X is a Moore

space. The generalization to arbitrary X is only partially carried out. The

difficulty in extending it lies in our ignorance about the extended powers of spaces

other than spheres. Note, however, that VI §2 contains results which facilitate the

anlysis of extended powers of other spaces. Finally, we should point out the

remarkable fact that the key differentials needed for the computation of the stable

homotopy groups of spheres from the cohomology of the Steenrod algebra are direct

consequences of the H"" ring structure of the sphere spectrum. It is appealing to

think of the H"" ring structure as a machine which encodes the destruction of

Steenrod operations, which exist uniformly in Ez, converting them into more

complicated relations in homotopy. In this vein, we point out in section VI §l that

our analysis of the differentials can be used to compute extensions which are hidden

in E"". In summary, we feel that the results contained here should be a part of

everyone's Adams spectral sequence toolkit, and we hope that the present exposition

will make this possible.

We have organized this paper so that the general theory is in Chapter IV,

explicit computations and relations in homotopy are in Chapter V, and formulas for

differentials are in Chapter VI.

Chapter IV is organized as follows. In §l we introduce ExtA(N,M) for comodules

N and Mover a commutative Ropf algebroid A. In §2 we define and study products and
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Steenrod operations in ExtA(N,M) when N is a coalgebra and M is an algebra in the

category of A-comodules. In §3 we set up the Adams spectral sequence. In §4 we set

up an external smash product pairing in the Adams spectral sequence and use it to

define an internal product in the Adams spectral sequence converging to [X,Y]* when

X is a suspension spectrum and Y is a ring spectrum. In §5 we derive the main

conceptual result of the chapter: the Roo ring structure map DpY + Y naturally

induces the (algebraically definedl Steenrod operations in ExtE*E(E*X,E*Yl, the E2
term of the Adams spectral sequence converging to [X,Yl;. Thus, for Roo ring spectra

Y, the Steenrod operations in E2 reflect structure which exists in [X,Yl*. In §7 we

define the homotopy operations in derived from DpY + Y and use a spectral

sequence originally due to Milgram to identify operations in Ext(n*E,E*Y) which

correspond to homotopy operations and relations between them. In §6 the spectral

sequence is defined and its relevant properties are derived.

I have benefitted from conversations with many people in the preparation of

this material. Of special importance are Peter May, Arunas Liulevicius, Daniel

Kahn, Mark Mahowald, Jim Milgram, Jim McClure, Jim Stasheff, Mark Steinberger, and

Bob Wellington.

§l. Cohomology of Ropf Algebroids

Let k be a commutative ring with unit. A Ropf algebroid (R,A) is a cogroupoid

in the category of graded commutative k-algebras. Thus R and A are graded commuta-

tive k-algebras and there are k-algebra homomorphisms 1'1L'1'1R:R + A, £:A + R,

+ A, and X:A + A. The simplest way to recall the diagrams these satisfy is

to dualize the diagrams satisfied by a groupoid with "objects" R and "morphisms" A.

The left and right units 1'1L and 1'1R are dual to the source and target, the

augmentation £ is dual to the morphism which assigns each "object" its identity

"morphism", the conjugation X is dual to the inverse, the coproduct is dual to

composition, and the product A + A is dual to the diagonal.

The two units, 1'1L and 1'1R give A two R-module structures: a left R-action

r·a = 1'1
L(rla

and a right R-action a·r = a1'1
R(rl.

Therefore we shall find the

category of R-R-bimodules more appropriate than the category of R-modules. The

commutativity of R enables us to embed the category of (either left or right) R-

modules as the full subcategory whose objects are those R-R-bimodules which satisfy

r.x = (_I)lxllrl x• r for all elements x. There are two forgetful functors from R-R-

bimodules to left or right R-modules which simply forget the R-action on one side or

the other. We let Ma be the right R-module whose R-action equals the right R-action

on M. Of course, the above embedding gives a left R-action which agrees up to

sign with the right R-action. For example, here is the left R-action on AR:
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(-1) Irllal a • r

(-1) Irllal a n (r )
R

Similarly, ML will denote Mwith its right action forgotten.

We let denote any of the tensor products

R-R-bimodules x R-R-bimodules --------- R-R-bimodules

Right R-modules x R-R-bimodules ------.. Right R-modules

R-R-bimodules x Left R-modules ------ Left R-modules.

Thus, M N gets a left action from M if it has one, gets a right action from N if

it has one, and amalgamates the right action on Mwith the left action on N. It is

necessary to distinguish these three tensor products and to avoid automatically

embedding one sided R-modules in R-R-bimodules because the embeddings do not commute

with tensor products. The next paragraph contains a telling example of this. We

let x = xR in the rest of this section.

A right A-comodule is a right R-module Mwith an R-linear map 1J!M:M + M x A

making

M

M ----"'---"100 M ® A

1J!M: [1J!M®l

M® A _---=:....;;,<-L.__ M® A® A

commute. The algebra R is a right A-comodule with 1J!R nR and a left A-comodule

with 1J!R = nL' The coproduct 1J!:A + A0 A makes AR a right A-comodule and AL a left

A-comodule. The module M® A exemplifies the lack of commutativity between @ and

the embeddings of R-modules into R-R-bimodules. If we tensor with A, then embed we

get a bimodule whose left and right actions agree, whereas, if we convert M to a

bimodule then tensor with A we get a bimodule with different left and right actions.

This prevents us from viewing 1J!M as a bimodule homomorphism unless we replace the

codomain by (M @ A)a- It is simpler to think of 1J!M:M + A@ Mas existing in the

category of right R-modules. There is one situation in which we will automatically

view a one sided module as a bimodule. If N is a right R-module and we write M@ N,

we mean to imply that N is first converted to a bimodule so that the tensor product

is one of the three discussed above.

We assume henceforth that A is R-flat (on either side; the two conditions are

equivalent). Then the category A-Comod of right A-comodules has kernels (which may

be computed in R-Mod) and is therefore abelian.
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If P and Q are right R-modules then HomR{P,Q) is the graded R-module whose

degree t component consists of homomorphisms which raise degrees by t. If Mand N

are right A-comodules then HomA{M,N) is the k-submodule of HomR(M,N) consisting of

comodule homomorphisms. It is an R submodule for all Mand N if and only if

nL = nW
A

The forgetful functor A-Comod .,. R-Mod (which we denote by m m and f t--- f)

has a right adjoint

( ?) 0 A : R-Mod .,. A-Comod

which sends a right R-module to the right A-comodule P ® A with coproduct 1 ® .p. We

call such comodules extended. The adjunction

A

sends f:M.,. P to (f 0 l).pM and sends f:M .,. P 0 A to (l ® e:lf.

Retracts of the extended comodules form an injective class relative to the R-

split exact sequences, and we have the usual

Comparison Theorem: If 0.,. M .,. Xo .,. Xl .,. ••• is an R-split exact sequence of

right A-comodules and 0.,. N .,. YO .,. Y
l

.,. ••• is a complex of injective right A-

comodules then for each A-homomorphism f:M .,. N there is a unique chain homotopy

class of A-homomorphisms F:X .,. Y extending f.

We note for future reference that we may choose the splitting homomorphisms

o 1

so that gOo = 0 and 0ioi+l = O.
i

We define ExtA to be the i t h right derived functor of BomA relative to

injective comodules and R-split exact sequences.

The tensor product M® N of right A-comodules can be made a right A-comodule by

the diagonal coproduct

[The alert reader will notice that the separate maps here are well defined only if

® =®t rather than ®rt. The composite, however, is well defined with ® =®rt.l When

N =Aa we have the right A-comodule M® AR with diagonal coproduct, in contrast to

the extended coproduct on M® A. Nevertheless, M® AR is isomorphic to M®A as a

right A-comodule. The isomorphism e : M® .,. M® A is the adj oint of the R-

homomorphism 1 ® c : M<is> .,. M. Explicitly, e{m ® a). = L m' ® alia and
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I m' @ x(an)a if lji(m) = Lm' e an. The isomorphism e makes the

M

commute. Both 1 @ nR and ljiM are R-split by 1 Thus we may take either as our

canonical R-split monomorphisms into an injective comodule. We choose 1 @ nR

because it will relate well to the Kunneth homomorphism later. It also allows the

following convenient description of the canonical injective resolution. Let

P:,\ + A be Cok(nR)' and write a for pt a l , Define t:A + '\ by tp = 1 -

Then for any right A-comodule M, there is a short exact sequence

1 e n
O--ftM R"M@A l@P"'M@A_O

..../ /'

i e , l@t
of right A-comodules (solid arrows), which is R-split (dotted arrows).

Definition 1.1: Let Mbe a right A-comodule. The normalized canonical resolution

C(A,M) of M is the R-split differential graded right A-comodule

O-CO
dO

Cl

dl
Jr •••

... /'

" /'-- ...... _.....
00 0 1

homological degree

total degree t-s.

We write

has

assign it

(s,t) and

C(N,A,M)

-:'S
where Cs = M@A ds = (l@nR)(l@p) and Os = (l@t)(l0d.

m1all [a la for me al @ ••• @ a @ a (C, ands s s
s, internal degree t = [m] + L lai I + [a ] , bidegree

If N is also a right A-comodule, the canonical complex

C t(N,A,M)s,

Proposition 1.2. ExtA(N,Ml = H(C(N,A,M».

Proof. If we let n: M+ C(A,M) and C(A,M) + Mbe

then it is easy to check that d2 = dn = 0, a2 = 0 and do + od

d d
O--M-.!4.C -.2.... co 1 2

1 - ne . Thus

is an injective resolution R-split by ° and which implies the proposition. II
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Note that we use t-s as our total degree rather than t+s. This (t-s) is the

topologically significant degree in the Adams spectral sequence

If we regrade C(A,M) by nonpositive superscripts, it really is the total degree in

the sense of being the sum of the internal and homological degrees.

§2. Products and Steenrod Operations in Ext

We begin this section with a quick description of the product in the Ext module

we have just defined. The rest of the section is devoted to the development of the

Steenrod operations in this context. The main point is to show how the development

of Steenrod operations in [681 is carried over to the cobar complex C(N,A,M) in the

setting appropriate to generalized homology theories.

The indexing we have chosen for Steenrod operations disagrees with that of

[551,[681 and [811. OUr reason is this: as noted in section 1, the appropriate

total degree for ExtS , t is t-s rather than t+s. This change converts the grading of

[551 and [681 to the grading we have chosen. With our grading, the operation pi

raises the geometrically significant total degree t-s by 2i(p-l) if p > 2 and by i

if P = 2. This conforms to the pattern established by the Steenrod operations in

cohomology and the Uyer-Lashof operations in homology. This is not merely an

analogy. We shall see that the Adams spectral sequence connects the Steenrod

operations in Ext with homotopy operations. Under the Hurewicz homomorphism these

homotopy operations correspond to Uyer-Lashof operations and our choice of indexing

leads to precise compatibility with these Uyer-Lashof operations.

In this section we let <&)

In order to introduce products and Steenrod operations into ExtA(N,M) we

require more structure on N and M. The necessary definition follows.

Definition 2.1. Let be the category whose objects are triples (N,A,M) such that

1) (R,A) is a Hopf algebroid over k,

2) M is a commutative unital A-algebra (that is, an algebra with unit

nM: R + M in the category of A-comodules), and

3) N is a cocomutative unital A-coalgebra (that is, a coalgebra with counit

gN:N + R in the category of A-comodules)

and whose morphisms (N,A,M) + (N' ,A' ,M') are triples (f,A,g) such that

1) A:(R,A) + (R' ,A') is a morphism of Hopf algebroids,

2) f:M + M' is an algebra homomorphism preserving units and a A-equivariant

comodule homomorphism (f'{mr ) = f(m)A(r) and ljIM,f = (f <&) A)ljIM)' and
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3) g:N' + N (note reverse direction) is a coalgebra homomorphism preserving

counits and a A-equivariant comodule homomorphism (g{n'A{r)) = g{n')r and

{l 0 = (g 0

If (N,A,M) is in s: , we write q,: if + Mand s : N + Nr for the iterated product and

coproduct.

Note that {R,A,Rl is in C and that the unit nM and counit EN induce a

homomorphism

in <;. In turn, this induces a unit

If (R,A) and (R' ,A') are Hopf algebroids over k then the obvious structure maps

make (R 0 R', A 0 A') a Hopf algebroid which we will usually call A0 A'. The

functor 0 defines a functor

A-Comod x A'-Comod + A 0 A'-Comod.

Thus, if Mis an A-comodule and M' is an A'-comodule, then C(A,M) C(A' ,M'1 is a

differential graded A0A'-comodule with differential d0 1 + 10 d, unit n 0 n,

augmentation E 0 E, and contracting homotopy (J 0 1 + ns 0 (J. By the comparison

theorem, there is a unique chain homotopy class of A0 A'-homomorphisms

C(A,M) 0 C(A' ,M') + C(A0 A' ,M0 M')

extending the identity of M0 M'. If C is an A-comodule, let en = C0 ••• 0 C with

n factors C. Regard en as an A-comodule by means of the iterated product q,: An + A

in the usual way. For each integer n there is a unique chain homotopy class of A-

homomorphisms

q,:C(A,Mln + C(A,M)

extending the product q,:MP + M. This implies that C{A,M) is a homotopy associative

and commutative differential graded A-comodule algebra (DGA in A-Comod). Finally,

if (N,A,M) EC , the homomorphism

n n
HomA{N ,C{A,M) )

1Hom{lJ.,q,)
HomA(N,C(A,M))

C(N,A,Ml n

1
C(N,A,Ml
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makes C(N,A,M) into a homotopy associative and commutative differential graded

k-algebra. (There is an Alexander-Whitney map which makes C(A,M) and C(N,A,M)

strictly associative.) This product on C(N,A,M) makes ExtA(N,M) into a bigraded

commutative associative algebra over ExtA(R,R) with unit (*) induced by

Hom(E,n):HomA(R,R) + HomA(N,Ml.

We can now summarize the development of Steenrod operations given in 16Bl. Let

k = Zp and let 'If C l:p be the cyclic p-Sylow subgroup generated by the permutation

a = (1 2 ••• pl. Recall the usual kn free resolution of k.

Definition 2.2. Let )Vi be free over k'lf on one generator ei' let

d(e2i) u + a + a2 + ... +aP-l'e2i_l and d(e2i+ll (a - 1)e2i'

and let )'r0 + k send i to 1-a eO

Let 'V' be any kLp free resolution of k and let j:$' + "f be a k'lf chain map

covering the identity map of k , Let n and l:p act trivially on a chain complex K, by

permuting factors on KP, and diagonally on 1f @ KP and 'If@ KP respectively. We

let )Yi @ (KP)n have degree n-i, n being the total degree if K is bigraded. Then we

can define Steenrod operations in H(K) if K is a homotopy associative differential

k-algebra with a k'lf morphism e : )(@ KP + K such that

(i) eleo@ KP is the iterated product KP + K associated in some fixed order, and

(ii l <p is k'lf-homotopic to "1' e j @ 1,. ,., e KP --.L.. K for some

kl:p-homomorphism <p.

A morphism (K,e) + (K' ,e') is a morphism f:K + K' of differential k-modules such

that fe is k'lf-homotopic to e'(l @ fP). The tensor product (K,e) @ (K' ,e') is

defined in an evident way and the Steenrod operations satisfy the (internal) Cartan

formula if the product K @ K + K defines a morphism (K,e) @ (K,e) + (K,e). Let V. be
a kl: 2 free resolution of k and let T = Z fZ C L 2 be the p-Sylow subgroup, Let

P p p p
w: '1'{@ y,P+ U be a kr-homonorphfsm extending the identity k + k where )'( @ JYp is

given the evident T action. Then the Steenrod operations in H(K) satisfy the Adem
2

relations if there is a kL 2-homomorphism i;: 'U@ KP + K such that
p

2
DY @JYp) 0 KP

shuffle1
)\" e ()t"@ KP)P

is kr homotopy commutative.
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The following lemma will imply that and exist and make the appropriate

diagrams homotopy commute when K e(N,A,M), giving us Steenrod operations in

ExtA(N,M) •

Lemma 2.3: Let p be a subgroup of l:r. Let"1J be any kp free resolution of k such

that"'O = kp with generator eO. Let Mand N be A-comodules. Let

K b-
1 0

be an R-split exact sequence of A-comodules and let

d
11-•••

be a complex of extended A-comodules. Let f:Mr + N be a p-equivariant A-comodule

homomorphism, where p acts trivially on N and by permuting factors on Mr. Let p

also act on Kr by permuting factors, and on 'IT @ Kr by the diagonal action. Give

"II'@Kr the A-comodule structure induced by that of Kr and let 'I/'i @ (Kr) j, t have

bidegree (j-i,t). Then there is a unique p-equivariant chain homotopy class of

p-equivariant A-comodule chain homomorphisms 41: "V@ Kr + 1 which extend f:

o if ri > (r-1)j.

Proof. We will define p-equivariant A-comodule homomorphisms from ori 0 (Kr) j to

extended comodules by specifying their adjoint R-maps on elements v0 k with v in a

chosen p basis of "i. It is easy to check that we get the same homomorphism by

extending by equivariance and then taking adjoints as we get by first taking

adjoints and then extending by equivariance.

induction on i and subsidiary

follows from the comparison

We define 4Ii j by
r

410 *I<eo> 0 K + 1,
theorem, so we may assume 4Ii,j constructed for all i' < i. If j < i then 4Ii,j = 0

since 1 is a nonnegative complex, so we may assume 4I i,j' constructed for j' < j. If

Write 4Ii,j for 4I111i 0 (Kr)j.

induction on j. The existence of

(a)

41 is the adjoint of 41, we let

c--J

(d4l .. 1- 41. I' 1(d@1))(l0 S)
1,J- 1- ,J-

on elements v 0 k with v in a chosen p-basis of '1I"i' where

S
iI (ne ) 00 e

i
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is the contracting homotopy of Kr (so that dS + Sd

makes \P a chain homomorphism we must show that

1 - hs>r). To show that this

(b) d<l>. . 1 = <1>. 1 . 1 (d 0 1) + <1>. . (1 0 d) •1,J- 1- ,J- 1,J

It suffices to show that the adjoint of (b) is true on our chosen p-basis, and we

may assume (b) holds for smaller i and j. Thus, letting the adjunctions be under-

stood and using (a), we have

\P. 1 . ltd 0 1) + <1> •• (10 d)
1- ,J- 1,J

<l>i_l,j_l (d 0 Sd)

d<l> . . 1 + (<I>. 1 • 1 (d 0 1)1,J- 1- ,J-

Applying (b) inductively twice shows that

r
d<l>. . 1)(1 0 dS + 1 0 Lnc) i.
1,J-

(\p. 1 . ltd 0 1) - d<l> .. 1)(10 d) = -dde •. 2 O.
1- ,J- 1,J- 1,J-

If we let 1':'11
0
e tl + N be p-equivariant and satisfy f = 1'1 <eO> 0 tl then

<1>0 0(10 nr) = nY. Then (<I>. 1 . l(d 0 1) - d\p. j 1)(10 (n£)r) = 0 because
_ , 1- ,J- 1, -

f(d 0 1) 0 by p-equivariance of f and because dn = O. This completes the

inductive construction of <1>. Now let us show that the \P we have constructed

satisfies <l>i,j = 0 if ri > (r-l)j. This is trivial if i = 0 or j < i so we use

induction on i and a subsidiary induction on j. When ri > (r-l)j the induction

hypothesis implies that (a) reduces to <1> .. = - \Pi 1 • ltd @ S). This implies the
1,J - ,J-

result, again by the induction hypothesis, except when j = m+l and i = j-n. In this

case we iterate (a) to obtain

(c) <1> •• = . (d @ S)Pl{d @ S)P2 ••• Pr_l{d @ S),
1,J -r,J-r

where each Pi is a sum of permutations of the factors of Kr coming from the

equivariance of \P. The number of factors c{ of c @ ... 0 C £ Kr which are1 r
annihilated by cr:K + K increases by at least one each time we apply Sj this is where

we require cr2 = so = O. Since permutations preserve this property and since d @ S

occurs r times in (c), it follows that <l>i,j = 0 in this case also, completing the

induction.

Finally, we show that 4> is unique up to p-equivariant chain homotopy. Suppose

4>,0:'11"0 If + L both extend f. We define Hi,j:'V i 0 {Kr)j + Lj_i_l by letting its

adjoint be
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if j < i+l or i < 0

- 0i , j _l - dHi,j_l - Hi_1,j_l{d 0 1»{1 0 S) otherwise

on elements v ® c with v in a chosen p-basis of We must show

dHi,j_l + Hi_1,j_l{d 01) + Hi,j(l 0 d) = - 0 i , j _l •

The definition of Hi,j implies that, on the p-basis, the adjoint of Hi,j(10 d) is

the desired expression minus

Now, 1 0 dS = 0 unless j 2 and 1 (8) (nd r = 0 unless j = 1.

everything is zero unless i = 0, when we get

r r
0{1 0 n ) = nf =00 0{1 0 n ), ,

by induction that

the result

If j 1 then

r r(1I
0 0-60 0

) (l <8) n )(l0e)., ,
follows when j :: 1. When j 2

Since

we find

.. 1 - 6.. 1 - dH. j 1 H. 1 . l(d @ 1))(1 @ d) = O.1,J- 1,J- 1, - 1- ,J-

Hence H is a p-equivariant A-comodule chain homotopy '" 6. / /

Remark: Since is determined up to chain homotopy by f: Mr + N it is easy to see

that is natural in M and N up to chain homotopy.

Suppose (N,A,M) is a triple in defined over k = Zp' The product W' + M is

commutative, hence Lemma 2.3 with p 1T and r = p implies that there is a unique 1T-

equivariant chain map 11: 1(0 cP + C, where C = C{A,M). Since is an

A-homomorphism we also have a homomorphism

)+'0 HomA(N,C)P = 7(0 C(N,A,M)P

,)'0> CP,
!Homtt.,lI)

HomA(N,C) === C{N,A,M)

and since A:N + NP is cocommutative, this 11 is also n-equivariant.
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Definition 2.4: With the notation of the preceding paragraph, let x t Ext1,t(N,M).

If P = 2 define

(i) iSq (x)

If P > 2, define

(ii)

where m

!
Pi (X)

Spi(X)

(p-l)/2

i P if > t-s(-1) 0 x )

i P
(-1) 0 x) if 2i > t-s ,

Note that BPi

Theorem 2.5 vii).

the form x

is a single symbol, =-.:::.:::.:.:::.. unrelated to pi (however, see

By [681, the pi and Bpi account for all the nonzero operations of

e xp ) .

If (N,A,M) is an object of i; defined over k = Z such that N,A and Mare all

torsion free, let N = N 0 Z , A = A 0 Z and M= M0 Z. Then (N,A,M) E C and,p p p
as usual, the sequence Zp + Z 2 + Zp induces a Bockstein homomorphism

p

B:ExtS,t(N,M) + Exts+l,t(N,M)
A A

which we will use in Theorem 2.5 (vii).

We are now ready to apply Lemma 2.3 and [681 to produce the main result of this

section.

Theorem 2.5: The pi and BPi are natural homomorphisms with the following

properties.

(i) (E: = 0 if P = 2)

(ii) When p = 2, pi = 0 unless t-s 5 i 5 t. When p > 2, pi = 0 unless

t-s S 2i stand Bpi = 0 unless t-s+l S 2i S t.

(iii) pi(x) = xP if P = 2 and i = t-s or if p > 2 and 2i t-s.

(tv) The internal and external Cartan formulas hold:

pn(x 0 y) = L pi(x) 0 pn-i(y) and
i

L Spi(x) 0 pn-i(y) + L (-1) Ixlpi(x) 0 Bpn-i(y)
i i
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(v) The Adem relations hold: if a > pb and e = 0 or 1 (f: = 0 if p 2) then

I (_l)a+i(pi_a,a_(p_l)b _ i_l)Bf:pa+b-ipi
i

if p > 2, a pb and f: = 0 or 1 then

a+i . a+b-i i
(I-g) I (-1) (pi-a,a-(p-l)b - 1)BP P

i

a+i . . E: a-b-d i- I (-1) (p1-a-l, a-(p-l)b-1)B p BP
i

(vi) Suppose f: (N,A,M) .. (Nil ,A",Mil) and g: (N' ,A' ,M') .. (N,A,M) are morphisms

in (; such that C(fg) :C(N' ,A' ,M') .. C(N" ,A",Mil) is zero on the cokernels of

the units. Then api = pia and oBpi = _Bpia where a is the suspension

a'ExtS,t(N' M') .. ExtS-l,t(N" Mil)
• A" A" ,

defined as C(f)d-1C(g) on representative cycles.

(vii) If (N,A,M) is the mod p reduction of a torsion free triple defined over Z

then Bpi+l = ipi if P = 2 while Bpi is the composite of B and pi if P > 2.

Proof. Let C C(N,A,M). Lemma 2.3 produces the necessary chain homomorphism

iY0 cP .. C and, if"" is a kZ:;p free resolution of k , e: 'If0 cP .. C. The

uniqueness of implies that factors through e up to chain homotopy. Hence the

Steenrod operations are defined and satisfy (L}, (iii), and (vii). Naturality

follows from the uniqueness Lemma 2.3 also shows 0 in the cases relevant

to (ii). Commutativity of <p:M 0 M.. Mand the uniqueness clause of Lemma 2.3 imply

that C(N,A,M) is a Cartan object and an Adem object. Hence (iv) and (v) hold. To

prove (vi) we must construct and <I> II such that equality holds in f<l> = <I> II (l @ fP)

and g<l>' <1>(1 @gP) rather than just chain homotopy. It is easy to check that this

will be true if we construct <I>,<I>'and <1>" as in Lemma 2.3, because C(N,A,M) is

functorial. / /

§3. The Adams Spectral Sequence

This section begins with some technical lemmas about homotopy exact couples and

the associated spectral sequences for use in VI. We end the section by setting up

the Adams spectral sequence.

We will work in the graded stable category h* J,. This is obtained from the

stable category h 4 specified in In by introducing maps of nonzero degrees. The

category h*,& has the same objects as hJ, and its morphisms from X to Yare the

elements of the graded abelian group [X,Y]* with [X,Yln [z:;nX,Yl.
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Definition 3.1: Consider inverse sequences

i i
YO -.-Q- Yl -l Y2

such that each Ys is a CW spectrum and each is is the inclusion of a subcomplex.

(This restriction is imposed purely for technical convenience. It represents no

real restriction since any inverse sequence can be replaced by an equivalent one of

this form by means of CW approximation and mapping telescopes.) Define

i : i i··· i Y + Y and Y Y IY : Ci and lets,r s s+l s+r-l s+r s s,r s s+r s,r

Ys,r

be a cofiber sequence with as,r of degree -1.

Given a spectrum X we obtain an exact couple

®
s,t

and hence a spectral sequence.

will find

The term Es,t has many descriptions, of which we
r

Es,t = im(lX'Ys,rJt_s + [X'YS,llt_s)
r ker(IX,Y Ilt + IX,Y +1 lts, -s s-r ,r -s

particularly convenient.

If x f lX'Ys,rJn' we let x denote its image in E;,n+s. The following lemma

gives minimal hypotheses needed to recognize differentials in the spectral sequence.

Lemma 3.2: Let f E [X,Ys Iln+l and g E [X'Ys+r lIn satisfy, ,
paf: i'g E [X'Ys+l rln' where i ' is induced by i s+l r-l' Then, ,

= 0 if k < r

d f = Iir

and

The next two technical lemmas will be used repeatedly.
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Lemma ].]: If f E [X'Ys,r+p]n and g E [X'Ys+r+p+q]n-l are such that

iaf = ig ( [X,Ys+r]n_l' then there exist

such that

and fl E [X Y ]
, s,r+p+q n

if = if' E [X,Y ] ,s,r n

f = fl E Ei,n+s for k < r+p+q ,

d Ii
r

,......,
a(f) , and

d f d fl g
r+p+q r+p+q

Lemma ].4: Assume p q < r and suppose given f E [X,Ys+p,r-p]n'

g E [X'Ys+q,r-q]n and h E [X'Ys,p]n+l such that af = ag E [X'Ys+r]n-l and

pah = f - ig ([X,Ys+p,r_p1n' Then

ar ag

while if p d fr-p af

Now we turn our attention to the Adams spectral sequence based on a commutative

ring spectrum E with unit. We shall use \l$) to denote 0 E We assume that is
1T;;

flat as a (right or left) module over ,,;;E. This ensures that is a Hopf

algebroid over 1TOE and that is an comodule for any spectrum X. Here E;;X

11;; (X" E). The structural homomorphisms are defined as follows. Let 11:8 + E and

ll:EA E + E be the unit and product of E, and let T:AI\B + BI\A be the twist map.

4>:1I;;E0 ElI;;E+lI;;E is given by 4>(u0S) =ll(UAS), and4>:E;;E e EE;;E+E;;E
110 110

is given by 4> (u 0 8) = (11 1\ 11) (1" T 1\ 1) (u .. 8). The coproducts o/x and o/E are defined
-1

as 62 E;;(l"'11) in the following diagram. In it, the homomorphisms 61 and 62 are

defined by

while 6 is the algebraic isomorphism defined in §l. (Recall that (E;;E)R means

with only its right 1f;;E action.) Adams [6, Lemma 12.5] shows 62 is an isomorphism

since is flat over 1T;;E.



l®n

E*X E*(X"El
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e

We have seen in §2 that 6 is an isomorphism. It follows that 61 is also an

isomorphism. Note that 61 is the Kunneth homomorphism for X and E.

Definition 3.5. An Adsms resolution of a spectrum Y is an inverse sequence

i i

as in Definition 3.1 such that, for each s

( t ) Ys,l is a retract of Xs" E for some spectrum Xs' and

(ii) E*Ys + E*Ys,l is a n*E-split monomorphism.

A map of Adams resolutions is a map of inverse systems. The canonical Adams

resolution is defined inductively by letting YO Y, Ys+1 = Ys 1\E and

where the unit S + E is the cofiber of i:E + S. The Adams spectral sequence for

[X,Y]* is the spectral sequence of the homotopy exact couple obtained by applying

* *[X,-]* to an Adams resolution of Y. It is denoted by Er' (X,Y).

Condition (i) ensures that E*Ys 1 is a direct summand of an extended comodule,
and condition (ii) ensures that the sequences E*Ys + E*Ys,l + are n*E split

short exact sequences. Splicing them, we obtain an injective resolution (*) of E*Y:

(*)

To proceed, we need another assumption on E.
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Condition 3.6.

for any Y when E*X is n*E projective. Elf [6, Prop. 13.4 and Thm. 13.6J this

holds for E = S, HZp' MO, MIT, MSp, K, KO and BP. Note that Condition 3.6 will be

satisfied if we have a universal coefficient spectral sequence.

for the module spectra F = Y1\ E over E. Also note that Condition 3.6 will be

satisfied for all Y if it is satisfied for Y S, using the argument of [6, Lemma

12.51. Thus we have the following equivalent form of Condition 3.6:

Finally, if Condition 3.6 holds then the isomorphism in 3.6 will also hold with Y1\ E

replaced by any retract (wedge summand) of Y1\ E.

Given Condition 3.6, Definition 3.5(i) implies that if E*X is n*E projective

then [X'Ys,l] HomE*E(E*X,E*Ys,l)' Hence E2 of the Adams spectral sequence is

ExtE*E(E*X,E*Y) in this case. Elf [6, Thm. 15.11, under appropriate hypotheses the
E E

spectral sequence converges to [X,YJ*, where [ , ]* denotes homotopy classes of maps

in the category obtained from the stable category h*4 by inverting E equivalences.

For future references we note the following lemma.

Lemma 3.7. The resolution (*) obtained from the canonical Adams resolution is

isomorphic to the cobar resolution C(E*E,E*Y) of Definition 1.1. If E*X is n*E

projective then the term of the resulting spectral sequence is isomorphic to

C(E*X, E*E, E*Y).

Proof. The isomorphism 61 converts the cobar resolution into (*). If E*X is n*E

projective we use the natural isomorphism 3.6. II

In the next section we will need the following result on maps of Adams

resolutions.

Proposition 3.8: Suppose is n*E projective, {Xi} and {Yi} are Adams resolu­

tions of X and Y, and each E*Xs is n*E projective. Let f:X + Y and let f be a

chain homomorphism extending f*:
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o -E*X-E*XO 1 -- 1 _ •••

f*l f O! ' rd'
o _E*Y -- E*YO 1 -- E*Yl 1 -'", ,

Then there is a map of Adams resolutions extending f and inducing 1.

Proof. Since all are n*E projective, so are all E*Xi,l (= E*Xi +l).
Hence

and the f i correspond to unique maps fi:Xi,l + Yi,l such that (f i)* = f i • We

construct f i :Xi + Yi commuting with f i-I and f i by induction. When i = 0 we let

fO = f. This commutes with f O since it commutes after applying E* and

Assume fO,fl, ••• ,fi_l have been constructed. Let f i be a map which makes the

following diagram commute.

To see that f i commutes with f i we need only check that it commutes after applying

E*, and this holds because it holds after composing with the epimorphism E*Xi_l,l +

E*Xi• This completes the induction. II

§4. Smash Products in the Adams Spectral Sequence

We are now ready to introduce smash products into the Adams spectral

sequence. Our main result is

Theorem 4.4: There is a pairing of Adams spectral sequences

** ** **Er (X,Y) @ Er (X' ,Y') + Er (X" X' ,Y" Y')

converging to the smash product

If and are n*E projective then the pairing on E2 is the external product
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composed with the homomorphisms induced by

and

----ilO..ElfX@ElfX'

----',.Elf(YAY').

(Note that the preceding isomorphism is the inverse of the external product

ElfX® ElfX' + Elf(X "X' ), and is an isomorphism because ElfX and ElfX' are 1IlfE

projective. )

As a corollary we have

Corollary 4.5: (i) {Er(S,S)} is a spectral sequence of bigraded commutative

algebras.

(ii) is a differential module.

(iii) If X 1:"'Z for some space Z, and if Y is a commutative ring spectrum

then {Er(X,Y)} is a spectral sequence of bigraded commutative {Er(S,S)} algebras

whose product converges to the smash product internalized by means of the diagonal

lI:X + X" X and the product J.I:YAY + Y. If Z has a disjoint basepoint, then the

Er(X,Y) are unital.

In the ordinary Adams spectral sequence (E = HZp' P prime) these results are

quite easy. If {Yi} and {Yi} are Adams resolutions of Y and Y', then their smash

product {Yi } I\ {YP (to be defined shortly) is an Adams resolution of YAY'. The

pairing in Theorem 4.4 is then obtained by simply taking the smash product of

representative maps. To get the internal product of Corollary 4.5 we need only note

that the product Y1\ Y + Y is covered by a map of Adams resolutions

{yi }" {Yi} + {Yi}· In the general case, this plan of proof encounters two

obstacles. First, the smash product of Adams resolutions mayor may not be an Adams

resolution. Second, a map X + Y mayor may not be covered by a map from a given

Adams resolution of X to a given Adams resolution of Y. There are two facts which

enable us to avoid these difficulties. First, for spectra which have 1I*E projective

E-homology, everything works as in the ordinary case. Second, all the Adams

resolutions we need have the following form: spectrum to be resolved smashed with an

Adams resolution of a sphere. This enables us to reduce to the case of the sphere

spectrum, for which everything works as in the ordinary case, since E*S is 1I*S

projective. The details follow.
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Lemma 4.1. Let (X,A,U) and (Y,B,V) be CW triples. The geometric boundary a makes

the following diagram commute.

X A Y
AAYvXAB

(a 1) (l a)

Definition 4.2. Let
i O i 2

X2 -

j j j
and Y --.Q... Y Y -Lo 1 2

be inverse systems in which each map is the inclusion of a subcomplex. The product

{Xi} " {Y i} is the inverse system

where Z
n U X.AY.•

i +j = n:l. J

Proposition 4.3: Let {Xi} and {Y
i}

be Adams resolutions of X and Y. Then

{Xi}" {Yi} is an Adams resolution of X"Y if either

(a) and E*Xi for each i are 1T*E projective

or (b) {Xi} and {Yi} are the canonical Adams resolutions.

The resolution of E*(X" Yl associated to {Xi} " {Ii} is, respectively,

(a) the tensor product of the resolutions associated to {Xi} and {Yi}'

or (b) E*(X" Y) ® C(E*E,1T*E) ® C(E*E,1T*E) '" C(E*E,E*(X" Y» ® C(E*E,1T*E)

_ C(E*E®E*E,E*(X"Y)).

(Recall that C(A,M) M@C{A,R). Also, in case (a) note that the split exact

sequences

show that if two of and have 1T*E projective E-homology, so does the

third. Hence, if E*X is 1T*E projective, then X has Adams resolutions {Xi} in which

each E*Xi is 1T*E proj ective. The canonical Adams resolution is one such , )
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Proof: Use the notation of Definition 4.2. The equivalence

Z 1 V X 1l\Y 1n, p+q=n p, q,

implies that Definition 3.5.(i) is satisfied in either case.

Suppose is ll*E projective for each n, Then E*Xn,l is also ll*E projective

for each n , Hence Yq,l) :: ® E*Xq,l' This and Lemma 4.1 imply that

0-- E*(XhYl -- E*ZO 1 -- E*Zl 1 --- •••, ,

is the tensor product of the resolutions associated to {Xi} and {Yi}' and is

therefore ll*E split since each of the factors is. This implies that {Xi}" {Yi}

satisfies Definition 3.5(ii) and is therefore an Adams resolution of X" Y. This

completes case (a).

Let {Ei} be the canonical Adams resolution of S, and let {Fi} = {Ei} '" {Ei}. By

(a), this is also an Adams resolution of S and its associated resolution of E*S is

C(E*E,ll*El ® C(E*E,ll*E) (by Lemma 3.7). The canonical Adams resolutions of X and Y

are X'" {Ei} = {X",Ei} and Y" {Ei}, and their smash product is XhYI\{Fi}. Since

each is ll*E projective, (b) follows immediately. II

Proof of Theorem 4.4. Let be the canonical Adams resolution of S and let

{Fn} = A Let Y = {Yi}:{Fn} + {En} be a map of Adams resolutions which

extends the equivalence S" S + S. Define a pairing of spectral sequences

by composing the smash product

[X,Y"E 1 0 [X',Y'" Es' r1n'- [X"'X', Y"Es rAY'II.Es' r1n+n's,rn, "

with the homomorphism induced by

YAE "Y'AEs'rs,r ,

Y"Y' hEs+s' ,r

where Y is a map of cofibers induced by r- According to [641, this induces a

pairing of spectral sequences if
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(1) the pairing on Er induces that on Er+l

and, (2) dr acts as a derivation with respect to it.

Condition (1) is obviously satisfied, and condition (2) is an immediate consequence

of Lemma 4.1 and the fact that (lA3){f"g) = (_1}!f!f A3g.

It is clear that this pairing converges to the smash product.

That the pairing on E2 is as stated when E*X and E*X' are n*E projective

follows from the commutativity and naturality of the following diagram

/\
------.. [X"X' ,Y 1\Y' In+n'

1E*
[X,Yln e [X' ,Y' ln

E* @ E*1
Homn(E*X,E*Y) @ Homn' (E*X' ,E*Y')

@l
n+n'

Hom (E*X @ E*X' ,E*Y @ E*Y')

{Here K :E*X @ E*Y + (XAY) is the Kunneth homomorphism.} / /

§5. Extended Powers in the Adams Spectral Sequence

We are now prepared to show that if Y is a commutative ring spectrum whose r t h

power map y{r) + Y extends to a map

then i;, can be used to construct a homomorphism of the type used in §2 to define

Steenrod operations in ExtE*E(M,E*Y}. Assume given such a spectrum Y and map i;,

throughout this section. As a consequence, we obtain in Corollary 5.4 an explicit

representative map for SEpJ X given a representative map for x. In chapter VI this

will enable us to compute some differentials on SEpJX•

Let 11 C Er and let Wn be the n-skeleton of a contractible n free OW complex W.

Assume that Wo = n. The skeletal filtration of Winduces a filtration

Diy = W. lK y(r) of D Y = WIX y(r) and, more generally, a filtration WJ.' 1><11 X
11 J. 11 11 11

of WIXn X, where X is any n spectrum.

Let E be a ring spectrum which satisfies Condition 3.6 and for which E*E is n*E

flat. Let
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be an Adams resolution with respect to E. Let {Fs} be the r-fold smash product

{Ys}{r). The action on Fa = YaIr) is cellular and Fs+1 is a subcomplex of Fs
for each s , Thus we may define

Z = D Y WIX y{r)a 0

and

(L) Z. 1 and Z. +1 are subcomplexes of Z.,s

(ii)

(iii)

Z.

i-l,s Bi _l s

Z.
1,8

Z. 1 v Zi 1,s ,s+

Fs
1\ -F-

s+l

(iv) The following diagram commutes.

B.
B
i
_
1

Z.

Z. 1 V Zi 1,s ,s+

a1
Z. 1 Zi 1,s V ,s+

Zi-2,s""Zi_l,S+1 Zi-l,S+l v Zi,S+2

F
S

FS+1

1a"lvll\a
F B.
_S_I/
FS+1 Bi _1

Proof. Parts (i), Iii) and (iii) are in Theorem 1.1.3. Part (iv) is much more

delicate and is proved in [Equiv, VI. 4.9 and VIII. 2.71. II

Theorem 5.2: If E*Ys is projective for each s then there exist maps

Zi,s + Ys-i which make the following diagrams commute.

,s

!i';i-l,S

...--------Y
s
_
i
+
1

D Y '" Z. Z ... Z. 4
i,s-l

J t ti';i,S-l li';i,s
Y Ys-i

Y • Ys-i
..

s-i-l

Proof. Since Wo = n , ZO,s Fs ' Thus we may let i';a, s be the map of Adams

resolutions which Proposition 4.4 ensures us is induced by y(r) + Y. For induction

we may suppose i';i,s constructed satisfying the theorem for i < k, The maps for

s < k are defined to be
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Zk x F
O
-4y.

,s 11

Hence we may also assume that Sk,s' has been constructed satisfying the theorem for

s' < s. To construct sk,s compatible with sk,s-l and sk-l,s' we need sk,s to make
the following diagram commute.

Sk-l ,s-l Y
_ - s-k

---

-----)'Z
,s k-l,s-l

1
Sk s j - ---_l--J

Zk ------. Zk s-l __,s ,

The obstruction to the existence of such a sk,s lies in IZk,s/Zk_l,s' Ys-k-l,lJ and

by naturality lies in the image of IZk s_l/Zk_l s-l' Ys-k-l 1]. By Lemma 5.1.(ii),, , ,
E*(Zi s/Zi-1 s) is 1I*E projective for each i, and hence, ,

The equivalence 5.1.(ii) converts the inclusion

11\ js-l where jS-l is the inclusion Fs ... Fs_ I•
the existence of Sk,s is O. II

Zk,s/Zk_l,s ... Zk,s-1/Zk-1,S-1 into
Since E*js_1 = 0, the obstruction to

If we define to be 11k (Wk/Wk_1 ) and d: k ... )V"k_1 to be a*, we obtain a

Z[1I]-free resolution of Z with iVO = Z[1IJ. Let Cs t = Et_sYs 1. Then, ,
0 ... CO'" Cl ... C2 ... • • • is the resolution of associated to {Ys}. If each

is 1I*E projective then the Kunneth homomorphism is an isomorphism from Cr to the

resolution associated to {Fs}. Let hE:1I* ... E* be the Hurewicz homomorphism, K the

Kunneth homomorphism, and assume 1I0E = Zp.

Corollary 5.3. If is defined to make the diagram

1Sk,s *

E Yt-s+k s-k,l

commute (where t = t
l

+ ••• + t r and s = sl ... • • • + sr)' then is in the chain

homotopy class described in Lemma 2.3.
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image of

spectrum

II

Proof. The comodule structure, the 11 action, and the differential on )¥ ® Cr

are specified in Lemma 2.3. By 5.1.(iv), ill respects the differential. Since!;

restricts to the product {y}r + {Y }, ill restricts to the product Cr + C. Both
s s

and K are comodule maps, while hE ® 1 is a comodule map because the

primitive. ill is lI-equivariant because !;k s is defiend on the orbit,
!;k,s*
hE is

Wk IX
11

Now assume X is a spectrum with a coproduct A:X + XA X. For example, X could

be a suspension spectrum with its natural diagonal. Assume also that E*X is lI*E

projective so that K:(E*X)r + E*(X(r» is an isomorphism.

Corollary 5.4: If e E )fk and f
J
, E IX,Ys. llt,-s, then ilI*(e ® f l* ® ••• ® f r*) is

J' J Jrepresented by the composite

E _

i t-s+kE A

Et-s+kX(r)

-----+ Y
s-k,l

/!;k,S

e " A f, ..Wk/Wk 1 " A
j J - j

Proof. Consider the following diagram

The left column is the homomorphism ill used in §2 to define Steenrod operations in

ExtE*E(E*X,E*Y). The right column sends e 0 f l 0 ••• 0 f r to the composite which

the corollary asserts represents ilI*(e 0 f l 0 ••• 0 f r*). Thus we need only show

that this diagram commutes. This is an easy diagram chase from the following two

facts. First, there is the relation between 0 and 1\ expressed by the diagram at the

end of §4. Second, the homomorphism

a: Nk 0 Hom(M,N) + Hom(M, »'k e N)



II

given by a(e ® f)(m)
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e ® f'(m}, when composed with Hom(l,hE ® 1), sends e ® f to

e* ® f
---, E*(Wk/Wk_l) ® N.

Remark 5.5: When Y = S we are in the situation studied by Kahn [45J, Milgram [81J

and Miikinen [62]. They worked unstably, and in place of the H", structure map
i

s:DpS + S, used coreductions 6i,n:Dpsn + SOp. (A coreduction is a map which,

together with the inclusion t:Snp + DpSn, splits off the bottom cell.) Such core-

ductions exist for n even and congruent to °modulo a power of p increasing with i

(Theorems V.2.9 and V.2.14). They can be obtained by "destabilizing" s as follows.

InV§2wewillshowthat and that ifn 0 (2<1>(i))

(and similarly for odd primes). Thus, the following composite is a coreduction.

- - - - - - - - - -

This implies that we are looking at the same structure they were considering.

§6. Milgram's Generalization of the Adams Spectral Sequence

In [81J and [80], Milgram introduced a generalization of the Adams spectral

sequence and used it to study differentials of the form drsEpjx in the mod p Adams

spectral sequence for n*SO. The essential idea behind the spectral sequence is

this. The Adams spectral sequence for maps into Z arises from a geometric con-

struction of a resolution of Suppose that we have a filtration of of the

form

for some sequence (usually finite) of maps Z + Zl + Z2 + ••• • Milgram's idea was

to construct a geometric resolution of Z in which we delay the resolution of so

that it begins in filtration 1. The Adams spectral sequence is then the special

case defined by Z + * + * + •••• When Zi is the N-i skeleton of an N dimensional

complex Z, the differentials are determined by and provide a clear picture of the

attaching maps.
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Continue to assume that E is a ring spectrum such that E*E is TI*E flat and

which satisfies Condition 3.6.

Theorem 6.1: Let

} = {Z

be a sequence in which is TI*E projective and E*fi is a TI*E split monomorphism

for each 1. Then

(i) there exists a spectral sequence

such sequences, such that

natural with respect to maps of

Es,t(X ) = ® E2s-i,t-i(X,Cfl.') ,
2 i

is the Adams spectral sequence converging to

there is a pairing

** **E (X, 2) 0 E (X' ,Y')r 0 r

0 [X' ---'--

... }

which is the direct sum of the smash product pairings on

** ** **E2 (X,Cfi) e E2 (X' ,Y') -- E2 (X"X' ,Cf i "Y');

(iii) if

Y

is a map from} into an Adams resolution of Y, then there is a homomorphism c

of spectral sequences

** E
Er

===? [X,Z]*

j !co*
EEr (X,Y) > [X,Y]*
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which maps the pairing in (ii) to the smash product pairing

** **
Er (X'r) ® Er (X' ,Y' )

lc ® 1

** **Er (X,Y) ® E
r

(X' ,Y')

**__ E (X"" X' :),AY')

:. I:'
--Er (X"X',Y",Y')

(iv) the spectral sequence converges to [X,ZJ; if

(1) E and Z satisfy Adams' condition for convergence of the Adams spectral
** Esequence Er (X,Z) [X,Zl* (stated below) and

(2) Zi) = 0, where Mic Zi is the microscope, or homotopy inverse

limit of the Zi.

Remarks: Adams' conditions for the convergence of **E
r

(X,Z) E= [X,ZJ* are

(a) Z is bounded below,

(b) E is connective and ll*: TIOE @ + TIOE is an isomorphism,

(c) if RC Q is maximal such that the natural ring homomorphism Z + TIOE

extends to R + TIOE then is finitely generated as an R-module for

all r ;

see [6J.

The proof of the convergence will show that E*Mic Zi

lim E*Zi = 0 = liml E*Zi.

o is equivalent to

Proof. First we will construct a new inverse system into which Z maps and from
** Ewhich Er (X,}) will be obtained by applying [X, ? J*. Then we will show that

**E2 splits as stated. Next we will prove a statement which will imply naturality of

the spectral sequence and the first part of (iii) simultaneously. The next step is

to construct the smash product pairing and prove (ii) and the last statement in

(iii). Finally we prove convergence.

To construct the inverse system from which the spectral sequence will be

obtained, we begin by choosing Adams resolutions

f. 0 f. 1 f. 2
Z. 0 . 1 . 2l, 1, 1,

... .

Let TI· .: Z.. + Cf.. be the natural map. Since E*Cf
1
• is a direct summand of E*Y

1
·1,J 1,J l,J

(as TI*E modules), E*Cfi is TI*E proj ective. Thus we may assume that E*2i ,j is TI*E

projective for all i and j. We will inductively construct spectra 2. and
1

maps fi: 2i +l + and e i: Zi + Zi such that we have a map of inverse systems
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f
Z --.Q.-o

To start the induction, let Zo = Zo and eO = 1. Assume for induction that we have

constructed Zo + ••• + Zk and eO, ••• ,ek such that for each i, 0 i k, there is

an E*E comodule isomorphism

E*Zi " E*Zi @ e ... e

under which ei is inclusion of the first summand. This implies that is n*E

projective. Thus we may define

by requiring that nk* " (nk O<Pk)* @ nk-l 1 * (£l ••• (£l "O k * under the isomorphism,, , ,
where <Pk:Zk + Ofk = Zk,O is the natural map. Define Zk+l + Zk to be the fiber

of nk' The definition of nk implies that the following diagram commutes, thereby

inducing ek+1 •

Let 0 = O(ekfk) and D = Cek+ l be the indicated cofibers, and consider the following

braid of cofibrations.

Of. k .
l, -l
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Since (ekfkl* is a monomorphism, rl* is an epimorphism and hence

Since jlrl 1fk we must have h* ® 1fi,k-i *. This is a monomorphism and, hence,

j:3 * is an epimorphism. It follows that

Now r4 * = 0 because (ekfkl* is a monomorphism. It follows that (r:3jll* = O. This

implies that there is a unique homomorphism r:E*D + such that

rj:3 * = r:3 *. Thus r 2*r = 1, from which it follows that E*Zk+l = E*Zk+l ® E*D and

that ek+l * is inclusion of the first summand. This completes the induction. We
H E

define Er (X,31 to be the spectral sequence obtained by applying [X,?l* to the

inverse system {fi}' It is clear that

we need only show that dl is the

is a retract of Ckl\ E for some Ck

To show that the same splitting

direct sum ® d. For each k,
i 1

and E*Cfk is 1f*E projective.

$E
l
S-
i, t-i(X,Cf .1.

i
**applies to E
2

Cfi k-i,
Therefore, the map Cfk ... Zk+1 ... Cfk+1 is

completely determined by its induced homomorphism E*Cfk ... E*Cfk+l, which splits as

desired by construction. In other words, the sequence

is the direct sum of the sequences

with the i t h sequence delayed until homological degree i before it begins:

0 E*CfO 0 -- E*CfO 1 --E*CfO 2 - •••
, , r

® @ ®

o - E*Cfl 0 -- E*Cfl 1 -- •••, ,
® @

o -E*Cf20-•••,

To prove naturality and the first part of (iiil, we suppose given a map of

inverse systems
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where, for each k, Cik is a retract of 1\ E for We shall factor this map

through the inverse system (fk}. That is, we shall construct maps ck:Zk + Yk such

that the following diagram commutes.

We proceed by induction.

been constructed. We seek

Let cb = Co and assume inductively that

ck+l such that

ck+1

have

Zk

commutes. With the notations used in the braid of cofibrations, the obstruction to

*the existence of ck+1 lies in the image of j2:[C,Cik J + [D,CikJ. This image is

zero because 0 = j2*:E*C + E*D while E*D is n*E projective and Cik is a retract of

CkAE.

This completes the inductive construction of the c:ic Now (iii) follows by

assuming YO + Yl + ••• is an Adams resolution. For naturality, suppose given

+ = {ZO' + Zl' + ••• }. Let Y. = Z; and let c.:Z. + Z! be the composite
4" (] 1 1 1 1 1
Z1. + Z! + Z:; then apply the preceding paragraph.

1 1

Our next step is to construct the smash product pairing. First note that

Y' satisfies the hypotheses of the theorem, so gives rise to a spectral sequence
** E= G:> E:2 (X,Cf." Y') Y' 1* for any X. Choose an Adams

i 1

**
E2 1\ Y' )
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projective over TI*E

and let

Y'
g g

Y'a 1

v

As in the derivation of smash products in the Adams spectral sequence (Theorem 4.5),

we have a pairing from

** **E (X,t) <IS) E (X' ,Y')
r 0 r

to the spectral sequence obtained from Fa + F1 + ••• by applying [X" XI ,? 1 and

this pairing converges to the smash product. Thus, to show the existence of the

pairing

we need only show that the sequence Fa + Fl + ••• is equivalent to the sequence

Za" Y' - Zl" Y' _... derived from Y'. To construct the latter sequence, we

need Adams resolutions of C(fi" 1) " Cf i 1\ Y'. If we use the smash product of our

chosen Adams resolutions of Cfi and of Y' then both Fn+ l + Fn and Zn+l" Y' + Zn" Y'

have cofiber

Cf .. " Cgki+j+k = n 1,J

Starting with Fa Za 1\ Y' = Za" Y' we obtain an equivalence

Za "Y' <.------ Zl II Y' - •••

will have a short exact sequence

by induction. This proves the existence of the pairing. It is immediate that it
**operates componentwise on E
2

because the pairing is defined by taking the smash

product of representative maps. This completes the proof of (ii). The second half

of (iii) is also immediate because the maps ck" 1 induce a map from Fa + F1 + •••

to the smash product of the Adams resolutions of Y and Y' •

To prove convergence we refer the reader to [6, Theorem 15.1] for the body of

the proof and indicate only the changes needed to adapt Adams' proof to our

situation. The essential step is to show that (n Zi)" E n (Zi" E) so that we
1 1

(*)

We will also want this result with Zi replaced by Zi throughout. By Adams'
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Theorem 15.2 it suffices to show lI
r
Z
i

i, and similarly for lIr Zi .

Since Z = Zo is bounded below we may assume 11rZO = 0 for r < nl• Then the

Hurewicz theorem and the Kunneth theorem imply that ErZO = lIr (ZO/\ E) = 0 for

r < nl• Since + E*ZO is a monomorphism, = 0 for r < nl• The Hurewicz

and Kunneth theorems now imply that HrZi ® 1I0E = 0 for r < nl, but Adams shows

@ 1I0E = We conclude that lIr Zi = 0 for r < nl• We therefore have a short

exact sequence

By hypothesis (6.1.iv.2), E*Mic Zi = 0 and hence liml E*Zi = 0 = lim E*Zi.

By construction of Ii: Zi+l + Zi we see that the inverse system

E*ZO + E*Zl + ••• is the direct sum of E*ZO + E*Zl + ••• and an inverse system all
1 - -

of whose maps are O. It follows that lim -!*Zi = 0 = lim E*Zi. Thus, once we have

the exact sequence (*) we will know E* Mic Zi = 0 from which convergence follows as

an Adams' Theorem 15.1.

It remains only to show 11 Z. = 0 for r < nl-l. Since 11 Z. = 0 for r < nlr 1- r 1-

and all i, the exact sequence 11 Z. + lIr _l Zi +l
implies 11 Cf. = 0 for n < nl and

r 1- r 1-

all i. This easily implies that 11 Cf .. = 0 for r < nl• Suppose, for induction,
r 1-J

that 11 Z.= 0 for r < nl-l. The exact sequencer 1-

implies that lIrZi +l
0 for r < nl-l, completing the inductive step and, hence,

the proof of convergence. II

7. Homotopy Operations for Hoo Ring Spectra

In this section we define the homotopy operations which can be obtained from Hoo
ring structures and derive their purely formal properties. Calculations of extended

powers of spheres will enable us to give concrete results about thiese operations in

Chapter V. Most of our applications will deal with the case k = 1 of the following

definition.
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Definition

by letting

x ••• x

Remarks 7.2. (i) We write for any composite of the maps DjY + Y,

aJ: DhY" "'I\DjnY + DjY where j = jl + ••• jn' and \1: yin) + Y, since they are all

homotopic.

iii) We can obtain similar operations

parameterized by a
if

a (f1, ••• ,fk) to be

if

[X,Y] x ••• x [X'Y]n. [X'Y]m
n l 11:

n
1

n
k

E Y (D. S " ••• " D. S ) for any space X by defining
m J1 Jk

k
/\
i=l

n. 1 k n.
D. S l." Y (/\ D. z l.X)" Y
J i i=l J i

lAD. f.Al
J i l.

k
y.r-L- /\ D. YAY

i=l J i

diagonal X + X(kl, a shuffle map, and the natural

This is a direct generalization of the classical

where 6 is the composite of the

transformation X" DjSn + Dj );nX.

derivation of Steenrod operations

The next proposition records fairly obvious properties of these operations.

Recall from I.§l the natural transformation

The product \1: Y1\ Y + Y induces products

and

both of which we denote by juxtaposition.
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Proposition 7.']. (i) 0.* is natural with respect to Hoo ring maps

(ii)

(iii)

(iv)

(v ) *a. (xy)

*a. (xy)

* *a. + B

*t (x)

Proof. (i) and (ii) are obvious. (iii) follows from the fact that

is the j-fold product. (iv) is also obvious from the definitions. (v) follows from

the commutativity of the following diagram

Commutativity of the rectangle at the right follows from the definition of Hoo ring

spectrum and commutativity of the diagram

D.(t)
.J

o •.
J ,J

by Lemma 1.2.12. II

As should be expected from their essentially multiplicative origin, the

operations 0.* are far from being additive. In fact, their behaviour on sums is

determined by the transfer maps
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defined in 11.1.4 for each partition J

write 'j = 'J:DjY + y(j).

(1,1, ••• ,1) we

Theorem 7.4. If E Y*DjSn then

* *(xl + ••• + xk) = I (x1'···,xk)
J

where the sum is taken over all length k partitions J of j.

we localize at p, then for E Y*D sn

/(I xi) I + /;, ': .'o"'! ",P - ! x/I
'2 I x.x.)

i<j 1 J

If j is a prime p and

p > 2 and n odd

p > 2 and n even

P 2

(all unindexed sums are over i 1, ••• ,k).

Proof. This is an immediate consequence of Proposition 11.2.2. II

In the rest of this section we shall use the spectral sequence of §6 together

with the filtered maps obtained from §5 to describe the behaviour of homotopy

operations in the Adams spectral sequence. Let us adopt the following notations.
- s n+sLet x E "nY be detected by x E E

2'
(S,Y), the Adams spectral sequence based on a

ring theory E. Let 0 be the sequence

••• +-

where 7f is cyclic of order p and nisn W. I" Sn (p) is the extended power of Sn
7f 1 n

based on the i-skeleton Wi of the standard free 7f CW complex (W2i-1 = S2i-l). By

Theorem 5.2, induces compatible maps

.
1,pS .. Y .

