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Abstract. A theorem of Lurie and Pridham establishes a correspondence between formal moduli
problems and differential graded Lie algebras in characteristic zero, thereby formalising a well-
known principle in deformation theory. We introduce a variant of differential graded Lie algebras,
called partition Lie algebras, in arbitrary characteristic. We then explicitly compute the homotopy
groups of free algebras, which parametrise operations. Finally, we prove generalisations of the
Lurie-Pridham correspondence classifying formal moduli problems via partition Lie algebras over
an arbitrary field, as well as over a complete local base.
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1. Introduction

A well-known principle in deformation theory postulates that the infinitesimal structure of any
moduli space in characteristic zero is controlled by a differential graded Lie algebra.

This heuristic can be traced back to Deligne [Del], Drinfeld [Dri], and Feigin, and was explored
further in the work of Goldman-Millson [GM88], Hinich [Hin01], Kontsevich-Soibelman [KS02],
Manetti [Man09], and many others. Eventually, it was articulated as a precise correspondence
by Lurie [Lur11a] and Pridham [Pri10], who constructed an equivalence between formal moduli
problems and differential graded Lie algebras in characteristic zero.

Our principal aim is to generalise this equivalence to finite and mixed characteristic, thereby
giving a Lie algebraic description of formal deformations in these contexts.

1.1. Background. Before delving into any technical details, we shall recall a classical example.

Example. Given a smooth and proper variety Z over the field C of complex numbers, we can
study its infinitesimal deformations over local Artinian C-algebras. It is well-known that these
deformations are closely related to the lower cohomology groups of the tangent bundle TZ :

a) H0(Z, TZ) classifies infinitesimal automorphisms of the trivial deformationZ×SpecCSpec(C[ǫ]/ǫ2);
infinitesimal automorphisms therefore correspond to vector fields.

b) H1(Z, TZ) classifies isomorphism classes of first-order deformations; every such deformation
Z → Spec(C[ǫ]/ǫ2) gives rise to a Kodaira-Spencer class xZ in H1(Z, TZ), cf. [KS58].

To formulate a criterion for when a given first order deformation Z → Spec(C[ǫ]/ǫ2) extends to
higher order, observe that the classical Dolbeault complex

C∗(Z, TZ) = ( A0,0(TZ)→ A
0,1(TZ)→ A

0,2(TZ)→ . . . )

computing H∗(Z, TZ) admits the structure of a differential graded Lie algebra. Its Lie bracket
combines the wedge product on differential forms with the commutator bracket on vector fields.

c) H2(Z, TZ) contains the obstructions to extending first-order deformations: a first-order deforma-
tion Z → Spec(C[ǫ]/ǫ2) extends to Spec(C[ǫ]/ǫ3) precisely if the self-bracket [xZ , xZ ] vanishes.

It turns out that the differential graded Lie algebra C∗(Z, TZ) records all the formal deformation
theory of Z. More precisely, given any local Artinian C-algebra A, deformations of Z to A corre-
spond to Maurer-Cartan elements in mA ⊗ C1(Z, TZ), considered up to gauge equivalence. A key
insight of Drinfeld [Dri] was that C∗(Z, TZ) does not just remember the infinitesimal deformations,
but also the derived infinitesimal deformations of Z to simplicial local Artinian C-algebras (via a
refined Maurer-Cartan construction, cf. [Hin01, Section 1.3]). In fact, the differential graded Lie
algebra C∗(Z, TZ) is uniquely determined by this property (up to equivalence).

This illustrates the general principle we alluded to in the very beginning: the derived infinitesimal
deformations of an object in characteristic zero are controlled by a differential graded Lie algebra.
A precise formulation was given by Lurie [Lur11a] and Pridham [Pri10] using the language of formal
moduli problems (cf. Definition 1.4 below); roughly speaking, any reasonably geometric deformation
problem (such as deformations of schemes, of complexes, or the formal completion of a suitably
geometric stack) gives rise to a formal moduli problem. For example, there is a formal moduli
problem corresponding to deformations of a variety Z as above.

We then have the following correspondence:

Theorem 1.1 (Lurie, Pridham). If k is a field of characteristic zero, then there is an equivalence
of ∞-categories between formal moduli problems and differential graded Lie algebras over k.
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This result has been extended in various directions in characteristic zero, but an analogue in
positive or mixed characteristic has not appeared. Note that derived deformation theory in such
settings has attracted interest in number theory, for example in the work of Galatius-Venkatesh
[GV18] on derived deformations of Galois representations.

In this paper, we formulate and prove a generalisation of the Lurie-Pridham theorem in positive
and mixed characteristic. For this purpose, we introduce the notion of a partition Lie algebra,
which is the correct generalisation of the notion of a differential graded Lie algebra in this context.
Partition Lie algebras are subtle homotopical objects controlled by the equivariant topology of the
partition complex. By studying this simplicial complex, we compute the homotopy groups of free
partition Lie algebras. These parametrise the natural operations acting on the homotopy groups of
any partition Lie algebra.

1.2. Statement of Results. Away from characteristic zero, classical algebraic geometry can be
generalised in two inequivalent ways (cf. [TV08] and [Lur16] for detailed treatments):

a) derived algebraic geometry is based on simplicial commutative rings.
b) spectral algebraic geometry is based on (connective) E∞-rings.

We will prove variants of our main results in both settings, and will begin with the former. Here,
affine schemes over a given field k correspond to simplicial commutative k-algebras, and infinitesimal
thickenings of Spec(k) (over k) correspond to the following kind of objects:

Definition 1.2 (Derived Artinian algebras). A simplicial commutative k-algebraA is calledArtinian if

(1) π0(A) is a local Artinian ring with residue field k.
(2) π∗(A) is a finite-dimensional k-vector space.

Let SCRart
k denote the ∞-category of Artinian simplicial commutative k-algebras, defined as a full

subcategory of the ∞-category of simplicial commutative k-algebras (cf. Construction 5.36).

Notation 1.3. Write S for the∞-category of spaces (cf. [Lur09, Definition 1.2.16.1]). Unless stated
otherwise, limits and colimits will be computed in an ∞-categorical sense (cf. [Lur09, Chapter 4]).

Derived infinitesimal deformations will be described by the following kind of functors:

Definition 1.4 (Formal moduli problems). A derived formal moduli problem over a field k is given
by a functor X : SCRart

k → S satisfying the following two properties:

(1) The space X(k) is contractible.
(2) Given a pullback square

Ã

��

// A′

��

A // A′′

in SCRart
k in which π0(A

′)→ π0(A
′′) and π0(A)→ π0(A

′′) are surjective, the square

X(Ã)

��

// X(A′)

��

X(A) // X(A′′)

is a (homotopy) pullback of spaces.

Let Modulik,∆ be the full subcategory of Fun(SCRart
k ,S) spanned by all formal moduli problems.
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Formal moduli problems exist in abundance. Indeed, the formal neighbourhood of any point
in a (suitably geometric) derived stack, as well as various natural deformation problems (such as
deformations of varieties or vector bundles), provide a vast supply of examples. We refer to [Lur16,
Chapter 16] or [Toë14] for a discussion of some of them.

A guiding goal in the subject is to give an “algebraic” classification of formal moduli problems.
Theorem 1.1 realises this aim when k is a field of characteristic zero by constructing an equivalence

Modulik,∆
≃
−−−→ AlgLiedgk

between Modulik,∆ and the ∞-category of differential graded Lie algebras over k. Intuitively,
this correspondence arises as follows. Given a formal moduli problem X ∈ Modulik,∆, one first
constructs its tangent complex TX . This chain complex is a derived version of the tangent space,
and is determined by the values of F on trivial square-zero extensions. The correspondence then
equips the shift TX [−1] with the structure of a differential graded Lie algebra over k, and moreover
provides a method to functorially recover X from TX [−1]. Hence, it can be interpreted as a variant
of formal Lie theory (cf. [GR17, Chapter 7]).

The Lurie-Pridham correspondence has been extended in several directions, for example by
Gaitsgory-Rozenblyum [GR17], Hennion [Hen18], and Nuiten [Nui17]. These generalisations treat
the case of formal moduli problems relative to a base (rather than a point) in characteristic zero.

To generalise Theorem 1.1 to general base fields, we will introduce the new algebraic and
homotopy-theoretic structure of a partition Lie algebra. In characteristic zero, partition Lie alge-
bras are equivalent to differential graded Lie algebras; in finite characteristic, this is no longer true.
Partition Lie algebras are closely related to the genuine equivariant topology of the following spaces:

Definition 1.5 (Partition complexes). Given an integer n ≥ 1, the nth partition complex |Πn| is
the genuine Σn-space given by the geometric realisation of the following simplicial Σn-set:

Πn := N•
(
{Poset of partitions of {1, . . . , n}} − {0̂, 1̂}

)
.

Here N• denotes the nerve construction, 0̂ = 1 2 . . . n is the discrete partition, 1̂ = 12 . . . n is the

indiscrete partition, and all partitions are ordered under refinement.

Partition complexes were linked to ordinary Lie algebras in the work of Barcelo [Bar90], Han-
lon [Han81], Joyal [Joy86], and Stanley [Sta82], who constructed and examined an isomorphism of

Σn-representations H̃
n−1

(Σ|Πn|⋄,Z) ∼= Lien⊗ sgnn. Here Σ|Πn|⋄ is the unreduced-reduced suspen-
sion of |Πn| and sgnn denotes the sign representation of Σn. Moreover, Lien is the quotient of the
free abelian group on all Lie words in letters x1, . . . , xn involving each xi exactly once by the usual
antisymmetry and Jacobi relations.

This above isomorphism between representations of the symmetric group was later refined in
work of Salvatore [Sal98] and Ching [Chi05], who constructed the Lie operad in the ∞-category of
spectra; algebras over this operad are called spectral Lie algebras.

Remark 1.6. Spectral Lie algebras offer excellent computational and conceptual opportunities in
unstable chromatic homotopy theory, as is exploited, for example, in [BR15], [Bra17], [Heu18],[BHK].

Over a field of characteristic zero, spectral Lie algebras are equivalent to differential graded Lie
algebras. In contrast, they are not the correct structure for the purposes of deformation theory in
characteristic p, where it will in fact not be possible to define partition Lie algebras as algebras
over any operad. Instead, we will need to use the language of monads, which we briefly recall:
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Notation 1.7. Write Modk for the derived ∞-category of k; its objects are chain complexes of
k-vector spaces, or equivalently k-module spectra (cf. [Lur17, Definition 1.3.5.8; Remark 7.1.1.16]).

Recall that a monad on Modk consists of an endofunctor T together with natural transformations
id→ T , T ◦T → T , and an infinite set of coherence data. Every monad T on Modk gives rise to an
∞-category AlgT of T -algebras (sometimes also called T -modules); an object in AlgT is informally
given by a chain complex M ∈ Modk, a natural transformation T (M)→M , and an infinite set of
coherence data. We refer to [Lur17, Section 4.7] for precise definitions.

Example 1.8. If k is a field of characteristic zero, then the ∞-category AlgLiedgk
of differential

graded Lie algebras can be described as algebras over a certain monad Liedgk on Modk, which sends

a chain complex V to the chain complex Liedgk (V ) =
⊕

n(Lien⊗V
⊗n)Σn . Here the tensor product is

computed in complexes, and (−)Σn denotes Σn-orbits (which are equivalent to Σn-homotopy orbits).

In Definition 5.47 below, we will construct the partition Lie algebra monad Lieπk,∆ on Modk.

Construction 1.9 (Partition Lie algebras). The monad Lieπk,∆ satisfies the following properties:

(1) If V is a finite-dimensional k-vector space (considered as a discrete k-module spectrum),
then Lieπk,∆(V ) is the linear dual of the (algebraic) cotangent fibre of k ⊕ V ∨, the trivial
square-zero extension of k by V ∨. In fact, this remains true for any coconnective k-module
spectrum V for which πi(V ) is finite-dimensional for all i.

(2) If V ≃ Tot(V •) ∈Modk,≤0 is represented by a cosimplicial k-vector space V •, then

Lieπk,∆(V ) ≃
⊕

n

Tot
(
C̃•(Σ|Πn|

⋄, k)⊗ (V •)⊗n
)Σn

.

Here C̃•(Σ|Πn|⋄, k) denotes the k-valued cosimplices on the space Σ|Πn|⋄, the functor (−)Σn

takes strict fixed points, and the tensor product is computed in cosimplicial k-modules.
(3) The functor Lieπk,∆ commutes with filtered colimits and geometric realisations.
(4) The tangent fibre TX of any X ∈Modulik,∆ has the structure of a Lieπk,∆-algebra.

We write AlgLieπk,∆
for the ∞-category of Lieπk,∆-algebras in Modk.

Remark 1.10. Given any partition Lie algebra g ∈ AlgLieπk,∆
, the homotopy groups π∗(g) form a

graded Lie algebra in the shifted sense. This means that given x ∈ πi(g) and y ∈ πj(g), we have
a bracket [x, y] ∈ πi+j−1(g). This shift is merely a matter of convention, but we have decided to
adopt it as it seems more natural for our applications.

When k has characteristic zero, Lieπk,∆ can be identified with the shifted differential graded Lie
algebra monad (cf. Proposition 5.48). For general fields, partition Lie algebras provide a new
generalisation of differential graded Lie algebras. While Lieπk,∆ looks somewhat similar to the
restricted Lie algebra monad (cf. e.g. [Fre00]), it behaves in a substantially different way; for
example, Lieπk,∆ does not preserve modules concentrated in any particular homological degree.

Most importantly, partition Lie algebras have the following application in deformation theory:

Theorem 1.11 (Main theorem). If k is a field, there is an equivalence of ∞-categories

Modulik,∆ ≃ AlgLieπk,∆

between formal moduli problems and partition Lie algebras over k. It sends a formal moduli problem
X ∈ Modulik,∆ to its tangent fibre TX.

This means that locally, moduli spaces are still governed by an appropriate Lie algebraic structure.
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As in [Lur11a, Pri10], the correspondence between formal moduli problems and partition Lie
algebras arises from a form of Koszul duality for algebras, which we shall formulate next.

Write SCRaug
k for the ∞-category of augmented simplicial commutative k-algebras. We will

construct a Koszul duality functor

D : SCRaug
k → AlgopLieπk,∆

,

which sends an augmented simplicial commutative k-algebra A to the dual of its (algebraic) tangent
fibre (k ⊗A L∆

A/k)
∨, equipped with its natural Lieπk,∆-algebra structure. A key step in the proof of

Theorem 1.11 is to show that D restricts to an equivalence on the following subcategory of SCRaug
k :

Definition 1.12. An augmented simplicial commutative k-algebra A ∈ SCRaug
k is complete local

Noetherian if

(1) π0(A) is a complete local Noetherian ring.
(2) Each πi(A) is a finitely generated π0(A)-module.

Let SCRcN
k be the full subcategory spanned by all complete local Noetherian k-algebras. Then:

Theorem 1.13. The Koszul duality functor D restricts to a contravariant equivalence between
SCRcN

k and the full subcategory of AlgLieπk,∆
spanned by those partition Lie algebras g for which

πi(g) is finite-dimensional for each i and vanishes for i > 0.

We prove Theorem 1.13 “by hand” at the level of simplicial commutative rings, by working
carefully with filtered objects and exploiting the fact that all rings that one encounters in this way
are Noetherian. To deduce Theorem 1.11, one also needs to prove that the Koszul duality functor
carries appropriate pullbacks of simplicial commutative rings to pushouts of Lieπk,∆-algebras.

Partition Lie algebras are subtle homotopical objects, and we therefore need tools to study them.
For example, one can consider the natural operations acting on their homotopy groups. These are
parametrised by the homotopy groups of free partition Lie algebras, which we will compute by
using techniques from the work of the first author and Arone [AB18], which rely on discrete Morse
theory and an argument inspired by earlier work of Arone and Mahowald [AM99].

To state our result, we need the following classical notion (cf. [Shi58], [CFL58]):

Definition 1.14. A word w in letters x1, . . . , xk is said to be a Lyndon word if it is smaller than
any of its cyclic rotations in the lexicographic order with x1 < · · · < xk. Write B(n1, . . . , nk) for
the set of Lyndon words which involve the letter xi precisely ni times.

Remark 1.15. It is well-known that the set of Lyndon words in letters x1, . . . xk forms a basis for
the free (ungraded) Lie algebra over Z on n letters (cf. e.g. [Reu03]).

Theorem 1.16. The Fp-vector space π∗(Lie
π
k,∆(Σ

ℓ1Fp ⊕ . . . ⊕ ΣℓmFp)) has a basis indexed by
sequences (i1, . . . , ik, e, w). Here w ∈ B(n1, . . . , nm) is a Lyndon word. We have e ∈ {0, ǫ}, where
ǫ = 1 if p is odd and deg(w) :=

∑
i(ℓi − 1)ni + 1 is even. Otherwise, ǫ = 0.

The integers i1, . . . , ik satisfy:

(1) Each |ij| is congruent to 0 or 1 modulo 2(p− 1).
(2) For all 1 ≤ j < k, we have pij+1 < ij < −1 or 0 ≤ ij < pij+1

(3) We have (p− 1)(1 + e) deg(w)− ǫ ≤ ik < −1 or 0 ≤ ik ≤ (p− 1)(1 + e) deg(w) − ǫ.

The sequence (i1, . . . , ik, e, w) sits in homological degree ((1 + e) deg(w)− e) + i1 + · · ·+ ik − k and
multi-weight (n1p

k(1 + e), . . . , nmpk(1 + e)).



DEFORMATION THEORY AND PARTITION LIE ALGEBRAS 7

The input of this computation is the homotopy of free simplicial and cosimplicial commutative
rings as computed by Dold [Dol58], Nakaoka [Nak57] [Nak59], Milgram [Mil69], and Priddy [Pri73].
The case where ℓi ≤ 0 for all i follows immediately from [AB18, Theorem 8.14]. For p = 2 and
ℓi ≤ 0 for all i, our result can also be read off from the work of Goerss [Goe90], who computed the
algebraic André-Quillen homology of trivial square-zero extensions at p = 2.

Remark 1.17. Note that Pridham (cf. [Pri10, Section 5.3]) also considers the operations acting
on the tangent spaces of formal moduli problems. He abstractly identifies the operations on the
coconnective part with the operations on André-Quillen homology.

Up to now, we have stated our results in the context of simplicial commutative rings, which was
indicated by the subscript “∆”. We can obtain parallel results in the context of spectral algebraic
geometry, hence describing deformations parametrised by connective E∞-rings over a given field k.

More precisely, define the∞-category CAlgartk of spectral Artinian k-algebras and the∞-category
Modulik,E∞

of spectral formal moduli problems by replacing the term “simplicial commutative k-
algebra” by the term “connective E∞-k-algebra” in Definition 1.2 and Definition 1.4, respectively.
In Definition 5.32 below, we construct the spectral partition Lie algebra monad Lieπk,E∞

on Modk.

Construction 1.18 (Spectral partition Lie algebras). The monad Lieπk,E∞
satisfies the following:

(1) If V is a finite-dimensional k-vector space (considered as a discrete k-module spectrum),
then Lieπk,E∞

(V ) is the linear dual of the topological cotangent fibre of k ⊕ V ∨, the trivial
square-zero extension of k by V ∨. In fact, this remains true for any coconnective k-module
spectrum V for which πi(V ) is finite-dimensional for all i.

(2) If V ∈Modk,≤N is truncated above, then

Lieπk,E∞
(V ) ≃

⊕

n

(
C̃•(Σ|Πn|

⋄, k)⊗ V ⊗n
)hΣn

,

where (−)hΣn denotes homotopy fixed points and the other notation is as above.
(3) The functor Lieπk,E∞

commutes with filtered colimits and geometric realisations.
(4) The tangent fibre TX of any X ∈Modulik,E∞

has the structure of a Lieπk,E∞
-algebra.

We write AlgLieπk,E∞
for the ∞-category of Lieπk,E∞

-algebras in Modk.

We then have a variant of the previous equivalence:

Theorem 1.19. If k is a field, then there is an equivalence of ∞-categories

Modulik,E∞
≃ AlgLieπk,E∞

between spectral formal moduli problems and spectral partition Lie algebras over k, sending a formal
moduli problem X ∈Modulik,E∞

to its tangent fibre TX .

Proving this equivalence again requires constructing a Koszul duality functor, and showing that it
restricts to an equivalence between complete local Noetherian E∞-k-algebras and spectral partition
Lie algebras g which are coconnective and have degreewise finite-dimensional homotopy groups.
Theorem 1.11 and Theorem 1.19 are proven with similar methods, which is why we present much
of the argument in an axiomatic way (cf. Section 4) applying to both of these contexts at once.

The natural operations on Lieπk,E∞
-algebras are parametrised by the homotopy groups of free

spectral partition Lie algebras, which we compute by a similar method as before:
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Theorem 1.20. The Fp-vector space π∗(Lie
π
k,E∞

(Σℓ1Fp ⊕ . . . ⊕ ΣℓmFp)) has a basis indexed by
sequences (i1, . . . , ik, e, w). Here w ∈ B(n1, . . . , nm) is a Lyndon word. We have e ∈ {0, ǫ}, where
ǫ = 1 if p is odd and deg(w) :=

∑
i(ℓi − 1)ni + 1 is even. Otherwise, ǫ = 0.

The integers i1, . . . , ik satisfy:

(1)’ Each ij is congruent to 0 or 1 modulo 2(p− 1).
(2)’ For all 1 ≤ j < k, we have ij < pij+1.
(3)’ We have ik ≤ (p− 1)(1 + e) deg(w) − ǫ.

The homological degree of (i1, . . . , ik, e, w) is ((1 + e) deg(w)− e) + i1 + · · ·+ ik − k and its multi-
weight is (n1p

k(1 + e), . . . , nmpk(1 + e)).

The input to this computation is the homotopy of free E∞-rings computed by Adem [Ade52],
Serre [Ser53], Cartan [Car54] [Car55], Dyer-Lashof [DL62], May, and Steinberger [BMMS86]. It is
again inspired by Arone-Mahowald’s classical work [AM99].

Finally, we prove variants of Theorem 1.11 and Theorem 1.19 in mixed characteristic. More pre-
cisely, let A be complete local Noetherian with residue field k, either in simplicial commutative rings
or in E∞-rings. There is a natural notion of formal moduli problems in these mixed contexts (cf.
Definition 6.2 below); we write ModuliA//k,∆ and ModuliA//k,E∞

for the respective ∞-categories.
For example, we can describe the formal neighbourhood of a k-point inside a (suitably geometric)
stack defined over Spec(A) by one of these “mixed” formal moduli problems.

In Theorem 6.15 and Construction 6.20, we construct relative versions of partition Lie algebras
and spectral partition Lie algebras. The resulting ∞-categories are denoted by AlgLieπA,∆

and

AlgLieπA,E∞
, respectively. Finally, we prove:

Theorem 1.21. Let k be a field.

(1) If A is a complete local Noetherian simplicial commutative ring with residue field k, there
is an equivalence of ∞-categories ModuliA//k,∆ ≃ AlgLieπA,∆

.

(2) If A is a complete local Noetherian E∞-ring with residue field k, then there is an equivalence
of ∞-categories ModuliA//k,E∞

≃ AlgLieπA,E∞
.

In both cases, these equivalences send a formal moduli problem to its tangent fibre.

Hence the various variants of partition Lie algebras provide an algebraic description of formal
deformation theory in finite and mixed characteristic.
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2. Preliminaries

Let C be a presentable stable ∞-category. In this section, we will briefly review various prelimi-
naries involving filtered and graded objects in C, and moreover fix some notation for the remainder
of this paper. A convenient reference for this material (with slightly different notation) is [GP18].

For notational convenience, we will usually work with filtrations and gradings concentrated in
degrees 1 and above. This choice reflects that in the sequel (in particular in Section 4), we will often
work with nonunital commutative algebras. We will use the notation Fil and Gr in this context.

When we discuss unital commutative algebras in Section 5, we will use the notation Fil+ and
Gr+ for filtrations and gradings that start in degree zero.

Definition 2.1 (Filtered objects). Consider the nerve N(Z≥1) of the partially ordered set Z≥1 and
its opposite N(Z≥1)op. We define the ∞-category Fil(C) of filtered objects of C as

Fil(C) := Fun(N(Z≥1)
op, C).

We will often write a filtered object X ∈ Fil(C) as a system
{
F iX

}
i≥1

of objects in C, i.e. a sequence

· · · → F iX → F i−1X → · · · → F 1X . We call F 1X the underlying object of X , and obtain a functor

und : Fil(C)→ C.

Similarly, we define Fil+(C) as

Fil+(C) := Fun(N(Z≥0)
op, C).

The objects of Fil+(C) are filtered objects where the filtration starts in degree zero instead.

Example 2.2. The functor und : Fil(C) → C sending
{
F iX

}
to F 1X ∈ C admits a left adjoint,

which sends an object Y ∈ C to the filtered object (· · · → 0→ 0→ Y ).

Definition 2.3 (Graded objects). Let Zds
≥1 denote the category with one object for every nonneg-

ative integer and only identity morphisms. Define the ∞-category Gr(C) of graded objects of C as

Gr(C) = Fun(N(Zds
≥1), C).

We write objects of Gr(C) as X⋆ whenever we want to emphasize the grading. Given a graded
object X⋆, the direct sum

⊕
i≥1 Xi. is referred to as the underlying object of X⋆.

Similarly as for filtered objects, we define a variant Gr+(C) as

Gr+(C) = Fun(N(Zds
≥0), C),

where Zds
≥0 denotes the discrete category on Z≥0.

Definition 2.4 (Associated gradeds). We have a functor

Gr : Fil(C)→ Gr(C),

which sends X =
{
F iX

}
i≥1

to the associated graded object GrX satisfying (GrX)i = F iX/F i+1X

for all i ≥ 1. Similarly, we have a natural functor

Gr : Fil+(C)→ Gr+(C).

Definition 2.5 (Symmetric monoidal structures). Suppose that C is nonunital presentably sym-
metric monoidal, by which we mean that C is presentable and the tensor product preserves colimits
in each variable. Using Day convolution (cf. [Gla16]), one can equip both Fil(C) and Gr(C) with the
structure of presentably nonunital symmetric monoidal ∞-categories. Furthermore, the associated
graded functor Gr : Fil(C)→ Gr(C) is (nonunital) symmetric monoidal (cf. [GP18, Sec. 2.23]).
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Definition 2.6 (Gradings in degree ≥ a). Given an integer a ≥ 1,

(1) let Gr≥a(C) be the full subcategory of Gr(C) spanned by all X⋆ with Xj ≃ 0 for j < a.
(2) let tr≤a : Gr(C)→ Gr(C) denote the functor which sends a graded object X⋆ to the graded

object Y⋆ with Yj = Xj for j ≤ a and Yj = 0 for j > a.

Next, we will review the process of completion.

Definition 2.7 (Complete and constant filtered objects).

(1) A filtered object Y =
{
F iY

}
i≥1

is said to be constant if the maps F i+1Y → F iY are

equivalences for all i ≥ 1, or equivalently, if Gr(Y ) = 0.

(2) A filtered object Z =
{
F iZ

}
i≥1

is complete if lim
←−i

F iZ = 0, i.e. if for each constant filtered

object Y ∈ Fil(C), we have HomFil(C)(Y, Z) = 0. Let Filcpl(C) ⊂ Fil(C) denote the full

subcategory of complete objects. We have a similar notion for objects of Fil+(C).

Definition 2.8 (Completions). The general theory implies that the inclusion Filcpl(C) ⊂ Fil(C)
is the right adjoint of a Bousfield localisation, which we will refer to as the completion functor
Fil(C) → Filcpl(C). Given a filtered object X =

{
F iX

}
i≥1

, we can form its completion X̂. The

canonical map X → X̂ induces an equivalence on Gr(−).

Remark 2.9. We can detect whether a given morphism X
f
−→ Y induces an equivalence after

completion by passing to associated gradeds. Indeed, if Gr(f) : Gr(X)→ Gr(Y ) is an equivalence,

then Gr(cofib(f)) ≃ cofib(Gr(f)) ≃ 0. This implies that cofib(f̂) ≃ ̂cofib(f) is both constant and
complete, and therefore vanishes.

In general, Filcpl(C) ⊂ Fil(C) is not closed under colimits. However completions are preserved by
geometric realisations under suitable connectivity hypotheses. More precisely, let R be a connective
E∞-ring. Write ModR,≥0 ⊂ModR for the full subcategory of connective R-modules.

Definition 2.10 (Connective filtered and graded objects). We define:

(1) FilModR,≥0 ⊂ FilModR is the subcategory spanned by all X =
{
F iX

}
i≥1

for which each

F iX belongs to ModR,≥0; we have an analogous subcategory Fil+ModR,≥0 ⊂ Fil+ModR.

(2) FilcplModR,≥0 ⊂ FilModR,≥0 is the subcategory of complete objects (and similarly for Fil+).

(3) GrModR,≥0 ⊂ GrModR is the subcategory of objects X⋆ with Xi connective for each i ≥ 1.

In the sequel, we will make frequent use of the following observation:

Proposition 2.11. The subcategory FilcplModR,≥0 ⊂ FilModR is closed under geometric realisations.

Proof. Let X• be a simplicial object in FilcplModR,≥0 and let Y = |X•| denote its geometric
realisation (computed in FilModR). We need to see that Y is complete, i.e. lim

←−i
F iY = 0 in ModR.

By the Milnor short exact sequence, this is equivalent to the assertion that for each j, we have

(1) lim
←−
i

πj(F
iY ) = lim

←−
1
iπj(F

iY ) = 0,

in the category of abelian groups.
We observe that F iY = |F iX•|. Since all modules in question are connective, we have πj(F

iY ) ∼=
πj(skn|F iX•|) for n > j and all i. Thus, in verifying (1) for a given j, we may replace Y with
the filtered object skj+1|X•| ∈ FilModR. This can be expressed as a finite colimit of a diagram
in the Xs, and since FilcplModR ⊂ FilModR is closed under finite colimits, we deduce skj+1|X•| ∈
FilcplModR. Applying the Milnor exact sequence again to skj+1|X•| ∈ FilcplModR shows (1). �
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In the sequel, it will be important to understand how functors F interact with the internal
grading. To this end, we will use the following natural definition.

Definition 2.12 (Increasing functors). We say that a functor F : GrModk,≥0 −→ GrModk,≥0 is
i-increasing if:

(1) The functor tr≤nF factors through tr≤n−i+1 : GrModk,≥0 → GrModk,≥0.
(2) Given any X ∈ GrModk,≥0, we have F (X)j = 0 for all j < i. That is, F takes values in

objects which have contractible components in internal grading less than i.

Example 2.13. The functor V 7→ V ⊗i,GrModk,≥0 → GrModk,≥0 is i-increasing. Similarly, the
functor V 7→ (V ⊗i)hΣi (which appears in the expression for the free E∞-algebra) is i-increasing.

Next, we record several finiteness conditions which will be useful in the sequel. Mostly the
following serves to record some notation.

Definition 2.14 (Finiteness conditions). Let k be a field.

(1) Let Modftk ⊂ Modk denote the subcategory spanned by those objects X ∈ Modk such that
each homotopy group πi(X), i ∈ Z is a finite-dimensional vector space. We say that these

objects are of finite type. Define Modftk,≥0,Modftk,≤0 ⊂ Modftk as the subcategories spanned
by connective and coconnective objects, respectively.

(2) Let GrftModk ⊂ GrModk denote the subcategory spanned by all objects X⋆ ∈ GrModk
for which

⊕
i≥1 Xi belongs to Modftk . We define Gr+Modftk in a similar way. We let

GrftModk,≥0 ⊂ GrftModk be the subcategory spanned by connective objects.

(3) Let FilftModk ⊂ FilModk denote the subcategory of filtered objects X =
{
F iX

}
i≥1

which

are complete and such that Gr(X) ∈ GrftModk. Similarly, we denote the full subcategory of

connective objects by FilftModk,≥0 ⊂ FilftModk. (As an example, we could take a (discrete)
finite-dimensional k-vector space with a finite classical filtration by subspaces).
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3. Functors of k-modules

Let k be a field and write Modk for the ∞-category of k-module spectra. In this section, we will
discuss functors Modk → Modk which preserve sifted colimits, which is equivalent to preserving
filtered colimits and geometric realisations.