PS-l

(if E*Yj is 7f*E projective for each j), and hence, by 6.1(iii), a homomorphism

r,) ** **
-r(x) :E

r
rs.e : + E

r
(S,Y)

of spectral sequences provided the domain spectral sequence exists. Similarly,

smashing with Y and multiplying, we have compatible maps

and, hence, a homomorphism

rf.'l ** **
oJ-(x): E

r
(S,13 "Y) (S,Y).



is a split monomorphism for each
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i-L.n Ln
Proposition 7.5. If 0 +

**i ps then the spectral sequence E
r

(S, fJ) exists and E2 (S, t7) is free over

E (S S) t EPs - i , ps +pn (S e i S' 'I 1 E**(S'" Y) . t d2 ' on genera ors e i E 2 ,1/>/ • ann. ar y, r ,vl\ eX1S s an

E2(S,13 "y) is free over E2(S,Y) on the images of the e i under the map induced by

the unit S + Y.

Proof. The cofiber of + is Wi/Wi_l" snIp) '" snP+i, so E*D;Sn is a

free n*E module. Thus, Theorem 6.1(i) implies that the spectral sequence exists and

,t(S,S) Ell ,t-j (S,snp+sp-j)

j

Ell '-j ,t-np-sp(S,S).

j

We let ei be the generator in for the ps-i summand. II

We think of ei as the np+i cell of Dnsn, or alternatively, as

ei ® In ® ••• ® In (this is its name in the cellular chains of Dnsn).

Note that satisfies the hypotheses of the proposition when E = HZp ' Recall

the function v from 2.4 (v(2j + el (_2)j(ml)E: l .

Theorem 7.6. Assume in addition to the hypotheses of 7.5, that is n*E

projective. Then J:>(x) sends e i to <l>*( @ ;:p). Thus, when p = 2, 'S>(x) sends e i
to pi +n (-;) and when p > 2, 3'(x) sends (-l)j vInje. to if i = (2j-n)(p-l)-E:

1

and to 0 if i does not have this form.

Proof. The definition of 1(x) implies that ';9(x)(ei) is the composite

We choose as generator e i the map

"y [p)
s,l

(,
1,pS. Y •

pS-l.,l

"I

in which e i E '" 1f'i is the usual generator. Thus :9(x)(ei) is exactly

the map which Corollary 5.4 asserts represents <l>*(e i ® ?). I I

Since 'Y(x) annihilates elements e i with i not of the form (2j-n)(p-ll-E:, we

will ignore them too. In V.§2 we will see that this amounts to restricting

attention to a wedge summand of which is p-equivalent to DpSn•
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Convergence of the spectral sequence Er(S, t') to implies that any

a E is detected by an element L (S, f;), ak E E2(S,S).
Applying j?(x), we find that a*(x) is detected by L xP). Similarly, for

a E detected by L E E2(S, 8/\ Y), ak E E2(S,Y), except that if Y is

not bounded below we have no guarantee that Er(S, I8"Y) will converge to

Corollary 7.7. If a E Y*DnPsSn is detected by L akek in E2(S, Ie ""Y) then a*(x)

is detected by L akpk+n x if p = 2 or by L (-l)jv(n)-laksEpj x if p > 2 and
k

k = (2j-n)(p-l)-E.

'1'1 ** **The map .r(x) :{Er (S, e AY)} + {Er (S,Y)} also enables us to translate

differentials in {Er(S, 13 " Y)} into differentials on steenrod operations.

Corollary 7.8. If dr(aek) L aiek
i
in Er( S, i:3 1\ Y) then

d (apk+n x) k.+n-
L a.P x ifp 2 andr

j+j. jix) = L (-1) x if p > 2 ,

where k = (2j-n) (p-l)-E and ki = (2ji-n)(p-l)-Ei. In particular, if aek is a

permanent cycle, then so is apk+n;- (if p = 2) or asE:pj;- (if p > 2).

Note that Corollary 7.8 only applies to permanent cycles x. Much more general

results will be obtained in chapter VI.

The next result says that in the ordinary mod p Adams spectral sequence

(E a homotopy operation cannot lower filtration.

Proposition 7.9.
n
l

a E Y*(D. S "
J l

sl + ••• + sk·

Proof. First, it suffices to show that

D/s-Dl Y

lifts to Ys' for then a*(xl, ••• ,xk) will factor through

To obtain the lifting we need to factor DjYs + DjY as the composite of s maps which
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are zero in homology. But this is easy. The factorization

suffices since the natural isomorphism

and the fact that H*Yi+ l + H*Yi is zero imply that H*DjYi+ l + is zero for

each i. / /

Note that the proposition will hold in the E Adams spectral sequence whenever E

is such that if E*X + E*Y is zero then E*DjX + E*DjY is also zero. The spectral
sequence

=

only gives us this on an associated graded to E*DjX and E*DjY. I have no reason to

believe or disbelieve the result for general E.

D Sn D Y D Y-4 Y
IT IT S IT

Remark 7.10. There are two variants which are also useful. First, taking into

account the fact that all of DITsP will be mapped into Y = YO by the composite

D x
IT

we can replace in 13 by all of DpsP, giving Ii' I :

D gn + Dps-lgn + nPs- 2gn
11 IT IT

+ •••

We still get '?(X):Er(S ") .. Er(S,Y) for any x E 1I*Y. To get E2(S,8') from

E2(S,I8) simply replace the summand by which can

be obtained (through a range of dimensions) from Mahowald's tables [591 when p = 2.

Mahowald's tables have the virtue that they are derived from the cellular filtration

of the stunted projective space, so that elements are named by giving an element of

E2(S,S) and the cellon which it occurs. Thus Theorem 7.6 and Corollaries 7.7 and

7.8 can be used with Er(S, as easily as with Er(S, 1').

The other variant of requires that E = HZp• It takes account of Proposition

7.9 by putting everything into filtrations between s and ps, rather than 0 and ps

as does. That is, 19" is the sequence

D = ••• = D + + ••• + + gnp
IT IT IT 11

with DITsP in filtrations 0 through s , Its E2 term is similar to (s, /3' ) • It has

a copy of E2(S,S) for each cell from np to np + (p-l) - 1 together with an copy of
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E2(S,E
nL(n+s)(p_l)l.

The spectral sequence Er(S,19"j is optimal in the sense that

it has all homotopy operations (unlike Er(S, 18) which only uses the bottom ps cells

of DnsU) and puts them into as high a filtration as they will go universally.



CHAPTER V

THE HOMOTOPY GROUPS OF Roo RING SPECTRA

By Robert R. Bruner

§l. Explicit homotopy operations and relations

This section contains statements of our results on homotopy operations as well

as some applications of these results. The proofs depend on material in §2 and will

be given in §J.

Note that, aside from the computations in 1f*S at the end of this section, all

the results here apply to the homotopy of any Roo ring spectrum Y. Let DpY ... Y

denote the structure map.

The order of results in this section is:

relation to other operations,

particular operations and relations,

Cartan formulas,

computations in 1f*S,

remarks.

In order not to interrupt the main flow of ideas, we have deferred a number of

remarks until the end of the section.

Throughout this section let be the ordinary mod p Adams spectral

sequence converging to [X,Y]*, and let ) be the spectral sequence of IV §6

based on ordinary mod p homology. Let D be the sequence

••• + ...........

From the spectral sequence (S, D) we obtain an isomorphism between an associated

graded of 1f*DpsJl and Eoo(S,J) ):

oE (1f*Dpsn ) :: Eoo(S,12).

o s* _
Write E (a) for the image in E.,: (S,J) of an element a£ 1f*Dp;:'-- of filtration a,

IV.7.5, E2(S,lJ) is free over E2(S,S) on generators ei corresponding to the cells of

Dpsrr. By 2.9 below, a more convenient basis over E2(S,S) is given by the elements
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where £ =°or 1 (£ =° if P = 2), q = 2(p-l) (q = 1 if p = 2), jq-£ n(p-ll and v

is the function defined in IV.2.4 (v = 1 if P = 2). EO(a) can be written as a

linear combination of the s£pj with coefficients in E2(S,Sl. Recall the operation

a*: nnY + nNY associated to each element aE nNDpsll.

Relation of the a* to other operations

Proposition 1.1. the natural map then

p = 2

P > 2 and n = 2j

p > 2 and n odd

*\ (x)

Propoosition 1.2.
* .h 0 a = s£ql 0 h,

Let h:n* + H* be the Hurewicz homomorphism. If EO(a) = s£pj then

where S£Qj is the Dyer-Lashof operation defined in 111.1.

If EO(ctl i aj with each aj ,£ EE2(S,Sl and x EE2(S,Y), we let

EO(a)(x) = i a. (xl.
J,£

Proposition 1.3. (Kahn, Milgram) If x E nnY is detected by x EE2 (S,Y) , then a*(x)

is detected by EO(a)(x).

To see the relation to Toda brackets, suppose we have compressed a into the

np+i skeleton and that it projects to. a on the top cell Snp+i. Let

s-r I i-Ln l.-lAlDp (x) = Dp(X) Dp 0 and let ci E1Tnp+i - l Dp ;5 be the attaching map of the np+i

cell.

Proposition 1.4. a*(xl E< a, ci' >. The set of all such a*(x) is a coset

of i-l() Di-lSnx 0 1TN P •

Note: We will frequently find further that EO(a)

(-l)jv(n)a detects a. Then

as£pj where i jq-£-n(p-l) and

so that a* is detected by Toda brackets in essentially the same fashion as by

Steenrod operations in E2(S,Y).
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Particular operations and relations

Hereafter, if o EE",,(S,.o) and XE lInY, let e tx)
the indeterminacy in e(x), defined to be

* 0{a (x ) IE (a) = e}. Clearly,

is the set of values of all homotopy operations on x whose corresponding element in

E"" (S, 1') has higher filtration than does e.

Proposition 1.5 (Kahn, Milgram): The following are equivalent:

(i) SE:pj acts on lInY

(ii) ei E E"" (S, J' ) , i jq-E:-n(p-l)

(iii) is reduciblep
(2q,(i)) ;(iv) if p = 2 then n :: -i-l

if p > 2 then E: 0 andn 2j,

or E: 1 and j - 0 (pljl(i)) •

The functions q, and 1jI are defined in 2.5 and 2.11 below.

Definition 1.6. If P = 2, let So = 2, Sl = n, S2 = v and let Sj be a generator of

1m J in dimension 8a+2b-l, where j = 4a+b and 0 b 3. If P > 2, let aO = p, and

let aj be a generator of 1m J in dimension jq-l.

Theorem 1.7 (Toda, Barratt, Mahowald, Cooley): Let p 2. If x E lInY and

j = 4a+b, 0 b 3, then

Sj
2 = 0 if 2j 8a - 2b 1 (2 j+ l)a X n :: - -

and Sj
pn+l(x) 2 for a E 11 bS if 0 (2) and0 = aX some n ::

8a+2
n :: 2j - Ba- 2b - 2 (2j+l) •

Theorem 1.8 • Let P > 2 and x. lin1. Let E:p (a) denote the exponent of p in the prime

factorization of a. If n = 2k-l then

if j o

or j > 0 and E:p(k+j) j-l.

If n 2k then

for some a

ifj 0

or j > 0 and E:p(k+j+l) j-l.
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Theorem 1.9. The operations listed in Tables 1.1 and 1.3 exist on lin and satisfy

the relations listed in Tables 1.2 and 1.4. In Tables 1.1 and 1.3 the columns

labelled "indeterminacy" list generators for the indeterminacy of each operation,

and the columns labelled "r " list the values ofp*

'p* :lINDp<f lIN<f
P =' lIN_npS

thereby indicating the deviation from additivity of the given operation (by IV.7.4).

TABLE 1.1

Operations on lin for p > 2

E.. operations indeterminacy 'p*

n = 2k-l spk a a

hapk a a

glpk a a

n = 2k-l
a

k := -1 (p)

2k-1 haSpk+l k an = (XISP

k := -2 (p) Spk+2 glPk and a
h pk+l (if it exists)a

n = 2k pk a p!

spk+l (Xlpk multiple of (Xl

h pk+l (X2pk multiple of (X2a

n = 2k

k := -2 (p)

multiple of (X2
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TABLE 1.2

Relations among operations on lin for p > 2

relations

n = 2k-l

n = 2k-1

k =: -1 (p)

n = 2k-1

k =: -2 (pl

n = 2k

n = 2k

k =: -2 Ip)

P6pk PhOPk = pg1Pk 0

(k+llCl16rk = 0

P6rk+1 -hark

Cl16pk+1 a mod Cl26pk

kCl1Pk P6pk+1

k+1
(k+2lCl16P a
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TABLE 1.3

Operations on TIn for p 2

indeterminacy

2pIl

11pIl

2pIl+3, vpIl

2h1pIl+2,vpIl

2

11

multiple of v

multiple of v

n =: 1 (4) pIl 0 0
h pIl+1 2
1 11 Pn o or 11 2
pIl+2 2pIl+2 o or 112

h pIl+5 2h pIl+5 v2pIl o or v21 1 '
h2pIl+4 2h2rJ1+4 }rJ1 0 or v21 1 '
h3rJ1+3 2h3pn+3 }rP 0 or v21 1 '

n =: 1 (8)

n =: 2 (4) pIl 2pIl 2

pIl+1 11pIl 0

h pIl+4 2h pIl+4 01 1
2rP+ 3 2h2pn+3 0hI 1
h3rP+2 2h3rP+2 01 1
h pIl+3 v2pIl o or v22

n =: 2 (8) o

n =: 3 (4) pIl 0 0

h pIl+1 0 0 or 11 21

h pIl+3 2h pIl+3 01 1
h2rJ1+2 2h pn+1 01 11 1

h pfi+2 0 02

n =: 3 (8) o
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n " 0 (8)

n " 4 (8)
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TABLE 1.4

Relations among operations for p 2

2pn+l = 0

2h pn+2 n2pn+l
1

2pn+3 = h pn+2
+3 1

npn = 0

2vpn+3 = vh pn+2 = 0
1

n " 1 (4)

n " 1 (8)

n " 5 (8)

n " 2 (4)

n " 2 (8)

n " 6 (8)

2vpn+2 = 0

2pn+6

n+2 vpnnP

vpn+2 0

2pn+l npn

n+l
vP



n " 3 (4l

n " 3 (8l

n " 7 (8l vrJ1 = 0

11h rJ1+3 = 0
1

h pn+2 0
11 2

136
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Cartan Formulas

For later computations we need the Canan formulas for the first operation

above the pth power.

Proposition 1.10. Let P 2, x ElInY, y E lImY. Assume n+m is even. Then

{ p'><1 ,xl; • + 2 2 ° (2)c nx Y n mn,m

= S (x,y) n 3(4) or m =' 3(4)
n,m

S (x,y) + c 2 2 1 (4)n,mnx y n m
n,m

where Sn,m:lIn x lIm + 1I2(n+m)+1 is an operation such that

EO(S ) = .Jl...Jll+1 + .Jl+l...Jlln m r-r- r- Y-,

and 2S (x,y) = rn,m

n =' m =' 1 (4)

n =' 3 (4) or m =' 3 (4) ,

and where cn,m is an integer depending only on n and m,

Proposition loll. Let P > 2, x ElI Y and y E lImY' Then
n

(i) if n 2j and m= 2k,

I:\pj+k+l(xy) ·+1 P k+l d c xPyP= I:\pJ (x)yP + x BP (y) +
n,m 1

where du,m is an integer depending only on n and m,

(ii) if n = 2j and m = 2k-1,

(iii) if n 2j-1 and m = 2k-1,

·+k
BpJ (xy) = S. k(x,yl

J,

where Sj,k 1I2 j_1Y x 1I2k_1Y + 1I2(j+klp-3Y is an operation such
o . k . k

that E (Sj ,kl = I:\pJ • P + pJ • BP and pSj ,k(x,y) = o.
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Computations

Our final results contain extensions to all Roo ring spectra of classical

results about w*S due to Toda, Barratt, Mahowald, Gray and Milgram, as well as some

low dimensional calculations at the prime 2 •

Let
.

denote equality to multiplication by a unit.up

Proposition 1.12. Ifp 2 then pl(2) 11·

Proposition 1.13. If p > 2 then 6pl(P)
.

CLI and 6PP-l(CL
l} = 61•

Combined with the Cartan formulas 1.10 and 1.11, these yield the following

results.

Proposition 1.14. Let x E wnY and n = 2j.

then 6Pj+l(px) CLlxP and 6Pj+P-l(CLlx)

If P = 2 then pn+l(2x} = 11X2• If P > 2

6lxP. The indeterminacy of each is o.

Corollary 1.15. Let x E wnY. If p = 2, n t 1 (4) and 2x = 0, then 11X2 = 0.

If P > 2 and px = ° then CLlxP = 0. If P > 2 and CLlx = ° then 6lxP = 0. In

particular, CLlsi = 0.

y mod A" means that A

If the indeterminacy is not

In the next proposition, the statement "apj(x)

is the indeterminacy of apj when applied to x.

mentioned, it is 0.

Proposition 1.16. The following hold in w*S localized at 2.

(i) pl(l1) = 112

(ii) P3(v) 2 4 hip5( v ) = 0.= v , hlP (v) = 11a or v,

(iii) 3 4 6 25 5 annihilate 2v and 4v.P , hlP , hlP , hlP , and h2P

(iv) p6, p7, hip9, and hip8 annihilate v2•

(v ) p7 (a ) 2 8 * *= a , hlP (a) = 11 or 11 + 11P,

*2v

hlplO(a) = v*

hip9(a}

*mod <2v > +

*mod <4v > +

(vi) p7(2a) 0,
8

0, 9 0,hlP (2a) h2P (2a)

hlp
lO(2a) * *2v mod <4v > +

hip9(2a) *=4v mod
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p7, hlP8, hip9 and h2P9 annihilate 40,

hlP
l O(40} = 4v* mod •

Remarks: These are listed by the result to which they refer.

i-l( )(l.4): The indeterminacy of the Toda bracket <a, ci' i;Dp x > in Proposition

i-I i-I n *1.4 is (x) 0 __n S + .Y) 0 a, while the indeterminacy of a (x) istip np-a
*only i;Dp (x) 0 c;. This reflects the fact that CL (x) uses the canonical

null homotopy Di(x) of Di-l(x) 0 c whereas the Toda bracket allows any null
p p i'
i-Ihomotopy of i;Dp (x) 0 ci •

(1.8): Since is the first nonzero homotopy group of S in a dimension

congruent to -2 mod q, we get

for j < p-l satisfying the hypotheses of (1.8).

(1.9): (i) In the range of dimensions listed, the operations and relations

given in Tables 1.1 through 1.4 generate all the operations and relations over

For examples, when n = 0 (4) and p = 2:

(a) npn and n2pn are nonzero operations because the relations listed do

not force them to be 0;

(b) the relation 4hlpll+2 = 0 follows from the listed relation

and is therefore omitted;

(c) the redundant operation hI pll+2 is included because the relation

2pll+J = h
lpll+2

which makes it redundant reflects a universally hidden extension:

/iI
pn+2/

I
I
I,
I
I

pn+J

2n+2 2n+J

hOpll+J 0 in and 2pll+Jx is detected by h1pll+2x•
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(ii) The operations of degree n+3 for n " 0 (4) and p = 2 are particularly

interesting. If n " 0 (8) then by [59] = Z8 @ Z8' It is generated by

vpll and pll+3 with relations

and

h
lpll+2

2h
lpll+2

= n2pll+l.

If n 4 (8) then [59] gives rr2n+3D2Sn = Z4 @ Z16 and it is generated by hlpll+2 (of

order 4) and pll+3 (of order 16) with relations

2h pll+2 n2pll+l
1

2pll+3 h pll+2 + vpll1

4pll+3 n2pll+1 + 2vpll

8pll+3 4vpll.

(iii) Entries in the 'p* column such as "0 or n2" indicate that we have not

calculated 'p*' Such entries simply list the elements of l1*S in the relevant

dimension. Even this limited information is useful in Proposition 1.16.

(1.10) and (1.11): Let 1jI: a. + a. @ a. be the diagonal of the Steenrod algebra

( IjI(pll) = L pi @ pn-i). If

EO(a)

then

This defines o*(a) and, hence, the formula for a*(xy), modulo higher filtration in

E.,(S, D).

(1.15): This

product in rr*S as

smash product and

and

proof that a
1 B
i = ° differs from Toda's in that

composition and studies D en+l) while we
p p

study DpsTI" Dpsm. Toda shows that

Toda views the

view it as the

Thus, if px = °or alx = ° then alxP = °or BlxP 0, respectively. The proof given

in 1.15 uses the values of the operations on p and aI' rather than the structure of

Dp of their cofibers.
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Segal [49J saw that the Cartan formula for homotopy operations should provide a

proof that (11Bi = 0, but his explicit formulas were incorrect.

There is still another proof that (11Bi 0 which uses virtually none of the

machinery of homotopy operations, but does require that we have calculated enough of

n*S to know that the p2q_3 stem is either 0 or Given this, the relation

2
-(1 BP = PBPP -P (B

l
)

1 1

from Table 1.2 implies that

Remark 1.17: This is a quick survey of results on homotopy operations which are not

included here. Toda [106J shows thAt the extended powers propagate several

relations. For example, if <al'p,x> = 0 then BsxP = 0 mod al for 1 < s < p. As

corollaries he shows that = 0 and the Bs are nilpotent, foreshadowing Nishida's

proof, a few years later, that all positive dimensional elements of n*S are

nilpotent.

Gray [J6 J obtained results similar to 1.15 using homotopy operations which are

associativity or commutativity obstructions for ring spectra.

Oka and Toda [92J have extensive information on the cell structure of

D (-Jl en+l) +p b which they use, in particular, to show that Yl T O.

. [8 J (-Jl en+l ) f h tMilgram 0 also uses extended powers D2 b to de ine omo opy

operations which can be iterated to yield infinite families of elements in n*S,

presumably related to the elements detected by K-theory.

Cooley, in his thesis [30J, uses extended powers to compute some Toda brackets

and to derive 1.7 as well as the relation £x2 0 if x (nn' n = 2,3,7 (8), which is

not in 1.7.

Milgram [79 and 811 computes the Coker J part of the operations on n8S and n9S

using Steenrod operations in E2(S,S).

§2. Extended powers of spheres

In this section we collect the results on extended powers of spheres which are

needed to prove the results of §l. They will also be essential to our results on

differentials in the next chapter. First, we recall the values of the K and J

groups of lens spaces. Then, we identify the spectra Ditt, n cyclic, as the
n

suspension spectra of stunted lens spaces and determine when they are stably reduc-

ible or coreducible. Also, we show that, after localizing at p, npsn is a wedge

summand of DnsP, which gives a simple cell structure to DpsP.
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Throughout this section, let p be a prime, let C kp be the p-Sylow subgroup

generated by the p-cycle (1 2•••p), and let Wk be the k-skeleton of a contractible w

or kp free CW complex W. (Definitions 2.1 and 2.7 provide the free CW complexes

which we shall use most frequently.)

The results for p = 2 are analogous to the results for odd primes, but are

sufficiently simpler that we state them separately. We begin with odd primes.

Definition 2.1. Let P > 2 and let p = Let w act on the unit sphere

S2k+l C ek+l by letting a generator of w send (zi) to (pzi)' Let

and

r2k = {[zO"",zkl E r2k+l I zi is real and > OJ,

rn+k = tn+k/Ln-l
n '

where denotes the equivalence class of (zO, ••• ,zk) and t 2k- 1 is

embedded in r2 by setting zk = o. We call a stunted lens space.

Each representation of on ek+l without trivial subrepresentations yields a

free w action on ,s2k+I and a corresponding lens space ,s2k+I /ll . Since they are all

stably equivalent we have simply chosen our favorite. Note, however, that the

others reappear briefly in the proof of Proposition 2.4.

e-n
It is easy to see that L - L is an open n cell. Thus L

n
has one cell

in each dimension between n and n+k inclusive. Note that = rn and tg = (rn )+,
the union of In and a disjoint basepoint.

Since = is a

the Steenrod operations are specified by

E{x} ® P{sx}, with Ixl 1, and

The isomorphisms

for n i n+k then determine

Definition 2.2. Let P > 2 and let act on C by multiplication by p , Let

E KU(t2k+1 ) be the bundle

S2k+l x C -J" S2k+l x {O}
n

let where r:KU + KO forgets complex structure, let
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/; = J(/;l) E J(L ), and let a t; - lCEKU(L l ,

denote the restrictions of these elements to 12k •
Let and a also

We collect some results from [471, [481 and [58J in the following theorem.

Theorem 2.]. Let r2k + r2k+l be the inclusion and let <x> denote the cyclic group

generated by x ,

« ) <* + i h· das an somorp an

(iii)

and i* is projection onto the first summand under this isomorphism.

J(L2k ) = <Jr(o» = </; _ 2> and has order p[k/(p-l)J,

and i* is projection onto the first slllnmand under this isomorphism.

Also, J(/;i) = /; for i 1,2, ••• ,p-l.

Proof. This is all in [47J, [481 and [581 except J(/;i)

Adams conjecture:

/;, which follows from the

Jrljh Jrt; II

The extended powers

bundles over 1k = wk/n.

(proved in [81J)

p to be a prime.

Dkgrr are suspension spectra of Thom spaces of complex
n

Thus Theorem 2.] ensures us that the following theorem

identifies all such spectra. Note that its proof does not require

Theorem 2.4. If s 0, the Thom complex of r + s/; over rk satisfies

cc
E E 2s •

Proof. The contribution of the trivial r dimensional fibration is obvious and may

be ignored. We will actually prove a much more precise result. If is an n-

dimensional representation of 1f, we let and denote lfl and sn-l with n

action given If the action is free on Sn-l we obtain a closed manifold

= If and are two such representations of dimension n and k

respectively, let be the bundle
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We claim that there is a homeomorphism

{OJ L(B) •

T(aIL(B)) =L(B @ a)/L(a),

where L(a) is embedded in L( 13 (j) a) as the last n coordinates. This will imply

Theorem 2.4 for odd k (since L(B) is odd dimensional, p being odd). The even case

will follow by removing the top cellon each side, since the homeomorphism will be

cellular if we give the Thom complex T(aIL(B)) the natural cell structure compatible

with that of L(B).

To establish the claim, let f:Sk-l(B) x Rn(a) + gn+k-l(B be induced

by the natural inclusion Sk-l(B) x an(a) + an+k(B @ a) - {OJ followed by the

radial retraction - {OJ + sa+k-l• It is easy to check that f is one-to-one and

maps onto everything except the copy of L(a) embedded as the last n coordinates.

Just as easily, one sees that f sends the zero section of a!L(B) to the embedding of

L(B) as the first k coordinates. It follows that a!L(B) is the normal bundle of

this embedding L(B) + L(B (j) a) and that its Thom complex is L(B @a)/L(a). II

The fact that E J(tk) has finite order enables us to define stunted lens

spectra in positive and negative dimensions.

Definition 2.5. Let W(k)

let

[k/2(p-l)]. If n is any integer, 0 or 1, and k ,

for r =n (pW(k)) such that r O.

The following result shows that the spectrum is well-defined up to

equivalence in h!. Recall that an n-dimensional complex X is reducible if

X/:tt-l '" gn and the projection X + Sn has a right inverse. Dually, an (n-l)-

connected complex X is coreducible if Xn '" sa and the inclusion sa + X has a left

inverse. Let W S"', let q:W + L" be the quotient map and let Wk q-l(i
k).

Then

we may define DkJc wk I>< X(p).

ThenTheorem 2.6.

(L)

(ii)

Let sa be the p-local n-sphere spectrum.

Dkgn '" nrn(p-l)+k
E n(p-l) •

is coreducible iff n _ 0 (pW(k)), while

coreducible iff k 1.

t 2n+k is
2n+l
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{iiil If E 0 or 1, k E and n r {pw{kll then

t 2n+k = k2{n-rl t 2r+k
2n+E 2r+E

(Lv ) --b
La and L_b_l are {-II dual spectra.

(vI If E = 0 or 1 and k :: E then t 2n+k is reducible iff either k = E or k
2n+E

is odd and 2n+k+l = 0 (pw(kll.

Proof.

to t k
If n 0 then Dk[f =vf

11

of the bundle over r
Xli srr(pl = kooT(nYkl, where Yk is the restriction

BlI induced by the regular representation of 11.

n + (where 2m = p-ll. Elf Theorem 2.4,

ntn(p-ll+k
k n(p-l)

If n < 0 then, by [Equiv, VI.5.3 and 5.4]

for sufficiently large N, and since J(nYkl = n + we find that

vf Sn(pl = k-NkooT(N+n + =

by Definition 2.5 and Theorems 2.4 and 2.3.(iiil. This proves (il.

00Elf Theorem 2.4, L
2n

= k L I. Elf [15], is coreducible if and

only if = 0, so the first half of (iiI follows by Theorem 2.3.(iiil. For

the second part of (ii I we need only note that the Bockstein is nonzero on ri!n+1 if

k > 1.

To prove (iiil, note that J(rd if n = r (pw(kl l by Theorem

2.3.(iiil.

To prove (ivl, first consider with k odd. Elf Theorem 2.4,

__ "ooT(nru Since k is odd, L is a closed manifold. Elf considering the

fibration

we see that the tangent bundle of L is ([k/21 + - 1. Atiyah's duality

theorem [15, Theorem 3.3] implies that the (-II dual of is
00k T(l - (n+[k/2] + = L_2n-k_l•

To prove (ivl for the other three possible

combinations of odd or even top and bottom cells, we use the duality between

inclusion of the bottom cell of a complex and projection onto the top cell of its

dual.
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Finally, (v) follows from (ii) and (iv) by the duality between reductions and

coreductions. II

Now we present the analogs of 2.1 through 2.6 for instead of DnsU. Since

the transfer splits DpsU off as a wedge summand of DnsU, we can use this as a short­

cut to the results we need. Let X(p) denote the p­localization of a spectrum or

space X. The following result is proved in [7].

Proposition 2.7. There is a OW spectrum L with one cell in each nonnegative
QO +

dimension congruent to 0 or ­1 modulo 2(p­l), such that L '" (l: Bl:p) (p) •

that r O.
If n < 0, e = °or 1, and k e, let

Definition 2.8.
k n+k n+k n­l

Let L be the k­skeleton of L and let Ln = L IL if n > O.

2(n­r) 2r+k "'(k)l: L for r =n (p'l' ) such2r+e

Note that n and k are not

example Lq = Lq Lq'1 2 q­l'
1,2, ... ,q­2.

uniquely determined by as they are by rn+k • For
n

where q = 2(p­1), since L has no cells in dimensions

Theorem 2.9. Let sn be the p­loca1 n­sphere spectrum and let q = 2(p­l). Then

(i) v" '" l:
2j L':' and D S2j­l '" l:2j­lL':' 1. The maps D

1TsU
... DpsU and

Jq p Jq­

rn+k ... Ln+k induced by the inclusion n C are projections onto wedge
n n

summands.

(ii) is coreducible iff j _ ° (pljJ(k)), while
Jq

iff k ­1.

Lj q+k is coreducible
jq­l

If e and 6 are 0 or 1 then

If e 0 or 1 then
Jq­e

k = s 0 or k = iq­l and

(iii) If e

(iv)

(v)

o or 1 and i _ j (pljJ(k+2e)) then

lq­e

iq­6 ­jq+e­lLj q_e
is (­1) dual to L_i q+6_1

•

has a reducible jq+k cell iff either

i+j = 0 (pi+e­l).

Note: Part (i) shows that bottom dimensions of the form jq­e, e = 0 or 1, are more

natural in this context than jq+e. This accounts for the exponent ljJ(k+2e) in (iii),

where ljJ(k) might be expected.
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Proof. By the remark preceding the theorem, the first statement in (L) can be

abbreviated to DpS
n = l.:nL:(p_l)' The transfer (EOOBl.:p)(p) + l.:"'B,r splits off LOO and

L:(P_l) as wedge summands of roo and t:(P-l) respectively. Similarly, the

transfer splits off Dp,sIl as a wedge summand of Dlf,sIl. The maps

t
D ;f --L. D ;f
P If

and

where t l and t 2 are transfers, and i l and i 2 are induced by the inclusion If C l.:p are

inverse equivalences because their composites induce isomorphisms in mod p homology.

This proves (i). Now (ii)-(v) follows from 2.6 and (i). II

will have homology in dimension np+k which goes to 0 in

Since we are only interested in homology which is nonzero in

The preceding theorem does not assert that wk snIp)
P

Wk is the k-skeleton of a contractible free l.:p space, because

general, vf!X snIp)
Ep

and in l.:nLn(p-l)+k
ntp-L) •

Dp,sIl, EnLn(p-l)+k is more useful to us than is
n(p-l)

n n(p-l)+k
" l.: Ln(P_l) where

this is not true. In

Therefore we will let rather

The preceding theorem also shows that we may ignore the distinction between

Ln+k and rn+k without harm. We used rn+k and D sn as a stepping stone to
n n n If

information about Dp,sIl because J theory only gives information about coreducibility

of Thorn complexes, and we need Atiyah's S-duality theorem to convert this to infor-

mation about reducibility. The S-duality theorem of Atiyah only applies to Thorn

complexes of bundles over manifolds so cannot be used on bundles over the skeleta of

Bl.:p' or over the even skeleta of Blf. Conveniently, the odd skeleta of B1! are

manifolds (if we use a lens space for Bn ) , To obtain analogous information about

DrSn for nonprime r, a similar technique works. First, we split DrsU off of DTSn

using the transfer, where T C. Er is a p-Sylow subgroup. Then the structure of T (a

Cartesian product of iterated wreath products of If) suggests manifolds mapping to BT

which we can use just as the odd skeleta of B1! are used here.

We now turn to the analogs of 2.1 through 2.6 for p = 2.
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k2 act antipodally on sn and let

agree to let Ln and rP mean pll and let Ln+k and
n

statements of results for all primes can be given.

still appear frequently because many of the results

and pn+k/pn-l

We call a stunted projective space. Let s in KO(pll) be the canonical real

line bundle and let A = s-l g KO(pll}.

Remarks. (1) If p = 2 we will

t n+k mean r+k so that uniform
n n
The pll and pn+k notation will

n
are not the same for even and odd primes.

(2) It is easy to see that pll - pll-l is an open n-cell so that Pii+k has one

cell in each dimension between n and n+k inclusive. Since p'" = f5/Z2 is a K(Z2,l},

H*(P"';Z2} = P{x} with Ixl = I and

The isomorphisms

for n < i n+k thus determine as an a2 module.

Theorem 2.11. Let be the number of integers j congruent to 0,1,2, or 4 mod 8

such that 0 < j S n. Then KO(pll} = <A> and has order Furthermore,

J:KO(pll) + J(pll)

is an isomorphism.

Proof. KO( pll) is computed in [1 J. The computations there and the Adams conj ecture

imply the last statement. / /

Theorem 2.12. If s 0 the Thom complex of r+ss over pll satisfies

Proof. The proof of Proposition 2.4 can easily be adapted to prove this as well.

As for odd primes, we can now define stunted projective spectra starting and

ending in any positive or negative dimensions.
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]);)finition 2.1]. For k 0 and any n let

P
n+k n-r 00 r+k
n z l: Pr

for any r =n r O.

The following result shows that pn+k
n

Let Sk have the antipodal action of 11.

is well defined up to equivalence in
. k k (2)

We dehne D2 X S 11 X •

Theorem 2.14. Let Sfi be the 2-local n-sphere spectrum. Then

(L) DkSn n n+k
" l: P2 n

(ii) pn+k is coreducible if and only if n - o
n

(iii) If n =m then
n+k n-m m+k
P "l: Pn m

(iv) pb and p-a-l are (-1) dual spectra
a -b-l

(v) pn+k is reducible if and only if n+k+l - o
n

Proof (L) follows for n :: 0 from Theorem 2.12 once we observe that the regular

representation Yk is 1 +;. For n < 0 we have

by VI.5.] and VI.5.4 of [Equiv], for sufficiently large N.

for n < 0 also, again by 2.12.

DkSn N n n+k
Hence 2 - l: Pn

Parts (ii) through (v) follow exactly as in 2.6. In (iv) we use the fact that

pll is a closed manifold with tangent bundle (n-1) i; - 1. / /

The last results in this section identify the top dimensional component of any

attaching map of DpSfi by combining Theorems 2.6 and 2.14 with Milnor's result on

Thom complexes of sphere bundles over suspensions. First we must define the maps

under consideration. As in n, q = 2(p-l) and E: = 0 or 1 (q = 1 and E: = 0 if

p = 2).

Definition 2.15. Define a function vp by

v (n) = max{vlL
n

+1 is reducible}.p n-v

Let v vp(n) and define 8p(n) E 1Iv_1S to be l:v-n of the composite

Ifl-l _ Ln-v _ Sn-v

in which the first map is a lift of the ataching map of the n cell and the second is

projection onto the top cell of Ln-v•
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The indeterminacy in the definition of is the kernel of the homomorphism

induced on "n-), by the inclusion of the bottom cell of L
n- l •n-v

We will often omit the subscript p for typographical simplicity. The notations

v and a are intended to be mnemonic: v stands for "vector field number" and a

stands for "attaching map". Actually, v is not quite the vector field number as

defined by Adams Ill; v2(n) is p(n-l) in Adams' notation. The function vp tells us

how far we can compress each of the attaching maps of L00. The attaching map of the

n cell factors through Ln-v if and only if Ln 1 is reducible. Thus, it factors
n-v+

through Ln-v but not through Ln-v-l, where v = vp(n). By the definition of vp(n),

(n ) is nonzero. We obtain a good hold on vp and from the following two lemmas.

Let E:p (j) be the exponent of p in the prime factorization of j •

Proposition 2.16. If P > 2 then, with q 2(p-l) ,

L E: 0

vp(j q-d

+ E:p(j) E: = 1 •

If P = 2 then v2(j) = 8a + 2b, where E:2(j+1) = 4a + b and 0 < b :s 3.

Proposition 2.17. If vp(n) 1 then is the map of degree p. If vp(n) > 1

then ® 1 generates 1m J ® Z(p) in dimension vp(n)-l.

Proof of 2.16. Theorem 2.14.(v) shows that v2(j) is the maximum s such

that E:2(j+l) = The formula for v2{j) follows easily from this. Theorem

2.9.{v) shows that if p > 2 then vp{jq) 1 while vp{jq-1) is the maximum s such

that E:p(jq) = ljJ{s-l). The formula for vp(jq-d follows immediately. II

Proof of 2.17. Let n = jq-E:, V = vp(n) and a We wish to construct a map

of cofiber sequences

where Ca = ;:fl-v v en, b is the inclusion of the bottom cell, and a > 1 generates
a

1m J ® Z(p)' By S-duality and Theorems 2.9.(iv) and 2.14.(iv), it is equivalent to

construct a map of cofiber sequences

(*)
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in which b* is the collapse onto the top cell and a is as before. The lemma is

trivial when v =1 so we may assume v > 1 and hence, that n is odd. Let y be the
v v-n-lbundle if p = 2 and if P > 2 over L. Then L_n_1 = T(y). By the

definition of v, y is trivial over Lv-1 but not over LV. This implies y = n*v where

n:Lv + LV/Lv-1 = SV is the collapsing map and ° I v KO(Sv). By [85], T(v) has

attaching map J(v). Thus, the inclusions of the fiber S-n-1 into T(y) and T(v)

induce a map (*) of cofiber sequences with a = J(v). Since v is greater than 1, it

is even when p > 2 by ].2. Thus, 2.].(iii) and 2.9.(i) when p > 2, and 2.11 when

p = 2, imply that the kernel of J(Lv) + J(Lv-1) Hence J(y) generates it,

being nonzero. Since /(a) J(y), aE J(Sv) must generate J(Sv) @ Z(p)' II

In the notation of 1.6, Propositions 2.16 and 2.17 are summarized by the

equations

and

.
a2 ( j )

where denotes equality up to multiplication by a unit of Z(p)'

§]. Proofs for section 1 and other calculations

This section primarily consists of proofs of results of §1 with the additional

necessary results (].1-].4) interspersed. Note, however, that the spectral sequence

charts in Figures ].1 to ].9 can be very useful in conjunction with Theorem 1.10

since they show where in the Adams spectral sequence the elements detecting the

results of homotopy operations must lie.

Proof of 1.1. /(x) = xP by IV.7.].(iii). Clearly, EO(tl

second statement is immediate from the definition:

QEpj = ( 1) j ( )- v n e. (1)'Jq-E-n p-

so the

Proof of 1.2. Recall from III §1 that the homology operations are defined by

Qj x = c (e'"* . '61J-n if P = 2,

and

To prove 1.2 we simply calculate. If p 2 and EO(u) pj then



152

*ha (x)

Conversely, if

fflP+i. II

t;*Dp(x)*a*(IN)

2
t;*Dp(x)*(ej_n @ In)

t;*(e. @ h(x)2)
J-n

Qjh(x) •

The proof is essentially the same when p > 2. I I

Proof of 1.3. This is just the naturality of the spectral sequence II

Proof of 1.4. Consider the following commutatdve diagram, in which the row is the

cofiber sequence of ci and a' is a lift of a to

* iClearly a (x) = t;Dp(x)a = t;Dp(x)a' and this lies in the Toda bracket

i-I i n -dlp+i<a,ci,t;Dp (x». If a and a both lift to DpS and project to a on ,then

i-L.n * *a - a lifts to D 0 so that a (x) - a (x) is in
p

i-L.n .Y E 1TtPp 0 then a + y also llfts to

Proof of 1.5. By definition, is defined on 1Tn if and only if ei is a permanent

cycle in E",(S,)J). Thus (L) and (ii) are equivalent. Let iti be truncated at the

np+i cell. The map of spectral sequences l'i) + Er(S,,sllp+i) induced by the

projection DiSn + snp+i sends ei to the identity map of Snp+i. If DiSn is
p . p

reducible then there is a map back which splits Er(S,ffl
P+1

) off Er(S, forcing

ei to be a permanent cycle. Conversely, if ei is a permanent cycle then any map

detecting it will be a reduction. Thus (ii) and (iii) are equivalent. Finally,

(iii) and (iv) are equivalent by Theorems 2.6.(v), 2.9.(v) and 2.l4.(v). II
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Proof of 1.7. To show

is reducible and

only to the n cell of

a generator of 1m J

that n must satisfy

O X2 = 0 n+v8j , where 8j e; 1!v_lS, we need only show that Pn+1

is not, since this implies that the n+v cell is attached

pn+v, and Proposition 2.17 implies that the attaching map is
n

in 1!v_lS, If j = 4a + b then v = 8a + 2b, so 2.14.(v} implies

is reducible, for then the top cell will be attached to the

The rest of the proof is the same as in the first

is notn+v+l
Pn+lis a multiple of x2, we must show that

pn+v+ l
n+2

carrying x2 and pn+lx.

To show 8. 0 yn+lx
J

reducible, but

cells

case. II

Proof of 1.8.

when j O.

kTo show that a j 0 8P x = 0, for x e; 1!nY and n = 2k-l, is trivial

Simply note that is a mod p M:::>ore spectrum. When j > 0 we must

L(k
q
+j }q-lshow K is reducible, while

k+j _ 0 (pj-l) but k+j j 0 (pj).

L(k+j}q-l
kq-l is not. By 2.9. (v) we need

When n = 2k, the relation

when j O. We need only note

o 8pk+lx = a 0 xP for some a is also triviala j

that is a mod p M:::>ore spectrum. For j > 0,
Kq+q-l

we must show that

we must have k+j+l

T5 k+j)q+q-l is reducible, but
-kq+q

=0 (pj-l) but k+j+l j 0 (pj).

L(k+j )q+q-l
-kq+q-l

II

is not. By 2.9.(v)

When n = 2k, if we try to show a. 0 xP = 0 by this technique we find we must
J

assume k+j = 0 (pj-l) and k+j %0 (pj-l), so that no information is available.

Before we compute the first few homotopy groups of DpsP (and hence the first

few homotopy operations), we describe the attaching maps of the first few cells.

Exact definitions of the maps used in the following proposition can be found in the

proof.

Proposition 3.1- Let P = 2.

(i) Ifn = 1 (4) then pn+3 Sn n+l Sn+2 en+3V e v Vn 2 n+2

(ii) If n =2 (4) then yn+3 Sn" Sn+l en+2 en+3
n V n+2 V n

(iii) Ifn 3 (4) then yn+3 Sn n-I n+2
V

n+3
- n V2e V n

e 2e

(iv) If n - o (4) then yn+3 sn"sn+l v 2en+2 v Sn+3.
n
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Proof. Much of the structure of is determined by Sql and Sq2 in H*Pii+J• We

will assume this information and fill in the rest. Suppose n 0 (4). Then 2.14

implies pn+J is both reducible and coreducible, so only the middle two cells aren
attached. When n = 1 (4), collapsing the bottom cell of the previous case yields
n+2 Jl n+l Jl+2 ,1 2 n+J ' -Jl+2Pn ,,;;; V2e oJ;;; • Oomput Ing Sq and Sq shows e J.S attached to 0 by a

map of degree 2, and is attached to the Moore spectrum by a map which projects to n

on sn+ l• This projection induces an epimorphism

n n+l n+l
Z4 = lln+2 (S V2e ) -- lln+2S = Z2'

Therefore, the attaching map is a generator n of ll
n
+
2
(Sn v

2
en+1 ) •

-n+2 n n+l n+2
When n " 2 (4), we start with l'n "S" S v

n
+2 e • The long exact

homotopy sequence of Sn" Sn+l + pn+2 shows that the inclusion sn+l + pn+2
n n

induces an isomorphism on lln+2 ' Since Sq2 is nonzero on the n+J cell is

attached by the map

which we also call n.

F ' 11 h J (4) t with pn+2 Jl n+l n+2 Thana y, wen n" , we star n;;; v2e vne • e map

+ which collapses the bottom cell, induces on lln+2 a monomorphism

11 =
n+2 n

which sends (a,b) to (a,2b). Computing Sql and Sq2 shows that the attaching map of

the n+J cell is (O,l) lln+2Pii+
2 , which projects to the map of degree 2 on [f1+2. We

simply call this map 2. / /

Proposition J.2. Let P > 2.

(1)

(2)
jq+q

L. 1Jq-

Thus

Proof. Recall that the first three nonzero homotopy groups of S localized at pare

110 = Z, ll q_l = Zp generated by aI' and 1l2q_l = Zp generated by a2'

, 1 . . + -1 1 * . +q
= SJq" sJq q is the only possibility. Computing S and P in H LJq

Jq jq

shows that sjq" Sjq+q-l .U e j q+q• Finally, the long exact homotopy
Jq -Ja +p
_iq" _iq+q-l + LJ,'q+q 1 niq+q 1sequence of S' 0- shows that the inclusion of i::f' - induces an

Jq
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isomorphism of njq+2q_2. Thus the attaching map of the jq+2q-l cell factors through

sjq+q-l and is determined to be -(j+2lal by computing pl.

Collapsing the bottom cell and redefining j we find that
jq+q-l _iq-l jq U jq+q-l

L. 1 "0- V e ( . l e • The long exact homotopy sequence of
p

_ shows that the attaching map of the jq+q cell is determined by its
Jq-

projections onto ,g.iq and ,g.iq+q-l. Computing pI and S shows these to be -jal and p

respectively. II

Diagrams of the cohomology with Sql and Sq2 or S and pI indicated are

convenient mnemonic devices. For p = 2 we have

•

I
•

n "

For p > 2, we have

( j+2l-q-l

jq+q

jq

1 2

and

3

jq+q

jq

4 (4l

We can also think of these diagrams as indicating cells by dots and attaching maps

by lines, and this is how we have labelled the diagrams for p > 2.

The spectral sequence F;.(S,l:'l will enable us to glean a maximal amount of

information from Propositions 3.1 and 3.2. We begin with p = 2. Recall, from 166J,

the initial segment of the HZ2 Adams spectral sequence for n*S.
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•
4 I

f/3
t

h2s 2 2

1
/' hI h2 h

3

0 1

0 1 2 3 4 5 6 7 8 9

t-s

Vertical lines represent multiplication by ho, detecting the map of degree 2, and

diagonals represent multiplication by hI' detecting n. We shall only use the first

8 stems (t-s 8). Let be the sequence

pll+8 pn+7 __ ••• +-- pn+1 __ pll
n n n n

(Omitting the l:n from

degree equal to the amount by

degrees.)

means a class in Ey. (S, will have stem

which the corresponding homotopy operation raises

Proposition V.7.5 says that is free over on generators in each

degree from n to n+k. Write xt t ) for the element of E2(S,19) which is XE E2(S,S) in

the i summand, if i n. Let xli) mean 0 if i < n.

Theorem 3.3. In Er(S,.e), for t-s:: 6,

d2x(i) hox(i - 1 ) if i - 0 (2) ,

d3x(i) = h1x(i-2) if i - 0,1 (4) ,

and d5x(i) = ifi - 0,1,2,3 (8) •

In the same range, E.,,(S,J3) is given by Figures 3.1 through 3.4.

Note: Dotted vertical lines indicate "hidden extensions". That is, they represent

multiplications by 2 which cause an increase of more than 1 in filtration.

Similarly, dotted diagonals indicate the effect of multiplication by n when this

causes an increase in filtration of more than 1. See the proof of 1.9 for their

derivation.
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I
l(n}

n

l(n+l}

n+l

I

hI (n+2) /,, ,
I I

,** /***I
I ,
: I

,
1(n+3}

n+2 n+3 n+4 n+5 n+6

*

n =0 (4) *} hit by d5(l(n+7)} iff n = 4 (8)

**} 2 times 1(n+3} is hl(n+2} if n = 0 (8)
Figure 3.1 and it is "hl(n+2} + h2(n)" if n = 4 (8)

***} if n = 4 (8)

hi(n+3)
i

h2(n+2) 1

\

i i (n+4}

*

i(n+6)

,,
",
I

l
hl(n+l}
I
I
I
I

I
I,

I

" **I
I

1(n+2)

.>
Lt n )

n n+l n+2 n+3 n+4 n+5 n+6

n = 1 (4) *} differential iff n = 5 (8)

**) if n = 5 (8)

Figure 3.2
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i
)

t
h2{nl I

I, I

h
2{n+l)

,
:**1I 1 II

I I

l{n+ll 1
1
1
I

h2(r;+3l
,,,,

,,
,, ***,

/

n n+l n+2 n+3 n+4 n+5 n+6

n :; 2 (4) *) differential iff n :; 6 (8l

**l if n - 6 (8)

Figure 3.3 ***) if n - 2 (8)

,,
/,'
,

,'**,,
h2{n+2l

I
I
I
I

1
I

I
I
t
t
I ,

hl(n+3) "
,**I ,

I "I /
I ,
I /

1{n+4l

Lln )

n n+l n+2 n+3 n+4 n+5 n+6

n :; 3 (4) *) differential if n :; 7 (8l

**) if n :; 3 {8l

Figure 3.4

Proof of 3.3: The differentials listed correspond to attaching maps which can be

detected by 8ql, 8q2 and 8q4, and they hold in the spectral sequences for e I , 13" and

bIll below

13" 8i - 2 i i-2
Un e -- 8

i-4 i i-4
S Uve - S
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The differential d2x(i) = hax(i-l) if i =0 (2) is immediate, since l(i) t

and by dimensional considerations d21(i) = hO(i-l) is the only possible d2 on l(i).

The module structure over now gives d2x(i) hax(i-l).

The d3 differential is slightly more complicated. There are two cases. If

i_I (4) then the i cell is not attached to the i-I cell, but is attached to the

i-2 cell by n; d31(i) hl(i-2) follows as for d2, and this implies d3x(i) = hlx(i-2).
If i = 0 (4) then l(i) I E3 since d21(i) = ha(i-l). However, the map of spectral

sequences induced by C:... $)"

c; 8'-'1 8'-' u,.,e' Si-2" Si-l oil Si-2

1 1 II
i-2 i Si-2 Si-2S ve "\!n

shows that elements of E3(S,C) must satisfy d3x(i) hlx(i-2) + k where k is the

kernel of E3(S, 1;) ... E3(S, 0"), that is, k must have the f'orm y( i-I). By inspection

k must be 0 in the dimensions considered. Now, by truncating j3 at the i cell, then

collapsing the i-3 skeleton we can compare E3(S, to E3(S,?; ). Again we have

d3x(i) = hlx(i-2) + k, where k is now a sum of elements coming from the i-] cell or

below. The first possibility is when n =0 (4). WE' must decide between d3hl (n+4) =
h1

2(n+2) and d]h l(n+4) = h1
2(n+2) + h2(n+l). Let pn, pn+l, hlpn+2, and pn+3 denote

elements detected by Lln ) , l(n+l), hI (n+2), and Hn+]), respectively. Comparing

with M:l.howald f s calculations [591, we find that 2 o r+3 = r+2 or

hIr+2 + v 0 r, depending on n mod 8. Composing with n yields n 0 h1P
n+2 = O.

. 2 n+2 n+l
But Lf' d3h1(n+4) were hI (n+2) + h2(n+l) we would have n 0 hlP = v 0 P

Therefore we must have d3hl(n+4) = h
1
2(n+2). The s!ooe argument, with minor varia-

tions, finishes all the d3 differentials.

Finally, the d5 differentials follow by similar comparisons with E5(S, f' f.). In

all but one case, there is nothing in filtrations less than or equal to the filtra-

tion of so the comparison with E5(S, is sufficient. The one remaining

case is when n =1 (4). Here hi(n+]) lies between h2(n+4) and Since the

n+4 cell is not attached to the n+] cell, the d5h2(n+4) = is right here also.

There are no further possible differentials by inspection. The hidden exten-

sions here are all evident from Mihowald I s computation in [591 of the Adams spectral

sequence of • / /

Note. The spectral sequence (S, IS) has far more hidden extensions than Er (S ,P:)

since the cells are spread apart in Er(S, fd) whereas they all occur in the same

filtration in E (S,P""). By IV.7.6, the same hidden extensions occur among ther n .
elements generated by the S8pJX for a fixed x.
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Proof of 1.9 when p = 2: A permanent cycle x(i) corresponds to an operation xpi.

Thus, Table 1.3 is simply a list of the elements of E",,(S, e), omitting most of those

which are multiples by elements of 11*S of other elements of E"" (S, fj). The inde­

terminacy of an operation consists of those elements in the same stem and higher

filtration, so it too can be read off Figures 3.1 through 3.4. With the exception

of 1:2*(pD) and 1:2*(pD+l), the values of 1:2* listed are the only elements of lI*S in

the relevant dimension. Since 1I2nD2s? = Z2 when n is odd, 1:2*(pD) = 0 in this case.

When n is even, 1:S2n + D2s? induces an isomorphism of 1I2n' By 11.1.10, the

composite 11:2:D2sD + D2sD is multiplication by 2 on H2n =1I2n' Thus 1:2*(pD) = 2.

To calculate 1:2*(pD+l), first suppose n = 2 (4). By Theorem 3.3, 1I2n+2D2s? = O.

Therefore, npn+l = 0 and hence n1:2*(pn+l) = O. This forces 1:2*(pn+l) to be 0, not

n. When n 0 (4), Theorem 3.3 gives 1I2n+lD2s? = Z2® Z2 with generators pD+l and

npD. By 11.2.8, 1:2*(pn+l) is not zero and hence must be n.

Determining the relations in Table 1.4 amounts to determining the lI*S module

structure of 1I*D2sD. The indeterminacy of the operations in Table 1.3 induces a

similar indeterminacy in the relations of Table 1.4. The relations are to be

interpreted as asserting equality modulo the sum of the indeterminacies of the two

sides. Thus, in order to prove that they hold, we need only show that they hold for

some choice of representatives. The E"" terms in Theorem 3.3 force the following

thirteen relations:

2pD = 0

nhlpn+l 0

2vpn+2 0

vpD+2 0

4vpn 0

npn+l 0

vpD+l 0

npD = 0

12h pn+l 01

2h2pn+2 0

vpn 0

}nhlpn+3 0

nh2pD+2 0

n ­ 1,3 (4)

n " 1 (4)

n ­ 1 (8)

n " 5 (8)

n " 2 (4)

n ­ 2 <4l

n ­ 6 (8)

n ­ 3 (4)

n _ 7 (8)

Another eighteen relations follow by considering the attaching maps given in

Proposition 3.1, the spectral sequences in Theorem 3.3 and the reducibility and

coreducibility given in Theorem 2.14. These are
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2pIl+l = 0 }2h
1
pIl+2 = n2pIl+1

n OW

npIl+3 = 0

o }

2pIl+3 = h
lpIl+2 n 0 (8)

2vpIl+3 = vh
lpIl+2

=

2pIl+3 = h
lpIl+2

• nnpIl+3 = vpIl+l 4 (8)

vh
lpIl+2 v2pIl

2pIl+2 = hlpIl+l n 1 W
npIl+2 = 0 }2pIl+6 = h

lpIl+5

n 1 (8)

npIl+2 = vpIl n 5 (8)

2pIl+l npIl n 2 (4)

2pIl+5 h pIl+4 }1

npIl+5 =
n " 2 (8)

h pIl+3
2

nhl pIl+4 " 0 mod v2pIl n 6 (8)

2pIl+4 = hIpIl+3 } (8)
npIl+4 = h

2pIl+2

n 3

For example, when n 0 (8), the attaching map of the n+4 cell gives 2pIl+3 = hlpIl+2.
Then 2vpIl+3 = vhl pIl+2 must be either 0 or v2pIl by the E", term in Figure 3 .1. But

is coreducible, so v2pIl is impossible. Similarly, when n 4 (8), the

attaching map of the n+4 cell gives 2pIl+3 = hlpIl+2 + vpIl. (Note that, since

is coreducible, vpIl need not be considered a part of the indeterminacy of 2pIl+3 or

h1pIl+2.) Thus 2vpIl+3 = vhlpIl+2 + v2pIl. But vpIl+3 is either 0 or v2pIl by the E",

term in Figure 3.1. Thus 2vpIl+3 = 0 and hence vhlpIl+2 = _v2pIl = v2pIl.

Four more relations come from the fact that lln+2 (sU V. en+l) '" Z4' so that the

composite of 2 and a map which projects to n on sn+J., to n2 on sn. These are

2hlpU+l 2pU}

2h
1pIl+5

:

2h
1pIl+4

=

2h lpIl+3 =

n 1 (4)

n 2 (4)

n 3 (4)
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The relations

2h2pn+4 =
1 1 1 (4)n

1 0

n 2 !4l1

n 3 !4l1 1
,/pn 3 (8)nh2 n

are the only possibilities consistent with Mahowald's calculations [59] (note that

these are not hidden extensions in his spectral sequence).

Finally, the relation = v2pll when n =6 (8) follows by comparison with
. n+2 n+4the spectral sequence for the cofiber of the inclusl0n Pn+l + Pn In the

cofiber, 2pll+3 = vpll is obvious from the attaching maps. II

Now consider the odd primary case. Recall, from [55J, that, in degrees less

than pq-2, the HZp Adams spectral sequence has elements

and

detecting pi, i = 0,1,2, ••• ,

detecting al E nq_l'

detecting ai Eniq-l' for 2 :;; i :;; p.

Let j$ be the sequence

Ln(p-l)+ps .--- Ln(p-l}+pS-l
n(p-l) n(p-l)

+- Ln(p-l)+l _ Ln(p-l)
n(p-l) n(p-l)

Since has cells only in dimensions n(p-l) and greater which are congruent

to 0 or -1 mod q, E:2 (S, ,8) is free over E2 (S, S) on generators in those degrees.

Write x(j ,d for the element of E2(S, fj) which is x E2(S,S} in the jq-t; summand, if

jq-t; n(p-l). We agree to let x(j,t;) = 0 if jq-t; < n(p-l).

Theorem 3.4. In Er(S, fJ},

In low dimensions E2p(S, 0) is given by Figures 3.5 through 3.9.

Notes: (1) The dotted arrows to the left represent possible d2p differentials

which we have not computed. This is why the theorem only claims to give E2p(S, 13).

The indicated d2p is the only possible remaining differential in the range listed.

This is true for dimensional reasons except when n = 2k-l and k = -2 (p) , Here the
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possibility that d4p_2(1(k+2,ll) is nonzero is excluded by the fact that

is reducible when k = -2 (p) by Theorem 2.9.(v).

(k+2)q-l
Lkq-l

(2) Dashed vertical lines represent hidden extensions. Precisely, if x and y

are detected by x and y, the notation

y

: j
I
I
I

x

means that px = jy modulo higher filtrations. Of course, if j is 0 this means the

extension is trivial. We replace j by a question mark if we have not settled the

extension.

ps+2 .
I hO(,k,Ol

I

ps ux,o: •I
I

:-2
I
I

ps-q+2 0 hO(k+l,l)I
I

ps-q+l 1 ,1)

ps-2q+l

kq (k+llq-l (k+2)q-2

Figure 3.5 n = 2k, k = -2 (p)

gl (ok,O)
,
o
I
I

I

!·,,'1
"I
I·II

hO(k+1,O)
I

:-1
I
I

1(k+2,1)

(k+2)q-1

ps+2

ps l(k,Ol

ps-q+1

kq

hO(k,O)
•I
I
I

:k
I·•Hk+1,1 )

(k+1)q-1

gl(k,O)
I
I·I
I,·I:7
,·

(k+2)q-1

Figure 3.6 n 2k, k t -2 (p)
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ps-p+4 gl (k,l)
hO( k,ll ...., gl (k,O)

, , f

Ps-p+1 l(k,l) hO(k,O)
, I, I, I, , ,

<,
I ?: -1 ?

, ,
"

I , I
, ,.

ps-3p+4 1(k+1,1)

kq-1 (k+1)q-1 (k+1)q-1 (k+2)q-1 (k+2)q-1

Figure 3.7 n = 2k-1, k -1 (p)

ps+p+4 gl(k,l)
: II:
I \ gl(k,O)I \,
I \ I
I \

ps-p+2 l(k,l) hO(k,O) :? ,,
, ?,
\ ., I,,

i?
\ ..
\
\
\

ps-3p+5 hO(k+1,1)
\
\
\
\

ps-3p+4 h
O(k+1,O),

I

: -1,
ps-5p+6 1(k+2,1)

kq-1 (k+1)q-1 (k+2)q-2 (k+2)q-1

Figure 3.8 n = 2k-1, k -2 (p)

ps-p+4

ps-p+2 l(k,l) hO(k,O)
gl (k,l) gl(k,O)

"-. I, ,,, ,,
? ' .?. ,

",, I-, I

ps-3p+4
,
h
O(k+1,O)

kq-1 (k+1)q-1 (k+2)q-2 (k+2)q-1

Figure 3.9 n = 2k-1, k t -lor -2 (p)
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Proof of 3.4. The differentials follow from the attaching maps in Proposition 3.2

just as 3.3 follows from 3.l. Applying them gives the values of E2p(S, ,e ) listed in

Figures 3.5 through 3.9. The indicated hidden extensions all come from the

attaching maps of the even cells of I I

Proof of 1.9 when p > 2: A permanent cycle X(j,E) corresponds to a homotopy

operation Thus Table 1.1 is a list of those elements in Figures 3.5 through

3.9 which must be permanent cycles by Theorem 3.4. The indeterminacy is obtained

from Figures 3.4 through 3.9 as for p = 2. The values of Tp* listed are the only

elements of n*S in the relevant dimensions, except for Tp*(pk) = pI, which follows

from II.l.lO.

The relations in Table l.2 are all determined by the attaching maps from

Proposition 3.2. II

Proof of l.1Q.. By IV. 7.3.(v),

f n+mo r- n2(n+m)+ID2S under

consider
-n+m+2 n+2 m+2
j-' +P "pn+m n m

for dimensional reasons. If m is the skeletal filtration of pn+2A pm+2 then, n m'
E2(S, e n ,m) is generated over E2(S,S) by elements l(j,k) with n S j S n+2 and

m 5 k 5 m+2 corresponding to the cells of and vn+2 in an obvious fashion. The
. n+2 m+2 n m

at.t.achfng maps of Pn and Pm determine the differentials in low dimensions from

which we get E",(S. On m)' The extension questions in n2(n+m)+l are also determined
n+2 m+2 'by Pn and Pm when n :: m :: 0 (2). When n :: m :: 1 (2) we need the fact that the

top cell of the smash product of two mod 2 Moore spaces is attached to the bottom

cell by n, to settle the extension question. We conclude that if n :: m :: 0 (2) then

n2(n+m)+1 is generated by pn+lpID, pllpID+l, and npllpID with relations

{0 n :: 0 (4)

npnpm n :: 2(4)

{
m - 0(4)

m :: 2 (4) •

If n :: m :: 1 (2) then n2(n+m)+1 is generated by an element we call Sn,m which is

detected by l(n+l,m) + l(n,m+l) with the relation

'"n,m' {

n :: 3 or m :: 3 (4)

n :: m :: 1 (4) •
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From the image of Sn,m in E",(S, n,m) we can see that

Finally o*(pll+m+l) is determined modulo the kernel of the Hurewicz homomorphism by

commutativity of the following diagram, in which the isomorphisms are Thom

isomorphisms

n+m 0*
1l*D2S

n"
D2?1l*D2S

ih 0*
lh

H D Sn+m H*D2S
n

1\ D2?* 2
III

6*
H*BZ2 H*(BZ2 x BZ2)

Since I1pllpID generates the kernel of the Hurewicz homomorphism we are done. II

Proof of loll. The commutative diagram above shows that the Hurewicz homomorphism

must map the Cartan formula for a homotopy operation into the Cartan formula for its

Hurewicz image. Case (i), n = 2j and m = 2k, follows by an argument formally iden­

tical to, but easier than, the proof of 1.10 when n = m 0 (2). Case (ii) is imme­

diate from the homology Cartan formula because in this case we' re in the Hurewicz

dimension. Case (iii) follows just as in the proof of 1.10 when n =m = 3 (4). II

Proof of 1.13. By definition SP1(p) is a unit times the composite

1 D (p)
S2p­3 S ­­.L­.. D S S

P P ,

where Sp1 is the inclusion of the 2p­3 cell. By II.l.8, Dp(P) = Ip'p mod p, and by

II.2.8, 'p 0 Sp1 f O. Since 1, the composite and hence BP1(P ) are nonzero.

The fact that 6PP­l(ul) = 61 follows from the fact that in the Adams spectral

sequence, 6PP­1(hO) = bi using the notation of [66]. The latter can be computed

directly from the definition of BPp­1 using the definitions

i+j
\' .l (. l ) [ I ]
L P 1.,J "1 "1
p­l

in the bar construction. Alternatively, we may refer to Liulevicius' computation

[55, pp. 26, 30J using [66, II­6.6] to translate it into our notation. II
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Proof of 1.14. This is now immediate:

(2x) pl(2)x2 + 4pll+l(x) + 4cQnnx2

nx2

since 2pll+l(x) is either 0 or nx2 by 1.10. Similarly,

I3pl(P)xp

I3pl(P)xp

• a xP
1

since pl3pj+l(x) = jalPj(x). Finally I3Pj+P- l(a
lx)

= xPl3pp-l(a
l)

= xPl3
l•

The

indeterminacy is always zero because where it is not automatically zero it is 4nx2

or PPalxP. II

Proof of 1.15. If P = 2 then nx2 = 0 by Theorem 1.10 when n = ] (4) (even if

2x f 0) while 0 pll+l(2x) = nx2 by Proposition 1.14 when n = 0 (2). If

P > 2 then xP 0 if n is odd, while if n = 2j, Proposition 1.14 implies that

o = I3Pj+l(px) alxP and 0 = I3Pj+p-l(alx) = I3lxP. When x = 131 the second of these

formulas is al13i O. II

Proof of 1.16. Several of the computations follow from pll(x) = x2 if

x others from = = = = O. Similarly, several indeterminacies

zero from Theorem 1.10 or because they lie in filtrations which are O. We will

prove the remainder of the results.

are

Since p4(h2) h], hlP4(v) is detected by hlh] so is either no or v. By 1.10,

2 5 6 4hlP (v) = 2hlP (v) = 0 since = O. Similarly, hlP (2v) = 0 by calculating

Steenrod operations in Ext. Since T2*(hlP
6) = 0, we get hlP

6(2v) = 2hlP
6 (V) = 0,

and since T2*(h2P5) = 0, we get h2P5(2v) = 2h2P
5(v) O. By 1.10,

h1p5(2v) = 2hlP
6(2v) = 0 also. The operations on 4v can all be calculated from the

* * 2 *additivity rule a (4v) = 2a (2v) + T2*(a)(2v) = 2a (2v).

Since = 0, the relations h1p9(v2) 2h
lP

10(v2) and hip8(v2)

force these elements to be 0 mod O.

Since p8(h]) h4, hlP8(0) is detected by hlh4 so must be n* or n* + np. Since

29 2 8 2 8 . ] 2,..2hlP = n and n hlP (0) 1S detected by hlh4
= hd'2h4' it follows that

hip9(0) is detected by hoh2h4' Since 2hlP
10 it follows that hlP10(0) is
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v* or v* + np modulo <2v*>, which is its

2 9indeterminaoy, and similarly for hlP (o ) .

Since P7(2o) = = 0, we have

The remaining operations are additive exoept for

II



CHAPTER VI

THE ADAMS SPECTRAL SEQUENCE of Hoo RING SPECTRA

by Robert R. Bruner

In this chapter we show how to use an Hoo ring structure on a spectrum y to pro­

duce formulas for differentials in the Adams spectral sequence of 1f*Y. We shall

confine attention to the Adams spectral sequence based on mod p homology, although

it is clear that similar results will hold in generalized Adams spectral sequences

as well.

The differentials have two parts. The first is the reflection in the Adams

spectral sequence of relations in homotopy like those in Chapter V. For example,

when x e 1fnY and n " 1 (4), there is no homotopy operation pIl+lx since the n+l cell

of p
oo
is attached to the n cell by a degree 2 map. In the Adams spectral sequence

n n+l ­ n+l n ­
there is a steenrod operation Sq x and a differential d2Sq x '" hOSq x

= hOY!­' Therefore ho'i 0 in Eoo2 This in itself only implies that 2x2 has

fil tration greater than that of hif in the Adams spectral sequence, but by

examining its origin as a homotopy operation we see that 2x2 '" O. Thus, the

formulas we produce for differentials are most effective when combined with the

results about homotopy operations in Chapter V. The differential d2Sqn+3 y =

hoSqn+2 Y, still assuming n 1 (4), is a perfect illustration of this. The

corresponding relation in homotopy is 2pIl+2x = hlpIl+lx where hlpIl+l is an indecom­

posable homotopy operation detected by hlsqn+l in the Adams spectral sequence. The

differential on Sqn+3r represented geometrically is the sum of maps representing

hosqn+2y and hI Sqn+ly, but since hlSqn+ly has filtration one greater

//
Sr',

Sqn+2x '
Sqn+Jx

than does hoSqn+2y, it does not appear in the differential. This reflects a hidden

extension in the Adams spectral sequence: 2pIl+2x appears to be 0 in the Adams

spectral sequence (i.e. hOSqn+2y '" 0 in Eool only because of the filtration shift.

In fact, 2pIl+2x '" hI pIl+Ix. The moral of this is just the obvious fact mentioned

above: the differentials should not be considered in isolation but should be

combined with the homotopy operations of Chapter V. Further examples will be given

in section 1.

The second part of the differentials arises when we consider Steenrod opera­

tions on elements that are not permanent cycles. If x in filtration s survives



were established by D. S. Kahn [45J who showed

+ S (obtained through coreductions of stunted

170

until Er we can make x into a permanent cycle by truncating the spectral sequence at

filtration s+r. Thus the differentials of the type just discussed apply to x until

we get to However, by analyzing the contribution of drx we can show that it

will not affect the differentials on until Epr_ p+l where it contributes

Thus the differentials of the first type apply far beyond the range in

which we are justified in pretending that x is a permanent cycle. (To be precise we

should note that drx can occasionally affect differentials on SEpjx through a term

t .. P-ld . E )con airung x rX ill r+1 •

The first results of this type
(2)

that the Roo ring map 1;2:W "z S
2

projective spaces) could be filtered to obtain maps representing the results of

Steenrod operations in ExtA(Z2,Z2) and that some differentials were implied by this.

Milgram [81J extended Kahn's work to the odd primary case and introduced the

spectral sequence of IV.6 which is by far the most effective tool for computing the

first part of the differential. His work was confined to the range in which it is

possible to act as if one is operating on a permanent cycle. Nonetheless he was

able to use the resulting formulas for differentials to substantially shorten

Mahowald and Tangora's calculation [611 of the first 45 stems at the prime 2 and to

catch a mistake in their calculation. The next step was taken by Makinen [621, who

showed how to incorporate the contribution of drx in the differentials on Sqj x for

p = 2. Unfortunately, he apparently did not apply his formulas to the known calcu-

lations of the stable stems, for one of his most interesting formulas (published in

197J) ,

if n _ 1 (4),

combined with Milgram's calculation of Steenrod operations [811, implies that =
hIt, contradicting Theorem 8.6.6 of Mahowald and Tangora [611. This application was

left for the author to discover in 198J. Note that the differential is out of

Milgram's range since a nonzero d2x prevents us from calculating d x unless we

incorporate terms involving d2x. The argument in !611 that el is a permanent cycle

is an intricate one, involving the existence of various Toda brackets, while the

proof that d fqj x = hI Sqj + Sqj d2x if n 1 (4) is relatively straightforward.

This appears to be convincing evidence that the Hoo structure in the form of Steenrod

operations in Ext is a powerful computational tool.

One other piece of related work is the thesis of Clifford Cooley [301. He

obtains formulas similar to Milgram's [61J by using the spectral sequence connecting

homomorphism for a cofiber sequence of stunted projective spaces to reduce them to

dl's which he gets from a lambda algebra resolution of the cohomology of the

appropriate stunted proj ective space. Calculating differentials this way or by the

spectral sequence of IV.6 is probably a matter of indifference. The most
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interesting aspect of Cooley's thesis is that he works unstably, examining the

interaction of the Steenrod operations and the EHP sequence. As in all other

earlier work on this subject he views the H
oo
ring structure in terms of coreductions

of stunted projective spaces. The interaction of the Steenrod operations and the

EHP sequence had been discovered by William Singer [97 J using the algebraic ERP

sequence obtained from the lambda algebra.

In the work at hand, we extend the ideas of Makinen to the odd primary case to

obtain comprehensive formulas for the first nontrivial differential on S£pjx, which

we state in §l. These apply to the mod p Adams spectral sequence of any Hoo ring

spectrum. The remainder of §l consists of calculations using these formulas in the

Adams spectral sequence of a sphere, including the differential discussed above.

These are intended to illustrate especially the interaction between the homotopy

operations and the differentials, specifically to obtain better formulas in partic­

ular cases than hold in general. One of these is d3r = which forces to be

a permanent cycle. This is the shortest proof we know of this fact.

In §§2 and 3 we describe the natural Lp equivariant cell decomposition of

(LXl(pl and use it to relate extended powers of X and of LX.

In §4 we start the proof of the formulas in §l, using the results of §§2 and 3.

We also prove that the geometry splits naturally into three cases, which we deal

with one at a time in the remaining §§5­7.

1. Differentials in the Adams spectral sequence

In this section we state our theorems concerning differentials, explain some of

the subtleties involved in understanding what they are really saying, and calculate

some examples in order to illustrate their use and demonstrate their power.

Localize everything at p , Let Y be an H
oo
ring spectrum. Let E;,n+s(S,Yl =>

1fnY be the Adams spectral sequence based on ordinary mod p homology. We shall adopt

the following shorthand notation for differentials. If A is in filtration s and Bl
and B2 are in filtrations s+rl and s+r2 respectively, then

means that diA 0 for i < min ( ,r2) and

dr A = Bl if r l < "z1

drA=Bl+ B2 if r l r = r2' and

dr A if "i > "z
2
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Rote. This does not mean that this differential is necessarily nonzero. Nor does

it mean that if E1 happens to be 0, then d
r 2A

= E2 regardless of whether r2 > rl or

not. More likely, Bl is zero because it comes from a map which lifts to filtration

s+rl+1 or more and, hence, Bl could conceivably lead to a nonzero +lAo The point
1

is that you can 't tell what BI is contributing to the differential if all you know

is that it is zero in filtration s+rl' However, when we explicitly state that

Tp = 0 in Theorem 1.2 we mean that it is to be treated as having filtration •

..The geometry behind the formula d*A = B
2

will make it clear exactly what

the formula can and cannot tell you. The formula means that for some "o > max(rl,r2)'

A is represented by a map whose boundary splits into a sum 131 + 132 + 13
0
, where each

Bi lifts to filtration_s+ri' and where 131 132 Bl and B2 respectively.

It is irrelevant what BO represents because Bl + B2 lies in a lower filtration.

This is fortunate, since in general fiO is very complicated. In particular cases

however, we can often analyze BO in order to get more complete information about

d*A. For examples of this, see Proposition 1.17(ii) (the formula dJrO = and

Proposition 1.6.

Two remaining points about the formula are best made using examples. The

formulas we will shortly prove say that, under appropriate circumstances,

Sqjd x .. axd x
r r

where a E The algebra structure also implies that

If the filtration of sql x is s, then the filtration of Sqj drx is s+2r-l, while that

ofaxdrx is s+r+f+k (f is the filtration of a and k will be defined shortly).

The three ways these differentials can combine are illustrated below

r < f + k +1

-;(dr x )2

'\
\-;XdrX

df +k+l\
\

Sqj drx

'\2r-l

sqlx

r = f + k + 1 r>f+k+l

-;(dr X)2

'.
\ .

dr \ SqJdrx
\

aXdrx
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Taken individually, the terms Sqjdrx and axdrx do not always appear to survive long

enough for SqJx to be able to hit them. For example, when r > f+k+l, the

differential x = Udrx is preceded by the differential = a(drx)2,
which would have prevented axd0 from surviving until Er+k+f, had it not happened

that a still earlier differential = had already hit a(drx)2.
This is completely typical. The formula d*A = Bl + B2, as used here, carries with

it the claim that the right-hand side will survive long enough for this differential

to occur, and even shows the "coconspirator" which will make this possible when it

seems superficially false.

The other point illustrated by this example occurs when Sqjdrx and xdrx are

permanent cycles and r > f+k+L Then the differential dr+k+fSqj x 'fi"xdrx reflects

a hidden extension: l(Xdrx) is zero in Eoo because of a filtration shift. It is

actually detected by Sqj drx. Relations among homotopy operations typically cause

such phenomena. Note that the cell which carries sqJx is also the cell which pro-

duces the relation in homotopy. In a suitably relative sense this is the meaning

of all differentials in the Adams spectral sequence ("relative" because the terms

in a relation corresponding to a differential will typically be relative homotopy

classes which do not survive to Em to become absolute homotopy classes).

We can now state our main theorems. Assume given

element BgrJ x (as usual, e = 0 and pJ =Sqj if p = 2).

X EEs,n+s
r

Let

and consider the

{

j -n
k =

(2j -n )(p-l)-g

P 2

p > 2

so that BErJ x E which lies in the k-np stem. Using the functions vp
and of V.2.15, V.2.16 and V.2.17 we define v = vp(k+n(p-l)) and

a = E llv_l S , Recall that a is the top component of an attaching map

of a stunted lens space after the attaching map has been compressed into the lowest

possible skeleton. Let

degree p when p > 2.

detect a (this defines f as well). Recall that detects the map of

**Theorem 1.1. There exists en element T EE2 (S,Y)

(1) if P 2 then d*Sqjx Sqj .;. T2,
(ii) if p > 2 then

such that

dr+ l pJx = dr+1xP aoxP-ldrx if 2j n.

d2pJx = ao6pJx if 2j > n, and

d*6rJ x = -BrJ drx +Tp •
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v > k+l or 2r-2 < v < k

v '" k+l

v '" k or (v < k and v < 10)

v < k and v < pq.

v '" k+l

v > k+1 or pr-p < v < k

1
° e - p-l
(-1) ax drx

(_l)e-l -e-l x

Theorem 1.2.

Ifp> 2 then

where e is the exponent of p in the prime factorization of J.

Note. When p > 2, k and v have opposite parity so that v k never occurs.

Theorems 1.1 and 1.2 give complete information on the first possible nonzero

differential except when

pq < v < min(k,pr-p+l) if p > 2,

or 10 < v < min(k,2r-l) if P 2.

The sketch of the proof given in Section 4 should make it clear what the obstruction

is in these cases. We do have some partial information which we collect in the

following theorem.

Theorem 1.]. If P > 2 and v > q then diSpJ x '" ° if i < v+2 pr-p+l, while

dpr_P+1SpJX '" -SpJdrX if v + 2 > pr-p+l. If p '" 2 and v > S then diSqJ x °
if i < v+2 2r-l, while d2r_lsqjx SqjdrX if v+2 > 2r-l.

To apply these results we must know the values of the Steenrod operations in

E2 '" ExtA.. (Zp,H*Y). For our examples we will concentrate primarily on p '" 2 and

Y '" SO, since this is a case in which there are many nontrivial examples. We cannot

resist also showing how useful the Steenrod operations are in the purely algebraic

task of determining the products in Ext.

We begin with the elements h
n

E ,2
n
-1 dual to the Sq2

n•
Parts (L) and (iii)

of the following propositon may also be found in [881.

Proposition 1.4. (i) (Adams [JJ) '" and '"

(Novikov [91 ] )

(ii)

(iii)

(Adams [2)

h2h
2

n n+]

n° and, if n > 0, hn 0.
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Proof Sq2
n-l

h "h2 because the first operation is always the square. If we let
-- "n n

S:ExtS,* + ExtS,* be Sqn+s on Exts,n+s, then Proposition 11.10 of [68] shows that in

the cobar construction SIX11···lxj] Since hn is represented byr J
[1;1 J, it follows that " S{hn) "hn+l. For dimensional reasons, the Cartan

formula reduces to S(xy) "S(x)S(y). Thus, to show (ii) we need only show hohl " 0,

3 2 2
hI "hOh2, and h

O
h2 " O. These occur in such low dimensions that they may be

checked "by hand". In fact, only the first and third must be done this way since

2 2 3 2 2
Sq (hohl) hOh2 + hI. The relation "0 follows similarly from

" Sq8 "0. The only nonzero operation on is Sq2
n+3

"

2
n

2
since (ii) implies that O. The relation hO hn+2 ,,0 then

follows by induction from o. Finally, h
n
,,0 follows by induction from

2hOhl " 0 since
n n

S 2 (h2 h )q 0 n

As is well known, the preceding proposition implies the Hopf invariant one

differentials.

Corollary 1.5. d2hn+l" for all n > O.

Proof. By Theorems 1.1 and 1.2 we find that

2n 2n • 2
d*Sq hn" Sq d2hn + hohn

so that

since is in filtration 4. (It follows, of course, that
n n

S 2 d h Sq2 h_h2 "h2,.2. )
q 2 n on-i d'n

The next result shows how we may use the relation with homotopy operations to

get stronger results than the differentials themselves give.

Proposition 1.6. h1h4 and are permanent cycles.

Proof. Since h1h4
" sq9{hOh3),

it is carried by the 9-cell of The attaching

map is n , to the 7-cell, and hence its boundary is n(2o)2 ,,0. Similarly, h2h4 "

Sql0{hlh3),
so is carried by the lO-cell of S8 V(S9U 2 elO). The 9-cell

carries p9(no), which has order 2 by the Cartan formula in Theorem V.l.lO. Thus,

the boundary of the lO-cell maps to 0 and is a permanent cycle.



176

Before turning to other families of elements we should note that the Ropf

invariant one differentials of Corollary 1.5 account for only a few of the non-

trivial differentials on the hOih 1 In fact, Proposition 1.4 impliesn+
i i+l 2 2 id2hOhn+l = hO hn is 0 if i+l 2n-. On the other hand, hOhn+l f 0 for

i < 2n+l, and from the known order of 1m J, there must be higher differentials on
i

many of the hOhn+l which survive to E3• It seems difficult to determine these

higher differentials in terms of the Steenrod operations, though Milgram [81] has

indicated that it may be possible with a sufficiently good hold on the chain level

operations. More disappointing is the fact that it doesn't seem possible to pro-

pagate these higher differentials. That is, even if we accept as given a differ-
3ential like d3hOh4 = hOdO' we don't seem to get any information on d

3hOh5•
The operation we call S in Proposition 1.4 will be very useful so we collect

its properties before proceeding.

Proposition 1.7. If S = Sqn+s:Exts,n+s Ext s,2(n+s) then

(i) S[xll'" IXkJ = [xii··· in the cobar construction

(ii) Sl xy ) S(x)S(y)

(iii)

Proof. (i) is Proposition 11.10 of [68], while (ii) and (iii) are immediate from

the Cartan and Adem relations since all the other terms must be 0 for dimensional

reasons. Part (iv) is proved in [78].

For our remaining sample calculations we will explore the consequences of the

squaring operations on the elements cO' dO' eO and fO' The key elements we will be

concerned with are collected in Table 1.1 along with Massey product representations.

With the exception of fO and YO' the Massey products have no indeterminacy.
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n = t-s Massey product

3 8 2Co <hl,hO,h2>

4 14 dO
2 2<hO,h2,hO,h2>

4 17 2 2
eO <hO,h3,hl,ho>

4 18 fO
2 2<hO,h3,h2>

4 20 gl

6 30 2 222rO <hO,h3,h3,hO>

7 35 rna <h2,hl,rO>

6 36 to

5 37 Xo <hyh4,dO>

6 38 4 2
yO <hO,h4,h3>

TABLE 1.1

Also, note that the elements Mahowald and Tangora call r,m,t,x and y, we are

calling rO' mO' to' Xo and yO' The reason for the sUbscript will be apparent from

the following definition.

Definition 1.8. If i 0 and a E {c,d,e,f,g,r,m,t,x,Y}, let aO a and

Applying Proposition 1.7(iv) we find immediately that

2 2
ei E <hi'hi+3,hi+l,hi>

2 2
f i E <hi'hi+yh i+2>

2 2 2 2
r i E <hi ,hi+3,hi +3,hi >

and

However, we shall not make any use of these Massey product representations here.
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From the calculations of Mukohda [88] or Milgram [81J we collect the values of

the Steenrod operations on cO,dO,eO and fO' The following abbreviation will be very

convenient: if x EExts,n+s let Sq*{x) = (Sqnx, Sqn+l, ••• ,Sqn+sx) = (x2, ••• ,Sx)

Theorem 1.9. 2
(cO,hOeO,fO,cl)

2
(dO,O,rO,O,dl)

2
(eO,mo,tO,xO,el)

The indeterminacy in the Massey product representations of fO and Yo suggests

that we should define them by the squaring operations above:

Applying Proposition 1.7.{iii) we immediately obtain the following corollary.

Corollary 1.10. *Sq ci

*Sq d
i

*Sq e
i

*Sq f i

2
(ci' hiei,fi,ci+l)

2
(di,O,ri,O,di+l)
2

(ei,mi,ti,xi,ei+l)

(0,hi+ 3ri'Yi,0,fi+ l)·

Before computing the differentials that this corollary implies, it will be

useful to obtain a number of relations in Ext. This also gives us an opportunity to

illustrate how powerful the Steenrod operations are in propagating relations. The

relations we will assume lmown are all calculated by Tangora [103J by means of the

May spectral sequence. In general, this technique only yields relations modulo

terms of lower weight. However, the particular relations we need do not suffer from

this ambiguity, since there are no terms of lower weight in their bidegree.

Proposition 1.11

hlrO = 0, hlmO 0.

(ii) 2 2
hOf0' h2eO =

2
c = hldO' h2dO = hOeO' hleO hOdO°h2tO = clgl'

(iii) 6 0, h
4f O

0, 2 0, h2dl h
4g1,

6 2
hOrO h

3dO hOxO 0, h;flo = hel0'
2 2

hOfl hiel'
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These relations are grouped as follows: (i) holds because the relevant bidegree is

°or is not annihilated by hO' as multiples of hI must be; (ii) follows from [103J

since, again by [103J, there are no elements of lower weight in the given bidegrees;

(iii) now follows either by applying Steenrod operations to relations in (i) and

(ii) or by the same argument as (ii). (The point is that the relations in (iii) are

dependent on those in (i) and (ii) under the action of the Steenrod algebra.)

0,

hi+ 1ri = 0, hi+ 1mi 0.

(ii) = hi+ 2di hiei, hi+ 1ei

hi+2ti = ci+ 1gi+ 1•

Proof These are immediate from Proposition 1.11 since S is a ring homomorphism by

Proposition 1.7(ii).

A comparison of the preceding proposition and corollary will show that if we

view the periodicity operator as a Massey product

r+l
r 2P x = <hr +2,hO ,x>,

then we have only Milgram I s theorem (Proposition 1.7. (iv)) to use in calculating

S(prx), and this generally leaves us with too much indeterminacy. For example,

p1h h - c2 so S(plh h ) - Sc2 = c2• On th th h d S(P1h h )1 3 - ° 1 3 - Ole 0 er an, 1 3
4S<hyhO,h1hy> E <h

4,0,h2h4
> = ° modulo indeterminacy which is divisible by h4•

2 2course, since "i 'I 0, it follows that h2h4g = "i since h4(h2g) is the only

possible nonzero element divisible by h4• This example shows that to calculate

S(prx), we need another representation of prx. It also shows that the Massey

product representation can lead to useful information (although in this case the

product = ci was already true in the associated graded). Accordingly, we

provide the following formula for the interaction of the Sqi and the periodicity

homomorphisms pro

Of

Proposition 1.13. Let Sq. = Sqt-i:Exts,t + Ext s+i,2t. Modulo the ideal generated
2 1

by ••• ,SqiX} we have
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If i 0, the indeterminacy (of Sqo = S) is generated by hr+2 and Sqox.

This is a special case of Milgram's general result [781, which, for three­

fold Massey products says

and o otherwise.

Corollary 1.14. 8 2 224<h
4,hO,hl = P­h] = horo with no indeterminacy.

1 2 2
Proof. B,y Proposition 1.11, PCh2 = hOdO' By Theorem 1.9 we have

16 2 4 2 2 4 2 2 2
Sq hOdO = horo + hI dO = hOrO' since hI dO must be divisible by ho so hIdO O. By

Proposition 1.1], = with indeterminacy generated by and

h4• For dimensional reasons the indeterminacy is O.

Combining Proposition 1.11 with Theorem 1.9 we can produce a number of

relations in Ext which do not hold in the associated graded calculated by Tangora.

Proposition 1.15. (i) horo So and hence hiri = si

(ii) h]rO
2 and hence hi+]ri = hi+lti

2
hltO + hOXO + hixi

(iii) 2 and hence 2 = 0 if i > 0h2eO hi+2ei

(iv) 2
hlxO and hence 2 = hixi_lh2dl hi+ldi

(v) hlyO = h2t O and hence hi+lYi = hi+2t i

(vi) h2xO = 0 and hence hi+2xi = 0

(vii) h1fl = and hence ­ 2 ci 1hifi ­ hi_1 +

(viii) h2yO = 0 and hence hi+ 2Yi 0

(ix) h]xO = and hence hi+ r i
2higi+2
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Note. Mahowald and Tangora [61J found (i)-(iii) by other techniques. Barratt,

Mahowald and Tangora [20J also found (iv), (vii), and (ix) by other techniques.

Milgram [81] found (i) and (ii) by using the Steenrod operations. Mukohda [88]

found (iv)-(vi) and (ix), partly by using the Steenrod operations and the cobar

construction, and partly by means of a minimal resolution.

Proof. Given (ii), (i) follows because hoh3rO = h6xo f 0, from which it follows

that taro f O. The only possibility is hOrO = sO' To prove (ii), apply Sq20 to the

relation h2dO = hOeO' To prove (iii), apply Sq19 to the relation

hleO = hOfO and use the fact that hlmO = O. To prove (iv), apply Sq2l to the

relation h2dO = hOeO and use the fact that h6el = O. To prove (v), apply Sq2l to

the relation hleO = hafo and use (iv) to show that hfxo = O. To prove

(vi), apply Sq22 to the relation hleO = hOfO to show that h2xO = hfel + h6fl' and

apply Proposition l.ll.(iii) to show that this is O. For (vii), we apply Sq22 to

hOcl = O. Similarly, Sq2l applied to hlfO = 0 yields (viii). Finally, (ix) follows

by applying Sq24 to the relation h2eO = hOgl to get = h3xO + and noting

that = h2(h1fl) = O. The calcultion of is possible because Sq24gl =
g2 by definition, while Sq23gl = 0 for dimensional reasons.

Now we examine the differentials implied by the squaring operations in the ci'
di, ei and f i families. The results we obtain for t-s 45 are all new. In the

range t-s 45 they are due to May [66], Maunder [65], Mahowald and Tangora [61],

Milgram [81] and Barratt, Mahowald and Tangora [20] with the exception of d3el =

hlt, which is new and corrects a mistake in [20J. As noted by Milgram [81] the

proofs using Steenrod operations are usually far simpler and more direct than the

original proofs. In addition, when they replace proofs which relied on prior

knowledge of the relevant homotopy groups we obtain independent verification of the

calculation of those homotopy groups.

If x E let us write x E (s,n) or x E (s,n)r for convenience. Theorems

1.1, 1.2 and 1.3 imply that

ct.",j, ",jct,.x'I
where k = j-n, v = 8a + 2b if j+1 = 24a+b(odd), and a detects a generator of 1m J

in 1TV_1S0

We start with a general observation about families {ai} with ai+l

a i E(s,ni) then

S(ai)' If

2(ni_1 + s)
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If N is the integer such that 2N-l < s+2 2N then the differentials on the elements

Sqj ai depend on the congruence class of ni modulo 2N• Clearly, ni = -s modulo 2N if

i N. Thus, the differentials on all but the first N members of such a family

follow a pattern which depends only on the filtration in which the family lives.

Consider the ci family. We have Co E (J,8)"" so in general ci E (J,2i.ll-.3).

Proposition 1.16. (i) cl EE", while d2ci = hOfi_l for i 2

(ii) d2fO = h5eo' f l EE5, and d.3fi = hlYi_l for i > 2

(iii) d.3cf = hbti+2ri_l for i 2

2Note. We will show shortly that d2hoYi_l = hQhi+2ri_l. This, together with (iii)

implies that = O.

Corollary 1.17. d2eO c5 and v 64 'I 0, where 64 is the Arf invariant one element

detected by

Proof. Since Co E (3,8)"" Sq*cO = (C5,hoeO,fo,Cl) is carried by

S16,.. (S17V 2 e18) "S19. Therefore cl EE", and d2fO = h§eo• Applying

Proposition 1.11 we find that d2hleO = d2hOfO = h6eo = hido = hlc6, from which it

follows that d2eO = c§.

Since cl E (.3,19)"" Sq*cl (cf,hlel,fl,c2) is carried by =

(S38 e39 e40) e41• Therefore d2c2 = hOfl and d3f l hlcf = 0,

so that flE for dimensional reasons. Since c2 = <h3,h2,ht> and c2 IE"" the Toda

bracket <o,v,64> does not exist. We shall show in the next proposition that EE",

so that 64 exists. Since ov = 0, it follows that v6 4 I O.

Now assume for induction that d2ci = hOfi_l and that i > 2. We can arrange the

relevant information in the following table.

j (mod 4) Sqjci j 2 kSq (hOfi_l) v a

1 2 2 0 2 hlc. hOhi+2ri_lJ.

2 hiei
2

+ hlhi+2ri_l 1 1 hehOYi_l

3 f i hlYi-l 2 4

4
2

.3 1 hOci+l hOfi
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222
It follows that dJci hOhi+2ri_1' d2hiei = hoci, dJfi = h1Yi-1 and d2ci+l =

hOfi• This completes the inductive step and finishes the proof of Propositon 1.16

and Corollary Note that we have omitted d2hiei from the statement of the

proposition because it will follow from our calculation of d2ei below.

Proposition 1.18. (i) d2k
2hOdO

2 2(ii) dJro = hldO and h4 EEoo

(iii) r i EE3 for i 1

(iv) di E E3 for i 1

Note. Mahowald and Tangora show 161] that dl is actually in Eoo ' not just EJ• Also,

the proof given here that E E
oo
is much simpler than the proof in 161].

Proof. Since dO E (4,14)00' Sq*dO = 0, rO' 0, dl) is carried by l4p18 whichE 14'
has attaching maps as shown

18 dl
17

16 r o
15

14 d20

Now dJhOh4 = hOdO implies = 0 in E4• The only possibility is that d2k =
hOd8. This implies that 2TI29 O. Since the boundary of the 16 cell carries

plus twice something, we get dJrO hIdt. Nothing is left for h2 to hit, so h2 E Eoo •

4 4
Finally, d2{dl) = hO·O = 0 so d1 E EJ• Now assume for induction that i 1 and

di E EJ• The terms SqjdJdi in the differentials on Sqjdi will not contribute until

E5, so will not affect the proof of (iii) and (iv). Since Sq*di = (df,O,ri,O,di+1)
we find that d2ri = hO·O 0 and d2(di+ l) = hO·O = 0, proving (iii) and (iv) and

completing the induction.

Proposition 1.19. (i) d2mO to EEl l and d3e1 = hltO

(ii) ey E E5, d5ml Sq39hl t O' d2tl = haml' d3xl = h1ml and d2e2 = hOxl•

(J." J." J." ) i 2 2 n.If i 2 and n = 2 ·21 - 4 then d
3ei

= hOeix i_l + Sq nOxi_l,
n+l n+J

d;mi = Sq hOxi_l' d2t i hami' dJxi = Sq hOxi_l' and d2ei = hOxi_l·

Proof. By Corollary 1.17, d2eO The information needed to calculate the

differentials on the Sqjeo is most conveniently presented in a table.
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j sqJ eo k v a SqJc2 conclusion0

17 0 2 hI 0 2 0d3eO

18 1 1 hO d2mO
2rna hOeO

19 to 2 4 h2 0 d3tO = 0

20 Xo 3 1 hO 0 d2xO = hoto = 0

21 el 4 2 hI 0 d3el hIto

We omit d3e02 and d2xO = 0 from the proposition because they also follow simply for

dimensional reasons. Similarly, since to is in E4 it must be in for dimensional

reasons. Thus (i) is proved.

Since d3el =hltO' the term SqJhl t O will contribute to d5SqJe l if Sqjel lives

that long. Again, the information is most conveniently organized into a table.

J Sqje l k v a conclusion

2 238 el 0 1 hO d4el hOelhltO = 0

39 ml 1 8 h3 d5ml Sq39hl t O

40 t l 2 1 ho d2tl homl

41 xl 3 2 hI d3xl hlml

42 e2 4 1 ho d2e2 hOxl

All of (ii) follows immediately. Now assume for induction that d2ei = hOxi_l and

i 2. Again we organize the information in tabular form. Let n 2i.21 - 4 so

that ei E (4,n}2'

j SqJei k v a conclusion

e? 0 1 ho
2 + SqnhOxi_ln d3ei

n+l 1 2 hI
n+lSq hOxi_l

n+2 t i 2 1 ho d2ti = homi

n+3 xi 3 4 h2 d3xi = Sqn+3hOxi_l

n+4 ei+l 4 1 ho d2ei+ l = hOxi

This establishes (iii) and completes the induction.
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Note that three of the 5 entries in the above table satisfy v = k+1. The

corresponding differentials therefore contain terms of the form axdrx, specifically

ahoeixi_l in this instance.

Only one of the differentials on the Sqj f i is interesting.

Proof.

If n =

n+2 is

The terms in d*Sqjx involving do not

2i.22 - 4 so that f i E (4,n) then sqn+lfi =

even the proposition follows immediately.

contribute to d2Sq
jx.

n+2
hi+]ri and Sq f i = Yi' Since

This completes our sampler. We have calculated only about one fourth of the

differentials found by Mahowald and Tangora, but they include some of the most

difficult. The remaining differentials follow more or less directly from those

calculated here just as in Mahowald and Tangora's original paper [611.

2. Extended Powers of Cells

In order to study Steenrod operations on elements of the Adams spectral

sequence which are not permanent cycles, we need a relative version of the extended

power construction. The extended power functor En X(p), for n C Ep ' factors as

the composite of the functors

and Y
n

If we replace X by a pair (X,A) then X(p) is replaced by a length p+l filtration

X(p) ) ••• ) A(P) of n spectra and we may apply En Kn (7) to this termwise. The

resulting diagram is the relativization which we need. While the formalism applies

to any pair (X,A), we will confine attention to pairs (CX,X), where CX is the cone

on X, both for notational simplicity and because the pth power of such a pair has

special properties which we shall exploit. In particular, note that Lemma 2.4 is

the geometric analog of the fact that a trivial one-dimensional representation

splits off the permutation representation of n C Ep on RP. Most of this section is

devoted to this fact and its consequences.

An element XE Es,n+s(X,Yl can be represented by a map of pairs
r

(CX,X) ---.. (Ys,Ys+r)'

Extended powers of (CX,X) can be used to construct a map representing SEpjX. The
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final bit of the section establishes the facts about extended powers which will

enable us to construct and analyze such a map.

We shall work first in the category of based n-spaces and based n-maps and the

homotopy category of based n-spaces and n-homotopy classes of based n-maps with weak

equivalences inverted. The results are then transferred to the category of n-spectra

by small smash products, desuspensions, and colimits.

Let I be the unit interval. We choose °as the basepoint, justifying our

choice by the resulting simplicity of the formulas in the proof of Lemma 2.4. For a

space or spectrum X, let ex = X" L, The isomorphism X =0 X {O,I} and the

cofibration {O,l} C r induce a cofibration X + ex with cofiber ZX.

Definition 2.1. For a space X, define a zp-space fi(X) by

r. (X) = ••• 1\ c E (eX) (p) I at least i of the c. lie in X}.
P J

If X is a spectrum, define a zp spectrum I' i (X) = X{p)" I' i (SO).

Lemma 2.2. (i) For a space X, fi(X) is naturally and Zp equivariantly homeomorphic

to X{P)A fi{SO).

(ii) (Z"'X) _ Z"'fi(X) if X is a space.

(X) is a Zp-cofibration.

(iv) fi{X)/fi+l{X) is equivalent to the wedge of all (i,p-i) permutations

of X(i)"(ZX)(p-i). In particular, if (p) is the permutation

and fp{X) =0 X{p)·

(v) fleX) =0 zp-lX(p) as zp spaces or spectra, where sP-l has the zp action

inherited from the p-cell fO(SO) = r(p).

Proof. (i) follows immediately from the shuffle map

(x At )A ••• t ) 1---+ (x " ••• AX ) A(t
l
" •.. At ).

11 pp 1 P P

(ii) is a consequence of the commutation of Z'" and smash products.

(iii) follows for spectra if it holds for spaces. By (i) it holds for spaces

if it holds for SO. For SO, it follows because f i (SO) is the (p-i) skeleton of a ew

decomposition of fO{SO) = rep).

Similarly, (iv) holds in general if it holds for SO, for which it is immediate.

(v) follows from the fact that fl{SO) is the boundary of the p-cell fO(SO).
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Remark 2.3: We will complete what we have begun in (Lv) and (v) above in lemma 3.5,

which shows that

The next lemma is the key result of this section. let I and Sl have trivial l:p

actions so that if X is a l:p space or spectrum then CX = X" I and l:X = X" Sl are

also.

lemma 2.4. There are natural equivariant equivalences fO(Xl

l:fl(X) = (l:X)(p) such that the triangle
o Cfl (Xl

III
commutes.

Proof. By definition and by 2.2 (i l we may assume X Sa. We define a l:p

homeomorphism fO(SO) + Cfl(SOl by

t

""""il" t

where t max{t i}. The inverse homeomorphism is given by

(tlA ••• "tplAt t---ttl"tt2"···"ttp

Commutativity of the triangle is immediate. The equivalence Efl(Xl = (EX)(P)

follows since l:fl(X) =Cfl(Xl/fl(Xl fO(Xl/fl(Xl = (EX)(P), the latter equivalence

by 2.2(iv).

Lemma 2.5. For any 1T C Ep and any 1T-free 1T space W, there are natural equivalences

«», fO(X) " C(WIX1T fl(X))

and l:(W I< (X)) WIX (l;Xl (p)
1T 1T

such that the following triangle commutes.

W l<
1T

Proof. By lemma 2.4, W"1T fO(X)

WIX1T(f l(Xl"Il = (WlX1T fl(Xl)I\I

similarly. Commutativity of the

{O,l} C 1.

W"'1T(
C(W IX 1T

triangle

(Xl 1\ Il and by 1.1.2.(iil

(Xl). The second equivalence follows

follows from naturality with respect to
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In the remainder of this section we shall restrict attention to the special

case of interest in section 4. The general case presents no additional difficulties

but is notationally more cumbersome.

Let C Ep be cyclic of order p and let W= SOO with the cell structure which

makes C*.IV :: .)"{, the usual Z [n ] resolution of Z. Let Wk be the k-skeleton of W.

As in V.2, is the lens space i k, and, by 1.1.3.(ii), if r i ri(SU-l) then
k k-l k

W IX 1T r i/W IX1T I' i " E f i • By Lemmas 2.2 and 2.5 we then have the following

corollary of Theorems V.2.6 and V.2.14.

Corollary 2.6:

and wk IX
1T

n-l r(n-l) (p-l)+k
E (n-L) (p-T )

En-l rn(p-l)+k
n(p-l)

Now note that Lerruna 2.5 also
_k-lcofiber of the inclusion W-

1T

and 1.1.3.(ii) it follows that

implies that wk f l \-J wk-l fa is the

I'1 + wk t<1T r I" By Corollary 2.6 or by Lemma 2.2

To get this equivalence in a maximally useful form, first consider a more general

situation. In order to analyze the Barratt-Puppe sequence of a map a:A + X one

constructs the diagram below.

(2.1) i(a: CA = X CA
Va

CA --j----. EA ji(i(a))
a2 CX --Ci(a) = X'-1i CAVi(a) CX

In diagram (2.1) the front and back squares are pushouts, a3

a2 = Ca = a 1\ 1, al is the obvious natural inclusion, and the
-1a
3
i(i(a)) are the beginning of the cofiber sequence of a.

fact about such diagrams will be used repeatedly.

is an equivalence,

maps a, i(a), and

The following obvious

Lemma 2.7. Let B + Y be a cofibration and let 1T:Y + Y/B be the natural map. For

any map

f:(Ci(a),X) + (Y,B),

we have 1Tfa
3

= fa l fa
2

(fai,fa):(CA,A) + (Y,B).

in [EA,Y/B], where fa.
1

is the map EA + Y/B induced by
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Proof. The only question is whether we should get fa l - fa2 or its negative. We

choose fa
l

- fa
2

for consistency with the Barratt-Puppe sequence signs. The point

is that a3 is a homotopy inverse to the map from Ci(a) to EA which collapses CX,

and the orientations on the two cones are determined by this fact.

Returning to the special case which prompted these generalities, let
k

a:;; + W- IX11" I'1 be the attaching map of the top cell of W IX11" fl' Then

diagram (2.1) becomes diagram (2.2) below.

(2.2)

snp+k-2 enp+k-1

I' k
-, f

1,,----- toW P<11" f 1

e
np

+

k-1 -1 · Ik
b<. r W '"

'IT 0 11"

Corollary 2 .8. Let B + Y and 'IT:Y + Y/B be as in Lemma 2.7.

f:(wK- "'IT f l
v wk-

l
"' 11" fO' wk-11X'IT f1) + (Y,B) we have 'ITfa 3

'lTnp+k_1 (Y/ B) .

For any map

- fa2 in

Let v = vp(n(p-1)+k) in the notation of Definition V.2.15, so that

a e: 'IT +k 2wk-1 t< factors through Wk-v IS fl' Then we may replace the frontnp - 'IT 'IT

face of diagram (2.2) by

wk-v " f l
wk-v np+k-1.. " "i ve

I
11" 'IT

wk-v l< f O
.. Wk-v np+k-l

t< fOve
11" 'IT

in which the np+k-1 cell is attached by a lift of a. This gives us a version of

Corollary 2.8 in which f need only map Wk-v 1><11" fl into B and the map fa2 factors

through Wk-v "11" fO'
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§3. Chain Level Calculations

In this section we define and study certain elements in the ce lLul.ar- chains of

W rO(,sn-l). In sections 5-7 they will be used to investigate thE' homotopy groups

of various pairs of subspaces of Vi 1x1f fO( ). Here we use them to determine the

effect in homology of a compression (lift) of the natural map Wk f (Sn-l) +
1f P

Wk P<1f fl(,sn-l).

Let f i = fi(,sn-l). Give en = C(,sn-l) the cell structure with (me n-cell x and

one (n-l)-cell dx , Let C*(?) denote cellular chains and C*(? ;R) = (:*(?) 0 R. Then

C*fO = <x,dx>P, the p-fold tensor product of copies of C*(en) = <x j dx>; and

i ::. np-j

i > np-j

We shall find it convenient to omit the tensor product sign in writ:.ng elements of

c*rj , so that, for example, xp-ldx denotes x 0 x 0 ... 0 x (>9 dx , Let W = S" with

the usual 1f-equivariant cell structure. Then C*Vi is the minimal re[;olution JYof Z

over Z[1f ] • Let

{

:J'{.

)Y(k)j = 0 J

< k

> k

so that J¥(k) = C*(Wk), where Wk is the k-skeleton of W. Then by 1.2.1,

c*(wk IX f.):= )\"(k) ® C*f.•
n ]. 1f 1

Let a be the p-cycle (l 2 ••• p) in 11 C and let n and ad on

C*f i by permuting factors. Following [68, Theorem 3.1] we define elements

t i E C*fO as follows. Define a contracting homotopy for C*fO by s(ax) = 0
and s(adx) = (_1)!a1ax.

Definition 3.1. If P = 2, let to dx2, t l
N = 1 + a + a2 + ••• + aP-l• Let

to = dxP , t l = dxp-lx,

t 2i = s({a-l - 1)t2i_l), and

t 2i + l = s{Nt2i)·

xdx, and t 2 x2 • If P > 2, let

Lemma 3.2. (i) If P = 2 then d(t2)

(ii) If p > 2 then d(tl) = to'

d(t2i) = (a-l -

and d(t2i +l) = Nt2i

1)t
2i_l

if i > O.
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(iii) If P > 2 then t p = (-l)l!Ir)n!xP and

t p_1 = mlxp-1dx + (m-1)I(a-1 - 1)Qxp-1dx

where m = (p-1)j2 and Q
m 2'

(a+1) L ia 1.

i=l

Proof. I i ) and (ii) are easy calculations, by induction on i for d(t2i ) and

d(t2i+ 1) using (a-1-1)N = 0 = N(a- 1-1) and ds + sd = 1.

In [68,Theorem 3.11 it is shown that t p = (-l)IDnmlxP and that

t p_1 = (m-1)IPxp-1dx, where P = a + a3 + ••• aP-2• Since P = m + (a-1 - l)Q,

(iii) follows.

Lemma 3.3. If P {i 2
n 1- i (2)2 (-1) ei e dt x )

e'+l ® dx
1 2

- 2ei ® xdx n = i (2)(-1) ® d(x )

Proof. We have d(ei) = (a + (_l)i and d(x2) = dx x + (_l)n x dx. Therefore

d(e i +1 ® xdx )

from which we obtain

i+1 i+1 2
(a + (-1) lei ® xdx + (-1) ei+ 1 ® dx

i+1 i+1 2
ei ® dx x + (-1) ei ® xdx + (-1) ei+1 ® dx

2 i
ei+1 ® dx (-1) ei ® dx x - ® xdx

i 2 im(-1) ei e d(x) (1 + (-1) lei e xdx

Lemma 3.4. Let P > 2. If i is odd then, in

If i is even then, in

e,+ 1 dxP (_l)mn+m m!e . e d(xP).
1 p- 1

C* (wi+p-1 IX )

11 '

p-1
® d(xP ) - p \' (-1) (jj21 e . . ® t.

1+p-J-1 J

Hence, for any i,
P mn+m p)e i +p_1 ® dx (-1) m! e i @ df x

'+ 1
in C*(W1 p- Z )f 1 , p'
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Proof. By Lemma 3.1 and the definition of y{ we find that if i is even then

[N['. .1® t . • ,. . ® t. I' j odd, j f 1l+P-J- J l+P-J J-

d(ei+p_j
@ t

j) T(e, , 1 @ t . - e, , ® t , 1) j even
l+P-J- J l+P-J J-

Ne, 2 @ t l + e, 1 ® to j = 1a.-p- l+P-

and if i is odd then r jl®t.
Nei+p_j (8) t. 1 j odd, j f 1l+P- - J J-

d(e i+p_j @ t j) = Ne. , 1 (8) t . + Tei+p_j (8) t. 1 j even
l+P-J- J J-

Te, 2 @ t l - e i+p_l (8) to j = 1 ,l+P-

where N = 1 + ••• + p-l
a andT a - 1.

Suppose i is odd. We define

A routine calculation then shows that

and hence, by Lemma 3.2.(ii) and (iii)

m me,+ 1 (8) to 'v (-1) e, (9 Nt 1 = (-1) e i @ d lt )l P- l P- P

This establishes the result for odd i.

Now suppose i is even. We define

mn+m P
(-1) m! ei '3 d l x i.

j-l
c = (-1) (Mei+p_2j (8) t 2j + ei+p_2j+l @ t 2j_l)

where M = + + ••• + + (p-l). One easily checks that

N = TM + P = MT + p. A routine calculation then shows that

m j-l
d Ic ) = ei+ p_l @ to + p L (-1) (e.+ 2' @ t 2, 1 - e, 2' 1 @ t 2,)j=l lP-J J- l+P-J- J

m
- (-1) e, @ Nt l'

l P-

from which the result follows for even i by Lemma 3.2.(ii) and (iii) just as for

odd i.
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In order to prove the compression result (Lemma 3.6) we need to show that,

ignoring the Lp action, fi(x) is just a wedge of suspensions of X(p).

let

that

In 1;3 or 1;4, r.rx:
J.

V
(p-i,i-l)

Proof. By Definition 2.1 and Lemma 2.2. (i) we may assume X = SO. Again

f i = fi(SO). Since f O = enp is contractible, C*fO is exact. It follows

C*fi is exact except in dimension np-i and that

Lemma 3.5.

k f np-i

k = np-i

Thus is free abelian, being a sUbgroup of the free abelian group Cnp_ifO'

By the Hurewicz and Whitehead theorems is a wedge of np-L spheres. Splitting

C*fO into short exact sequences shows that

rank H .fi + rank
np-a

= rank C .T = (p-i i).
np-a ° '

(Recall (a,b) = (a+b)l/albl). Since has rank 1 by Lemma 2.2(v), we see by

induction on i that

rank (p-i,i-l).

We are now prepared to prove the key result.

Lemma 3.6.

i+le:W
11

i+l i+l .The natural inclusion W ec f. 1 ... W '" f. is homotopfc to a map
11 J + n J

i ...i+p-l i
f j+l ... W fj• In integral homology e = ee ••• e:w "'lIfp'" W "'lIfl

satisfies

(i)

(ii)

e*(e
i
+
p_l

e (dx)P) = (_l)mn+mml ® d(xP)

2 i 2e*(ei+l ® (dx) ) = (-1) ei ® d(x )

if p > 2 and i is odd,

if P 2 and n t i (2),

where we denote homology classes by representative cycles. In mod p homology, (i)

and (ii) hold for all i and n. In integral homology e:Wp-l "'n f p ... WO"'n f 2 = f 2
satisfies

(iii) if P > 2.

i+lW "'n f j+l is np+i-j dimensional while

by the preceding lemma. In order to evaluate e*,

and consider the commutative triangle,

Proof. The map compresses because
Wi+llx f.;Wi", f. = V,sllp+i-j+l

n J 11 J
first assume p > 2
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Wi+p-l b<

11

case implies e* is correct up to a
i+l i

from W b<1I r l to W b<1I r l

in which the unlabelled maps are the natural inclusions. In mod p homology the

vertical map is an isomorphism, so it suffices to note that

e.+ 1 @ dxP (_1)mn+mm1e. @ d(xP) by 3.4. Now assume i is odd. The verticalJ. p- J.
map is the quotient map Z + Zp' and the mod p

mul t.LpLe of p , The indeterminacy of the lift

consists of maps

in which c is projection onto the top cell, b is arbitrary, and a is the attaching

map of the np+i cell. On integral homology c* is the identity and a* is multiplica-

tion by p. Thus it is possible to choose the lift e such that e* is as stated in

integral homology. (This is a general fact about maps obtained by cellular approxi-

mation, but we only need it here so do not bother with the general statement.)

The argument for p = 2 is exactly analogous to that just given.

§4. Reduction to three cases

In this section we start with an overview of the proof, then establish

notations which we shall use in the remainder of this chapter, and finally start the

proof of Theorems 1.1, 1.2 and 1.3 by showing that it splits into three parts and by

proving some results which will be used in all three.

If r j = r j (Sn-l) as in Section 2, we would like to prove Theorems 1.1, 1.2 and

1.3 by doing appropriate calculations in a spectral sequence Er<S, 1') where D is an

inverse sequence constructed from the Wi r. 's. However, there are technical
r p J

difficulties which have prevented this. If a proof can be constructed along these

lines, it should immediately imply that Tp (see Theorem 1.2) is a linear combination

of S6pj-ix and xP-k(drx)k for various 6, i and k, with coefficients in E2(S,S). The

coefficient of the lowest filtration term would be a, and the determination of the

other coefficients would give complete information on the first possible nonzero

differential on SE:pjx.

The proof we give runs as follows. The spectrum Wb<r r j is a wedge summand

of Wb< r., 11 C r cyclic of order p. In a very convenieRt abuse of notation, we
11 J. P

will write DJ. r j for the np + i-j skeleton of this summand. There is a homotopy

equivalence of (ek+np, Sk+np-l) with (Dkro,Dk-lrO V The element SE:p.ix is
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represented by a map of (rf:ra' nk-lra v ) into the Adams resoluton of our

ring spectrum Y. Thus, we must study lifts of the boundary nk-lra v Dkr1 in order

to compute d*Sgpjx. Since rf:rl is homotopy equivalent to the stunted lens space

n n(p-l)+k k. k Dk-lr
a
v Dkr

l
Dk_l/Dk-lrl Sk+np-l.z Ln(P_l) and D "o IS the cone on D r l, r

Now Dk+P-lrp is also a stunted lens space and the natural inclusion

Dk+P- l rp
Dk+P-lrl _kfactors through iTT1 (Lemma :3.6). The resulting map

nk+P-lrp ... nkr l is equivalent to the cofiber of the inclusion of the bottom cell of

nk+p-1rp' Thus Dkr IDk-Ir Dk+P-lr IDk+P-2r • The top cell of nk+P-lrp carries
IIp P

the element sgpj drx and this is where this term comes from. The other term comes in

because we are given a map of nk-lrav nkr l, not nkr1/nk-lr l, into the Adams

resolution. Thus we must find another cell whose boundary is the same as the

boundary of the top cell of nkr l or nk+p-lr , and we must lift it until it detects
p ,

an element in homotopy or until it has filtration higher than that of SgpJdrx.

Since Dir a CDirl, we can simply cone off the attaching map of the top cell of nkr l
as long as this cell is nontrivially attached. This produces the terms

and aospjx. If the top cell of nkr l is unattached, the top cell of

Dk+P-lrp may still be attached to the cell nP-2r p ' There is a nullhomotopy of this

cell in r l which carries xp-ldrx. This is the source of the terms

Finally, when the top cell of nk+P-lrp is unattached, it carries the entire

boundary.

There are two complications to the above picture. First, the map nk+P-lr p ...

Dkrl is a lift of the natural inclusion Dk+P-1rp ... nk+p-lr l and does not commute

with the maps into the Adams resolution until we pass to a lower filtration. This

necessitates extra work at some points. Second, the attaching map ataches the top

cell to the whole lens space, not just to the cell carrying pj -vx or spj -e-lx• As

the filtration of the possibility arises that a piece of the attaching

map which attaches to a lower cell will show up in a lower filtration than the term

-vx or npj -e-lx• This possibility accounts for the cases in which we do not

have complete information.