Below, we will need to construct various such functors Modk → Modk, e.g. the free partition Lie
algebra functor. One typically cannot write down such a functor easily by hand on all of Modk.
However, it will be easy to describe functor on a suitable subcategory on Modk, often in particular
the coconnective perfect k-module spectra. For the general theory we will need our functors on all
of Modk, though, and the primary purpose of this section is to discuss some abstract homological
algebra which will enable us to construct the extension to all of Modk.

3.1. Extending Functors. In the following, we will freely use the theory of Kan extensions along
fully faithful inclusions, as in [Lur09, Section 4.3.2].

Notation 3.1. Let C,D be ∞-categories admitting sifted colimits. We write FunΣ(C,D) for the
full subcategory of Fun(C,D) spanned by all functors which preserve sifted colimits.

The first observation is that it is easy to describe sifted-colimit-preserving functors out of the
full subcategory Modk,≥0 ⊂ Modk of connective k-module spectra. In fact, Modk,≥0 can be char-
acterised by a universal property (cf. [Lur17, Sec. 7.2.2]):

Proposition 3.2 (The universal property of Modk,≥0). Given any ∞-category D with sifted col-
imits, restriction induces an equivalence of ∞-categories

FunΣ(Modk,≥0,D)
≃
−−−−→ Fun(Vectωk ,D)

whose inverse is given by left Kan extension. Here Vectωk denotes the full subcategory spanned by all
finite-dimensional discrete k-module spectra, which is equivalent to the (nerve of the) usual category
of finite-dimensional k-vector spaces.

One therefore has the following construction (which goes back to the work of Dold-Puppe [DP61]):

Construction 3.3 (Nonabelian derived functors). Fix a functor F : Vectωk → Vectk from the
category Vectωk of finite-dimensional k-vector spaces to the category Vectk of all k-vector spaces.
Using that Vectk is equivalent to the full subcategory of Modk spanned by all discrete k-module
spectra, we can extend F to a sifted-colimit-preserving functor LF : Modk,≥0 → Modk,≥0. The
functor LF is often called the nonabelian derived functor of F0.

Example 3.4. We recall the following classical examples:

(1) Given an integer n ≥ 0, consider the functor
⊗n

: Vectωk → Vectωk which sends a vector
space V0 to V ⊗n0 . This canonically extends to a functor Modk,≥0 → Modk,≥0, which is
necessarily just the iterated tensor power functor

⊗n
: Modk,≥0 → Modk,≥0 coming from

the symmetric monoidal structure on Modk,≥0.
(2) Given n ≥ 0, we consider the functors Symn,

∧n, Γn : Vectωk → Vectk which send a
finite-dimensional vector space V to its nth symmetric, exterior, or divided power, respec-
tively. The nonabelian derived functor Construction 3.3 again allows us to define canonical

extensions LSymi,L
∧i

,LΓi : Modk,≥0 → Modk,≥0 of these three functors.

There is a basic asymmetry between these two examples. The extended functor on Mod≥0k

arose naturally from the symmetric monoidal structure; consequently, the functor
⊗i is naturally

defined on all of Modk, not only on the connective k-module spectra. By contrast, if k is of
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characteristic p > 0, the functors LSymi generally cannot be described directly in terms of the

symmetric monoidal structure on Modk,≥0. It is correspondingly less clear that LSymi and L
∧i

naturally extend to all of Modk, though this was first shown in work of Illusie [Ill71, Sec. I-4].
In this section, we will establish two generalisations of Proposition 3.2 to functors defined on all

k-module spectra, and help bridge the above asymmetry: in particular, we will describe functors

such as LSymi,L
∧i

on all of Modk.
We begin by reviewing some basic facts about compact generation and perfect modules, and

refer to [Lur17, Sec. 7.2.4] for a detailed treatment.

Notation 3.5 (Perfect modules). We write Perfk ⊂ Modk for the full subcategory of Modk spanned
by all perfect k-module spectra, i.e. k-module spectra M with dimk(π∗(M)) <∞. Let Perfk,[n1,n2]

be the full subcategory of Perfk spanned by k-module spectra whose homotopy groups are concen-
trated between degrees n1 and n2. Set Perfk,≥n := Perfk,[n,∞] and Perfk,≤n := Perfk,[−∞,n].

The∞-category Modk is a compactly generated∞-category, and a module spectrum M ∈Modk
is compact if and only if it is perfect. The ∞-category Modk can therefore be identified with the
Ind-completion (cf. [Lur09, Sec. 5.3.5]) of Perfk. We deduce that for any ∞-category D with
filtered colimits, restriction and left Kan extension give mutually inverse equivalences

(2) Funω(Modk,D) ≃ Fun(Perfk,D)

between Fun(Perfk,D) and the ∞-category Funω(Modk,D) of functors Modk → D which preserve
filtered colimits.

Notation 3.6. Given a simplicial diagram X• ∈ Fun(∆op, C) in some ∞-category C, we write
|X•| := colim∆op(X•) for its geometric realisation. The simplicial object X• is said to be m-skeletal
if it is the left Kan extension of its restriction to ∆op

≤m, the full subcategory of ∆op spanned by

[0], [1], . . . , [m]. We recall that ∆op
≤m is cofinal to a finite simplicial set (see [Lur17, 1.2.4.17]), so

that geometric realisations of m-skeletal simplicial objects behave like finite colimits.

Definition 3.7 (Finite geometric realisations). Let D be an ∞-category admitting geometric re-
alisations. We say that a functor F : Perfk → D preserves finite geometric realisations if for every
simplicial object X• of Perfk which is m-skeletal for some m (so that |X•| belongs to Perfk), the
natural map |F (X•)| → F (|X•|) is an equivalence. We write Funσ(Perfk,D) ⊂ Fun(Perfk,D) for
the full subcategory spanned by functors which preserve finite geometric realisations.

We can now state our first generalisation of Proposition 3.2:

Proposition 3.8. Given any ∞-category D with sifted colimits, restriction and left Kan extension
induce mutually inverse equivalences

FunΣ(Modk,D)
≃
−−−−→ Funσ(Perfk,D).

Proof. This follows from the equivalence Funω(Modk,D) ≃ Fun(Perfk,D) stated in (2). It suffices
to show that a functor F : Modk → D which preserves filtered colimits additionally preserves sifted
colimits if and only if its restriction F |Perfk preserves finite geometric realisations. This follows
easily from the following facts:

(1) The functor F preserves sifted colimits if and only if it preserves filtered colimits (which it
does by assumption) and geometric realisations (cf. [Lur09, Corollary 5.5.8.17]).

(2) Every simplicial object in Modk is a filtered colimit of simplicial objects which arem-skeletal
for various m (take the left Kan extensions from truncations).
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(3) Every m-skeletal simplicial object in Modk is a filtered colimit of m-skeletal simplicial
objects which take values in Perfk (this follows as the hom-sets in ∆op

≤m are finite). �

For later applications, we need to refine the above result from Perfk to a smaller subcategory.

Definition 3.9 (Finite coconnective geometric realisations). Let D be an ∞-category admitting
geometric realisations. We say that a functor F : Perfk,≤0 → D preserves finite coconnective
geometric realisations if for every simplicial object X• of Perfk,≤0 which is m-skeletal for some m
and such that |X•| belongs to Perfk,≤0, the natural map |F (X•)| → F (|X•|) is an equivalence.
We write Funσ(Perfk,≤0,D) ⊂ Fun(Perfk,≤0,D) for the full subcategory spanned by functors which
preserve finite coconnective geometric realisations.

We will now interpret the condition in Definition 3.9 in terms of left Kan extensions (albeit with
an infinite number of such conditions).

Proposition 3.10. Let D be an ∞-category with sifted colimits.

(1) Let F ∈ Fun(Perfk,D). Then F preserves finite geometric realisations if and only if, for
each n ≥ 0, the restriction F |Perfk,≥−n

is left Kan extended from Vectωk [−n].
(2) Let F ∈ Fun(Perfk,≤0,D). Then F preserves finite coconnective geometric realisations if

and only if, for any n ≥ 0, the restriction F |Perfk,[−n,0]
is left Kan extended from Vectωk [−n].

Proof. We shall only prove statement (2); the proof of (1) is similar. Suppose F ∈ Funσ(Perfk,≤0,D).
We claim that Fn = F |Perfk,[−n,0]

is left Kan extended from Vectωk [−n]. Analogously to Proposi-

tion 3.2, the left Kan extension of F 0
n := F |Vectωk [−n] to Perfk,[−n,0] (and indeed to all of Modk,≥−n)

can be computed as follows: given X ∈ Perfk,[−n,0], we find an n-skeletal simplicial object Y• with

each Yi ∈ Vectωk [−n] such that |Y•| ≃ X . The value of the left Kan extension of F 0
n on X is then

given by |F 0
n(Y•)|. Since F preserves finite coconnective geometric realisations, it follows that this

agrees with Fn(X) and Fn is indeed left Kan extended from Vectωk [−n], as desired.
Conversely, suppose F ∈ Fun(Perfk,≤0,D) has the property that Fn = F |Perfk,[−n,0]

is left Kan

extended from Vectωk [−n] for all n ≥ 0. For each n, it then follows (as in Proposition 3.2) that F
preserves geometric realisations of simplicial objects in Perfk,[−n,0] whose realisation also belongs to
Perfk,[−n,0]. Since any m-skeletal simplicial object in Perfk,≤0 is a simplicial object in Perfk,[−n,0]
for n sufficiently large, we deduce that F preserves all coconnective finite geometric realisations. �

Corollary 3.11. If F : Perfk → D preserves finite geometric realisations, then F is left Kan
extended from Perfk,≤0.

Proof. The statement follows from part (1) of Proposition 3.10 by “taking the limit as n → ∞”.
More precisely, since F |Perfk,≥−n

is left Kan extended from Vectωk [−n], it is also left Kan extended
from the larger subcategory Perfk,[−n,0]. The claim then follows from the remark below. �

Remark 3.12. Let C =
⋃

n C
n be the union of an increasing chain C1 ⊂ C2 ⊂ . . . of full subcat-

egories of C and suppose that F : C → D has the property that F |Cn is left Kan extended from
Cn0 := C0∩Cn for all n. Then F is left Kan extended from C0. This follows from the definition of a Kan
extension because for any x ∈ C, we have an equivalence of ∞-categories (C0)/x = colimn(C

n
0 )/x.

We arrive at our second generalisation of Proposition 3.2:

Proposition 3.13. Given any∞-category D with sifted colimits, restriction induces an equivalence

FunΣ(Modk,D)
≃
−−−−→ Funσ(Perfk,≤0,D)
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between FunΣ(Modk,D) and the full subcategory of Fun(Perfk,≤0,D) spanned by all functors which
preserve finite coconnective geometric realisations. The inverse is given by left Kan extension.

Proof. In view of Proposition 3.8, it suffices to show that the restriction functor Funσ(Perfk,D)→
Funσ(Perfk,≤0,D) is an equivalence whose inverse is given by taking the left Kan extension. By
Corollary 3.11, this restriction functor is fully faithful.

For essential surjectivity, we will check that if G : Perfk,≤0 → D preserves finite coconnective geo-

metric realisations, then its left Kan extension G̃ : Perfk → D preserves finite geometric realisations.

For this, let G̃n denote the left Kan extension of G|Perfk,[−n,0]
to Perfk. The various functors G̃n are

linked by natural transformations G̃0 → G̃1 → G̃2 → . . .. By Proposition 3.10(2), the restriction of

G̃n to Perfk,≥−n preserves finite geometric realisations, as it is left Kan extended from Vectωk [−n].
Any simplicial object in Perfk which is m-skeletal for some m belongs to Perfk,≥−n for n≫ 0, and

thus its geometric realisation is preserved by G̃n for n sufficiently large. The result then follows

from the equivalence G̃ ≃ colimnG̃n. �

Proposition 3.13 characterises sifted-colimit-preserving functors F : Modk → D in terms of their
restriction to Perfk,≤0. Setting D = Modk, we can deduce:

Corollary 3.14. Let End
Perf≤0

Σ (Modk) be the full subcategory of EndΣ(Modk) spanned by those
functors which preserve Perfk,≤0. Then the monoidal restriction functor

End
Perf≤0

Σ (Modk)→ Endσ(Perf
≤0
k )

is an equivalence. Here Endσ(Perfk,≤0) denotes the ∞-category of endofunctors of Perfk,≤0 which
preserve finite coconnective geometric realisations.

Corollary 3.14 allows us to extend functors F : Perfk,≤0 → Perfk,≤0 which preserve suitable
colimits to sifted-colimit-preserving endofunctors of Modk in a monoidal fashion. However, the
functors which we will want to extend later will usually not preserve Perfk. Instead, they will
preserve the following larger subcategory of Modk. We will now record slight variants of the above
results extending from Modftk,≤0 instead of Perfk,≤0.

Definition 3.15. Let D be an∞-category with sifted colimits. A functor F : Modftk,≤0 → D is said

to preserve finite coconnective geometric realisations if for every simplicial object X• ∈Modftk,≤0
which is m-skeletal for some m and with |X•| ∈ Modftk,≤0, the natural map |F (X•)| → F (|X•|)

is an equivalence. We say that F is right complete if for any X ∈ Modftk,≤0, the natural map

colimnF (τ≥−nX)→ F (X) is an equivalence. We write Fun′σ(Modftk,≤0,D) ⊂ Fun(Modftk,≤0,D) for
the full subcategory spanned by all functors which preserve finite coconnective geometric realisations
and which are right complete.

We can now deduce the following “finite type variant” of Proposition 3.13:

Proposition 3.16. Given any∞-category D with sifted colimits, restriction induces an equivalence

FunΣ(Modk,D) −→ Fun′σ(Modft
k,≤0,D)

between FunΣ(Modk,D) and the full subcategory of Fun(Modftk,≤0,D) spanned by all functors which
preserve finite coconnective geometric realisations and are right complete.
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Proof. Using Proposition 3.13, we observe that it suffices to check that the restriction functor
Fun′σ(Modft

k,≤0,D)→ Funσ(Perfk,≤0,D) is an equivalence with inverse given by left Kan extension.

Given F ∈ Fun′σ(Modftk,≤0,D), the restriction F |Perfk,≤0
preserves finite coconnective geometric

realisations. Proposition 3.13 implies that the left Kan extension of F |Perfk,≤0
to Modk preserves all

sifted colimits, which in turn shows that the left Kan extension F̃ of F |Perfk,≤0
to Modftk,≤0 is right

complete. We deduce that F̃ → F is a transformation between right-complete functors Modftk,≤0 →
D which is an equivalence on Perfk,≤0. This transformation is therefore an equivalence and F is left

Kan extended from Perfk,≤0. Hence, the restriction Fun′σ(Modftk,≤0,D)→ Funσ(Modftk,≤0,D) is fully
faithful. It is also essentially surjective since the left Kan extension of any G ∈ Funσ(Perfk,≤0,D)
to Modk preserves sifted colimits by Proposition 3.13, which implies that the left Kan extension of
G to Modftk,≤0 is right complete and preserves finite geometric realisations. �

Setting D = Modk in Proposition 3.16, we can deduce the following result, which will be crucial
in our later applications to extend monads. We let EndΣ(Modk) denote the monoidal ∞-category
of functors Modk → Modk which preserve sifted colimits.

Corollary 3.17. Let End
Modft

≤0

Σ (Modk) be the subcategory of EndΣ(Modk) spanned by all functors

which preserve Modftk,≤0. Then the monoidal restriction functor

End
Modft

≤0

Σ (Modk)→ End′σ(Modftk,≤0)

is an equivalence. Here End′σ(Modft
k,≤0) denotes the ∞-category of endofunctors of Modftk,≤0 which

preserve finite coconnective geometric realisations and are right-complete.

3.2. Right-Left Extension. We shall now apply the tools developed in the previous subsection
and build an array of extended functors.

Remark 3.18. Closely related ideas appear in the work of Illusie [Ill71, Sec. I-4], and more recently
in the work of Kaledin [Kal15, Sec. 3].

Throughout this subsection, we fix a stable ∞-category D admitting all limits and colimits and
a field k. Our basic procedure first extends a functor on finite-dimensional k-vector spaces in the
coconnective direction and then in the connective direction.

More precisely, let F : Vectωk → D be a functor. Our goal is to extend F to a sifted-colimit-
preserving functor Modk → D. In a first step, we take the right Kan extension FR : Perfk,≤0 → C
of F along the inclusion Vectωk ⊂ Perfk,≤0.

Remark 3.19. Using linear duality and Proposition 3.2, we see that the right Kan extension FR

of a functor F as above can be computed as follows: given X ∈ Perfk,≤0, we write X ≃ Tot(V •)
for V • a cosimplicial object of Vectωk . Then FR(X) ≃ Tot(F (V •)).

In order to further extend FR : Perfk,≤0 → D to a sifted-colimit-preserving functor Modk → D
as in Proposition 3.13, we need to assume the following condition:

Definition 3.20. A functor F : Vectωk → D is said to be right-extendable if the right Kan extension
FR : Perfk,≤0 → D commutes with finite coconnective geometric realisations (cf. Definition 3.9).

Construction 3.21 (Right-left extension). The right-left extension FRL : Modk → D of a right-
extendable functor F : Vectωk → D is given by the left Kan extension of FR : Perfk,≤0 → D to Modk.



DEFORMATION THEORY AND PARTITION LIE ALGEBRAS 17

Remark 3.22. By Proposition 3.13, the right-left Kan extension FRL of any right-extendable
functor F preserves sifted colimits. Hence, FRL restricts on Modk,≥0 to the left Kan extension LF .

Let Vectk ⊂ Modk be the subcategory of discrete k-module spectra, i.e. ordinary k-vector spaces.

Proposition 3.23. Let F : Vectk → Modk,≤0 be a filtered-colimit-preserving functor, and suppose

that the restriction F |Vectωk
admits a right-left extension F̃ to Modk (cf. Construction 3.21).

If M• is a cosimplicial k-vector space, then F̃ is determined by the formula

F̃ (Tot(M•)) ≃ Tot(F (M•)).

Proof. Since F preserves filtered colimits, we obtain a natural equivalence F̃ |Vectk ≃ F . Given a
cosimplicial k-vector space M• as above, we can write

M• ≃ colim
i∈I

(M•i ),

where each Mn
i belongs to Vectωk and every M•i is a finite cosimplicial diagram for all i.

Since each Mn
i is coconnective, every truncation τ≥m(Tot(M•)) is only affected by the mth

coskeleton of the appearing totalisations. We can therefore commute the filtered colimit past the

totalisation to obtain a equivalences Tot(M•) ≃ Tot(colim
i∈I

(M•i )) ≃ colim
i∈I

(Tot(M•i )). The same

argument applies to the diagram F (M•i ).

Combining this observation with Remark 3.22 and the defining property of F̃ , we obtain equiva-

lences F̃ (Tot(M•)) ≃ colim i∈I (Tot(F (M•i ))) ≃ Tot(colim i∈I (F (M•i ))). Since F preserves filtered
colimits, this is then equivalent to Tot(F (colim i∈IM

•
i )) ≃ Tot(F (M•)), as desired. �

Let FunRL(Vect
ω
k ,D) ⊂ Fun(Vectωk ,D) denote the full subcategory of right-extendable func-

tors. Right-left extension establishes a fully faithful embedding FunRL(Vect
ω
k ,D) ⊂ FunΣ(Modk,D)

whose image consists of all functors F whose restriction to F |Perfk,≤0
commutes with totalisations

which are m-coskeletal for some m (equivalently, F |Perfk,≤0
is right Kan extended from Vectωk ).

Construction 3.21 will be our basic tool for building sifted-colimit-preserving functors on Modk.
In order to proceed, we will need a criterion for right-extendability. We begin by recalling the
following definition, originally due to Eilenberg-MacLane [EML54]:

Definition 3.24 (Functors of finite degree). A functor F : Vectωk → D is said to be

(1) of degree 0 if F is constant.
(2) of degree n with n ≥ 1 if for any X ∈ Vectωk , the difference functor DXF : Vectωk → D

defined via DXF (Y ) = fib(F (X ⊕ Y )→ F (Y )) is of degree n− 1.
(3) of finite degree if it is of degree n for some n ≥ 0.

Example 3.25. The nth symmetric, exterior, and divided power functors Symn,
∧n

,Γn on Vectωk
are all of degree n.

We can now state the main result of this section:

Theorem 3.26. Let F : Vectωk → D be a functor of finite degree. Then F is right-extendable. In
particular, we obtain a canonical sifted-colimit-preserving extension F : Modk → D.

Our proof of the above result will rely on Goodwillie’s calculus of functors. We recall several of
the key definitions from Goodwillie’s work (cf. [Goo92] [Goo03]) in their∞-categorical incarnation,
which is described in detail in [Lur17, Chapter 6].

For the rest of this section, we fix a pointed ∞-category A with finite colimits and a stable
∞-category D with small colimits.
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Definition 3.27 (n-excisive functors).

(1) An (n + 1)-cube in A is a functor P({0, . . . , n}) → A, where P({0, . . . , n}) denotes the
poset of finite subsets of {0, . . . , n}. Such a cube is
• strongly coCartesian if it is left Kan extended from subsets of cardinality at most 1.
• coCartesian if it is a colimit diagram, i.e. its value on {0, . . . , n} is determined by its
values on proper subsets.

(2) A functor F : A → D is n-excisive if F carries strongly coCartesian (n + 1)-cubes to
coCartesian cubes (recall that D is assumed to be stable).

Let Excn(A,D) denote the full subcategory of Fun(A,D) spanned by all n-excisive functors A → D.

Example 3.28. Let G : An → D be a functor which preserves finite colimits in each variable.
Then the diagonal functor F defined by F (X) = G(X, . . . , X) is n-excisive.

Remark 3.29. The subcategory Excn(A,D) ⊂ Fun(A,D) is closed under arbitrary limits and
colimits: that is, limits and colimits of n-excisive functors are n-excisive. Here and in the preceding
Example, we have used that D is stable.

Remark 3.30. Suppose A is small. Given an n-excisive functor F : A → D, we can canonically
extend F to a filtered-colimit-preserving functor Ind(A)→ D, where Ind(A) is the Ind-completion
of A. It is not hard to see that this functor is also n-excisive (cf. [Lur17, Proposition 6.1.5.4]).
In fact, restriction and left Kan extension establish an equivalence Excn(A,D) ≃ Excnc (Ind(A),D)
between n-excisive functors A → D and n-excisive filtered-colimit-preserving functors Ind(A)→ D.

A theorem of Goodwillie allows us to universally approximate functors by n-excisive functors:

Proposition 3.31 (The n-excisive approximation). The inclusion Excn(A,D) ⊂ Fun(A,D) admits
a left adjoint Pn : Fun(A,D)→ Excn(A,D).

Goodwillie has in fact given a more explicit description of the functor Pn(F ) as a sequential col-
imit Pn(F ) = colimn (F → Tn(F )→ Tn(Tn(F ))→ . . .). Here G 7→ Tn(G) is a certain construction
on functors G : A → D with the property that the value Tn(G)(X) is obtained as a finite limit of
copies of G evaluated on various direct sums of suspensions of X . We will not need to know the
precise formula for Tn, except that it has the following implications:

Proposition 3.32. If F preserves filtered colimits, then so does PnF .

Proposition 3.33. Given a right exact functor A → B between two pointed ∞-categories with
finite colimits, the following diagram commutes

Fun(B,D)

��

Pn
// Excn(B,D)

��

Fun(A,D)
Pn

// Excn(A,D)

.

Here the vertical maps are simply restrictions.

Proposition 3.34 (Johnson-McCarthy [JM99, Proposition 5.10]). If F : Vectωk → D is of degree

n, then its nonabelian derived functor LF : Mod≥0k → D is n-excisive.

Proof. Given a collection of maps Y → Xi for 0 ≤ i ≤ n, we can form a strongly coCartesian cube
c : P({0, . . . , n}) → Mod≥0k by left Kan extension. It suffices to show that the functor LF carries
every such cube c to a coCartesian cube LF ◦ c.
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We first assume that each map Y → Xi ≃ Y ⊕ Zi is a (split) injection between discrete finite-
dimensional k-vector spaces. In this case, the fact that F is of degree n immediately implies that
F ◦ c is a coCartesian cube.

But we can write any collection C = {Y,Xi, Y → Xi}0≤i≤n as a geometric realisation of collec-

tions C′ with all Y ′, X ′i ∈ Vectωk and each Y ′ → X ′i (split) injective. Since LF preserves geometric
realisations, the known assertion for each C′ implies the desired result for C. �

Theorem 3.35. Let A be small and stable. Suppose that A0 is a full subcategory of A which is
closed under finite colimits such that for any X ∈ A, we have ΣmX ∈ A0 for m ≫ 0 sufficiently
large. The restriction functor induces an equivalence

Excn(A,D)
≃
−−−−→ Excn(A0,D)

whose inverse is given by F 7→ Pn(Lan
A
A0

(F )).

Proof. The composite functor Excn(A,D) → Fun(A,D) → Fun(A0,D) admits a left adjoint Pn ◦
LanAA0

by [Lur09, Proposition 4.3.2.17], [Lur09, Lemma 4.3.2.13], and Proposition 3.31. Given
that Excn(A0,D) →֒ Fun(A0,D) is fully faithful, this implies that Excn(A,D)→ Excn(A0,D) also
admits a left adjoint given by F 7→ Pn(Lan

A
A0

F ).
This left adjoint is fully faithful. Indeed, given an n-excisive functor F0 : A0 → D, we first observe

that LanAA0
(F0)|A0 ≃ F0 since A0 ⊂ A is a full subcategory. By Proposition 3.33, Goodwillie’s

explicit construction of the n-excisive approximation allows us to recover F0 from Pn(Lan
A
A0

(F0)):

Pn(Lan
A
A0

(F0))|A0 ≃ Pn(Lan
A
A0

(F0)|A0) ≃ Pn(F0) ≃ F0.

To conclude the proof, it suffices to show that the right adjoint Excn(A,D) → Excn(A0,D) is
conservative. After passing to cofibres, it is enough to prove that an n-excisive functor F : A → D
which vanishes on A0 must also vanish on A. For each r ≥ 0, we consider the statement Sr that
F (ΣrX⊕m) ≃ 0 for all m ≥ 0 and all X ∈ A. Since F is n-excisive, statement Sr implies statement
Sr−1 as we can use the strongly coCartesian (n + 1)-cube obtained from the maps {X → 0} to
recover F (X) from F (0), F (ΣX), F (ΣX ⊕ ΣX), . . . . By assumption, we know that Sr holds true
for r ≫ 0. A descending induction shows that S0 is true, i.e. that F ≃ 0. �

Proposition 3.36. Let F : A → D be a functor between cocomplete stable ∞-categories which is
n-excisive and preserves filtered colimits. Then F preserves totalisations which are m-skeletal for
some m and all geometric realisations.

Proof. We begin with the fibre sequence Dn(F ) → Pn(F ) → Pn−1(F ). By induction, it suffices
to prove the claim for the n-homogeneous functor Dn(F ). We can find a symmetric functor G =
crn(F ) : An → D which preserves colimits in each variable such that Dn(F ) ≃ G(X, . . . , X)hΣn

(cf. [Lur17, Proposition 6.1.4.14., Corollary 6.1.4.15]). Since (−)hΣn : Fun(BΣn,D) → D is exact
and limits and colimits in functor categories are computed pointwise, it suffices to check that the
functor A → D given by X 7→ G(X, . . . , X) preserves geometric realisations and finite totalisations.

For realisations, this follows immediately since ∆op → (∆op)n is left cofinal (cf. [Lur09, Lemma
5.5.8.4]). If X• : ∆ → A is a cosimplicial object which is right Kan extended from ∆≤m, we first
observe that (X•, . . . , X•) : ∆n → An is right Kan extended from (∆≤m)n. Since this is a finite limit
condition and G is exact in each variable, the multisimplicial object G(X•, . . . , X•) is also right Kan
extended from (∆≤m)n, which implies that G(Tot(X•), . . . ,Tot(X•)) ≃ lim∆n G(X•, . . . , X•)) ≃
Tot (G(X•, . . . , X•)). For the final equivalence, we have used that the diagonal map ∆ → ∆n is
right cofinal. �
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Proof of Theorem 3.26. If F : Vectωk → D is of degree n, we know by Proposition 3.34 that the

sifted-colimit-preserving left Kan extension LF : Mod≥0k → D is n-excisive.

The functor F̃ := Pn(Lan
Modk

Mod≥0
k

LF ) ≃ Pn(LF ◦ τ≥0) is evidently n-excisive, and it preserves

filtered colimits as the t-structure on Modk is compatible with filtered colimits (cf. [Lur17, Propo-
sition 1.3.5.21]). Combining this observation with Proposition 3.33 and Theorem 3.35, we can

deduce that the restriction of F̃ to Modk,≥0 agrees with LF .

Proposition 3.36 then implies that F̃ preserves geometric realisations and finite totalisations.

Hence, F̃ |
Perf≤0

k
is right Kan extended from F and preserves finite coconnective realisations. �

Example 3.37. As a consequence, we obtain n-excisive functors

LSymn, L
n∧
, LΓn : Modk −→ Modk.

extending the ordinary symmetric, exterior, and divided power functors Example 3.4

We have the following duality phenomenon:

Proposition 3.38 (Duality). Let F : Vectωk −→ Modk be a functor of finite degree. Then the

functor F∨ : Vectωk −→ Modk given by M 7→ (F (M)∨)∨ is right-extendable and its extension F̃∨

satisfies F̃∨(M) ≃ (F̃ (M∨))∨ for all M ∈ Perfk.

Proof. Since the functor (−)∨ : Modk → Modop
k preserves colimits, it is exact. As F̃ preserves

geometric realisations and finite totalisations, the functor G = (F̃ (M∨))∨ preserves finite realisa-
tions and finite totalisations. This in turn implies that G|

Perf
≤0
k

is right Kan extended from Vectωk
and that G|

Perf≤0
k

preserves finite coconnective geometric realisations. Hence, the functor F∨ is

right-extendable. The second claim follows since F̃∨ and G agree on Perf≤0k and preserve finite
geometric realisations. �

Example 3.39. Since the nth symmetric power functor M 7→ (M⊗)Σn is dual to the nth divided
power functor M 7→ (M⊗)Σn for M ∈ Vectωk , we conclude from the above Proposition that the
extended functors satisfy Γn(M) ≃ (Symn(M∨))∨ for all M ∈ Perfk.

3.3. Extended Functors and Bredon Homology. We shall now attach n-excisive functors
Modk → Modk to genuine Σn-spaces and construct a spectral sequence to compute their values.

Given a field k and a finite pointed Σn-set (X, x), we write k[X ] for the quotient of the free
k-vector space on X by the relation x ≃ 0. We define a functors FX , Fh

X : Vectωk → Modk by setting

FX(M) := (k[X ]⊗M⊗n)Σn and Fh
X(M) := (k[X ]⊗M⊗n)hΣn .

Proposition 3.40. The functors FX and Fh
X are of degree n in the sense of Definition 3.24.

Proof. In order to prove that FX is of degree n, we prove the more general claim that for any sub-
groupH ⊂ Σm×Σn and any Σm-vector space V in Vectωk , the functorG given by Y 7→ (V ⊗Y ⊗n)H is
of degree n. The claim is evident for n = 0. For n > 0, the binomial formula shows that DXG(Y ) =

fib(G(X⊕Y )→ G(Y )) sends Y ∈ Vectωk to Y 7→
⊕n−1

j=0

(
V ⊗ IndΣn

Σn−j×Σj
(X⊗(n−j) ⊗ Y ⊗j)

)
H
. Us-

ing the projection formula, we deduce that the functor DXG(Y ) is in fact given by a sum of functors
Y 7→ (V ⊗X⊗(n−j) ⊗ Y ⊗j)H′ for H ′ a subgroup of (Σm × Σn−j)× Σj with j ≤ n− 1. The claim
follows by induction. A similar argument shows that Fh

X is degree n. �
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By Theorem 3.26, the functors FX , Fh
X admit canonical n-excisive sifted-colimit-preserving exten-

sions Modk → Modk, which we will denote by the same names. Extending the resulting assignments
(SetFin∗ )Σn → EndnΣ(Modk) given by X 7→ FX and X 7→ Fh

X in a sifted-colimit-preserving manner,
we obtain functors

F(−), F
h
(−) : SΣn

∗ ≃ PΣ((Set
Fin
∗ )Σn) −→ EndnΣ(Modk)

from genuine Σn-spaces to n-excisive sifted-colimit-preserving endofunctors of Modk.
We will now describe a method for computing the value of FX and Fh

X on a given k-module
spectrum M . First, we recall the following notion:

Definition 3.41. Given an additive functor µ : (SetFin∗ )G → Modk from finite pointed G-sets to

k-module spectra, we define the (reduced) Bredon chains C̃∗(−, µ) : SG∗ → Modk as the left Kan

extension of µ to the ∞-category of pointed genuine G-spaces SG∗ ≃ PΣ((Set
Fin
∗ )G) . The (reduced)

Bredon homology groups of X ∈ SG∗ with coefficients in µ are given by H̃Br
∗ (X,µ) := π∗(C̃∗(X,µ)).