Now let us establish notation to be used in this and the remaining sections.

As in section I we assume given a p-Iocal ring spectrum Y and an element

x g E;,n+s(S,Y), the Er term of the ordinary Adams spectral sequence converging to

n*Y. We wish to describe the first nontrivial differential on sgpjx in terms of x

and drx. (Here to = 0 if P = 2.) Recall from §l the definition

Let f' -nk = (2j-n)(p-l) _ g

P 2

p > 2
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be an Adams resolution of Y and let

be its pth power as in IV.4. Represent x by a map (en,Sn-l) + (Ys,Ys+r) and let

r· = r.(SO-ll be the i t h filtration of ra enp as in Definition 2.1. Recall that
]. ].

the spectrum W ri is a wedge summand of W ri where n C Lp is cyclic of
p

order p. In the remainder of this chapter, Dkri will denote the np+k-i skeleton of

this summand. Let us use generically to denote the composites

the maps of pairs and unions constructed from them, and their composites with the

maps Yj +t + Yj• We will use the following consequence of Lemma 3.6 repeatedly.

Recall that e is defined in Lemma 3.6.

Lemma 4.1. The following diagram commutes.

k

DI:'
Yps+r-k

Y ----.... yl
ps+pr-k-p+l ps+r-k-1

Proof. In the diagram below, the triangle commutes because r 1 and the

quadrilateral commutes by Lemma 3.6.

k+I .... Dkr.

Dl 'j" lJ
Yps+(j+llr-k-1 Yps+jr-k

yJs+(j +llr-k-2 .. yL+j r-k-l

The lemma follows by composing the diagrams for j = I ,2, ••• ,p-1.

In IV.2 we constructed a chain homomorphism p + ',where is the

eobar construction, which we used to construct Steenrod operations, and in IV.5 we

showed that i; induces such a homomorphism. In particular, Definition IV.2.4 says



197

and

The following relative version of Corollary IV.5.4 gives us maps which represent

these elements. In it we let (; be the cobar- construction C(Zp' A.p,H*Y) so that

's,n+s = vn(Ys/Ys+I) = vn(Ys,Ys+l) and let )Y= C*(W) so that >Vk = -

= vk(Wk,Wk-I).

Lemma 4.2. If e E JVk is represented by e E then q,*(e 0 xP ) is

represented by the composite

q,*(e ® xP)
(enp+k,Snp+k-l) ------------_to (Y Y )

ps-k' ps-k+l
k Il k k-l

(e IX fO,e IX flUS IX fO)

,; : "rOJ
ul

(wk fO'wk rlvwk-l f O) --__.. (wk '" F wk ec F vwk-IlX F )
.. .. .. I ec xP v ps' ps+r v ps

v

where u is the passage to orbits map.

Note: If e E )Vk is a Z[vl generator (e.g. e = aiek for some i) then the vertical

composite in the diagram is an equivalence by the same argument which was used to

construct diagrams (2.1) and (2.2).

Proof. This is simply the relative version of Corollary IV.5.4. The natural

isomorphism n*(X,A) = for cofibrations A + X enable one to pass freely

between this version and the absolute version of IV.5.4.

We shall refer to the boundary of the map in Lemma 4.2 so frequently that we

give it a name.

Definition 4.J. Let aq, E be the restriction to sPP+k-1 of the map

h(ek0 xP) of Lemma 4.2. Let 1 E be the map with Hurewicz

image
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o k=O or k odd, p > 2

o k+n odd, p = 2

ppe
k
_
l
® x o f keven, p > 2

k 2(-1) 2e
k
_
l
® x k+n even, p 2

(i)

(ii)

(iii)

Lemma 4.4. = ( II
1 is an equivalence

Orienting the top cell of Okrl correctly, the homotopy class 1

contains the map a 3 of diagram (2.2).

( ) f k Dk- l __ Snp+k-lProof i holds because we are in the Hurewicz dimension 0 D r1 v r0

so the Hurewicz image of 1 is sufficient to determine 1, and its Hurewicz image is

the boundary of the cell ek ®xp• Statement (ii) is immediate from the Hurewicz

isomorphism, and statement (iii) is immediate from the fact that a 3 is an

equivalence.

The differentials on ee:?ix are given by the successive lifts of (-l)j

when p > 2, and of when p = 2. Corollary 2.8 and the discussion following it

show that the attaching maps of lens spaces, and hence elements of 1m J, enter into

the question of lifting this boundary. In the remainder of this section we

establish various facts about the numerical relations between the filtrations and

dimensions involved, the last of which will enable us to split our proof into three

very natural special cases.

Lemma 4.5. If P > 2, the generator of Im J in dimension jq-l has filtration j.

If P = 2 the generator of Im J in dimension 8a+e: (e: = 0,1,3,7) has fil tration

4a+e: if e: f 7, and 4a+4 if e: = 7.

Proof. The vanishing theorem for Ext A. (Zp,Zp) says that Ext s t 0 if

o < t-s < U(s), where U(s) = qs-2 if P 2 and

Sa 1 e: o

e: 2
U(4a+e:)

8a + 1

8a + 2

e: 1

8a + 3 e: :3

if P = 2 by [4] and [56]. First suppose p > 2. The 1m J generator in dimension

jq-l is detected by an element of ExtS,t where t-s = jq-l. Hence jq-l U(s) =

sq-2, Which implies j ::: s , Now, suppose p = 2. A trivial calculation shows that if
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s > 4a + 0,1,3,4, then U(s) > 8a + if i 4, 8a + 7 if

immediately implies the lemma.

4. This

We apply this to prove the following three lemmas. As in §l let v be

vp(k + n(p-l)), and let f be the Adams filtration of the generator of 1m J in
1f
v
_1SO.

Lemma 4.6. Assume p > 2. If v = k+l and f :: r-l then pr-p-k+l < 2r-I.

Proof. Equivalently, we must show k > (p-2)(r-l). By Lemma 4.5

f < Y.. = k+l •
- q q

Thus k+l :: qf :: q(r-l) and hence it is sufficient to show that

q(r-l) - 1 > (p-2)(r-l). This is immediate since r > 1.

Lemma 4.7. Either min{pr-p+l,v+f} < v+r-1 or r = p = 2 and v

Proof. Suppose p > 2. Then f 5 v/q. If pr-p+1 > v+r-1 then

v (p-1)(r-1) + 1 and hence

f < r-1 + ! < r-1.
- 2 q

1 or 2.

Now suppose p = 2. We must show that if r :: v then f < r-1. It suffices to

show f < v-I. This follows from Lemma 4.5 except when v 1,2, or 4. In these

cases f = 1 so the lemma holds when v = 4. If v =1 or 2 then f < r-l unless

r = 2. This completes the lemma.

Lemma 4.8. Exactly one of the following holds:

(a) v > k + p-l,

(b) v k+1 and if p > 2 then n is even,

(c) v s k.

Proof. There is nothing to prove if p = 2, so asswne p > 2. We must show that if

k < v 5 k+p-l then v = k+l and n is even. Recall that k and

v = vp(k+n(p-l)) vp(2j(p-1)-g). If = 0 then v 1. Hence k = 0 and n 2j so

that (b) holds as required. If s = 1 then v = q(l + Dividing the

inequalities k < v 5 k+p-l by p-l yields

1 . 1
2j-n- - < (J)) < 2j-n - + 1

p-l P

which has only one solution: 2(1 + = 2j-n. Hence n is even and

v = (2j-n) (p-L) = k+I.
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Lemma 4.8 is a consequence of the splitting of the mod p lens space into wedge

summands, the summand of interest to us being the Ep extended power of a sphere. To

see the relation, recall that v tells us how far we can compress the attaching map

of the top cell of wk f l = En- l When v k, it compresses to

wk-v f l and no further. When v > k it is not attached to wk fl' However,

recall that there are equivalences

n-l
E

1
n-l

1:

rn(p-l)+k
(rr-L) (p-l)

rn(p-l)+k
n(p-l)

by Corollary 2.6, and that the top cell of 'If f l is the image of the top cell

of wk+p-l IX I' by Lemma 3.6. When v > k this cell compresses to wp- 2 IX f.
n P n P

The first possibility is that it goes no further, and in this case the wedge summand

of the lens space we are interested in has cells in dimensions n(p-l) and n(p-l)-l

so that n must be even. By the splitting of the lens space into wedge summands, the

next possibility is v = k+p-l, which would have the top cell of W- IXp f p
attached to the bottom cell. In fact this cannot happen because the attaching map

is in 1m J and thus is not in an even stem. So v > k+p-l is the only possibility if

v > k+l, and this says that top cells of wk+p-l IX f and vf IX f l are unattached.
P.

This "geometry" explains why the differentials on I3 s pJx are so different in these

three cases. We shall start with the simplest of the three cases, and proceed to

the most complicated.

§5. Case (a): v > k+p-l

Since v > k+p-l 1, it follows that s

say that

1 if P > 2. Thus Theorems 1.1 and 1.2

pidx
r if P 2

and d 13 _; -I3Pjd x
+1 rx = rpr-p if P > 2.

Theorem 1.3 follows automatically from these facts, so these are what we shall

establish.
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By Lemma 4.1, the following diagram commutes.

ek+p 1 k k k-1
D - rp -----==----'"" D r1 ------",. D r1v D r0

J
ps+r-k

Eps+pr_k_p+1 ----.,.,. EpS_k+1

Because v > k-p-L, the top cell of Dk+P-1 r is not attached (Corollary 2.6 andp
Definition V.2.15). Thus there exists a reduction p« 'lfnp+k_l(rf:+P-1rp) whose

Hurewicz image is ek+p_1 0 dxP (it is easy to check that ek+p_1 0 dxP generates

Also, v > k+p-1 1 immp1ies that k is odd if P > 2 and that k+n is odd

if P = 2 by Proposition V.2.16. Combining Lemmas 3.6 and 4.4 we find that is

a lift of when p = 2, and of when p > 2. Applying Lemma 4.2 or

Corollary IV.5.4 we see that represents 0dxP). Thus, if p = 2 we

have

If P > 2, we have

d 13r:Jxpr-p+1

mn+m-l _i
(-1) (v(n)/mlv(n-l»l3rdrx.

It is easy to check that v(n)/mlv(n-l) := (_l)mn+m mod p so that dpr_ p+ll3pjX
-l3pid r X .

§6. Case (b): v k+1

We will begin by considering p = 2. Theorems 1.1 and 1.2 say that

d2r_ lpix pidrx if 2r-1 < r + f + k,

d2r-1pi x pidrx + 1fidr X if 2r - 1 = r + f + k, and

dr+f+kpi x lrxdrx if 2r-l > r + f + k.

Since the filtration f of is positive and r 2, Theorem 1.3 follows from Theorems

1.1 and 1.2.

Let N = k+2n-1 and let C2 E 'lfN(rf:+1r2,f2) be the top cell of rf:+1r2 with its

boundary compressed as far as it will go. Then the Hurewicz image
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h(C2) = ek+l ® dx2 and aC
2
= a = a

2(k+n)
E: ll

N_lf
2 = llkSO Since r2 S2n-2 and

r /f2 S2n-l V S2n-l by Lemma 2.2, the Hur-ewfcz homomorphisms in

are isomorphisms. Let R E: 1l2n_l(fl,f2) satisfy h(R) = x dx eO® x dx in the

notation of §]. Then aR E: 1l
2n_2f 2

is an equivalence since h(aR) dx 2 = e
O
® dx

2

Let a also denote (Ca,a) E: llN(e 2n-l,S2n-2). Let i be the natural inclusion

i:(fl,f2) + (ok-l r O, r 2 ) if k > 0 and let i = 1:(f1,f2) + (f1,f2) if k = O. Let eC2
denote (e,1)*(C2) E: llN(Dkf 1,f2).

Proof. First note that eC2 v iRa is defined since aC2 = a (iRa) a E: llN_lf2' By

k k-1
Lemma 4.4, = !;*(eC2 viRa) will follow if eC2 V iRa E: llN(D flvD f O) has

Hurewicz image (-l)kek® d(x2), since v2(k+n) = k+1 implies that either k+n is odd

k k-1 _k k-l
or k = O. If k 1- 0 then n tD r 1 V D r 0 + IFf liD r 1 is an equivalence and Lemma

- k k-l
2.7 says that 1l(eC2 v iRa) = eC

2
E ll

ND
f/D "i since iRa factors through

Dk-lf l• Then e*h(C
2)

= (-l)kek® d(X2) by Lemma ].6 (since k+n is odd)

and we are done. If k " 0 then n is even, since v2(n) " 1, and eC2 v Ra E 1l2n_lfl'

2 S2n - 2 2 2Also, a ,,- E 1l2n-2 since h(aC2) = d(e l ® dx )" (a.-l)eO ® dx

" -2eO ® dx
2
• To compute h(eC2 uRa), project to fl/f2 since H:2n-lfl + H:2n_lfl/f2

is the monomorphism which sends eO ® d(x2) to eO ® xdx + eO ® dx x, By Lemma 2.7 ,

2n-1 -
11(eC2v Ra):S + f 1 + f1/f2 equals eC2 - Ra so

h(1l( eC
2

V Ra) ) h(eC
2)

- hl Ra )

2
"e*(el ® dx ) + 2eO® xdx

"o® (dx lx "o® xdx + 2e O® xdx

"o® (dx )x + "o® xdx ,

eO ® d (x 2) and we I re done, proving Lemma 6.1.
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Since !;*ac2 E 1I*Y2s+2r' !;*(eC2 v iRa) = !;*(eC2) - !;*(iRa) in

1I*(Y2s-k+l'Y2s+2r)' Elf Lemma 4.1 (or 3.6), !;*(eC2) and !;*C2 have the same image

in 1I*(Y2s-k+l'Y2s+2r)' Since h(C2) = ek+l ® dx2, !;*C2 E 1I*(Y2s-k+2r-l'Y2s+2r)

represents pjdrx by Lemma 4.2. Similarly, ht R) eO <8> x dx implies that

!;*R E 11* (Y2s+r'Y2s+2r) represents xdrx, and hence !;*(Ra) E 1I*(Y2s+r+f'Y2s+2r)

represents This completes case (b) when p 2.

When p > 2 (and v = k+l) we will treat k = 0 and k > 0 separately. First

suppose k = O. Then v = 1, n 2j and E = O. Also, f = 1, a = aO E E:,l(S,S) and

a E 11OS is the map of degree p. Thus, we must show

Heuristically this is exactly what one would expect from the fact that drxP

p(Xp-ldrX). That this is too casual is shown by the fact that we have just proved

(for p = 2) that

The extra term arises because when we lift the map representing 2xd2x to the next

filtration, we find also the map representing plld2x which we added in order to

replace xd2x + (d2x)x by 2xd2x. Thus, our task for p > 2 is to show the analogous

elements can always be lifted to a higher filtration than that in which aoXp-ldrX

lies. The following lemma will do this for us.

Lemma 6.2. There exists elements

Cl = pX + pY + Z in

h(Cl ) = eo® d(xP),

h(X) = eO® xp-ldx.

Cl E 1Inp_lfl

X E "np-I(fl'f2 )

such that

1 1Y E lInp_l (D f2,f2V D f3)

Z E "np-I (n2fyD
lf

3vn2f4)

1 2 2 1 2
1Inp_l(D flvD f 2,f VD f

3
vD f 4),

and

Proof. Since np-l is the Hurewicz dimension of all the spectra or pairs of spectra

involved, we may define Cl,X,Y and Z by their Hurewicz images. Thus Cl and X are

given, and we let

1 -1 1
h(Y) = "i (i9 Qd(xP Idx - m! "i ® t p_2 ' and

h(Z) 1
- m! e2 ® Ntp_3

As in section 3, N = I and Q
m 2" " 1I 1. We also let M I and
i=l
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N-p. Define

® Qxp-l dx

d(C) = h(Cl) -ph(X) - ph(Y) - h(Z)

which shows that Cl = pX + pY + Z.

By lemmas 4.4 and 6.2, E ,,*Yps+l is the image of s*Cl E 1T*Yps+r• lemma 6.2

also implies that

in ,,*(Yps+r-l,Yps+2r). Since s*Y EO 'rr*(Yps+2r-l,Yps+2r) and

s*Z E 1T*(Yps+]r-2,Yps+]r-l) it follows that s*Cl =Ps*X in 1T*(Yps+r-l,Yps+2r) and

that = Ps*X in ,,*(YpS+l,Yps+2r). lemma 4.2 implies that

s*X E 1T*(Yps+r,Yps+2r) represents xP-ldrx and hence Pi;*X lifts to 1T*(Yps+r+l,Yps+2r)

where it represents aoxP-ldrX. Finally, IV.].l implies

d pJ0 _ P _ P-ld
r+l x - dr+lx - aax rX•

Now suppose that k > o. Then v = k+l is greater than 1 and hence congruent to

o mod 2(p-l) by V.2.l6. Also by V.2.l6, EO = 1 and k (2j-n)(p-l)-EO is therefore

odd. lemma 4.4 then implies = s*( i ) with h( t ) = -ek ® d(xP). The next three

lemmas describe the pieces into which we will decompose In the first we define

an element of "np-l of the cofiber of e :nP-2f p + f l, which we think of as an element

of a relative group 1Tnp_l(fl,nP-
2f
p). In order to specify the image of such an

element under the Hurewicz homomorphism, we use the cellular chains of the cofiber

in the guise of the mapping cone of e*: C*nP-2f p + C*f1• That is, we let

Ci(f l,nP-
2f
p) = Cifl ® Ci_lnP-

2f
p

with d(a,b) = (d(a) - e*(b), - d(b».

Lemma 6.]. There exists REO "np_l(rl,nP-2r p) such that

(i) h(R) = (-l)m-leo@tp_l, ep_2 ® to) EO

(ii) h(aR) = ep_2 ® to = ep_2 ® (dx)P, and

(iii) aR EO 1Tnp_2nP-2fp is an equivalence.
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Proof. Since d{ea ® t p_l) = Tea ® t p_2 by lemma 3.2 and e*(ep_2 ® ta) =

m-L
(-1) Tea ® t p_2 by lemma 3.6.(iii), and since d(ep_2 ® to) = a, it follows that

((-l)mea ® t p_l,ep_2 ® to) is a cycle of (f l,nP-
2f
p)' Since f l = Snp-l and

nP-2r = the Hurewicz homomorphism is onto and R satisfying (L) exists. Now
p

(ii) is obvious since the boundary homomorphism simply projects onto the second

factor. Part (iii) is immediate from the fact that ep_2 ® to generates HuP_2nP-2rp'

Now we split R into a piece we want and another piece modulo r2'

Lemma 6.4. 1There exist X and Y f2,f2) such that

(i) h(X) (-l)m-lmlea ® xp-ldx, and

(ii) (i,e)*{R) = i*X + j*Y in where

. r D1 . Dl Dl d r1: 1 + fl' J: f2 + f l an e:v p + 2'

Proof. We are working in the Hurewicz dimension of all the pairs involved so it

suffices to work in homology. We define X by {il and define Y by

On cellular chains, the map (i,e):{f l,nP-
2f

p) + (Dlf l,f2) induces the homomorphism

oP-2 i* 1 1
Ckf 1 <!> Ck_1 fp - Ckfl --- CkD "i -- CkD f l/Ckf 2

in which the unlabelled maps are the obvious quotient maps. Thus, denoting

equivalence classes by representative elements,

by lemma 3.2. Since

m-l
(-I) "o® t p_l

m-l p-1
(-1) mlea ® x dx +

m-l p-l
(-1) (m-1)!Te

a
® Qx dx

In our last lemma we split a<l> into two pieces modulo DP-2r p' let N k+np-l.

Lemma 6.5. If v = k+l and k > 0, and if Cp is the top cell

(h{Cp) ek+p_l ® dXP) with its boundary compressed as far as possible, then acp =
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Ra factors through f l C ok-lf l•
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Proof. Since v = k+l, the attaching map of the top cell factors through nP-2f p •
Since aR is an equivalence by Lemma 6.3.(iii), the definition of a = ap(k+n(p-l))

k k-l k k-l .
Now D f l v D fO = D fl/D "i and, SIDce k > 0,

Hence, in l4(okrl'.J ok-lfO)'

h(eC v iRa) h(eC)p p

e*(ek+p_l ® dXP )

(-l)mmle
k
® d(x P )

by Lemma 3.6 (since k is odd and n is even). By Lemma 4.4, it follows that
m-l 1

a <11 (-1) mlE;*(eCpviRa).

We are now ready to prove Theorems 1.1, 1.2, and 1.3 in this remaining case

(p > 2, v = k+l, and k > 0). We must show that

d*f3pjx = -f3pjdrX + (_l)e a XP-ldrX.

By Lemma 6.5, d*f3pjx is obtained by lifting

from n*(Yps-k+l) to the highest filtration possible. Since E;*(eCp) and E;*(iRa) have

common boundary in Yps+pr-p+2' E;*(eCp viRal = E;*(eCp) - E;*(iRa) in

n*(Yps-k+l,Yps+pr-p+2). By naturality of E;, E;*(iRa) is the image of

E; Ra £ n (Y Y )* * ps+r' ps+pr-p+2

and by Lemma 4.1, E;*(eCp) is the image of

E; C £ n (Y Y i.* p * ps+pr-k-p+l' ps+pr-p+2

Lemma 6.4 implies that E;*R = E;*X in n*(Yps+r-l,Yps+2r-l) since E;*Y is in filtration
2r-l or higher. (Note that since aR is mapped into r 2 by e in 6.4.{ii), Lemma 4.1

forces us to work modulo filtration 2r-l, the filtration into which E; maps Dlf2.)

Thus

and, since a has filtration f, E;*Xa comes from n*(Yps+r+f,Yps+2r). By Lemma 4.6,

either r+f or pr-k-p+l is less than 2r-l, so that at least one of E;*Cp and E;*Xa is

nontrivial in n*(Yps-k+l,Yps+2r-l) in general. Since h(Cp) = ek+p_l ® dxP and
m-l p-lh(X) = (-1) mle

O
® x dx, Lemma 4.2 implies that
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It then follows that

(_l)j+m-lv(n) (I;*C - I;*Xa)
mi p

(_l}m-l v( (n
l))

Spid x - (-l)jv(n) a xP-ldrX
v n- m. r

- Spid x + (_l)e a xP-ld x
r r

since v(n}/v(n-l) = (_l}m m! (mod p) and since v = k+l implies 2(e+l)(p-l)

(2j-n}(p-l) so that n = 2(j-e-l} and hence

This completes case (b).

§7. Case (c): v < k.

In this case the boundary splits into a piece which represents the same

operation (pi or SE:pJ) on drX and another piece which is an operation of lower

degree applied to x times an attaching map of a stunted lens space. We begin with

the lemma needed to identify this latter piece exactly. Recall the spectral

seQuence of IV.6, and recall the notations established in §l.

Lemma 7.1.

rf'Sn(p} and

Sk+np-v is

k-v...n(p)Let a E: nk ID 0 be the attaching map of the top cell of-np-
let f be the filtration of p*(u) = where p:rf'-vsn(p) +

projection onto the top cell. Let t:> be the sequence

In the spectral seQuence Er(S,!'} the following hold:

(a) 1 filt(u} f,

(b) if filt(u) = f then u is detected by
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1 1
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(c) if p = 2 and v 10 or p > 2 and v pq then filt(a) f

and a is detected by ae
k_v•

Proof. (a) Since a* = 0 in mod p homology, filt(a) > O. Note that this fact

(applied to all the attaching maps of Dk-vsn(P)) ensures that the spectral sequence

can be constructed. Since p induces a homomorphism from to Er(S,S), and

p*(a) has filtration f, a must have filtration f.

(b) By IV.6.l(i), every element has the form

k-v
I

i=O

for some ci. If filt(a) = f then the element detecting a projects to a in the Adams

spectral sequence of the top cell. Hence ck_v = a. (In fact this argument shows

that if ck_v 1 0 then fil t( a) = f and ck_v = a.)

(c) Under the stated hypothesis, aek_v is the only element of filtration f

in degree k+np-l.

To prove Theorems 1.1, 1.2 and 1.3, let us first assume that v = 1. Then k is

even and £ = 0 if P > 2, and k+n is even if p = 2. Theorems 1.1 and 1.2 say that

d2pj x hopj -Ix

d2pj x aoSpj x

if P 2, and

if P > 2.

Theorem 1.3 follows from Theorems 1.1 and 1.2 in this case. The first step is to

split the element t of Definition 4.3 into two pieces. Recall that

Lemma 7.2:

that h(Cl)

and

If k v = 1 and Cl E TIk+np_l(Dk[l,Dk-l[l) is the top cell, oriented so
( )k ( P (k-l k-l)-1 ek 0 d x ), there exists AE TIk+np_l D [O,D [1 such that

h(A) = (-l)k-lpek_l @xP

k k-l
t=ClUAETIk+np_l(D[lvD [0)·

Proof. Let N k+np-l. To see that A exists, consider the boundary maps and

Hurewicz homomorphisms

k-l k-l - k-l k k-l
TIN(D [O,D [1) • TIN_l D [1" a TIN(D [I,D [1)

jh h jh,
•k-l k-l - k-l k k-l

HN(D [O,D [1) .. HN_1D [1 '" HN(D [I,D [1)a
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The isomorphisms are isomorphisms because Dk-Ir
O

* by Lemma 2.4 and because

Dk" /Dk-l_ Sk+np-l'1 II • Certainly A exists satisfying = acl • It follows that

;)(h(Al) k-l P;)«-1) pek_l ®x ),

showing that heAl

is enough to show h( \) = h( Cl v A), since

= k+np-l, note that HNDk-lr l = O. This implies

To show that \ = Cl v A, it

Dk e Dk-Ie _ Sk+np-l W'th N
'1 v '0 - • a

that the homomorphism

_k k-l i* k k-l k-l
HNITTlv D rO -HN(D r l vD rO,D f l )

is inj ective, so that we need only show i*h ( 1 ) i*h (Cl v A) • By Lemma 2.7,

i*h(CI v-A) = h(CI) - h(A) and the result follows.

We now have = = v A) - modulo Yps+r-k+l since

k-l
f l ) <; Y k i ' Applying Lemma 7.1 we find that representsps+r- +

(-l)k-lao4'*(ek_ l ® xP) in 1I*(Yps-k+2,Yps+r-k+l) (with aO = hO if P = 2). So:ting

out the constants, we find using Definition IV.2.4 that contributes a013pJx, if

P > 2, and hopj-Ix, if p = 2, to the differential on pjx. ThUS, it remains only to

show that is in a higher filtration than

Lemma 7.3. If i l and i 2 are the maps

then there exists X such that il*Cl = p(i2*X).

Proof. Since k+np-l is the Hurewicz dimension of the domain and codomain of i 2, it

suffices to work in homology. First suppose p > 2. We let hf X) = ek ® xp-ldx,

which is obviously a cycle modulo ok-Ir1 <:» Dkr2' Then, in the codomain of i l and i 2
we have

= e ® Nxp-1dx
k

= Te ® MxP-ldx
k

p-l
+ pek ® x dx

-1 p-l n-lek+l ® M dt x )dx + pek ® r dx

p-l
;: P ek ® x dx,
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The homology is due to
k+l k-lholds modulo D r 2 '-./ D fl. This implies

p-l
=a-I, and M = I

1congruence

where N = ai, T
p-ld(ek+l ® Mx dx ) and the

that il*Cl = pi2*X.

Now suppose p 2. We again let htX)

cycle. By Lemma 3.3 we have

ek ® xdx and again this is obviously a

- 2ek ® xdx,

We can now finish the proof of Theorems 1.1-1.3 for v = 1. By Lemma 7.3, the

image of in is zero, since it is the image of

with so that = O. Thus
the entire differential is given by and we are done.

Now suppose 1 < v k. Then, since v = vp(k+n(p-l)), Lemma V.2.l6 implies that

k+n is odd if P 2 and that k is odd and E = 1 if P > 2. Also, by Definition 4.3,
h(\ ) = (-l)kek ® d(xP). Let N = k+np-l.

Lemma 7.4. If Cp e is the top cell, oriented so that h(Cp)
= ek+p_l ® dxP, then there exists A E such that aA = e*aCp and

I e J ok-IrO) is the image of

t"._." L
(eC '-./ A) P

> :)

m! p
k k-v

11N(D f l v D fO)

eC2v A p

Proof. To see that A exists consider the following diagram, whose upper square

commutes and whose lower square anticommutes.
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The isomorphisms are isomorphisms because Dkro * Dk-Vro by Lemma 2.4 and (e,e)

is an equivalence by Lemma 3.6. Thus, we may define A = a-le*aCp• To see that 1 is

the image of the claimed elements, it suffices to work in homology, as in Lemma 7.2.

Here, A) = e*h(Cp) - h(A) = e*h(Cp) since HN_lnk-Vrl = 0 for dimensional

reasons. By hypothesis, h(Cp) = ek+p_l @ dXP, so

[

mn+m p
(-1) m!ek ® d(x )

k 2
(-1) e

k
® d I x )

p > 2

p 2

by Lemma 3.6. Comparing this with h(l)= (-l)kek ® d(xP) finishes the proof.

Now,

p > 2

P 2

so, up to a scalar multiple, our differential is A) e nNYpS-k+l. By

Corollary 2.8 and Lemma 4.1 we find that

It follows from the definition of Cp that lifts to

By Lemma 4.2, represents ® dxP ) , which equals 6epj drX up :0 a

scalar multiple. When p = 2 this shows that *C2 contributes pj drx to d*pJx , When

p > 2, the coefficient of I3pj drx is

(_1)2j +k+mn+m 1- = -1 ( d )
() mo p •v n-l m! -

The congruence follows from the definition of v, v(2a+b) = (_l)a(m!)b if b = 0 or 1,

and the congruence (m!)2 :: (_l)m-l (mod p). This almost proves Theorem 1.1, with

Tp consisting of -;*A e lIN(Y k l'Y k ) plus a possible "error term" inps- + ps- +r+v
coming from the use of Lemma 4.1 above. "Almost" because

this decomposition is only valid modulo filtration ps-k+r+v and we must still show

that either l3 epjdrX or Tp will be a filtration lower than this in order to finish

the proof of Theorem 1.1. To do this, we must identify ;*A. Referring to the
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diagram in the proof of Lemma 7.4, the element Cp in the upper right corner goes to

A in the lower left corner if we follow the top and left arrows, while it goes to

where a is the attaching map of the cell ek ® xP, if we follow the bottom and right

arrows. Since the lower square anticommutes and since k is odd if P > 2, it follows

that

A

p > 2

p = 2.

Applying Lemma 7.1(a} we see that has filtration less than or equal to ps-k+v+f.

Lemma 4.7 implies that, unless r = p = 2 and v =1 or 2, one of and will

occur in a filtration less than ps-k+v+r-l. Thus Theorem 1.1 is proved unless

r = p = v = 2 (since v = 1 has already been dealt with). Applying the rest of Lemma

7.1 we find that

[

mn+m - p
(-1) m! a x )

- 2
-a ® x )

p > 2

P 2

if v = k (since Dk-VrO/r
l
= gn(p) has only one cell in this case} or if p = 2 and

v 10 or if p > 2 and v pq. Combining constants, we find that T2 -v x and
e-l - pJ. -e-lthat Tp = (-1) as x if p > 2 (recall that e = gp(j }). The constant in the

odd primary case comes from the fact that v vp(k+n(p-l)) = vp(2j(p-l} - 1) =
2(p-l}(1+e) by V.2.16, so k-v = (2(j-e-l) - n)(p-l) - 1. This completes the proof

of Theorem 1.2 except when r = p = v = 2 (as noted above) or when pr-p < v < k. In

the latter case, Lemma 7.1.(a) still ensures us that

> pS-k + pr - p+l

Hence the term contributed to d*Sgpjx by appears alone in this case. This

completes the proof of Theorem 1.2 except when r = p = v = 2. Deferring the latter

case until the end, we shall now prove Theorem 1.3. If P = 2 we may assume v > 8,

while if p > 2 we may assume v > q , The attaching map a of Lemma 7.1 must then have

filtration 2 or more. This is so because

(i) all but the top two cells are in filtration 2 or more,
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(ii) the next to top cell component is the product of a positive dimensional

element of E2(S,S) (since v > 0) and a cell in filtration 1, so has

filtration at least 2,

(iii) the top cell component is a permanent cycle (being the image of the

permanent cycle hence has filtration at least 2 by the nonexistence

of Hopf invariant one elements in dimension v-l.

This

ps-k

have

implies that has filtration pS-k + v+2

+ pr - p+l and splits into these pieces

doSE:p.ix = 0 if
J.

i min{v+l,pr-p,v+r-2}

= min{v+l,pr-p} ,

or more. Since has filtration

modulo filtration ps-k + r +v-l, we

the equality holding because v+r-2 < v+l implies r 2, so that pr-p p < v v+r-2

by our assumption on v. This proves Theorem 1.3.

It remains only to prove Theorems 1.1 and 1.2 when r = p v = 2. Together,

be the top cells, oriented so that

o 2
+ hl pJ - x , Let N = k+2n-l and letthey say d3p.ix = p.i d2x

k+l k-l
C2 E nN(D f 2,D f 2)

and h(C2) = ek+l ® dx2•

k k-2
Cl nN(D fl,D f l) and

h(C l) = (-l)kek ® d(x2)

Le 7 5 T o (k-2 k-2)mma •• here extat.s A E n
N

D rO,D r 1 such that aA

( k k-l)
1 = Cl'JA in nN D flvD fO'

Proof. Since nk-2ro = * we may define A = a-lacl

Clearly, h(A) 0, so h(Cl v A) h(l). Thus 1

It follows that

As before, we wish to replace by plus an error term which we can ignore.

The following lemma is what we need in order to do this.

Lemma 7.6. Let

o k-l k-l k-2
J.2 :D r2 + D r2 'J D r l'

and
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positive filtration in the
_k k-l k-2

1fN(JTT l' D r2 VD r l )
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k-l k-l k-2ThenthereexistsXl1fN(D fl,D f2 vD f l)
Adams spectral sequence, such that in

with

Proof. Since

need only show

satisfying

(l,il)*Cl = (e,i2)*C2 + (j,l)*X

k k-2 k-l k k 1p:(D fl,D f l \JD f 2) + (D fl,D - f l) is the cofiber of (j,l), we

p*(l,il)*Cl = p*(e,i2)*C2 in order to establish the existence of X

The filtration of X is necessarily positive because

Dk-lr /Dk-lf2 vDk- 2f 1 " VSN-l

by 1.1.3 and Lemma 2.2. Since N is the Hurewicz dimension of (okfl,ok-lf l) it

suffices to show h(p*(e,i2)*C2) = h(p*(l,il)*Cl). This is immediate from Lemma 3.6.

With Lemma 7.6 we can now finish the proof of Theorems 1.1 and 1.2. The

element is in 1fN(Y2s-k+3'Y2s-k+4)' but since X has filtration greater than 0,

1;*X =° in 1fN(Y2s-k+3'Y2s-k+4)' Thus 1;*Cl = 1;*(1,i l)*C1 =1;*(e,i2)*C2 in

1fN(Y2s-k+2'Y2s-k+4)' By Lemma 4.1, 1;*(e,i2)*C2 = 1;*C2 1fN(Y2s-k+l'Y2s-k+4)' and
1;*C2 lifts to 1fN(Y2s-k+3'Y2s-k+4) where it represents pJd2x by Lemma 4.2. Finally,

also lifts to 1fN(Y2s-k+],Y2s-k+4) where it represents hlpj-2x by Lemma 7.1.
Thus



CHAPTER VII

Hoo RING SPECTRA VIA SPACE-LEVEL HOMOTOPY THEORY

J. E. McClure

Our main goal in this chapter is to show that the spectrum KU representing

periodic complex K-theory has an Roo structure. The existence of such a structure is

important since it will allow us to develop a complete theory of pyer-Lashof

operations in K-theory, including the computation of K*(QX); this program is carried

out in chapter IX. Of course, we already know that the connective spectrum kU has

an Hoo structure since it has an structure by [71, VIII. 2.11. However, it is not

known whether KU has an Eoo structure, and the distinction between kU and KU is

crucial for our work in chapter IX. We therefore require a new method for

constructing Hoo ring spectra.

As usual, the case of ordinary ring spectra provides a useful analogy. The

easiest way to give KU a ring structure is to use Whitehead's original theory of

spectra [1081. We use the term "prespectrum" for a spectrum in the sense of

Whitehead [108, p. 240], reserving the term "spectrum" for the stricter definition

of I§l. The Bott periodicity theorem for BU gives rise at once to a prespectrum

([108, p. 2411; more work is needed in order to get a spectrum), and the tensor

product of vector bundles gives this prespectrum a ring structure in the sense of

[108, p. 270]. Now the Whitehead category is not equivalent to the stable category

but it is a quotient of it, and one can lift structures in this category to

h 4 as long as certain liml terms vanish. These liml terms do vanish for KU and we

obtain the desired ring structure.

In order to carry this through for Hoo structures we must give the Bott

prespectrum a "Whitehead" Roo structure (Which is fairly easy) and show how to lift

it to (which is considerably more difficult). Our main concern in this chapter

is with the lifting process, which is called the cylinder construction and denoted

by Z. We begin in Sections 1 and 2 by giving a careful development of the cases

already mentioned, namely the passage from prespectra to spectra and from ring

prespectra to ring spectra. Our account is based on that in [67] and [71, II §3]

but is adapted to allow generalization to the Roo case to which we turn next. In

section 3 we give a general result allowing construction of maps D1fE + F in from

prespectrum-level data. Although the basic idea is similar to that of section 2

this situation requires new hypotheses and methods. Section 4 is a digression which

gives a convenient sufficient condition for the vanishing of the liml terms

encountered in sections 1, 2, and 3. In section 5 we define Hoo structures on

prespectra (for technical reasons, these are called Hd structures) and show that

they lift to Hoo structures in when the relevant li:l terms vanish. In section 6
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we observe that spectra obtained in this way actually have structures as defined

in 1.4.3 and that there is in fact an "approximate equivalence" between

structures on spectra and prespectra. Section 7 gives the application to K­

theory. The necessary structure on the Bott prespectrum is obtained from the Eoo
structure on kU; a more elementary construction not depending on E

oo
theory (but

still using the results of this chapter) will be given in VIII §4. Section 8 gives

a technical result which is used in section 3. Except for section 8 and one place

in section 1 we use only the formal properties of hL and Dlf given in In and H2.

This chapter and the next are a revised version of my Ph. D. dissertation.

I would like to take this opportunity to thank my advisor Peter May for his warm

support and encouragement both in the course of this work and in the years since. I

would also like to thank my colleagues Gaunce Lewis and Anne Norton, my friend

Deborah Harrold, my parents, and a person who wishes to remain anollYffious for their

no less valuable support. However, the views expressed in these chapters are my own

and do not necessarily reflect their opinions.

§l. The Whitehead category ffild the stable category

In this section we describe the relation between the Whitehead category,

denoted ViP , and the stable category hg • The results are well­known, but we give

them in some detail in order to fix notation and because we need particularly

precise statements for our later work.

We begin by defining ViJ>. An obj ect T, called a prespectrum, is a sequence of

spaces Ti (for i 0) and maps 0i :l:Ti + Ti +l in h3 (see HI; the use of hI here

is technically convenient but could be avoided by systematic use of GW­

approximations). If the adjoints ';;i:Ti + QTi +1 are weak equivalences we call T an

Q­prespectrum. A morphism f:T + U is a sequence of maps fi:Ti + Ui such that

f i +1oOi " 0i 0 l:f i in h:1 . This should be compared with the much stricter

definition of morphism in h-f given in HI; it is precisely because morphisms in

ViJP are defined in terms of homotopy that this category is a useful intermediate

step between space­level and spectrum­level homotopy theory. The set of maps in

Vi1> from T to U is denoted [T,U]w' If U is an Q­prespectrum then this set is an

abelian group and is equal to the inverse limit [ ,Ui] with respect to the maps

There is an evident forgetfUl functor z: h J + Vi'£> • AIthough there is no

useful functor in the other direction, there is an "approximately functorial"

construction Z, called the cylinder construction. This can be defined in several
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essentially equivalent ways (see I§6 of the sequel). For our purposes it is easiest

to define

ZT -i coTel); ); Ti,
i

where the telescope is taken with respect to the maps

We write 6i for the inclusion );""Ti .. );iZT• If f:T .. U is any map in ;1> there

exists a map F:ZT .. ZU induced by f in the sense that the diagram

F

commutes for all i o. Unfortunately, this map is not in general unique. To

clarify the situation consider the Milnor liml sequence

Clearly, the map induced by f is unique if and only if the liml term vanishes. We

shall use the notation Zf for this map when this condition is satisfied (and not

otherwise). We have Z(f 0 g) = Zf 0 Zg whenever all three are defined.

The liml term just mentioned is only the first of many which will arise in our

work. For applications we wish to know when they vanish. This question will be

considered in detail in §4j for the moment we simply remark that for the cases of

interest to us (namely Bott spectra and certain bordism spectra) all relevant liml

terms do in fact vanish.

Although Z is not a functor, it has several useful properties. In fact, one

may think of the pair (z,Z) as an "approximate adjoint equivalence" between hI,{ and

the full subcategory of n-prespectra in ;JP. The following result makes this

precise.

Theorem 1.1. For each T E 7i'5J and E E h,Jl. there exists maps K:T .. zZT and A:ZzE .. E

with the following properties.

(i) K is natural in the sense that zZf 0 K K 0 f whenever Zf is

defined.

(ii) K is an equivalence whenever T is an n-prespectrum.
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(iii) A is natural in the sense that f 0 A

defined.

(Lv) A is an equivalence for all E <: hi
(v) ZA 0 K is the identity map of zE.

(vi) The map t:[ZT,E] + [T,zElw defined by tf zf 0 K is an isomorphism

whenever limlEi-lT. = o.
l

(vii) The map Zf, whenever it is defined, is uniquely determined by the

equation r IZf) K 0 f.

The rest of this section gives the proof of 1.1. In order to construct K and A

we need an alternative description of the i -th space functor from h1 to h:1 .

00 i f

Lemma 1.2. There is a natural equivalence Ei = n L E. If 8i denotes the

map LooEi + LiE then the following diagrams commute.

LE. WooLiE
l

(1) 1Gi 1
Ei+l

n"'Li+lE

(2)

For the proof see Is7 of the sequel. The fact that such an equivalence exists

should not be surprising since it is well-known that the reduced E-cohomology groups

EiX of a based space X can be defined either as [L"'X, LiE] or as [X,Eil. The

diagrams of Lemma 1.2 (which are oints of each other) simply say that one obtains

the same suspension isomorphism with either of these two definitions.

Given T E ;;&> we can now define K:T + zZT by letting the i-th component Ki :Ti +

(ZT)i be the composite

We note for later use that the following diagram commutes.

(3)

The verification that K is in fact a;;'9 -map is a routine diagram chase using

diagram (1) above. It is clear that K satisfies l.l(i); in fact it has the stronger

property that zF 0 K = K 0 f whenever F:ZT + ZU is induced by f. For part (ii) we

first compute
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,t
col tm co.l Irn llk_i +j +,t E T

j
•

j ,t

A cofinality argument shows that the inclusion of

group is an isomorphism.

colim llk "+" T
J
" in the last

j -a J

If T is an n-prespectrum, then the inclusion

lli Tk + llk_i +j Tj

is an isomorphism and the result follows.

Next we define A:ZzE + E to be any map obtained by passage to the telescope

from the maps

Part (v) is immediate, and (iv) follows from (ii) and (v). For (iii) it suffices,

by the definition of Zzf, to show that A-I 0 f 0 A : ZzE + ZzE' is induced by zf,

i.e., that the diagram

I
ZzE oC A ZzE'

commutes for all i O. This in turn follows from the definition of A and the,
naturality of 8i'

For part (vi) consider the liml sequence

The map T agrees with T under the isomorphism

[T,zE]w

and the result follows.

Finally for (vii) we calculate

zZf 0 K k 0 f.

The uniqueness follows from (vi).
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§2. Pairings of spectra and prespectra.

In this section we give a multiplicative version of the results of §l which in

particular will allow us to produce a ring spectrum in hg from suitable input in

ViJ' Again the results are well-known.

For the rest of the chapter we fix an integer d > 0 and consider prespectra

indexed on nonnegative multiples of d. This is convenient in the present section

(for dealing with Bott spectra) and will be crucial in §3.

Let E, E' ,F E h,g. By a pairing of E and E' into F we mean simply a map

<j>:EA E' + F. Although the category wp has no smash product, a suitable

prespectrum-level notion of pairing has been given by Whitehead [ICe, p. 255l; we

recall it here,

Definition 2.1. Let T,T',U E Vi? A pairing </I:{T,T') + U consists of a

collection of maps

such that the following diagram commutes in h"J for all i,j O.

1

Ie
d

l: </I ..
l,J

T 1\ "dT'
di " dj

1/\ c .
J

If q,:EAE' + F is a pairing in hl and

maps in hS there is an evident pairing

.
f:E + E, f':E' + E', and g:F + Fare

.
go q, 0 (fAf'): E"E' + F•

Similarly, if 1Ji: (T, T') + U is a pairing in Vi? and
.

f:T + T, fl :T' + T', and

A

g:U + U are maps in Vi'5> there is a composite pairing

g 0 1Ji 0 (f,f') :(T,T') + U.

Next we show how to lift pairings from -;:9 to hJ . If 1Ji: (T,TI) + U is a

pairing then ZT'" ZTI is equivalent to
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and we can obtain an induced pairing ZT'" ZT' .. ZU by passage to telescopes from the

maps . . • The induced pairing is unique if the group
1,1

vanishes, and we denote it by Zw when this condition is satisfied. Note that we now

have two distinct, but analogous, meanings for the symbol Z, and we shall give

another in section 3. There is no risk of confusion since the context will always

indicate whether Z is being applied to a map in -;;iy, a pairing, or an extended

pairing as defined in section 3. Clearly we have

Zg 0 Zw 0 (ZfI\Zf')

whenever both sides are defined.

Z(g 0 0 (f,fl))

Next, given a pairing <j>:E1\ E I .. F in h J we wish to define a pairing

z<j>:(zE,zE') .. zF (again, this use of the notation z is distinct from that in section

1). In contrast to section 1, it is inconvenient to do this directly from the

definitions since the definition of E/\ E' is too complicated. Instead, we use the

maps provided by Lemma 1.2. First let

be the composite

Then the diagram

commutes by Lemma 1.2. We now define

to be the composite
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The fact that is a pairing follows from the diagram above and another application

of Lemma 1.2. We clearly have

z(g 0 0 (fAf')) = zg 0 0 (zf,zf').

Finally, given a pairing ZT 1\ZT' + F we can define a pairing

+ zF by ,($) = Z$ 0 (K,K). In analogy with Theorem 1.1 we have

Proposition 2.2 (L) If lJi is a pairing in -;!> then zZlJi 0 (K,d

is defined.

K 0 lJi whenever ZlJi

o then, is a one-to-one correspondence

+ F and pairings (T, T") + zF.

it is defined, is uniquely determined by the

(ii) If $ is a pairing in 11.& then

defined.

(iii) If 1· IF2di-l(T T')
llll di" di

between pairings ZT" ZT'

(iv) The pairing Zlji, whenever

equation ,(Zlji) = K 0 lji.

A 0 $ 0 (,\ x) whenever is

zE is a ring prespectrum. If f is

. 1 2di-l11m (ZT) (Tdi" Tdi) = 0 then ZT

If in addition f:T + T' is a ring

The proof is completely parallel to that of 1.1 and will be omitted.

As a special case we consider ring spectra and prespectra. Let S be the zero-

sphere in 11..& and let be the prespectrum whose di-th term is Sdi (with the evident

structural maps). A ring spectrum is a spectrum E with maps <fl:EAE + E and e:S + E

satisfying the usual associativity, commutativity and unit axioms. Similarly, a

ring prespectrum is a prespectrum T with a pairing lji:(T,T) + T and a map e + T

satisfying associativity, commutativity and unit axioms. The unit axiom in this

case is the commutativity of the following diagram in h 3' •

e di " 1 1" edj. dj
T "T - T AS"<. dij:,/di
Td(i+j)

There are also evident notions of morphism for these structures. As a consequence

of Proposition 2.2 we have the following.

Corollary 2.3. (i) If E is a ring spectrum then

a ring map in h! then zf is a ring map in -; 'i>
(ii)If T is a ring prespectrum with

is a ring spectrum and K:T + zZT is a ring map.
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map and
1 0 1(2T' )2di-l(T' AT' )
lin di di o

th Zf 0 0 If E . . t d 110mlE2di-l (E
di'

E
di)en 1S a r-ang map. 1S a rang spec rum an "

A:ZzE + E is a ring map.

§3. Extended pairings of spectra and prespectra

o then

Let n be a fixed sUbgroup of kj' In this section we generalize the results of

section 2 by relating maps of the form f: D E + F in h,4 to certain structures in
n

called extended pairings. This is our basic technical result, which will be

applied in this chapter and the next to various problems in the theory of Roo ring

spectra.

First we need a generalization of Definition 2.1. The difficulty is that,

unlike the smash product, Dn does not commute with suspension. The situation

becomes clearer when one realizes that D zdX is a relative Thom complex. For if p
n

is the bundle

and pX is the pullback of this bundle along the map

then DnZdX is the quotient T(PX)/T(p*), where * denotes the basepoint of X. The

failure of Dn to commute with suspension arises from the fact that the bundle p is

nontrivial. This suggests that we consider theories for which this bundle is at

least orientable and replace the suspension isomorphisms which were implicitly

present in section 2 with Thom isomorphisms. Note that the orientability of p with

respect to a certain theory may well depend on the positive integer d.

Definition 3.1. Let F be a ring spectrum. A n-orientation for F is a map

such that the diagram
(Sd) (j ) ••D.Sd

J

II
Sdj l:dj e

"l:djF

commutes in h.4 • If U is a ring prespectrum, a ,,-orientation for U is a map

v:D Sd U
n + dj
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such that the diagram

12
djs

commutes in A ring spectrum F or a ring prespectrum U with a fixed choice of

is called A ring map of spectra or prespectra

is if it preserves the orientation.

It is now easy to give an analog for Definition 2.1. Recall the natural map 0

defined in H2.

Definition 3.2. Let T be a prespectrum and let (U,v) be a ring

prespectrum. An extended pairing

1;: (ll,T) + (U,v)

is a sequence of maps

such that the following diagram commutes in for all i > O.

We shall usually suppress the orientation v from the notation.

Definition 3.1 is general enough for our purposes, but it could be made more

general by allowing U to be a module prespectrum over some ring pre­

spectrum. Everything which follows would work in this generality.

If g:U + U' is a lI­oriented ring map and f:T' + T is any map in we define

the composite

go 1; 0 + U'

by letting (g 0 1; 0 = gdji 0 1;i 0 Dll(fdi). We also have composites in the

ll­variable: if p is a subgroup of 11 and U has a p­orientation consistent with its

lI­orientation then the maps
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form an extended pairing denoted 0 (1,1).

There is an evident stable version of ].2: if F is a ring spectrum

we define an extended pairing from E to F to be a map + F. We do not assume

any relation between and the orientation but the presence of is necessary for

the comparison with the prespectrum level. We can define composites

g 0 0 and 0 as in the pre spectrum case.

To complete the program of section 2 must show how to define and with

suitable properties. Both of these will be defined by using a spectrum-level

variant of the Thom homomorphism to which we turn next. If F is a ring

spectrum and + EnF is any map we write for the composite

"

Since each class in F"'(D11E) is represented by some f we obtain a homomorphism

called the Thom homomorphism. We write for the iterate

E) + (D EdiE). If E for some space X then it is easy to see that
n 11

is the relative Thom homomorphism for the bundle PX and is therefore an isomorphism.

Thus the following result should not be surprising.

Theorem ].]. is an isomorphism for every E c h.$

The proof of this result, while not difficult, involves the definition of Dlf

and not just its formal properties and is deferred until section 8.

We can now define for an extended pairing :DlfE + F. Give zF the

orientation

For each i 0 let be the composite

00 (f.) ••
DE __....::..-=.:=--.. F

11 di ---'>'" di " lfl. " l. dij

The verification that is in fact an extended pairing is completely similar to the

analogous verification in section 2. Further, z is natural in the sense that

z(g 0 0 D11f) = zg 0 0 (11,zf) and 0 1) = 0 (1,1). Note that depends

not just on the map but also on the orientation
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Unfortunately, cannot be constructed directly as in sections I and 2.

Instead we observe that we could have used l.llvi) and 2.2Iiv) to define Zf and

by means of the equations ,(Zf) = K 0 f and = K If is an extended

pairing from ZT to F let be the extended pairing

0 (1f,K): I1f ,T) + zF.

At the end of this section we shall prove

Theorem 3.4. If limIF-IIDnE-diEOOTdi) = 0 then, is a bijection between extended

pairings DnZT + F and extended pairings (n,T) + zF.

We can now define for an extended pairing + U when the relevant liml

terms vanish. Give ZU the 1f-orientation

Z(v):D Sd
1f

and let Z(d be

Corollary 3.5. (i) 0 (n,K) = K 0 whenever is defined.

Iii) ZIg 0 0 In,f))

both sides are defined.

0 1 whenever

(iii) A 0 = 0 DnA whenever is defined.

Proof of 3.5. Ii) is the definition of For the first equation in (ii) we

calculate

zZg 0 0 (1f,zZf) 0 11f,K)

zZg 0 K 0 0 (1f,f)

,(ZIg 0 0 11f,f)));

the result follows by 3.4. The verification of the other equation in (ii) is

similar. For part (iii) we have

-1
ZA 0 zt; 0 I 1f ,ZA) 0 In, K )

K 0 zt; = ,(Zt;)

with the second equality following from l.l(v); the result follows by 3.4.
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Next we make some observations that will be important in sections 5 and 6.

Part (iii) of our next result gives an alternate description of which is similar

to the definitions of Zf and in sections 1 and 2.

Corollary 3.6. Let + F be an extended pairing.

(i) is the composite

nOOD e. d' cc (i) d"
---. di 1. 1 ZT Il iP !;,. nOOE 1J F

(ii) If + F is another extended pairing and is a bijection then

= I if and only if

0 D 6.
1.

for all i O.

(iii) If + U is an extended pairing and is defined then is the

unique map for which the following diagram commutes for all i O.

Proof of 3.6. Part (i) is immediate from the definition of and diagram (3) of

section 1. Part (ii) follows at once from part (i). In part (iii) the

commutativity follows from part (i) and the definition of while the fact that

is the only such map follows from (ii).

Remark 3.7. Let D be a functor which is naturally equivalent to for some n.

More precisely, we assume that there are space and spectrum level functors, both

called D and compatible with EOO, and space and spectrum level equivalences D = Dn
which are also compatible under EOO; the cases of interest are Dj" and We

can clearly carry through everything in this section with replaced everywhere

by D. The necessary maps

6 :D(X", Y) + DX" DY

and

1 :X(j} + DX
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may be obtained from those for DTI by means of the given natural equivalence. Of

course, D may alreadY possess transformations I) and 1 compatible with those for DTI;
this is the case for D Dj" Dk and D = Dj Dk• If TI is a subgroup of p C Ej and l'

denotes the composite

D = D --L.DTI p

then (provided that 1 I preserves the orientations) we can compose an extended

pairing + F with I' to get an extended pairing in the new sense from DE to F.

Clearly z and Z will preserve such composites. The examples of interest for l' are

the maps uj,k and Sj,k defined in H2.

We conclude this section with the proof of 3.4. If + F is an extended

pairing we write for the element of FODTIZT represented Now Dn preserves

telescopes by I.l.2(iii) so

-di 00
DnZT Tel DnL L Tdi •

Hence the liml hypothesis implies

° 0 ° -di 00F DnZT = llID F DnL E Tdi
dO *The image of in the i-th term of the limit is (DnE-

On the other hand if + zF is an extended pairing then each

represents an element k i J <: Fdij DnTdi, and Definition 3.2 says precisely that

Hence the extended pairings (n,T) + zF are in one-to-one correspondence with the

elements of

lim Fdij D T °
n

where the maps of the inverse system are the composites

*(D 0)
n

Thus T gives a map

o 0 -di 00 • dijllID F (DnL L Tdi) _llID F (DnTdi).

We claim this map is lim from which the result follows by 3.3. For by 3.6(i)

and the naturality of we have
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§4. A vanishing condition for liml terms

In order to apply the results of sections 1,2, and 3, one must have some way of

showing that the relevant liml terms vanish. In this section, which is based on a

paper of D. W. Anderson [10), we give a simple sufficient condition which is

satisfied in our applications.

If F is a spectrum and X is a space we denote the F-cohomology Atiyah-

Hirzebruch spectral sequence of X by Er(XjF). We say that the pair (X,F) is Mittag-

Leffler (abbreviated M-L) if for each p and q there is an r with

EP,q(X-F) = EP,q(X-F)- in particular this is true if the spectral sequence
r ' 00 "

collapses.

Definition 4.1. A pair (T,F) with T E w3> and F E hI.!' is liml-free if----
(L) F and each Tdi have finite type.

(ii) The pair (Tdi,F) is M-L for each i o.
(iii) If d is odd then Hn(Tdi) and 1TnF are finite for all n , Ifd is even

they are finite for odd n.

We say that T E ;ep is liml-free if the pair (T,ZT) is.----

The integer d in part (iii) is the one which was fixed at the beginning of

section 2.

In practice it is easy to see whether a particular pair satisfies (i) and

(iii). It is sometimes easier to deal with condition (ii) in the following

equivalent form ([10, p. 29lJ).

Proposition 4.2. Suppose E2(XjF) has finite type. Then the pair (X,F) is M-L if

and only if for each p and q the infinite cycles z:,q(XjF) have finite index in

•

Ifits infinite cycles.

cP,ql is a sUbquotient ofr+
But then clearly

the quotient of EP,q by
r

cp,q is finite. Since
2
cp,q for all r rOo
rO

Fix p and q. Let cp,q be
r

has finite index in EP,q then
r

r with cp,q
o r

there must be an

= 0 hence EP,q =
, "o

For the converse we recall that the rationalization F + FQ induces a rational

isomorphism of E2 terms. Since FQ splits as a wedge of rational Eilenberg-Mac Lane

spectra the spectral sequence Er(XjFQ) collapses. Hence an element of infinite

order in EP,q(XjF) cannot have as boundary another element of infinite order. It
r

follows that zp,q has finite index in EP,q and that the projection zp,q + EP,ql has
r r r r+

finite kernel. But if EP,q = EP,q then cp,q = 0 and hence cP,q is finite as
"o r "o 2

required.

Proof.

z:,q
cp,q
r
cp,q
r O
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Corollary 4.3. Suppose Er(X;F} and Er(X';F'} have finite type. If

f:Er(X;F} + Er(X' ;F') is a map of spectral sequences which induces a rational

epimorphism in each bidegree of the E2-terms, and if the pair (X,F) is M-L, then so

is the pair (X' ,F').

As a consequence we get a way of generating new liml-free pairs from known

ones.

Corollary 4.4. Let (T,F) be a liml-free pair and let f:F + F' and g:T' + T be maps

inducing rational epimorphisms
* , ,

onto 1f*F' and H Tdi for each i. If F' and each Tdi
have finite type then the pair (T' ,F') is liml-free.

Proof. The pair (T' ,F') clearly satisfies 4.l(iii), and it also satisfies 4.l(ii)

since

is a rational epimorphism in each bidegree.

In the remainder of this section we show that liml terms arising in previous

sections do in fact vanish for liml-free pairs. The reader willing to believe this

can proceed to section 5.

By a filtered group we mean an abelian group A with a descending filtration

A is complete if the map A + lim A/An is an isomorphism (this includes the Hausdorff

property), or equivalently if lim An = limlAn = O. Filtered groups form a category

whose morphisms are the filtration preserving maps.