If X ∈ SΣn
∗ is the geometric realisation of a simplicial diagram X• taking values in the category

of finite pointed Σn-sets, then we have FX(M) ≃ |FX•
(M)| and Fh

X(M) ≃ |Fh
X•

(M)|. Using

the skeletal filtration of the simplicial k-module spectra FX•
(M) and Fh

X•
(M) gives convergent

half-plane spectral sequences

E2
s,t = πs (πt(FX•

(M))) ⇒ πs+t(FX(M))

E2,h
s,t = πs

(
πt(F

h
X•

(M))
)

⇒ πs+t(F
h
X(M)).

Thus, we have E2
s,t = H̃Br

s (X,µM
t ) and E2,h

s,t = H̃Br
s (X,µM,h

t ), where µM
t , µM,h

t : (SetFin∗ )Σn → Modk
are given by X 7→ πt(FX(M)) and X 7→ πt(F

h
X(M)), respectively.

The functors µM
t and µM,h

t are particularly computable when M is perfect and coconnective. In
this case, we can write M = Tot(M•) as a finite totalisation of a cosimplicial finite-dimensional

k-vector space M•. For X ∈ (SetFin∗ )Σn a finite pointed Σn-set, the functor (FX)|
Perf

≤0
k

is right Kan

extended from Vectωk , which in turn implies that FX(M) ≃ Tot(FX(M•)) = Tot(k[X ]⊗ (M•)⊗n)Σn

and Fh
X(M) ≃ Tot(Fh

X(M•)) = Tot(k[X ] ⊗ (M•)⊗n)hΣn (by the dual of Proposition 3.2). Dual
remarks apply for M connective and of finite type.

In both cases, we can use the standard wrong-way maps to upgrade µM
t and µM,h

t to Mackey
functors. We recall that a Mackey functor consists of a pair of functors

(µt : (Set
Fin)G → Modk , µ♮ : (SetFin)G → Modopk )

from finite Σn-sets to Modk which agree on objects and such that whenever the left square below
is a pullback of finite pointed G-sets, then the right hand square commutes:

A
f
> B

C

h

∨

k
> D

g

∨

µ(A+)
µ(f)

> µ(B)

µ(C)

µ♮(h)
∧

µ(k)
> µ(D)

µ♮(g)
∧

We will later use the above spectral sequence to compute the homotopy of free partition Lie algebras.
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3.4. Admissible functors. The main purpose of this subsection is to isolate a class of functors
which preserve certain totalisations in Modftk,≥0. This will play a technical role at various stages in
the axiomatic argument in the following section.

We first need the following elementary and classical observation asserting that endofunctors of
Modk,≥0 which preserve sifted colimits naturally commute with limits of Postnikov towers.

Proposition 3.42. Let F : Modk,≥0 → Modk,≥0 be a functor which preserves sifted colimits.
Suppose V → V ′ is a map in Modk,≥0 such that τ≤nV ≃ τ≤nV

′. Then τ≤nF (V ) ≃ τ≤nF (V ′).

Proof. Since the functor Ω∞ : Modk,≥0 → S preserves products and sifted colimits, the functor

Ω∞ ◦ F : Modk,≥0 → S has the same properties. Hence F̃ := Ω∞ ◦ F is left Kan extended from
a product-preserving functor Vectωk → S, since Modk,≥0 = PΣ(Vect

ω
k ). The general theory of PΣ

shows now that any such functor can be written as a geometric realisation of functors of the form

hV0(−) = HomModk
(V0,−) : Modk,≥0 → S,

for V0 ∈ Vectωk . It is clear that hV0 has the desired property: if V → V ′ is a map in Modk,≥0 which
induces an equivalence on τ≤n, then τ≤nhV0(V )→ τ≤nhV0(V

′) is an equivalence. The result follows
as the collection of all functors Modk,≥0 → S satisfying this property is closed under colimits. �

Definition 3.43 (Admissible functors). Let F : Modk,≥0 → Modk,≥0 be a functor which preserves
sifted colimits. We will say that F is admissible if the following hold:

(1) The functor F preserves the subcategory Modftk,≥0 ⊂Modk,≥0 of finite type k-modules.

(2) If X• is a cosimplicial object of Modftk,≥0 such that the totalisation Tot(X•) (computed

in Modk) belongs to Modftk,≥0, then F (Tot(X•)) −→ Tot(F (X•)) is an equivalence. In

particular, this means that the right-hand side is connective.

Proposition 3.44. Let F : Modk,≥0 → Modk,≥0 be a functor which preserves sifted colimits and

preserves the subcategory Modftk,≥0. Then we can define a functor F∨ : Perfk,≤0 → Modftk,≤0 by the
formula V 7→ F (V ∨)∨. The functor F is admissible if and only if F∨ preserves finite coconnective
geometric realisations (Definition 3.9).

Proof. If F∨ preserves finite coconnective geometric realisations, then F∨ extends uniquely to

a sifted-colimit-preserving functor F̃∨ : Modk → Modk. For V ∈ Perfk,≤0, we have a natural

equivalence F̃∨(V ) ≃ F (V ∨)∨. By Proposition 3.42, this in fact holds for all V ∈ Modftk,≤0. Now

suppose that W • is an augmented cosimplicial object in Modftk,≥0 which is a limit diagram in Modk.

Dualising, we obtain an augmented simplicial object (W∨)• of Modftk,≤0 which is a colimit dia-

gram. Here we have used that linear duality is conservative. Now F̃∨((W∨)•) is a colimit diagram.
Dualising again, we find that F (W •) is a limit diagram, as desired. The reverse implication follows
by a similar argument. �

Proposition 3.45. Let F : Modk,≥0 → Modk be a functor which commutes with sifted colimits.

Suppose that F carries Modftk,≥0 into Modftk,≥0 and that F is n-excisive. Then F is admissible.

Proof. We first observe that F extends uniquely to an n-excisive functor on Modk (Theorem 3.35),
and that it therefore preserves all finite totalisations by Proposition 3.36. The functor F∨ on Perfk
given by V 7→ F (V ∨)∨ is also n-excisive and therefore preserves finite geometric realisations. By
Proposition 3.44, it follows that F is admissible. �
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Proposition 3.45 provides a large supply of examples of admissible functors. However, we will also
need to work with functors, e.g. the free E∞-algebra functor, which are not admissible. However,
they will become admissible in the graded setting, and this observation will be crucial.

Definition 3.46 (Pointwise finite type). Let GrpftModk,≥0 be the full subcategory of GrModk
consisting of those objects X⋆ such that Xi ∈Modftk,≥0 for all i > 0. We shall refer to these objects

as pointwise of finite type. Note that GrftModk,≥0 is a subcategory of GrpftModk,≥0.

Remark 3.47. This is a weaker notion than being of finite type in the sense of Definition 2.14.

We can give the following graded variant of Definition 3.43:

Definition 3.48 (Graded admissible functors). Let F : GrModk,≥0 → GrModk,≥0 be a functor
which preserves sifted colimits. We will say that F is admissible if the following conditions hold:

(1) The functor F preserves the subcategory GrpftModk,≥0 ⊂ GrModk,≥0.

(2) If X• is a cosimplicial object of GrpftModk,≥0 such that the totalisation Tot(X•) (computed

in GrModk) belongs to GrpftModk,≥0, then F (Tot(X•)) → Tot(F (X•)) is an equivalence.
In particular, the right-hand side is connective.

We illustrate the technical advantage of working in the graded setting:

Example 3.49. For some n > 0, consider the functor Modk,≥0 → Modk,≥0 given by V 7→ V ⊗n.
Since this is n-excisive, Proposition 3.45 implies that this functor is admissible. However, the
functor V 7→

⊕
n>0 V

⊗n is not admissible as a functor Modk,≥0 → Modk,≥0.
It is, however, easy to see that the assignment V 7→

⊕
n>0 V

⊗n is admissible as a functor
GrModk,≥0 → GrModk,≥0. This holds because each summand is admissible, and the summands
live in higher and higher internal degree.
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4. The axiomatic argument

Given an augmented monad acting on Modk, we can consider the ∞-category of formal moduli
problems based in algebras over this monad (cf. Definition 4.22). In this section, we shall prove
that under certain conditions specified in Definition 4.15, this ∞-category admits a “Lie algebraic”
description (cf. Theorem 4.23) as algebras over a monad constructed in terms of the monadic bar
construction.

4.1. An informal overview. We briefly recall some axiomatic aspects of bar-cobar duality, which
goes back to the classical work of Moore [Moo71]. For recent modern treatments, we refer to [Chi05,
Chapter 4], [FG12, Sections 3,4], or [GR17, Chapter 6], [LV12, Chapters 2,6].

Given an E∞-ring spectrum k, we write Modk for the ∞-category of k-module spectra. If O
is an ∞-operad in Modk (cf. e.g. [Bra17, Definition 4.1.4], then we can consider the ∞-category
AlgO(Modk) of O-algebras in Modk. Suppose now that O(0) = 0,O(1) = k. Restriction along the
canonical map from O to the trivial operad gives rise to the square-zero functor

sqz : Modk → AlgO(Modk),

which turns an object V ∈Modk into an O-algebra whose operadic multiplication maps are trivial.
This functor admits a left adjoint, which we will denote by

cot : AlgO(Modk)→ Modk.

It is often called the cotangent fibre or O-algebra homology and can be thought of as the derived
indecomposables functor.

Remark 4.1. If k is a field of characteristic zero, this was discussed by Hinich [Hin97], who studied
operads in chain complexes of k-vector spaces. For general E∞-ring spectra R, modelled as com-
mutative algebra objects in symmetric spectra, these functors were also studied in [Har10, Har09,
Har15].

Informally speaking, bar-cobar duality aims to recover an O-algebra A from cot(A) together
with some additional structure placed on it. More formally, we observe that C = cot ◦sqz defines a
comonad on Modk, and abstract nonsense gives rise to a functor

(3) AlgO(Modk)→ coAlgcot ◦sqz(Modk).

Furthermore, the functor cot ◦sqz can be identified with V 7→
⊕

n>0(K(n) ⊗ V ⊗n)hΣn , where
K(n) ∈ Fun(BΣn,Modk) is a symmetric sequence of k-module spectra. This symmetric sequence is
in fact the underlying symmetric sequence of the Koszul dual cooperad K = Bar(O), which one can
often identify explicitly, cf. e.g. [GK94, GK95, GJ94]. Taking k-linear duals, it follows that Bar(O)∨

is an operad in Modk, and the functor cot∨ takes values in algebras over Bar(O)∨. Under suitable
conditions, one may hope that (3) will restrict to an equivalence on appropriate subcategories.

We mention some well-known results in this direction. First of all, the following general com-
parison result shows that one has an equivalence under connectivity hypotheses:

Theorem 4.2 (Ching-Harper [CH19]). Let k be a connective commutative symmetric ring spectrum
and let O an operad Modk for which O(0) ≃ 0,O(1) ≃ k, and O(i) is connective for all i ≥ 0. Let
K be the associated cooperad on Modk. Then the duality functor AlgO(Modk) ⇄ coAlgK(Modk)
restricts to an equivalence between 0-connected objects on both sides.

The hypotheses of 0-connectedness (which means that πn(X) = 0 for all n ≤ 0) is crucial and
essential for the convergence of certain filtrations. This result has many predecessors, including
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the result of Moore [Moo71], who proves Theorem 4.2 for O the nonunital associative operad (over
a discrete ring k) by explicitly constructing the adjunctions on chain complexes. Quillen [Qui69]
proves it for O the Lie operad over Q, where coAlgK becomes (up to a shift) the ∞-category of
cocommutative coalgebras.

The theorem of Lurie [Lur11a] and Pridham [Pri10] classifying formal moduli problems in char-
acteristic zero can be interpreted as a result in this vein, albeit with some additional hypotheses
and conclusions. In particular, one needs to slightly extend the equivalence beyond the assumption
of 0-connectedness, and one needs to prove that certain pullbacks are carried to pushouts.

We recall the work of Lurie and Pridham in more detail. Let k be a field of characteristic zero,
and write CAlgaugk for the ∞-category of augmented E∞-algebras over k. Note that we can also
regard this as the ∞-category of algebras over the nonunital E∞-operad in Modk, so this is an
instance of the situation described above.

Definition 4.3. We say that A ∈ CAlgaugk is complete local Noetherian if A is connective, π0(A)
is a Noetherian ring which is complete with respect to the augmentation ideal, and each πi(A) is a
finitely generated π0(A)-module.

Let CAlgcNk denote the full subcategory of CAlgaugk spanned by such algebras.

It is well-known that the Koszul dual to the nonunital E∞-operad is the shifted Lie operad.
It follows that if A ∈ CAlgaugk , then cot(A)∨[−1] is naturally equipped with the structure of a
differential graded Lie algebra, and we obtain a functor

D : (CAlgaugk )op → AlgLie(Modk).

Here AlgLie(Modk) denotes the ∞-category of Lie algebras in Modk, which is presented by the
model category differential graded Lie algebras.

The Lurie-Pridham Theorem 1.1 is essentially equivalent to the following result:

Theorem 4.4 (Lurie, Pridham). The functor D restricts to an anti-equivalence

D : (CAlgcNk )op ≃ Liecohk,≤−1

between CAlgcNk and the ∞-category Liecohk,≤−1 of differential graded Lie algebras whose homotopy
groups are finite-dimensional in each degree and concentrated in negative degrees.

Furthermore, given maps A → A′′ and A′ → A′′ in CAlgcNk which induce surjections on π0,
the functor D takes the associated pullback diagram to a pushout square of differential graded Lie
algebras.

The deduction of Theorem 1.1 from Theorem 4.4 is explained in Sections 6 and 7 of the survey
paper [Lur10], or, using the language of deformation theories, in [Lur11a, Theorem 1.3.12].

The main “formal” contribution of this paper is a new method for proving results like Theorem 4.4
for∞-categories of algebras more general than CAlgaugk with char(k) = 0. We will prove the relevant
equivalence using Lurie’s higher categorical version of the Barr-Beck comonadicity theorem (cf.
Theorem 4.7.3.5 in [Lur17]), which we shall briefly recall for the reader’s convenience:

Theorem 4.5 (Barr-Beck-Lurie). The adjunction F : C −−−→←−−− D : G is comonadic if and only if

the following conditions hold true:

(1) The functor F is conservative, i.e. a morphism f in C is an equivalence if and only if F (f)
is an equivalence.
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(2) Given an F -split cosimplicial object X• in C (cf. [Lur17, Section 4.7.2]), the diagram X•

admits a limit in C, which is preserved by F .

The Barr-Beck-Lurie theorem is a powerful tool in higher category theory which, just like its
classical counterpart, has been used to establish various descent equivalences by checking certain
convergence results. We give an instructive example (cf. [Mat16, Sec. 3]):

Example 4.6 (Nilpotent descent). Fix a field k and consider the algebra object k[ǫ]/ǫ2, equipped
with the obvious augmentation map to k. We claim that the natural functor

Modk[ǫ]/ǫ2 → Modk, M 7→ k ⊗k[ǫ]/ǫ2 M

is comonadic. To see this, we need to check that the functor k⊗k[ǫ]/ǫ2 (−) is (1) conservative and (2)
commutes with totalisations of cosimplicial objects in Modk[ǫ]/ǫ2 which become split after applying

k ⊗k[ǫ]/ǫ2 (−). Both of these facts follow easily from the fibre sequence of k[ǫ]/ǫ2-modules

k → k[ǫ]/ǫ2 → k.

Indeed, if M ∈Modk[ǫ]/ǫ2 satisfies k⊗k[ǫ]/ǫ2 M = 0, then the above fibre sequence implies that M =
0. This implies (1). Similarly, we can prove statement (2) about commutativity with totalisations
by observing that if M• is a cosimplicial object in Mod(k[ǫ]/ǫ2) such that k ⊗k[ǫ]/ǫ2 M• is split,
then the Tot-tower defined by M is a constant pro-object.

Since we will be working with algebras rather than modules, the arguments are more involved.
The basic observation is that the convergence criterion appearing in the Barr-Beck-Lurie Theo-
rem 4.5(2) is far easier to check when working in the context of connected graded objects (compare
also the notion of pro-nilpotence in [FG12]). As a consequence, it becomes much easier to establish
a Koszul duality statement for connected graded E∞-algebras.

Any augmented E∞-algebra is automatically endowed with a canonical m-adic filtration. With
some care, we can use this fact to transfer all convergence questions into the simpler connected
graded setting. We note that the use of filtrations in this type of argument is standard in the
literature on operadic Koszul duality, cf. for example [Kuh04, HH13, KP17, GR17, CH19].

In Definition 4.15 below, we will isolate axiomatic properties of a monad which will guarantee
that the strategy outlined above passes through. Indeed, we prove in Theorem 4.20 that if these
axioms are satisfied, then a generalised version of Theorem 4.4 holds true.

4.2. The Axiomatic Setup. Let k be a field and suppose that T is a sifted-colimit-preserving
monad acting on Modk. In order to set up a cotangent formalism for T -algebras and apply it to
T -based formal moduli problems, we shall need to assume that T is augmented over the identity
monad. In fact, we will adopt an equivalent formalism based in adjunctions rather than monads;
this will later facilitate our treatment of filtrations:

Definition 4.7. An augmented monadic adjunction consists of a pair of adjunctions

Modk,≥0

free
−−−−−−−−→

⊥←−−−−−−−−
forget

C
cot

−−−−−−−−→
⊥←−−−−−−−−
sqz

Modk,≥0

whose composite is the identity such that C is pointed and presentable and (free ⊣ forget) is monadic
with sifted-colimit-preserving right adjoint.



DEFORMATION THEORY AND PARTITION LIE ALGEBRAS 27

Remark 4.8. Given an augmented monadic adjunction as above, we can identify C with the ∞-
category of algebras for a monad T = forget ◦ free on Modk,≥0, and this monad is canonically
augmented via T = forget ◦ free −→ forget ◦ sqz ◦ cot ◦ free = id.

Example 4.9. The main example of interest to us is the case where C is the ∞-category of
augmented simplicial commutative k-algebras. In this case, the above adjunctions are defined
as expected: free builds the free simplicial commutative k-algebra, forget sends an augmented
simplicial commutative k-algebra to its augmentation ideal, cot takes the cotangent fibre, and sqz
is the trivial square-zero construction functor.

The augmented monad LSym = forget ◦ free sends M to
⊕

i≥1 LSym
i(M), where LSymi is the

left derived functor of the ith symmetric power functor (−)⊗iΣi
. The functor cot can be computed

explicitly as R 7→ Bar(1,LSym, IA), where IA is the augmentation ideal of A.

Example 4.10. There is also a variant of the above example when we consider C to be the ∞-
category of connective augmented E∞-algebras over k.

Example 4.11. In fact, given any ∞-operad O in Modk,≥0 with O(0) = 0 and O(1) ≃ k, we
can take C to be the ∞-category of connective O-algebras. For k a field of characteristic zero, we
recover the desired adjunctions as in the discussion at the beginning of Section 4.1.

Remark 4.12. We will often suppress the notation forget when it will not cause confusion. For
instance, given A ∈ C, we shall write πi(A) = πi(forget(A)).

In the situation of Definition 4.7, we hope to establish a version of Theorem 4.4. For this, we shall
need to identify a full subcategory Cafp ⊂ C of complete almost finitely presented objects satisfying
the following desiderata:

(1) The adjunction (cot ⊣ sqz) restricts to a comonadic adjunction Cafp
cot

−−−−−→←−−−−−
sqz

Modftk,≥0 .

(2) The monad (M 7→ cot(sqz(M∨))∨) on Modftk,≤0 extends uniquely to a sifted-colimit-preserving
monad T∨ on Modk (cf. Corollary 3.17).

We write D : Copafp → AlgT∨ for the fully faithful embedding sending A to cot(A)∨.

(3) Given A,A′, A′′ ∈ Cafp and π0-surjective maps A → A′′ and A′ → A′′, the fibre product
A×A′′ A′ ∈ C also belongs to Cafp, and the square

D(A′′)

��

// D(A′)

��

D(A) // D(A×A′′ A′)

is a pushout in T∨-algebras.

Remark 4.13. Writing T = cot ◦sqz : Modftk,≥0 → Modftk,≥0 for the comonad induced by the above

adjunction, the above conditions give equivalences Cafp ≃ coAlgT (Modftk,≥0) ≃ AlgT∨(Modftk,≤0)
op.

This is a version of bar-cobar duality.

Remark 4.14. In all our Examples 4.9 and 4.10 above, we will be able to explicitly identify
the target subcategory Cafp. More precisely, Cafp will be the ∞-category of augmented simplicial
commutative rings (resp. connective E∞-rings) A such that π0(A) is complete local Noetherian,
and such that πi(A) is finitely generated as a π0(A)-module for all i ≥ 0.
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In order to construct a subcategory Cafp ⊂ C satisfying the desirable properties listed above, we
will need to work in a more refined context. Thinking of C as some ∞-category of algebras, we will
specify ∞-categories CFil and CGr of filtered and graded algebras, and assume that these categories
are suitably linked by several natural functors. Further technical assumptions, which are readily
checked in practice, will then allow us to establish a Koszul dual description of C-based formal
moduli problems.

We summarise all required data in the following central definition, which is a filtered enhancement
of Definition 4.7:

Definition 4.15. A filtered augmented monadic adjunction consists of a diagram of left adjoints

Modk,≥0
free

−−−−−−→ C
cot

−−−−−→ Modk,≥0
(−

) 1 y a
d
ic

y (−
) 1 y

FilModk,≥0
free

−−−−−−→ CFil
cot

−−−−−→ FilModk,≥0

G
r

y
y G

r

y

GrModk,≥0
free

−−−−−−→ CGr cot
−−−−−→ GrModk,≥0

where the vertical arrows (−)1 : Modk,≥0 → FilModk,≥0 send V to (V )1 = (· · · → 0→ 0→ V ) (cf.
Example 2.2) and the functor Gr takes the associated graded. Moreover, we shall assume:

(1) Augmented Monadicity. All horizontal composites give the identity, and the adjunctions
(Modk,≥0 ⇄ C), (FilModk,≥0 ⇄ CFil), (GrModk,≥0 ⇄ CGr) are monadic with sifted-colimit-
preserving right adjoints.

(2) Adjointability. Taking right adjoints of the top vertical arrows gives commutative squares

Modk,≥0
free

−−−−−−→ C
cot

−−−−−→ Modk,≥0

F
1

x F
1

x F
1

x

FilModk,≥0
free

−−−−−−→ CFil
cot

−−−−−→ FilModk,≥0

Taking right adjoints of the middle and lower horizontal maps gives commutative squares

FilModk,≥0
forget

←−−−−−−− CFil
sqz

←−−−−− FilModk,≥0

G
r

y G
r

y G
r

y

GrModk,≥0
forget

←−−−−−−− CGr sqz
←−−−−− GrModk,≥0

(3) Admissibility. The map GrModk,≥0
forget◦free
−−−−−−−→ GrModk,≥0 is admissible (cf. Definition 3.48).

Moreover, given A ∈ CGr, there is a functorial tower {A(i)}i≥1 in CGr and compatible maps

A→ A(i) satisfying the following three properties:
(a) There is a natural isomorphism A(1) ≃ sqz ◦ cot(A) of objects over A in CGr.
(b) For i > 1, there is a natural isomorphism forget(A(i−1))/ forget(A(i)) ≃ Gi(cot(A)) for

an admissible and i-increasing functor Gi : GrModk,≥0 → GrModk,≥0.

(c) The map forget(A) → forget(A(i)) in GrModk,≥0 induces an equivalence on graded
pieces of (internal) degree ≤ i.
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Let CGr
afp ⊂ C

Gr consist of all A with cot(A) ∈ GrftModk,≥0. Write CFilafp ⊂ C
Fil for the full subcat-

egory of all complete A with Gr(A) ∈ CGr
afp. Let Cafp ⊂ C consist of all A with adic(A) ∈ CFilafp.

(4) Coherence.
(a) When A,A′, A′′ ∈ CGr

afp and we have maps A→ A′′, A′ → A′′ which induce surjections

on π0, then the fibre product A×A′′ A′ ∈ CGr also belongs to CGr
afp.

(b) If V ∈ GrftModk,≥0, then sqz(V ) ∈ CGr
afp.

(5) Completeness. If A ∈ CFilafp, then the following conditions hold true:

a) The cotangent complex cot(A) is complete.
b) The adic filtration adic(F 1A) on F 1A ∈ C is complete.

Remark 4.16. The first part of the adjointability axiom asserts that taking free algebras and taking
the cotangent fibre commutes with taking underlying objects. The second part ensures that taking
underlying objects or taking a square-zero extension commutes with passage to associated gradeds.

The functor adic is an abstraction of the construction which sends an augmented commutative
ring R with augmentation ideal m to its (derived) m-adic filtration.

Remark 4.17. The reader is encouraged to keep in mind the following example (which is discussed
in more detail starting in Construction 5.36). Let C be the ∞-category of augmented simplicial
commutative k-algebras, as in Example 4.9. Then we can let CFil to be the∞-category of augmented
filtered simplicial commutative k-algebras and CGr the of augmented graded simplicial commutative
k-algebras. In this case, one can show:

(1) CGr
afp consists of those graded simplicial commutative rings A such that the bigraded ring

π∗(A) has the following property: π0(A) is Noetherian, and πi(A) is a finitely generated
π0(A)-module for i ≥ 0.

(2) CFilafp consists of those complete filtered simplicial commutative rings A whose associated

graded Gr(A)∗ is almost finitely presented as the previous item. This in particular implies
that π0(A) is a complete local Noetherian ring and each πi(A) is finitely generated as a
π0(A)-module.

Remark 4.18. Given any augmented ∞-operad O in Modk,≥0, there is a natural ∞-category of
filtered O-algebras (i.e. O-algebras in filtered objects), as well as one of graded O-algebras. If O
satisfies reasonable finiteness properties, then these∞-categories are linked by a diagram satisfying
conditions (1) − (3) of Definition 4.15, where (3) can be handled using the homotopy completion
tower for graded k-modules (cf. [HH13]). More generally, it is not hard to check that a similar
statement holds for any augmented monad in the category of strict polynomial functors (cf. [FS97]),
with the identity functor as weight one component.

Remark 4.19. The admittedly clumsy axiomatisation adopted in Definition 4.15 allows us to
simultaneously handle the cases of E∞-k-algebras (which are algebras over an operad) and simplicial
commutative k-algebras (for which this is not true).

We can state and prove the main formal result in this paper:

Theorem 4.20. Let C, CFil, . . . be part of a filtered augmented monadic adjunction (cf. Definition 4.15).

(1) The adjunction (cot ⊣ sqz) restricts to a comonadic adjunction Cafp
cot

−−−−−−→←−−−−−−
sqz

Modftk,≥0,

where Cafp is defined as in Definition 4.15 above or Definition 4.43 below.

(2) The monad (M 7→ cot(sqz(M∨))∨) on Modftk,≤0 extends uniquely to a sifted-colimit-preserving
monad T∨ on Modk (cf. Corollary 3.17).
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We write D : Copafp → AlgT∨ for the fully faithful embedding sending A to cot(A)∨.

(3) Given A,A′, A′′ ∈ Cafp and π0-surjective maps A → A′′ and A′ → A′′, the fibre product
A×A′′ A′ ∈ C also belongs to Cafp, and the following square is a pushout in T∨-algebras:

D(A′′)

��

// D(A′)

��

D(A) // D(A×A′′ A′)

This will allow us to prove that C-based formal deformations are in fact governed by T∨-algebras.
First, we specify the small objects which will parametrise our deformations (cf. [Lur11a, Definition 1.1.8]):

Definition 4.21 (Artinian objects). Let Cart ⊂ Cafp denote the smallest full subcategory satisfying:
(1) Cart contains the terminal object ∗.
(2) Given A ∈ Cart and a morphism A → sqz(k[n]) with n > 0, then the fibre product

A′ = A×sqz(k[n]) (∗) also belongs to Cart.

Observe that (1) and (2) together imply that Cart contains sqz(k[n]) for any n ≥ 0.

We spell out the definition of a C-based formal moduli problem (cf. [Lur11a, Definition 1.1.14]):

Definition 4.22. A C-based formal moduli problem is a functor X : Cart → S with the properties:

(1) X carries the terminal object ∗ to a contractible space.
(2) Given A ∈ Cart and a morphism A → sqz(k[n]) with n > 0, the functor X sends the fibre

product A′ ≃ A×sqz(k[n]) (∗) to a fibre product in spaces X(A′) ≃ X(A)×X(sqz(k[n])) X(∗).

Let ModuliC ⊂ Fun(Cart,S) be the ∞-category of formal moduli problems.
Given F ∈ ModuliC , the functor F ◦ sqz : Perfk,≥0 → S is excisive. The corresponding k-module

TF ∈Modk called the tangent fibre to F . Its underlying spectrum satisfies Ω∞−nTF ≃ F (sqz(k[n]).

We then have the following consequence of Theorem 4.20:

Theorem 4.23. If C is part of a filtered augmented monadic adjunction (cf. Definition 4.15), there

is an equivalence of ∞-categories AlgT∨

≃
−→ ModuliC with g 7→ (R 7→ MapAlgT∨

(D(R), g)) such that
the composite ModuliC → AlgT∨ → Modk is equivalent to the tangent fibre functor F 7→ TF .

4.3. Graded Objects. Let C, CFil, CGr, . . . be part of a filtered augmented monadic adjunction in
the sense of Definition 4.15. Our first goal is to study the adjunction cot : CGr −−−→←−−− GrModk,≥0 :

sqz on graded objects. The admissibility axiom (3) will allow us to argue in a straightforward
manner that this adjunction is in fact comonadic on a large class of objects. The rest of the
argument required to prove Theorem 4.20 will then amount to reducing everything to this case. We

begin with several basic observations on graded objects:

Remark 4.24 (The bar construction). Let A ∈ CGr (resp. C, CFil). The augmented simplicial
object Bar•(free, free, A) → A admits an extra degeneracy in Modk,≥0, and therefore induces an
equivalence |Bar•(free, free, A)| ≃ A. As the forgetful functor preserves geometric realisations, we
deduce that Bar•(free, free, A)→ A is in fact a colimit diagram in CGr (resp. C, CFil).

Since cot(−) preserves colimits, it follows that cot(A) is the geometric realisation of the simplicial

object Bar•(id, free, A) whose value in degree i is free◦i(A).
In addition, we have a natural map A → cot(A) in GrModk,≥0 (resp. Modk,≥0,FilModk,≥0),

which is obtained by observing that Bar0(A) = A and that we have a map Bar0(A) → |Bar•(A)|.
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Note that for each i, we obtain a (degeneracy) map A → Bari(A) = free◦i(A); this is simply a
composite of unit maps.

Remark 4.25 (Conservativity of cot in the graded case). Let A ∈ CGr. Then the map A→ cot(A)
induces an equivalence A1 ≃ cot(A)1 in degree 1 by assumption (3a) in Definition 4.15.

If a map A→ B in CGr induces an equivalence on cot(−), then A→ B is an equivalence. Indeed,
it follows inductively from assumption (3) of Definition 4.15 that A(i) → B(i) is an equivalence for
all i ≥ 1. Letting i→∞ and considering graded pieces, it follows that A→ B is an equivalence.

We will now prove that the associated graded of adic(A) is canonically a free algebra for
any A ∈ C. Heuristically, we can think of the functor adic(−) as a method of interpolating between
a general algebra and a free algebra.

Proposition 4.26. There is a canonical isomorphism of functors C → CGr given by

Gr(adic(A)) ≃ free([cot(A)]1).

Here we place cot(A) ∈ Modk,≥0 in graded degree one to construct [cot(A)]1 ∈ GrModk,≥0.

Proof. Note that for any B ∈ CGr, there is a natural map from free([B1]1) → B. This map is an
equivalence in internal degree 1: by assumption 3 of Definition 4.15, it suffices to check this after
applying cot. Here, the map becomes B1 → cot(B)1, which again is an equivalence by assumption 3.

Let A ∈ C. Then cot(adic(A)) is the filtered object · · · → 0 → 0 → cot(A), and therefore
cot(Gr(adic(A))) is the graded object [cot(A)]1 with cot(A) concentrated in degree 1. It follows
that we obtain a map free([cot(A)]1) → Gr(adic(A)) in CGr. This map is an equivalence when
A = free(X) for X ∈ Modk,≥0 as in this case, it is simply the identity map on free([X ]1). It must
therefore be an equivalence in general since both sides preserve geometric realisations. �

We invite the reader to recall the notion of graded modules pointwise of finite type introduced
in Definition 3.46. This finiteness property can be detected using the cotangent fibre functor:

Proposition 4.27. Let A ∈ CGr. Then the following are equivalent:

(1) forget(A) ∈ GrpftModk,≥0.

(2) cot(A) ∈ GrpftModk,≥0.

Proof. As before, we will omit the forgetful functor from our notation.
Suppose first that cot(A) ∈ GrpftModk,≥0, i.e. that each graded piece cot(A)i ∈ Modft

k,≥0 is of
finite type. The filtration appearing in assumption (3) of Definition 4.15 shows by induction that

each A(i) lies in GrpftModk,≥0, because the functorsGj preserve GrpftModk,≥0 by assumption. Since

A→ A(i) is an equivalence in graded degrees below i, letting i→∞ implies that A ∈ GrpftModk,≥0.

Conversely, suppose A ∈ GrpftModk,≥0 is a k-module spectrum of pointwise finite type. We can
again proceed by induction. By Remark 4.25, we know that cot(A)1 ≃ A1 is of finite type. Suppose

cot(A)1, . . . , cot(A)i−1 ∈Modftk,≥0. Since the functors Gj are increasing and preserve GrpftModk,≥0

for all j > 1, it follows that Gj(cot(A))i = Gj(tr<i(cot(A)))i belongs to Modftk,≥0 for all 1 < j ≤ i.

Then the filtration of assumption 3 shows inductively that the graded piece Ai = A
(i)
i of A(i) ∈ CGr

has a finite filtration involving cot(A)i and terms in Modftk,≥0 (namely, Gj(cot(A))i for 1 < j ≤ i).

Since we assumed that Ai ∈Modftk,≥0, it follows from this cot(A)i lies in Modftk,≥0. �

We can now establish the basic tool for commuting cot and totalisations, which is the heart of
the convergence arguments needed in this work. First we need a basic notion.
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Definition 4.28. The ∞-categories C, CFil, CGr are presentable, and hence have all limits. These
are computed at the level of objects in Modk,≥0 (or GrModk,≥0,FilModk,≥0). We will say that a
limit in C, CFil, CGr connectively exists if the limit is also preserved in Modk,GrModk, or FilModk.
In particular, the limit in Modk,GrModk, or FilModk is connective.

Proposition 4.29 (Convergence criterion in CGr). Let A• be a cosimplicial object of CGr such that

for each i, we have forget(Ai) ∈ GrpftModk,≥0. Then the following are equivalent:

(1) The totalisation Tot(forget(A•)) (computed in GrModk) belongs to GrpftModk,≥0.

(2) The totalisation Tot(cot(A•)) (computed in GrModk) belongs to GrpftModk,≥0.

If these conditions are satisfied, then the limit Tot(A•) connectively exists in CGr, and the canonical
map cot(Tot(A•))→ Tot(cot(A•)) in GrModk,≥0 is an equivalence.

Proof. In fact, we shall prove the following more refined statement:

Let B• be an augmented cosimplicial object of CGr with Bj ∈ GrpftModk,≥0 for all j ≥ 0.

Suppose that B•1 , . . . , B
•
i−1 are limit diagrams in Modk with B−11 , . . . , B−1i−1 ∈ Modftk,≥0.

Then the following are equivalent:
(1) B•i is a limit diagram with B−1i ∈Modftk,≥0.

(2) cot(B•)i is a limit diagram in Modk and cot(B−1)i ∈ Modftk,≥0.

By induction, this implies the equivalence of (1) and (2) in the proposition, as well as the asserted
convergence. Here we use that the forgetful functor CGr → GrModk,≥0 creates limits.

For i = 1, our refined claim follows from the equivalence B•1 ≃ cot(B•)1. In general, we observe
that B•i (considered as an augmented cosimplicial object of Modk) admits a finite filtration whose
associated graded terms are given by cot(B•)i and Gj(cot(B

•))i for 1 < j ≤ i. By assumption, the
functor Gj is admissible and increasing, and so the augmented cosimplicial object Gj(cot(B

•))i ≃
Gj(tri−j+1 cot(B

•))i is a limit diagram by the hypothesis. It follows that B•i is a limit diagram with

B−1 ∈ GrpftModk,≥0 if and only if cot(B•)i is a limit diagram with cot(B−1) ∈ GrpftModk,≥0. �

Let CGrpft ⊂ CGr be the full subcategory spanned by objects whose underlying graded module
belongs to GrpftModk,≥0.

Proposition 4.30. Restriction gives rise to a comonadic adjunction

cot : CGrpft −−−→←−−− GrpftModk,≥0 : sqz.

Proof. The adjunction is well-defined by Proposition 4.27. It is in fact comonadic by Theorem 4.5,
whose conditions are satisfied by Remark 4.25 and Proposition 4.29. �

This comonadicity result for CGrpft will later allow us to check convergence results in C by first
lifting cosimplicial diagrams to filtered objects and then taking associated gradeds everywhere.

However, CGrpft is not the correct graded analogue of the ∞-category Cafp of almost finitely
presented objects because the cotangent complex need not be finite type (only pointwise finite
type). We therefore introduce a more restrictive notion of finiteness.

For this, we first recall Definition 2.14, which introduces GrftModk,≥0 as the full subcategory of
GrModk spanned by all X⋆ for which the underlying module

⊕
i≥1 Xi is of finite type. Note that

GrftModk,≥0 ⊂ GrpftModk,≥0 is a proper inclusion.
We recall the corresponding full subcategory of CGr:
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Definition 4.31 (The subcategory CGr
afp). The category CGr

afp of almost finitely presented objects

consists of all A ∈ CGr whose cotangent complex cot(A) ∈ GrftModk,≥0 has finite type.

We should think of this as a finite generation condition (at least after any truncation). Note

that by Proposition 4.27, we have an inclusion CGr
afp ⊂ C

Grpft .

Remark 4.32. While CGrpft is evidently closed under fibre products of maps which are surjective
on π0 (as these can be computed pointwise), the corresponding claim in CGr

afp only holds by our

coherence axiom (4) in Definition 4.15, which will be easy to check in the examples of interest.

For instance, this ensures that if V, V ′, V ′′ ∈ GrftModk,≥0 and we have maps V → V ′′, V ′ → V ′′

which induce surjections on π0, then the fibre product A = free(V ) ×free(V ′′) free(V
′) has the

property that cot(A) ∈ GrftModk,≥0. Proposition 4.27 only shows that cot(A) ∈ GrpftModk,≥0, so
we need to postulate this stronger statement.

The coherence axiom (4) in Definition 4.15 implies:

Construction 4.33. The (cot, sqz)-adjunction between CGr and GrModk,≥0 restricts to an adjunction

cot : CGr
afp
−−−→←−−− GrModftk,≥0 : sqz.

4.4. Filtered objects. We will now transfer some of the above results to the ∞-category CFil.
In order to obtain similarly strong statements, we need to restrict attention to complete objects.
Recall that a filtered connective k-module (. . . → F 2M → F 1M) ∈ FilModk,≥0 is said to be
complete if the inverse limit limi(F

iM) vanishes. The inclusion FilcplModk,≥0 ⊂ FilModk,≥0 of
complete filtered connective k-modules into all filtered connective k-modules admits a left adjoint
called completion (cf. Definition 2.8).

In order to lift this completion functor to CFil, we need an elementary categorical observation.

Remark 4.34 (Adjunctions and localisations). Let F : A⇄ B : G be an adjunction of presentable
∞-categories and suppose that we are given a Bousfield localisation LA : A → A of A with
corresponding strongly saturated class of morphisms WA in A (cf. [Lur09, Def. 5.5.4.5]).

To produce a corresponding Bousfield localisation on B, we let WB be the class of morphisms
f : B1 → B2 satisfying G(f) ∈ WA. Assume that WB is strongly saturated and contains F (WA).
The localisation functor LB for WB (cf. [Lur09, Sec.5.5.4]) sits in a commutative square:

B

G
��

LB
// B

G
��

A
LA

// A

Indeed, given any B ∈ B, the unit B → LBB lies in WB. It follows that if B is WB-local, then
G(B) ∈ A is WA-local. Since G sends WB to WA, the commutativity follows. We say that the
adjunction is compatible with localisations.

Using this, we can lift the notion of completeness to CFil:

Definition 4.35 (Completions in CFil). An object A ∈ CFil is complete if forget(A) ∈ FilModk,≥0

is complete. We let ĈFil ⊂ CFil be the full subcategory spanned by all complete objects.

The strongly saturated class associated with the localisation FilcplModk,≥0 ⊂ FilModk,≥0 consists
of all maps which induce equivalences on associated gradeds. By the assumptions in Definition 4.15,
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the free-forgetful adjunction FilModk,≥0 ⇄ CFil is compatible with completions in the sense of

Remark 4.34. We therefore obtain a completion functor CFil → ĈFil which is the left adjoint

of a Bousfield localisation. Any A ∈ CFil comes equipped with a natural morphism A → Â to

its completion, and the underlying object forget(Â) ∈ FilModk,≥0 of Â is simply given by the
completion of the filtered object forget(A).

Note that if a morphism A → B in CFil induces an equivalence on associated gradeds, then
so does cot(A)→ cot(B). We deduce that for any A ∈ C, the associated map on cotangent fibres

cot(A)→ cot(Â) is also an equivalence on associated gradeds. We obtain a diagram of left adjoints:

FilModk,≥0
free

−−−−−−→ CFil
cot

−−−−−→ FilModk,≥0y
y

y

FilcplModk,≥0
f̂ree

−−−−−−→ ĈFil
ĉot

−−−−−→ FilcplModk,≥0

in which the vertical arrows are given by completion functors.

Remark 4.36 (The completed cotangent adjunction). The functor ĉot = (̂−)◦cot appearing in the

lower right hand part of the above diagram is part of an adjunction ĉot : ĈFil ⇄ FilcplModk,≥0 : sqz.

Its left adjoint sends a complete object A of C to its completed cotangent fibre ĉot(A), whereas the

right adjoint sends V ∈ FilcplModk,≥0 to sqz(V ) ∈ Ĉ ⊂ C.

We can next make a direct translation of Proposition 4.29 to the filtered setting:

Proposition 4.37 (Convergence criterion in CFil). Let X• be a cosimplicial complete object of CFil

such that for each i, we have Gr(forget(X i)) ∈ GrpftModk,≥0. Then the following are equivalent:

(1) The associated graded Gr(Tot(forget(X•))) of the totalisation Tot(forget(X•)) (computed

in FilModk) belongs to GrpftModk,≥0.
(2) The associated graded Gr(Tot(cot(X•))) of the totalisation Tot(cot(X•)) (computed in

FilModk) belongs to GrpftModk,≥0.

Under these assumptions, the limit Tot(X•) connectively exists, and the map ĉot(Tot(X•)) →

Tot(ĉot(X•)) is an equivalence.

Proof. The equivalence of (1) and (2) follows immediately from Proposition 4.29 by taking asso-
ciated gradeds (using the adjointability axiom (2) in Definition 4.15 together with the fact that
Gr : FilModk → GrModk commutes with totalisations).

The filtered module Tot(forget(X•)) (computed in FilModk) is complete (as completeness is
a limit condition) and has associated graded in Modk,≥0. The Milnor sequence implies that
Tot(forget(X•)) in fact belongs to FilModk,≥0. It follows that X• admits a limit in CFil. The

arrow ĉot(Tot(X•))→ Tot(ĉot(X•)) induces an equivalence after passing to associated gradeds by
Proposition 4.29. Hence, it is itself an equivalence since both domain and target are complete. �

Remark 4.38. Note that both conditions (1) and (2) in Proposition 4.37 contain the nontrivial
assertion that the respective totalisations are connective.

We can now formulate a notion of almost finite presentation in the complete filtered context:

Definition 4.39 (The subcategory CFilafp). Let CFilafp denote the subcategory of objects A ∈ CFil

which are complete and satisfy Gr(A) ∈ CGr
afp, i.e. Gr(cot(A)) ∈ GrftModk,≥0. We will refer to these

objects as complete almost finitely presented.
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Example 4.40 (Completed-free algebras in CFilafp). Completed-free algebras on filtered (connective)

modules of finite type belong to CFilafp. Indeed, if V ∈ FilftModk,≥0, then free(V ) ∈ CFil has cotangent

fibre V . Since free(V ) → ̂free(V ) induces an equivalence on associated gradeds, the observations

made after Definition 4.35 imply that Gr(cot( ̂free(V ))) ≃ Gr(cot(free(V ))) ≃ Gr(V ) belongs to

GrftModk,≥0, and hence ̂free(V ) ∈ CFilafp.

In fact, the completeness assumption (5a) in Definition 4.15 implies a stronger assertion. We

know that cot( ̂free(V )) is complete, and we can therefore conclude that cot( ̂free(V )) ≃ V . In other

words, the morphism free(V )→ f̂ree(V ) induces an equivalence on cot. This can be thought of as a
generalisation of the classical fact that a polynomial ring and a power series ring on finitely many
variables have the same cotangent fibre.

Construction 4.41. If V ∈ FilftModk,≥0, then the coherence axiom (4b) of Definition 4.15 implies
that sqz(V ) ∈ CFilafp. As in Construction 4.33, we obtain the following adjunction by restriction:

ĉot : CFilafp
−−−→←−−− FilftModk,≥0 : sqz

Remark 4.42. The full subcategory CFilafp ⊂ C
Fil is closed under geometric realisations. This follows

as if X• is a simplicial diagram in CFilafp, then the underlying module forget(|X•|) ≃ | forget(X•)|

is complete by Proposition 2.11, and moreover Gr(cot(|X•|)) ≃ |Gr(cot(X•|))| lies in GrftModk,≥0
since Modftk,≥0 ⊂ Modk is closed under geometric realisations.

Hence any geometric realisation of completed-free objects ̂free(V ) with V ∈ FilftModk,≥0 lies in CFilafp.

We will now pass from filtered to non-filtered objects:

Definition 4.43 (The subcategory Cafp). The full subcategory Cafp ⊂ C of complete almost finitely

presented objects in C consists of all A for which adic(A) ∈ CFil is complete and cot(A) ∈Modftk,≥0.

In Examples 4.9 and 4.10, the respective subcategories Cafp will be as expected, i.e. consist of all
augmented simplicial commutative k-algebras (resp. connective E∞-k-algebras) A for which π0(A)
is complete local Noetherian and πi(A) finitely generated over π0(A) for all i.

Remark 4.44. By the completeness axiom (5) in Definition 4.15, we know that if A ∈ CFilafp, then

F 1A ∈ Cafp. Indeed, assumption (5b) implies that F 1A is complete, and cot(F 1A) ≃ F 1(cot(A))

lies in Modftk,≥0 since cot(A) is complete by (5a) and Gr(cot(A)) lies in GrftModk,≥0 by definition.

Example 4.45 (Completed-free algebras in Cafp). Completed-free algebras on (connective) modules

of finite type belong to CFilafp. Indeed, if V ∈Modftk,≥0, then we consider Ṽ = (· · · → 0→ 0→ V ) in

FilftModk,≥0. We have free(Ṽ ) ∈ CFilafp by Example 4.40, and this implies that free(V ) ≃ F 1free(Ṽ )
lies in Cafp by Remark 4.44.

Remark 4.46 (Closure properties of Cafp). The subcategory Cafp ⊂ C is closed under geometric
realisations. This follows from Remark 4.42 by noting that the left adjoints adic and cot preserve
realisations and the subcategory Modftk,≥0 ⊂Modk is closed under realisations.

Moreover, if A,A′, A′′ ∈ Cafp and we are given maps A→ A′′, A′ → A′′ which induce surjections
on π0, then the pullback A×A′′A′ also belongs to Cafp. Indeed, note that adic(A), adic(A′), adic(A′′)
belong to CFilafp, and that both maps adic(A)→ adic(A′′) and adic(A′)→ adic(A′′) are surjective on π0.
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By the coherence axiom (4a) in Definition 4.15, we deduce that Gr(adic(A))×Gr(adic(A′′))Gr(adic(A′))

belongs to CGr
afp. The canonical arrow

Gr
(
adic(A) ×adic(A′′) adic(A

′)
)
→ Gr(adic(A)) ×Gr(adic(A′′)) Gr(adic(A′))

induces an equivalence after applying forget by the adjointability axiom (2) in Definition 4.15. We
deduce that adic(A) ×adic(A′′) adic(A

′) ∈ CFilafp (as it is evidently complete). Applying the right

adjoint F 1 now shows that A×A′ A′′ ∈ Cafp by Remark 4.44.

Remark 4.47. If V ∈ Modftk,≥0, then sqz(V ) belongs to Cafp. To see this, we lift V to a complete

filtered module Ṽ = (. . .→ 0→ 0→ V ) in FilftModk,≥0. We then observe that sqz(Ṽ ) is evidently
complete and it therefore lies in CGr

afp by the coherence axiom (4b) in Definition 4.15. By Remark 4.44,

this implies that F 1(sqz(Ṽ )) ≃ sqz(V ) lies in Cafp.

Using this observation, we can establish a version of Construction 4.33 in the unfiltered context:

Construction 4.48. The (cot, sqz)-adjunction between C and Modk,≥0 restricts to an adjunction

cot : Cafp −−−→←−−− Modftk,≥0 : sqz.

We now wish to show that this adjunction satisfies the desirable conditions stated in Theo-
rem 4.20. For this, we will need a convergence criterion for cosimplicial objects in Cafp. Indeed,
our criterion says that if a cosimplicial object in Cafp admits a suitable lift to CFilafp, then taking the
cotangent fibre commutes with totalisation. More precisely:

Proposition 4.49 (Convergence criterion in C). Let X• be a cosimplicial object of Cafp. Suppose

that there exists a lift X̃• of X• to CFilafp which satisfies the equivalent conditions of Proposition 4.37

and moreover has complete almost finitely presented totalisation Tot(X̃•) ∈ CFilafp.

Then the limit Tot(X•) of X• connectively exists in C, belongs to Cafp, and the following map is
an equivalence:

cot(Tot(X•))→ Tot(cot(X•)).

Proof. By Proposition 4.37, the totalisation X̃−1 := Tot(X̃•) connectively exists in CFil and we

have an equivalence ĉot(X̃−1)
≃
−→ Tot(ĉot(X̃•)). The right adjoint F 1 : CFil → C preserves limits,

and so X−1 := Tot(X•) connectively exists in C and we have X−1 ≃ F 1(X̃−1). Our assumption

X̃−1 = Tot(X̃•) ∈ CFilafp implies that X−1 ≃ F 1(X̃−1) belongs to Cafp by Remark 4.44.

By the completeness axiom (5a) of Definition 4.15, we know that cot(X̃ i)
≃
−→ ĉot(X̃ i) is an

equivalence for all i ≥ −1. Proposition 4.37 therefore shows that cot(X̃−1) ≃ Tot(cot(X̃•)). We
conclude the proof by applying F 1 and using the adjointability axiom (2) of Definition 4.15. �

We can now proceed to the proof of the main result of this axiomatic section:

Proof of Theorem 4.20. We constructed the adjunction Cafp
cot
−−−→←−−

sqz
Modftk,≥0 in Construction 4.48.

To prove that this adjunction is comonadic, we will verify the conditions of Theorem 4.5.
First, we check that the functor cot is conservative. Let A→ B be a map in Cafp which induces

an equivalence cot(A)
≃
−→ cot(B) on cotangent fibres. Then adic(A) → adic(B) also induces an

equivalence on cotangent fibres, and hence also on associated gradeds by Proposition 4.26. Since

adic(A) and adic(B) are both complete, it follows from Remark 2.9 that adic(A)
≃
−→ adic(B) is an

equivalence, and hence the same holds true for A
≃
−→ B.
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To check the second condition of Theorem 4.5, we fix a cosimplicial object X• in Cafp and assume

that cot(X•) admits a splitting in Modftk,≥0. We pick the filtered lift X̃• := adic(X•) of X•, which is

a cosimplicial object in CFilafp by definition. Proposition 4.26, implies that Gr(X̃•) ≃ free([cot(X•)]1)

admits a splitting in CGr
afp. Using the adjointability axiom (2) in Definition 4.15 and Proposition 4.27,

we see that Gr(Tot(forget(X̃•))) ≃ forget(Tot(Gr(X̃•))) belongs to GrpftModk,≥0. Proposition 4.37

therefore shows that the limit X̃−1 := Tot(X̃•) connectively exists in CFil, and that the natural map

ĉot(X̃−1)
≃
−→ Tot(ĉot(X̃•)) is an equivalence. Since the cosimplicial diagram ĉot(X̃•) ≃ (cot(X•))1

is split in FilftModk,≥0, it follows that ĉot(X̃
−1) belongs to FilftModk,≥0 as well. This shows that

Gr(cot(X̃−1) ≃ Gr(ĉot(X̃−1) ∈ GrftModk, which allows us to conclude that X̃−1 belongs to CFilafp

(it is evidently complete as this is a limit condition).
The convergence criterion Proposition 4.49 then implies that the limit X−1 := Tot(X•) belongs

to Cafp, and that the canonical map cot(X−1)
≃
−→ Tot(cot(X•)) is an equivalence. This proves

comonadicity, i.e. statement (1) of the theorem.

Before proceeding further, we record that comonadicity implies that any A ∈ Cafp is the to-
talisation of its canonical cobar resolution ((sqz ◦ cot)(A) ⇒ (sqz ◦ cot) ◦ (sqz ◦ cot)(A)−→−→−→ . . . ). In
particular, A is a totalisation of a cosimplicial object in Cafp which at each level is square-zero.

We will now verify part (2) of the theorem using Proposition 3.16. For this, let T = cot ◦ sqz
be the comonad on Modftk,≥0 induced by the adjunction and define T∨ as the monad induced on

Modftk,≤0 by linear duality. Let V • be a cosimplicial object in Modftk,≥0 which is m-coskeletal for

some m, and assume that V −1 := Tot(V •) belongs to Modftk,≥0. To prove statement (2) of the
theorem, we need to first verify that the following map is an equivalence:

(4) T (V −1)
≃
−−−→ Tot(T (V •)).

Via duality, this implies that T∨ commutes with finite coconnective geometric realisations in Modft
k,≤0.

To prove the equivalence (4) above, we apply Proposition 4.49 to the cosimplicial objectX• = sqz(V •)

together with its filtered lift X̃• = sqz(Ṽ •), where Ṽ • = (· · · → 0 → 0 → V •). Using axioms (2)

and (4b) in Definition 4.15, we see that the filtered lift X̃• is a cosimplicial object in CFilafp and also

satisfies the other assumptions of Proposition 4.49. It follows that cot(Tot(X•))
≃
−→ Tot(cot(X•))

is an equivalence, which proves (4) since sqz preserves limits. Moreover, if V ∈ Modftk,≥0 is of finite
type, then T (V ) ≃ lim

←−n
T (τ≤nV ), and the inverse limit stabilises in any finite range of homological

degrees by Proposition 3.42. We deduce that T∨ is right complete. Thus, it follows that the criteria
of Proposition 3.16 are satisfied, which shows that T∨ admits the sifted colimit-preserving extension
Modk → Modk asserted in (2).

Finally, we establish part (3) of the theorem. For this, let A,A′, A′′ ∈ Cafp and suppose that we
are given maps A→ A′, A→ A′′ which induce surjections on π0. We need to show that the natural

map D(A) ⊔D(A′′) D(A′)
≃
−→ D(A ×A′ A′) is an equivalence. This is easy to check if everything is

square-zero. That is, if we are given V, V ′, V ′′ ∈Modftk,≥0 together with π0-surjective maps V → V ′′

and V ′ → V ′′, then the following map of T∨-algebras is an equivalence:

D(sqz(V )) ⊔D(sqz(V ′′)) D(sqz(V ′))
≃
−−−→ D(sqz(V ×V ′′ V ′)).



DEFORMATION THEORY AND PARTITION LIE ALGEBRAS 38

Indeed, the left-hand-side is the pushout of the free T∨-algebras on V ∨, V ′′∨, and V ′∨, respectively,
whereas the right-hand side is the free T∨-algebra on (V ×V ′′ V ′)∨. Our strategy now is to reduce
the general case to the square-zero case by using cobar resolutions.

For this, let X•, X ′•, X ′′• be the canonical cobar resolutions of A,A′, A′′, respectively. For
example, we have X0 = (sqz ◦ cot)(A) and X1 = (sqz ◦ cot) ◦ (sqz ◦ cot)(A). Note that these are
cosimplicial objects of Cafp. The maps X• → X ′′•, X ′• → X ′′• induce surjections on π0 at each
level, and so we can also form the cosimplicial object in Cafp given by Y • := X• ×X′′• X ′• by
Remark 4.46. Comonadicity implies that A ≃ Tot(X•), A′ ≃ Tot(X ′•), A′′ ≃ Tot(X ′′•). Therefore,
we have Tot(Y •) ≃ A ×A′ A′′. Since we have already verified claim (3) in the case of square-zero
extensions, we have the following equivalence of T∨-algebras for all i ≥ 0:

D(X i) ⊔D(X′′i) D(X ′i)
≃
−−−→ D(Y i).

To deduce that D(A)⊔D(A′′)D(A′) ≃ D(A×A′ A′′), it therefore suffices to verify the following facts:

a) |D(X•)| ≃ D(A) and |D(X ′•)| ≃ D(A′) and |D(X ′′•)| ≃ D(A′′).
b) |D(Y •)| ≃ D(A×A′ A′′).

Geometric realisations in T∨-algebras can be computed in Modk as T∨ preserves sifted colimits.
Claim (a) follows immediately by applying linear duality to the comonadicity established above.
Claim (b) will follow by applying the convergence criterion established in Proposition 4.37.

First, we form the cosimplicial object Ỹ • := adic(X•) ×adic(X′′•) adic(X
′•), which is a filtered

lift of Y • to CFilafp by Remark 4.46.

Second, we will check that the totalisation of Gr(Ỹ •) ∈ CGr belongs to GrpftModk,≥0. For this,
we first observe that by construction, the cosimplicial objects cot(X•), cot(X ′•), cot(X ′′•) are all

split in Modftk,≥0. Proposition 4.26 then shows that Gr(adic(X•)),Gr(adic(X ′•)), and Gr(adic(X ′′•)

have splittings and therefore admit totalisations in GrpftModk,≥0. Since the maps between these

objects are levelwise surjective on π0, we see that Gr(Ỹ •) also admits a totalisation in GrpftModk,≥0.

Third, we need to show that Tot(Ỹ •) admits a totalisation in CFilafp. For this, we first observe that

the map adic(A) → Tot(adic(X•)) induces an equivalence. By completeness, it suffices to check
this after applying Gr. Here, it is true because the functor Gr ◦ adic is equivalent to free ◦ [−]1 by

Proposition 4.26, the natural map cot(A)
≃
−→ Tot(cot(X•)) is an equivalence by the construction

of the cobar resolution, and the functor forget◦free is admissible by axiom (3) of Definition 4.15.
A similar argument gives equivalences adic(A′)→ Tot(adic(X ′•)) and adic(A′′)→ Tot(adic(X ′′•)).

We deduce Tot(Ỹ •) ≃ Tot(adic(X•)) ×Tot(adic(X′′•)) Tot(adic(X
′•)) ≃ adic(A) ×adic(A′′) adic(A

′′),

which belongs to CFilafp by Remark 4.46.

We can now apply Proposition 4.49 to conclude that cot(A×A′′A′) ∼= cot(Tot(Y •))
≃
−→ Tot(cot(Y •))

is an equivalence. Using that cot(Y ) ∈Modftk,≥0 is of finite type and therefore equivalent to its own

bidual, we can therefore apply duality and deduce that the natural map |D(Y •)|
≃
−→ D(A×A′ A′′)

is an equivalence. This completes the verification of claim (b) above. �

4.5. Deformation theories. We shall now explain how Theorem 4.20 translates into the language
of deformation theories studied in [Lur16, Ch. 12] or [Lur11a].

As before, we fix a filtered augmented monadic adjunction (cf. Definition 4.15) throughout.
Write T∨ for the monad on Modk constructed in Theorem 4.20 (2), i.e. the unique sifted-colimit-

preserving extension of the monad (M 7→ (cot sqz(M∨))∨) acting on Modftk,≤0. Our main aim in this
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section is to prove Theorem 4.23, which asserts that C-based formal moduli problems are equivalent
to T∨-algebras.

We begin by constructing the required deformation functor. First, observe that composing the
(cot ⊣ sqz)-adjunction with linear duality in fact gives rise to an adjunction

(5) cot∨ : C −−−−→←−−−− Modopk : sqz ◦ τ≥0 ◦ (−)
∨.

Its left adjoint sends A ∈ C to cot(A)∨, i.e. the linear dual of the cotangent fibre, whereas its right
adjoint maps V ∈Modk to the trivial square-zero extension on τ≥0(V

∨).

We can extend the functor D : Cafp → AlgopT∨ from Theorem 4.20 to all of C in such a way that
postcomposing with the forgetful functor to Modk recovers cot∨. Let Cwafp ⊂ C be the subcategory

of all A with cot(A) ∈Modftk,≥0.

Construction 4.50 (The Koszul duality adjunction). Since the action of T∨ on Modftk,≤0 agrees
with the monad induced by adjunction (5), we have a natural functor

D : Cwafp → AlgopT∨

which forgets to cot∨ in Modk,≤0. Observe that this functor is left Kan extended from the compact
objects of C, since cot∨ : C → Modopk has this property.

We can left Kan extend further to C, to finally obtain the deformation functor

D : C −→ AlgopT∨ .

By [Lur09, Proposition 5.3.5.13], the functor D admits a right adjoint

C∗ : AlgopT∨ −→ C.

Remark 4.51. It should not be a surprise that we can extend D : Cafp → AlgopT∨ to all of C. Indeed,

writing T̃∨ for the monad on Modk associated with the above adjunction (5), the monad T∨ is

defined as the unique sifted-colimit-preserving extension of the restriction T̃∨|Modft
k,≤0

. Since this

extension is obtained by left Kan extension, there is a natural transformation of monads T∨ → T̃∨;

we may think of T∨ as an “uncompletion” of T̃∨.
The functor D : C → AlgopT∨ is then simply obtained as the composite C −→ Algop

T̃∨
−→ AlgopT∨ .

Here the first map comes from adjunction (5), whereas the second uses the map of monads T∨ → T̃∨.

Construction 4.50 factors (5) through the free-forgetful adjunction forget : AlgopT∨ ⇄ Modopk : free.
Unwinding the above definitions, we can observe the following natural equivalences:

C∗(freeT∨(V )) ≃ sqz(τ≥0V
∨), V ∈Modk(6)

D(free(W )) ≃W∨, W ∈Modk,≥0,(7)

D(sqz(W )) ≃ freeT∨(W∨), W ∈ Modftk,≥0.(8)

The statement (7) is to be interpreted as on the level of objects of Modk; informally the T∨-
algebra-structure should be square-zero, but we do not attempt to make this precise.