Let be an inverse system of filtered groups, and let be the n-th

filtration of Let OnAi = We need an algebraic fact ([10, Lemma

1.131) •

Proposition 4.5. Suppose that

each i. Then liml O.

o for each n and that is complete for

Using this we can prove the standard result about convergence of the Atiyah-

Hirzebruch spectral sequence ([10, Theorem 2.11). Recall that the skeletal

filtration of rIDx has as its n-th filtration the kernel of the restriction to the

(n-l)-skeleton X(n-l). The associated graded groups of this filtration are the

term of the Atiyah-Hirzebruch spectral sequence.
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Corollary 4.6. If the pair (X,F) is M-L then

(i) lim rIDX(n) = 0 for each m,
n

map FTIx + lim FTIX(n)(ii) The is an isomorphism, and

(iii) The skeletal of rIDx is complete.

Now the restriction

Proof. Clearly (L) = (ii) = (iii) so we need only prove (i). Let"\ = FTIX(i)

with its skeletal filtration. This filtration is discrete, hence certainly

complete, so by 4.5 it suffices to show liml EP,q(X(i)iF) =° for each p and q.
00

i

is an isomorphism for pSi, hence the map

Thus if r is such that EP,q(X-F) = EP,q(X-F)
'0 00' r'
is an isomorphism for i p+rO-l, sg that

is an isomorphism for p S i-r+l.

we see that EP,q(XoF) + EP,q(X(i) of)

lim1EP,q(X(i)i;) 00 '

i 00

Now we can deal with the liml term of section 1.

Corollary 4.7. If the pair (T,F) is lim1-free then

Proof. Give rdi-1Tdi the skeletal filtration, which is complete by 4.6. Then each

group of the associated graded is finite by 4.1(iii}, hence the hypothesis of 4.5 is

satisfied and we conclude that lim1 Fdi-1Tdi 0.

Next we consider the relation with multiplicative structures.

Proposition 4.8. [10, p. 291J Suppose that F is a spectrum of finite type having

the form ZU for a ring prespectrum U (in particular F may be a ring spectrum). If X

and Yare spaces of finite type and the pairs (X,F) and (Y,F) are M-L, then so is

(X"Y,F).

Proof. The hypothesis on F makes F-cohomology a ring-valued theory on spaces (but

not necessarily on spectra). For each p and q the resulting product map

® (Er ,O(XiF) x Er' ,q(YiF)) + YiF}
pl+ p"= p

is a rational epimorphism. Now ZPI,O(XiF) and Zpll ,q(YiF) have finite index in
to It co 00 to n

EP , (X-F) and EP ,q(Y'F) by 4.2 and the image of Zp, 0 zp,q is contained in2' 2 r 00 00

Hence z:,q(XI\YiF) has finite index in (X'\YiF) and the result

follows by 4.2.



232

This allows us to handle the liml term in section 2.

Corollary 4.9. If (T,F) and (T' ,F) are liml-free and F has the form ZU for a ring

prespectrum U then liml TAi) = O.

Proof. The skeletal filtration of F2di-l(TdiA TAi' is complete by 4.6 and 4.8,

and each group of the associated graded is finite by 4.l(iii). The result follows

by 4.5.

We now consider extended powers.

Corollary 4.10. If X and F have finite type, F has the form ZU for a ring

prespectrum U, and the pair (X,F) is M-L, then so is (DnX,Fl for any n C Ej.

Proof. The transfer, which is a stable map from DnX to X(j " gives a rational

epimorphism

The result follows by 4.2 and 4.8.

Next we dispose of the liml term of section 3.

Corollary 4.11. If (T,F) is liml-free and F is a n-oriented ring spectrum then

limlF-lD E-diEooTdo O.
n 1

Proof. The proof of 3.4 shows that the given inverse system is isomorphic to the

inverse system with structural maps 0 (DnO)*. Now the Thorn

isomorphism preserves the skeletal filtration so we have a filtered inverse system

of groups which are complete by 4.10. The associated graded groups are finite by

4.l(iii) and the proof of 4.10. The result follows by 4.5.

Finally, we record a result of Anderson which generalizes 4.6.

Proposition 4.12 [10, Corollary 2.4]. Suppose that X and F have finite type and

(X,F) is M-L. If X is a countable CW-complex then the map

a

where {Xa } is the set of finite subcomplexes of X, is an isomorphism for each n.
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§5. Hoo ring spectra and prespectra

In this section we show that Hoo ring spectra can be obtained by lifting the

following structures in

Definition 5.1. An ring prespectrum is a ring prespectrum U with maps

for all i,j 0 such that each is the identity map and the following diagrams

commute in hJ for all i,j ,k O.

Dj DkUdi Dj kUdi

lDj k, i

Dj Ud:'k Udi j k

Dk{Udi" Udj)

IDk¢

DkUd{i+j)

Ud{i+j )k

A ring map f:U + U' between Hd ring prespectra is an Hd
cc

ring map if

1;•• 0 D.
J ,1 J f di j 0 for all i,j O.

The significance of the positive integer d in this definition is that a

prespectrum may have an structure but not an structure for d' < d. (Some

examples of this phenomenon are given in the next section.) The third diagram in

Definition 5.1 has no analog in the definition of H
oo

ring spectrum since in that

situation the analog of the third diagram follows from the other two by (ii) and

(iii) of 1.].4.

Definition 5.1 has several consequences. The first diagram implies the

commutativity of
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(' ) ;DjUdi

0/ rj,i
Udi j

for all i and j. In particular the composite

d D. ed c. 1
"j :DjS Dj Ud Udj

is a Lj-orientation for U. These orientations are consistent in the sense that the

diagrams

D Sd" D Sd (l d d

j I,:'
,.. Dj +kS DjDkS

(1) "k b+k
(2) 1Dj "k

Udj'" Udk
TjJ

• Ud(j +k) Dj Udk
l;,i ,k

commute for all j and k, Now the unit diagram in the definition of a ring

prespectrum and the third diagram in Definition 5.1 imply that for each fixed j the

maps l;j,i give an extended pairing

Theorem 5.2. If U is a liml-free ring prespectrum then the maps

give ZU an Hoo ring structure. If f:U + U' is an ring map and U,U' and the pair

(U,ZU'l are liml-free then Zf is an Hoo ring map.

The proof will occupy the rest of this section. We write F for ZU, for

Z(l;j) and $ for the multiplication Let be the orientation

d dj djZ(".l:D,S + L ZU = L F,
J J

as defined after Theorem 3.4. First we claim that the are consistent in the

following sense.
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Lemma 5•.3. The diagrams

(.3)

d d
DjDkS .. DjkS

(4)
bilk tlljk

)
D.EdkF J EdjkF
J

commute for all j ,k > O.

Proof. For diagram (4) recall that lli is the composite 6di 0 where

6di is the natural map + Hence

lljkO /3 6djk 0 0 /3)

6djk 0 ,k) 0 vk by diagram (2)

0 D
j6dk

0 by Corollary .3.6(iii)

",(k) (". ) D
'" <'J 0 j Ilk •

The proof for diagram (.3) is similar.

Next we need another preliminary result.

Lemma 5.4. The diagram

Dk{FI\F) ---......:...----- DkFA DkF

!Dk<l> 1i;kA i;k

FAF

F

commutes for all k O.

In order to prove 5.4 we need the following variant of .3.6(ii).

Lemma 5.5. Let nl and n2 be two maps
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where F is a n-oriented ring spectrum and the pairs (T,F) and (T',F) are liml_

free. Then 111 = 112 if and only if the equation

(5) 4>(2i) (Ill) 0 D (e. A e.)
n J. J.

holds for all i O.

Proof of 5.5. The composite isomorphism

1 · (2i) 2di'
J.m 4> I' F J D (T 1\ r: ), am n di di

t k t .. (2i}(11l) D ( )a es 111 0.., 0 n ei " ei ' and similarly for 112'

Proof of 5.4. Let III be the counterclockwise composite in the diagram and 112 the

clockwise composite. Consider the following diagram of spectra, where we have

suppressed to simplify the notation and the unlabeled arrows are all induced by

maps edi •

®

Dk (Udi " Udi )

/
Dk(EdiFII EdiF} ----"---.,..,. DkEdiF ADkEdiF

j
D !4>(i}(1; ) ,l\4>(i)(I; )
k k k

®

E
2di kF

/ "m
A

"dik

U2di k

It is easy to see that the counterclockwise and clockwise composites in the

inner pentagon are 4>(2i)(11l} and 4>(2i)(112)' To verify equation (5) it suffices to

show that the outer pentagon and parts A, B, C, D and E commute. But the outer
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pentagon is the third diagram of Definition 5.1. Part A commutes by naturality of

6, parts C and E by definition of = and parts B and D by 3.6(iii).

We now turn to the main part of the proof of 5.2. We shall show that the

following diagram commutes; the other is similar.

DjDkF
[3

(6) !Dj f;k
f;j

D.F
J

We shall apply Remark 3.7 with D = Dj First orient Dj using either of the

two equal composites in diagram (4) of Lemma 5.3, and denote the associated Thom

isomorphism by i". We write 111 and 112 for the counterclockwise and clockwise

composites in diagram (6); these are extended pairings in the sense of Remark 3.7.

By 3.6(ii) it suffices to show

(7)

for each i O. Consider the following diagram, where we have again suppressed

E
oo and the unlabeled arrows are all induced by maps 6di •

D'!,;k'J ,l ®

[3

In the inner square the clockwise composite is Using Lemma 5.4

one can show that the counterclockwise composite is To verify equation (7)

we must show that the outer square and parts A, B, C and D commute. The outer

square is the second diagram of Definition 5.1. Part A commutes by naturality of [3

and parts B,C, and D by 3.6(iii). This completes the proof.
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§6. ring spectra.

Theorem 5.2 gives a useful relation between H", structures in h.o and

structures in However, it does not provide a satisfactory analog for

Corollary 2.3 since an arbitrary H", ring spectrum F need not possess the

orientations necessary to give an Hd structure for zF. For example, if F S then

zF is not an prespectrum for d > 0 (cf. Proposition 6.1). What is needed

is a notion of H", ring spectrum with built-in orientations. It turns out that the

right objects to look at are Hd ring spectra as defined in
oc

If F is an Hoo ring spectrum we say that a sequence of Ej -orientations is

consistent if the diagrams of Lemma 5.3 commute. If F has an structure let II j

be the composite

Then each IIj is a Ej-orientation by I.4.4(iii) and an easy diagram chase shows that

the IIj are consistent. On the other hand, some Hoo ring spectra do not even have E2­

orientations, and thus are certainly not • This is illustrated by our next

result.

Proposition 6.1.

d > O.

(i) The sphere spectrum S is not an Hd ring spectrum for any.,

(ii) If F is an ring spectrum for d odd, then has characteristic 2.

If, in addition, F is connective and is augmented over Z2 then F splits as a

wedge of suspensions of HZ2•

Let pd be the bundle

d 2
EE2 xl:

2
(R) + BE 2•

Then pd is the d-fold Whitney sum of pI with itself, and pI is the sum of the Hopf

bundle with a trivial bundle. The Thorn complex of pd is D2S
d, and so pd is F-

orientable if and only if F has a l:[orientation (for the given value of d).

For (i) we recall (e.g. from [71, 111.2.7J) that a bundle is S-orientable if

and only if it is stably fibre-homotopy trivial. But pd clearly has nontrivial

Stiefel-Whitney classes for every d 1.

(ii) Let R ; and observe that F-orientability implies HR-orientability by

virtue of the canonical map F + HR. Consider the spectral sequence with

EP,q = HP(Z2;Hq(Sd Sd;R))
2

converging to H* (D2Sd;R) • There is only one nonzero row and so H2d(D2SdjR) is

isomorphic to W(Z2jH2(Sd/\Sd;R)), which is the Z2-fixed SUbgroup of



239

H2d(SdA Sd;R} =R. But Z2 acts on R as multiplication by -1, so we conclude that

H2d (D2S
d;R) is isomorphic to the 2-torsion subgroup of R. If on the other hand pI

has an HR-orientation then H2d (D2S
d;R) = R, so that R must have characteristic 2.

If in addition F is connective and R is augmented over Z2 then the proof of

Steinberger's splitting theorem III.4.1 gives the splitting of F.

Now let F be an ring spectrum. An easy diagram chase shows that the

equation

I';j ,i

holds for each i and j, where i{> (L) is the Thorn isomorphism determiend by the

bj -orientation of F. Thus the structure on F is uniquely determined by

underlying Hoo structure and the set of induced bj-orientations. Conversely,

induced

its

we have

Proposition 6.2. If F is an Hoo ring spectrum with consistent bj-orientations then

the maps I';j,i defined by I';j ,i = i{>(i)(l';j} give F an structure.

Using this, we can give a precise analog of 2.3.

Corollary 6.3 (i) If F is an Hd ring spectrum then zF is an ring prespectrum.
00

If f is an ring map in h4 then zf is an ring map in ;-P.

(ii) If U is a liml-free ring prespectrum then ZU is an ring spectrum

and K:U ... zZU is an ring map, If in addition f:U ... U' is an ring map and U'

and (U,ZU') are 11ml-free then Zf is an ring map. If F is an ring spectrum

and zF is 11ml - f r ee then >.:ZzF ... F is an ring map.

Proof of 6.3. For part (L}, the adj oint of the composite

D.8 d'· d' 1'; •• dO.
D.booF

d.
J.J F

J J. J

is a map l;j ,i :Dj Fdi ... Fdij. An easy diagram chase shows that the 1;j ,i satisfy

Definition 5.1. Part (ii) is immediate from 5.2, 5.3 and 6.2.

The rest of this section gives the proof of 6.2. Let Wj denote the composite

D.e
F

J J

(i)
and let J.lj
composite
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It clearly suffices to show the commutativity of the following diagrams for all

i,j ,k.

D
j
Sdii\DkSdi a di D D Sdi S di

.. Dj +kS j k • DjkS

(1) 1 (il (i) 1(11 (2) ID (I) 1(11lJj II lJk lJj +k jlJ k lJj k

);di(j+k)p d'(j+k)
(ik)

);dij F A. );dikF D,);dikF
cP (1;,) d"k

.. ); 1. F J .. ); 1.J F
J

(3) D Sd(i+j )
k

In diagram (3) the clockwise composite is ep(j = ep(j )ep(i)w
k

= cp(i+j )w
k•

Hence

the diagram commutes. Diagrams (1) and (2) commute when i = 0 since

e:S + F is an I\" ring map. They commute when i = 1 by the consistency of the lJj'

and for i 1 by induction. A similar induction shows that they will commute for

all negative i if they do for i -1. We prove commutativity of (2) when i = -1;

the proof for (1) is similar. We apply Remark 3.7 with D = Give

either of the two equal orientations indicated in the second diagram of Lemma 5.3

and let cp denote the associated Thom isomorphism. Let nl be the counterclockwise

composite in diagram (2) and let n2 be the clockwise composite. Clearly, we have

CP(n2) = wj k 0 S, and since wj k 0 S /;j 0 Djwk (this is the case i = 0 of diagram

(2)) it suffices to show

This is demonstrated by the following commutative diagram.
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Here part ® is Dj applied to one case of diagram (3), part ® commutes by

naturality of 6, and part © follows from diagram (3) and the fact that <j> is an Hoo

ring map (see parts (ii) and (iii) of 1.3.4). This completes the proof.

ti7. K-theory spectra

For our work in chapter IX with Dyer-Lashof operations in K-theory it will be

essential to know that the spectrum KU representing periodic complex K-theory is an

Hoo ring spectrum. This is immediate from Corollary 6.3 once one has the necessary

space-level input. We begin this section with a quick proof using as input the fact

that the connective spectrum kU has an Eo<> ring structure. This in turn raises a

consistency question which is settled in the remainder of the section. In VIII ti4

we shall use Atiyah's power operations as input to give a more leisurely and

elementary proof that KU is an H
oo
ring spectrum. Although we concentrate on the

complex case in this section, everything goes through in the orthogonal case with

the usual changes.

First recall from [71, VIII ti2] that the spectrum kU representing connective

complex K-theory is an Eoo ring spectrum. Hence (as explained in H4) it is an H..
ring spectrum. Throughout this section we will write for the structural maps

Dj kU + kll, Now by 1. 3.9 the zero-th space of kU, which we denote by X, is an H..o
space with structural maps + X which will be denoted by The space X is of

course equivalent to BU x Z, and by Bott periodicity we can define an n-prespectrum

1(U with kU2i = X. We give Xu an 1( structure by letting each map

Dj X U2i + X U2ij be D
i
X + X. We define KU to be ZXU. At this point we need to

know something about lim terms.

Proposition 7.1. XU and 1<0 are liml-free.

Proof. The pair (JtU,KU) clearly satisfies 4.l(i) and (iii). Since Er(BU x ZiKU)

collapses for dimensional reasons it also satisfies 4.l(ii) and hence is liml_
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free. The result for )::.0 follows from 4.4 by letting f:KU + KO be realification and

g: ,,-0 + U be complexification.

Now we can apply 6.] to get

Theorem 7.2. KU is an ring spectrum and KO is an ring spectrum.

Remark 7.]. (i) We shall see in VIII§6 that the

H: structure.

(ii) It is shown in [71, VIII. 2.6 and VIII. 2.9] that the Adams operation

induces an E"" ring map of kU when completed away from k, We shall see in VUH7

that also induces an H"" ring map of KU(p) for p prime to k but that this is not

an ring map. Since the methods of the present section can only give ring

maps they cannot be applied directly to this question.

Next we wish to show that the H"" structure on KU is consistent with the

original structure on kU. The point is that (as we shall see in a moment) kU

inherits an H"" structure from that just given for KU, and we would like to know that

the inherited structure is its original one. The proof will occupy the rest of this

section.

First recall the n-connected-cover functors in h<S. ([71, II.2.ll]). We write c

for the connective (i.e., -I-connected) cover functor. These functors have the

usual property that any map from an n-connected spectrum lifts uniquely to the n-

connected cover of its target ([71, 11.2.10]). In particular, we have

Proposition 7.4. If F is an H"" ring spectrum then cF has a unique H"" structure for

which the map cF + F is H",,'

We shall prove

Proposition 7.5. There is an H"" ring map from kU (with its E"" structure) to cKU

(with the H"" structure given by 7.2 and 7 .4) which is an equivalence.

The analogous comparison of ring structures was given in ]71, II§]].

First we observe that the iterated Bott map

is equivalent to the (2i-l)-connected cover of kU. We can therefore define
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to be the unique lift of the composite

D.j;2e
J .. D

j
j;2kU

1;.
D.kU --LkU.
J

The Ilj are consistent l:j -orientations in the sense of 6.2 and hence kU is an I(
ring spectrum. It follows that zkU is an If ring prespectrum. We write

00

for its structural maps.

Now define a map

y: zkU .. XU

by letting Y2i be the composite

00 2i
(zkU'2i n l: kU

We claim that y is an

the following diagram.

If ring map.
00

This is demonstrated by the commutativity of

n"'l:OODj (kU'2i

II

®

and Parts A and B commute by

of y. Commutativity of part D follows

Ili'

Next we need more liml information.

Parts F and G commute by definition of nj ,i

naturality, parts C and E by the definition

from the definitiion of
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Proposition 7.6. zkU, zkO and the pairs (zkU,KU) and (zkO,KO) are liml free.

Proof. The Serre spectral sequence shows that the pairs (zkU,kU) and (zkU,KU)

satisfy the finiteness requirement of 4.1(i) and (iii). Now by [10,4.3] and the

proof of [10,3.13J (specifically the fifth line on p.301) we see that the pair

((kU)2i,kU) is M-L for each i and hence zkU is liml-free. Since

for q < ° it follows that zp,q( (kU) .) 'KU) has finite index in
cc 2J. '

for q s 0, hence for all q by Bott periodicity. Thus the pair (kU,KU) is liml-

free. The orthogonal case follows as in the proof of 7.1.

We can now define

r:kU ... KU

-1 _2
to be Zy 0 A , where Z and A are as in n. Then r is an H;: ring map by 6.3 and

is clearly an equivalence of zeroth spaces. Hence the unique lift of r to cKU is an

ring map and an equivalence. This completes the proof of 7.5.

The fact that r is an ring map, and thus preserves the orientations, has

the following additional consequence which will be used in VIII §4.

Corollary 7.7. llj :DjS
2 + l:2jKU is the composite

D.l:2e D.B
D. ,J .. D. l:2KU-L- D. KU
J J J

§8. A Thorn isomorphism for spectra

In this section we prove Theorem 3.3. This is the only place in our work where

we need the actual definition of D1T, instead of just its formal properties. We

accordingly begin by giving a form of the definition; for a general discussion see

the sequel.

Let .;((j) be the space of linear isometries from (It"')j to It"'. Then .r(j) is a

free contractible 1T-space and hence there is a u-raap X :E1T ... .l{j l , Choose an

increasing sequence Wi of finite 1T-subcomplexes of E1T with U W. = E1T. If
. J.

V c (It"')j is a finite-dimensional subspace then (since Wi is 30mpact) the union



245

is contained in a finite-dimensional subspace. In particular, if we let Ai be the

standard copy of Rdi in Roo then there is a finite-dimensional subspace A! of If'

with

I 1
for every w E Wi' Let ai be the dimension of We may assume that the form an

increasing sequence, and we write Bi and for the orthogonal complements of in
'. IAi+ l and of an

Now consider the map from Wi x (Ai)j to Wi x Ai which takes (w'Xl""'Xj) to

(w,X(w)(xl @ ••• @Xj )). This gives an embedding of the trivial bundle

(1) Wi x (Ai ),i + Wi

in the trivial bundle

The orthogonal complement is a nontrivial vector bundle over Wi' We let ni be the

associated sphere bundle (obtained by fibrewise one-point compactificationl, We

write S(ni) and T(ni) for the total space and the Thorn complex of ni' If we let

act through permutations on (Ai)j and trivially on Ai we obtain diagonal actions

on the bundles (1) and (2) and hence on S(ni) and T(ni)'

Next observe that the diagram of embeddings

W. x (A.)j "'Wi+ l x (A. )j
t t

(Ai+l)jW. x A! W. 1 x
l+

W. x A'i+l .. Wi+ l x Ai+ll

commutes, Hence there is a bundle map

covering the inclusion Wi + Wi+ l, The induced map

Bi Bi (.)
T(n.)"S -T(n. 1l"(S J

l

B.
of Thorn complexes is a if we give each side the diagonal here S l is

the one-point compactification of Bi, etc.

Now let U be a prespectrum (indexed on multiples of d as usual), We define a

new prespectrum U
X

indexed on the set {ail as follows (we haven't previously

considered prespectra indexed on sets like {ail, but everything in section 1 goes
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through with the obvious modifications).

(0 )
T(1) .)" (U

d
0 ) J

1 n 1

with the structural maps a indicated in the following diagram.

Finally, given E E"ill we choose a prespectrum U with ZU E (for example, we could

let U = zE) and define

D E
11

x
Z(U )

This agrees up to weak equivalence with the more sophisticated definition given in

the sequel, and in particular it does not depend on the choice of X or U.

Now we can give the proof of 3.3. First we observe that the Thom isomorphism

theorem holds in F-cohomology of spaces for any F-orientable bundle. This is well-

known when the base space is finite-dimensional (see e.g. [71,111. 1.4]) and the

general case follows since the Thom homomorphism induces a map of Milnor liml

sequences. Similarly, the relative Thom isomorphism theorem holds for any F-

oriented bundle over a pair (X,Y). For example, let U be a prespectrum, let

X=S(1)o)X (Ud,)j
1 n 1

and let Y be the subspace in which at least one coordinate is a point at 00 or the

basepoint of Udi• Note that X/Y is (UX)a Let q be the pullback of the bundle
i

p t En x (Rd)J + En
rr

along the map

Then the relative Thom complex T(q)/T(qIY) is

(l;dUd1o) (j ) = (EdU)X
11 a i

Let 0i denote the composite indicated in the following diagram.
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If F is a ring spectrum then the relative Thom isomorphism for q is the

composite

where the first map is multiplication by the We denote this

composite by q>i'

Next, we note that if E = ZU then EdE Z(EdU). It is shown in the sequel

that the map

is obtained by passage to telescopes from the Iii' We therefore have a map of Milnor

liml sequences

i

n+a. -1
F (UX)

a
i

--_)0' rD E _ lim
11

n+a.
F

--0

The result follows by the five lemma.

We conclude this section with a technical fact which will be needed in VIII §6.

Let (;: ( , T) + U be an extended pairing and suppose that the pair (T, ZU) is liml_

free. Then Z(; exists and is clearly determined by the composites

(Zr;)
(j ) X K a iT(Tl i) "1I(Tdi) = T -- (D ZT) -----"'..... (ZU)a i 11 a

i
a i

for i O. It is natural to ask for an explicit description of the elements

represented by these composites. We shall give such a description by calculating

the image of zi under the relative Thom isomorphism
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W+. " {T . ) {j ) r ·DT ?;i U K (ZU)
L 11 di, -- 11 di - dij -- dij

and recall the homeomorphism

Proposition 8.1.

Proof. Write a for ai• It will be shown in the sequel that the following diagram

commutes for any space X.

R n

Letting X = Tdi gives the commutativity of the left square in the next diagram.

a !,',Iii"
l: edi,j .. l:a+dij ZU

The right square commutes by Corollary 3.6{iii), and we therefore have equality of

the two composites around the outside. But the counterclockwise composite is
aclearly l: Yi, and the proof of Theorem 3.3 given in this section shows that the

clockwise composite is This completes the proof.



CHAPTER VIII

POWER OPERATIONS IN Hd RING THEORIES

by J. E. McClure

It was shown in Chapter I that an ring structure on a spectrum E induces

certain operations 1S in E-cohomology. In this chapter we investigate these

operations in some important special cases, namely ordinary cohomology, K-theory,

and cobordism.

In section 1 we collect the properties of the JPj and their internal variants

Pj ; most of these have already been shom1 in Chapter I. We also show that the
dresults of Chapter VII allow one to construct an H= structure on E by giving space-

level operations with certain properties. The section concludes with a brief

account of a mUltiplicative transfer in E-cohomology which generalizes the norm map

of Evens [35].

In section 2 we show that the general facts given in section 1 are strong

enough to prove the usual properties of the Steenrod operations without any use of

chain-level arguments. In section 3 we show that the same arguments applied to the

spectrum HZpAX give the Dyer-Lashof operations in H*(X;Zp) with all of their usual

properties; in particular, we give new proofs of the Adem and Nishida relations

which involve less calculation than the standard proofs.

In section 4 we show that the power operations in K-theory induced by the

structures on KU and KO are precisely those defined by Atiyah [17]; this gives a

rather concrete description of these structures. In section 5 we show that=
cobordism operations defined by tom Dieck in [31) lead to structures on the

classical cobordism spectra which agree with their E
oo
structures; again, this fact

gives a rather concrete homotopical description of the E
oo
structure. In section 6

we show that the Atiyah-Bott-Shapiro orientations are Hd ring maps; it is still an

open question whether they are E= maps.

In section 7 we show that questions about ring maps simplify considerably

when the spectra involved are p-local. We use this to show that the Adams

operations are H= ring maps (a fact which will be important in Chapter IX) and that

the Adams summand of p-local K-theory is an H2 ring spectrum. We also give a
2 =

sufficient condition for BP to be an H ring spectrum; however the question of
2 =

whether it actually is an H= ring spectrum remains open.

Notation. In chapters VIII and IX we shall write LX for instead of

Sl as in chapters I-VII. We shall also use L to denote the suspension
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isomorphism EUx + EU+lx. In particular, if E is a ring spectrum the fundamental

class in will be denoted by Lnl.

§l. General properties of power operations

Let E and F be spectra, let be a subgroup of Lk' and let d be a fixed

positive integer. By a power operation on h".& in the most general sense we mean

simply a sequence of natural transformations

one for each i E Z, which are defined for all X I h",S We shall also call j)11 an

(E,1I,F) power operation when it is necessary to be more specific. In this section

we consider the relation between power operations, extended pairings, and Hd ring
cc

structures. In particular, we collect the properties of the canonical power opera­

tions associated to an ring structure and of the related internal operations.

The most important class of power operations for us will be the operations

determined by an ring structure on E. As usual, we abbreviate by 'S>j'

d' J d'Recall the definition from I§4: if x E E lX is represented by f:X + l: lE then

is represented by the composite

Dkf d' d'k
D
1IX

­.l..,..DkX __ Dkl: lE 1 E.

Our first result collect the properties of these operations.

Proposition 1.1. ring spectrum and let x E EdiX, Y E Edjy, C l:k'

Ed(j +k)i(DjX "DkX).

dLet E be an H
oo

q*i'j +kx = ('i>j x)( 'j>kX) E

*1>. - 'C} dj ki
S jkX ­ Jj "kx E E (DjDkX)

6* [( 8 1 'P (xy) Ed( i+j )kD y).

(ii)

(iii)

(i)

(v )

(vi ) If X Y and i = j then
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To k :DkX - D X ADk X
'" -R, R,-R,

is the transfer defined in 11.1.4.

(vii) If E is p-Iocal then

the transfer D X + X(k) of11

1 * k
'J>X=T::TTX

11 1111 11

11.1.4.

whenever 1111 is prime to p, where TlI is

(viii) If E is p-local then

Proof. (i), (ii), and (iii) are immediate from Definition 1.4.]. Part (iv) follows

from Remark 1.4.4. Part (v) follows from 1.].4(i). Parts (vi) and (viii) were

shown in 11.2.1 and 11.2.2, and part (vii) follows from the proof of the latter.

We shall also want to go in the other direction, that is, to start from a set

of operations having certain properties and deduce the existence of an ring

structure. Let E be a ring spectrum. We say that a set {1?}.> 0 of (E, ,E)
J L J

power operations is consistent if it satisfies l.l(i), (ii), and (iii). Given a

consistent set of operations :Pj on E we can define maps

di dij
1;•• :D. E + E
J,l J

by applying JJj to the classes represented by the identity maps + It is
deasy to see that the I;j,i form an H
oo

ring structure on E Whose induced power

operations are the given Yj • On the other hand, two ring structures on E

which determine the same power operations are clearly equal. Thus there is a one-

to-one correspondence between ring structures on E and consistent sets of

,E) power operations.

Next we consider a more general situation. Let 11 be a subgroup of and let F

be a lI-oriented ring spectrum with orientation p:D Sd + (see VII§]). The
11

class in Fdk(DlIS
d) represented by the orientation will also be denoted by p. An

(E,lI,F) power operation :Y is stable if the equation11 ---

(1) d * ?I-J. x) = 6 (p • -.)"x )
11 11

holds in Fd(i+l)k(D EdX) for all x f Edix. l.l(iii) implies that the (E,1I,E) power
11

operations determined by an ring structure on E are stable. More generally, let

I;:DlIE + F be any map (in the terminology of VII§], I; is called an extended pairing).

If x E EdiX is represented by f:X + define f Fdi kDlIX to be the element

represented by the composite

D X D diE -L. (D sd) (i) A D E p(i)" 1; .. ( dkF) (L) " F L dikF,
11 11 11 11
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where <j> is the product map for F. Then 11 is a stable power operation.

Conversely, given a stable operation 1> we obtain a map DE ... F by applying S'1I
11 11

to the identity map E ... E. Clearly, this gives a one-to-one correspondence between

maps ... F and stable power operations. To sum up, we have shown

Proposition 1.2. (i) There is a one-to-one correspondence between consistent sets

of (E,Ej ,E) power operations and ring structures on E.

(ii) If F is a 1T-oriented ring spectrum and E is any spectrum, there is a one-

to-one correspondence between stable (E,1T,F) power operations and maps E ... F.

For applications of 1.2 it is usually easiest to work with space-level instead

of spectrum-level power operations. Our next result will allow us to reduce to this

case. Let be the homotopy category of finite CW complexes. Let {(E1T)a}aEA be

the set of finite 1T-subcomplexes of E1T. By an (E,1T ,F) power operation on , we mean

a sequence 5>1T of natural transformations

one for each i g Z, which are defined for all X E c. JP is stable if it satisfies1T ---
equation (1). A set {3?}. 0 of (E,E. ,E) power operations on c: is consistent if

J P J
it satisfies l.l(i),(ii) and (iii). Recall the cylinder construction Z from VII§I.

Proposition I.]. (i) Let T be a prespectrum and suppose that each Tdi has the

homotopy tyPe of a countable CW-complex. Let F be a ring spectrum. If the pair

(T,F) is liml-free in the sense of VII.4.1 then every stable (ZT,1T,F) operation

on c: extends uniquely to a stable operation on hJ .
(ii) Let E be a ring spectrum and suppose that each Edi has the homotopy type

of a countable CW-complex and that zE is liml-free. Then every consistent set {S>j}

of (E,E j ,E) operations on C extends uniquely to a consistent set of operations on

h.& •

Proof. F?r part (i), let be the set of finite sUbcomplexes of Tdi and let

Xi,S E Ed1Xi S be the class of the inclusion map Xi S ... • The elements
, . . ...'

S>1T(xi,Q) determine an element of 111)) F ((E1T) " X. Q) and hence of F D Td.IJ a,f) ex. IT 1,fJ 1T 1

by VII.4.10 and VII.4.12. It is easy to see that the maps ... Fdi k
representing these elements form an extended pairing of prespectra as defined in

VII.].2. Part (i) now follows from VII.].4. For part (ii), a similar argument

shows that the set {'j)j} determines an ring structure on the prespectrum zE and

the result follows from VII.6.].

The definitions we have given are closely related to tom Dieck's axioms for

"generalized Steenrod operations" []l]. Let E be a ring spectrum. In tom Dieck's
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terminology, a generalized Steenrod operation is what we have called an (E,n,E)

power operation. His axioms PI and P2 are l.l(iv) and l.l(ii) respectively. In

particular, if 3?n satisfies PI then J(nEdl is a n-orientation for E. Axiom P3 is

equation (1) above with )J = YnEd1. Thus an operation satisfying PI and P3 is

stable in our sense (but not conversely). tom Dieck's final axiom P4 will also be
kof interest in what follows. If q is a vector bundle over X then En xn q is a

vector bundle over En xn Xk whose Thorn complex is homeomorphic to DnT(q). If v is

an E-orientation for q and ?n is an operation satisfying PI then is clearly

an E-orientation for En xn qk. Axiom P4 is the statement that E has canonical

orientations for some class of vector bundles and that 3?n takes the canonical

orientation for q to that for En xn qk. This axiom will be satisfied in all of the

particular cases considered in this chapter.

From now on we fix an ring spectrum E and let 1>n denote the associated

power operations. Let X be a space. Let b be the diagonal map

... D (X A sO) = D X
n n

defined in 11.3.1. We define the operation

to be the composite

Since X+A En+ (X X En)+ we obtain an unreduced operation

Our next result summarizes the properties of the unreduced operations; similar

statements hold for the reduced ones.

Proposition 1.4. Let x E EdiX, y E EdjX, n C Ek•

(i)

(ii) Pnl = I E EO(X x En)

(iii) Pn(xy) = (Pnx)(Pny) E Ed(i+j )k(X x Err)

(i v ) If i = j then

(v ) If E is p-Iocal and Irrl is prime to p then
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(vi) If E is p-local then

P (x+y)
P

P x + P Y +
P P

(vii) If 11 C Ek is generated by a k-cycle and n ' C ER, is generated by an R,-

cycle then

where y:B1l x Bll' + B1l' X B1l switches the factors •

Proof. All parts except (vii) are immediate from 1.1. For (vii) we use the

argument of [100, VIII.l.]]. If we give the set 11 x 1l' its lexicographic order we

obtain a faithful action of EkR, on it. Let g E EkR, be the element which switches

the factors 1l and 11'. The following diagram is readily seen to commute.

Here d is the evident diagonal and cg is conjugation by g. By l.l(ii} we have

**** r()P ,P x " /::, d 1 Sk ..Jk x " (l x Sk 0
11 11 ,R, lC ,lC

and similarly

*P P ,x " (1 x S k 0 1 0 d) Pknx.
11 11 lC, ",

We conclude this section with a brief description of another kind of operation

induced by Hd structures, namely a multiplicative version of the transfer for
'"

finite coverings. The definition is due to May. First recall the definition of the

ordinary (additive) transfer. If p:X + B is a j-fold covering then one can

construct a map

as in [8, p.112].

p:B + EL x
J Ej

If x EFiX is represented by f:X + Fi then p! x E FiB is represented

by

B ---.L... EL x
E

Xj -lL EL x (F.}j - F.
J j J Ej

where the last map is the Dyer-Lashof map determined by the infinite loop space

structure on Fi• B Now if F is an Hd ring spectrum and if x E FdiX is repre-
ce

sented by f: E(X+) + EdiF we define PCil E Fdij B to be the element represented by

D. f d' t;.. d"
D.E"'X+ -L.....D.E
J J
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If F is merely H". one can give the same definition in degree zero. Our next result

records some properties of •

Proposition 1.5 (i) = 1, 0 O.

(E) = (Pxy)

(iii) If q:Y + X is a k-fold covering then =

(Lv) = "f/#* for a pullback diagram

g

(v) If Y is any space and x E FdiX, Y E Fdky then

where h:B + BEj is the classifying map of p.

Proof. Part (L) is trivial and parts (iii) and (Iv ) have the same proofs as in the

additive case. For part (ii) let + EdiF and + EdkF represent x

and y. It suffices to show commutativity of the following diagram, in which has

been suppressed to simplify the notation.

D. (f g) d' dk
J .. D. (E I F,, E F)

J

The pentagon commutes by 1.4.3 and the remaining pieces by naturality. For part (v)

it suffices by (ii) to show

where n:Y x X + Y is the projection. An inspection of [8, p.112] shows that the

diagram

commutes and the results follows.

r--..J +
(l x p)
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Remarks 1.6.(i) Formula (v) is due to Brian Sanderson (also cf. [35, remark 6.2J).

If we let p:X + BEj be the j -fold cover associated to EEj + BEj and let x = 1 then

the formula gives

so that the internal operation Pj is completely determined by the multiplicative

transfer, an observation also due to Sanderson.

(ii) If p:X + B and q:Y + C are any two coverings then p x q is a covering

which factors as (p x 1) (1 x q ) , We can therefore compute (p x q)0(x x y) in

principle by using formulas (ii), (iii) and (v), but there is no simple external

analog of formula (ii).

(iii) If F is then V EdiF is H
oo

by 11.1.3. Thus we can define a map
iE Z

which agrees on homogeneous elements with that aJ_ready given. We leave it as an

exercise for the reader to show that if x has nonzero degree then 10(1 + x) has

components PIX in degree Ixl and Pxx in degree j xl (cf. [35, Theorem 7.1J).

(iv) In the case F = HZp a multiplicative version of the transfer was first

defined by Evens, who called it the norm [35 J• ::t seems likely that this agrees

with P0' but we shall not give a proof. Note that in this case one always has

PjP*x = jx, but it is not true that P®p*x For example, formula (v ) gives

* *(1 x P)0(1 x p) (y x 1) = (1 x h) Pjy.

which is certainly not equal to y.i x 1 in general.

2. Steenrod Operations in Ordinary Cohomology.

In this section we use the framework of §l to construct the Steenrod operations

in mod p cohomology and prove their usual properties. The construction will be

similar to one given by Milgram [)7, Chapter 27J, except that we use stable extended

powers instead of space-level ones. On the other hand, the proofs will be quite

close to those of Steenrod and Epstein [lOOJ except that we make no use of chain-

level arguments.

*Throughout this section and the next we write H for HZp, H for mod-p

cohomology, and for the subgroup of Ep generated by a p-cycle. If p is an odd

prime we write m for as usual. For odd primes the spectrum HZp is u: but

not (see VII.6.1), hence the power operation ;9p can be defined in even degrees

but not in odd degrees (unless one uses some form of local coefficients). The

operation :f does extend to odd degrees, as we shall now show.
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For each i E Z there is a unique map

commutes, where $ is the iterated product map. For each i,j E Z the diagram

commutes up to the sign (-1 )mij •

The proof is the same as for 1.4.5. One can in fact replace w in this result

by any subgr-oup of the alternating group but we shall have no occasion to do so.

Using the map we obtain an external operation

and an internal operation

as in §l. The uniQueness property in 2.1 implies that these operations agree with

those already defined when i is even.

Since 1*'J>wl:1 E HPsP is the canonical generator l:Pl, we see that :Pwl:l is an

orientation for the real regular representation bundle

It follows that the element XE HP-1Bw defined by

is the Euler class of the real reduced regular representation (i.e., the sum of the

nontrivial real irreducibles). In particular, X is nonzero since each nontrivial

real irreducible has nonzero Euler class.
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Our next result gives the basic properties of the operation Pn• Note that

'H* (X"Bn+) is an H* (Bn)-module.

(ii)

(iii)

Proof.

(ii).

get

(v) SPnx = 0 if P is odd or Ixl is even.

Parts (i) and (ii) are immediate from 2.1 and part (iii) follows from part

For part (iv) we assume first that Ixl is even. Then we may apply 1.4(vil to

P (x + y) = P X +P Y + 1:...- [(x + yIP - xP - yp] (r*1).
P p p p! p

*But T 1
P

gives

* *Til p!l o and the result follows in this case. If Ixl is odd this

Applying part (iii) gives the equation

and the result follows since X is not a zero divisor in H*Bn. For part (v) we need

a lemma. Let S:H + EH represent the Bockstein operation.

Lemma 2. J. The composite

factors through the transfer

The proof of 2.J is rather technical and will be given at the end of this

section. For the moment we use it to prove part (v). Let x E H X be represented

by f:E"'X + E2iH and consider the following diagram, where we have suppressed );'" to

simplify the notation. D f 2pi 2' 1+ 1f D );2iH );2piHX"B1f DX ); S .. ); pr» H
n n _..

!1 !T1f !Tn --T -_.-n _.-
rIp) ..-"-

X -_!:'_-X(p) ();2iH)(p) ..-

The dotted arrows exist by 2.J and the diagram commutes. The top row represents

SP1fx. Thus SP1fx is in the image of the transfer
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But the composite of (11'1:
11)*

with the restriction

is multiplication by p and hence vanishes. Since (1 f\ I )* is clearly onto we

*see that (1/\ 1:
11

) = 0 so that SPllx = 0 as required. Finally, if p is odd and

x E we have

since Sx = o. The result follows in this case since X is not a zero divisor. This

completes the proof of 2.2.

Now let x E HqX. If P = 2 we define pix E to be the coefficient of

xq-i in Pllx. If P is odd we define pix £ Hq+2i(p-l)X to be (_1)mi+mq(q-l)/2 times

the coefficient of xq-2i in Pllx. We also define an element w E HP-2Bll for p odd by

the equation Sw x.

+ y) pix + piy

2i and p is odd or ifq=iandp 2. pix 0

is odd or if q < i andp=2.

(Lv )

(v )

(vi)

If P = 2 then Sp2ix = p2i+lx; in particular, sx = pIx.

If P = 2 then Pllx = E(pix)xq-i• If p is odd then

Pllx = E(_1)mi+mq(q-l)/2[(pix)xq-2i + (_1)q(Spix)wxq-2i-lJ.

(vii) pixy = E(pix)(pi-jy).

Proposition 2.4. (i) pi(x

(ii) pi(EX) = Epix

(iii) pix = xP if q

if q < 2i and p

pOx = x,

Proof. (i), (ii) and (iii) follow from 2.2(iv), 2.2(iii) and 2.2(i) respectively.

For part (iv), we observe that pO is a stable operation of degree 0 and hence

represents an element of = Zp. Thus pO is a constant multiple of the identity

and the result follows since pOl = IP = 1 by part (iii). In part (v) we can use

part (ii) to reduce to the case where q is even. The result follows in that case

from 2.2 (v ) and the relation Sx = l. In part (vi) the p = 2 case is true by

definition. If p is odd we can use part (ii) and 2.2(iii) to reduce to the case

where q is even. We then have Pllx = I *Ppx. We recall from [68, Lemma 1.41 that the

image of
* * *I :H BEp + H Bn

is nonzero only in dimensions of the form 2i (p-l) and 2i (p-l) -1. Thus this image is

generated as a ring by X and w and we have
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Pnx = I (_I)mi+mq(q-I)/2[(pix)xq-2i + Yiwxq-2i-IJ

for some elements Yi e Hq+2i(p-I)+IX. Now 2.2(v) imples that Yi = (-l)qSpix as

required. Finally, part (vii) follows from 2.2(iv) and part (vi). This completes

the proof of 2.4.

Next we shall prove the Adem relations for p odd. We use the method of proof

of Bullett and MacDonald [26, §41, where the case p = 2 may be found. However, in

our context the relations arise more naturally in the form given by Steiner [102J.

Let U and V denote indeterminates of degree 2p-2 and define S and T by

S uu

We shall prove that the equations

(1)

(2)

I (pipix)U-jT-i

i,j

I (pi Spix)U-j T-i

i,j

I (pip\)V-js-i

i,j

(1 - U-lV) I (spip\)V-js-i + u-lv I (pispix)V-jS-i

i,j i,j

hold for all x. The usual Adem relations can easily be obtained from these as in

[102, p. l63J; the basic idea is simply to expand the right sides of (1) and (2) as

power series in U and T and compare coefficients. The proof of (1) and (2), like

any proof of the Adem relations, is based on the relation

(J)

given by 1.4(vii). In order to compute PrrPnx in terms of the pi we need to know

more about the element X E HP-IBn. We have mentioned that X is the Euler class of

the real reduced regular representation of n, and that this representation is the

sum of the nontrivial real irreducibles of n. Choose one such irreducible, and let

u E denote its Euler class. Then the Euler classes of the remaining

irreducibles (suitably oriented) are 2u, 3u, ••• ,mu, and thus X = ±m!um• The

ambiguity in the sign arises from the question of whether the various orientations

have been chosen consistently, but it turns out that we shall not need to eliminate

this ambiguity. Thus we shall assume X mlum (it is in fact possible to choose the

orientations so that this holds) and leave it to the reader to check that the other

possibility leads to the same relations (1) and (2). We define b e HIBn by the

equation sb = u, so that w = m!bum-l• Then the equation 2.4(v) may be written as

follows.

(4) p X
n
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Since both sides of (1) and (2) are stable we may assume that q has the form 2r with

r even. We define U = _u2m, so that (4) becomes

Now 2.2(ii) and 2.2(iv) give

in H*X ® H*B1f ® H*B1f. We denote the copies of b and u in the second copy of B1f by c

and v, and we let V = _vp-l• Equation (4) gives the following formulas.

(7) P1fb m! Ib -

(8) P1fu uP - uvp-l = u(V - m

(9) P U = -(P u)p-l = U(V _ U)p-l Vp-IS1f 1f

(10) P1fpi X = I (_l)r(pjpix + (BPjpix)cv-IJVr+2im-j

(11) P Bpix = I (_l)rm![pjBpix _
1f

We therefore have

Now we apply equation (3). We have / u v, /u = v, and / S = T. Since

vPs = uPT = / (VPS) we have

(13) P1fP1fx = Y*P1fP1fx = (VPS)r I (pjpix - (BPjpix)bu-1

+ (pjBpix) (cv-1 _ bu-I)U(U _ V)-l _ (BPjBpi)bcu-lv-IU(U_V)-l]U-jT-i.

Collecting the terms in (12) and (13) which do not involve b or c gives equation

(1), and the terms which involve c but not b give (2). This completes the proof.

Finally, we give the proof of Lemma 2.3. Let Mbe the lklore spectrum Svp el

and let i:S + Mbe the inclusion of the bottom cell.

Lemma 2.5. HI (DlIM) has a basis {x,y} such that (D
lIil*x

= 0, (D
lli)*Y'l

0, and x is

in the image of the transfer
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Proof of 2.5. We use the spectral sequence

of 1.2.4. Each of the groups and is generated by a single element.

The generator of the latter group clearly survives to E
oo

and represents an element

y E HID
lIM.

Since (i (p J J* :HOM(P J + HOS is an isomorphism, so is the map induced by

D
ll
i on Hence (D

lIi)*y
i O. Now let z E HIM(pl be a generator of

HIM® uOM® ••• ® HOM and let x ,*z. Clearly, x is represeneted by a generator of

E20, I , and (D iJ*x (D il*,*z ,*(i(plJ*z which is zero since HIS = O.
'If 11 11 'If

H.D M = D (S I> M)
11 11

Proof of 2.]. Let HZ be the spectrum representing integral cohomology. Then

H = HZ 1\ M. Let e:S + HZ be the unit and let n be the composite

D(el>l)
11 .. D (HZ" M) = D H

'If 'If

Let w be the element of uOD'lfM represented by n , Then (D
1Iil*SW

° since S vanishes

on HOD
lIS

= uOB'If. Hence by Lemma 2.5, Sw is a multiple of x and in particular it is

in the image of the transfer. Thus we have a factorization

D M n "H S "l:H

• /;; "

Now consider the diagram

1·· [.. ® 1",
11

t .. l:2piH

1l:2Pis

l:,:i+1H

1;1\;:;- l:2pi Hz A EH

The uniqueness clause in 2.1 imples that the composite of the top row is
2i 2pi . tA\1;:D'lfl: H + l: H, so it suffices to show that the d1agram commutes. Part

commutes by V1.3.10 of the sequel, and the other parts clearly commute.
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§]. Dyer-Lashof operations and the Nishida relations

An interesting feature of the treatment of Steenrod operations in §2 is that is

generalizes to give the properties of Dyer-Lashof operations; thus homology opera-

tions are a special case of cohomology operations (cf. 168J). The use of stable

instead of space-level extended powers is crucial for this since homology does not

have a simple space-level description. We give the details in this section; IX§l

will give another approach to homology operations which generalizes to extraordinary

theories. We continue to use the notations of §2, so that H denotes HZp '

First let Mbe any module spectrum over H and let Y be an arbitrary spectrum.

There is a natural transformation

defined as follows: if y E M*Y is represented by f:Y .,. EiM then A(y) is the

composite
()jIfl*

----)0-)0 1T*(HAM)

which is a homomorphism raising degrees by L, Clearly A is a morphism of cohomology

theories. Since it is an isomorphism for Y = S we have

lemma ].1. A is an isomorphism.

Now let X be a fixed Hoo ring spectrum with structural maps 6j (for example, X

might have the form E"'Z+ for an infinite loop space Z) and let M= HAX. Then M is

an ring spectrum with structural maps
cc

and we obtain power operations

1C
j

.,. D
j
Y

2' 2"and R
j

.,. M lJ (Y x BE
j
).

The operation can be extended to odd degrees by means of the maps

where I'; is the map given by 2.1. The unit of X gives an ring map h:H .,. H"X M

and h* also preserves in odd degrees.

Define b, X and :;- in M*B1T to be the images under of the elements b, u,x

and w in H*B1T defined in §2. Thus R z i , lemma ].1 gives the following
11

isomorphisms for any space Y.
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if P = 2.

Thus we can define operations Riy for y E Mqy as follows: if p = 2 let be the

coefficient of x4-i in R y, and if p is odd let be (_1)mi+mq(q-l)/2 times the
• If

coefficient of jfl-2:l. in RlfY' Now if Y = SO there is an isomorphism HqX '=

which we shall always denote by x I-----o-!.. We define the Dyer-Lashof operations

Qi:HqX + Hq+iX when p = 2

Qi:HqX + Hq+2i(p_l)X when p is odd

by the equation Qix = R-i.!.. The properties of Qi will follow from those of R1T and

Ri• Our next result gives the basic facts about Rlf'

Proposition 3.2. (i) i*R1Ty yp

(_l)mIYllzl (R y) (R z )
If If

mlyl
(-1) X .l:RlfY

(v) eR1Ty = 0 if P is odd or Iyl is even.

Proof. (i) and (ii) are immediate from the definitions and (iii) follows from

(ii). In the proof of 2.2(v) it was observed that the transfer

* * '*T :H Y + H (Y X Bn )1T

vanishes for all spaces Y. By 3.1 it follows that

* '* '*T :M Y + M (Y x Blf)
If

also vanishes. In particular, the map

* '* + M'*(B'<' )T :M (pt.) L.

P P

vanishes. Part (iv) now follows by the proof of 2.2(iv). To complete the proof of

part (v) it suffices to give a suitable substitute for Lemma 2.3. That lemma gives

a map

such that F 0 Tlf is the composite

D l:2iH l:2piH l:2pie l:2pi +lH.
If
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Consider the following diagram

The left part commutes by VI.3.10 of the sequel and the right part commutes by

definition of F. Thus the top row of the diagram factors through Tn' Using this

fact in place of Lemma 2.3, the proof of 2.2(v) now goes through to prove part (v).

If we now replace pi, X and w in Proposition 2.4 by Ri X and w then every,
part except (Lv ) remains true with the same proof. If we replace U,V,S and T in the

Adem relations (equations (1) and (2) of Section 2) by U = h*U, V = h*V,

S = h*S and T = h*T then these relations remain true and have the same proof.

Proposition 3.3. (i) Qi(x + y)

(ii) If p is odd then Qix 0 for 2i < Ixl and Qix xP for 2i = Ixl.

If p 2 then Qix = 0 for i < Ixl and Qix = x2 for i = Ixl.

(iii) SQ2s = Q2s-1 if P = 2

(iv) Qi(xy) L U}x)(Qi-jy)
i

(v ) The Adem relations hold: if U and V are indeterminates of dimension

2-2p, S = U(l - V-IU)p-1 and T = V(l - U-IV)p-1 then the equations

L (Qiqi x )ui-ri
i,j

and if p is odd

L (QiSoi x)Ui-ri
i,j

L (Qiqix)ViSj

i,j

(l - U-IV) L (SQioix)Visj

i,j

+ u- 1V L (QiSoi
i,j

are valid for all x.

(vi) If X has the form /:"'Z+ for an E", space Z and

cr:H QZ + H 1Z
q q+

is the homology suspension then Qicr = crQi.
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Proof. We shall prove part (vi); the remaamng parts are immediate from the

properties of Ri • For any space Z the retraction of Z to a point splits the cofibre

sequence

and gives a map

Now let Z be an Eoo space and let X l;ooZ+, X = l;ooZ, W = l;oo(QZ)+, \Ii = l;oonZ. Then X

and Ware Hoo ring spectra but X and Ware not. Let I;; denote either of the

composites
D v

11 11

and W,

where the unmarked arrows come from the Hoo structures on X and W. We can use the

maps I;; to define operations

is eas,y to see that

R
11

in the theories represented by H" X and H"Wand it

(1) (1 Av)*R
1Iy

R
1I
(1 AV)*y

for all y. Now if x E 11 QZ then x; (HAW)-qS C (HAW)-qS, and (1) and the
q

definition of Qi give

(2) R x = (_1)mi+mq(q+l)/2Qix x2i-q
11 - •

1.

since (1" v)* is monic. The natural map e::WZ + Z induces a map l;1ll + X which

will also be called g. A fairly tedious diagram chase (given at the end of IX§7)

shows that the following diagram commutes.

rn W D l;W
11 11

1"

tD1Ig
DX
11

!I;;
l;W X

Hence the following diagram commutes, where f:S + l;-qH Wrepresents .!..
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The top row of this diagram represents

represents R1f(l Thus we have

and the other composite

(3)

Combining this with (1) gives

(4) (1 A \IE: ) x = R (1 1\ \IE: )1f

Now the definition of a gives

(5 )

Combining (5) and (2) gives

(6)

Finally, by 3.2(iii) we have

(7)

\ ( 1)mi+mq(q+l)/2 Qi 2i-q
t: -
i

The result follows from (4), (6J, and (7). This completes the proof of 3.3.

We conclude this section with a proof of the Nishida relations in the form

given by Steiner:

(8) L
i,j

and if p is odd

L (Qipi*X)UiT-j

i,j

L (p;ari x
i,j

(9) (1 - UV-l) L
i,j

+ UV-l L (Qiapi*xJUiT-j ,
i,j

where p; is the dual of the conj ugate Steenrod operation pi and U, V, S and T

are as in 3.3(v). The usual Nishida relations can easily be obtained from these by

first translating from p; to P; and then writing both sides as power series in U

and Vj see [102, p. l64J. We shall prove (8) and (9) for p there is a similar

proof for p = 2. The basic idea will be to show that the total Steenrod operation

H -+ V);iH
iE Z

is an Hoo ring map, and this in turn will follow easily from 1.4(vii). To make this

work, however, we need a particular H", structure on V );iH which we now construct.
iE.Z
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Let E*X be the functor H*(X x Bn) on the category of spaces. We denote the

generators of H1Bn and H2Bn by c and v, so that E*X is the polynomial ring

(H*X)[c,vJ. E* is a multiplicative cohomology theory and hence is represented by a

ring spectrum E. The projection X x Bn + X gives a natural transformation

H*X + E*X which is represented by a map g:H + E. Of course, E is equivalent to

V l::iH with its usual ring structure and g is the inclusion of H in this wedge.
i(O

Next we define power operations in E*. Let?f be the composite

(10)

It is easy to see that the are consistent in the sense of Definition 1.2 and

thus they determine an H2 ring structure on E by 1.3 (compare 11.1.3). The

extends odd degrees since Yn does, and g is an ring map which

also preserves 1?n in odd degrees. An inspection of the definitions gives the

following description of the internal operation ryn.

(lAy) *pn:fii(x I\Bn+) + fipi(x" Bn+1\ Bn+)

Note that, with the conventions we have adopted, c and v are the generators in the

second copy of Bn in this situation. As in Section 2 write b and u for the

generators in the first copy of Bn; thus g*:H*Bn + E*Bn takes v to u and c to b.

of finite complexes. The l'
J

H: structure for F by 1.3.

Now let F*X be the Laurent series ring (H*X) [ [c,v,v-1ll E*X[ [v-1ll. F* is a

multiplicative cohomology theory and hence is represented by a ring spectrum F, and

the inclusion H*X + F*X is represented by a ring map H + F which we again call g; of

course F is equivalent as a ring spectrum to .\Iz l::iH and g is the inclusion of H
J.e

* -1in this wedge. Now observe that the element (H Bl::j)[[C,v,v lJ is a Laurent

series which is bounded above, and that by l.l(iv) it has leading coefficient

1 E HOBl::
J
. • Hence is invertible, and it follows that we can extend the

E J F
operations jlj to operations 1>j in the F-cohomology

are consistent in the sense of 1.2 and hence give an

Next we define the total Steenrod operation t:H + F by letting t* be the

composite
P

HqX x Bn ) : EPqX --FqX,

where the last map is multiplication by (_1)mq(q-l)/2(m!)-q v-mq• By 2.4(vi) we

have the formula

(11) t*x : L [g*pix +
i

where V _vp-1 as in Section 2. In particular, the proj ection of t: + V l::iH on
HZ
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E2k(p-l lH is PK. Either from the definition or from formula (11) we get the

following equations.

(14) S.

t is clearly a ring map, but it turns out not to be an map. However, we have

Proposition 3.4. Let Y be any spectrum and let y e Hqy. Let w = (1 - UV-l)m. Then

This fact will suffice for our purposes but we remark that by combining it with

7.2 below one can show that t is actually an Hoo map. It is certainly not since

it does not preserve?lI.

For the proof of 3.4 we need a standard lemma.

Lemma 3.5. For any space Y the map

is monic.

For completeness we shall give a proof of 3.5 at the end of this section.

Proof of 3.4. Since both sides of the equation are stable (H,lI ,F) operations in the

sense of 1.2 and 1.3 it suffices to show that they agree on finite complexes. By

3.5 it suffices to show

and

for all y. Since t*w = 1 and t is a ring map the first equation follows from 1.1

(iv). For the second, we first let y = El. Then

XW·El

while

Since XW is not a zero divisor, it suffices to show (15) when q is even, say
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q = 2r. Then as elements of (H*Y) [[b,c,u,v,v-lj j we have

and

by (10)

*y) P P Y
11 11

and the result follows.

If we let y be the class of the identity map H + H we obtain

Corollary 3.6. The diagram

D H------..., H
11

ID1It

D F------..... F
11

commutes, where the unmarked arrows come from the Hoo structures of H and F.

Now let X be an ring spectrum.

spectrum and there is an operation

Then, as we have seen, H"X is an ring

for Y E h l . Similarly, F" X is an H: ring spectrum and we obtain an operation

The unit of X induces Hoo ring maps h:H + H"X and h':F + FAX.