Combining these basic facts with Theorem 4.20, we can conclude that the adjunction (D ⊣ C∗)

restricts to a pair of inverse equivalences between Cafp and AlgT∨(Modft
k,≤0)

op:

Proposition 4.52. Let C, Cafp,D, C∗, . . . be defined as above.

(1) Given any A ∈ Cafp, the natural map A→ C∗(D(A)) is an equivalence.
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(2) Given any T∨-algebra g such that the underlying k-module belongs to Modftk,≤0, the natural
map g→ D(C∗(g)) is an equivalence.

Proof. If A = sqz(W ) ∈ Cafp is a trivial square-zero extension on some W ∈ Modftk,≥0, the first
claim follows from observations (6) and (8) above. Given a general A ∈ Cafp, the comonadicity
claim in Theorem 4.20(1) shows that A can be written as a totalisation of a cosimplicial object
A• in C consisting of square-zero extensions, and that moreover D preserves this totalisation (i.e.
carries it to a geometric realisation of T∨-algebras). Of course, the right adjoint C∗ also preserves
all totalisations. Claim (1) therefore follows.

For claim (2), we use that by Theorem 4.20(1), any T∨-algebra g with underlying k-module in

Modftk,≤0 can be written as g = D(A) for some A ∈ Cafp. The statement then follows from (1). �

Proposition 4.53. Let g, g′, g′′ ∈ AlgT∨(Modftk,≤0) be T∨-algebras with underlying module in

Modftk,≤0 and suppose that we are given maps g′′ → g, g′′ → g′ which induce injections on π0.

Then the pushout g⊔g′′g′ (computed in T∨-algebras) has underlying k-module in Modftk,≤0 as well.

Proof. Define A,A′, A′′ ∈ Cafp as C∗(g), C∗(g′), and C∗(g′′). We now observe that the induced
maps A→ A′′, A′ → A′′ induce surjections on π0. Indeed, this follows immediately from from the
adic filtration. For example, A has a complete filtration with associated graded given by free([g∨]1),
where [g∨]1 is the graded k-module with g∨ in internal degree one (cf. Proposition 4.26). The maps
free([g∨]1)→ free([g′′∨]1) and free([g′∨]1)→ free([g′′∨]1) then induce surjections on π0, and passing
to the filtered objects shows that A→ A′′, A′ → A′′ have the same property.

Theorem 4.20(3) now shows that D(A×A′′ A′) ≃ g ⊔g′′ g has the asserted properties. �

We are now ready to show that one can obtain a deformation theory in the sense of Lurie.
Recall the following definition from [Lur11a, Definition 1.3.1, 1.3.9] (see also [CG18, Section 2]
for a treatment). Roughly, it expresses the idea of a bar-cobar duality, together with suitable
subcategories on which one obtains an inverse equivalence, albeit translated into more abstract
language.

Definition 4.54 (Lurie). A deformation theory consists of a presentable ∞-category A, a set of
objects {Eα}α∈T in the stabilisation of A, and an adjunction D : A⇄ Bop : C∗ with B presentable.
Moreover, we require that there exists a full subcategory B0 ⊂ B satisfying the following conditions:

(1) For B ∈ B0, the natural map B → DC∗(B) in B is an equivalence.
(2) The subcategory B0 ⊂ B contains the initial object ∅ of B. Moreover, for any α ∈ T and

n ≥ 1, there is an object Kα,n ∈ B0 such that Ω∞−nEα = C∗(Kα,n).
(3) Given an object K ∈ B0 and maps Kα,n → K and Kα,n → ∅, the pushout K ⊔Kα,n ∅

(computed in B) is contained in B0.
(4) For each α ∈ T and any n ≥ 2, assumptions (a) through (c) above imply equivalences

ΣKα,n ≃ Kα,n−1. Using these equivalences, we can define a functor fα : B → Sp with

Ω∞−nfα(X) = HomB(Kα,n, X).

We then assume that each functor fα commutes with sifted colimits.

We now wish to define a deformation theory in the above sense from the filtered augmented
monadic adjunction (cf. Definition 4.15) fixed throughout this section.

For this, we consider the adjunction D : C ⇄ AlgopT∨ : C∗ constructed in the beginning of this
subsection. Observe that since sqz is a right adjoint functor Modk,≥0 → C, it naturally lifts to
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the stabilisation of C: given any V ∈ Modk,≥0, the object sqz(V ) defines an object of Stab(C)
corresponding to the sequence {sqz(V [n])}n≥0.

Proposition 4.55. The ∞-category C, the infinite loop object {sqz(k[n])}n≥0 in Stab(C), and the
functor Dop : Cop → AlgT together define a deformation theory in the sense of Definition 4.54.

Proof. We define B0 ⊂ B = AlgT∨ as the subcategory of those objects whose underlying k-module

belongs to Modftk,≤0. We let Kn be the free T∨-algebra on k[−n]; recall that C∗(Kn) ≃ sqz(k[n])
and D(sqz(k[n])) ≃ Kn by construction of these adjunctions. Assumptions (a) through (c) now
follow from Proposition 4.52 and Proposition 4.53. Assumption (d) follows because T∨ commutes
with sifted colimits by construction, and so the forgetful functor from T∨-algebras to Modk (which
is the functor fα described above) also commutes with sifted colimits. �

We can now deduce the classification of formal moduli problems through T∨-algebras which was
asserted in the beginning of this section:

Proof of Theorem 4.23. Indeed, this follows from [Lur16, Theorem 12.3.3.5], since we know that we
have a deformation theory by Proposition 4.55. �
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5. Deformations over a field

In this section we consider some concrete examples of the general argument in the previous
section. In particular, we verify that one can apply the argument for connective E∞-algebras or
simplicial commutative rings augmented over a field.

5.1. E∞-algebras. We begin by examining deformations parametrised by E∞-algebras.

Preliminaries on E∞-algebras. To set the stage, we will briefly review some of the basic facts about
E∞-algebras; a comprehensive treatment of this theory can be found in [Lur17].

Let (A,⊗,1) be a presentably symmetric monoidal stable ∞-category.

(1) We can associate the ∞-category CAlg(A) of E∞-algebras in A, and there is a natural
free-forgetful adjunction

freeE∞
: A −−−→←−−− CAlg(A) : forget

The free E∞-algebra on an object X ∈ A is given by freeE∞
(X) ≃

⊕

n≥0

(X⊗n)hΣn .

(2) We write CAlgaug(A) = CAlg(A)1//1 for the ∞-category of augmented E∞-algebras in A;
its objects are E∞-algebras A in A equipped with an augmentation map A→ 1 to the unit.

(3) Let CAlgnu(A) denote the ∞-category of nonunital E∞-algebras in A. Since A is assumed
to be stable, we have an equivalence CAlgaug(A) ≃ CAlgnu(A) which sends an augmented
E∞-algebra A to the fibre mA of the augmentation map A → 1. As expected, there is a
free-forgetful adjunction

freeEnu
∞

: A −−−→←−−− CAlgnu(A) : forget,

and the free nonunital algebra on an object X ∈ A is given by freeEnu
∞
(X) ≃

⊕

n>0

(X⊗n)hΣn .

(4) Since the monad forgetEnu
∞
◦freeEnu

∞
is naturally augmented over the identity monad, and

this gives rise to an adjunction

cot : CAlgnu(A) −−−→←−−− A : sqz,

where the functor sqz sends an object of A to the associated nonunital E∞-algebra with
square-zero multiplication and the left adjoint cot is called the cotangent fibre.

Under the identification CAlgaug(A) ≃ CAlgnu(A), we have an equivalence

cot(A) ≃ ΩL1/A,

where L−/A denotes the cotangent complex of an E∞-A-algebra in A (cf. [Lur17, Section
7.3–7.4] or in the original setting [Bas99a]). Alternatively, we have cot(A) ≃ 1⊗A LA/1.

Remark 5.1. The definition of nonunital E∞-rings and the construction of the cotangent fibre
adjunction (4) do not require the unit in A; they therefore both make sense for nonunital symmetric
monoidal ∞-categories. This is relevant for us as we will later study the ∞-category FilModk of
k-modules filtered by positive integers (cf. Definition 2.1).

Finally, we will review the adic filtration and how it allows us to approximate every augmented
E∞-algebra by extended powers of its cotangent fibre. This is also discussed in [GL, Section 4.2],
and in fact a special case of the homotopy completion tower studied in [HH13].
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Construction 5.2 (The functor adic and the completion tower). As explained in Definition 2.5,
the functor F 1 : Fil(A) → A is (nonunital) symmetric monoidal. It therefore lifts to a functor on
algebras CAlgnu(Fil(A)) → CAlgnu(A), and this functor preserves limits (as these are computed
on underlying ∞-categories.

Taking the left adjoint now gives rise to a functor

adic : CAlgnu(A)→ CAlgnu(Fil(A)).

This construction refines any nonunital commutative algebra object in A to a filtered one, and
we therefore get a natural tower. More explicitly, we see that adic carries the free nonunital E∞-
algebra

⊕
i>0(V

⊗i)hΣi on V ∈ A to the free filtered nonunital E∞-algebra on the filtered object
(· · · → 0 → 0 → V ). Unwinding the definitions of the tensor product in Fil(A), we see that for
each n, there is an equivalence

(9) Fnadic(free(V )) ≃
⊕

i≥n

(V ⊗i)hΣi .

Example 5.3. Let A = Modk. Let I ∈ CAlgnu(Modk) be a connective nonunital E∞-algebra, so
that π0(I) is an ordinary nonunital k-algebra. Then the image of π0(F

nadic(I)) → π0(I) is given
by the nth power ideal of π0(I). This is evident in the free case, and the general case follows by
taking sifted colimits.

We return to the general case where A is any presentably symmetric monoidal stable∞-category.

Remark 5.4 (The cotangent fibre in degree 1). For any A ∈ CAlgnu(Gr(A)), the natural map
A→ cot(A) in Gr(A) induces an equivalence in (internal) degree 1. Indeed, this follows by consid-
ering the free case and then observing that everything commutes with sifted colimits. We obtain
a natural map

freenu([cot(A)1]1)→ A

in CAlgnu(Gr(A)), where [cot(A)1]1 denotes the graded object given by placing cot(A)1 in degree 1.

We will now verify some basic properties of of the construction adic.

Proposition 5.5. For any nonunital E∞-algebra A ∈ CAlgnu(A), we have:

(1) The natural unit map A→ F 1adic(A) is an equivalence.
(2) There is a natural equivalence cot(adic(A)) ≃ (cot(A))1 = (· · · → 0→ cot(A)) in Fil(A).
(3) There is a functorial identification freenu([cot(A)]1) ≃ Gr ◦ adic(A) in CAlgnu(Gr(A)),

where [cot(A)]1 denotes the graded object obtained by placing cot(A) in degree one.

Proof. If A is free, then (1) follows by our explicit computation in (9). From this, we can deduce
the general case by observing that both F 1 and adic preserve geometric realisations.

For (2), we observe that the following square of right adjoints evidently commutes:

Fil(A)
F 1

> A

CAlgnu(Fil(A))

sqz
∨

F 1

> CAlgnu(A)

sqz
∨

Finally, statement (3) follows (just like Proposition 4.26 above) by directly checking the free case
and then taking geometric realisations. �
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The setup for E∞-algebras. We shall now define a filtered augmented monadic adjunction (cf.
Definition 4.15) for E∞-algebras over a given field k. By our previous work, this will allow us to
deduce a version of Theorem 4.20 and thereby give a Lie algebraic description of deformation theory
in this context.

We write CAlgk for the ∞-category of E∞-k-algebras and CAlgnuk for its nonunital version. We
let C = CAlgnuk,≥0 denote the full subcategory of connective objects in CAlgnuk ≃ CAlgaugk .

Remark 5.6. For simplicity, we will generally state our results in terms of augmented (rather than
nonunital) algebras in this section.

Construction 5.7 (The setup for E∞-algebras). Let k be a field.

a) Let C = CAlgaugk,≥0 ≃ CAlgnu(Modk,≥0) be the∞-category of augmented (or equivalently nonuni-

tal) connective E∞-algebras over k.
b) Let CFil = CAlgnu(FilModk,≥0) be the ∞-category of nonunital E∞-algebras in the nonunital

symmetric monoidal∞-category FilModk,≥0. Note that CFil is equivalent to the full subcategory

of CAlgaug(Fil+Modk,≥0) spanned by all augmented E∞-algebra objects A with F 0A/F 1A ≃ k.
c) Let CGr = CAlgnu(GrModk,≥0) denote the∞-category of nonunital E∞-algebras in the nonunital

symmetric monoidal ∞-category CAlgnu(GrModk,≥0). Equivalently, CGr is the full subcategory
of CAlgaug(GrModk,≥0) spanned by those objects A⋆ such that A0 ≃ k.

d) We obtain the free-forgetful adjunction free : Modk,≥0 ⇄ C : forget and the cotangent fibre
adjunction cot : C ⇄ Modk,≥0 : sqz from (10) and (4) above by restricting to connective objects.
Note that if we describe C as augmented E∞-algebras, then the forgetful functor forget sends an
augmented E∞-algebra to its augmentation ideal.

Taking A = FilModk (or A = GrModk) instead, we obtain a similar pair of adjunctions
(cot ⊣ sqz), (free ⊣ forget) between CFil and FilModk,≥0 (or CGr and GrModk,≥0).

e) The functor F 1 : CFil → C forgets the filtration on an object; its left adjoint is the functor adic
(cf. Construction 5.2).

f) The (nonunital) symmetric monoidal functor Gr : FilModk,≥0 → GrModk,≥0 induces a functor
Gr : CFil → CGr on the level of algebras.

Proposition 5.8. The setup of connective E∞-algebras in Construction 5.7 satisfies conditions
(1)− (3) of Definition 4.15.

Proof. Conditions (1) and (2) of Definition 4.15 both follow from straightforward formal arguments.
For (3), we first observe that the free nonunital E∞-algebra functor GrModk,≥0 → GrModk,≥0 is
given by X 7→

⊕
i>0(X

⊗i)hΣi and therefore admissible by Example 3.49.
To construct the filtration required in condition (3), we use the adic filtration. Given X ∈

CAlgnu(GrModk,≥0), we form adic(X) ∈ CAlgnu(Fil(GrModk)) and setX(i) = F iadic(X) ∈ GrModk.

It follows that we have the tower
{
X(i)

}
i≥1

, naturally in X , and natural isomorphisms

X(i)/X(i+1) ≃ (cot(X)⊗i)hΣi

in GrModk. By taking simplicial resolutions and thereby reducing to the free case, it follows that
X(i) is concentrated in internal degrees ≥ i for any X . We deduce that the tower

{
X(i)

}
i≥1

converges in GrModk. Setting A(n) = X/X(n+1) gives the required filtration in condition (3). �

Finiteness conditions. In order to verify the remaining axioms (4) and (5) of Definition 4.15, we
will need to exploit the Noetherian and finiteness properties of E∞-ring spectra; we refer to [Lur17,
Chapter 7] or [Lur16, Chapter II.4] for a detailed study of these notions.
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Definition 5.9 (Cf. [Lur17, Definition 7.2.4.30]). An E∞-ring spectrum R is Noetherian if

(1) R is connective.
(2) π0(R) is Noetherian.
(3) For each i ≥ 0, πi(R) is a finitely generated π0(R)-module.

We will also need the following notion:

Definition 5.10. An E∞-k-algebra R is said to be almost finitely presented if R is Noetherian and
π0(R) is a finitely generated k-algebra.

The almost finitely presented E∞-algebras over k are precisely those connective E∞-k-algebras
R for which the functor MapCAlgk

(R,−) commutes with filtered colimits of connective, n-truncated

E∞-algebras. In fact, this is used as the definition when one works over a non-Noetherian base (cf.
[Lur17, Definition 7.2.4.26] and [Lur17, Proposition 7.2.4.31]).

One can define analogous finiteness properties on the level of modules. If R ∈ CAlgk is a
connective E∞-algebra over k, then there is a notion of an almost perfect R-module (cf. [Lur17,
Definition 7.2.4.10], [Lur16, Section 2.7]). More generally, for each n ∈ Z, one has the notion of an
R-module which is perfect to order n; an R-module M is almost perfect if and only if it is perfect
to order n for each n. When R is Noetherian, then this notion simplifies by [Lur17, Proposition
7.2.4.17]. Indeed, an R-module M is then almost perfect if and only if M is bounded below and
each homotopy group πi(M) is a finitely generated π0(R)-module.

The theory of Noetherian E∞-rings is well-behaved and robust; for instance, one has a version
of Hilbert’s basis theorem (cf. [Lur17, Proposition 7.2.4.31]) which, when combined with [Lur17,
Proposition 7.4.3.18], implies:

Proposition 5.11. The cotangent fibre of any augmented Noetherian k-algebra R lies in Modftk,≥0.

One can detect almost finite presentation of k-algebras using the cotangent complex by the
following special case of [Lur17, Theorem 7.4.3.18]:

Theorem 5.12. Let R be a connective E∞-algebra over k. Suppose π0(R) is a finitely generated
k-algebra. Then the following are equivalent:

(1) R is almost finitely presented.
(2) The cotangent complex LR/k is almost perfect as an R-module.

We shall now discuss graded versions of the above definitions.

Definition 5.13. Let k be a field.

(1) A graded E∞-k-algebra R⋆ ∈ CAlg(Gr+(Modk)) is almost finitely presented if the underly-
ing E∞-k-algebra

⊕
i≥0 Ri is almost finitely presented (cf. Definition 5.10).

(2) If R⋆ ∈ CAlg(Gr+(Modk,≥0)) is a connective graded E∞-ring and M⋆ is a graded R⋆-
module, then we will say that M⋆ is almost perfect (respectively perfect to order n) if the
underlying ungraded

⊕
i≥0 Ri-module

⊕
i≥0 Mi is almost perfect (respectively perfect to

order n).

If R0 = k, then we have the following straightforward criterion for almost perfectness:

Proposition 5.14. Let R⋆ be a degreewise connective graded E∞-k-algebra with R0 = k. Let M⋆

be an R⋆-module which is bounded below in each degree. Then the following are equivalent:

(1) M⋆ is almost perfect.
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(2) πi(M⋆⊗R⋆k) is a finite-dimensional k-vector space for all i. We use the augmentation R⋆ → k.

Proof. Condition (1) implies (2) since almost perfect modules are preserved under base-change.
For the converse direction, we may assume without restriction that M⋆ is connective in each

degree. We will show by induction that if (2) holds, then M⋆ is perfect to order n for each n ≥ 0.
The graded k-module M⋆ is perfect to order 0 precisely if π0(M⋆) is finitely generated. This

follows from the graded variant of Nakayama’s lemma since π0(M⋆ ⊗R⋆ k) = π0(M⋆) ⊗π0(R⋆) k is
finite-dimensional.

Now suppose we know that M⋆ is perfect to order n − 1 for some n ≥ 1. Choose a degreewise
connective, finitely generated free graded R⋆-module P⋆, together with a map P⋆ →M⋆ inducing a
surjection of graded k-vector spaces on π0. Let F⋆ be the homotopy fibre of P⋆ →M⋆. By [Lur16,
Proposition 2.7.2.1], M⋆ is perfect to order n if and only if F⋆ is perfect to order n − 1. Since
F⋆ ⊗R⋆ k is almost perfect over k, the inductive hypothesis shows that F⋆ is perfect to order n− 1,
which in turn implies that M⋆ is perfect to order n. �

The finiteness notion for graded E∞-rings introduced in Definition 5.13 recovers the “axiomatic”
notion of graded finiteness given Definition 4.31:

Proposition 5.15. Let R⋆ ∈ CAlgaug(Gr+(Modk,≥0)) be a degreewise connective, augmented
graded E∞-k-algebra with R0 = k. Then the following are equivalent:

(1) R⋆ is almost finitely presented.

(2) cot(R⋆) ∈ Gr(Modk,≥0) belongs to GrftModk,≥0.

Proof. If R⋆ is almost finitely presented, then it follows from Theorem 5.12 that the cotangent
complex LR⋆/k is almost perfect as an R⋆-module. The cofibre sequence for a triple of rings then

implies that the cotangent complex Lk/R⋆
belongs to GrftModk,≥0.

Conversely, suppose that cot(R⋆) belongs to GrftModk,≥0. Recall that π0(cot(R⋆)) is the mod-
ule of indecomposables of the augmented graded algebra π0(R⋆). Since π0(cot(R⋆)) is a finite-
dimensional vector space, it follows immediately that π0(R⋆) is a finitely generated graded algebra;
here we use that all elements in the augmentation ideal sit in positive degrees. Next, we observe that
the cotangent complex LR⋆/k ∈ ModR⋆ has the property that LR⋆/k⊗R⋆ k ≃ cot(R⋆) is almost per-
fect as a graded k-module, which in turn implies that LR⋆/k is almost perfect by Proposition 5.14.
Thus, we see that LR⋆/k is almost perfect as an R⋆-module. By Theorem 5.12, it follows that R⋆

is almost finitely presented. �

Next, we record analogous finiteness notions in the filtered case.

Definition 5.16. Let R ∈ CAlgaug(Fil+(Modk,≥0)) be a degreewise connective, filtered augmented
E∞-algebra over k such that F 0R/F 1R ≃ k. We say that R is complete almost finitely presented if:

(1) R is complete as a filtered object.
(2) The associated graded algebra Gr(R) ∈ CAlgaug(Gr+(Modk,≥0)) is almost finitely presented

in the sense of Definition 5.13.

Remark 5.17. Again by Proposition 5.15, we can see that R ∈ CAlgaug(Fil+(Modk,≥0)) is com-
plete almost finitely presented precisely if it belongs to to the ∞-category CFilafp defined in Defini-
tion 4.39 of the axiomatic section.

We shall now discuss the completed finiteness condition in the absence of a grading or filtration.
This will later allow us to give a concrete description of the subcategory Cafp ⊂ C from Definition 4.43
in our context. For future reference, we will start with a slightly more general notion:
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Definition 5.18 (Complete local Noetherian E∞-rings). An E∞-ring spectrum R is said to be
complete local Noetherian if R is Noetherian (cf. Definition 5.9) and π0(R) is a complete local ring.

We will refer to the residue field of π0(R) as the residue field of R itself. We write CAlgcN ⊂ CAlg
for the subcategory spanned by complete local Noetherian E∞-rings; we will use the same notation
for simplicial commutative rings.

Remark 5.19 (Topological finite generation). Let R ∈ CAlgaugk be complete local Noetherian. By
assumption, the local ring π0(R) has residue field k. If x1, . . . , xn ∈ π0(R) are generators for the
maximal ideal, then we can use the Cohen structure theorem to write π0(R) as a quotient of the
formal power series ring k[[t1, . . . , tn]] via the map ti 7→ xi. Moreover, if R→ R′ is a map in CAlgaugk

between complete local Noetherian E∞-rings, then π0(R)→ π0(R
′) is a local homomorphism.

Example 5.20 (Completions of almost finitely presented algebras). Let R ∈ CAlgk be a connective
E∞-k-algebra which is almost finitely presented in the sense of Definition 5.10. Let m be a maximal
ideal of π0(R) whose residue field is k. Then the completion R̂m of R along m, together with its

canonical augmentation to k, is a complete local Noetherian with residue field k. In fact, π0(R̂m)

is the (algebraic) completion of π0(R) along m, and πi(R̂m) ≃ πi(R) ⊗π0(R) π0(R̂m). We refer to
[Lur16, Section 7.3] for a general reference on completions in the context of E∞-ring spectra.

We will now prove that the cotangent fibre functor is conservative on complete local Noetherian
E∞-algebras augmented over k. We need the following straightforward observation:

Lemma 5.21. Let R be a complete local Noetherian E∞-ring with residue field k. Let M be an
R-module which is almost perfect. If M ⊗R k = 0, then M = 0.

Proof. Suppose that M is nonzero. We then look at the smallest integer n for which πn(M) 6= 0.
Since πn(M ⊗R k) = πn(M)⊗π0(R) k = 0 and πn(M) is finitely generated over π0(R), Nakayama’s
lemma gives a contradiction. �

Proposition 5.22. Let f : R→ R′ be a map between complete local Noetherian E∞-k-algebras. If
f induces an equivalence after applying cot(−), then f is itself an equivalence.

Proof. First, we recall that π0(cot(R)) is given by the cotangent space of the augmented k-algebra
π0(R), i.e. the quotient of indecomposables of the maximal ideal. A similar statement holds for R′.
Since both π0(R) and π0(R

′) are complete local rings, it follows that π0(R)→ π0(R
′) is surjective.

This in turn implies that the map R→ R′ makes R′ into an R-module of almost finite presentation.
The triple of maps R→ R′ → k gives rise to a cofibre sequence k⊗R′LR′/R → Lk/R → Lk/R′ . By

assumption, the second map is an equivalence, which shows that k⊗R′ LR′/R is contractible. Since
LR′/R is almost perfect by [Lur17, Theorem 7.4.3.18], we can deduce that LR′/R ≃ 0 by Lemma 5.21.
By [Lur16, Lemma 4.6.2.4], this in turn proves that the surjection π0(R)→ π0(R

′) is étale, and hence
an isomorphism (cf. e.g. [Sta19, Tag 0257]). The claim now follows from [Lur17, Corollary 7.4.3.4].

�

We now wish to show that Cafp from Definition 4.43 in the axiomatic setting precisely consists
of all complete local Noetherian E∞-algebras, and that the remaining axioms of Definition 4.15 are
satisfied. To this end, we first show that complete almost finitely presented filtered algebras are
well-behaved.

Proposition 5.23. Let R be an augmented filtered E∞-algebra over k which is complete almost
finitely presented in the sense of Definition 5.16. Then the underlying augmented E∞-k-algebra
F 0R is a complete local Noetherian E∞-ring (cf. Definition 5.18).

https://stacks.math.columbia.edu/tag/0257
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Proof. Choose a system of generators x1, . . . , xn of π0(Gr(R)) in positive internal degrees. Lifting
them to π0(F

0R), we get a system of elements x1, . . . , xn ∈ π0(F
0R) living in positive filtration.

By the Milnor exact sequence, we know that lim
←−n

π0(F
nR) vanishes, which in turn implies

that the commutative ring π0(R) is (x1, . . . , xn)-adically complete. We therefore obtain a map
k[[t1, . . . , tn]] → π0(F

0R), which is readily seen to be surjective by passing to associated gradeds.
It follows that π0(F

0R) is a quotient of a formal power series ring in finitely many variables over
k. It is therefore complete, local, and Noetherian.

It remains to check that the homotopy groups of F 0R are finitely generated π0(F
0R)-modules.

To this end, we observe that since the filtration on R is complete, [Lur16, Corollary 7.3.3.3] shows
that F 0R is in fact an (x1, . . . , xn)-adically complete E∞-ring (cf. [Lur16, Definition 7.3.1.1]), which
by [Lur16, Theorem 7.3.4.1] implies that πi(F

0R) is a derived complete π0(F
0R)-module for the

ideal (x1, . . . , xn) (cf. [Lur16, Theorem 7.3.0.5]). By [Sta19, Tag 091N], it therefore suffices to prove
that πi(F

0R)/(x1, . . . , xn) is a finitely generated π0(F
0R)/(x1, . . . , xn)-module for all i.

For this, we first upgrade the F 0R-module F 0R/(x1, . . . , xn) to a filteredR-moduleR/(x1, . . . , xn)
by taking the iterated cofibre of multiplication by each xi in filtered R-modules, thereby placing
xi in the appropriate filtration degree. Using that Gr(R) is almost finitely presented, a standard
induction argument shows that the Gr(R)-module Gr(R/(x1, . . . , xn)) ≃ Gr(R)/(x1, . . . , xn) has ho-
motopy groups which are finite-dimensional k-vector space in each degree i. Since R/(x1, . . . , xn)

is complete, we deduce that F 0R/(x1, . . . , xn) belongs to Modftk,≥0. �

We proceed to verify the completeness axiom (5) in Definition 4.15, indicating that the cotangent
complex of a complete almost finitely presented E∞-ring is well-behaved. We first examine the
filtered setting, and start with the easy 0-connected case where π0 is simply k.

Proposition 5.24. Let R ∈ CAlgaug(Fil+(Modk,≥0)) be complete almost of finite presentation.

Suppose that π0(Gr(R)) = k. Then cot(R) ∈ Fil(Modk,≥0) belongs to FilftModk,≥0.

Proof. For all i, our assumptions imply that πi(Gr(R)) is a finite-dimensional k = π0(Gr(R))-
module. Therefore the augmentation ideal of R, which belongs to CAlgnu(Fil(Modk,≥0)), has

underlying object in FilftModk,≥1. We observe that if V ∈ FilftModk,≥1, then the free filtered

algebra
⊕

i≥1(V
⊗i)hΣi on V also belongs to FilftModk,≥1; this follows since the ith summand is

i-connective. By Remark 4.24, we conclude that cot(R) is a geometric realisation of objects in

FilftModk,≥0, which implies the claim by Proposition 2.11. �

To extend the above result, we will need the following notion:

Definition 5.25. Let R ∈ CAlgaug(Fil+(Modk,≥0)) be complete almost finitely presented. Let M

be an R-module in Fil+(Modk) for which the following conditions hold true:

(1) Gr(M) is almost perfect as a Gr(R)-module (cf. Definition 5.13).
(2) M is complete.

Then we say that M is almost perfect.

The ∞-category of almost perfect R-modules behaves analogously to the ∞-category of almost
perfect modules over a connective ring spectrum. Rather than verifying all details (which we leave
as an exercise to the reader), we simply observe the following:

Proposition 5.26. Let R ∈ CAlgaug(Fil+(Modk,≥0)) be complete almost finitely presented. If M
and N are almost perfect R-modules, then so is M ⊗R N .

https://stacks.math.columbia.edu/tag/091N
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Proof. We first note that almost perfect R-modules are necessarily bounded-below. Since tensor
products of almost perfect modules over a connective E∞-ring are almost perfect, it only remains
to show that M ⊗R N is complete as a filtered object. Observe that this is clear when M is a free
R-module. Suppose we know that M ⊗R N is complete in (homotopical) degrees ≤ n (i.e. that
πi(lim←−(M ⊗R N)) vanishes for all i ≤ n). The assumptions imply that there exists a finite free

R-module F together with a map F → M inducing a surjection on π0. The homotopy fibre F ′

remains connective and is still almost perfect. The cofibre sequence F →M → ΣF ′ and induction
then imply that M ⊗R N is complete in degree n. �

Remark 5.27. An elaboration of the above argument shows that if M is connective, then it arises
as the geometric realisation of a simplicial diagram of finite free R-modules. In the unfiltered case,
this is established in [Lur17, Proposition 7.2.4.11].

We can now generalise Proposition 5.24:

Proposition 5.28. Let R ∈ CAlgaug(Fil+(Modk,≥0)) be complete almost of finite presentation.

Then cot(R) ∈ FilftModk,≥0.

Proof. First, π0(Gr(R)) is finitely generated, and we can lift generators to various filtered pieces.
It follows that there is a finite-dimensional vector space V equipped with a finite filtration

. . . ⊂ 0 ⊂ 0 ⊂ Vn ⊂ Vn−1 ⊂ . . . ⊂ V1 = V,

together with a map of filtered augmented E∞-algebras free(V ) → R inducing a surjection on

π0(Gr(−)). Since R is complete, this map factors through a map ̂free(V )→ R, which turns R into

an almost perfect ̂free(V )-module.

A direct calculation shows that the cotangent fibre of ̂free(V ) is just V ∈ FilModk,≥0: that is, the

map free(V )→ ̂free(V ) induces an equivalence on cotangent fibres. This is clearly true on associated

gradeds, so it suffices to see this on underlying objects. But on underlying objects, F 0 ̂free(V ) =∏
i≥0(V

⊗i)hΣi is the completion of the augmented E∞-algebra
⊕

i≥0(V
⊗i)hΣi at the augmentation

ideal which does not change the cotangent fibre. For this, compare also Proposition 5.23.
By Proposition 5.26, it follows that

R′ = R⊗ ̂free(V )
k ∈ CAlgaug(Fil+(Modk,≥0))

is also an almost perfect ̂free(V )-module, and hence complete. Since we have an equivalence of fil-

tered objects cot(R′) ≃ cofib(V → cot(R)), it suffices to show that cot(R′) belongs to FilftModk,≥0.
Indeed, this follows from the special case given by Proposition 5.24 since π0(Gr(R′)) = k. �

Proposition 5.29. If R ∈ CAlgaugk is complete local Noetherian, then adic(R) is complete.

Proof. Since adic(R)→ ̂adic(R) is an equivalence on associated gradeds, it suffices to check that it

also induces an equivalence on underlying objects to conclude that adic(R) is equivalent to ̂adic(R)
and thus complete.

We begin by observing that by Proposition 5.5, the cotangent fibre cot(adic(R)) is given by the

filtered module . . .→ 0→ 0→ cot(R). Furthermore, the natural map cot(adic(R))→ cot( ̂adic(R))
induces an equivalence on associated gradeds.

Now ̂adic(R) is complete almost finitely presented as a filtered E∞-ring, since its associated

graded is free on [cot(R)]1 by Proposition 5.5. We have used that cot(R) ∈ Modftk,≥0 as R is



DEFORMATION THEORY AND PARTITION LIE ALGEBRAS 50

Noetherian (cf. Proposition 5.11). By Proposition 5.28, this implies that cot( ̂adic(R)) belongs to

FilftModk,≥0 and it is therefore in particular complete. Hence cot(adic(R)) → cot( ̂adic(R)) is an
equivalence, as it is a map between complete objects inducing an equivalence on associated gradeds.

Taking underlying objects everywhere, it follows that R = F 0adic(R) → F 0 ̂adic(R) induces an
equivalence on cot. Both source and target are complete local Noetherian E∞-algebras over k (the

latter by Proposition 5.23). Hence R→ F 0 ̂adic(R) is an equivalence by Proposition 5.22. �

We can now show that two notions of smallness coincide:

Corollary 5.30. Let R ∈ CAlgaugk be a connective augmented E∞-algebra over k. Then the fol-
lowing are equivalent:

(1) R belongs to Cafp in the sense of Definition 4.43.
(2) R is complete local Noetherian in the sense of Definition 5.18.

Proof. If R is complete local Noetherian, then adic(R) is complete by Proposition 5.29 and cot(R)

belongs to Modftk,≥0 by Proposition 5.11. Conversely, if R belongs to Cafp, then applying Proposi-
tion 5.23 to adic(R) shows that R is complete local Noetherian. �

We can finally establish the following result:

Proposition 5.31. The datum of C = CAlgaugk,≥0, C
Gr, CFil specified in Construction 5.7 specifies

a filtered augmented monadic adjunction in the sense of Definition 4.15. It therefore satisfies the
conditions of Theorem 4.20.

Proof. We have already verified conditions (1), (2), and (3) of Definition 4.15 in Proposition 5.8.
For part a) of the coherence condition (4), we must check that if A,A′, A′′ are graded E∞-

algebras over k (with k as degree zero component) which are almost finitely presented, and if
A → A′′, A′ → A′′ are maps which induce surjections on π0, then A ×A′′ A′ is almost finitely
presented. This follows easily from the algebraic fact that if S, S′, S′′ are finitely generated k-
algebras and S → S′′, S′ → S′′ are surjections, then S ×S′′ S′ is finitely generated as a k-algebra,
cf. e.g. [Sta19, Tag 08KG]. Part b) of the coherence condition (4) follows from Proposition 5.11, as

if V ∈ GrftModk,≥0, then sqz(V ) is manifestly Noetherian.
Part a) of the completeness axiom (5) follows from Proposition 5.28. For part b) of axiom (5),

we note that if A ∈ CFilafp is an augmented complete E∞-k-algebra which is complete almost finitely

presented, then the underlying augmented E∞-k-algebra F 0A is complete local Noetherian by
Proposition 5.23. Proposition 5.29 and Corollary 5.30 then imply that adic(F 0A) is complete. �

Hence, Theorem 4.20 applies to the present setting, and we can perform the following construc-
tion:

Definition 5.32 (Spectral partition Lie algebras). Write Lieπk,E∞
: Modk → Modk for the unique

sifted-colimit-preserving monad on Modk satisfying Lie
π
k,E∞

(V ) = cot(sqz(V ∨))∨ for all V ∈Modftk,≤0.
Algebras over Lieπk,E∞

will be called spectral partition Lie algebras.

In particular, Theorem 4.23 asserts an equivalence between formal moduli problems for E∞-
algebras and the ∞-category AlgLieπk,E∞

. We postpone the discussion and formulation of this result

to the next section (cf. Theorem 6.27), where we will also discuss generalisations to other bases
(but still augmented over k).
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Instead, we will now give a more explicit description of partition Lie algebras. To begin with, we
check that when k is a field of characteristic zero, we recover a familiar notion. Recall that in this
case, the ordinary category of differential graded Lie algebras over k carries a model structure whose
weak equivalences and fibrations are transported along the forgetful functor to chain complexes.
Its underlying ∞-category will be denoted by AlgLiedgk

(cf. [Lur16, Section 13.1] for a detailed

treatment), and we write Liedgk for the corresponding monad on Modk.

Proposition 5.33. If k is of characteristic zero, then the following monads on Modk are equivalent:

Lieπk,E∞
Σ ◦ Liedgk ◦ Σ

−1.

As a result, the ∞-categories of spectral partition Lie algebras and shifted differential graded Lie
algebras are all equivalent.

Proof. Writing Cdg for the classical Chevalley-Eilenberg complex functor, we have a pair of adjunc-
tions (cf. [Lur16, Section 13.3]) given by

CAlgaugk

Ddg

−−−−−−−→←−−−−−−−
Cdg

(AlgLiedgk
)op

forgetdg

−−−−−−−−−−→←−−−−−−−−−−
freedg

Modopk .

By [Lur16, Proposition 13.3.1.4], their composite is given by

Σ−1 ◦ cot(−)∨ : CAlgaugk
−−−−−→←−−−−− Modopk : sqz(−∨) ◦ Σ.

Abstract nonsense therefore gives rise to a natural transformation of monads

Liedgk = forgetdg ◦freedg −−−−−→ Σ−1 ◦ cot (sqz(−∨))
∨
◦ Σ ,

which is obtained by inserting the unit id → Ddg ◦ Cdg. The monad Liedgk preserves Modftk,≤−1,
and we can therefore deduce from [Lur16, Proposition 13.3.1.1] that the above transformation is

an equivalence for all V ∈ Modftk,≤−1. By construction of Lieπk,E∞
, we obtain an equivalence of

monads (Σ ◦ Liedgk ◦ Σ
−1)|Modft

k,≤0
≃ Lieπk,E∞

|Modft
k,≤0

. Since both Liedgk and Lieπk,E∞
preserve sifted

colimits (the former by [Lur16, Proposition 13.1.4.4], the latter by construction), we in fact obtain

an equivalence of monads Σ ◦ Liedgk ◦ Σ
−1 ≃ Lieπk,E∞

on Modk, applying Corollary 3.17 above. �

Remark 5.34. As ∞-categories, AlgLiedgk
and AlgΣ◦Liedgk ◦Σ−1 are equivalent via a functor whose

effect on underlying k-modules is simply a shift by 1.

For general fields, partition Lie algebras are somewhat more complicated objects. We recall the
notion of partition complexes from Definition 1.5 above. Write Σ|Πn|⋄ for the Σn-space given by the

reduced-unreduced suspension of the nth partition complex. Let C̃•(Σ|Πn|⋄, k) be the cosimplicial
k-vector space given by its k-valued (reduced) singular cochains.

Proposition 5.35. Given any V ∈ Modk, there is an equivalence

Lieπk,E∞
(V ) ≃

⊕

n≥1

(Fh
Σ|Πn|⋄

)∨.

Here (Fh
Σ|Πn|⋄

)∨ is the right-left extension (cf. Section 3.2) of the functor Vectωk → Modk given by

V 7→ (C̃•(Σ|Πn|
⋄, k)⊗ V ⊗n)hΣn . If V ∈ Modk,≤N is truncated above, there is an equivalence

Lieπk,E∞
(V ) ≃

⊕

n

(
C̃•(Σ|Πn|

⋄, k)⊗ V ⊗n
)hΣn

.



DEFORMATION THEORY AND PARTITION LIE ALGEBRAS 52

Proof. For each n ≥ 0, we define a simplicial Σn-set T (n) by specifying its set of k-simplices as

T (n)k =

{
[0̂ = σ0 ≤ σ1 ≤ . . . ≤ σk = 1̂]

∣∣∣∣ σi are partitions of {1, . . . , n}

} ∐
{∗}

Degeneracy maps insert repeated partitions into chains and fix ∗. Face maps delete partitions from
chains whenever this yields a “legal” chain starting in 0̂ and ending in 1̂; otherwise, they map to ∗.

As cot preserves geometric realisations, we obtain, for any V ∈ Vectωk , the following equivalence:

cot(sqz(V )) ≃ |Bar•(id,FreeEnu
∞
, V )| ≃

∣∣∣∣ . . .
−→←−→←−→←−→

⊕

m≥1

(
⊕

n≥1

V ⊗nhΣn
)⊗mhΣm

−→←−→←−→

⊕

n≥1

V ⊗nhΣn

−→←−→ V

∣∣∣∣ .

For (X, ∗) a pointed set, we write k[X ] for the free k-module on X subject to the relation 0 ≃ ∗.
Expanding out extended powers binomially, a well-known and elementary combinatorial observation
(explained for example in [Chi05]) shows that cot(sqz(V )) is equivalent to∣∣∣∣ . . .

−→←−→←−→←−→

⊕

n≥1

(k[T (n)2]⊗V ⊗n)hΣn

−→←−→←−→

⊕

n≥1

(k[T (n)1]⊗V ⊗n)hΣn
−→←−→

⊕

n≥1

(k[T (n)0]⊗V ⊗n)hΣn

∣∣∣∣,

which is equivalent to
⊕

n≥1(C̃•(|T (n)|, k)⊗V ⊗n)hΣn . Since both functors preserve sifted colimits,

we deduce that cot(sqz(V )) ≃
⊕

n≥1(C̃•(|T (n)|, k)⊗ V ⊗n)hΣn for all V ∈Modk.

We now observe that T (n) can be identified with the quotient of the join {0̂} ∗Πn ∗ {1̂} by the

simplicial subset spanned by all chains not containing [0̂ ≤ 1̂] as a subchain. The realisation |T (n)|
is therefore equivalent to the reduced-unreduced suspension of the nth partition complex Σ|Πn|⋄

(cf. [AB18, Section 2.9]).

If V ∈ Modftk,≤0, then sqz(V ∨) is Noetherian, and so Lieπk,E∞
(V ) = cot(sqz(V ∨))∨ belongs to

Modftk,≤0 too (cf. Proposition 5.11). We can then identify the appearing infinite product with an
infinite sum and compute

Lieπk,E∞
(V ) ≃ (cot(sqz(V ∨))

∨
≃
⊕

n

(
C̃•(Σ|Πn|

⋄, k)⊗ V ⊗n
)hΣn

≃
⊕

n≥1

(Fh
Σ|Πn|⋄

)∨(V ).

Since Lieπk,E∞
(V ) and

⊕
n≥1(F

h
Σ|Πn|⋄

)∨ commute with sifted colimits, the first claim follows.

We observe that both Lieπk,E∞
(−) and

⊕
n(C̃

•(Σ|Πn|
⋄, k)⊗ (−)⊗n)hΣn preserve filtered colimits

in Modk,≤0; the above formula therefore holds for any V ∈ Modk,≤0. Both functors also preserve
finite geometric realisations, which implies the formula whenever V ∈Modk,≤N for some N . �
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5.2. Simplicial commutative rings. We shall now explain the modifications needed in order to
obtain a Lie algebraic description of deformations over simplicial commutative rings over a field k.
In particular, we will obtain a setup as in Definition 4.15 of our axiomatic section.

For this, we will need to recall the basic homotopy theory of simplicial commutative rings, as
introduced by Quillen. We refer to [Lur16, Chapter 25] for a detailed ∞-categorical treatment
of simplicial commutative rings. For our axiomatic setup, we will also need graded and filtered
versions. We give a quick summary below:

Construction 5.36 (The setup for simplicial commutative rings).

a) Let D = SCRaug
k be the∞-category of augmented simplicial commutative k-algebras. Explicitly,

SCRaug
k can be obtained as the nonabelian derived∞-category PΣ (as in [Lur09, Section 5.5.8])

of the category of finitely generated augmented polynomial k-algebras.
b) Let DFil be the ∞-category of filtered, augmented simplicial commutative k-algebras R with

F 0R/F 1R ≃ k. Specifically, DFil can be obtained by applying PΣ to the category of filtered,
augmented k-algebras which are free on a finite-dimensional vector space V equipped with a
finite filtration with F 0V = F 1V .

c) Let DGr denote the ∞-category of graded, augmented simplicial commutative k-algebras. More
precisely, DGr is obtained as PΣ of the category of finitely generated, graded augmented poly-
nomial algebras of the form k[x1, . . . , xr] with each xi homogeneous of positive degree.

d) We have free-forgetful adjunctions Modk,≥0 ⇄ D, Gr(Modk,≥0) ⇄ D
Gr, and Fil(Modk,≥0) ⇄ D

Fil.
The forgetful functors act as expected on the polynomial generators of the respective ∞-
categories of algebras (i.e. by taking the kernel of the augmentation). Moreover, the forgetful
functors are required to commute with sifted colimits (cf. Construction 5.38 below).

The three evident square-zero functors sqz : Modk,≥0 → D, sqz : Gr(Modk,≥0) → DGr, and
sqz : Fil(Modk,≥0)→ D

Fil admit left adjoints

cot∆ : D → Modk,≥0, cot∆ : DGr → Gr(Modk,≥0), cot∆ : DFil → Fil(Modk,≥0).

We use the subscript ∆ to contrast this with the E∞-cotangent fibre construction.
e) The underlying object functor F 1 : DFil → D forgets the filtration. On the polynomial gener-

ators, it behaves as the name indicates; in general, it is determined by commuting with sifted
colimits. The functor adic : D → DFil is the left adjoint of the underlying functor.

f) The associated graded functor DFil → DGr is constructed similarly by first defining it in the
evident way on polynomial generators and then extending in a sifted-colimit-preserving manner.

Remark 5.37. D contains the (ordinary) category of augmented k-algebras as a full subcategory.
Similarly, DGr and DFil contain the categories of graded and filtered augmented k-algebras.

Construction 5.38 (The free functors). We let LSym∗ : Modk,≥0 → Modk,≥0 denote the func-
tor which sends V ∈ Modk,≥0 to the augmentation ideal of the free simplicial commutative
k-algebra on V (with its natural augmentation). Explicitly, if V is a (discrete) k-vector space, then

LSym∗(V ) =
⊕

i>0 Sym
iV is the (usual) nonunital symmetric algebra on V ; in general LSym∗ is

defined as the nonabelian (left) derived functor construction (Construction 3.3).
The functors LSym∗ : Gr(Modk,≥0)→ Gr(Modk,≥0) and LSym∗ : Fil(Modk,≥0)→ Fil(Modk,≥0)

are defined in a similar way; they recover LSym∗ on underlying k-modules, but keep track of the
additional grading and filtration, respectively.

We now observe that LSymi is a polynomial functor of degree i (as it preserves filtered colimits
and is i-excisive by Proposition 3.34). Combining this with the finiteness properties of symmetric
powers established in [Lur16, Section 25.2.5], it follows that LSym∗ : GrModk,≥0 → GrModk,≥0 is
admissible in the sense of Definition 3.43.
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Example 5.39 (The adic filtration of a polynomial ring). Unwinding the definitions, we see that
applying the functor adic to a free simplicial commutative ring k[x1, . . . , xn] ∈ SCRaug

k = C recovers
the usual m-adic filtration, where m = (x1, . . . , xn) is augmentation ideal. In other words, one
obtains the free filtered simplicial commutative ring on x1, . . . , xn in filtration 1.

Very explicitly, the adic filtration can also be defined as follows: on polynomial rings, it is the
m-adic filtration and in general, it is defined via left Kan extension.

Proposition 5.40. The setup of simplicial commutative k-algebras in Construction 5.36 satisfies
conditions (1)− (3) of Definition 4.15.

Proof. Conditions (1) and (2) are straightforward to check.
In Construction 5.38, we saw that LSym∗ : GrModk,≥0 → GrModk,≥0 is an admissible functor.

It remains to produce the filtration for a graded, augmented simplicial commutative ring A ∈ DGr;
for this, we will follow the discussion in Example 5.39. If A is free with maximal ideal mA, the
mA-adic filtration gives a natural convergent filtration on mA; its associated graded is given by
the symmetric algebra Sym∗(mA/m

2
A). By taking left Kan extension, we conclude that for any

A ∈ DGr, the augmentation ideal mA is equipped with a convergent filtration with associated graded
LSym∗(cot∆(A)). This immediately implies that condition (3) of Definition 4.15 is satisfied. �

We will now verify the coherence axiom 4 and the completeness axiom 5 in Definition 4.15. These
will both be deduced from the analogous assertions involving E∞-rings, which we have already
checked in Proposition 5.31 above.

Construction 5.41 (Forgetting to E∞-algebras). There is a natural forgetful functor from simpli-
cial commutative rings to E∞-rings. It is characterised by the properties of acting as the forgetful
functor on ordinary polynomial rings and preserving sifted colimits (cf. [Lur16, Section 25.1.2]).
This construction clearly carries over to the augmented, filtered, and graded settings, and we there-
fore obtain forgetful functors D → C, DFil → CFil, and DGr → CGr. Here we use the notation
introduced in Construction 5.7 and Construction 5.36.

Definition 5.42. We say that A ∈ SCRaug
k = D is Noetherian (respectively complete local Noe-

therian) if the underlying E∞-algebra of A is Noetherian (respectively complete local Noetherian).

The axiomatic Definitions 4.31 and 4.39 give notions of almost finite presentation and complete
almost finite presentation for graded and filtered simplicial commutative k-algebras, respectively.

Proposition 5.43. These notions are compatible with the forgetful functor to E∞-k-algebras:

(1) A graded (augmented) simplicial commutative k-algebra A ∈ DGr is almost finitely presented
if and only if the underlying graded E∞-k-algebra (in CGr) is almost finitely presented.

(2) A filtered (augmented) simplicial commutative k-algebra A ∈ DFil is complete almost finitely
presented if and only if the underlying filtered E∞-k-algebra (in DFil) is complete almost
finitely presented.

Proof. Both assertions follow straightforwardly from [Lur16, Remark 25.3.3.7]. More explicitly, this
remark shows that there is an associative ring spectrum k+ with an augmentation k+ → k such that
cot(A) is a k+-module and cot∆(A) ≃ cot(A) ⊗k+ k. Moreover, k+ is connective with π0(k

+) = k,
and its homotopy groups are finite-dimensional in each degree. This readily implies that cot(A) has
finite-dimensional homotopy groups in each degree if and only if cot∆(A) does, hence proving (1).
Assertion (2) follows from (1) as completeness is detected on underlying k-module spectra. �

Proposition 5.44. If R ∈ DFil is complete almost finitely presented, then cot∆(R) ∈ FilftModk,≥0.
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Proof. This follows by combining [Lur16, Remark 25.3.3.7] with Proposition 5.28. Namely, we

already know that cot(R) ∈ FilftModk,≥0, and the identification cot∆(R) ≃ cot(R) ⊗k+ k (which
works in the filtered category too) together with Proposition 2.11 allow us to conclude the claim. �

Proposition 5.45. If R ∈ SCRaug
k is complete local Noetherian, then the adic filtration converges.

Proof. This follows by the argument used in the proof of Proposition 5.29, where we simply replace
E∞-rings by simplicial commutative rings everywhere. �

Corollary 5.46. The setup of simplicial commutative k-algebras of Construction 5.36 satisfies the
axioms of Definition 4.15. Consequently, Theorem 4.20 holds true in this context.

Proof. We have already checked axioms (1)-(3) in Proposition 5.40. The coherence axiom (4)
follows immediately by combining Proposition 5.43 with the corresponding result for E∞-algebras,
which was established in Proposition 5.31. Part a) of the completeness axiom (5) was proven in
Proposition 5.44, whereas part b) follows by combining Proposition 5.45 with Proposition 5.23. �

In particular, we can again perform the following construction:

Definition 5.47 (Partition Lie algebras). Write Lieπk,∆ : Modk → Modk for the unique sifted-

colimit-preserving monad on Modk satisfying Lieπk,∆(V ) = cot∆(sqz(V
∨))∨ for all V ∈ Modftk,≤0.

Algebras over Lieπk,E∞
will be called partition Lie algebras.

Applying Theorem 4.23 to our setup, we obtain a classification of formal moduli problems for
augmented simplicial commutative rings as equivalent to the ∞-category of partition Lie algebras.
We again postpone stating the result formally until the next section (cf. Theorem 6.27).

Proposition 5.48. If k is of characteristic zero, then the monad Lieπk,∆ is equivalent to the monads

Lieπk,E∞
and Σ ◦ Liedgk ◦ Σ

−1 building free spectral and free shifted differential graded Lie algebras.
As a result, the ∞-categories of partition Lie algebras, spectral partition Lie algebras, and shifted
differential graded Lie algebras are equivalent.

Proof. Since k has characteristic zero, the forgetful functor from simplicial commutative k-algebras
to connective E∞-k-algebras is an equivalence (cf. [Lur16, Proposition 25.1.2.2]). Together with
Proposition 5.48, this implies the claim. �

We proceed to establish a concrete description of Lieπk,E∞
. As above, let C̃•(Σ|Πn|⋄, k) denote the

k-valued (reduced) singular cochains of the doubly suspended nth partition complex. The following
result uses the genuine Σn-equivariant structure of this cosimplicial k-module:

Proposition 5.49. Given any V ∈ Modk, there is an equivalence Lieπk,∆(V ) ≃
⊕

n≥1(FΣ|Πn|⋄)
∨.

Here (FΣ|Πn|⋄)
∨ is the right-left extension (cf. Section 3.2) of the functor Vectωk → Modk given by

V 7→ (C̃•(Σ|Πn|⋄, k)⊗ V ⊗n)Σn (cf. Section 3.3 for a more formal definition).
If V ≃ Tot(V •) ∈Modk,≤0 is represented by a cosimplicial k-vector space V •, then

Lieπk,∆(V ) ≃
⊕

n

Tot
(
C̃•(Σ|Πn|

⋄, k)⊗ (V •)⊗n
)Σn

.

Here C̃•(Σ|Πn|⋄, k) denotes the k-valued cosimplices on the space Σ|Πn|⋄, the functor (−)Σn takes
strict fixed points, and the tensor product is computed in cosimplicial k-modules.

Proof. We apply the same argument as in Proposition 5.35, replacing homotopy orbits with strict
orbit, to deduce the first statement. The second statement then follows from Proposition 3.23. �
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5.3. Operads. In this section, we fix a field k and an∞-operad O internal to Modk (cf. e.g. [Bra17,
Definition 4.1.4]) satisfying the following three basic properties:

(1) O(0) is contractible.
(2) O(1) is equivalent to k via the unit map k→ O(1).
(3) O(i) ∈ Modftk,≥0 is connective and of finite type for all i ≥ 0.

The ∞-category AlgO of O-algebras in Modk, which comes with a free-forgetful adjunction

(10) freeO : Modk
−−−−−−→
←−−−−−− AlgO : forget,

The free functor is given by the formula freeO(V ) ≃
⊕

i≥1(O(i)⊗ V ⊗i)hΣi .

The main result of this section is that when we restrict to formal moduli problems defined on
connected O-algebras (i.e. O-algebras in Modk,≥1), then our axiomatic Theorem 4.23 implies a
classification of formal moduli problems. We stress that this will not quite recover the (harder)
main result of Section 5.1 above due to the stronger connectedness assumption; more on this point
in Remark 5.61 below. Since the essential features are very similar to the previous examples, we will
be brief. Compare also the result of Ching-Harper [CH19], which proves the comonadicity assertion
under the connectedness assumption.

Construction 5.50 (The setup for connected O-algebras). Let k be a field.

a) Let C be the ∞-category AlgO(Modk,≥1) of connected O-algebras.
b) Let CFil = AlgO(FilModk,≥1) be the ∞-category of filtered O-algebras.
c) Let CGr = AlgO(GrModk,≥1). Denote the ∞-category of graded O-algebras.
d) We have a free-forgetful adjunction freeO : Modk,≥1 ⇄ C : forget. The natural augmentation

map from O to the trivial operad induces an adjunction cotO : C ⇄ Modk,≥1 : sqz. We define
free-forgetful and cotangent fibre adjunctions in the filtered and graded context in a similar way.

e) The adic filtration functor adic : C → CFil is right adjoint to the underlying functor F 1 : CFil → C.
f) The associated graded functor lifts naturally to define a functor Gr : CFil → CGr.

Because of the connectedness assumption, verifying the hypotheses of Theorem 4.20 turns out to
be much simpler than before, as convergence works more nicely. To verify this, we will first show
that the adic filtration converges automatically for connected O-algebras. In a second step, we then
show that finiteness can be detected by (and is reflected in) cotO.

Example 5.51 (The adic filtration on a free algebra). The adic filtration on freeO(V ) is given by

Fnadic(freeO(V )) ≃
⊕

i≥n

(O(i)⊗ V ⊗i)hΣi .

In particular, if V ∈ Modk,≥1, then the filtration converges for connectivity reasons.

Proposition 5.52 (Convergence of the adic filtration). Let A ∈ AlgO(Modk,≥1) be a connected
O-algebra. Then the adic filtration on A converges.

Proof. This follows from Example 5.51 and Proposition 2.11, since any connected O-algbera is the
geometric realisation of free connected O-algebras. �

The next result, which is essentially already contained in [HH13], shows that finite type conditions
can be detected using the cotangent fibre functor cotO (under the assumption of connectedness).

Proposition 5.53 (Finiteness, completeness, and cotO).

(1) Let A ∈ AlgO(Modk,≥1) be connected. Then A ∈Modftk,≥1 if and only if cotO(A) ∈Modftk,≥1.
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(2) Let B ∈ AlgO(GrModk,≥1) be connected and graded. Then B ∈ GrftModk,≥1 if and only if

cotO(B) ∈ GrftModk,≥1.

(3) Let C ∈ AlgO(FilModk,≥1) be a connected, filtered O-algebra. Then C ∈ FilftModk,≥1 if

and only if C is complete and cotO(C) ∈ FilftModk,≥1.

Proof. For part (1), let A be a connected O-algebra. Suppose that cotO(A) is of finite type. The
fact that A is of finite type (as a k-module spectrum) follows from the adic filtration on A. Indeed,
this filtration converges by Proposition 5.52, and the terms of its associated graded are each of finite
type and become arbitrarily connected. Conversely, if A is of finite type, then the bar construction
can be used to express cotO(A) as a geometric realisation of a simplicial k-module spectrum whose
terms are of the form freeO ◦ · · · ◦ freeO(A). Each of these is connected and of finite type, so that
the geometric realisation cotO(A) is connected of finite type as well.

Part (2) follows directly from part (1) by forgetting to underlying ungraded O-algebras.
Part (3) follows from part (2) together with the claim that if C is a connected filtered O-algebra

whose underlying object belongs to FilftModk,≥1, then cotO(C) is automatically complete. This
last claim again follows from the bar construction: the key observation is that freeO preserves
FilftModk,≥1, and that FilftModk,≥1 is closed under geometric realisations. �

We can explicitly identify the subcategories Cafp, C
Fil
afp, and C

Gr
afp which appear when applying the

axiomatic definitions from Section 4 to the setup specified in Construction 5.50 The following is
immediate from Proposition 5.53:

Corollary 5.54.

(1) An object A ∈ AlgO(Modk,≥1) is complete almost finitely presented if and only if the un-
derlying k-module spectrum is finite type.

(2) An object B ∈ AlgO(GrModk,≥1) is almost finitely presented if and only if the underlying
k-module spectrum of B is of finite type.

(3) An object C ∈ AlgO(FilModk,≥1) is complete almost finitely presented if and only if the

underlying object of FilModk,≥1 belongs to FilftModk,≥1.

Corollary 5.55. The above satisfies the conditions of Definition 4.15.

Proof. Since the conditions of almost finite presentation, complete almost finite presentation, and
so forth are purely module-theoretic in view of Corollary 5.54, the conditions of Definition 4.15 are
evidently satisfied. �

Construction 5.56. It follows that we obtain a monad T∨O on Modk and a Koszul duality functor

D : AlgO(Modk,≥1)→ AlgopT∨
O

as Theorem 4.20 and Construction 4.50. By construction, the monad T∨O preserves sifted colimits

and its value on V ∈Modftk,≤−1 is given by T∨O(V ) ≃ cotO(sqz(V
∨))∨.

Remark 5.57. Let O∨ = Bar(O) be the Koszul dual ∞-operad in Modk. Then the functor T∨O is

given, for V ∈Modftk,≤−1, by the formula

V 7→ (cotO ◦sqz(V
∨))∨ =

⊕

i≥1

(O∨(i)⊗ V ⊗i)hΣi .

Here the product could be interchanged with the sum for connectivity reasons. Roughly speaking,
we should regard T∨O-algebras as “divided power” algebras over the Koszul dual operad O∨.
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We introduce the following explicit definition:

Definition 5.58 (Artinian O-algebras and formal moduli problems).

(1) A connected O-algebra A is Artinian if π∗(A) is a finite-dimensional k-vector space. Let
AlgartO denote the ∞-category of Artinian O-algebras.

(2) An O-formal moduli problem is a functor F : AlgartO → S such that if A → A′′, A′ → A′′

are maps in AlgartO inducing surjections on π1, then F (A×A′′ A′) ≃ F (A)×F (A′) F (A′′).

We can then use our results in Section 4:

Corollary 5.59. There is an equivalence between the ∞-category of O-formal moduli problems and
the ∞-category AlgT∨

O
.

Proof. In order to apply Theorem 4.23, it suffices to verify that Artinian O-algebras in the sense
of Definition 5.58(1) are exactly the Artinian objects with respect to the deformation theory given
by AlgO(Modk,≥1), i.e. objects which can be built up inductively by pullbacks of trivial extensions
(cf. Definition 4.21). It then also follows that Definition 5.58(2) is an instance of Definition 4.22 in
the present context.

Observe that any O-algebra with homotopy groups concentrated in degree 1 is necessarily square-
zero by our connectivity assumptions on O. Given an algebra A ∈ AlgartO , we write τ≤nA for the
nth Postnikov truncation of A (cf. [Lur09, Proposition 5.5.6.18]). Arguing as in [Lur17, Proposition
7.1.3.15], we see that the underlying k-module of τ≤nA is simply given by the k-truncation in Modk.

It then suffices to verify that if A ∈ AlgartO has top homotopy group in degree n, then there exists
a pullback square of O-algebras

A

��

// 0

��

τ≤n−1A // sqz((πnA)[n+ 1])

.

In the case of E∞-rings, this observation appears in [Kri96] and [Bas99b], and is discussed in modern
language in [Lur09, Corollary 7.4.1.28].

To construct the desired pullback square, we first form the pushout P = τ≤n−1A ⊔A 0 in AlgO
and then apply the functor τ≤n+1 to it, which implies the claim as τ≤n+1P ≃ sqz((πnA)[n+1]). �

Remark 5.60. In characteristic zero, T∨O agrees with the free O∨-algebra monad. In particular,
the assertion is that O-formal moduli problems are equivalent to O∨-algebras under the above
assumptions. This fact is well-known to experts, but we are not aware it has appeared explicitly yet.

Remark 5.61 (Comparison with spectral formal moduli problems). One can apply the above
results when O is the (nonunital) commutative operad. This gives rise to a classification of a variant
of spectral formal moduli problems (which are only defined on connected Artinian E∞-k-algebras)
in terms of the same ∞-category of spectral partition Lie algebras.

In particular, it follows that spectral formal moduli problems over k are determined by their
restriction to connected Artinian E∞-k-algebras; they automatically extend to all Artinian E∞-k-
algebras. However, the arguments are simpler when one restricts to the connected case (as in the
present section), and apply to more general operads O.