Corollary 3.7. If Y is any spectrum and y E (HAX)qy then the equation

holds in (FAX)pqy •

Proof. For q = 0 this is immediate from 3.6. If Y = Ll we have
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(t" ll* 'KTrY = (t 1\ 11*0*[

0* [wq(;12Fl:1 lq1l (t 1\ 1 )*z I
Tr Tr

= All*y

as required.

Corollary J.7 gives the following relation between the internal operations.

(161

To prove the relations {el and (91 one simply evaluates both sides in the special

case when Y is a point. First we recall that the operation in homology induced by

pi:H + E2i (p- l lH is not p; but its conjugate P;. Since i = -a we have in

particular = -Bz. Thus (Ill gives

{l7l

for any z eo HqX. Now let x eo HqX, y =.!... Then we have

= (tAll* I (_llmq(q+ll/2(ml)

j

{-I lmq( q+11/ 2 (m! 1-qI [( tl\ll *ci x-t -1 l q(thl l*aqi x (t*b) (t*vl -1] (t*vl -mq(t*Vlj

j

(18) (_llmq(q+ll/2(ml I [p;cix - (-llqap;cixcv-l

i,j

_ (-llqp;aqix(bu-l- cv-l)(l _ UV-ll-l + ap;acixbcu-\-l(l _ UV-ll-llsiv-i

On the other hand, we have

= w-qRF I [g*?l*x - (-llqg*a?l*xcv-ljV-j
Tr n j

= w-qI [R - {_llq{_llm(q+llR {pFcl(pFvl-l](pFVl-j
. Tr n 11 11 11
J

{l91 = (_11mq(q+ll/2(ml I [Qiptx - (-llq aQiptXbU-l

i,j

+ (-1 1qQiapl*x(bu-l_cv-11{l_U-lVl-l_aQiapl*xbcu-lv-l(l-U-lVl-ljUiT-j

If we collect the terms in {le1 and {191 not involving b or c we get (e 1•

Collecting the terms involving b but not c gives (91.
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I t remains to show 3. 5•

Proof of 3.5. Let P be odd; the p 2 case is similar. We use the spectral

sequence 1.2.4

Hi +j (D X).
11

Let be an ordered basis for il*x. Let denote the degree of xa' The

graded group H*(X(P» =H*(X)®P has the basis {x ® ••• ®x I EA} and
P

the E2-term has a basis consisting of representatives for the elements

{b
Ei9x

I a E A, E = 0 or 1, i > O} and {-r (x ® ••• ®x = min I max
11 - 11

(in particular, the spectral sequence collapses, as we also know from 1.2.3). Hence

these elements form a basis for H (D X). Let Z E H D X be a nonzero element with
* * 11 11

1 Z = z = O. Since l*Z = 0, Z is a finite sum of the form

Since

(20) 0

0, we have

by equation (4) of section 2.

the set of triples (a,E,i) with

of uk in line (20) is

Now let K be IA . t O} and let S be
a,e,l

A . t 0 and = K. Then the coefficient
CI,E:,l

I
E S

since all other terms in line (20) involve smaller powers of u. But this is a

contradiction since the xa are linearly independent.

§4. Atiyah's power operations in K-theory

In this section

Atiyah [17J give

structed in VII §7.

for KO.

we show that the power operations in KU and KO defined by

structures for these spectra which agree with those con-

We shall work with complex K-theory, but everything is similar

We begin by recalling the definition of Atiyah's operations. Let G be a finite

group. If Y is a G-space let VectGY be the set of isomorphism classes of
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equivariant vector bundles over Y; we write Vect Y for the case where G is the

trivial group. If Y is a free G-space there is a natural bij ection

VectGY =Vect(Y/G)

(see [18, 1.6.11). If Y is any G-space we write A for the composite

where the first map is induced by the projection EG x Y + Y. The map A is additive

and hence if Y is a finite G-complex we obtain a map

which will also be denoted by A. Now if X is a finite nonequivariant complex and we

let l:j act on xj by permuting the factors then the j -fold tensor power gives a map

15
J
. :Vect X + Vect :0 + K xj

l:j l:j

which however is not additive. In order to extend it to virtual bundles and to the

relative case we must use the "difference construction" [94, Proposition 3.11. Let

(Y,B) be a G-pair and consider the set of complexes

d
E - ••• --..!!-E-O
1 n

of G-vector bundles Ei over Y which are acyclic over B. We write for the

set of isomorphism classes of such complexes. Two elements E* and of

are homotopic, denoted E* if there is an element ltG(Y x I, B x I) (with G

acting trivially on I) which restricts to E* and at the two ends. We say that E*

and are equivalent, written E* if there are complexes F* and which are

acyclic on Y such that

E* ® F* ®
It is shown in [94, appendix1 that there is a natural epimorphism

r: bG(Y,B) + KG(Y,B)

which induces a bijection from the equivalence classes in .l"G(Y,B) to KG(Y,B). If B

is empty r is easy to describe: it takes E* to I (_l)iE.• r is additive and
1

multiplicative if we define addition and multiplication in to be the direct sum

and tensor product of complexes. Now if (X,A) is any pair of finite OW complexes

the j-fold tensor product of complexes give a map

t:J (X,A) + til:. ((X,A)j i.
J

If E* and in C(X,A) are homotopic by a homotopy H* then the restriction of

along the diagonal map
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gives a homotopy between E8J j and j. If F* is acyclic on X then the inclusion

(E )@ j + (E e F )@ j is L:. -equivariantly split and is a homology equivalence by
*.. * * J

the Kunneth theorem, so that j - (E* e F*)® j. It follows that the j -fold

tensor product preserves equivalence and we can pass to equivalence classes to

obtain a map

:K(X,A) + KG( (X,A)j i.

Letting A be the basepoint * of X we write:Pj for the composite

Kx = K(X,*) -KL: «X,*)j) K(EL:. xL: (X,*)j) KDjX.
j J j

We can extend Slj to all even dimensions by letting it take the Bott element

b e R-2 (SO) to It is easy to see that the :Pj are consistent in the sense of

1. 3, so by 1.2 and 1. 3 we have

Theorem 4.1. KU (resp. KO) has a unique (resp. n8) ring structure for which
cc '"

the power operations are those defined by Atiyah.

We shall see in Section 6 that the H8 structure on KO extends to an H4
'" '"

structure. Our next result answers an obvious question.

Proposition 4.2. The structures on KO and KU given by 4.1 are the same as those

given by VII.7.2.

For the proof we need a lemma.

Lemma 4.3. Let X be a based space and let >,:X+ + X be the based map which is the

identity on X. Then

is a split monomorphism for any theory F.

Proof of 4-3.

* *(D. v ) (D. x)
J J

'" 00 +If v:L: X + L: X is the map given in the proof of 3.3 then

*(Dj (E
oo

>, 0 v») 1.

,
Proof of 4.2. Let 'Pj be Atiyah's power operation and let'1j be that given by

VII.7.2. By VII.7.7 we have

while by l.l(iii) we have
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= (:P.');2l ). P\ .
J J J

Since :9; );21 is an orientation for the Thom complex Dj S2 this implies
-;)' • t

'.r
j
b = if =1>jb. It therefore suffices by 1. 3 to show that and are equal on

Kx for any finite complex X, and by 4.3 it suffices to show that they agree on
+

K(X ) = KX. They do agree on Vect X by [71, VIII.l.21. But any element x of KX

can be written in the form V-W with V,W E: Vect X, and we have

j -1
1l.V=?,(x+W) L , .. . ((Y.x)(t? .W)]
J J J J i=l e-L

by 1.l(vi), and similarly for 1:J'j. Hence

j -1
= JI.V- :?W- L 1:. •• [('J>.x)(? .W)]

J J i=l
,

and similarly for Jj. We therefore have rJ} x = r?; x by induction on j •

By analogy with Section 2 we now ask what operations in K-theory can be

obtained from the internal power operation

The structure of K(Bn) has been determined by Atiyah [16]: K(Bn)

and the composite

A

is a Z -modulep

is an isomorphism, where IR(n) is the augmentation ideal. If p is the automorphism

group of n then the invariant subgroup K(Bn)P is generated by A(N-p), where N is

the regular representation of n. Atiyah also shows that K1Bn = O. In particular,

K*Bn is flat over K*(pt) and we obtain a Kunneth isomorphism

KX ® K(Bn) _ K(X x Br )

for finite complexes X. Since Pn is the restriction of Pp we see that Pn actually

lands in the invariant subring KX® K(Bn)P. We can therefore define operations

q1':KX .. KX

A

and eP:KX .. KX x Z
P

by the equation

(1)

By 1.4(i) we have
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Atiyah proves the relation

(3)

in [17]. Since the representation N of n is induced from the trivial representation

of the trivial group we have A(N) = Tnl and therefore (1), (2) and (3) give

(4)

an equation which will be used in §7.

We can in fact lift eP to KX by using the equivariant internal operation

This is the composite

where a is the diagonal map from X with its trivial n-action to xP with its

permutation action. Clearly Pn A 0 Pn• Since n acts trivially on X, we have

KnX := KX ® Rn , The p-invariant subring of Rn is generated by 1 and N-p, so we may

define ePx as an element of KX by the equation

p x = xp ® 1 + ePx ® (N - p l ,
n

The operation Pn satisfies the obvious analog of 1.4 and one can use its properties

to obtain additivity and multiplicity formulas for eP and (using equation (3) as

the definition of One can also obtain the G-equivariant Adams operations in

this way by starting with a G-complex X and constructing operations

exactly as before. The reader is referred to [34] for details.

§5. tom Dieck's operations in cobordism

In [Jl], tom Dieck constructed "Steenrod operations" (power operations in our

terminology) for the cobordism spectra associated to the classical groups. In this

section we use these operations to give structures for these spectra. A wider

class of cobordism spectra will be investigated by Lewis in the sequel, and he will

show that they have not just H
oo
but E

oo
structures. His results do not quite include

those of this section, however, since his methods do not give the "d-structure"

(i.e., the Lj-orientations) for the classical spectra.

Throughout this section we write G for any of the classical groups 0, SO,

Spinc, U, SU, Sp or Spin. Let d = 1,2,2,2,4,4,4 respectively. We depart somewhat
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from standard notation (in this section only) by writing G(i) for the group which

acts on Rdi• Let be the universal G(i)-vector bundle over BG(i), let S(Pi) be

its fibrewise one-point compactification, and let T(Pi) be the Thom complex obtained

by collapsing the points at 00. We shall always identify principal G(i)-bundles with

free G(i)-spaces, so that the principal bundle associated to Pi is EG(i). If q is

any G(i)-vector bundle with principle bundle Q, there is a bundle map F:q + Pi and

induced maps S(F):S(q) + S(Pi) and T(f):T(q) + T(Pi)' If F' is another such map we

shall need to know that T(F') is homotopic to T(F) (of course this is well-known
d'

for the maps of spaces induced by F and F'). Now F has form 11' xG(t ) R

for some G(i)-map F:Q + EG(i) and S(F) is equal to F xG(i) , and similarly for

F' and S(F'). It is shown in []2] that there is at most one G(il-equivariant

homotopy class of G(i)-maps from any G(i)-space into EG(i), so it follows that S(F)

is homotopic to S(F') by a homotopy preserving the base points in each fibre, and

hence T(F) " T(F') as required.

Now we define the Thom prespectrum TG by letting (TG)di

induced by any bundle map from Pi e Rd to Pi +l' We wish to show that TG is an

ring prespectrum. For this we need some bundle theoretic observations.

Let P be a G(i)-vector bundle over X with associated principal bundle P. Then

El:j is a vector bundle over El:
J
. xl:,xj; we wish to give it a canonical G(ij)-

J J
bundle structure. Let H = G( i)j. Then pi is an H bundle over Xj with principal

bundle pi, and l:j acts on everything on the left. However, its action on pi does

not commute with the right H-action (]'Ii is not a "l:. -equivariant principal H-
J .

bundle II ). Instead we have o(ph) = (op) (oh ) for a El:j' P Epl, hE H. Now let

Q = ]'Ii xh G(ij ). This is a principal G(ij )-bundle over x,i with associated vector

bundle pi. Because of our choice of d the permutation action of l:j on (Rdi)j lifts

-1

1;, • :Dj (TGld· :: T(El:. XV 1 ---- T(p .. ) = (TGl dijJ J

for all i,j O. The diagrams of Definition VII.5.1 commute since in each case the
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two composites are induced by bundle maps into a universal bundle. Thus we have

shown

Proposition 5.1. d
The maps ,i are an H

oo
structure for TG.

Now define M} = Z(TG). Every G(i)-vector bundle q has a canonical Thom class

in this theory represented by the map

At this point we need some liml information.

Lemma 5.2. Alllof the pairs (TG,MG'), (TG,KU), (TG,KO), (TG,ku) and (TG,kO) are

liml-free.

Proof. First consider (TG,MG'). The pair (TU,MU) is clearly liml-free since the

spectral sequence Er(TU2ijMU) collapses for dimensional reasons. For each other

choice of G and G' there are maps f:MU + MG' and g:TG + TU satisfying the hypotheses

of VII.4.4, hence each pair (TG,MG') is liml-free. A similar argument gives the

remaining cases.

Corollary 5.3. MG is an ring spectrum.

On the other hand, it was shown in [71,IV§2) that M} has an Eoo ring structure.

Such structures always determine Hoo structures, as mentioned in I§4j see [Equiv,

VII§2] for the details. Let + MG be the structural maps obtained in this
H J J

way and let be those obtained from 5.1 and 5.3. As one would expect, the two
J

structures agree:

Proposition 5.4. For each j, H
•

Proof. We use the notations and Definitions of VII§8. Fix i and let a = ai' It

suffices to show that the elements and in cobordism represented by the
1 1

composites

and

T(Tj.)" T(p. )(j) (D.M})
1 Ej 1 J a

T(Tj.) "E T(p.) (j ) (D. M})
1 j 1 J a

E
la

J • (MG)
a

E«: )
J a (MG)

a

are equal. An inspection of the proofs of [71, IV.2.2] and [Equiv. VII.2.4]

shows that the second composite is induced by a bundle map from Tji (Pi)j into

the universal bundle Pa' hence is the canonical Thorn class in

MGa(T(Tj.)/I. .... T(p.l(j)). On the other hand by Proposition VII-8.1 there is a
1 1... 1

J
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relative Thorn isomorphism

Thorn class in the target group. Since the

sum is the product of the Thom classes, the
(. )

the Thorn class of T(n. 1A
r

(T(p.) J 1 to that
. l

and the result followt.

'I' :(MG)a(T(n.) '" (T(p.) (j )) (MGl a+di j (EaT(Er. ))
J

which takes to the canonical

canonical Thom class of a Whitney

relative Thorn isomorphism 'I' takes

of raT(Er. x (P.)j i. Thus =
J rj

We conclude this section with a discussion of cobordism operations related to

P1T' The situation in unoriented cobordism is quite simple: there is a

KUnneth isomorphism

where X is the MO* Euler class of the Hopf bundle, and we can define operations

. q q+i
+ MO X

for i eZ by the equation

P
2
x = I (Rix)xq- i•

i

One can prove various properties of the Ri exactly as in §2 (see [31, §15]l.

To deal with the case of complex cobordism we need some formal-groups notation.

Let F(x,y) be the formal group of MU and let [nJ(x) be the power series defined

inductively for n 0 by [l](x) = x and [n+l](x) = F([n](x),x). There is a

Kunneth theorem due to Landweber [49J:

MU*(X x Bn) " (MU*X)[[u]J/[p](ul,

thus X is the Euler class ofX e MU2p-2Bn by the equationDefine

where u is the Euler class of a nontrivial irreducible complex representation of 1T.

The power series [p)(u) has leading term pu but is not divisible by p, so that in

particular MU*Bn is torsion free. We cannot continue as in the unoriented case

since the power series [pJ(u) and the ring MU*B1T admit no simple descriptions.

There is however a relation between Pn and the Landweber-Novikov operations sa which

is due to Quillen and was used by him to give a proof of the structure theorem for

n*MU. Let aj (x ) for j :: 1 be the coefficient of yj in the power series
p-l

"j"( F( til (x ) ,y). For a multi-index a
i=l

the complex reduced regular representation.
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Proposition 5.5. For any finite complex X there is an integer m ° such that the

equation

(1 l (P x)xm- q
11

holds for all x E MU2qX.

For the proof see [93J or [Ill. There is a similar relation between P
1I

and sa

in the unoriented case. Since the right side of equation (1) is additive in x we

have

Corollary 5.6.

§6. The Atiyah-Bott-Shapiro orientation.

It is well-known that the KU and KO orientations constructed by Atiyah, Bott

and Shapiro in [19J give rise to ring maps

and <p°:MSpin + KO

In this section we shall prove

Theorem 6.1. <pU is an ring map and <pO is an ring map.

Remark 6.2. MSpin actually has an H: structure, as shown in §5. By combining 6.1

with VII.6.2 we see that the structures for KO and kO constructed in §4 and in

VII§7 extend to structures.
0)

We shall give the proof of 6.1 only for <pO, which will henceforth be denoted by

<Pi the remaining case is similar. If p is a Spin(8il-vector bundle we denote its

Atiyah-Bott-Shapiro orientation in KO(T(p)) by

First we translate 6.1 to a bundle-theoretic statement. As usual, let P8i be

the universal Spin(8il-vector bundle. If Xc BSpin(8il is any finite complex, we

obtain an orientation class

These classes are consistent as X varies, hence by 5.2 and VII.4.2 they determine a

unique class in KO(TSpin8i) which is represented by a map
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The sequence is a map of prespectra, and is defined to be (see

VII§l). The multiplicative property [19, 11.1 and 11.3] of the Atiyah-Bott-Shapiro

orientation implies at once that is a ring map, and hence so is by 5.2 and

VII.2.3. Similarly, Theorem 6.1 is a consequence of the following property of

Proposition 6.3. If P is any Spin(8i)-vector bundle then

-0

(i)
where J j is the power operation defined in §4.

In the terminology of §l, Proposition 6.3 says that -:Yj satisfies tom Dieck I s

axiom P4. tom Dieck gives a simple proof of the analogous statement for the KU-

orientation of complex bundles in 131, H2].

For the proof of 6.3 we need to recall several technical facts from [19]. The

first is the "shrinking" construction in P(D,Y). Let

d
o "-- EO -.!- El

be a complex of real vector bundles over X which is acyclic over Y. Choose

Euclidean metrics in each Ei and let 6i

to the chosen metrics. Let

be the adj oint of di with respect

D
0-- s(E)O 4- s(E)l - 0

be the complex with S(E)O e E
i
, s(

i even
G

i odd
and differential

Then s(E) is in ,t5(X,Y) and it defines the same element in KO(X,Y) that E does (see

[19, p.22]). The same construction works G-equivariantly provided that the chosen

Euclidean metrics are G-invariant.

Next we need the Clifford algebra Ci• By definition, Ci is the quotient of the
. 2 i

tensor algebra T(R1 ) by the ideal generated by the set {x@ x - II xII .llx E R }. The

grading on T(Ri) gives Ci a Zrgrading by even and odd degrees and we will write

for the Z2-graded tensor product of two Z2-graded objects. By a module Mover

Ci we mean a Z2-graded real vector space with a map

satisfying the usual properties. Equivalently, such a structure is given by two

maps
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and

each denoted by x m xm, such that

(1) x(xm)
2

-IIXII m

for all x,m. In particular, the latter description shows that if M is a Ci-module

and N is a Cj -module then M lEl N is a Ci +j -module with

(x $y)(m = xm + (_I)lml x

for all x E Ri, Y E , m s M, n EN. If M is any module over Ci we can define a

complex

E(M) :

of real vector bundles over Ri by letting EO(M) = Ri x NP, El(M) = Ri x Ml, and

d(x,m) = (x,xm). Equation (1) shows that this is acyclic except at 0, and in

particular it defines an element of KO(Di ).

We can now define two complexes over (Ri)j ,namely E(M lEl j) and the external

tensor product E(M) j. The first has length 2 and the second has length j +1. We

need to be able to compare them.

Lemma 6.4. The inner product in E(M) 181 j can be chosen so that s(E(M)® j) is
lEl'

isomorphic to E(M x J )

Proof. It is shown in [19,p. 25J that one can choose inner products in NP and Ml so

that the adj oint of x :Ml + NP is -x:NP ... M1 for each x E Ri• We define an inner

product in M j by

<ml @ ••• @ mj, mJ. ••• m] > = <m
1,mi>

••• <m
j ,m]>

with the understanding that <m,m'> = ° if Iml i Im'l. Then s(E(M) x j) and

E(M lElj) clearly involve the same two bundles, but they have different

differentials, say d and d'. The definition of the shrinking construction gives

j

I
k=1

m.) =
J

Imll +. .. + [m, 1-1
(-1) ]. (x,m

1
<81 ••• m. 1 <81 x.mi 181 m. 1 <81 ••• 181 m, )].- ].].- J

if x
lEl'

Xl ('jl ••• $ xj E (Ri)j, while the definition of M x J as a Cij -module gives
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d!(x,ml I ••• ®I!J) =

j [m 1+"·+lm. I\' 1 J.-I
(-1) (x,ml ® ••• ® mi_l ® ximi ® "i-i ® ••• I mj i,

The required isomorphism is given by taking (x,ml ® ••• I I!J) to itself if

Imll + ••• + Imj I is congruent to 0 or 1 mod 4 and to its negative in the remaining

cases.

Next we recall that Spin(i) is a subgroup of the group of units of Ci (in fact

this is the definition of Spin(i) in [19, p.8]) and that the resulting conjugation

action on RiC Ci agrees with its usual action on Ri• We can therefore define an

action of Spin(i) on E(M) through automorphisms by g(x,m) = (gxg-l,gm). Now if P is

a principal Spin(i)-bundle over X with associated vector bundle

p:V + X we can define a complex E(M,P) over V = P xSpin(i) Ri by

E(M,P) P xSpin(i) E(M).

This complex defines an element of D(BV,SV) and hence of KO(T(p)). If P is a

G-equivariant principal bundle for some G (i.e., G acts from the left on P and

commutes with the right action of Spin(i)) then E(M,P) has a left G-action and

defines an element of KOG(T(p)). If G acts freely on P we can divide out by its

action, and it is easy to see that the quotient complex E(M,P)/G is just E(M,P/G).

Atiyah, Bott and Shapiro specify a module A over C8 for which E(A) represents

the Bott element in KO(S8) (see [19, p.151), and if P is a principal Spin(8i)-bundle

they define vIp) E KO(T(p)) to be the element represented by E(A 0 i ,P).

From now on we fix t , P and p and denote A0 i by M. Let q = J with its

permutation action by E
J
. and let Q be the associated E. -equivariant Spin (8ij )-bundle

J IVI'
as defined in Section 5. To prove 6.3 it suffices to show that J ,Q) and the

external tensor product E(M,P) ® j define the same element of KG
E

(T(q)). We can
j

describe these complexes more simply: the first is

x E(M 0 j )
Spin(8i)j

and the second is

x • (E(M) ® j);
Spin(8i)J

in each case Ej acts through permutations of both factors. Now it is shown in [19,

p. 251 that the inner products on and Ml used in the proof of Lemma 6.4 can be

chosen to be invariant under Spin(8i), hence the inner product on E(M) ® j used in

the proof of that lemma is invariant under both (Spin(8i))j and E·, and so is the

isomorphism s(E(M)®j) =E(M[8)j). It follows that S(E(M,P)@j)\s isomorphic to

E(M [8) j ,Q) as required.
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§7. p-local Hoo ring maps.

In this section we make some general observations about p-local Hoo ring maps

and apply them to show that the Adams operations are H
oo

ring maps and that the Adams

summand of KU(p) is an ring spectrum. We also obtain a sufficient condition for

BP to be an ring spectrum.

Throughout this section we let p be a fixed prime and letrr C Ep be generated

by a p-cycle.

Lemma 7.1. Let F be a p-local spectrum and let Y be any spectrum. The map

* * *B :F (D. YI + F (D.D YI
J p J 1l

is split monic, and if j is prime to p the map

is split monic.

Proof. The sUbgroup E
J
. f 1l of E. has index prime to p, and hence the composite

JP

is an isomorphism for any p-local Ejp-module M. Thus

** 1 *F D. Y --F D f Y
J P Ej 1l

is split monic by 1.2.4. The result for S* follows since S factors as

D. D Y D" f Y .--!- D. Y
J 1l J 1l JP

and the result for u* is similar.

As an application, we have

Let E and F be ring spectra with power operations '3'>. and 1>: .
J J

Let f:E + F be a ring map such that the equation

Proposition 7.2.

Suppose that F is p-local.

(1) f * 0 = p' 0 f *P P
holds on Ediy for all i E Z and all spectra Y. Then f is an ring map.

Proof. We shall show that f* 0 = 0 f * for all j by induction on j. This is

trivial for j = 1 since 'J>l is the identity. Suppose it is true for all k < j. If j
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* * t (;)'is prime to p we have a = and a (f*y)(

* *1"<'\ ' (ril I
If j has the form kp we have B f/Yj Y = f/SVJJ1Tx and B 'v/*x = -l'k In

either case the result follows from 7.1 and the inductive hypothesis.

Under the usual liml hypotheses, it suffices to check equation (1) for spaces

of for finite CW complexes. However, for actual calcualtions it is much easier to

deal with the internal operation P1T than with Our next result allows us to

reduce to this case when we are dealing with spectra like KU or MU.

Proposition 7.3. Let F be a p-local spectrum such that 1T*F is free over Z(p) in

even dimensions and zero in odd dimensions. Let X be a space such that H*(XjZ) is

free abelian in even dimensions and zero in odd dimensions. Suppose that X and F

have finite type. Then the map

is monic.

Proof. First let F = HZ(p)' The Bockstein on H (DnXjZp)

it follows that E2 = Em in the Bockstein spectral sequence.

direct sum of copies of Zrp) and Zp' so it suffices to show
* * * il-(1 ® D. ) ® Q and (1 ® D. ) ® Z are monic. For the first

p
is a split injection by a simple transfer argument. For the second we use 3.5 and

the universal coefficient theorem. This completes the proof for F = HZ(p)' For the

general case, we observe that 1* 0 induces a monomorphism on E2 of the Atiyah-

Hirzebruch spectral sequence and that the spectral sequences for X(p) and X" B1T+

collapse for dimensional reasons.

Our first application is to the Adams operation

with k prime to p , This is well-known to be a ring map.

Theorem 7.4. If Y is any spectrum and y E: KU2ny then l<f
j
y

particular, is an Hoo ring map but not an ring map.

I k I k I

Proof. Let = for y K2ny . We must show W The':Pj are

consistent in the sense of 1.2 and thus define another structure on KU(pl (which

agrees with the standard Hoo structure but has different By 7.2 it

suffices to show = '?'l, and by 1.3 it suffices to show this for finite com-
k p P *k * 'k

plexes. Since W is a ring map we clearly have 1 W 1 'J>pW, so by 7.3 it

suffices to show
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(2)

for all x EK2nX whenever X is a finite complex. If x is the Bott element b then

ljIkb kb and P b = bP so (2) is satisfied in this case. Thus we may assume n O.
11

Since ljIk is a stable map it commutes with the transfer, and thus (2) will follow

from equation (4) of section 4 once we show that ljIk commutes with eP• It suffices

to show this for the universal case BU x Z, and since K(BU x Z) is torsion free it

suffices to show that ljIk commutes with pep. But this is immediate from equation (3)

of Section 4.

Next we recall the Adams idempotents

a E Z 1p-

defined in 15, Lecture 4J. These idempotents split

shall denote by LO, ••• ,Lp_2. Thus the idempotent

and an inclusion map:

off pieces of KU(p) which we

factors into a proj ection map

satisfy the formulas EOI

Since 2: E
a E Z a

p-l
1,

= I we have KU(p)

(3)
if n t a mod p-l

otherwise

and

(4) E (xy) = 2: (E ,x)(E ,Y).a a a-a

In particular, the image of Eo is a subring of K*X and hence LO has a unique struc-

ture for which So is a ring map. On the other hand, (3) implies that the kernel of

EO is not an ideal and hence there is no ring structure on LO for which rO is a ring

map.

Proposition 7.5. LO has a unique ring structure for which So is an ring map.

Proof. We must show that 'J>j takes the image of EO to itself, i.e., that the

equation

(5)

holds on K2ny for every n E Z and every spectrum Y.
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Let ch be the Chern character and let X be a finite complex. We have

for all aE Zp_l and all XE KX by [5, p.84-851 and [1,

5.I(vi) J. Hence = E by [5, Lemma 4 of lecture 4]. As in the proof of 7.4a a
it follows that Ea e

P = ePEa and that EaP'IfX = P'lfEax for all x E KX. Now let n EZ and

let a be the class of n in Zp_l' Then we have

for all x EKX. As in the proof of 7.4 it follows that (5) holds on the space level

with 'J'lj replaced by Since both sides of (5) are stable in the sense of 1.2 and

1.3, it follows that (5) holds on the spectrum level with replaced bY'P'If' The

rest of the proof is an induction on j just like that in the proof of 7.2. We give

the inductive step when j has the form kp:

r/EO'8jEOY = EOS*'PjEOY E01>k

EO '&>k(Eo'PrrEoY) = by inductive hypothesis

'J>k S*.9j EoY

so that (5) holds in this case by 7.1. The remaining case is similar.

It would obviously be desirable to have an analog of 7.5 for BP. In this case

the Quillen idempotent (; factors into a proj ection and an inclusion

which are both ring maps. We could therefore attempt to factor the operations

Sj either through the inclusion (as in the proof of 7.5) or through the proj ection

(or both). The proof of 7.5 shows that the 'Pj factor through s* and only if the

following equation holds for all finite complexes X and all x E MU2J-X.

(6)

Similarly, the f j factor through r* if and only if the equation

holds. In either case the resulting structural maps on BP would be the composites

D. s e.
<;!:D.BP -J.-D.MU
J J J
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The point is that, while these maps clearly satisfy the first and third
J

diagrams of Definition 1.4.], the diagram involving 8 is much harder to verify and

equations (6) and (7) give two sufficient conditions for it to commute. We conclude

this section by giving some weaker sufficient conditions.

Lemma 7.6. Equation (6) or (7) holds in general if it does when x is the Euler

class v E of the Hopf bundle over

Proof. Suppose e:P e:v e:P v. Since e: is a ring map we have e: :P e:v by
11 11 11 11

7.] (with X = Now and both satisfy tom Dieck's axioms PI, P2,
11

and P], so Theorem 11.2 of tru implies that they are equal, hence e:P e: = e:P for
11 11

all spaces as required. The other case is similar.

Next we need some notation. Let f'{x l = E MU*[ lx l I where [pJ(x) is the
x

power series defined at the end of Section 5. Let lp l t (x ) E BP*[ Ix l l be r*[p] (x )

and let f'(x) = r*f(x). Let u' E BP*Brr be r*u, so that u' is the BP-Euler class of

a nontrivial complex irreducible representation of rr. Landweber' s KUnneth theorem

for MU*(X x B1I) given in Section 5 implies

BP*(X x Brr) (BP*X) [[u ' J J/[p'] (u ")

Lemma 7.7. Equation (7) holds for all X if and only if equation

(8)

holds in BP*B1I for all n :: O.

Proof. Assume that (8) holds. We shall show that r*Prre:v r*P1Iv, where v is as

in 7.6. Let M*X denote the even-dimensional part of and let P be the

composite

* P * * *(M X)[[ull/[pl(u) --(M X)[[ul]/f(u).

If M*X has no p-torsion then, since f'Ix ) has constant term p, u is not a zero-

divisor in M*(X)[[ull/f(u). The element X of Corollary 5.6 has leading term

(p_l)!up-l, hence X is also not a zero divisor. Thus 5.6 implies that P is additive

for such X. It is also multiplicative by 1.4(iii). In particular we have a ring

homomorphism

P:M*(pt) + M*(pt)) [[u]]/f(u).

Since the elements [cpTI] generate M*(pt) C9 Q as a ring and since MU*(Brr) is torsion

free, equation (8) implies
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for all x E MU*(pt).

Now let £v = I bov i• Since £ is an idempotent we have bli=l
i 2. Hence (9) gives

for all i 2. Now the ring homomorphism

o for

is continuous with respect to the usual filtrations by [31, Theorem 5.11 and hence

we have

Finally, we observe that the map

* (I',) * * *BP (CP x B1T) '= BP I Iv ' ,u' 1 J/[pl' (u ") + BP I lv ' ,u' ll/u' <±> BP l Iv ' ,u'll/f' (u ' )

is monic since u ' and f'(u') are relatively prime. We have shown that

r*(Pn£v - P1TV) goes to zero in the second summand, so we need only show that

it goes to zero in the first. But the map

BP*(CP"" x Bn ) + BP*[ lv ' ,u'll/u'

can be identified with the restriction

BP*[ Iv ' 11

and the result follows since

o.

We can now use Quillen's formula 5.5 to give a very explicit equation which is

equivalent to (7).

Corollary 7.8. Equation (7) holds for all X if and only if the element

of BP*B1T is zero for each n not of the form Here the (Cu,b-n-l) are certain

numerical coefficients defined in [6, Theorem 4.1 of part 11.
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Proof. This is immediate from 5.5, 7.7, and [6, Theorems 1.4.1 and 11.15.2].

There is no obvious reason for the elements specified in 7.8 to be zero. If

they were zero, it would be evidence of a rather deep connection between Pn and E.

The author's opinion is that there is no such deep connection and that neither

equation (7) nor equation (6) holds in general.



CHAPTER IX

THE MOD P K-THEORY OF QX

by J. E. McClure

In this chapter we use the theory of H
oo
ring spectra to construct and analyze

Oyer-Lashof operations in the complex K-theory of infinite loop spaces analogous to

the usual Dyer-Lashof operations in ordinary homology. As an application we compute

in terms of the K-theory Bockstein spectral sequence of X.

Dyer-Lashof operations in K-theory were first considered by Hodgkin, whose

calculation of K*(QSO;Zp) [41] led him to cOnQecture the existence of a single

operation analogous to the sequence of operations in ordinary homology. He con-

structed such an operation, denoted by Q, for odd primes [421; a similar construc-

tion for p = 2 was given independently by Snaith, who later refined Hodgkin's

construction for odd primes and analyzed the properties of Q. The construction of

Hodgkin and Snaith was based on the term of a certain spectral sequence (namely

the spectral sequence of I.2.4) and therefore had indeterminacy, and Hodgkin showed

that in fact any useful operation in the mod p K-homology of infinite loop spaces

must have indeterminacy. He also observed that the Dyer-Lashof method for calcu-

lating H*(QX;Zp} by use of the Serre spectral sequence completely failed to

generalize to K-theory. The indeterminacy was a considerable inconvenience, but the

operation was still found to have applications, notably in the calculation of

K*(Qam;Z2} given by Miller and Snaith [841. This result, which was proved by using

the Eilenberg-Moore spectral sequence starting from Hodgkin's calculation of

K*(QSO;Zpl, was the first indication that K*(QX;Zp) might be tractable in the

presence of torsion in X. The main technical difficulty in the proof was in

determining exactly how many times Q could be iterated on a given element, since Q

could be defined only on the kernel of the Bockstein 13. ( Incidentally, a joint

paper of Snaith and the present author showed that the odd-primary construction of Q

contained an error and that in this case as well Q could only be defined on the

kernel of 13.) The answer for am was that Q could be iterated on an element exactly

as many times as the element survived in the Bockstein spectral sequence.

Unfortunately, the methods used in this case did not extend to spaces more

complicated than am.
In view of these facts, it is rather surprising that there is in fact a theory

of primary Dyer-Lashof operations in K-theory for which practically every statement

about ordinary Dyer-Lashof operations, inclUding the calculation of H*(QX;Zp), has a

precise analog. We shall remove the indeterminacy of Q by constructing it as an

operation from mod p2 to mod p K-theory, and more generally from mod pr+l to mod pr

K-theory. It follows that Q can be iterated on any element precisely as often as
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the element survives in the Bockstein spectral sequence. There are also operations

R taking mod pr to mod pr+l K-theory in even and odd dimensions respectively

( is the K-theory analog of the Pontrj agin p-th power [57, 28 J, while R has no

analog in ordinary homology). These will play a key role in determining the proper-

ties of the Q-operation and in our calculation of K*(QXiZp)' They also give

indecomposable generators in the K-theory Bockstein spectral sequence for QX.I The

operations Q, and R form a complete set of Dyer-Lashof operations in the sense

that they exhaust the possibilities in a certain universal case; see Section 8. The

key to defining primary operations in higher torsion is the machinery of stable

extended powers, which gives a very satisfactory replacement for the chain-level

machinery in ordinary homology; more precisely, it allows questions about the

operations to be reduced to a universal case in the same way that chain-level

arguments allow reduction to BEp' In applying this machinery to K-theory we make

essential use of the fact that periodic K-theory is an Hoo ring spectrum, as shown in

VII §7 and VIII §4, and the fact that the Adams operations are p-Iocal maps as

shown in VIII §7.

This chapter is largely self-contained, and in particular it does not depend

logically on the earlier work of Hodgkin, Snaith, Miller and the author. The

organization is as follows. In section 1 we give a very general definition of Dyer-

Lashof operations in E-homology for an H
oo
ring spectrum E. When E is HZp we recover

the ordinary Dyer-Lashof operations. In section 2 we use some of the properties

developed in section I to give a new way of computing H*(QX;Zp) for connected X

without use of the Serre spectral sequence, the Kudo transgression theorem, or even

the equivalence QX; instead the basic ingredients are the approximation

theorem and the transfer. In section 3 we give the properties of Q, and R and the

statement of our calculation of K*(QX;Zp); up to isomorphism the result depends only

on the K-theory Bockstein spectral sequence of X, but for functoriality we need a

more precise description. Section 4 contains the calculation of K*(QX;Zp)' which is

modeled on that in section 2. Sections 5 through 8 give the construction and

properties of Q,::J", and R. In section 5 we lay the groundwork by giving very

precise descriptions of the groups r)' Section 6 gives enough information

about Q to calculate K*(DpXiZp)' a result in section 4. The argument differs

from that in [77J in three ways: it is shorter (but less elementary), it gives a

more precise result, and it applies to the case p = 2. Sections 7 and 8 complete

It was asserted in the original version of this work ([76, Theorem 5J) that certain
composites of Q and R gave indecomposable generators in K*(QX;Zp)' Doug Ravenel has
since pointed out to the author that this is incorrect: his argument is given in
Remark (ii) following Theorem 3.6 below. The corrected versions of [76, Theorems 5
and 6J are also given in Section 3. (The mistake in the original version was in the
proof of Lemma 4.7 for M = EMr, where it was asserted that the r > 1 and r = I cases
are similar. They are not.)
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the construction of and R. In section 9 we prove a purely algebraic fact

needed in section 4; this fact is considerably more difficult than its analog in

homology because of the nonadditivity of the operations.

I would like to thank Vic Snaith for introducing me to this subject and for the

many insights I have gotten from his book and his papers with Haynes Miller. I

would also like to thank Doug Ravenel for pointing out the mistake mentioned above.

lowe Gaunce Lewis many commutative diagrams, as well as the first version of

Definition 1.7. Finally, I would like to thank Peter May for encouragement and for

his careful reading of the manuscript.

1. Generalized Homology Operations

Let E be a fixed H
oo
ring spectrum. In this section we shall construct

generalized Qyer-Lashof operations in the E-homology of H
oo
ring spectra X. When E

is HZp these are (up to reindexing) the ordinary Qyer-Lashof operations defined by

Steinberger in chapter Ill, and for E S they are Bruner's homotopy operations.

When E is the spectrum K representing integral K-theory we obtain the operations

referred to in the introduction which will be studied in detail in sections 3-9.

For simplicity, we shall begin by defining operations in E*X, although

ultimately (for the appl:'.cation to K-theory) we must introduce torsion coefficients.

Fix a prime p. For each n EZ the operations defined on E.nX will be indexed by

E*(DpsPl, i.e., for each e EEm(DpsPl we shall define a natural operation

in the E-homology of H
oo

r-ing spectra called the Qyer-Lashof operation

determined bye. As usual, Qe will be the composite of the structural map

with an external operation

which is defined for arbitrary spectra X and is natural for arbitrary maps X + Y.

Throughout this chapter we shall use the same symbol for corresponding internal and

external Qyer-Lashof operations, with the context indicating which is intended. In

this section we shall be concerned only with the external operations, and thus X and

Y will always denote arbitrary spectra.

In order to motivate the definition

stages. Fix m,n EZ and e EEmDpSn• Let

Qe first on the element EE.nSn by

of the external operation Qe we give it in

u EEOS denote the unit element. We define

Qe ( e. If x EE.nX happens to be
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spherical, then there is a map g:Sn + X with x, and naturality requires

us to define Qex = (Dpg)*e. Now any element x E EnX is represented by a map

f:Sn + EI\X, and to complete the definition of Qe it suffices to give an analog for

general x of the homomorphism (Dpg)* which exists when x is spherical. It is useful

to do this in a somewhat more general context, so let Ybe any spectrum and let

f:Y + EAX be any map. First we define f** to be the composite

(1l\f)* (.pl\l)*
E*Y = 1T*(EI\Y) --_1T*{EAE"X) "1T*(EAX) = E*X,

where .p is the product on E. Note that = x if f:Sn + EAX represents x ,

Next define D1Tf for any 1T C l:j to be the composite

D f
(EAXl

1T n TI 7f

where i; comes from the Hoo structure of E. Combining these definitions we obtain a

map

Definition 1.1. If x is represented by f:Sn + EA X and e is an element of

EmDpsU then

Of course, this agrees with the definition given earlier when x is spherical,

and in particular when E = S we recover the external version of Bruner's operation.

Next let E = HZp' The standard external operation (as defined by Steinberger) is

denoted ei @xP, where ei is the generator of Hi(l:p;Zp(n») defined in [68,section 1J

(recall that Zp(nl is Zp with l:p acting trivially if n is even and via the sign

representation if n is odd). Now it is easy to see that the map

given by

n
--Hi +2pn(Dl ;Zp}

e .......... e. ® {l:nulP is an isomorphism, and we have
1 1

Proposition 1.2. If e = {ei 1 then Qex = ei @ xP for all x,

The proof of 1.2 will be given later in this section.

It is possible to put Definition 1.1 in a more categorical context. Let CE be

the category in which objects are spectra and the morphisms from X to Yare the

stable maps from X to EAY. The composite in 'E of f:X + E "Y and g:Y + E AZ is

the following composite of stable maps
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The construction D
ll

on morphisms, combined with D'If on obj ects, gives a functor

15'If:t;E + I:E' and we can also define a smash product " on E by letting " f 2 be

the composite

f A f
Xl"::S 1 2" E I\ Xl "E"'::S "EAE"Xl"::S •

Finally, E homology is a functor on 'E which takes f to f **, and the following

lemma shows that both Qe and the external product in E-homology are natural

transformations.

Lemma 1.3. (i) (Dpf)**QeY" Qef**y for any Y E E*Y and any f:Y + E .... X.

(ii) ® " (fl Ii. fl)**(Yl ® Y2)·

As one would expect, the maps t,a,S and ° of I§l also give natural

transformations.

Lemma 1.4.

)** " (D'If!pf)**S*

(Lv ) 0*(D
ll(f1 Af2))**" (°/11\°/2 )**° * .

We shall need two further transformations, namely the "diagonal" t,:l:D'lfX + D'lfl:X

and the transfer T:DpX + D,l. The first of these was constructed in II§3. The

transfer was defined in II§l for certain special cases, and will be defined in IV§3

of the sequel whenever 'If C p.

(15
ll
l:f )**t,*

T*(D f)**p

Lemma 1.5. (i)

(ii)

t,* (l:"5/) **.

" (D/)**T* •

The proofs of 1.3, 1.4 and 1.5 are routine diagram chases (using [Equi.,VI.3.9J

for 1.4(ii) and (iii) and [Equi.,IV.§3J for 1.5(ii)).

to define DYer-Lashof operations in E-homology with torsion

always abbreviate E*(X;Z r) by E*(X;r). If denotes the

sO and Er denotes E .... l:Mr by definition we have (X;r)

Next we would like

coefficients. We shall

Moore spect rum S-l V r
p

lln (Er " X) . Thus if Er is an Hoo ring spect.rum (for example, if E is ordinary

integral homology) we can apply Definition 1.1 directly to Er• However, it is a
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melancholy fact that in general Er is not an Roo ring spectrum, as shown by the

following, which will be proved at the end of section 7.

Proposition 1.6. Kr is not an Roo ring spectrum for any r.

Thus we must generalize 1.1. First of all, if f: Y + E 1\ X is any map we define

f** to be the composite

(11\ f)

Next observe that the Spanier-Whitehead dual of is so that there is a

natural isomorphism

In particular, any x E (X;r) is represented by a map f: LnMr + EAX and there

results a homomorphism

for any s 1. Note that f**Lnu r = x, where is the composite

Mr SA Mr AMr• We shall call ur the fundamental class of Mr'

Definition 1.7. Let e e Em s ) • Then

is defined by Clex = (Dpf)**(e), where f:LnMr + EAX is a map representing x,

Lemmas 1.3, 1.4, and 1.5 remain valid in this generality.

When E is integral homology and r = s = 1 Definition 1.7 provides another way

of constructing ordinary Dyer-Lashof operations, which are of course the same as

those given by Definition 1.1. However, even in this case 1.7 has certain technical

advantages; for example, it gives the relation between the Bockstein and the Dyer-

Lashof operations, and by allowing r and s to be greater than lone obtains the

Pontryagin p-th powers.

We conclude with the proof of 1.2. We write E for HZp' The result holds by

definition when x = LDu e ,so it suffices to show that

for all f: Y + EAX. We shall do this by a direct comparison with the mod p chain

level. If 4 is any chain complex over Zp we write DpA* for W<292; {A*)<29 P, where W

is a fixed resolution of Zp by free Zp[LpJ-modules. We let C* deBote the mod p
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cellular chains functor on CW-spectra, and

by 1.2.1. If r* denotes the trivial chain

there is a natural equivalence between

we have a natural equivalence DpC* '" C*Dp
complex with Zp in dimension zero then

and the chain-homotopy classes of degree

zero maps from C*X to r*. In particular, we obtain chain maps 6:C*E + r* and

6' :DpC*E + r* representing the identity E + E and the structural map DpE + E. If e

denotes the composite Dpr* = W/Ep + r* (in which the second map is the augmentation)

then e 0 Dp6 is a chain map which, like eI, represents an element of EO (DpE)

extending the product map E(P) + E. But the proof of 1.3.6 shows that there is only

one such element, hence we have we have

equal to the composite

£oDe",e'.
p Next, observe that f** is

where the second map is the slant product with the identity class in EOE. Hence f**
is represented on the chain level by the composite

Since h is a chain map we have

so it suffices to show (Dpf)** = (Dph)*.

6*
E*DpY --E*(Dp(E .... X)) --

Now (Dpf)** is equal to the composite

(D E" D X) -- E*DpX ,
p P

where the last map is the slant product with the structural map in EODpE. Hence

(Dpf)** is represented on the chain level by the composite H around the outside of

the following diagram

Here d is the evident diagonal transformation and the diagram clearly commutes.

Inspection of the piece marked shows that H '" Dph as required.
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2. The Homology of CX

Our main aim in this chapter is the computation of K*(CX;I). In this section

we illustrate the basic method in a simpler and more familiar situation, namely the

computation of the ordinary mod p homology of CX. (All homology in this section is

to be taken with mod p coefficients for an odd prime p; the p = 2 case is similar.)

This result is of course well-known, but in fact our method gives some additional

generality, since both the construction CX and our computation of H*CX generalize to

the situation where X is a (unital) spectrum, while the usual method of computation

does not.

We begin by listing the relevant properties of this spectrum-level construction

(which is due to Steinberger); a complete treatment will be given in [Equi., chapter

VII] • By a unital spectrum we simply mean a spectrum X with an assigned map S + X

called the unit. For any unital spectrum X one can construct an E", ring spectrum

CX, and this construction is functorial for unit-preserving maps. In particular, X

might be E"'y+ for some based space Y, and there is then an equivalence CX E"'(CY)+

relating the space-level and spectrum-level constructions. There is a natural

filtration FkCX of CX and natural equivalences FICX X and

Finally, there are natural maps Fj CX" FkCX + Fj +kCX and Dj FkCX + Fj kCX for which the

following diagrams commute.

CX" cx
t

-----.. CX

i

Now let X be a unital spectrum and assume the element n EHef induced by the

unit map is nonzero. We can then choose a set A C H*X such that Au {n} is a basis

for Let CA be the free commutative algebra generated by the set

{Qlx I x eA, I is admissible and e I I) + btl) > Ixl}

(here Ixl denotes the degree of x; see [28, 1.2] for the definitions of admiss-

ibility, e(I) and b(I)). The elements of this set, which will be called the

standard indecomposables for CA, are to be regarded simply as indeterminates since

the QI do not act on H*X. The basis for CA consisting of products of standard

indecomposables will be called the standard basis for CA. Using the inclusion

X + CX and the fact that CX is an E", ring spectrum we obtain a ring map
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and we shall show

Theorem 2.1. A is an isomorphism.

We shall derive this theorem from an analogous fact about extended powers. Let

Y be any spectrum and let A be a basis for H*Y. CA is defined as before, and we

make it a filtered ring by giving QIx filtration Let FkCA(Fk_lCA for

k 1; this has a standard basis consisting of the standard basis elements in

FkCA - Fk_l CA. There is an additive map

defined as follows. If all Oyer-Lashof operations and products are interpreted

then a basis of represents an element of

H*((DplJly 1\ ••• 1\ (DplJsYl with pJl + ••• + P s = k ; here (Dplj denotes the j-th

iterate of Dp' Applying the natural maps CI* and S* gives an element which by

definition is the value of Ak for the original basis element. We then have

Theorem 2.2. Ak is an isomorphism for all k :: 1.

Assuming 2.2 for the moment, we give the proof of 2.1. Let X be a unital

spectrum and let A u In) be a basis for H*X. Let Y = X/So Then A proj ects to a

basis for H*Y which we also denote by A. For each k > 1 the map A!FkCA lifts to a

map A(kl: FkCA + H*FkCX and the following diagram commutes.

r l,'kl j'k
H*Fk_1CX -H*FkCX

Since Ak is an isomorphism, the map '( is onto and hence the bottom row is short

exact. It now follows by induction and the five lemma that A(k) is an isomorphism

for all k, and 2.1 follows by passage to colimits.

We begin the proof of 2.2 with a special case

Lemma 2.]. Ap is an isomorphism for all Y.

The proof of the lemma is a standard chain-level calculation which will not be

given here (see [68, section l]l. It is interesting to note, however, that one can
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prove 2.3 without any reference to the chain-level using the methods of section 6

below.

Next we use the machinery of section 1 to reduce to the case where Y is a wedge

of spheres. For each x E A choose a map f x:S Ix I + HI\ Y representing x , Let

Z = Vsix I and let f:Z + HA Y be the wedge of the fx' Then f**:H*Z + H*Y is an

isomorphism. We claim that 2.2 will hold for Y if it holds for Z (where H*Z is

given the basis B consisting of the fundamental classes of the Slxl). To see this,

consider the following diagram

The map Dt(f**) is induced by f**, which clearly takes B to A. Thus Dt(f**) is an

isomorphism. The diagram commutes by 1.3 and 1.4(ii) and (iii). The claim now

follows from

Lemma 2.4. Let h:W + HI\ X be any map. If is an isomorphism, so is (DthJ** for

all k.

Proof. The proof is by induction on k, First suppose that k = jp. Since the case

k = P of 2.4 follows from 2.3 we may assume j > 1. Let TI = Ej f Ep and consider the

following diagram

T* 6* S· *
H*DkW )0 H*DTIW • H*Dj DpW .JP .. HDW

* k

I'Dkh> ** lID,,,,, l'DjDl>" I,Dkh> ..
T* s* s. *

H*DkX "'H*DTIX .... HD.DX JP • H*DkW* J P

The diagram commutes by 1.4(i) and (iii) and 1.5(ii). The map 6* is an isomorphism.

The map (DphJ** is an isomorphism by the case k = p, hence so is (DjDphJ** by

inductive hypothesis. Our assumption on k implies that '* is monic and Sjp* is

onto, hence <DthJ** is monic by inspection of the first square and onto by

inspection of the third. The proof is the same when k is prime to p, except that we

let TI be Ek_1 x E1•

Next we reduce to the case of a single sphere. To simplify the notation we

assume that Z is a wedge of two spheres sID 1/ Sn; the argument is the same in the

general case. Let Bl and B2 be the bases for H*sID and H*sJ'l consisting of the
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fundamental classes, so that B = Bl v B2• There is an evident map CBl ® CB2 + CB

and passing to the associated graded gives a map

Recall the equivalence

k

V(D ,.,m D Sn) Dk(Smv Sn)
.'5 A k-l

i=O ].
constructed in II§l.

Lemma 2.5. 'P is an isomorphism, and the diagram

k <f'
(DiBl ® Dk_iB2) )0 DkB

J
I L\ ® Ak_i)

l"k
(H*Dif:f' ® H*Dk_iS

n)
-H*DkZ

commutes.

Proof. <p is an isomorphism since it takes the standard basis on the left to that on

the right. The commutativity of the diagram is immediate from the definitions.

By Lemma 2.5 we see that 2.2 will hold for Z once we have shown the following.

Let x E be the fundamental class.

Lemma 2.6. + is an isomorphism for all k 1 and all

integers n.

Proof. By induction on k, First assume that k = jp for some j > 1. For the proof

in this case we use the following diagram, which will be denoted by (*).

y!

DjeL
,J ,..Dk{y,z}

y.
Dk(gi(

Dj 0- J Dk{x}

(*l "-.
I A. A.

lAk
Ak- J -

J J

H*Dj Dp?
8j p*

H*Dk?

/(DjDpgi)*

8,jp*
H*D.D (?v?) •

J p
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Here y, Z E l\:t (Sn" ,sD l are the fundamental classes of the first and second summands ,

The set Clc is n}. (The reader is warned as this point to

distinguish carefully between the Bockstein S and the natural map S of section I.l.

This is made easier by the fact that we never use the latter map per se, only the

homomorphism S* induced by it.) The set 0.' C H*D (Sn"Sn, is n}
.P .

if n is odd and is the union of this set with {ylzP-1Il i p-l} when n is even.

Lemma 2.3 implies that a. and OJ are bases, and hence the maps Aj are isomorphisms

by inductive hypothesis. The maps gi:Sn"Sn + ,sD are defined for i = 0,1 and 2 by

go = 1.., 1, gl = 1" * and g2 = * v 1, where 1 and * denote the identity map and the

trivial map of Sn. To complete the construction of the diagram we require

Lemma 2.7. There exist maps Yj and Yj, independent of i, such that diagram (*)

commutes for i = 0,1 and 2.

The proof of 2.7 is given at the end of this section; all that is involved is

to "simplify" expressions in Dj (J..' and DjO-. using the Adem relations and the Cartan

formula in a sufficiently systematic way.

Then ",' is theunder the map 'Pof Lemma 2.5.

Dk{y,z}

k-l
(Di{y} @Dk_i{z})

i=l
map

the image of

Now consider the inner square of diagram (*). By assumption on k we see that

Sjp* 0 '* is an isomorphism, hence Ak is onto. Let 5:Dk{x} + Dk{x} be the
-1composite Yj 0 Aj 0 '* 0 Ak• Clearly Ak will be monic if 5 is. In fact we shall

show that 5 is an isomorphism. We claim first of all that 5 takes the subspace

If' c generated by the decomposable standard basis elements isomorphically into

itself. To see this we use the outer square of diagram (*l. Let
-1be the composite y' 0 A 0, 0 A Let",' C Dk{y, z} be

j j * k·

kernel of the

and hence 5 I takes fj' into itself. But f)') = IJ and

Dk(gO)* 0 5' = 5 0 Dk(gO)*' hence 5 takes t; into itself and we have the commutative

diagram
, Dk(gO)*

.. f)/!J

151 1
fJ' Dk(gO)*

.. 17

----. 0

----.. 0 •

Since both.& and fr have finite type e: 13 + e will be an isomorphism if

e': b I + 13' is monic. But Ak is monic on 15' by 2.5 and the inductive hypothesis,

hence e' is also monic on h' since Ak 0 e' = (Sjp* 0 '*) 0 Ak•
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Now let J = I:l:k{x}/.e • This has the basis {Qlx 1I admissible, pR.(I) = k,

e(I) + b(I) > nj , We wish to show that the map e: J +J induced by e is an

isomorphism. The basic idea is to use the homology suspension, or rather its

external analog which is the map + Hi+lDpSn+l, to detect elements of J .
...n+l J ILet x E Hn+lb be the fundamental class. We define r: + Dk{x} by r(Q x) =

Q x, where we interpret Q x as zero if e(I) < n+l and as a p-th power in the usual

way if e(I) =n+l and b(I) =O. The key fact is the following, which will be proved

at the end of this section.

Lemma 2.8. The diagram

e

ir
e • Dk{X}

commutes.

We also need the fact that the evident action of the Bockstein on ; commutes

with e; this will be clear from the proof of 2.7.

Now let J n be the SUbspace of J spanned by the set {Qlx II admissible,

pilI) = k, e(I) + b(I) n+m}. We shall show first that 0 is monic on J l • Let Ji
be the subspace of J l spanned by the set {QlxlI admissible, pilI) k , e(I) '" n+l,

b(I) = OJ. Then J l From the definition of r we see that is

the kernel of r , that r is monic on J i and that r (J i) = r (j ) 1'\ e . Let w be a

nonzero element of J i. We claim that ew lies in J l' so that it can be written

uniquely in the form w' + Sw" with w' ,wI!Ji, and furthermore we claim that w' f O.

To see this note that rw is a nonzero decomposable, hence erw is also a nonzero

decomposable, hence raw erw is a nonzero element of r (J )() Ii = r (J.i). Thus there

is a nonzero element w' orJi with rw ' = rew, so that 0W - w' is in ker r = sJi as

required. Now let wl,w2 be any elements of Ji with aWl'" wi + SW'l and

aW2 =Wz + SW2. Suppose that v = WI + SW2 is the kernel of e. Then

o =av = wi + SW'l + SWZ' hence wi = 0 and wi + Wz= O. But wi = 0 implies

WI 0, hence w1 O. Thus Wz = 0, whence w2 = 0 and v = 0, showing that e is

monic on J I •

Next we claim that e is monic on J for all m > 1. Let w E J with aw O.m - m
Let J = I\-(K'} /.e and let r be the composite J + l\(x} + J. Then rw is in the

subspace generated by Qlx with I admissible, pR.(I) = k and

e(I) + b(I) (n+l) m-l. Since e rw = r ew = 0 and since (by induction on m) e
is monic on J- m-l we see that rw O. Now the kernel or r is precisely Jl , and we

have shown already that e is monic on J l , hence w = 0 as required. Thus a: J + J
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has finite type If is an isomorphism. This completes the

proof of 2.6 for the case k = jp.

Now suppose k is prime to p and consider the following diagram

x'

Here X and X' are obtained from the products in C{x} and C{y,z} by passage to the

associated graded. The diagram clearly commutes. The analysis of this diagram

proceeds as before, except that in this case the map takes the kernel of

® onto all of Dk{x},so that we can conclude at once that Ak is an

isomorphism without having to consider indecomposables.

This completes the proof of 2.6, and thereby of 2.2, except that we must still

verify 2.7 and 2.8. For these we need certain properties of the external QS. First

of all these operations are additive, and QSx l*(X(P) if 2s = Ixl. The external

Cartan formula is
s

6*Qs(x@y) = L Qix@Qs-iy•
i=O

The external Adem relations are obtained by prefixing Spp* to both sides of the

standard Adem relations. All of these relations can be obtained directly from the

definitions of section 1, without any use of internal operations (compare sections 7

and 8 below). They can also be derived from the corresponding properties for

internal operations by means of the equivalence

proved in [Equi., VII§51.