The fact that, for O the commutative operad, the theory extends to some connective (rather than
connected) objects requires an additional calculation (and does not appear to be purely formal).
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6. Deformations over a complete local base

Assume that A is complete local Noetherian with residue field k (cf. Definition 5.18), either in
the setting of E∞-rings or in the setting of simplicial commutative rings. The following rings will
play the role of infinitesimal thickenings of Spec(k) in this mixed setting:

Definition 6.1 (Artinian rings for A//k). An object B of CAlgA//k is called Artinian if

(1) π0(B) is a local Artinian ring (with residue field k)
(2)

⊕
i≥0 πi(B) is a finitely generated module over π0(B) (in particular, πi(B) = 0 for i≫ 0).

We let CAlgartA//k denote the full subcategory of CAlgA//k spanned by Artinian objects.

An object of SCRA//k is Artinian if the underlying object of CAlgA//k is, and we let SCRart
A//k

be the full subcategory of SCRA//k spanned by all Artinian objects.

We can now generalise the notion of a formal moduli problem to the relative context; note that
this notion also appears in [Lur11b, Section 6.1].

Definition 6.2 (Formal moduli problems for A//k). A spectral formal moduli problem for A//k is
a functor F : CAlgartA//k → S such that:

(1) F (k) is contractible.
(2) If B,B′, B′′ ∈ CAlgartA//k and we have maps B → B′′ and B′ → B′′ which induce surjections

on π0, then the canonical map F (B ×B′′ B′)
≃
−→ F (B)×F (B′′) F (B′) is an equivalence.

We denote the ∞-category of spectral formal moduli problems by ModuliA//k,E∞
.

Similarly, a derived formal moduli problem for A//k is a functor F : SCRart
A//k → S satisfying

the analogous conditions (1) and (2) above. We denote the ∞-category of derived formal moduli
problems for A//k by ModuliA//k,∆.

Remark 6.3. Suppose k is a perfect field of characteristic p. Let W+(k) denote the spherical Witt
vectors of k (cf. [Lur18, Example 5.2.7]), so that W+(k) is a complete local Noetherian E∞-ring
with residue field k. Then the ∞-category of Artinian objects of CAlgA//k is equivalent to a full

subcategory of CAlg/k (namely, those which are Artinian). It therefore follows that we can regard
spectral formal moduli problems as defined on all Artinian E∞-algebras augmented over k; the map
from A is therefore superfluous.

A similar statement holds for derived formal moduli problems and the classicalWitt vectors W (k).

The principal goal of this section is to generalise Section 5 to the mixed context. Our main
result is Theorem 6.27 below, which gives a Lie algebraic description of spectral and derived formal
moduli problems for A//k.

6.1. Descent properties of modules. Let A be a complete local Noetherian E∞-ring with residue
field k. We will now establish several convergence results on modules. This will later allow us to
reduce the proof of Theorem 6.27 to the case A = k, which has been handled in Section 5.

Definition 6.4 (Complete A-modules). An A-module spectrum M ∈ ModA is complete if it is
derived m-complete (cf. [Lur16, Theorem 7.3.4.1]), where m ⊂ π0(A) is the unique maximal ideal.

Proposition 6.5 (Convergence criterion forA-modules). Let M• be a cosimplicial object of ModA,≥0.
Suppose that each M i is complete and that Tot(k ⊗A M•) ∈Modk is connective. Then:

(1) Tot(M•) is connective and complete (as an A-module).
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(2) If N is an almost perfect A-module, then N⊗ATot(M
•)
≃
−→ Tot(N⊗AM

•) is an equivalence.

Proof. We begin with statement (1). Consider the class T of connective A-modules N for which
Tot(N⊗AM•) is connective. By assumption, T contains k[i] for i ≥ 0. Moreover, T is closed under
extensions: given a cofibre sequence N1 → N2 → N3 with N1, N3 ∈ T , it follows that N2 ∈ T .

Assume that N ′ is an almost perfect and connective A-module such that the homotopy groups
πi(N

′) are allm-power torsion. By induction, the above properties of T show that all the truncations
τ≤nN

′ all belong to T . Passage to the limit as n→∞ now shows that N ′ ∈ T too.
For instance, if x1, . . . , xr ∈ π0(A) generate the maximal ideal, then ifN is any connective, almost

perfect A-module, we conclude that the iterated cofibre N/(x1, . . . , xr) belongs to T . It follows that
Tot(N ⊗A M•)/(x1, . . . , xr) is a connective A-module. Since each N ⊗A M i is complete, it follows
that Tot(N⊗AM•) is a complete A-module. Thus, it also follows that Tot(N ⊗AM•) is connective
itself. Therefore, we have shown that T contains every connective, almost perfect A-module. In
particular, taking N = A verifies part (1) of the theorem.

We shall now verify part (2). The claim is clearly true in the case whereN is perfect. Suppose that
N is an arbitrary almost perfect A-module, and assume without restriction thatN is also connective.
Both domain and target of the map N ⊗A Tot(M•)→ Tot(N ⊗A M•) are connective (since N ∈ T
by the previous paragraph). Fix n > 0. We can find a perfect A-module P and a map P → N
which induces an equivalence on n-truncations, so we obtain a cofibre sequence P → N → N ′

where N ′ ∈ ModA,≥n+1. Since N ′[−n − 1] ∈ T , it follows that Tot(N ′ ⊗A M•) ∈ ModA,≥n+1. In
particular, in the commutative square

P ⊗A Tot(M•)

��

// Tot(P ⊗A M•)

��

N ⊗A Tot(M•) // Tot(N ⊗A M•)

,

the vertical maps P ⊗A Tot(M•) → N ⊗A Tot(M•) and Tot(P ⊗A M•) → Tot(N ⊗A M•) are
equivalences on n-truncations. Since the top horizontal map is an equivalence, it follows that the
bottom horizontal map is an equivalence on n-truncations. Since n was arbitrary, we conclude that
the bottom horizontal map is an equivalence, which implies (2). �

Next, we show that for connective complete A-modules, the Adams spectral sequence converges.
More precisely, consider the Čech nerve of A→ k, i.e. the augmented cosimplicial diagram

(11) A −→ ( k −→←−→ k ⊗A k −→←−→←−→ . . . )

in the ∞-category of E∞-rings. We then have:

Proposition 6.6. As before, let A be a complete local Noetherian E∞-ring with residue field k. If M

is a connective and complete A-module, then the diagram M
≃
−→ Tot ( M ⊗A k −→←−→ M ⊗A k ⊗A k −→←−→←−→ . . . )

(obtained by tensoring (11) with M) is a limit diagram.

Proof. After base-change along the map A→ k, the cosimplicial diagram

(12) k −→←−→ k ⊗A k −→←−→←−→ . . .

admits a splitting, since it becomes the Čech nerve of the map k → k ⊗A k, which has a section.
Proposition 6.5 therefore applies to diagram (12), which implies that the totalisation is connective
and commutes with base-change with any almost perfect A-module. From this, we deduce that
M −→ Tot (M ⊗A k −→←−→ M ⊗A k ⊗A k −→←−→←−→ . . .) is a map of connective, complete A-modules which
becomes an equivalence after applying k⊗A−. Thus, it is an equivalence by Nakayama’s lemma. �
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As an application of Proposition 6.6, we observe the following descent theorem for complete
connective modules. Note that descent for all modules in the faithfully flat case appears in [Lur16,
Section D.6.3] and in the proper surjective case in [Lur16, Theorem 5.6.6.1]. We thank Bhargav
Bhatt for indicating the following result to us.

Theorem 6.7. Let A be a complete local Noetherian E∞-ring with residue field k. Writing ModcplA,≥0

for the full subcategory of all complete connective A-modules (cf. Definition 6.4), the natural map

ModcplA,≥0
≃
−−−−→ Tot ( Modk,≥0 −→←−→ Modk⊗Ak,≥0

−→←−→←−→ . . . )

is an equivalence of ∞-categories.

Proof. It suffices to show that the functor k⊗A− : ModcplA,≥0 → Modk,≥0 is comonadic as in [Lur16,

Lemma D.3.5.7]. First, we observe that k ⊗A − is conservative on connective and complete A-

modules by Nakayama’s lemma. Next, let M• be an object of ModcplA,≥0 such that the cosimplicial

k-module k ⊗A M• admits a splitting. It follows that Tot(k ⊗A M•) (computed in k-modules) is
connective. Thus, by Proposition 6.5, Tot(M•) is connective and k ⊗A Tot(M•)→ Tot(k ⊗A M•)
is an equivalence. This verifies the hypotheses of the comonadicity theorem. �

Notation 6.8. Let APerfR be the full subcategory of ModR spanned by almost perfect R-modules.

As a consequence of Theorem 6.7, we observe also that almost perfect modules satisfy descent,
cf. [HLP14, Sec. 4] for closely related results:

Corollary 6.9 (Descent for almost perfect modules). Let A be a complete local Noetherian E∞-ring
with residue field k. Then the diagram

APerfA
≃
−−−−→ Tot ( APerfk −→←−→ APerfk⊗Ak

−→←−→←−→ . . . )

is an equivalence of symmetric monoidal ∞-categories. This remains true when we replace APerf
by the corresponding ∞-categories Perf of perfect modules.

Proof. For the first claim, by Theorem 6.7, it suffices to check that if M is any connective complete
A-module with k ⊗A M ∈ APerfk, then M belongs to APerfA, which means that M has finitely
generated homotopy groups. We show inductively that the homotopy groups of M are finitely
generated.

Indeed, if M is such a module, then π0(k ⊗A M) ≃ k ⊗π0(A) M is finitely generated. Choose
a map Ar → M which induces a surjection on π0(k ⊗A ·) and let C be the cofibre. Then [Sta19,
Lemma 09B9] implies that π0(A

r) → π0(M) is surjective, and π0(C) = 0. Therefore, π0(M) is
finitely generated.

Now assume n > 0, and that for any connective, complete module M with k ⊗A M ∈ APerfk,
we have that πi(M) is finitely generated for i < n. We will show additionally that πn(M) is finitely
generated, which will establish the claim by induction. Choose the map Ar → M as above. The
inductive hypothesis shows that fib(Ar → M) has finitely generated homotopy groups πi, i < n.
The long exact sequence now shows that πn(M) is finitely generated.

Finally, for the second claim, we observe that perfect modules are characterised as the dualisable
objects in APerf, so the second claim follows from the first. �

6.2. Constructing a deformation theory. Let A be a complete local Noetherian E∞-ring with
residue field k. Write CAlgA//k,≥0 for the ∞-category of connective E∞-A-algebras B equipped
with a map B → k. In this subsection, we use this data to construct a deformation theory in the

https://stacks.math.columbia.edu/tag/09B9
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sense of Lurie (cf. [Lur16, Definition 12.3.3.2]). When A = k, this was done in Section 5.1 above,
and we will now indicate the necessary modifications.

First, we consider the adjunction

(13) cotA : CAlgA//k,≥0
−−−→←−−− Modk,≥0 : sqz

where:

a) the left adjoint cotA sends B ∈ CAlgA//k,≥0 to cotA(B) := k ⊗B LB/A.

b) the right adjoint sqz sends V ∈Modk,≥0 to the object k⊕V , considered as a trivial square-zero
k-algebra and equipped with an A-algebra structure via A→ k.

Remark 6.10. As CAlgA//k,≥0 is not pointed when A 6= k, the mixed context does not quite
fit into the framework of Section 4. However, it will be possible to deduce all results from the
case A = k. This is possible because the adjunction (13) above is the composite of (4) with the
adjunction

CAlgA//k,≥0 ⇄ CAlgk//k,≥0

given by base-change and forgetting. In particular, observe that for any B ∈ CAlgA//k,≥0, we have

(14) cotA(B) ≃ cot(k ⊗A B).

Notation 6.11. Let CAlgcNA//k denote the full subcategory of CAlgA//k,≥0 spanned by those objects

B which are complete local Noetherian, i.e. such that B is Noetherian (cf. Definition 5.9) and such

that π0(A) is a complete local ring. We use similar notation SCRcN
A//k when A is a simplicial

commutative ring which is complete local Noetherian with residue field k.

Example 6.12. The completion ̂A {x1, . . . , xn} of a free E∞-algebra in variables x1, . . . , xn over

A is an object of CAlgcNA//k. Indeed, these are the free objects of CAlgcNA//k: if B ∈ CAlgcNA//k, then

HomCAlgcN
A//k

( ̂A {x1, . . . , xn}, B) ≃ Ω∞mn
B, where mB = fib(B → k) is the augmentation ideal of B.

We begin by observing that any object of CAlgcNA//k can be written as a geometric realisation of
such completed-free objects; while this will not be used in the sequel. For convenience, we state
the result as well for simplicial commutative rings.

Theorem 6.13. Let A be a complete local Noetherian E∞-algebra (resp. simplicial commutative

ring) augmented over k. Then any object of CAlgcNA//k (resp. SCRcN
A//k) can be expressed as the

geometric realisation of a simplicial object X• in CAlgcNA//k (resp. SCRcN
A//k) where each Xi is the

formal completion of a free algebra over A on finitely many variables in degree zero.

Proof. We give the proof for CAlgcNA//k; the simplicial commutative ring case is similar. Here we

use the notation and language of Lemma 8.6 below. We take C = CAlgcNA//k and S to be the class

of maps B → B′ which induce surjections on π0. Note that coproducts in C are given by completed
tensor products. Similarly, we take F to be the class of objects in CAlgcNA//k which are free on

a finite set of generators in degree zero. These play the role of free objects in CAlgcNA//k as in
Example 6.12, so they have the lifting property with respect to S. Thus, we can apply Lemma 8.6
to produce an (F , S)-hypercover X• in C as desired. This is necessarily a colimit diagram, since
one can check this after applying Ω∞, and hypercovers are colimit diagrams in the ∞-category S
[Lur09, Lemma 6.5.3.11]. �



DEFORMATION THEORY AND PARTITION LIE ALGEBRAS 63

If B ∈ CAlgcNA//k, then the augmented E∞-k-algebra k ⊗A B is complete local Noetherian. It

therefore has an almost perfect cotangent fibre by Proposition 5.11, which means that cotA(B) is
almost perfect. We can therefore restrict 13 to obtain an adjunction

(15) cotA : CAlgcNA//k
−−−→←−−− Modftk,≥0 : sqz.

with associated comonad TA : Modftk,≥0 → Modftk,≥0. Pre- and postcomposing with linear duality as

before, we obtain a monad LieπA,E∞
: Modftk,≤0 → Modftk,≤0 satisfying Lie

π
A,E∞

(V ) = cotA(sqz(V
∨))∨.

Example 6.14. Given a complete local Noetherian algebraB ∈ CAlgcNA//k, we set cot(B) = Lk/B[−1].
Note that if B arises from an augmented k-algebra by restriction of scalars along A→ k, then cot(B)

agrees with the cotangent fibre considered before. The natural pushout square in CAlgcNA//k given by

B

��

// k ⊗A B

��

k // k ⊗A k

induces a basic cofibre sequence

cot(B)→ cotA(B)→ cot(k ⊗A k).

Taking B = k ⊕ V , we obtain a cofibre sequence

(16) cot(k ⊗A k)∨ → LieπA,E∞
(V )→ Lieπk,E∞

(V ), V ∈Modftk,≥0.

We can use this to establish a relative version of Theorem 4.20 in the context of E∞-rings:

Theorem 6.15. Let A be a complete local Noetherian E∞-ring with residue field k. Then:

(1) The adjunction (15) is comonadic.

(2) The monad LieπA,E∞
: Modftk,≤0 → Modftk,≤0 from above extends to a sifted-colimit-preserving

monad LieπA,E∞
on Modk.

(3) The induced functor DA : (CAlgcNA//k)
op → AlgLieπA,E∞

carries pullbacks of diagrams B → B′′,

B′ → B′′ inducing surjections on π0 to pushouts of LieπA,E∞
-algebras.

Proof. For A = k, we have verified the claim in Proposition 5.31. We will now reduce to this case.
For part (1), we verify the hypotheses of the comonadicity theorem (cf. Theorem 4.5 above).

First, we observe that cotA is conservative. Indeed, cotA is the composite of the base-change functor
CAlgcNA//k → CAlgcNk//k with the cotangent fibre functor cot : CAlgcNk//k → Modk, both of which are

conservative by [Sta19, Lemma 09B9] and Proposition 5.22.

Let B• be a cosimplicial object in CAlgcNA//k such that cotA(B
•) admits a splitting. Using the

equivalence cotA(B
•) ≃ cot(k ⊗A B•), we conclude that k ⊗A B• defines a cosimplicial object of

CAlgcNk//k such that cot(k ⊗A B•) is split. By the comonadicity already proved when A = k, it

follows that Tot(k ⊗A B•) is complete local Noetherian), and the natural map

cot(Tot(k ⊗A B•))
≃
−−−→ Tot(cot(k ⊗A B•))

is an equivalence. Using Proposition 6.5, we can conclude that Tot(B•) is connective and that

k ⊗A Tot(B•)
≃
−→ Tot(k ⊗A B•) is an equivalence. Therefore, Tot(B•) is also complete local

Noetherian and cotA(Tot(B
•))

≃
−→ Tot(cotA(B

•)) is an equivalence.
Part (2) follows from the case A = k and the cofibre sequence (16) constructed above.

https://stacks.math.columbia.edu/tag/09B9
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Finally, part (3) will be proved in Proposition 6.18 below. �

We can use Theorem 6.15 to generalise Definition 5.32 to the mixed setting:

Definition 6.16 (Mixed spectral partition Lie algebras). Given a complete local Noetherian E∞-
ring A with residue field k, an (A, k)-spectral partition Lie algebra is an algebra over LieπA,E∞

.

Construction 6.17 (The forgetful functor from LieπA,E∞
-algebras to Lieπk,E∞

-algebras). The base-

change functor CAlgcNA//k → CAlgcNk//k given by B 7→ k⊗AB induces, by using the anti-equivalences

established in Theorem 6.15, a functor U : AlgLieπA,E∞
(Modft

k,≤0) −→ AlgLieπ
k,E∞

(Modftk,≤0). By

construction, U preserves the forgetful functors to Modftk,≤0. We extend this to a functor

U : AlgLieπA,E∞
→ AlgLieπk,E∞

.

which commutes with the forgetful functor to Modk. For this, we simply left Kan extend from free
LieπA,E∞

-algebras on objects of Perfk,≤0 (using Example 8.12).

Proposition 6.18. The forgetful functor U : AlgLieπA,E∞
→ AlgLieπk,E∞

from Construction 6.17

commutes with pushouts.

Proof. Suppose that we are given maps V ′′ → V and V ′′ → V ′ with V, V ′, V ′′ ∈Modftk,≤0. Consider
the LieπA,E∞

-algebras g′′= freeLieπA,E∞
(V ′′), g= freeLieπA,E∞

(V ), and g′= freeLieπA,E∞
(V ′). The diagram

U(freeLieπk,E∞
A(V

′′))

��

// U(freeLieπk,E∞
A(V ))

��

U(freeLieπ
k,E∞

A(V
′)) // U(freeLieπ

k,E∞
A(V ⊔V ′′ V ′))

is a pushout of Lieπk,E∞
-algebras, as it is by construction equivalent to

D(k ⊗A (k ⊕ V ′′∨))

��

// D(k ⊗A (k ⊕ V ∨))

��

D(k ⊗A (k ⊕ V ′∨)) // D(k ⊗A (k ⊕ (V ⊔V ′′ V ′)∨))

,

which is a pushout by Theorem 4.20 (applied to the case of augmented E∞-k-algebras).

Since we can write any object in AlgLieπA,E∞
as a sifted colimit of free algebras on objects of

Modftk,≤0, the claim follows as U preserves sifted colimits. �

We now shift attention to the context of simplicial commutative rings, where we fix a complete
local Noetherian simplicial commutative ring A with residue field k. Since the arguments will be
precisely analogous to the ones given in the previous paragraphs, we will simply state the results.

Definition 6.19. Let SCRA//k be the ∞-category of simplicial commutative A-algebras B with a

map to k factoring the augmentation A→ k. Write SCRcN
A//k for the full subcategory of SCRA//k

spanned by all complete local Noetherian objects.

Construction 6.20. Consider the adjunction cotA,∆ : SCRA//k ⇄ Modk,≥0 : sqz, whose the right
adjoint is the square-zero functor given by V 7→ k ⊕ V . This induces a comonad on Modk,≥0 and,

by dualisation, a monad LieπA,∆ : Modftk,≤0 → Modftk,≤0 satisfying LieπA,∆(V ) = cotA,∆(sqz(V
∨))∨.
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Theorem 6.21. Let A be a complete local Noetherian simplicial commutative ring with residue
field k. Then:

(1) The adjunction cotA,∆ : SCRcN
A//k ⇄ Modftk,≥0 : sqz is comonadic.

(2) The induced monad LieπA,∆ : Modftk,≤0 → Modftk,≤0 extends to a sifted-colimit-preserving
monad on Modk.

(3) The induced functor DA,∆ : SCRcN
A//k → AlgopLieπA,∆

carries pullbacks of diagrams B → B′′,

B′ → B′′ inducing surjections on π0 to pushouts of LieπA,∆-algebras.

We can therefore generalise Definition 5.47 as follows:

Definition 6.22 (Mixed partition Lie algebras). Given a complete local Noetherian simplicial
commutative ring A with residue field k, an (A, k)-partition Lie algebra is an algebra over LieπA,∆.

6.3. Formal moduli problems in mixed characteristic. Finally, we can prove that formal
moduli problems in mixed characteristic are governed by (possibly spectral) partition Lie algebras.
For this, we fix a complete local Noetherian E∞-ring (respectively simplicial commutative ring) A
with residue field k. We define a version of the Chevalley-Eilenberg cochains functor in this context:

Construction 6.23 (The adjunction (DA, C
∗
A)). The colimit-preserving functor

DA : CAlgA//k → AlgopLieπA,E∞

defined by DA(B) := cotA(B)∨ admits a right adjoint C∗A : AlgopLieπA,E∞

→ CAlgA//k.

Similarly, if A is a simplicial commutative ring, the cocontinuous functor

DA,∆ : SCRA//k → AlgopLieπA,∆

defined by DA,∆(B) := cotA,∆(B)∨ admits a right adjoint C∗A,∆ : AlgopLieπA,∆
→ SCRA//k.

Theorem 6.24. Under the above assumptions, we have:

(1) The adjunction (DA, C
∗
A) restricts to an equivalence CAlgcNA//k ≃ AlgLieπA,E∞

(Modftk,≤0)
op.

(2) If A is additionally a simplicial commutative ring, the adjunction (DA,∆, C
∗
∆,A) restricts to

an equivalence SCRcN
A//k ≃ AlgLieπA,∆

(Modft
k,≤0)

op.

Proof. In both cases we will follow the argument in Proposition 4.52. We will only prove (1) in
detail; assertion (2) can be established by a parallel argument.

The claim essentially follows from the comonadicity established in Theorem 6.15. To show that
DA is fully faithful on CAlgcNA//k, it suffices to check that for any B ∈ CAlgcNA//k, the unit

(17) B → C∗A(DA(B))

is an equivalence. We first observe that by construction, we have C∗A(freeLieπA,E∞
(V )) = sqz(V ∨) for

all V ∈ Modftk,≤0. Thus, the map (17) is an equivalence for B = sqz(V ). Using the comonadicity
claim in Theorem 6.15, we can write any B as a totalisation of a cosimplicial diagram of square-zero
extensions via the cobar resolution. It follows that (17) is an equivalence in general. This shows
that DA is fully faithful; since it is also essentially surjective by Theorem 6.15(1), it follows that
DA is an equivalence. �

We can now prove that one obtains a deformation theory in the sense of Lurie (cf. [Lur16,
Definition 12.3.3.2]) for simplicial commutative rings and E∞-rings with respect to a complete
base:
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Theorem 6.25.

(1) Let A be a complete local Noetherian E∞-ring with residue field k. The∞-category CAlgA//k,

the infinite loop object {sqz(k[n]) ∈ Stab(CAlgA//k)}n≥0, the adjunction (DA, C
∗
A), and the

subcategory AlgLieπA,E∞
(Modftk,≤0) ⊂ AlgLieπA,E∞

form a deformation theory.

(2) Let A be a complete local Noetherian simplicial commutative ring, The∞-category SCRA//k,
the infinite loop object {sqz(k[n]) ∈ Stab(SCRA//k)}n≥0, the adjunction (DA,∆, C

∗
A,∆), and

the subcategory AlgLieπA,∆
(Modftk,≤0) ⊂ AlgLieπA,∆

form a deformation theory.

Proof. Combine Theorem 6.24 and Theorem 6.15 (or Theorem 6.21). �

Using the argument of [Lur16, Proposition 12.1.2.9], it follows that the Artinian objects of
CAlgA//k (respectively SCRA//k) from Definition 6.1 are exactly the ones which are Artinian in

the axiomatic deformation theory setup of [Lur16, Definition 12.1.2.4]. In order words, they are
those which can be built from a point by taking iterated fibres of maps to square-zero extensions
sqz(k[n]) with n > 0. Arguing as in [Lur, Proposition 6.1.4], we see that a morphism between two
Artinian objects is small in the axiomatic sense of [Lur16, Definition 12.1.2.4] if and only if it is
surjective on π0. This allows us to conclude that Definition 6.2 agrees with the axiomatic notion
of a formal moduli problem attached to the above deformation problem (cf. [Lur16, Definition
12.1.3.1, Proposition 12.1.3.2(3)]).

Construction 6.26 (The tangent complex). Given a formal moduli problem X , we can construct
its tangent complex TX ∈ Modk (cf. [Lur16, Definition 12.2.2.1]); its underlying spectrum satisfies
Ω∞−nTX = X(sqz(k[n])) for all n ≥ 0.

Combining Theorem 6.25 with Lurie’s axiomatic [Lur16, Theorem 12.3.3.5], we can finally deduce:

Theorem 6.27.

(1) Let A be a complete local Noetherian E∞-ring. There is an equivalence of ∞-categories
ModuliA//k,E∞

≃ AlgLieπA,E∞
.

(2) Let A be a complete local Noetherian simplicial commutative ring. There is an equivalence
of ∞-categories ModuliA//k,∆ ≃ AlgLieπA,∆

.

On underlying objects in Modk, both equivalences send a formal moduli problem X ∈ ModuliA//k

to its tangent complex TX.
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7. The homology of partition Lie algebras

Away from characteristic zero, partition Lie algebras display additional subtleties:

Example 7.1. For A ∈ SCRaug
Fp

complete local Noetherian, the Frobenius (x 7→ xp) on A induces

an endomorphism φ on the partition Lie algebra cot(A)∨. While φ is zero as a map of Fp-modules
(as pxp−1 = 0), Theorem 6.24 shows that φ is generally nonzero as a map of partition Lie algebras.

To get a better handle on our Lie algebras, we may wish to consider Dyer-Lashof-like operations
on their homotopy groups. These are parametrised by the homotopy groups of free Lie algebras:

Construction 7.2. Given a class α ∈ πj

(
Lieπk,∆(Σℓ1Fp ⊕ . . .⊕ ΣℓnFp)

)
, we define a universal n-

ary operation acting on the homotopy groups of any partition Lie algebra g. For this, we send a
tuple (x1 ∈ πℓ1(g), . . . , xn ∈ πℓn(g)) to the element α(x1, . . . , xn) ∈ πj(g) represented by

ΣjFp
α
−→ Lieπk,∆(Σ

ℓ1Fp ⊕ . . .⊕ ΣℓnFp)
Lieπk,∆(x1,...,xn)
−−−−−−−−−−→ Lieπk,∆(g)→ g.

There is a similar construction for spectral partition Lie algebras.

We will now compute the homotopy groups of free (possibly spectral) partition Lie algebras
over Fp. Write B(n1, . . . , nm) for the set of Lyndon words in m letters involving the ith letter ni

times (cf. Definition 1.14). Given integers ℓ1, . . . , ℓm, we have the following results:

Theorem 7.3. The Fp-vector space π∗(Lie
π
k,∆(Σ

ℓ1Fp⊕. . .⊕ΣℓmFp)) has a basis indexed by sequences
(i1, . . . , ik, e, w). Here w ∈ B(n1, . . . , nm) is a Lyndon word. We have e ∈ {0, ǫ}, where ǫ = 1 if p
is odd and deg(w) :=

∑
i(ℓi − 1)ni + 1 is even. Otherwise, ǫ = 0. The integers i1, . . . , ik satisfy:

(1) Each |ij| is congruent to 0 or 1 modulo 2(p− 1).
(2) For all 1 ≤ j < k, we have pij+1 < ij < −1 or 0 ≤ ij < pij+1

(3) We have (p− 1)(1 + e) deg(w)− ǫ ≤ ik < −1 or 0 ≤ ik ≤ (p− 1)(1 + e) deg(w) − ǫ.

The sequence (i1, . . . , ik, e, w) sits in homological degree ((1 + e) deg(w)− e) + i1 + · · ·+ ik − k and
multi-weight (n1p

k(1 + e), . . . , nmpk(1 + e)).

Theorem 7.4. The Fp-vector space π∗(Lie
π
k,E∞

(Σℓ1Fp⊕. . .⊕Σ
ℓmFp)) has a basis indexed by sequences

(i1, . . . , ik, e, w). Here w ∈ B(n1, . . . , nm) is a Lyndon word. We have e ∈ {0, ǫ}, where ǫ = 1 if p
is odd and deg(w) :=

∑
i(ℓi − 1)ni + 1 is even. Otherwise, ǫ = 0. The integers i1, . . . , ik satisfy:

(1)’ Each ij is congruent to 0 or 1 modulo 2(p− 1).
(2)’ For all 1 ≤ j < k, we have ij < pij+1.
(3)’ We have ik ≤ (p− 1)(1 + e) deg(w) − ǫ.

The homological degree of (i1, . . . , ik, e, w) is ((1 + e) deg(w)− e) + i1 + · · ·+ ik − k and its multi-
weight is (n1p

k(1 + e), . . . , nmpk(1 + e)).

Our strategy will closely follow the proof of [AB18, Theorem 8.14], which essentially computes
the homotopy groups of free coconnective partition Lie algebras (for p = 2, [AB18, Theorem 8.14]
also follows from [Goe90]). Our computation relies on many classical ingredients and insights, which
we will reference in detail below. Broadly speaking, we will proceed in three steps:

(1) First, we compute the homotopy groups of a free Lie algebra on an odd class. We use a bar
spectral sequence and the known homotopy groups of symmetric or extended powers.

(2) In a second step, we express the homotopy groups of a free Lie algebra on an even class in
terms of the odd case (1). We rely on the Takayasu cofibration sequence and its strict cousin.

(3) Finally, we give a Hilton-Milnor decomposition for free Lie algebras on many generators,
thereby reducing the computation of their homotopy groups to the cases (1) and (2). We
rely on a certain splitting of the restriction of partition complexes to Young subgroups.
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7.1. Free Partition Lie Algebras on an Odd Generator. The principal aim of this subsection
is to compute the homotopy groups of free Lie algebras on a single odd class. We will establish the
following results:

Theorem 7.5. Let ℓ be an integer, assumed to be odd if p is. Then Lieπk,∆(Σ
ℓFp) has a basis given

by all sequences (i1, i2, . . . ik) satisfying the following conditions:

(1) Each |ij| is congruent to 0 or 1 modulo 2(p− 1).
(2) For all 1 ≤ j < k we have pij+1 < ij < −1 or 0 ≤ ij < pij+1.
(3) We have (p− 1)ℓ ≤ ik < −1 or 0 ≤ ik ≤ (p− 1)ℓ.

The sequence (i1, i2 . . . ik) lies in homological degree ℓ+ i1 + i2 − . . .+ ik − k and weight pk.

Theorem 7.6. Let ℓ be an integer, assumed to be odd if p is. Then Lieπk,E∞
(ΣℓFp) has a basis

given by all sequences (i1, i2, . . . ik) satisfying the following conditions:

(1)’ Each ij is congruent to 0 or 1 modulo 2(p− 1).
(2)’ For all 1 ≤ j < k we have ij < pij+1.
(3)’ We have ik ≤ (p− 1)ℓ.

The sequence (i1, i2 . . . ik) lies in homological degree ℓ+ i1 + i2 − . . .+ ik − k and weight pk.

We carry out these two parallel computations “weight-by-weight” by generalising the argument
provided in [AB18, Section 9], which is inspired by [AM99, Section 3]. We outline the main steps:

a) By duality, it suffices to compute the homotopy groups π∗(FΣ|Πn|⋄(Σ
ℓFp)) and π∗(F

h
Σ|Πn|⋄

(ΣℓFp)).