Proof of 2.7. Every standard indecomposable in has the form QI(SeQsx). We can

formally simplify such an expression by means of the Adem relations into a sum of

admissible sequences acting on x (for definiteness we assume that at each step the
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n r

D {x} _:J We define r"

Qf(SeQsx). Commutativity of the left
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Adem relations are applied at a position in the seQuence as far to the right as

possible). The result is an element of C{x}, where we agree to interpret all

sequences with excess less than Ixl as zero, and we extend multiplcatively to get a

map FjCCL + FkC{x}. The map Yj is obtained by passage to quotients. The map Yj' is

obtained in the same way except that we use the Cartan formula to simplify

expressions of the form Q1(yizp-i) with ° < i < p. The inner and outer squares of

diagram (*) commute as a consequence of the external Cartan formula and Adem

relations, and the upper trapezoid clearly commutes when i is 1 or 2. When i is

zero the element yizp-i of CL' goes to QP/2x, and so it is necessary to check that

the result of simplifying Q1QP/2x with the Adem relations is the same as using the

Cartan formula on Q1XPj the result in each case is zero unless all entries of I are

divisible by p, in which case it is (Q1/px)P.

Finally, we give the proof of 2.8. We need two facts about +

H*(DkEXl, namely that = QSEX if k P and that ® yl is zero

for ° < i < k. The first of these, which is the external version of the stability

of QS, was proved in 11.5.6. For the second, which is the external analog of the

fact that the homology suspension annihilates decomposables, we use the third

diagram of 11.3.1 with X = Sl, noting that the diagonal :Sl + Sl", Sl is

nullhomotopic. Now 2.8 is immediate from the commutativity of the following

diagram.

_________2L ..

proof of 2.7 and r ' is the composite

to take decomposables to zero and Q1(SeQsx) to

and right trapezoids follow from the two

formulas given above. Commutativity of the upper trapezoid is obvious except on

elements of the form Q1(SeQsx) with e(1) n+l + 2s(p-l) - e and b(1) 0, and it

follows in this case from a simple calculation.
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3. Pyer-Lashof Operations in K-Theory

In this section we give our main results about K-theory Pyer-Lashof operations.

We begin by fixing notations. We shall work in the stable category, so that X will

always denote a spectrum. Homology operations are to be interpreted as internal

rather than external. We use Z2-graded K-theory, with Ix I denoting the mod 2 degree

of x, There are evident natural maps

if r > 2

if s > 1

(Recall that EX means Sl" X in this chapter, not X1\ Sl as in chapters I-VII.)

81 will usually be written simply as 8. We write nS for the s-th iterate of n.

It will often be convenient to denote the identity map either by nO or We write

for the reduction map Ka(X;Z) + Ku(X;r). Our first two results give some useful

elementary facts about mod pr K-theory; the proofs may be found in [13] (except for

3.2(iii), which is Lemma 6.4 of (631, and 3.2(iv), which will be proved in section

7).

Proposition 3.1. (i)

(ii)

(iii)

(Iv )

K*{X;r) is a Z r-module.
p

If s 1 then nS8r+sP: = 8r•
np* and p*n are multiplication by p.

BrBr = O.

Proposition 3.2. For each r 1 there is an external product

denoted by x ® y, which has the following properties.

(i) ® is natural, bilinear and associative.

(ii ) If u KOS is the unit then x ® nccU = nccu ® x x ,

(iii)

(Lv )

(v)

(vi)

h(x @ ny ) (p*x) @ s-

Br(x@y) 8x@y+ (_1)l xl x®8Y.r r

E(x@y) = Ex@y (-1) Ixl x ® Ey.



307

If P is odd then the following also holds, where T:XA Y ... Y A X switches the factors.

(vii)

If P 2 there are two external products for each r satisfying (i), (ii), (v) and

(vi) • If these are denoted by ® and ® I the relation

(viii)

holds. Relations (iii) and (iv) hold when either mod 2r product is paired with

either mod 2r - l product. If r 2 then (vii) holds for both ® and ® I while

if r = 1 then the following holds.

(vii) , T*(x ® y) = y ® I X = Y @ x + By® Bx.

We shall actually give a canonical choice of mod 2r multiplications in Remark

3.4(iv) below. When X is a ring spectrum we obtain an internal product denoted xy.

We write 11 E K
O
(X;r) for the unit in this case, reserving the letter u for the unit

of KOS.

Our next result gives the properties of our first operation, which is denoted

by Q. In order to relate Q to the K-homology suspension we must restrict to the

space level, and we fix notations for dealing with this case. If Y is any space we

write K*(Y;r) for and, if Y is based, we write Kr(Y;r) for

The homology suspension 0 is the composite

If Y is an space then nY is also an space and is an ring spectrum; see

1. 3.7 and 1.3.8.

Theorem 3.3. Let X be an ring spectrum. For each r 2 and a E Z2 there is an

operation

with the following properties, where x,y K*(X;r).

(i) Q is natural for maps of X.

(ii) Q11 = o.

(iii) Qnx = nQx if r 3.
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xP if [x ] o and r 1

p*Qx - (pp-1 _ l)xP if [x ] " 0 and r 2
(iv) Qp*x

0 if [xI 1 and r 1

p*Qx if [x] 1 and r 2

(v)

(vi) Q{x+ y)

if Ixl " 0

1.

jQX + Qy - 1T[Pt 1:- ( )iyP-i J

" Qx + Qy - : X)(1TB y)
r r

Qx+Qy

if P is odd and Ixl " Iyl " 0

if P " 2 and Ixl " Iyl 0

if Ixl Iyl 1.

Q(kx) kQx - 1:- (kP-k) (1TX)P if k Z, Ixl " o.
p

(vii) Let [x]

Q(xy)

Iyl O. Then

QX'1T(yP) + (xp).Qy + p(Qx)(Qy) if p is odd

Let [x]

Let Ixl

1, Iyl ,,0. Then

{

QX'1T{?)

Q(xy) "

QX'1T(l)

Iyl = 1. Then

+ 22r-4(QB x)(QS y)
r r

+ p{Qx)(Qy) if p is odd

if P " 2.

if P " 2.

(Qx)(Qy) if p is odd
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x eK (QY;r)
a

then QxeK (QY;r-l)
a

and

to' if [x ] 0

aQx =

(1Tax)P + pQax if [x] = 1.

(ix) If k is prime to p then IjikQx Qljikx, where ljik is the k-th Adams operation.

(x) If p = 2 and Ixl 1 then

e {Q'N ifr 1

2
x

2r-2S 2 Qx ifr > 2.
r *

In particular

if r = 2.

r-l 2(1T x ) eKO(X;l) is zero if r 3 and is equal to

Remarks 3.4. (i) There are no analogs for the Adem relations.

(ii) We shall write QS:Ka(X;r) + Ka(X;r-s) for the s-th iterate of Q when

r > s (and similarly for the operations R and to be introduced later).

(iii) If x E K*(X;l) has sx 0 then x lifts to Y E K*(X;2). Thus one can

define a secondary operation Q on the kernel of S by Qx = Qy. The element y is

well-defined modulo the image of p* and thus 3.3(iv) shows that Qx is well-defined

modulo p-th powers if Ixl = 0 and has no indeterminacy if Ixl = 1. This is

essentially the operation defined by Hodgkin and Snaith [42,99J (although their

construction is incorrect when p is odd, as shown in [77J).

(iv) When p = 2, parts (vi) and (vii) are corrected versions of the

corresponding formulas in [76J. Note that 22r-4 = 0 mod 2r-l unless r = 2. The

formula for Q(xy) with Ixl = Iyl 1 and p = 2 implicitly assumes that the mod 2r

multiplications for r 2 have been suitably chosen, since the evaluation of

Q(xy + 2r-l(Srx)(SrY) by means of 3.3(vi) and (vii) gives a different formula.

Thus we may (inductively) fix a canonical choice of mod 2r multiplications by

choosing the mod 2 multiplication arbitrarily and requiring the formula to hold as

stated for r 2. From now on we shall always use this choice of mUltiplications.

Our next result shows that, in contrast to ordinary homology, K*(X;l) will in

general have nilpotent elements.

Corollary 3.5.

KO(X;l).

If X is an Hoo ring spectrum and x Kl (X;r) then o in
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Proof of 3.5. (By induction on r l . If r = 1 then

by 3.l(ii), 3.3(v) and 3.3(iv). If r 2 then

by 3.3(v) and the inductive hypothesis.

It turns out that iterated Q-operations on r-th Bocksteins are also

nilpotent. In order to see this we must make use of the operation R described in

our next theorem.

Theorem 3.6. Let X be an Hoc ring spectrum. For each r ::: 1 there is an operation

with the following properties, where x,y EK1(X;r).

(i) R is natural for Hoc maps of X

(ii)

(iii)

(iv)

p*Rx = Rp*x

2
Sr+1Rx QSr+2P*x

(v) R(x+y) Rx + By -

(vi) If Y is an Hoc space and x E Kl (Y;r) then

(vii) If k is prime

{

p*[(ax)Pj if r

aRx =
p*[(ax)Pj +

to P then

= 1

if r > 2.

(viii) If r 2 then QRx = RQx. If r = 1 then QRx O.

Remarks (L) x e Kl (X;r) and let s 1. By 3.3(v) we have
+ RSx)P = QrRsx• But QrRsx = Rs-1QR(Qr-lx) = 0 by 3.6(viii). We

r s s
therefore have the following nilpotency relation.
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Note that this is a smaller exponent than would be given by 3.5. In terms of the Q­

operation this may be written 0 for s < r and

(QsS lP*s­r+lx)p = 0 for s > r.
s+ ­

(ii) The second statement of 3.6(viii) was not in the original version of this

work (cr , f76, Theorem 3( tv ) ] ). The decomposability of QRx when r 1 (Which

actually implies its vanishing, as we shall see in Section 8) had been asserted by

Snaith when p = 2 ([ 99, Proposition 5.2 (ii) J l , but was not included in [76] because

the author erroneously thought he could prove QRx to be indecomposable in Kl(QXil)

whenever xeKl(Xil) had nonzero Bockstein (cr , [76, Theorem 4]). This point was

recently settled by Doug Ravenel, who observed that if one starts with the descrip­

tion of K*(Q(SI V P e2) j L) given in 176, Theorem 4] and applies the Rothenberg­

Steenrod spectral sequence (Which collapses) then one can see that the only

indecomposable in Kl(Q(S2 Up e3)il) is the generator of Kl(S2 Up e3;1), and in

particular QR of this generator is decomposable. This contradicts part of 176,

Theorem 4J and a corrected version of that result will be given later in this

section. We shall give a completely different argument in Section 8 to show that

QRx is decomposable, and in fact vanishes, for all x eK1(X;1).

We next introduce an operation which is the K­theoretic analog of the

Pontrj agin p­th power 157, 28 J • This operation is a necessary tool in our

calculation of K*(QX;l) and will also be used to give generators for the higher

terms of the Bockstein spectral sequence.

Theorem 3.7. Let X be an H", ring spectrum. For each r 2: 1 there is an operation

with the follOWing properties, where x,y eK*(Xir).

(L) is natural for H", maps of X.

(ii) = xP, and if r 2: 2 then nx xp•

(iii) = pp­1p* <2, x ,

(tv) lfSr+1.:Lx = xP­lsrx

p­l
) iyP­ir' "y + L .!. ( P if P is odd or r > 2

i=l P i p*(x )

(v ) .:2(x + y)

.;2.x + :J,y + 2*(xy) + (S22*x)(S22*y) ifp 2 and r 1.

(vi) Let [x] = Iyl = O. Then .:!(xy) = if p is odd, while if p 2

there is a constant E:r E 22, independent of x and y, with



Let [x ]

and R(yx)

[x ] = Iyl

j(xy)
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;L(xy)

1, Iyl O. Then

(Rx ) ( g)y ) if P is odd and r = 1

(Rx) + p; [(Qx) (Qy)] if p is odd and r > 2

Rl xy ) (Rx)(o'ly) - (l + 2sl)(82Rx)(82"y) if p = 2 and r 1

r-2
(Rx)(:J..y) + 4*[(Qx)(Qy)] + 2

(;1.y)(Rx) + (l + 2sl)(82;Ly)(82Rx) if p = 2 and r = 1. Let

1. Then there is a constant s' Z independent of x and y, with
r p'

prs'(Rx)(Ry) if P is odd
r

(vii) Let Y be an Hoo space and let

while if p is odd there is a constant

X KO(Y;r). If p = 2 then a;2. x = 2rR(ax),

EO" independent of x, with = prs"R(ax).
r' r

(viii) If k is prime to p then ljJk:2- x

G(p

if r = 1

(ix) Q;lx

)pi-2xP2_iPp*[(Qx)il if r > 2 •
i=l -

The undetermined constants sr in part (vi) depend on the choice of multipli-

cations; they can be made equal to zero for a suitable choice but it is not clear
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what their values are for our canonical choice. It is quite possible that the

Er , and E; are all zero.

Next we shall use the operations Q and R to describe K*(CX;l) for an arbitrary

unital spectrum X. If Y is a based space then the homology equivalence of [28,

Theorem 1.5.10] is also a K-theory equivalence (by the Atiyah-Hirzebruch spectral

sequence), hence

so that our calculation will also give K*(QY;l).

First recall the K-theory Bockstein spectral sequence (abbreviated BSS)

from [13, section llJ. X was assumed to be a finite complex in [13J but we wish to

work in greater generality. The finiteness assumption is necessary for those

results which deal with the Eoo term, since in general there is no useful relation

between E:X and K*X (for example, E:Rp
oo

is concentrated in dimension zero, while

K*RPoo is concentrated in dimension one). On the other hand, the results of [13J

which deal with Er for r finite remain valid for arbitrary spectra X. In partic-

ular, any (r-l)-cycle x can be lifted to an element y E K*(X;r) and we have drx =
ll
r - l SrY. The element y has order pr if and only if x is nonzero in Er• If we write

K*(X;oo) for the inverse limit of the K*(X;r) then an infinite cycle always lifts to

K*(X;oo); we shall frequently use this notation. Our next definition gives the kind

of data necessary for the description of K*(CX;l).

Definition 3.8. Let 1 ::: n ::: 00. A set A U Ar with K*(X;r) is called a

subbasis of height n for X if for each s ::: n the set

r-l I r-l
{1l x x EAr's:: r < n} v {n Srx I x EAr'S < r < n}

proj ects to a basis for

If the height of a subbasis is not specified, it will always be assumed to be

infinite. Subbases with finite height will occur only in sections 7 and 8. It is

not hard to see that any spectrum has a subbasis of any given height. The term

subbasis is motivated by our next result, which is an easy consequence of the

results of [13,§11J. Recall that a subset S of an abelian group G is a basis for G

if G is the direct sum of the cyclic subgroups generated by the elements of S.

Proposition 3.9. If A = A r is a subbasis of height n for X and if s ::: n

(with s < 00 if n = 00) then the set
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{lI
r - sx lx EA , s < r < n} <» {lI

r - s S x] X EA , s < r < n}
r - r r-

is a basis for K*(X;s). The elements of the form and have order pr

and the remaining basis elements have order

Now let X be a unital spectrum. Let 1'1 EKO(Xj"") be the unit and suppose that
cc is nonzero in KO(Xjl) • Then we may choose a set A = U A such that11 1'1

l"r"""
r

A v In) is a subbasis for X. We write Ar,O and for the zero- and one-

dimensional subsets Let p be odd, and let CA be the quotient of the free

commutative algebra generated by the three sets

r-s-l s I
{11 Q x X E A

r ,
0 < s < r < ""}

and

X E A 0' 0 < s < r < ""}r,

x EA l' r < "", 0 < s < ee ]r,

by the ideal generated by the set

The elements of the first three sets will be called the standard indecomposables of

CA. Here symbols like lI r - s - 1Qsx are simply indeterminates, since the Uyer-Lashof

operations are not defined on K*(X;r). However, by means of the inclusion X + CX

we may interpret these symbols as elements of K*(CX;l). Thus we obtain a ring map

Our main theorem is

Theorem 3.10. A is an isomorphism.

We could have defined CA in terms of the Q-operation alone, without using R,

since the third generating set is equal to

r-s-lsIs s-r+1
{11 Q Srx XE Ar,l' r < 00, 0 < s r} v {Q Ss+lP* XIXE A r,l' r < "", S > r}

The definition we have given is more convenient for our purposes, however, since it

allows us to treat the cases s r and s > r in a unified way.

Theorem 3.10 also holds for p = 2, but the definition of CA in this case is

more complicated since mod 2 K-theory is not commutative. Recall from 3.2(vii)'
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that the commutator of two elements is the product of their Bocksteins. To build

this into the definition of CA we define the modified tensor product Cl ®Cl of

two Z2-graded differential algbebras over Z2 to be their Z2-graded tensor product

with multiplication given by

(x ® y) (x ' ® y') = xx' ® yy' + xt dx ") ® (dy)y'.

We can define the modified tensor product of finitely many Ci similarly and of

infinitely many Ci by passage to direct limits. Now for each x E °we define Cx
r-s-l s'lto be the free strictly commutative algebra generated by Q x ° < s < r} and

if r < ° s < r}. Give this the differential which-tak:s Qr-lx

to SQr-lx and all other generators to zero. For each x E 1 we define Cx to be the

commutative algebra generated by the sets {nr-s-lQsx!O s r} and, if r <

s < r}, with the relations

(i) RSx)2
r = °r+s

and

° if °< s < r-2-
1 2r-l(ii) (nr- S x) if s r-2r

2r-l
if(nrSr+lRx) s r-1.

(Relation (ii) is motivated by 3.3(x)). Give Cx the differential which takes Qr-lx
1 2 r - lto Srx) and all other generators to zero. Finally, we define CA to be the

modified tensor product ® Cx. There is an evident ring map A:CA + K*(CX;l) and
XEA

with these definitions Theorem 3.10 and its proof are valid.

Remarks 3.11. (i) When X = SO, or when p = 2 and X is a sphere or a real projective

space, we recover the calculations of Hodgkin [41] and Miller and Snaith [83,84].

(ii) We can describe the additive structure of CA more explicitly as

follows. When p = 2 we define the standard indecomposables of CA to be the same

three sets as in the odd-primary case. If we give these some fixed total ordering

then CA has an additive basis consisting of all ordered products of standard

indecomposables in which each of the odd-dimensional indecomposables occurs no more

than once and each nr+s-lSr+sRSx occurs less than 2r times. This basis will be

called the standard basis for CA. We define the standard basis in the same way when

p is odd.

Next we discuss the functoriality of the description given by 3.10. If X and

X' are unital spectra with subbases A and A' then a unit-preserving map

f:X + X' will be called based if f*Ar C {a} for all r > 1. Such a map clearly

induces a map f*:CA + CA', and we have A 0 f* = (Cf)* 0 A. If f is not based, it



316

is still possible in principle to determine (Cf)* on K*(CX;l) by using 3.3, 3.6 and

3.9 (although in practice the formulas may become complicated). For example, if

f:S2 + S2 is the degree p map and XEKO(S2;2) is the generator then

in Ko(CS2;1). Since f*:K*(S2;1) + K*(S2;1) is zero this gives another proof of

Hodgkin's result that K*(CX;l) cannot be an algebraic functor of K*(X;l). A similar

calculation for the degree pr map shows that K*(CX;l) is not a functor of K*(X;r)

for any r < "'. Finally, the proj ection Sl Up e2 + S2 onto the top cell induces the

zero map in integral K-homology but is nonzero on K*(C(SI e2);1) so that

is not a functor of K*(X;Z). Thus it seems that the use of subbases cannot

be avoided.

We conclude this section by determining the BSS for CX.

Theorem 3.12. For 1 < m < "', ETI cx is additively isomorphic to the quotient of the
- *

free strictly commutative algebra generated by the six sets

1:; r-s < m}

{11m-IS m-r+sQsxm

{lIm-lRJI-r+sQsx

{lIr-s-1Qsx I x m r-s, ° s < r}

{ r-s-l s I11 Sr-sQ x x E m r-s < "', ° s < r}

{lIm- l #\ m-r+sQsx I AI}
c(, x E--r,0' r-s < m

I x E 0' 1 :; r-s < m,

and X E L" m < r+s < "'}

by the ideal generated by the set
t

{(lIr +s - l Sr +sRsX)P At' ( I)}x E m :s r+s < "', = mm r,r+s+ -m •

If P is odd or m 3 the isomorphism is multiplicative.

r-s+t-l t s
11 Sr_s+tR Q x

The proof of 3.12 is

In order to determine the

the usual counting argument, and is left to the reader.

differential in one needs the formula

s
(lIr+t-lSr+tRtX)P

for x 0 < s < r < "', t 0; this is is a consequence of 3.3(viii) and 3.3(v).

In this section we give the proof of Theorem 3.10, except for two lemmas which

will be dealt with in Sections 6 and 9. The argument is very similar to that given
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in Section 2 for ordinary homology, and in several places we shall simply refer to

that section.

First we reformulate 3.10 as a result about extended powers. Let Y be any

spectrum and let A be a subbasis for Y. We define CA with its standard indecom­

posables and standard basis as in Section 3. We make CA a filtered ring by giving

elements of A filtration 1 and requiring Q and R to multiply filtration by p. Let

= FkCA/Fk_lCA for k lj this has a standard basis consisting of the standard

basis elements in FkCA ­ Fk_lCA. There is an additive map

defined as in Section 2 by interpreting Q,R and the multiplication externally and

then applying (l* and B*. We shall prove

Theorem 4.1. Ak is an isomorphism for all k 1.

Remark 4.2. Using 4.1 and the external versions of 3.3{v), 3.6{iv) and 3.7{iv)

(which will be proved in sections 7 and 8) one can determine the BSS for I\Y as

follows. If m 1 let anA denote the algebra whose generators and relations are

given in 3.12. We make anA a filtered ring by givmg elements of A filtration 1 and

requiring R, Q and;2 to multiply filtration by p , If rr:A is the k­th subquotient of

anA there is an isomorphism + ¢kX. The proof is similar to that for 3.12 and

is left to the reader.

The derivation of 3.10 from 4.1 is the same as that given for 2.1 in section 2.

We therefore turn to the proof of 4.1. We need the following special case, which

will be proved in section 6.

Lemma 4.3. Ap is an isomorphism for all Y.

We shall reduce the proof of 4.1 to the case where Y is a wedge of Moore

spectra. First we need some notation. As in section 1 we write for S­l \...J r eO.
p

The set is a subbasis We write Moo for the colimit of the with

respect to the maps + having degree p on the bottom cell. Then Kl (M",jr) 0

::: :;a:: Then {u",}

is a subbasis for M",.

For each x E we can choose a map fx: l:1x I + K,..Y representing x, (If r = cc

we let f x be any map which restricts on each to a representaive for the mod

pr reduction of x.) Let z = V V l:lxl M and let f:Z + K.... Y be the wedge
l.;r.;oo x EAr

r
of the fx' We give Z the subbasis B consisting of the fundamental classes of the
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Then f**:K*(Z;r} + K*(Y;r} gives a one-to-one correspondence between Br and

and in particular it is an isomorphism for all r. Now consider the diagram

which commutes by 1.3 and 1.4(ii) and (iii). If 4.1 holds for Z, its validity for Y

will be immediate from the diagram and the following lemma.

Lemma 4.4. Let h:W + KAX be any map. If h**:K*(W;l) + K*(X;l) is an isomorphism,

then

(i) f**:K*(W;r) + K*(X;r) is an isomorphism for all r, and

(ii) (Dkf)**:K*(DkW;l) + K*(DkX;I} is an isomorphism for all k.

Proof. (i) By induction on r. Suppose the result is true for some r 1 and

consider the short exact sequence

--Z -.Z ---0.p r+l r
p p

This gives rise to the following commutative diagram with exact rows.

Ka+l(W;r} - Kex(W;r+l) --->0 K
ex
(W;r) ----... K

a_1
(W;I)

1f** 1f** !f** 1f** !f**
Ka+l (X;r) - Ka(X;l) -- Ka(X;r+l} -- Ka (X;r) ----... Ka_l (X;I)

Part (i) follows by the five lemma. The proof of part (ii) is now completely

parallel to that of Lemma 2.4.

Next we reduce to the case of a single Moore spectrum. We assume for

simplicity that Z is a wedge of two Moore spectra LnMs; the argument is the

same in the general case. Let Bl and B2 be the subbases and so that

B = Bl B2• There is an evident map CBl ® CB2 + CB which on passage to the

associated graded gives a map

k

<p: (Di BI ® Dk_i B2) + DkB.
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Lemma 4.5. <pis an isomorphism, and the diagram

cp

j
k
L (DiBl ® Dk_iB2) ----'----..>" D B

"0

commutes

The proof is the same as for 2.5. The lemma implies that 4.1 will hold for Z

once we have shown the following. We write x for EnU
r

E K{EI\4rir).

Proof. By induction on k , First let k = jp with j > 1. We need the commutativity

of the following diagram for i = 0,1 and 2.

(*)

D
j
(}..

'?! Aj '?!1Aj

K*{DjDpMil)

K*{DjDp{MvM) i l)

y!
J

B. *JP

Here M denotes and y,z EK*{M Mir) are the fundamental classes of the first and

second summands , The sets a and 0-' are subbases for DpM and Dp (M If M) which will be

specified later. The maps gi:MVM + M are defined by go = lVI, gl lV*, and

g2 = * VI, and the Fi are determined uniquely by the requirement that the left-hand

trapezoid commute. To complete the diagram we need

Lemma 4.7. There exist a, ci, Yj and yj independent of i such that diagram (*)

commutes for i = 0,1 and 2.
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The proof will be given in Section 9. Like the proof of 2.7, it consists of

systematic simplifications of the elements of DlA and Dj a. I. The details are much

more complicated, however, because of the nonadditivity of the operations.

Now consider the inner square of the diagram. Since a. * 0 '* is an

isomorphism, we see that Ak is onto. Letting
-1 JP

ine = Yj o Aj 0 '* 0 Ak,
we see as

section 2 that e induces an isomorphism of the subspace t7 of spanned by the

decomposable standard basis elements. In particular, Ak is monic on ;::; •

The remainder of the proof differs from that in Section 2, and is in fact

considerably simpler since there are only a few indecomposables. It suffices to

show the following.

Lemma 4.8. Let WE Q. If n = 1 then

(i) r-s-l s
t

s
2 < SAk ( 1I Q x - w} 0, where k = P , < r < ""- -

(ii) A (r+s-la RS - w) t 0, where k =
s

< "", 2 < sk 11 r+s x p , r < "".

If n = 0 then

(iii)

(Lv )

r-s-l s s
Ak( 1I Q x - w} t 0, where k = P , 2 < s < r < ""

A (1I
r - s - l a QSx _ w) t 0, where k = pS, 2 < s < r < "".

k r-s

Proof. We need two facts about the map ll*:K*(;;I\Xjr} + K*(Dk;;X;r}, namely that

k_l}*(x@y} = 0 for 0 < i < k and that, when k p,,

if [x I = 0

if [xI = 1 •

The first fact is shown as in the proof of 2.8, while the second, which is the

external version of 3.3(viii}, will be shown in section 7.

Now consider part (i). We have ll*;;W = 0 and

r-l s= 11 l*(;;X)P

But is nonzero since Ak is monic on decomposables.

Combining part (i) with the fact that Ak is onto and is monic on decomposables,

we see that

is an isomorphism in degree 1 and is onto in degree zero. It is monic in degree 0

if and only if part (ii) holds. But if not then and K1 would

have different dimensions as vector spaces, and therefore the Bockstein spectral
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t:Dj and the
hypothesis of 4.6.
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would be nonzero for all m, But the transfer embeds in
*latter is zero for pm-r-l > j by Remark 4.2 and the inductive

Finally, part (iii) follows from (i) and the equation

r-s-l s r-s-l s
A*En Q x = n Q EX,

while (iv) follows from (iii) using the argument given for (ii).

This completes the proof of 4.6 for the case k = jp. The remaining case, when

k is prime to p, is handled exactly as in Section 2.

5.
n

Calculation of K*(D 8 ;Z
P pr

In order to construct and

description of

which will be used in Sections

analyze the Q-operation we shall need a precise

In this section we give some facts about K*(DpsTI;r)

6 and 7 to obtain such a description. We work with

K-theory on spaces in this section.

If X is a space there is a relative Thom isomorphism

corresponding to the bundle

x
E
P

and the inclusion

As we have seen in VIIS3 and VII§8, this isomorphism can in fact be defined for an
n

arbitrary spectrum X. In calculating K*(D 8 ;r) we may therefore assume n = °or° P+n = 1; in the former case we have D S BE
P P

Lemma 5.1. Ka (BEp; 1) is zero if a = 1 and Zp (±) Zp if a

a = 0 and Zp if a = 1.

o. K (D 8\1)
a p

is zero if

Proof. We use the Atiyah-Hirzebruch spectral sequence for mod p K-homology. By
1 1

[40, 111.1.2] the differentials di vanish for i < 2p-l and d2p_l is BP* - P*B

(here pl denotes 8q2 if P 2). For spaces of the form DpX, a basis for the

consisting of external Dyer-Lashof operations is given in [68, 1.3 and 1.4]. The

differential d2p_l can be evaluated using the external form of the Nishida relations
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[68, 9.4]j the explicit result is that d2p_l(e i ® yp) is a nonzero multiple of

(8e i +2_2p) ® yP - ei +l_p ® (8Y)P

for any Y E I4(Xjl). Letting X SO or Sl we see that is generated by eO® uP

and e2p_2 ® uP in the former case and by ep_1 0 (l:u)p in the latter. Then = E""
for dimensional reasons and the result follows.

Using 5.1 and the K-theory BSS we conclude that K*(Bl:pjr) is free over Z r on

two generators in dimension zero and that K*(D Sljr) is free over Z r on
p p

generator in dimension one. We wish to give explicit bases. It is convenient to

work in K-cohomology, as we may by the following.

Lemma 5.2. The natural map

n - nK (DpS jr) + Hom(K*(D S jr),Z )
p pr

is an isomorphism for all r <

Proof. When r = 1 a cell-by-cell induction and passage to limits gives the results

for an arbitrary spacej in particular it holds for DpSn• The result for general r

follows from the B&S.

Next we give a basis for KO(Bl:pjr). We write 1 for the unit in this group and

lIe) for the unit of KO(pt.jr). Let T be the transfer l:oo(Bl:;) + l:oo(Ee+) = S.

Proposition 5.J. K*(Bl:pjr) is freely generated over Z r by 1 and T*l(e).
p

Proof. Let n = and denote the inclusion C l:p by 1. Then Kl(Bnjr) = °and the

natural map

is an isomorphism. If p is the group of automorphisms of then a standard transfer

argument shows that the restriction

* * *1 :K (Bl:pjr) + K (Bn j r )

is a monomorphism whose image is contained in the invariant subring K*(Bnjr)P. Now

1*1 is the unit of KO(Bnjr), while the double coset formula gives
* * * +1 T lIe) = (p-l)!(T') l(ej' where T' is the transfer ) + S. Since and

T'l(e) form a basis for K (Bnjr)P the result follows.
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",* 1
In order to give a specific generator for (D S ;rlp

* --:n+l ",* --:n
tJ. :K (Dp" ;r) ... U:Dp" jrl.

Lemma 5.4. The composite

*tJ.

we consider the map

takes 1 *to (p-l)! (pI - r l(el) to zero.

As an immediate consequence we have

Corollary 5.5. *EtJ. generates

1
Before proving 5.4 we give the desired bases for K*(BEpjrl and K*(DpS jr).

Definition 5.6.
1

{l'*(P_l)! (p! -
{EtJ.

The canonical K*(BEpjr) is the dual of the basis

'*l(el)}' The _f_or_ 'K*(Dps\rl is the dual of

Note that the unit n in KO(BEp;r) is the first element of the canonical basis

for this group. We shall always write v for the remaining element and v' for the

basis element in Kl(DpSljrl.

Proof of 5.4. Consider the subset of x E (n2lP consisting of points for which

the sum of the n2-coordinates is zero. The ection to BLp makes this subset the

total space of a bundle over BLp' Now DpS2 is homeomorphic to the second

suspension of the Thom complex of and under this homeomorphism the map

tJ.oEtJ.:E2DSO ... Di' 0 th d 0 fth 0 1 0 B+CT hOIP p as e secon suspensi.on 0 e IDC usaon Ep W l e

agrees with the Aityah-Bott-Shapiro orientation Thus it suffices to

*show that the Euler class of is (p! - , 1 (e ) ) •* If 'IT = and 1: 'IT C Ep is

the inclusion it suffices to show the pullback (Bi l has Euler class

p - (,I)*l(el in KO(B'IT) = R'IT ® Zp' where " is the transfer ... S. Let

x E R'IT be any nontrivial irreducible. Then (Br )* is the sum of the bundles over B1T

induced by x,x2, ••• ,xp-l• These bundles have Euler classes l-x, ••• ,l-xp-l, hence

has Euler class (l-x) ••• ( l. Evaluation of characters shows that

(I-x) ••• (l_xp-l)

and the result follows.

p - (1 + x + ••• + xP-ll
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Next we collect some information about the elements n ,v and v' for use in

section 7.

takes n to p!u and v to -(p-1)!u when

(ii)

Proposition 5.7. (i) T:K*(DpEf;r) K*(DpEf;r-l) takes v to v and v' to v'.

+ 1
6*:K1 (E(BEp);r) K1 (DpS ;r) takes En to zero and Ev to v'.

(iii) 6*:KO(EDpS
I;r)

takes EV' to + pv).

- Ef - .n (p)(tv) T*:K*(Dp j r ) K*((0) ;r)

n = 0 and takes v' to zero when n = 1.

(v) o*:KO(BEp;r) KO(BEp x BEp;r) takes n to n ® n and v to

v ® 11 + 11 ® v + p(v @ v l ,

1 - 1 +(vi) o*:Kl (DpS ;r) Kl (DpS A BEp;r) takes v ' to v' @ 11 + p lv ' @ v l ,

- 2 1 1(vii) o*:KO(DpS ;r) KO{DpS I\DpS ;r) takes to zero and

to v' @v'.

For the proof we need a preliminary result.

Lemma 5.8. (i) If X is a spectrum with E1 Er in the K-theory BSS and if Y is any

spectrum then the external product map

is an isomorphism, where the tensor product is taken in the Z2-graded sense.

(ii) If in addition K*(X;l) and K*(Y;l) are finitely generated then the

external product map

is an isomorphism.

Proof When r = 1 the first statement is well-known (see [13, Theorem 6.2J, for

example). It follows that the external product induces an isomorphism of K-theory

Bockstein spectral sequences. Hence if B is a basis for K*(X;r) and A is a subbasis

of height r for Y then the set {Tr-sX ® y x E B, yEAs} is a subbasis of height r

for X1\Y and part (i) follows. The case r 1 of part (11) follows from part (i) by

duality, and the general case follows from it as in part (i).

Next we turn to the proof of 5.7, which will conclude this section. In each

case it suffices by 5.8 to show the dual. Then (i) is immediate and (ii) and (iii)

follow from 5.4. The first and second statements of part (iv) are trivial, as is

the third when p 2. When p is odd we observe that T*V' must be invariant under

the Ep action on K*((Sl)(p);r). Clearly zero is the only invariant element.
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* * * * *For part (v) we observe that t l(e) @ t l(e) is t (\ t l(e)) by Frobenius

* *reciprocity. Now \ t l(e) = pIl(e)' and thus

1 * 2 *
[(P-l)! (pI - t l(e))) = (p-l)! (pI - t l(e))

in KO(BE 'r)' the result follows by duality.p' ,

For part (vi), consider the composite

We have f1*Ev v', and

v' ® 11 + p(v' ®v).

For part (vii) observe that part (iii) implies that the map

1 1 2 1
(f1/\ l)*:Kl( ED 8 /\ D 8 ;r) + Kl(D 8 "D 8 ;r)p p p p

is monic and that (f1/\l)*(Ev'@V') = 4i(11) @v' + p4i(v) ®Iv'. Hence it suffices

to show that (lIA1)*(Eo*4i(11)) is zero and that

Now let

be the associativity transformation and consider the diagram

D h
P

Eo

I f1
EO P

ED 82" BE+ D EBE+
P p P P

The upper part clearly commutes, and the lower part also commutes since h is

homotopic to the map switching the factors 81 and 82• Now
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clearly takes to ® n and to

® v + ® n + pe tv ) ® v ,

Hence

°
by the diagram and part (ii), while

® v ' + pe tv ) ® v' •

6. Calculation of K*(D X;Z )
P P

In this section we define Q on K*(X;2) and prove Lemma 4.3. We work with

K-theory on spectra in this section ..

Our first result collects the information about which will be used

in this and later sections. We let i and j respectively denote the inclusion of the

bottom cell of and the projection onto the top cell. Note that =
and i*l:n-IU = where and u are the fundamental classes of and SO.

Lemma 6.1. (i) For any n EZ and EZ2, has dimension lover Zp'

(ii) For any nE Z, EZ2 and r 2, has dimension 2 over Zp'

(iii) (DJ ... Ko(DpSO;l) is monic, and if r 2 it is an

isomorphism.

(Lv) (DJ)* e 1*:Kl ... Kl (DpS
l ;1) e Kl (p) ;l)l:P is monic, and is

an isomorphism if r 2.

(v) (Dpi)*:KO(DpSO;l) ... KO(Dpl:Mr;l) is onto. If r 1 it has kernel generated

by n and if r 2 it is an isomorphism.

(vi) The sequence

(D i)* 1* () l:
P (DM·1) -K..«M) p ·1) p-O

1 P r' --1 r '

is exact, and if r 2, (Dpi)* is a monomorphism.

In parts (iv) and (vi), denotes the subgroup invariant under

the evident l:p-action; this sUbgroup can easily be calculated using 5.8(i). The

proof of 6.1 is similar to that of 5.1 and is left to the reader.
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We can now define elements vI EKO(DpM2il) and v:l. EKI(DpEM2il) by the

equations (Dpi )*vl " v, (Dpj )*v:l. " VI, and ,*vi ,,0. We use definition 1.6 to

construct Q.

Definition 6.2. Q:Ka(X;2) + Ka(DpX;l) is the generalized Dyer-Lashof operation

if a " 0 and if a " 1.
1

Observe that "i " Qu2 and vi"

Next we turn to the proof of 4.3. We use the spectral sequence of 1.2.4 with

equal to Zp or Ep and E "X. This spectral sequence will be denoted by Erq,a
by Bott periodicity it is Z x Z2-graded, so that a E Z2'

We can describe E2 " H p) as follows. When q " °itq, q
is just the coinvariant quotient of K*(X;l)@ p. Let " Zp with p odd. If

x EKa (XiI) then xP (Xill@ p generates a trivial s -submodule and we write

eq @ xP for the image of eq EHq i 1) under the inclusion of this submodul,e . Now

K*(Xil)@ p can be written as a direct sum of trivial of this kind and free

n-modukea generated by Xl ® ••• ® with not all Xi "s equal. Hence the map

2K (X;l) + E (Z ;X)
a q;« p

taking x to eq ® xP is an isomorphism if q > °and p is odd. We continue to write

eq ® xP for the image of this element under the natural map

i (Z iX) + i (E ;X).q,a p q,a p

By [68,1.4J we see that this map is onto in all bidegrees, is an isomorphism when

q " (2i-a)(p-I) or (2i-a)(p-l)-1 for some i 1, and is zero in all other bidegrees

with q > O. Finally, if p " 2 then by 3.2(vii)f the Z2-action on K*(Xil)@ 2 is

given by x ® y}----o. y ® x + l3y ® sx; in particular, x2 is invariant if and only if

sx "0. Using this it is easy to see that the map taking x to eq ® x2 induces an

isomorphism from ker Slim S to Eq,0(Z2iX) if q > 0, while Eq,1(Z2;X) ° for q > 0.

Our next two results describe the groups

X and let "lSCK*(X;2) be the set

r-2 I r 2
{n x XEAr' 2 < r oo} U {n - Srx I x EAr' 2 :5. r < oo}.

Let A2 °and A2 1 be the zero- and one-dimensional SUbsets of, ,

Proposition 6.3. (i)

generated by the set

The kernel of the epimorphism *(E ;X)
p , p

{(sx) I x EKI (X;l)} if P is odd and by

+ I x E Kl(X;2)} if p" 2.

is
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(ii) The terms with q > °are freely generated by the sets

p ­
{e2p_2 ® (1Ix) [x E A2,O}

{e 1 ® (1Ix)p I x E A2 I}p­ ,

and, if p is odd, {e 2 ® xPp­ X E A 1 I},

X E A2, 1 then Qx is represented by a nonzero multiple of ep_l ® (1Ix)p.

X E AI, 1 then QS2P*x is represented by a nonzero multiple of

by a nonzerothen Qx is represented in(i) If x

(1Ix)p.e2p_2 x

If

If

(ii)

(iii)

ep_2 ® x
p •

Proposition 6.4.

multiple of

Note that Lemma 4.3 is an immediate consequence of 6.3, 6.4 and the external

versions of 3.3(iii), 3.3(v), and 3.6(iv).

When p is odd, Proposition 6.3 is Corollary 3.2 of [771. We shall give a

different proof, using the methods of Section 1, which also works for p = 2. First

observe that there are two equivalent ways of constructing the spectral sequence

one can either apply mod p K­theory to the filtration of DpX given in

Section 1.2 or one can apply mod p stable homotopy to the corresponding filtration

of K" DpX. The latter procedure has the advantage that the map

induced by any map f:Y + KA X clearly gives rise to a homomorphism

of spectral sequences.

Lemma 6.5. If 11

(D f)**(e ® yP)
11 q

Zp or l:p and y E K* (Y; 1) (with SY

eq ® (f**y)p.

o if P 2) then

Proof of 6.5. It suffices to consider the case 11 = Zp' The composite

DX
11 11 11 11

induces a coproduct

and we have
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The lemma clearly holds for q = 0, and it follows for all q since the component of

'l'(e q ® yP) in ® is (eO ® yP) ® eq

CDpflnQu2
X=M2andx

Proof of 6.4. (i) Let x be represented by f:M2 + X.
- P - pQx, and (D/)n(ep_2 ® u2) - e2p_2 ® x •

u2' and it suffices to show that vl =

Then f**u2 = x,
Hence we may assume that

is not in the image of

But this is clear since (DJ) *v1 v ,

Part (ii) is similar. For part (iii) we may assume that X = EMl and x

In this case it suffices to show that Q82P*u1 is nonzero. But 82P*ul = i*u,

u EKa(SOj2) is the unit, and Qu =v. Hence Q82P*ul = (Dpi)*v is nonzero by

6.1(iii).

Proof of 6.3. First let p = 2. Since every element of ker 8 lifts to K*(Xj2),

Proposition 6.3 will be a consequence of the following facts.

(a) d2 °
(b) ® (1Tx)2) = ® (1T82x)2

(c) ® (lTX)2) = e2q-a-3 ® [(lIx)2 + (lIB2x)2j.

Note that, when B2x f 0, formulas (b) and (c) differ from those given in

[99, 3.B(a)(ii) t.

First consider the case X = SO. Then the spectral sequence of 1.2.4 is

isomorphic to the Atiyah-Hirzebruch spectral sequence, so that (a), (b) and (c) hold

in this case by 5.1.

Next we need the coproduct 'l' defined in the proof of 6.5. this has the form

q

I
i=O

2(e. ® x ) ® e . ,
l q-l

and it follows that if x and y satisfy

then we also have

and

d3(e2S+l @ x2) = e2s_2 ®

d3(e2s+2 ® x2) = e2s_1 ® [y2 + x2)

for all s i ,

Now let X = S1. In this case d2 = 0 for dimensional reasons, and there are

only two possibilities for d3 consistent with the coproduct, namely
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2 2d](e2q ® (EU)) e2q_] @ (EU)

d](e2q_l ® (Eu)2) e2q-4 @ U:u)2.

Only the second is consistent with 5.1, and hence (b) and (c) hold in this case.

Next observe that, by 6.5, d2 vanishes in general if it does for M;:; and

In each of these cases, d2 is zero for dimensional reasons except on 0' and the

only element that could be hit is (TrEaU2) in l' But the

ing element of Kl(D2E
aM
2;1) is nonzero since its transfer it nonzero in

Kl (( E
aM2 ) (2 » . Hence d2 = O.

Finally, (b) and (c) will hold for all x if they hold for x = u2 and x EU2'

First consider EU2' It suffices to show that

From inspection of the maps

and

+

] ] 1
E**(22;EM2) + E**(Z2;S )

we see that die] ® is zero and that d](e] ® (llEu2)2) projects to (EU)2

in 0(22;S). Hence,

for some E E 22 and there are no further differentials. But by the external version
(2) (2)

of ].](x) we have in hence £ = 1 as

required.

It remains to show that

For this we use the map

induced by

We have
q
L

i=O

and therefore
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while

and the result follows.

Next let p be odd. We must show the following

(a: di = 0 for i :::: p-2

(b:, (eQ. ® xP) = eQ.+l_p ® (Sx)p

(c) di = 0 for p :::: i :::: 2p-2

and

(el di = 0 for i > 2p.

As before, when X = SO the spectral seQ.uence is isomorphic to the Atiyah-

Hirzebruch spectral seQ.uence so that (a)-(e) hold for 5.1. They also hold for

X = Sl by 5.1 and the coproduct. Now 6.5 implies that (a) and (b) will hold for all

X if they do for X =Ml and X = EMI• Inspection of the maps

+

+ (Ep;Sa)

and the coproduct shows in each case that (a) and (b) hold or (a),(c),(d),

and (e) hold with = O. Only the former gives an E
ro

term compatible with

6.l(i). Hence (a) and (b) hold for all x.

Now applying 6.5 again we see that (c), (d) and (e) will hold in general if

they hold for and But one can see that they do by inspection of the maps

and

and the proof is complete.

7. Construction and properties of Q.

In this section we complete the construction of Q and prove external and

internal versions of Theorem 3.3.

As in section 6, we shall construct Q by specifying elements vr_l E

and VI E Kl(D EM ;r-1). In order to do this we need a stronger version of 6.1.
r p r

Lemma 7.1. Let r 2. The maps
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I
(DJ 1* ® ,*:Kl (DpIMrjr-ll + Kl (DpS\r-ll ® Kl ((IMr1 (p ) jr-l1 p

and (D i1*:KO(D SOjr_l) + KO(D IM jr-l)p p p r

are isomorphisms, and the sequence

1o --Kl (DpS ;r-l)

is exact.

(D i)* '* (1 I
P .. Kl(D M ;r-l) - Kl( (M ) P or-I) p-O

P r r

is the operation if a = 0 and
r-l r-l

(d )

Note that the terms in 7.1 which involve iterated smash products may be

calculated by using 5.8. Assuming 7.1 for the moment we may define vr_l and v;_l by

the equations (Dpi)*vr_l v , VI, and = O.

Definition 7.2. Q:Ka(Xjr) + Ka(DpX;r-l)

ifa=1.

Observe that vr_l' v, and VI are equal respectively to Qu, and

QIU. From now on we shall always use the latter notations for these elements.

We shall prove 7.1 by showing that El in the K-theory BSS for

when r 2. For this we shall require a formula for the Bockstein of the external

Q-operation, and this in turn depends on the other formulas collected in the

following lemma.

Lemma 7.3. Let x,y EKa(Xjr) with r ::: 2.

(

0 if a =1

-(p-l) !lIx(p) if a 0 and p is odd

_lIx(21 + w2r-211(Srx) (21 if a 0 and p = 2 •

Here w Z2 is independent of x.

(ii) lIQx = QlIX if r 3.

if a = 0 and p is odd

(iii)

(iv) Let k E Z. Then

ira

o and p

1.

2
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{:
1 (kP -khn x(p) ifa 0
p *

Q(kx)

if a 1.

f" ifa 0

Ll*EQx
" 11l*(EX)(P)+PQEX ifa 1.

{ ifa 0QSrx - Plll*(X ® Srx)

S Qx =
r-l ( )

'lll*(Srx) p + pQSrx ira 1.

The constant w in par-ts (i) and (iii) will turn out to be 1, as required for

3.3(vi). In order to avoid circularity, we shall prove 7.1 and 7.3 by a simul-

taneous induction. More precisely, we shall assume that 7.1 holds for r :; rO and

that 7.3 holds for r < rO (vacuously if rO = 2) and then prove 7.3 for r rO and

7.1 for r = rO + 1. Before beginning, we need two technical lemmas.

f f! h -
Lemma 7.4. Let Y - Z Cf - L:Y be a cofiber sequence in h.& and let

r 2. Suppose that Sr-l vanish on Kl(Zjr-l). Let y EKl(L:Yj2r-2), ZE Ko(Zjr-ll

and w EKl(Cfjr-l) be any elements satisfying llr-ly = and pi-l(EZ) "f*y. Then

Sr_lw = g*z.

Proof Consider the following diagram in h ,8

K" Cf
1 h

"KhEY
1 Ef .. K"EZ 1 zs K "ECf

t JEY

.,.
jEw

I
I
I

I-- EM l-Er- r

Here the bottom row is the evident cofiber sequence, with the first map induced by

the inclusion Z r-l C Z 2r-2 and the second by the projection Z 2r-2 + Z r-l'

Precomposition thePfirst, second, and third maps in this iRduces the

transformations llr-l, pi-l and (because of the suspension) -Sr+l' respectively. The

left-hand square commutes up to homotopy since llr-ly "h*w. Hence there exists an

element making the other two squares commute, and we have -Sr-lEw ,,( Eg) • Now

the map

makes the middle square commute, hence - Ez restricts trivially to EM2r_2' Thus

- Ez extends to a map
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with = , - Ez. Since Sr-l vanishes on Ko(EZ;r-l) we have, Ez. Thus

-Sr_1EW = E(g*Z) and the result follows.

LeIlllllB. 7.5. If f:X + KI\Y is any map then f H commutes with 11, Sr' p* and E.

The proof of 7.5 is trivial. Before proceeding we use 7.5 to dispose of

3.2(iv) •

exist maps

x and g**E1ylur = y.

EIYIMr with x =
Clearly the set

Proof of 3.2(1v). For any X" K*(X;r-l) and y there

f:ElxIMr_l + KI\X and g:E1ylM
r

+ K"Y with fHElxlur_l

Thus by 7.5 and 1.3(ii) we may assume X ElxlMr_l and Y

and y = By 3.2(vi) we may assume Ixl = Iyl = O.

is a subbasis for Hence by 3.9 we have

for some al,a2 E Z r-l. Applying 11 to each side gives
p

Hence a2 O. Now applying (jl' j)* to each side of equation (1) gives

Z r.
p

Hence a l = 1 in Z r--L"
p

Next we give the proof of 7.3 for r = rOo The proof of each part will be quite

similar to that just given for ).2(iv). First we observe that by I.), 1.4, 1.5 and

7.5 we may assume in each part except (iii) that X is and that x is the

fundamental class

(i). If a = 1 the result holds by Definition 7.2. Suppose a 0 and consider

the map

This is monic when p is odd and has kernel generated by when p 2.

The result follows since j (p)u (p) u e K (SOor) and* r 0'
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the last equality is 5.7{iv).

(ii). Let a = 1. By 7.1 it suffices to show that

and that

This second equation follows from part (i) and the first from 5.7{i). The case

a = 0 is similar.

(iii). Let a = 0 with P odd. By 1.3, 1.4 and 7.5 we may assume that X is

V with x and y being the fundamental classes of the two summands. Let

p
F: V D.M 1\ D iM + D (M v M )

i=O 1 r p- r p r r

be the equivalence of II.l.l and let + be the pinch map. Then

= Q{x + yl, and it suffices to show that

1 p (i)
- ( )1TI U ® 1T
P i * r

since F* applied to the right side of this equation clearly gives the right side of

the desired formula. Now the projection of Dpf on the i-th wedge summand is

the transfer

When i is 0 or p this transfer is the evident natural equivalence, hence it suffices

to show

for 0 < i < p. Now the transfer

'i' i:DiM 1\ D iM + M{P),p- r p- r r

induces a monomorphism since the order of

We have

('f,P_il*{'i,P_i)*QUr = ,*Qur

by part (i) while

x l:p_i is prime to p for 0 < i < p,

(p)
-(p-lllur

il{P-i)lu{P)
r
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by the double coset formula. Equation (2) follows. The proof when p 2 or 1

is similar.

Part (Iv) follows from (iii) by induction on k, When p = 2 and c = 0 we need

to know that O. If r > 2 this is evident since 1*(6rX)(2) has

order 2 by 3.2(viii). If r = 2 then by 6.4(iii) we have

(v). Let = O. By 7.1 is suffices to show

and

QEU

'r O.

of Sl. By definition, the map is

to the map of Ep-spectra

The first equation is immediate from 7.2 and 5.7(ii). For the second, consider the

diagram

Here the map is induced by the diagonal

obtained by aplying the functor EE+ (
P Ep

S (M ) (p) ... (S ... M ) (p)
1 r 1 ""'1'

induced by the diagonal of Sl. Hence the diagram commutes by naturality of r , But

the diagonal map of Sl is nonequivariantly trivial, hence = 0 as

required. The proof when = 1 is similar.

(vi). Suppose first that = 1. Consider the following diagram

D f
D S P l> D S g C rp p

y

DpEMr
D Sl
P

Here f: S ... S has degree pr and the top row is the cofiber sequence of The map

y is that constructed in 11.3.8, where it was called and the diagram commutes.

For any s 2: 1 the map
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In particular, when s r-l the map (Dpfhf is zero, and since Kl(Dps;r-l)

that

o we see

and

is an isomorphism. Thus there is a unique w Kl (C;r-l) with h*w l:Qu. Letting

z = pQu + Tl Ko(DpS;r-l)

r 1 r-lwe have 11 - Y and p* l:z = (Dpf)*y, hence by LeIIDna 7.4 we conclude that

Br_lw = g*z in Kl(C;r-l).

Next we shall show that y*w = Assuming this for the moment, we have

Br_lQl:Ur = y*Br_lw = = (Dpi)*z = pQBrur + 1Il*(BrUr)(p)

which gives (vi) when u = 1. To show y*w = we must show that (Dpj)*y*w Ql:U

and T*y*W = O. The first equation is iIIDnediate from the diagram and part (v ) , For
+

the second, we observe that Dpf and yare obtained by applying El:p "l: ( ) to

certain l:p-equivariant maps F and r, so that by naturality of T we the

following cOIIDnutative diagram of nonequivariant spectra.

C

y

El:;l::::F r '. OF! r

p l:p

El:+ f\ (l:M) (p ) T (l:M ) (p)
P l:p r r

Thus it suffices to show r *T* = 0 on Kl (C; r-l) • As a nonequivariant map F is the

map S + S of degree ppr, hence the cofiber CF is nonequivariantly equivalent to

The resulting l:p-action is clearly trivial on hence also on

since the Bockstein Bpr is an isomorphism between these two groups.

Thus

lands in the l:p-invariant SUbgroup. We claim that this subgroup is generated by the

element

when p is odd and by this element together with
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when p = 2. From this it will follow that 1T
pr - r +l vanishes on this subgroup and

therefore that f* vanishes on since 1T
pr - r +l maps onto the latter

group; thus we will have shown f*T*W 0 as required. To verify the claim we

observe that the set

{Lur x2 ••• ® xp I xi = LUr or BrLUr}

is a subbasis for (p). Using the basis for Kl (p) ;pr) given by 3.9, we

see at once that the elements

and Pr - r
Z = B P [LU ®
2 pI'""* r

(s tu ) (i) ® l:u @ (B LU ) (p-i-l) J J
r r r r r

are a basis for the 1:1 x 1: -1 invariant sUbgroup. Now if T is the map switching the

first two factors of we have T*zl = zl and

the claim follows.

Finally, we must prove part (vi) with a = O. By 7.1 we have

(J)

for some aI' a2 E Z r-l' Applying and using part (v) gives
p

Br_lQLur = a l[1Tl*(BrLUr)(p) + pQSrLurJ·

Comparing this with the case a = 1 of (vi) gives al = 1. Now applying T* to (J) and

using part (i) gives

p-l
a_(p-l)!1T[ L uti) @ B u @u(p-i-ll j •

i=O r r r r

But B 1T(U(P))
r-l r and it follows that a2 = -p as required.

This completes the case r = rO of 7.3. Next we must show 7.1 for r = rO+l 3.

It suffices to show that El = Er-l in the K-theory BSS for and We shall

give the proof for the other case being similar. Let x and y denote the

elements and by 6.1,7.2 and 7.3(11) we see that the set

{ r-2 (p) r-3Q r-z ( (p-l) ""') r-3Qy}1T l*X ,1T x, 1T 1* X '<9 Y , 1T

is a basis for

have il = Er-2 in the BSS.

Since all elements of this basis lift to we

The elements 1T r - 2X(P) and 1Tr - 2 (x(p- l ) ® y) are (r-2)-
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nr-3Qpy = 0,

339

cycles since they clearly lift to

r-3 r-3 r-3dr_2n Qx = n 6r_2Qx = n Q6r_lx

where the 2nd and 4t h equalities follow from 7.3(vi) and 7.3(iv) respectively.

Similarly,

0.

This completes the inductive proof of 7.1 and 7.3.

Next we shall prove the external version of 3.3. Rather than write out the

complete list of external properties, we give rules for changing the internal

statements to their external analogs. All internal products and D,rer-Lashof

operations are to be changed to external ones, with the map 1* prefixed to any

p-fold product which is to lie in K*(DpX;r). The map 0* is to be prefixed to the

left-hand side of each Cartan formula. In the stability formulas, a is to be

changed to and prefixed to the left-hand side. These conventions give the

correct external analog for each part of 3.3 except for part (ii) which has no

external analog.

Proposition 7.6. The external Q-operation satisfies the external versions of each

part of Theorem 3.3 except part (ii).

Before beginning the proof we need a lemma to deal with the prime 2. (See

11.4.3 for another proof of this lemma.)

Lemma 7.7. Let X be any spectrum. The sequence

2
-A......D2J.;X J.;2(XAX) l?D2X

is a cofibering.

Proof. Consider the cofiber sequence

of Z2-spaces. Here z2 acts trivially on the first and fourth terms and by switching

factors (respectively, wedge summands) in the second and third terms. Now Sl A Sl is

the one-point compactification SV of the regular representation V of Z;2' and it is

easy to see that the second map in the sequence (4) stabilizes to the transfer

SV .. z2" SV. The sequence of the lemma is obtained by applying the functor..
EZ2 A Z (?AX .... X) to the sequence (4).

2



340

Next we turn to the proof of 7.6. Part (i) is trivial and parts (iii), (v) and

(viii) are contained in 7.3.

(iv). We may assume X = x Suppose C( 1. By 7.1 and 7.3(vi) we

see that the set

is a subbasis of height r for hence the set

{hQEur , l*[(EUr) @ (SrEUr)(P-l)n

is a basis for It follows that the map

(Dpj) * <±l 1:* : Kl (DpEMr;r) Kl (Dps\r) + Kl ( (EMr) (p) ;r)

is monic. Now

(Dpj)*Qp*EUr = Q(P*j*EUr) Q(pLu) =pQEU

"{:DpJ ',P,QJ:U,
ifr =1

if r : 2,

and 1:*Qp*EUr = 0 for all r.

Next we prove part (x).

1*x(2) = QS22*x by 6.4(iii).

The result follows, and the case C( = 0 is similar.

The proof is by induction on r , If r = 1 we have

Suppose r :: 2. We may assume x = The set

is a subbasis of height r for hence by 3.9 we have

(5)

with al E Z2r-l and a2 E Z2r' Applying 1:* to (5) gives

o =

hence a2 O. Now applying 1f to (5) gives

(6)

If r = 2 the inductive hypothesis gives

(where the third and fourth equalities follow from 7.3(iv) and 7.3(vi» and we

conclude that al = 1 as required. If r :: 3 the inductive hypothesis gives
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(2) r-3 r-2= 2 = 2 Br_lQEur

and comparing with (6) gives al =2r-2 as required.

Next we show part (vi). This will follow immediately from 7.3(iii) and 7.3(iv)

once we show that III = 1 in 7.3(1). Letting X = in 7.7, we have

2 2o = (E \)*,*QE ur

(E2\)*llI_(E2U )(2) + w2 r - 2 (B su )(2)
r r r

2 (2) r-2 (2)
E [(EUr) + w2 (BrEUr) J.

By part (Lx}, we have

Hence w j °as required.

(vii) Let P = 2; the odd primary case is similar and somewhat easier. First

let [x] = Iyl = 1. We may assume x y = EUr• We assume by induction on r

that we have chosen mod 2s multiplications for s < r such that the desired formula

holds. We begin by giving a basis for

The set

is a subbasis of height r-l for and in particular it is a basis for

By 5.g we have

with the tensor product taken in the Z2-graded sense. We therefore obtain a basis

for by taking all 16 external products of the elements in the

set given above. It will be convenient to denote by x in the first factor and

by y in the second factor. Let al, ••• ,ag EZ
2r-l

be the coefficients of o*Q(x@y)

with respect to this basis, so that we have

(7) o*Q(x @y) = @ Brx) ® e BrY) + ® n*(y 0 SrY)

(2) (2)
+ 0 Brx) @ Qy + a4Qx @ Qy + a 5n*(Brx) @ ll\*(SrY)

+ o QSrY + + agQSrx0QSrY'

We claim first that 2a5 = 0, so that a5 is either 2r-2 or 0. When r = 2 this is
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trivial, while for r 3 it follows from the inductive hypothesis and the equation

1fQ(x@y) = Q(1fX ® 1fY). Now as in Remark 3.4(iv) we see that changing the choice of

mod 2r multiplication changes the value of a5 without changing the other ai• We can

therefore choose the mod 2r multiplication for which a5 = O. (When p is odd the

commutativity of the multiplications gives a5 = 0.)

It remains to determine the other coefficients in equation (7). If we apply

the map (D2J" D2J)* to this equation, the left side becomes Q!;u@ Ql:U by 5.7(vii)

while the right side becomes a4Ql:u ® Ql:u. Hence a4 = 1. Next consider the

following diagram

1" T ,,1 •

The commutativity of this diagram will be proved in VI.3.10 of the sequel. With

X = Y we obtain

X(2) t:;o. (2) + 2r-2 (2) Q, (Q y) (2)
1f 1f1*y 1fX 1f1*

with the last equation following from part (x}. Now applying h,. 1) * to the right

side of (7) and comparing coefficients gives a l = 2r-2, a
3
= 0, a7 = 22r-4 and

as = 2a6' Similarly, applying (11\,)* to equation (7) gives a2 = 0 and a6 = 22r-4,

whence as = 2a6 = O. This completes the proof of part (vii) when Ixl = Iyl = 1.
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1, Iyl = O. Consider the following commutative diagram

LD2 (X"Y) ---=-=---- l:D2X J\ D2Y

1A 1TAl

D
2
(EXAY}

jD2(T" I}

D2 (X" EY) ---"---....D
2
X A D

2
l:Y

If we let X = My., Y = E-lMr we obtain

(lO)

We can evaluate the left side of (lO) using 7.J(v); the result is o*Q(EUr @ ur).
On the other hand we can evaluate the right side of (lO) by using 7.J(v) and the

part of 7.6(vii} just shown; the result is

Thus equation (lO) gives the desired formula when x = and y = and therfore

this formula holds in general.

Finally, let Ixl = Iyl = O. We may assume x = y The set

1fl*(X@ 8 x) @1fl*(y@ 8 y},Q8 x@ 1fl*(Y@ 8 y},r r r r

is a basis for Let al, ... ,a$ be the coefficients of o*Q(x@y}

in this basis. By 5.7(v} we have

hence al = 0, a2 = aJ = 1 and a4 2. Diagram ($) gives

and it follows that a5 = 2r-2 and a6 = O. Similarly,

and hence a7 = 0. Thus we have
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(11)

and it remains to determine a8. Consider the following commutative diagram

(12)

l:D
2
(X 1\ Y)

D
2(

l:X", Y)

With X Y Mr we have

(13)

We evaluate the left side of (13) using 7.3(v) and equation (11); the result is

Evaluating the right side of (13) using 7.J4(v) and the part of 7.6(vii) already

shown gives
(2) 2r-4 (2)

Ql:x @ nl*y + 2Ql:X @Qy +2 nl*(Brl:x) @ QBrY.

Hence a8 = 22r-4 as required.

(ix) We have seen in VIII.7.4 that ¢k is an Hoo ring map of K(p) for k prime

to p. Hence we have

for any map f:Y + K1\ X. Thus we may assume x = with ex 0 or 1. First let

ex = 0. Since the map

is monic and since = u, it suffices to show = Qu. Dually, it suffices to

show that ¢k is the identity on KO(Bl:p;r-l). But this is immediate from 5.3 since

¢k commutes with /. Now, if ex = 1 we have

Ql:U •
r

This completes the proof of 7.6.

Next we must prove 3.3. Each part of this theorem is in fact an easy

consequence of the corresponding external formula except for parts (ii) and

(viii). For part (ii) we may clearly assume X = S, and it suffices to show that Qu
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goes to zero under the nontrivial map from Bi:+ to SO. But the induced map
p

+ RO{Bi: jr)
p

takes 1 to 1, and <l,Qu> =° by Definition 5.6, whence the result follows.

The proof of part (viii) is more difficult. First recall that if X is any

nondegenerately based space and A:X+ + X is the identity on X then the cofiber

sequence
'" '"i:"'SO i:"'X+ -..Ll.. i:"'X

is naturally split by the evident retraction v:X+ + SO. In particular, there is a

natural transformation

and the inclusion

can be identified with v*. Now let Y be an R", space, let Z nY, and let E:i:Z + Y

be the COlIDit. Then

a:K (nYjr) + K l{Yjr)
(l (l+

Let x EKO{nYjr) j the case [x] =1 is similar. First we must show that Qx: is

in R (,lYjr-l), i.e. , that v*Qx 0. But lJ:i:"'(ny)+ + i:"'SO is clearly anH;" ring
(l

map, and therefore lJ*Qx QlJ*x 0. Next we state the required formula more

precisely as follows:

Since lJ* applied to each side of (14) gives zero, it suffices to show that A* makes

the two sides of (14) equal, i.e., that

This in turn follows at once from 7.]{v) and the commutativity of the following

diagram in hJ, (where we suppress i:'" to simplify the notation).
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ED Z f:, EZ
P P

j ED v
1Dp<:

P DY
P

1Dpv

(15 ) + D (y+)ED Z
P p

l"
i;

+
Y

1A
,;(Z+) EA 1O';Z £ • Y

Here and i; are the Hoo structural maps for Z+ and y+ respectively. In order to see

that (15) commutes we need two further diagrams. The first is the following in the

catgory of spaces.

(16)

Here f:, is the evident diagonal map. This diagram commutes by definition of see

[69, Lemma 1.5 J • Next we have the following diagram in h S. (where we again suppress

,;00) •

(17)

11\ D v
p
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Here W= (Sl)+ and the unlabeled arrows are the evident quotient maps. It suffices

to show that the inner square of this diagram commutes, since combining it with

diagram (16) gives diagram (15). Since

is a split surjection, the commutativity of the inner square will be a consequence

of the commutativity of the rest of the diagram. Each of the remaining parts

clearly commutes except that marked ®. To show that ® commutes it suffices to

show that the composites

and

are equal. But is

either of the maps

equal since wedges

is easy to see that these composites agree when composed with

A:(Sl",Z)+ + Sl",Z and ]J:(S11\ Z)+ + SO; they are therefore

are products in is. This completes the proof of 3.3.

We conclude this section with the proof of 1.6. First we calculate

erP*QEur = erQp*EUr = l*(erEUr)(P) +pQer+lP*EUr

in Multiplying by pr-l gives

r-l r-l (p)°= p erP*QEur = p 1*(erEUr) ,

hence l*(erEur)(P) has order pr-l. Now suppose 'S- has an Hoo structure. Let

u:S + be the unit map for this structure. Then u = CU E Ko(S;r) for some c

prime to p. Let f be the composite

S 1\ EM K1\ EM
r r

and let F be the composite

where the last map is induced by the product for 'S-' We claim

CP+lFl*(erEUr)(P) =U, which contradicts the fact that l*(erEUr)(P) has order

pr-l. The claim is a consequence of the commutativity of the following diagram
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u

nA(eil(pl ( l
K II. (l:M l p
I' I'

11 II. 1 U1\ D (ci) 11
/\ 1'\p:::

K ""''''''';-.----- K /\ K 1 "i; )0 K "D K
I' I' I' I' pI'

S

Rere the composite (l II. II 0 [n "(cil (p) 1 represents Cl*(Cl>rl:url (p) and the

diagram connnutes since u is an Roo ring map.

8. Construction and properties of R and J. .

In this section we construct R and and prove the external and internal

versions of 3.6 and 3.7.

We begin with the construction.

Lennna 8.1. The map

13 +l:IC (D l:M ;r+ll -KO(D l:M ;r+ll
I' --:1 P I' P r

is an isomorphism.

Lennna 8.2. The map

is monic if s I' or s = r+l, and n E; Ko(DpS;r+ll is in the image of (DpJ l*.

Definition 8.3. Let e e K1 be the unique element with

I>r+le = Let e' e KO(DpMr;r+ll be the unique element with (DpJ l*e' n ,

Then

and

R:Kl(X;rl + Kl(DpX;r+ll

+ Ko(DpX;r+ll

are the operations Qe and Qe f •

Note that e and e' are equal to and respectively. We shall always

use the latter notations for these elements. Also note that = n in Ko(Bl:p;r+ll.

Proof of 8.1. Let I' 2; the case I' 1 is similar. Consider the K-theory BSS for

By 6.1 the set
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is a basis for EI• By 7.6(v) we have

( 1 ) r-2 = (a" ) (p)
dr_In QEUr .. 1* "r"Ur '

while clearly dr_Inr-2QBrEUr = 0 and

d Inr-I1*[EU QS) (ilrEU ) (p-L) 1
r- r r

0-,
hence the set

r4 r4 p4
{n QBrbUr,n l*[EUr ® (BrEUr) 1}

is a basis for Er • Now drn
r-2QB

rEUr = 0 by 7.6(v), and

d nr-l Iru IC\ (a U ) (p-Il I = r-l (a zu IIp)
r 1* " r"" "r- r n 1* "r r '

which is zero in Thus there is an element x in KI with

nrx = nr-I1*[EU QS) (B Eu )(p-l)l,
r r r

and the set 2 is a subbasis of height r+1 for DpE'\.. In{QEur,x,QBr+ 2P*EUr}
particular the group Ka. j r+1) has the same order p2r for a. = 0 and a. = 1. The

lemma will follow if we show that Br+l ® Zp maps onto Ka(DpE'\.jr+ll QS) Zp' But the

map
r = K (D EM -I)n ® Z :KO(D EM jr+l) Q9 Z .,. KO(D EM jl) Q9 Z

P pr P pr P o P r'

Now

sequence

r+l
p*
--KO(D EM jr+2)

p r

is an isomorphism, hence it suffices to show that nrBr+l maps

equation (1) shows that nr-11*(B zu l (p) is in the image ofr r
remains to consider nr-2QBrEUr' By the exact

r
n B +1

K
1
(D EM j r+1 ) r .. K

O
(D EM j 1 )

P r P r

it suffices to show pr+l r-2QB Eu = O.* n r r
But 7.6(vi) gives

which completes the proof.

Proof of 8.2. It is easy to see that nr-1Br1*Ur(P) and Q9 Brurl are

zero, hence by the exact sequence

r-l
n B

K (D M jr+l) ..2....-K (D M or) r"' K 1 (D M jl)
a. p r a. p r' a.- p r
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(p) (p-L)
there exist elements x and y with lIX = IlfU

r
and lIy l*[Ur 0 Brurl.

Clearly the set is a subbasis of height r+l for In particular the

set is a basis for Since {n,Qu} is a basis for

KO(DpS;r+l) we have

where al' a2 Z r+l' Applying 11 to both sides of (2) gives
p

n = (D J') (p) a. + Qu" p lf1*Ur In a2

( r r
in Ko DpS;r), hence a l = 1 + aip and = a2P for some al,a2 E Zp' This fact,

together with the equation (Dpj = lQu, shows that (Dpj)lf is monic on

A similar argument shows that (Dpj)* is monic on If

r 2 we have

so that n E Ko(DpS;r+l) is

a
2

O. For this we need

have j' 0 j = + S,

in the image of (Dpj )*. as required. If r = 1 we must show

the map j ': M1 + M2 induced by the inclusion C Z 2' We
p

hence

(l + a]p)n + a
2PQu

(Dpj)*[(l + aiP)ui
p)

+ a2P*Qu2 1 •

Since (Dpj) * is monic we conclude

(Dpj')lf(X) = (1 + + a2PlfQu2 •

Hence

(3) 1IB2(Dpj t )If{X) = = a2QB2u2 •

On the other hand, 6.l(vi) implies that l*[ui
p-l) <8l generates Kl{DpMl;l),

(p-l)
hence 1IB2x = 0 BU1 ) for some C E Zp and

(4) o

since = O. Comparing (3) and (4) gives a
2

= 0 and thus

(Dpj)lf[X aiP*llfuip)j n

which completes the proof.

Next we shall prove the external analogs of 3.6 and 3.7. The conventions

preceding 7.6 give the correct external version of each statement except for

3.6{viii) and 3.7{ix). For 3.6{viii) we must prefix {Bp,p)lf to both sides, where
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f3p,p is the natural map DpDpX + D 2X defined in 1.2, and for 3.7(ix) we prefix
p

(f3p,p)* to the left and ••• ,p)* to the right.

Proposition 8.4. The operation

satisfies the external analog of each part of 3.6.

Proposition 8.5. The operation

satisfies the external analog of each part of 3.7.

Theorems 3.6 and 3.7 will follow at once from 8.4 and 8.5 by the same proof

given for 3.3. The rest of this section is devoted to the proofs of 8.4 and 8.5.

Proof of 8.4. Part (i) is trivial. In each of the remaining parts except (v) we

may assume X = with x = EUr; part (iv) now follows from Definition 8.3.

Observe that by the proof of 8.1 the set {QEur,REUr} is a subbasis for if

r > 2 while {REUl} is a subbasis for DpEMl•
(iii). The map

nf3 +2:Kl(D EM ;r+2) + KO(D EM ;r+l)r p r p r

is an isomorphism since it takes the basis for the first group to that for the

second. Now

and the result follows.

(iv). The map

is monic since it takes the basis elements nREUr and (when r 2) p*QEUr to
2

Pf3 r+l REUr and f3 r+ lp*QEur respectively. We have

f3 r+ lP*nREUr = Pf3r+lREUr pQf3r+2P;EUr

2 (p)
f3 r+lQp*EUr - l*(f3r+lP*EUr)

f3 r+ lP*[Qp*EUr - l*(EUr 0 (f3 rEUr) (p-L) 1



352

which gives the first formula. For the second formula, we have

2 2
QSr+2P*(PEUr) = QpSr+2 P*EUr

2 p-J )(p)
pQSr+2P*EUr - (p - l)l*(Sr+lP*EUr

2 p-l (p)
Sr+lQp*EUr p l*(Sr+lP*EUr)

Sr+lP*(Qp*EU
r

- pP-l1*(EU
r

@ (SrEUr) (p-l))]

and the result follows.

(v). Let z denote and fix i with 0 < i < p. As in the proof of 7.3(iii)

it suffices to show that the equation

(5)
(i-I) (p-i)

"i,p_i)*Rx = a11*[p*Z @ (Sr+lP*z) 1@ l*(Sr+lP*z)

(L-L) (p-i-ll
+ a2sr+ 1P*[ l*(Z @ (Srz) 1@ l*(Z @ (Srzl ) 1

holds in with a1 = ( f) and a2 = (
observe that the group is the Ei-coinvariant quotient of

= @ i, so that the set {t*(z @ (Srz l (i-ll} is a subbasis for

Thus the set

is a subbasis for Di Dp_ i and we see that equation (5) holds for

al,aZE Z r' Nowapplying (,: .)*S 1 to both sides of (5) gives
p 1,P-1 r+

,*Sr+lRz = i!(p-iJ!a1(Sr+lP*zJ(pl

On the other hand we have

(6) ('i = -( ? )l*(Z @ (S zl(i-l)j @ l*(S z)(p-i)
,P-1 1 r r

+ azl*(Srzl(il @ 1*(Z @ (Srz)(P-i-ll]

- a
21*[z

0 (Srzl(i-llj 0 1*(SrZ ) (p-iJ

But we have



353

(Ti,p_i)*[Qp*Z - \*(Z (Srz)(P-l)j

(p-i)
-(T. .)*\*(z (S z) )

1,p-1 l'

(S z)(i-l)) 0 \*(S z)(p-i)
1- . l' l'

- \*(z0 (Srz)(P-i-l),

where the last equality follows from the double-coset formula; comparing with (6)
. _ ( p-.l )gaves a2 1 as required.

(vi). Let l' 2; the case l' = 1 is similar. Let f be the composite

where B is the Bott equivalence. We have f hence it suffices to prove

-1 (p) 2
ur) = p*\*ur + PjfQur•

Now

(p) 2
P\.)fu + P Qu

the result follows since (Dpj)jf is monic by 8.2.

k k k 2
(vii) Sr+llji REUr lji Sr+1REUr = lji QSr+2P*EUr

2 k
QSr+2:p*Elji ur = Sr+1REUr

the last equality following from the fact that ljikUr ur' The result now follows

by 8.1.

(viii). Let z denote and abbreviate (Sp,p)* by S* and (ap, ••• ,p)* by a*

(the reader is requested to remember that S* is a Bockstein). We must show

if l' 1

if r > 2

in Kl (D 2 We shall need the equation
p

(7) 15 Qx(n)
*
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which holds in KQ((DpX)(n)ir-l) for each x eKQ(Xir) provided that p is odd (the

proof is by induction on n from 7.6(ii)).

First let r = 1. The set {QRz,RRz} is a subbasis for DpDpLM1, and it follows

easily from Proposition 3.9 that the map

is a monomorphism.

we see that
Z

S3P*:Kl(D ZL -KO(D Z
p p

is a monomorphism. It therefore suffices to show that B*S3P;QRZ is zero. We have

2
S*S3P*QRz = S*S3Qp*(Rp*z) by 7.6(iv) and 8.4(iii)

p-l (p-L)
S*S3[RlTRp*Z + p l*(Rp*Z 0 (S3Rp*z) )J

Z (p-l) p-l (p)
S*S3R[Qp*z - l*(P*Z 0 (SzP*z) )] + P S*1*(S3Rp*z) ,

where the last two equalities follow from the second and first parts of 8.4(ii).
ZNow Qp*z = 0 by 7.6(iv), and

( (p-l) _ (p-L)
S*B3Rl* p*z 0 (SzP*z) ) - (l*o*Bf(p*z 0 (SzP*z) ) by I.Z.12

= (l °Q((S p3z ) (p ) ) by 8.4(iv)
* * 4 *
_p-l 3 (p)
F (l*(QB

4P*z)
by 7.6(vii) when p = Z and equation (7) when p is odd

_p-l (p)
IT S*1*(S3Rp*z) by 8.4(iv) and I.Z.ll.

ZWe conclude that B*B
3P*QRz

= 0 as required, which concludes the case r = 1-

Next let r = 2. We have

lTS*(QRz - RQz) = B*!Q[Qp*z - l*(Z 0 (Brz)(P-l)J

- Qp*Qz + l*(QZ 0 (Sr_lQz)(P-l))]

= B*[-Ql*(Z 0 (Srz)(P-l)) + l*(QZ 0 (Sr_lQz)(P-l)]

= (l*!-o*Q(z 0 Brz)(p-l)) + Qz 0 (Sr_lQZ) (p-L) ] by I.2.11

and I.2.lZ.

= (l*!-Qz 0 (lTl*(Brz) (p) )p-l - pQz 0 o*Q(Brz) (p-ll
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When p = 2 the last expression is clearly zero, while if p is odd it is zero by (7).

Hence we have

(8) - RQz) O.

A similar calculation gives

(9) O.

To proceed further we need the case k p2 of 4.1. First we must check that the

argument is not circular, since the present result is certainly used in the proof of

4.1. However, it enters only through the proof of 4.7, to be given in Section 9. An

inspection of Section 9 will show that only the case r = 1 of the present result is

used in proving the case k = p2 of 4.7. Thus we may proceed. We suppose r 3; the

case r = 2 differs only slightly. By Remark 4.2 we obtain a subbasis

Ar-l,l

Ar-l,O

no)

{8*RQz} and = Therefore the set

N A
{n 8*QQZ,1l 8*RQz,11 8*RRz} V 11 Ar_l,l v 11 8r_ l r-l,O

is a basis for and the subset 0 is a basis for the image
r-2 r-l' ( )of 11 hence for the kernel of p* By (8) we see that 8* QRz - RQz is

in the image of hence there exist constants Zp with

r-l r-3 r-l
8*{QRz - RQz) = p* [all + bll 8*RQz

+1 2 p-z 2 (' 1)
+ Cllr + u*llr- I {d.Qz <is> lQz) k \is) (ll 8r+lRz) p-l- ) J.

i=O 1 r-

If we apply to both sides of (lO) then the left side becomes zero by (9),

hence we have

o =

Since the set A is a subbasis this gives abc = dO ••• 0 as required.

This completes the proof of 8.4.
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Proof of 8.5. Part (i) is trivial.

(11) We may assume x = lly.' We have

hence 11:lu
r

hence J, lilly.

.:l.lIU =:lu = (D j) 1 u(p)
p * * r '

(v) As in the proof of 7.J(iii) it suffices to show

if P is odd or r 2

,*.2.ur =
2 u(2) + (13 2 U )(2) if P = 2 and r = 1,* 1 2 * r

We prove this when p =2; the odd primary case is similar. The element is in
(2)

the E2- invar i ant of KO(Mr ;r+l), and this subgroup has a basis

consisting of 2*lly. with order 2r and 2r-l(l3r+12*lly.) (2) with order 2. Thus we have

(11)

with al E Z2r and a2 E Z2' Now

(2)
j * T*.:l.ur = '* (D2j )* :l.ur = T*n = 2u;

to both sides of (11) gives 2u = 2alu in Ko(S;r+l) so that

if r > 2

if r =1,

hence applying 11 to (11) gives a2 = 0 if r 2 and a2 = 1 if r = 1,

( i v) We may assume x = lly.' Let r ::: 2; the case r 1 is similar, The set

is a subbasis of height r for hence we have

(12)

with

z C
r

p

al E Z r'
p

Z r+l'
p

E Z r-l' Let j + be the map induced by the inclusion
p

Then j 0 j' = j:M
r

+ S, hence (j')*lly. = lIlly.+l and (j')*l3rlly. =
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Thus

(p)
(Dpj I ur = nSr+ l.;2.1TUr+ l nSr+ l l*Ur+l

_ (p-l)
- pnl*(Ur+ l ® Sr+lUr+l)

and comparing with (12) gives a2 = O. Next we have

and comparing with (12) gives al = 1.

(iii) By part liv) we see that the set u
r}

is a subbasis for if

r 2, while {""Ur} is a subbasis for DpMl• It follows that the map

is monic. But

'*(PU)(p) pp-lp*n (D j) pp-lp "u
, P * *... r

and the result follows.

(vi). Let P = 2; the odd primary case is similar. First let Ixl

with r 2. We may assume x = Ur' Y The set

(2) (2)
Ulx ® "Y, nl*x ® Qy,Qx ® nl*Y ,Qx ® Qy,:Lx ® Sr+l.:bY,

2
Sx ® Sr+l4*Qy,Qx ® n Sr+lay,Qx ® Sr_lQy}

is a subbasis for 1\ hence we have

with al,a5 E Z2r+ l and a2,aJ,a4,a6,a7,ag E Z2r-l' Since

(2) (2) (2)
no* ® Y) = O*l*(X ® Y} = l*X ® l*Y

we have a6 = a7 = ag = O. The equation

implies al 1 and az = aJ = a4 = O. Hence we have
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(14)

with a5 depending on r. A similar argument shows that (14) holds also when r = 1.

Now let Tl and T2 switch the factors of and '" D2M'r. Then

On the other hand, if r 2 then

hence 2a5 °as required. If r = 1 then

Hence in this case -a5 = a5 + 2 mod 4, so that a5 = 1 mod 2 as required.

Next let Ixl = 1, Iyl = a with r 2 we may assume x = Y = ur• Choosing a

subbasis for as in the preceeding case, we see that

with al,a5 E Z2r +l and the remaining ai in Z2r-l• If f denotes the composite

1" D •
D
2
EM

r
" D

2Mr
__..::2,--J... D EM 1\ D Sa D EM 1\ SA = D EM

2r2 2r 2r

then the diagram

Dl <l:Mr " Mr )!D2 (1 "j)
D
2
(EM

r
1\ SO)

o ..

commutes. Applying f* to (15) and using the equation !;*Qu = 0 (which was shown in

the proof of 3.3(ii)) gives



359

hence a l = 1 and a
3
= O. To determine a2 and a4 we calculate

hence a2 = 0 and a4 = 1. Next we calculate

no*R(x @y) o*nR(x @y)

r-2
nRx (is) + n4*(Qx (is) Qy) + 2 (is)

2r-3 (2)
+ 2

Now the element is zero when r 3 since 2r-3 r while when r = 2

we have

r-2Thus applying n to both sides of (15) gives 2a5 = a6 = ag = 0 and a7 = 2 It

remains to show a5 = 2r E: r, where E: r E Z2 is the constant in the formula for

o*:;}, (x @ y). But this follows from the equation

(16) (01\ l)*o*R( (l;u ® u ) <29 u ) = (1 .... s )*o*R(tu <29 (u <29 u ))
r r r r r r

if we expand both sides using the formulas already shown.

Next let x = EUl ' Y = ul• A suitable choice of subbasis for D2EMl "D2Ml gives

and we see as before that al = 1. Evaluating both sides of equation (16) in this

case gives a2 = -(1 + 2E:l). Finally, we have

as required.

Now let x = and y = with r 2. We have
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with al,a2 EZ r+l and the remaining ai in
2

(IS) 110* (x Gil y) = O*l*(X @ y) (2)

Z2 r-l' The equation

l*x(2) Gil l*y(2) = 22r-4Si*Qx Gil Si*Qy

shows that a6 = a7 = 0, as

a2 = a] = a4 = 0 mod 2r-2

The left side becomes

= 22r-4, and also that a l = 0 mod 2r and that

Next we apply (D2j AD2j)* to both sides of (17).

which is zero by (IS). Elf S.4(ii) we have

(D2j)*REUr = REu = R1IEu = 2QEu,

hence (since Sal = Sa2 = Sa] = 0 mod 2r+ l) the right side of (17) becomes

4a4QEY x QEU, so that a4 = 0 in Z2r-l' Next we calculate

r-2
y) 2 1ISr+l1Rx Gil 4*Qy + 4*Qx Gil By],

hence a2 a] = 2r-2 Finally, if we expand both sides of the equation

(oAl)*o*.;!((EU GilEu) 0u) = (1 "o)*o*..2.(EU @ (EU Gilu))r r r r r r

using the formulas already shown, it follows that a5 = O. The proof when r 1 is

similar.

(vii). We may assume x Let r 2; the case r = 1 is similar. Then

(19)

with al E Z r+l and a2 EZ r-l' Applying 11 to (19) shows that al = 0 mod pr, hence

applying (Bpj)* to (19) a2 = O. It only remains to show that r 0 when

p = 2. But Lemma 7.7 gives the exact sequence

Since E:J. has order 2r+1 , it cannot be in the image of (E1 ) * and the result

follows.

(viii) • We may assume x = We have

= 1jJ
k
.:l u = 1jJk11

k
11 (D j up r

since k the result follows by S.2.1jJ u u .
r r'

(ix) Elf equation (7) in the proof of S.4(viii) and 1.2.14 we have the

following equation in KO(D 2X;r-l) when p is odd and r 2.
p
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(20)

When p = 2 this equation follows from 7.6(vii) since l*(X ® Srx ®x ® Srx) and

l*(QSrx ®QSrx) are zero by 7.6(x).

!£t r =21, x = ul' The set is a subbasis for DpMl, hence by 4.3 the set
(p )

{Q:1ul' i*ul } is a basis for KO(DpDpMl;1). Lemma 4.3 also implies that the set

2
i*U(P )} C KO(D D Sill

P P

is linearly independent. Hence (DpDpl)* is monic on Since the

transfer

is monic and (DpDif)* 0 1" = 1"* 0 (D zi )*,
But P

it follows that (D 2 j)* is monic on
p

which is zero by (20), hence S*Q ul = 0 as required.

Next let r 2 and let y denote the element

in KO(D 2 Then (20) implies that ny 0 and (D 2 j )*y = 0, and we must show
p p

Y = O. Since ny = 0 we see that y is in the image of pr-l. To proceed further we
*need the case k = p2 of we may use this result without circularity since only

the case r = 1 of the present result is used in proving it (see section 9). Now as

in the proof of 8.4(viii) we see that the union of the sets

o < i p}

r-3and, if r 3, {n S*QQu
r
} ,

r-lgenerates the kernel of p*

(D 2 j )* is monic on the image
p

required.

is a basis for KO(D The second of these sets
p

and also the kernel of (D 2 j )*, and it follows that
p

of p:-l. Since (D 2 j )*y = 0 we conclude y = 0 as
p



expression of length 1. For each

(called zero sub a,r,j) having
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liED + 1 and v(p*E) = vE.

lEI-I, liB ED = II Ell andr
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9. Cartan formulas

In this section we shall prove Lemma 4.7. As in the proof of 2.7, the basic

idea is to "simplify" each expression in Co. (respectively Cat) to obtain an expres-

sion in C{x} (respectively C{y,z}). We shall refer to the simplified expression as

a Cartan formula for the original one. Some explicit examples of such formulas will

be given below. However, some of the formulas we need are too complicated to give

explicitly, and instead we shall use an inductive argument to establish their

existence.

In order to do so it is convenient to work in a suitable formal context. Let

••• be indeterminates and suppose that to each has been assigned a mod 2

dimension denoted and two positive integers called the height and filtration

and denoted Dand Intuitively, should be thought of as an element of

for some spectrum X. We wish to consider certain finite formal

••• involving the and the operations of section 3, namely

those combinations which would represent elements in one of the groups Ka(DjX;r)

when interpreted "externally" as in section 4. More precisely, we define the

allowable expressions ••• and assign them dimensions, heights and

filtration by induction on their length as follows.

Definition 9.1. (i) Each indeterminate is an

a eZ2' r 1, j > 1 there is an expression 0a,r,j

length 1, dimension a, height r and filtration j.

length 1.

(ii) Suppose that the expressions of length t have been defined and assigned

dimensions, heights and filtrations. The expressions of length t+l are the follow-

ing, where E ranges over the expressions of length z ,

(a) p*E. We define Ip*EI = lEI, IIp*EII

(b) f3rE if II Ell = r , We define If3rEI

v(f3rE) .. vE.

(c) 1!E if 2 < IIEII. We define InEl .. lEI, IiTlEIl = IIED-l and vInE) = vE.

(d) + E2, where El and are any expressions whose lengths add up to t+l

and which satisfy IEll I I, IIElil IIE211 , and vE1. .. vE2' We define

lEI + E21 IEll, + E211 .. DEID and v(El + .. vEl'

(e) E1. • (the formal product) where E1. and E2 are any expressions whose

lengths add up to 1+1 and which satisfy II .. IIE211. We define

IEll + IE21, IIEllI, and v(El'E2) = vEl + vE2•

(f) QE if 2 < IIEII. We define IQEI = lEI, IIQEII" IIEn-l and vQE pvE.
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(g) if lEI = O. We define I.:L.EI = 0, II.;l..EII = IIEII+l, and v.;l..E pvE.

(h) RE if lEI = 1. We define IREI = 1, nREn = nEn+l, and vRE pvE.

Note that we have not required formal addition and multiplication to satisfy

commutativity, associativity or other properties. However, in writing down

particular expressions we shall often omit some of the necessary parentheses, since

their precise position will usually be irrelevant. We shall also abbreviate

by O.

We have given Definition 9.1 in complete detail as a pattern for other induc­

tive definitions about which we will not be so scrupulous. For example, let E be an

expression in the indeterminates ••• If E1, ... ,Et are expressions in another

set of indeterminates »i­ ... ,n s with IEil = I I, nEil1 = and vEi vUi for

1 i t then we may (inductively) define the composite expression E( , ••• ,Et) in

nl, ... ,n s' Again, if X is any spectrum and xl.0eKI I(D for 1.:: i::: t then
l.

we can define

as in section 4 by interpreting Q,:J" R and the multiplication externally and

applying u* and S* to formal products and composites.

Definition 9.2. Let •.. be a fixed set of indeterminates. Equivalence,

denoted by ­, is the smallest equivalence relation on the set of expressions in

•• which satisfies the following.

(1) ­ is preserved by left composition with ,R, TI, p* and Sr and by formal

addition and multiplication.

(2) For each r 1 the equivalence classes of expressions of height r , graded

by dimension and filtration, form a Z2 x Z graded ring (without unit) with the
IEI I IE210u,r,j as zero elements. The relation El·E2 (­1) E2·EI is satisfied and

left composition with n, Sr or p* is additive.

(3) If x and y denote expressions E1 and E2 having height r and the required

dimensions then the following hold with = replaced by ­; 3.1; 3.2(iii),(iv) and

(v); 3.3(iii), (Lv) , (v) , (vi), (vii) and (x l ; 3.6(ii), (iii), (Lv l , (v) and (viii);

3.7(ii), (iii), (iv), (v) , (vi) and (Lx l ,

Roughly speaking, two expressions are equivalent if one can be transformed into

the other by using the relations of Section 3.

It is easy to see that equivalent expressions must have the same dimension,

height, and filtration but not necessarily the same length. An inductive argument

shows that E(El, ••• ,Et) and E'(Ei, ••• ,Et ) are equivalent if E ­ E' and Ei ­ Ei
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for 1 i t. A similar inductive argument using 3.1, 3.2, 7.6, 8.4 and 8.5 gives

the following.

Lemma 9.3. Let E and E' be equivalent expressions in •••

spectrum and let xi be an element of KI I(D X;U 11), for 1 <
1 -

E(x1, •• ,xt) = E'(x1, ••• ,xt). 1

Let X be any

i ::: t. Then

(il)

(Lv )

(iii)

If A = ••• is any set of indeterminates we can define the filtered

algebra CA and the subquotient groups DjA with their standard bases exactly as in

sections 3 and 4. If A' is another set of indeterminates and f:A + A' v {O}

preserves degree, height and filtration we say that f is subbasic. Clearly, the

constructions CA and DjA are functorial with respect to subbasic maps. We can think

of the elements of DjA as expressions in ••• by inserting parentheses so that

addition and multiplication are treated as binary operations. (Of course, up to

equivalence it doesn't matter how the parentheses are inserted.) This identifies

DjA with a subset of the expressions of height 1 and filtration j in ••• Elf

a Cartan formula for an expression E of height 1 we mean simply an equivalent

expression in The next result, which will be proved later in this section,

provides some examples which will be useful in the proof of 4.7. We say that two

expressions and E2 are equivalent mod p if there is an expression E' with

E1 + pE'; in particular this implies 11 11 E2•

Proposition 9.4. Let be indeterminates of height r with dimensions

0, 0, 1, 1 respectively. Let 1 s < r and let t 1.

s s
Sr_sQ Q mod p.

s s
Sr_s Q mod p.

s
mod p if p is odd or r 3.

is equivalent to if p is odd and to

s-l s-l
+

if P 2 and r 3.
s

(v ) if p is odd.

(vi) If 1 < i ::: p-1 then
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(vii) If 1 i p-l then is equivalent to

il (i-l)pt (p-i-l)pt (wr-t-lBr_tQ\2)

if t < r and to zero otherwise.

(viii) BQrtJ, 0.

(ix) If s t then is equivalent mod pt-s+2 to

s-l s
+ t-s s P

".. clP (w ,
where

c

l

= { 1 if P is odd or

-1 if P = 2 and s

s < t

t.

where

{

o if P is odd

c
2 = 1 if P = 2.

There remain expressions. such that Qr:. l' for which the Cartan formula is too

complicated to give explicitly. Our next result will guarantee the existence of

such formulas. Let A = ••• We say that an element of DjA is homogeneous

if it is a sum of standard basis elements each of which involves every Note

that such elements are in the kernel of Djf whenever f:A + A'v{O} takes at least

one to O.

Proposition 9.5. Any expression E of height I in ••• is equivalent to an

expression in DjA for some r- If the have height r and degree 0 then the

expression is equivalent to a homogeneous expression in DjA for

each s < r. If the have height r and degree 1 then
r+s-l sw Br+sR is equivalent to a homogeneous expression in DjA

for each t O.

The proof of 9.5 will be given at the end of this section. Unfortunately,

there seems to be no direct algebraic proof that the Cartan formulas provided by 9.5

are unique, that is, that distinct elements of DjA cannot be equivalent as

expressions. If we had uniqueness in this sense then Lemma 4.7 would be an

immediate consequence of 9.5. Instead we shall have to give a much more elaborate
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construction of Yj and Yj, making use of the explicit formulas of 9.4 in order to

avoid appealing to uniqueness. (A similar difficulty in ordinary homology is

implicit in our proof of 2.7). On the other hand, it is easy to see from 4.1 and

9.3 that uniqueness does hold, but of course such an argument cannot be used in

proving 4.7. However, we can and shall use uniqueness in filtrations less than k in

the following inductive proof of 4.7.

Proof of 4.7. We shall give the proof for r < oo. The case r = 00, which is similar

and somewhat easier, requires some straightforward modifications in Definition 9.1

to allow for infinite heights; details are left to the reader.

First let M = with r 2 (the r =1 case is similar and easier). We

define a to be {Qx,.,2,x}. Let Um and vm respectively denote yffizp-m and (BrY)yffi-lzp-m

for 1 m p-l and define to be

{Qy,Qz,.?y,.:l.z} v {urn I 1 < m < p-l} V {vm I 1 m p-l}.

Lemma 4.3 implies that (). and U' are in fact subbases for and v

Note that (Dpgl)* takes Qy and .:l. y to Qx and ;2.x and takes all other elements of a'
to zero. In particular (Dpgl )* : tt' +ttu{O} is a subbasic map and hence

Fl = Dj(Dpgl )* . Similarly, F2 Dj(Dpg2 )*. On the other hand, (DpgO)* is not

subbasic since it takes Um to rr:l.x and vm to rrBr+12x, hence FO is not induced by

functoriality from (DpgO)*' It determined by (DpgO)*' however, in the following

way. If

is any expression in Dj eL' and E' is an expression in Dj U equivalent to

E(Qx,Qx,.2. x, .,2x, n ;J..x,••• ,11.2 x, 1IBr+l ••• ,rrBr+l:l. x )

then by 9.3 we have Aj(FO(E)) = Aj(E'), hence FOE = E'.

Next we shall construct Yj and Yj' We assume inductively that Y>,- and y with

the required properties have been constructed for all >'- < j. Elf using the values of

Yt and on indecomposables and extending multiplicatively, we can define

Yj and Yj on the decomposables of Dj (). and Dj Q,' so that the diagram commutes when

restricted to decomposables. It remains to define Yj and YJ on the standard

indecomposables of Dj a.. and Dj CV. We may assume that j pS for some s , since

otherwise there are no indecomposables in filtration j.

Let Sl""'Sp be indeterminates with dimension zero, height r, and filtration

1. If s < r we use 9.5 to choose a homogeneous expression E in l\{Sl' ''',sp}
r-s-l s

equivalent to 11 Q (sl"'Sp)' If s = r, let E be an expression in l\{Sl""Sp}

equivalent to sl' We define subbasic maps
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for 0 m p by

for 9. < m

for 9. > m •

Finally, we define + A by = x for all 9.. Note that

(gO)* 0 fm = h for all m.

We define Yj and YJ on indecomposables in table 1. The first column lists the

standard indecomposables in Dj 0-', and the second column (we claim) gives the value

of FO on each. The first four entries in column 2 are precisely the standard inde­

composables in Dj a., and the corresponding entries in column 3 define Yj on each.

The remaining entries in column 3 then give the resulting values of Yj on the other

entries of column 2. Finally, column 4 defines YJ on each entry in column 1-

Note that we have denoted iterates of n in the table simply by nj the precise

iterate intended can easily be determined since all entries in the table are to have

height 1.

The values of FO claimed in column 2 are either obviously correct or follow

easily from 9.4 or the formulas of section 3. For example, in line 10 we have

and in line 12 we have



Table 1

FO
y'
..'J..

(L\h)(E)

x ) {( "x) (p-m-Ll] "Er_sQsx

o ifs;r

1TQs(Qx) 1TQs+IX

rrEr_s_lQs(Qx) "Er_s_lQS+lX

(D,Jl)(E)

"Er_s+lQs(:!-x) same as 1 ine 2

1TQs(Qx) 1TQs+ Ix

"Er_s_lQs(Qx) "Er_s_lQs+lx

1TQs(:l,x) (L\h)(E)

0 0

m( rry) (m-l}j ("z) (p-m-Ll] ("Er_sQSy)( rrEr_sQSz)

(l\fm)(E)

m(Er_sQSy)("y)(m-l)j (nz}(p-mlj

-m(rry}mJ (E QSz)(nz) (p-m-Llj
r-s

(rry) (m-l}j (rrZ) (p-m)j rrE QSy
r-s

w
(J)
ex>

if s < r

if S < r

(E)

(E)
A P

{

( "y) (p-m-l)j "Er_sQSy

Oifs;r

rrQs+ly

rrEr_S_lQS+ly

r("z}(p-m-l}j "Er_sQSz

1Oifs;r

"Qs+lz

"Er_S_lQS+lz

if S < r

o

(,.x)(p-m-l}j"E QSx
r-s

o

"Er _s+lQs(2x)

I. "Qs(;ty}

2. "Er-s+1QS y)

3. "Qs(Qy)

4. "Er_s_lQs(Qy)

5. 1TQs(jz)

6. "Er_s+ lQs(.2z)

7. 1TQs(Qz}

8. "Er_s_lQs(Qz)

9. 1TQ
sUm

10. "Er_sQSUm

II. 1TQSvm

12. "Er+sRsvm

if s < r, 0 otherwise

The listed generators occur only for certain values of s. In lines 1,2,5 and 6 we require s rj in lines 9, 10,
and 11, S r-lj and in lines 3,4,7 and 8, S S r-2.
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To complete the proof of 4.7 for M= it remains to show that diagram (*) of

section 4 commutes for i = 0, 1, 2. In order to see that the inner square commutes

it suffices, by Lemma 9.3, to show that the first four entries in columns 2 and 3

are equivalent as expressions in x. This is clear for lines 1, 3 and 4 and for line

2 if s = r (by 9.4(viii». If s < r in line 2 we have

r-s Q QS ( z x) r-s-1Qs Q '" r-s-1Qs(p-1Q )

1T "r-s+l ... x 1T 1T"r+l ....x 1T X "rx

which is equivalent to the required formula by 9.4(iii).

To see that the outer square commutes, we must show that the entries in columns

1 and 4 are equivalent as expressions in y and z. The first eight cases follow as

in the preceding paragraph. Line 9 follows from the definition of E, line 10 from

9.4(vi), line 11 from 9.4(iii), and line 12 from 9.4(vii).

For commutativity of the upper trapezoid when i = 1, we must show that I\(gl)*

takes the first four entries in column 4 to the corresponding entries in column 3

(which is obvious) and takes the remaining entries in column 4 to zero. This

follows in line 9 from the fact that E is homogeneous (since (gl)* 0 fm takes at

least one to zero if 1 m p-l) and the remaining cases are clear. Similarly,

we see that the upper trapezoid commutes when i = 2. Finally, we observe that each

entry of column 4 goes to the corresponding entry of column 3 under l\(gO)*' and

hence the upper trapezoid commutes when i = O. This completes the proof of 4.7 for

M =

Next suppose M We define a.= {Rx} when r = 1 and 0.= {Qx,Rx} when r 2.

Let Q = y(13 y)m-l(S z)p-m and v = y(S v)m-lz(S z)p-m-l for 1 < m < p-l. We define
-m r r m 1'" r --

Ct, = {By,Rz} <:» m p-l} v {vmll m p-l}

when r =1 and

Ct, {Qy,Qz, By,Rz} v {l1n11 m p-l} v {vmll m p-l}

when r 2.

Then

have Fi
to p*Qx -

implies

(Dpgl)* and (Dpg2)* induce subbasic maps from ().,' to ltand we therefore

Dj(Dpgi)* if i = 1 or 2. The map (DpgO)* takes Um to -1TRx when r 1 and

nRx when r 2. it takes vm to zero when p is odd. When p = 2, 3.3(x)

uf r 1

if r > 2

We begin with the case r = 1. We define Yj and y j on decomposables by

inductive hypothesis as in the M = case. To define y j and Yj on indecomposables
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we use Table 2.

Table 2

Fa y!
-:L

l. Q(Ry) Q(Rx) a a

2. lIBs+2
Rs(Ry) lIBs+2

Rs(Rx) s+l
lIBs+2R y

3. Q(Rz) Q(Rx) a a

4. lIBs+2
Rs(Rz) lIBs+2

Rs(Rx) s+l s+l
lIBs+2R x lIBs+2R z

5. lIBs+lRs1.1n Fa(lIBs+l
Rs1.1n ) a a

Here the first column lists the indecomposables of Dj a' and the second column (we

claim) gives the value of Fa each (note that lines 1 and :3 are relevant only when s

= 1, i.e., when k = p2). The first two entries in column 2 are the indecomposables

of Dja., and the corresponding entries in column 3 give our definition of Yj on

each, while the remaining entries in column :3 are claimed to be values of Yj

determined by the definition we have just given. The entries in column 4 define y!
J

on indecomposables. The necessary verifications are similar to those in the case

Here we must show that

(Y(By)m-l(Bz)p-m) is
M= and they are straightforward except in line 5.

that YoFa(lI
sB lRsu) is equal to zero and thatJ s+ m

equivalent to zero as an expression in y and z. For simplicity we assume that p is

odd -- the case p = 2 differs only slightly. First recall that to calculate

Fa(lIsBs+IRsUm) we need only find an element of Dj CL which is equivalent to

-lIBs+lR
sll(Rx) as an expression in the indeterminate Rx. Now

s s s s 2s
-11 Bs+1R lI(Rx) -11 Q B2s+lP* lI(Rx)

s s-l
-Q P(Bs+lP* (Rx)).

by 3.6(iv)

We see by induction on t using (J.3(vi) and 3.3(vii) that Qt of a multiple of p is

p-th powers in

The proof that

equivalent to a sum of terms each of which has either p or a p-th power as a factor.

Hence Fa(lISBs+lRsUm) is a sum of terms each of which has a p-th power factor, and

the same is true for the element YjFa(lIsBs+IRsUm) of !\{x}. But by definition all
s s

C{x} are zero when r = 1, so that yjFa(lI Bs+lR Urn) = a as required.
s s m-l p-m

11 Bs+lR (y(BY) (BZ) ) is equivalent to zero is similar. We

have
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and 3.3(vi) and 3.3(vii) show that Qt of a product of elements of degree zero is

equivalent to a sum of terms each of which has either p or a p-th power as a factor.

But again p-th powers in C{y,z} are zero and we see that
s s m-l p-mn es+lR (y(ey) (ez) ) - 0 as required. This completes the proof of Lemma 4.7

for M = l:Ml•

Next let r 2. We can define Yj and Y5 on decomposables precisely as before.

In defining Yj and yj on indecomposables when r ::: 2, it will be convenient to modify

the standard basis we have been using as follows. Let nl and n2 be indeterminates

with dimension 1, filtration P and heights "n1" = r-l, II n2 II = r+ 1. We use 9.5 to

obtain an expression E(nl,n2) in Dj {nl,n2} equivalent to nr+s-ler+sRS(P*nl - nn2)'

We claim that the coefficient of /+s-2 e
r+ s-l

RSn
l

in E( nl' n2} is 1. To see this,

write E(nl,n2) as El + E2, where involves only nl and every standard basis

element in E2 involves n2' If f: {nl ,n2} + {nl} v {OJ takes nl to itself and n2

to zero then (DjfHE(nl,n2}) = E1• On the other hand,

Since uniqueness holds (by inductive hypothesis) in filtration j we have

proving the claim. We can therefore give new bases for the indecomposable:3
r+s-2 s r+s 2 s

and Dj a' when r ::: 2 by replacing n er+s_lR (Qx), n - er+s_1R (Qy)

1T
r
+
s - 2 e

r+ s-1
RS(Qz) in the standard bases by E(Qx,Rx), E(Qy ,By) and

respectively.

Next let be indeterminates with dimension 1, height r and filtration

1. We use 9.5 to choose a homogeneous expression E'(!;l'''''!;p) in Dk{!;l""'!;p}

equivalent to

Finally, we define the subbasic maps fm and h exactly as in the case M= Mr'

We can now define Yj and Y] on indecomposables by means of Table 3. The first

column lists the new basis for the indecomposables of Dj a I. The second co'Lumn (we

claim) gives the values of Fa on each basis element.



Table 3

F
O

1. .oS{Rx1 r.0', I{"",Ip-UJ if s < r if s < ,

o if s r

2. nBr+s+1Rs(Ryl nBr+s+1RS(Rxl
s+l s+l

rrBr+s+1R x "Sr+s+1R y

3. "Qs(Qyl ,rQs(Qxl Qs+ lrr z

4. E(Qy,Ryl E(Qx,Rxl (Dkhl(E'l

5. .os(Rzl "Qs(Rxl r,<',I{ "",,1p-U,' ir s , r { -I ,,',I{"""Ip-l" if s , r

o if S r o if S = r

6. rrBr+s+1Rs(Rzl 1fBr+ s+1R
s(Rxl

.I. '·O'·,j,. 1 ··O'../..

U>

7. nQs(Qz) rrQs(Qx) Qs+ l QS+l -.l
1f X rr Z tV

8. E(Qz,Rzl E(Qx,Rxl (Dkh)(E'l (DkfO)(E'l

9. nQsUm _nQs(Rx ) (1TQSX) (1TB
rx
1(p-llj ( 1TQSY)( 1T SrY)(m-llj (1TB

rzl(p-ml
j

10. 1TBr+ sR
sUm E(Qx,Rx) (D0)(E' ) E' )

11- nQsv
m (1TBr_1(QX))2

s
if p 2, S r-2

2s+ 1
(1TB

rx)

f 2'-1 {"

(.oSyHrrS y)(m-l)j(nQsZ)(1fB z)(p-m-l)j(1TBrR{Qx)) if p 2, S = r-1 (1fB
r+ 1Rx) r r

o otherwise 0

12. 1TBr_sQ
sv

m o 0 { " __ ,mL _"s_, {_n _, (p-m-Llj

_( 1TQSy)( 1TB yl (m-llj (1TB z ) (p-mlj
r r

The elements listed in lines 3 and 7 occur only when S r-2. In lines 9, 11, and 12 they occur only when S ::: i..:r,--and in lines
1 and 5 only when s < r ,
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The first six entries in this column are the new basis for the indecomposables

of Dj a, and the first six entries in column :3 define Yj' while the remaining

entries in column :3 give the values of Yj on the remaining entries in column 2. The

entries in column 4 define The verifications necessary to prove 4.7 in this
J

case are again similar to those in the case M M:r. The less obvious ones are the

following. If s < r we have

nr-sQsRx nr-s-lQsnRx nr-s-lQS+lp*x _ nr-s-1QS(x(Srx)P-l)

_(rrr-s-lQsX) (rrr-l S x)(p-l)j
r

in lines 1,5 and 9 by 9.4(iii). (In particular we observe, as claimed in the proof

of 8.4(viii), that the relation ].6(viii) is not used in the present proof when

s = 1 and r 2.) If s = r we have

QSRx QRQs-lx a

in lines 1 and 5 by ].6(viii). In line 11 with P = 2 we apply 9.4(ix) to show

a if S < r-2

r-l 2r-2
(n Pr2*Qx)

r-2
(nr-2QSi*Qx)2

if s r-2

irs r-l

and the claimed values of Fa follow from 3.1(ii), ].5 and ].6(iii) and (iv). This

concludes the proof of 4.7.

Proof of 9.4. Let denote mod p equivalence. Parts (i), (ii), (iii), and (iv)

follow easily by induction from ].](v) and ].](vii). For part (v) we have

by (iii) and (iv). For part (vi) we have

s i-I p-i i p-i-l
= Q [i(SrE;l)E;l E;2 = (p-i)E;1(SrE;2) I

iQS[(SrE;l)E;i-lE;E-il -

= i(Qss e )( se )(i_l)ps( se )(p_i)ps
r<'l n <'1 n <'2

- i (nSE;1)pS(QSSrE;2)(nSE;2)(P-i-l)pS
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and the result follows by part (i).

(*)

(vii) First we claim

This is true when r 1 by 3.3(iv) and 3.3(v). If r 2 we have

r r-1
Q Sr+1P*sl Q SrQp*sl

Qr-lSr[p*QSl - (pp-l - l)si]

r-l
Q SrP*Qsl

and the claim follows by induction on r.

Now we have

r+t-l o Rt[ (0 e )ei-leP- i] r+t-1Qt 2t[ ( ) r-i p-i]
'IT "'r+1 "'r"l "1 "2 'IT Sr+2tP* Srsl sl s2

If t r then

which is equivalent to 0 by (*). Otherwise we have

r+t-l t 2t r+t-1 t 2t i p-i
('IT Q Sr+2tP* sl)['IT Q Sr+2tP* (sls2 )]

and the result follows from part (iii).

For (viii), we have

if r > 2

but the expression for r 2 is also equivalent to zero by (*).

Finally, part (ix) follows from 3.3(vi) by induction on s.
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It remains to prove 9.5. In order to keep track of when an element of

Dj{;l""';t} is homogeneous, we make the following definition. Let S be a fixed

set and suppose that we have assigned to each ;i a subset h(;i) of S called the

homogeneity of ;i' Then we define the homogeneity of an arbitrary expression in

;l, ... ';t by requiring that 0a,r,j have homogeneity S, that and R

commute with h and that hIE + EI) = ht E) () hlEI) and h(E.E') = hfE) v h(EI). We say

that an expression E(;l""';t) of height 1 is reducible with respect to h if

there is an E' Dj{;l, ••• ';t} with E' E and hIE') ) hIE).

Proposition 9.6. If S is any set and h(;l), ••• ,h(;t) are any subsets of S then

every expression of height 1 in ;l, ••• ';t is reducible with respect to h.

If S = {;l""';.} and h(;i) {;i} for 1 5 i 5 t then the expressions listed

in 9.5 have homogeneity S, while an expression in Dj{;l' ... ,;t} has homogeneity S

if and only if it is homogeneous. Thus 9.5 follows from this case of 9.6. The

extra generality allowed for S and h is technically useful in proving 9.6.

In the remainder of this section we prove 9.6. We fix a set S and assume from

now on that any indeterminates mentioned have been assigned homogeneities contained

in S as well as dimensions, heights and filtrations. It will be convenient to let

;, n and 6 denote indeterminates and to let E, F, G and H denote expressions. We

say that two expressions (possibly involving different sets of indeterminates) match

if they have the same dimension, height, filtration and homogeneity. We shall

frequently use the fact that a sum or product of reducible expressions is reducible

and that homogeneity is preserved by substitution, i.e., if F is any expression in

nl,· •• ,n s and El, ••• ,Es matching nl, ••• ,n s respectively then h(F(Er, ••• ,Es)) = h(F).

Note, however, that equivalent expressions generally have different homogeneities;

for example, p; is equivalent to ° if 11;11 = 1 but hI;) is not necessarly equal to S.

For our next two results we fix a set {nl, ••• ,ns,ni, ••• ••• of inde-

terminates such that each n! matches Qni and each ni matches Rni' Here and else-

where we shall interpret Qni as 01 1 1 if IIni II = 1 and Rni as 01,1,1 if Inil = 0., ,
We say that an expression is if it does not involve Q or R.

Lemma 9.7. Let G be an elementary expression of length 2 in nl, ••• ,n s and let 8

match G.
6

1T 11611 then there is an elementary

expression GI DvG{nl, ••• ,ns} with G' F(G) and hG' ) hF.

(ii) If F = Q6 or F = R6 then there is an elementary expression

G'(nl, ••• ,ns,ni, ••• ••• with hG' ) hF and
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Proof. The possibilities for G are nni,p*ni,8rni' ni+n j, nin j and

result can be checked in each case from the formulas of section 3.

The

the

define

Next we define the complexity c(E) of a standard indecomposable E in

D.{nl, ••• ,n} to be the total number of QIS and R's that appear in it. We
J s
c(E) for an arbitrary expression E in Dj{nl, ••• ,n s} to be the maximum of

complexities of the indecomposables that appear as factors in the terms of E.

Lemma 9.8. Let H Dj hI' ... ,ns,ni, ••• ••• Then there is an

H' Dj{nl' ••• ,ns} such that h{HI) :> h{H), c(H ') :; c(H) + 1 and HI is equivalent to

In particular, the latter expression is reducible.

Proof. We may assume that H is a standard indecomposable and hence that it involves

only one of the indeterminates. If it involves one of the ni the result is

trivial. Otherwise H has one of the forms

IIn.lI-t-2 IIn.lI-t-2 IInill-tt
]. Qt I ]. Q Qt I Q ni"'n nil n lI-t-2 ni' "

i

IIn.lI+t-2 t
]. Q R I

n ni' or
].

Un.lI+t t
]. R II

n SlIn.lI+t+l ni•
].

formulas of section 3.

In each case the result follows either trivially or from the

Lemma 9.9. Let E1, ... ,Er be elementary expressions in and let

el,···,er match respectively. Let F Dj{81, •• ,8 r}. Then there is an

H such that c(H) :; c(F), h(H) ) h(F) and H F(El, ... ,Er). In

particular, is reducible.

Proof. Let t be the maximum of the lengths of the Ei. If t = 1 the result is

trivial. We shall prove the result in general by induction on e IF) with a

subsidiary induction on z , We may assume that F is a standard indecomposable, and

hence that it involves only one of the ai' say °1 , Now by Definition 9.1, E1 can be

written in the form G(E11,E12)' where and are

elementary with lengths less than t and G(n1,n2} is elementary with length 2. If

11°111-18 11°111-1c I F] = 0 then F has the form n 1 or n ello 11_181 and the result
1

follows by 9.7 (i) and the subsidiary inductive hypothesis. Otherwise F has the form
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F'(FIl), where FIl = Q8l or ReI and c(F') = cl F) - 1. Thus

F(El) = F'(FIl(G(E 1l,E12 ) ll . If n{,n2,n)',n2 are as in 9.7 then by 9.7(ii) there

is an elementary expression G' (nl'n2,ni,n2,nJ>n2) such that h(G') hl F") and

G' (nl'n2,Qnl'Qn2,Rnl'Rn2) FIl(G(nl'I12». Thus

Now since c(F') < c(F) the inductive hypothesis gives an expression

HE Dj (nl'n2,l1i,n2,I1J>nlP with dH) .::: c(F') < c(F), h(H) ) f(F') J h(F), and

So that

Now by Lemma 9.8 there is an expression H' ED
j
hI' n2} such that

c(H') .::: c(H) + 1 .::: dF) and h(H') ) h(H) ) h(F) with H' F(G(nl,n2»' Hence F(El)
H'(El l,E12). Since Ell and El2 both have lengths less than t, the result now

follows by the subsidiary inductive hypothesis.

Finally, we complete the proof of 9.6. Let ••• be any expression of

height 1. The proof is by induction on the length of G, which we may assume is 2:

2. It is easy to see from definition 9.1 (by another induction on the length of G)

that G can be written in the form ••• where ••• has length

less than t and E has length 2. Then G' has height 1 and h(G') = hl G}, By

inductive hypothesis we may assume G' E If E is elementary the

result now follows by 9.9, while if E is Qn or Rn the result follows by 9.8. This

concludes the proof.
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