The functors FΣ|Πn|⋄ and Fh
Σ|Πn|⋄

were constructed in Section 3.3.

b) In a second step, we show that whenever ℓ is odd or p = 2, the Bredon spectral sequences
for π∗(FΣ|Πn|⋄(Σ

ℓFp)) and π∗(F
h
Σ|Πn|⋄

(ΣℓFp)) degenerate. This follows by applying a result of

Arone, Dwyer, and Lesh (cf. [ADL16, Theorem 1.1]).
c) We then use the known homotopy of symmetric and extended powers to describe π∗(FΣn/H+

(ΣℓFp))

and π∗(FΣn/H+
(ΣℓFp)) for all subgroups H ⊂ Σn arising as stabilisers of points in |Πn|⋄.

d) This allows us to compute the above E2-page by applying a combinatorial matching argument.

We will now provide the details of our computation.

Duality. Recall that given a genuine pointed Σn-space X , we have defined functors

FX , Fh
X : ModFp → ModFp

which extend the assignments M 7→ (Fp[X ]⊗M⊗n)Σn and M 7→ (Fp[X ]⊗M⊗n)hΣn from discrete
Fp-modules to all Fp-modules in a sifted-colimit-preserving way (cf. Section 3.3).

Combining Proposition 5.35, Proposition 5.49, and Proposition 3.38, we see that in order to prove
Theorem 7.5 and Theorem 7.6, it suffices to compute π∗(FΣ|Πn|⋄(Σ

ℓFp)) and π∗(F
h
Σ|Πn|⋄

(ΣℓFp)) for

all n, where ℓ is odd or p = 2.

Degeneration of the Bredon Spectral Sequence. As explained in Section 3.3, the skeletal filtration
on the pointed simplicial Σn-set |Πn|⋄ gives rise to spectral sequences converging to π∗(F|Πn|⋄(M))

and π∗(F
h
|Πn|⋄

(M)). Their E2-pages are given by the reduced Bredon homology groups of |Πn|
⋄

with respect to the graded Mackey functors

µM
∗ , µM,h

∗ : SΣn
∗ → ModFp

sending a discrete G-set X to π∗(FX(M)) and π∗(F
h
X(M)), respectively.

To establish degeneration of the Bredon spectral sequence, we will apply Arone-Dwyer-Lesh’s
[ADL16, Theorem 1.1]. We begin by checking that the conditions of this theorem are satisfied:
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Proposition 7.7. For M = ΣℓFp with ℓ odd or p = 2, the functors µM
∗ , µM,h

∗ satisfy:

(1) For any Sylow p-subgroup P ⊂ Σn, projection induces split epimorphisms

µM
∗ (Σn/P ×−)→ µM

∗ (−) and µM,h
∗ (Σn/P ×−)→ µM,h

∗ (−) .

(2) If D ⊂ Σn is an elementary abelian p-subgroup acting freely and non-transitively, then

ker
(
CΣn(D)→ π0CGLn(R)(D)

)
acts trivially on µM

∗ (Σn/D) and µM,h
∗ (Σn/D), respectively.

(3) If p is odd, then odd involution in CΣn(D) acts as (−1) on µM
∗ (Σn/D) and µM,h

∗ (Σn/D).

Proof. We follow [AB18, Proposition 9.3][ADL16, Example 11.5], which imply the result for ℓ ≥ 0.

If X is a finite pointed Σn-set, then the transformations of functors VectωFp
→ ModFp given by

(Fp[X ]⊗ (−)⊗n)Σn

(tr⊗id⊗n)Σn−−−−−−−−−→ (Fp[Σn/P ×X ]⊗ (−)⊗n)Σn −−−→ (Fp[X ]⊗ (−)⊗n)Σn

(Fp[X ]⊗ (−)⊗n)hΣn

(tr⊗id⊗n)hΣn−−−−−−−−−→ (Fp[Σn/P ×X ]⊗ (−)⊗n)hΣn −−−→ (Fp[X ]⊗ (−)⊗n)hΣn

induce multiplication by |Σn/P | on homotopy groups. They are therefore equivalences.

Taking right-left extensions of these degree n functors (cf. Theorem 3.26), we obtain transforma-
tions FX → FΣn/P×X and Fh

X → Fh
Σn/P×X such that the two composites FX → FΣn/P×X → FX

and Fh
X → Fh

Σn/P×X → Fh
X are equivalences, which clearly implies (1).

For (2), we begin with the diagram drawn on the left. Its rightmost arrow takes D-orbits or
D-homotopy orbits, respectively. Freely adding sifted colimits, we obtain the diagram on the right.

SetFin∗
A 7→A∧n

> (SetFin∗ )D

VectωFp

A 7→Fp[A]
∨

V 7→V ⊗n

> (VectωFp
)D

A 7→Fp[A]
∨

> ModFp

S∗
A 7→A∧n

> PΣ((Set
Fin
∗ )D)

Modk,≥0

A 7→C̃∗(A)

∨
V 7→V ⊗n

> PΣ((Vect
ω
Fp
)D)

A 7→C̃∗(A)
∨

> ModFp

The lower composite is equivalent to FΣn/D(−) or Fh
Σn/D(−), respectively. Hence, the assignment

A 7→ FΣn/D(C̃∗(A,Fp)) factors through the functor sending a space A to the genuine D-space A∧n.
Replacing A 7→ Fp[A] by the functor A 7→ Fp[A]

∨ and using Proposition 3.23, a similar argu-

ment shows that A 7→ FΣn/D(C̃∗(A,Fp)) factors through the functor sending A to the genuine
D-space A∧n.

We can write each M = ΣℓFp as the singular chains or the singular cochains of a sphere X = Sℓ

(depending on whether ℓ is positive or negative). The above observations therefore show that in
order to prove (2), it suffices to check that any σ ∈ ker(CΣn(D) → π0CGLn(R)(D)) acts on the

genuine Σn-space (Sℓ)∧n by a map that is D-equivariantly homotopic to the identity. This is clear
because any such σ lies in the connected component of the identity in CGLn(R)(D).

For (3), we first recall that if X is a spectrum with 2 invertible in π∗(X), then τ : X → X acts as
(−1) on π∗(X) if and only if τ − 1 is an equivalence (cf. [ADL16, Proposition 11.4] and its proof).
Observe that if p is an odd prime and τ ∈ CΣn(D) is an odd permutation of order 2 centralising D,

then τ acts by (−1) on H̃∗
(
(Snℓ)A, k

)
for any subgroup A ⊂ D. This implies that τ − 1 induces

a quasi-isomorphism on the Fp-modules C̃∗((S
nℓ)A,Fp) and C̃∗((Snℓ)A,Fp). Elmendorf’s theorem

expresses the D-space Snℓ as a homotopy colimit of D-spaces of the form (D/B)+∧((Snℓ)A. By the
functoriality established in the proof of (2), we can therefore express FΣn/D(M) and Fh

Σn/D
(M) as
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homotopy colimits of Fp-modules C̃∗((S
nℓ)A,Fp) if ℓ > 0 or of Fp-modules C̃∗((Snℓ)A,Fp) if ℓ < 0.

Hence τ − 1 acts as an equivalence on FΣ/D(M) and Fh
Σ/D(M), which implies the thrid claim. �

Hence, we can apply [ADL16, Theorem 1.1., Corollary 1.2] to conclude:

Corollary 7.8. For M = ΣℓFp with ℓ even or p = 2, the Bredon homology groups

E2
s,t = HBr

s (|Πn|
⋄, µM

t ) E2,h
s,t = HBr

s (Σ|Πn|
⋄, µM,h

t )

vanish unless n = pk for some k and s = k− 1. In particular, the spectral sequence degenerates and

π∗(FΣ|Πn|⋄(M)) = π∗−1(F|Πn|⋄(M)) =

{
H̃

Br

k−1(|Πpk |⋄;µM
∗−k) if n = pk

0 else

π∗(F
h
Σ|Πn|⋄

(M)) = π∗−1(F|Πn|⋄(M)) =

{
H̃

Br

k−1(|Πpk |⋄;µM,h
∗−k) if n = pk

0 else
.

Hence, it suffices to compute these Bredon homology groups to establish Theorems 7.5 and 7.6.

The Bredon Homology of Stabilisers. Next, we compute π∗(FΣn/H(M)) and π∗(F
h
Σn/H(M)) for H

the stabiliser of a point in the partition complex |Πn| and M ∈ModFp any Fp-module. This extends
[AB18, Section 9.2], which is inspired by [AM99, Section 3], to the coconnective setting.

We need several auxiliary additive functors:

Definition 7.9. Given k ≥ 0, the functor Fk sends a graded Fp-vector space V to the graded
Fp-vector space Fk(V ) generated by symbols (i1, ..., ik; v), where v is a homogeneous element of V
and i1, . . . , ik are integers satisfying the following conditions:

(1) Each |ij | is congruent to 0 or 1 modulo 2(p− 1).
(2) ij ≥ pij+1 > p or ij ≤ pij+1 ≤ 0 for all 1 ≤ j < k,
(3) If p is odd, then 1 < i1 < (p− 1)(|v|+ i2 + . . .+ ik) or 0 ≥ i1 > (p− 1)(|v|+ i2 + . . .+ ik).

If p is even, then 1 < i1 ≤ (p− 1)(|v|+ i2 + . . .+ ik) or 0 ≥ i1 ≥ (p− 1)(|v|+ i2 + . . .+ ik).

We divide out by the relation (i1, ..., ik;u)+ (i1, ..., ik; v) = (i1, ..., ik;u+ v). There is a homological
grading on Fk(V ), which puts (i1, . . . , ik; v) in degree |v|+ i1 + . . .+ ik whenever v is homogeneous
of degree |v|. Moreover, there is a weight grading putting (i1, . . . , ik; v) in weight pk.

Remark 7.10. Observe that either all ij are strictly larger than 1 or all ij are nonpositive.

Definition 7.11. For k ≥ 0, the functor Fh
k sends a graded Fp-vector space V to the graded

Fp-vector space Fh
k (V ) generated by symbols (i1, ..., ik; v), where v is a homogeneous element of V

and i1, . . . , ik are integers satisfying the following conditions:

(1)’ Each ij is congruent to 0 or −1 modulo 2(p− 1).
(2)’ ij ≤ pij+1 for all 1 ≤ j < k,
(3)’ If p is odd, then i1 > (p− 1)(|v|+ i2 + . . .+ ik).

If p is even, then i1 ≥ (p− 1)(|v|+ i2 + . . .+ ik).

We again divide out by the relation (i1, ..., ik;u)+ (i1, ..., ik; v) = (i1, ..., ik;u+ v). The homological
grading and the weight grading are as in Definition 7.9.

Definition 7.12. Given a homologically graded Fp-vector space, let S(V ) =
⊕

n≥0 Sn(V ) be the
free graded-commutative algebra on V if p is odd and for the free exterior algebra on V if p = 2.

Observe that if V is equipped with an additional weight grading, then S(V ) is naturally bigraded.
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We will now use the functors Fk, Fh
k , and S to give a simple formula for homotopy groups of

the symmetric and exterior powers of a given M ∈ Modk, thereby summarising computations of
Dold [Dol58], Nakaoka [Nak57] [Nak59], Milgram [Mil69], and Priddy [Pri73] in the “strict” case,
as well as of Adem [Ade52], Serre [Ser53], Cartan [Car54] [Car55], Dyer-Lashof [DL62], May, and
Steinberger [BMMS86] in the “homotopy orbits” case:

Proposition 7.13. For any M ∈Modk, there are (unnatural) isomorphisms

π∗

(⊕

n

FΣn/Σn
(M)

)
∼= S

(⊕

k

Fk(π∗(M))

)
π∗

(⊕

n

Fh
Σn/Σn

(M)

)
∼= S

(⊕

k

Fh
k (π∗(M))

)

which respect the homological and the weight grading. Here Fk(π∗(M)),Fh
k (π∗(M)) sit in weight pk.

Remark 7.14. Note that the functor FΣn/Σn
(M) computes the (suitably derived) nth symmetric

power of M , whereas Fh
Σn/Σn

(M) computes its nth extended power.

Warning 7.15. These are isomorphisms of bigraded vector spaces; they do not respect the multi-
plicative structure. In fact, they are not even functorial in M , as we should really use divided power
functors on the left. However, this will not cause any problems for us, since we will only need a
dimension count of the weighted pieces. We therefore adopt this simpler approach for notational
convenience.

Proof of Proposition 7.13. After picking a basis, we may identify M with a direct sum of shifts of
Fp. Since all functors commute with filtered colimits and send finite direct sums to tensor products,
it suffices to check the claim for Fp-module spectra of the form M = ΣℓFp, where ℓ is any integer.

For ℓ > 0, the vector space Fk(Σ
ℓFp) is the kth summand of the free simplicial commutative

Fp-algebra on one generator in degree ℓ. The work of Nakaoka (cf. [Nak57] [Nak59]) therefore
shows that it has a basis given by all sequences (i1, . . . , ik) with

(1) Each ij is congruent to 0 or 1 modulo 2(p− 1),
(2) ij ≥ pij+1 > p,
(3) If p is odd, then 1 < i1 < (p− 1)(v + i2 + . . .+ ik).

If p is even, then 1 < i1 ≤ (p− 1)(v + i2 + . . .+ ik).

For ℓ ≤ 0, the Fp-vector space Fk(Σ
ℓFp) agrees with the kth summand in the free cosimplicial

Fp-vector space on a generator in degree ℓ. The work of Priddy (cf. [Pri73, Theorem 4.1]) therefore
shows that Fk(Σ

ℓFp) has a basis given by all sequences (i1, . . . , ik) with

(1) Each ij is congruent to 0 or −1 modulo 2(p− 1),
(2) ij ≤ pij+1 ≤ 0 for all 1 ≤ j < k,
(3) If p is odd, then 0 ≥ i1 > (p− 1)(v + i2 + . . .+ ik).

If p is even, then 0 ≥ i1 ≥ (p− 1)(v + i2 + . . .+ ik).

Corresponding statements for Gh are described on p.298 of [BMMS86] and p.16 of [CLM76]. �

Remark 7.16. Note that for p = 2, the cited sources state the result in a slightly different, yet
equivalent, form, which uses a strict inequality for the excess and the free symmetric algebra functor.

Write P (n) for the set of sequences (a0, a1, . . . ) of natural numbers satisfying n =
∑

k≥0 akp
k.

Restricting attention to a specific weight and expanding Proposition 7.13 binomially, we deduce:
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Corollary 7.17. For each n ≥ 0 and any M ∈ Modk, there are isomorphisms

π∗
(
FΣn/Σn

(M)
)
∼=

⊕

(a0,a1,... )∈P (n)


⊗

k≥0

Sak
(Fk(π∗(M)))




π∗

(
Fh
Σn/Σn

(M)
)
∼=

⊕

(a0,a1,... )∈P (n)


⊗

k≥0

Sak

(
Fh

k (π∗(M))
)

 .

We compute π∗
(
FΣn/Kσ

(M)
)
and π∗

(
Fh
Σn/Kσ

(M)
)
for Kσ the stabiliser of any simplex

σ = [ 0̂ < x1 < . . . < xi < 1̂ ]

in the doubly suspended partition complex Σ|Πn|⋄, where the integer n ≥ 1 is fixed throughout.
We will use [AB18, Definition 9.12], which is a variant of [AM99, Definition 1.10]:

Definition 7.18. A p-enhancement of a chain of partitions σ = [ 0̂ < x1 < . . . < xi < 1̂ ] consists
of a refining chain

Θ = [ 0̂ ≤ e1 ≤ x1 ≤ . . . ≤ ei ≤ xi ≤ ei+1 ≤ 1̂ ]

such that the following two conditions hold true:

(1) The number of xa-classes contained in a given ea+1-class is a power of p.
(2) Given xa-classes S1 and S2, we can define chains of partitions of S1 and S2 by restricting Θ.

If S1, S2 lie in the same ea+1-class, then these restricted chains are isomorphic, by which
we mean that they lie in the same Σn-orbit.

Two p-enhancements are said to be isomorphic if they lie in the same Σn-orbit. We can then
define endofunctors from enhancements as follows (cf. [AB18, Definition 9.13]):

Definition 7.19. Assume we are given a chain σ = [ 0̂ < x1 < . . . < xi < 1̂ ] and an isomorphism

class of p-enhancements of σ represented by Θ = [ 0̂ ≤ e1 ≤ x1 ≤ . . . ≤ ei ≤ xi ≤ ei+1 ≤ 1̂ ].
We define endofunctors [Θ] and [Θ]h on graded Fp-vector spaces by the following rules:

• If i = 0 and [Θ] = [ 0̂ ≤ e1 ≤ 1̂ ] with e1 having aj classes of size pk, we set

[Θ](C) :=
⊗

j

Saj (Fj(V )) [Θ]h(C) :=
⊗

j

Saj (F
h
j (V )).

• If i > 0, assume that restricting the chain Θ to the classes of ei+1 gives a1 chains of
isomorphism type 1, a2 chains of isomorphism type 2, etc. . . . Suppose that each ei+1-class
of type t contains pbt many xi-classes, and write Θt for the restriction of Θ to any xi-class
contained in an ei+1-class of type t. We then define

[Θ](V ) :=
⊗

t

Sat(Fbt([Θt](V ))) [Θ]h(V ) :=
⊗

t

Sat(F
h
bt([Θt]

h(V ))).

The functors [Θ] and [Θ]h are well-defined as the above construction only depends on the isomor-
phism class of the p-enhancement Θ.

Using this notation, we can generalise [AB18, Proposition 9.14] and describe the Bredon homol-
ogy of stabilisers in the partition complex:
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Proposition 7.20. Let Kσ ⊂ Σn be the stabiliser of a simplex σ = [ 0̂ < x1 < · · · < xi < 1̂ ] in
Σ|Πn|⋄ and write E[σ] for the set of isomorphism classes of its p-enhancements.

For any M ∈ Modk, there are isomorphisms

π∗(FΣn/Kσ
(M)) =

⊕

[Θ]∈E[σ]

[Θ](π∗(M)) π∗(F
h
Σn/Kσ

(M)) =
⊕

[Θ]∈E[σ]

[Θ]h(π∗(M))

Proof. This follows formally from Corollary 7.17 by precisely the same argument as used in the
proof of [AB18, Proposition 9.14]. �

The Bredon Homology of the Partition Complex. Let Pn be the poset of partitions of {1, . . . , n}.
Observe that |Πn|⋄ is Σn-equivariantly equivalent to the realisation of the pointed simplicial set

T• := N•(Pn − {0̂})/N•(Pn − {0̂, 1̂}).

Its nondegenerate i-simplices are either the basepoint or correspond to chains of partitions

σ = [ 0̂ < x1 < . . . < xi < 1̂ ].

The groups H̃
Br

∗ (|Πn|⋄, µM
t ) and H̃

Br

∗ (|Πn|⋄, µ
M,h
t ) are given by the homology of the normalised

chain complexes C̃Br
∗ (|Πn|⋄, µM

t ), C̃Br
∗ (|Πn|⋄, µ

M,h
t ) of the simplicial abelian groups µM

t (T•), µ
M,h
t (T•).

The ith degree of the chain complexes C̃Br
∗ (|Πn|⋄, µM

t ) and C̃Br
∗ (|Πn|⋄, µ

M,h
t ) can be decomposed

with the help of Proposition 7.20 as a direct sum indexed by isomorphism classes of p-enhancements

Θ = [ 0̂ ≤ e1 ≤ x1 ≤ . . . ≤ ei ≤ xi ≤ ei+1 ≤ 1̂ ].

In fact, we can discard most p-enhancements. Let us call a p-enhancement as above pure if
ej = xj for all 1 ≤ j ≤ i+ 1. Extending [AB18, Proposition 9.19] to our setting, we have:

Proposition 7.21. For each t, the Euler characteristics of H̃
Br

∗ (|Πn|⋄, µM
t ) and H̃

Br

∗ (|Πn|⋄, µ
M,h
t )

agrees with the Euler characteristic of the submodules of C̃Br
∗ (|Πn|⋄, µM

t ) and C̃Br
∗ (|Πn|⋄, µ

M,h
t )

spanned by all summands corresponding to pure p-enhancements.

We can now establish the main results of this section:

Proof of Theorem 7.5 and Theorem 7.6. By the observations on duality made in the beginning of
this section on page 68, it suffices to compute πt(FΣ|Πn|⋄(Σ

lFp)) and πt(F
h
Σ|Πn|⋄

(ΣlFp)) for l = −ℓ.

By Corollary 7.8, these groups vanish if n is not a power of p. If n = pk, then the dimension of

these groups is given by the Euler characteristics of HBr
∗ (|Πpk |⋄, µM

t−k) and HBr
∗ (|Πpk |⋄, µM,h

t−k ).
Proposition 7.21 shows that these dimensions agree with the Euler characteristics of the submod-

ules of C̃Br
∗ (|Πpk |⋄, µM

t−a) and C̃Br
∗ (|Πpk |⋄, µM,h

t−a ) spanned by all summands corresponding to pure
p-enhancements. As in [AB18, Theorem 9.1], we are therefore reduced to computing the Euler
characteristics of the following bigraded abelian groups in “Bredon-direction”.

(1) Fk(Σ
lFp)

⊕
k1+k2=k Fk1Fk2(Σ

lFp) . . . F1 . . .F1(Σ
lFp)

(2) Fh
k (Σ

lFp)
⊕

k1+k2=k F
h
k1
Fh

k2
(ΣlFp) . . . Fh

1 . . .Fh
1 (Σ

lFp)

To begin with, we use Definition 7.9 to see that the summand Fk1 . . .Fkr(Σ
lFp) in (1) has a

basis consisting of all sequences (i1, . . . , ik) satisfying the following properties:

(1) Each |ij | is congruent to 0 or 1 modulo 2(p− 1).
(2) ij ≥ pij+1 > p or ij ≤ pij+1 ≤ 0 for all 1 ≤ j < k with j 6= k1, k1 + k2, . . ..
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(3) If p is odd, then for t = 0, . . . , r − 1, we have
1 < ik1+...+kt+1 < (p− 1)(l + ik1+...+kt+2 + . . .+ ik1+...+kr )

or 0 ≥ ik1+...+kt+1 > (p− 1)(l + ik1+...+kt+2 + . . .+ ik1+...+kr ).
If p is even, then for t = 0, . . . , r − 1, we have

1 < ik1+...+kt+1 ≤ (p− 1)(l + ik1+...+kt+2 + . . .+ ik1+...+kr )
or 0 ≥ ik1+...+kt+1 ≥ (p− 1)(l + ik1+...+kt+2 + . . .+ ik1+...+kr ).

Observe that if l > 0, then ij > 1 for all j, whereas if l ≤ 0, then ij ≤ 0 for all j.

Fix a sequence (i1, . . . , ik) satisfying the conditions above, but such that for j = k1, k1 + k2, . . .,
we have 1 < ij < pij+1 or 0 ≥ ij > pij+1. Informally speaking, (2) is violated whenever possible.

This sequence (i1, . . . , ik) appears exactly once as a basis element in Fm1 . . .Fms(Σ
lFp) for any

ordered partition m1+ . . .+ms = k of the number k refining the ordered partition k1+ . . .+kr = k.
Counting the number of such refinements, we see that the total contribution of (i1, . . . , ik) to the
Euler characteristic in “Bredon direction” is

k∑

s=r

(−1)s−1
(
k − r

s− r

)
.

This alternating sum is zero for k 6= r. For k = r, it is equal to (−1)k−1. In this case, (i1, . . . , ik)
indexes a basis element in F1 . . .F1(Σ

lFp). Hence, the absolute value of the Euler characteristic
“in Bredon direction” is equal to the number of sequences (i1, . . . , ik) satisfying the following:

(1) Each |ij | is congruent to 0 or 1 modulo 2(p− 1).
(2) 1 < ij < pij+1 or 0 ≥ ij > pij+1 for all 1 ≤ j < k.
(3) If p is odd, then for t = 0, . . . , k − 1, we have

1 < it+1 < (p− 1)(l + it+2 + . . .+ ik) or 0 ≥ it+1 > (p− 1)(l + it+2 + . . .+ ik).
If p is even, then for t = 0, . . . , k − 1, we have

1 < it+1 ≤ (p− 1)(l + it+2 + . . .+ ik) or 0 ≥ it+1 ≥ (p− 1)(l + it+2 + . . .+ ik).

We observe that these conditions can be rephrased as follows:

(1) Each |ij | is congruent to 0 or 1 modulo 2(p− 1).
(2) For all 1 ≤ j < k we have 1 < ij < pij+1 or pij+1 < ij ≤ 0.
(3) We have 1 < ik ≤ (p− 1)l or (p− 1)l ≤ ik ≤ 0.

Theorem 7.5 follows by replacing each ij by its inverse for the sake of notational convenience.

We compute the “Bredon Euler characteristic” of the complex (2) above by a similar method.
Using Definition 7.11, we see that the summand Fh

k1
. . .Fh

kr
(ΣlFp) has a basis consisting of all

sequences (i1, . . . , ik) satisfying the following properties:

(1)’ Each ij is congruent to 0 or −1 modulo 2(p− 1).
(2)’ ij ≤ pij+1 for all 1 ≤ j < k with j 6= k1, k1 + k2, . . ..
(3)’ If p is odd, then for t = 0, . . . , r − 1, we have

ik1+...+kt+1 > (p− 1)(l + ik1+...+kt+2 + . . .+ ik1+...+kr ).
If p is even, then for t = 0, . . . , r − 1, we have

ik1+...+kt+1 ≥ (p− 1)(l + ik1+...+kt+2 + . . .+ ik1+...+kr ).

We fix a sequence (i1, . . . , ik) satisfying the four conditions above, such that for j = k1, k1 +
k2, . . ., we have ij > pij+1. Again, the sequence appears exactly once as a basis element in
Fh

m1
. . .Fh

ms
(ΣlFp) for any ordered partition m1 + . . . + ms = k of k refining k1 + . . . + kr = k
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of k. As above, we see that these copies have vanishing contribution to the Euler characteris-
tic unless k = r, in which case they contribute (−1)k−1. Hence, the absolute value of the Euler
characteristic in Bredon direction is equal to the number of sequences (i1, . . . , ik) satisfying:

(1)’ Each ij is congruent to 0 or −1 modulo 2(p− 1).
(2)’ ij > pij+1 for all 1 ≤ j < k.
(3)’ If p is odd, then for t = 0, . . . , k − 1, we have it+1 > (p− 1)(l + it+2 + . . .+ ik).

If p is even, then for t = 0, . . . , k − 1, we have it+1 ≥ (p− 1)(l + it+2 + . . .+ ik).

To conclude the proof of Theorem 7.6, we check that these conditions are equivalent to the following:

(1)’ Each ij is congruent to 0 or −1 modulo 2(p− 1).
(2)’ For all 1 ≤ j < k we have pij+1 < ij .
(3)’ We have (p− 1)l ≤ ik.

�

7.2. Free Partition Lie Algebras on an Even Generator. In the last section, we have com-
puted the homotopy groups of free partition Lie algebras on an odd generator (cf. Theorems 7.5, 7.6).

We will now shift attention to the even degree case. For this, recall that given a pointed space
X and a positive integer d, Theorem 8.5. in [AB18] constructs a natural sequence of spaces

(18) Σ2|Π d
2
|⋄ ∧

Σ d
2

(ΣX∧2)∧
d
2 → Σ2|Πd|

⋄ ∧
Σd

X∧d → Σ|Πd|
⋄ ∧
Σd

(ΣX)∧d

which varies naturally in X . If X = Sn is an even-dimensional sphere, then this sequence is in
fact a cofibration sequence. Applying Fp-valued cohomology to this sequence, we can decompose
the free partition Lie algebra on a class in negative even degree −n in terms of free partition Lie
algebras on odd classes −n− 1 and −2n− 1 (using Proposition 5.49).

To extend this decomposition to all even integers, we will need to mildly generalise the above
sequence (18) and construct it naturally in topological vector spaces rather than just spaces. A
minor modification of our argument will also allow us to decompose the free spectral partition
Lie algebras on an even class (using Proposition 5.35), thereby reproving the classical Takayasu
cofibration sequence (cf. [Tak99]) and its “dual” (cf [Aro06, Theorem 3.2]) by a new argument.

Topological Vector Spaces. Let Top be the category of compactly generated topological spaces
(henceforth simply called “spaces”) with its Quillen model structure. This is a well-fibred topolog-
ical cartesian closed category over sets in the sense of [AHS06, Definitions 21.7., 27.20]. By [Sea05,
Proposition 2.2, Proposition 4.6], we can therefore lift the usual tensor product on Fp-vector spaces
to a closed symmetric monoidal structure⊗ on the category tModFp of (compactly generated) topo-
logical Fp-vector spaces. This topological tensor product satisfies the expected universal property
with respect to continuous bilinear maps.

Given a pointed completely regular space (X, x), we can form the free topological Fp-vector space
Fp{X} on X with x = 0 satisfying the obvious universal property and containing X as a closed
subset (cf. [AGM96, Theorem 6.2.2]). The underlying Fp-vector space of Fp{X} is simply given by
the free Fp-vector space on X with x = 0.

Gradings. For J (commutative) indexing monoid in sets, work of Schwänzl-Vogt [SV91] shows that

the category tMod
J
Fp

of functors from J to (compactly generated) topological Fp-vector spaces
carries a cofibrantly generated model structure. Its underlying fibrations and weak equivalences are
given by pointwise fibrations and weak equivalences on underlying spaces.
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Moreover, tModJ
Fp

has a symmetric monoidal structure given by Day convolution. It sends V,W

to the J-graded topological Fp-vector space with (V ⊗W )k :=
⊕

a+b=k(Va ⊗Wb). For (X, x) a
pointed completely regular space, we equip Fp{X} with a grading concentrated in degree 0.

Topological Algebras. Write tAlgJ
Fp

for the category of commutative algebra objects in the symmet-

ric monoidal category tModJ
Fp
; these are J-graded (compactly generated) topological commutative

Fp-algebras. Again, the work of Schwänzl-Vogt [SV91] equips tAlgJ
Fp

with a cofibrantly generated

model structure in which a map is a fibration or weak equivalence if the underlying map in tModJ
Fp

has the corresponding property. We denote the augmented variant by tAlg
J,aug
Fp

. There is a natural

functor tModJ
Fp
→ tAlg

aug,J
Fp

sending V to the trivial square-zero extension Fp ⊕ V on V .

Simplicial Variants. We can also define model categories sModJ
Fp

and sAlgJ
Fp

of J-graded simplicial
Fp-modules and simplicial commutative Fp-algebras, respectively. The standard Quillen equivalence
| − | : sSet ⇆ Top : Sing preserves finite products and therefore induces Quillen equivalences

| − | : sModJ
Fp

⇆ tModJ
Fp

: Sing and | − | : sAlgJ
Fp

⇆ tAlgJ
Fp

: Sing .

Given two J-graded simplicial Fp-vector spaces V• and W•, it is straightforward to check that
there is an isomorphism |V•| ⊗ |W•| ∼= |V• ⊗W•|. Geometric realisation intertwines square-zero

extensions in sAlg
J,aug
Fp

with the corresponding construction in tAlg
J,aug
Fp

. Finally, the functor |− |

sends free simplicial Fp-modules to free topological Fp-modules.

Homotopy Pushouts of Algebras. As expected, pushouts in tAlgJ
Fp

are simply computed by relative
tensor products. More precisely, given a span B ← A→ C of J-graded topological Fp-algebras, the
pushout is given by the coequaliser B ⊗A C := coequ(B ⊗A⊗ C ⇒ B ⊗ C).

Construction 7.22. We describe an explicit model for the homotopy pushout of B ← A → C in
tAlgJ

Fp
. For k ≥ 0, the topological Fp-vector space Fp{∆k}⊗B⊗A⊗n⊗C is generated by symbols

(
0 ≤ t1 ≤ t2 ≤ . . . ≤ tk ≤ 1

b ⊗ a1 ⊗ a2 ⊗ . . . ⊗ ak ⊗ c

)

with ti ∈ [0, 1], ai ∈ A, b ∈ B, and c ∈ C, subject to the standard multilinear relations.

Define an object in tMod
J
Fp

by B⊗h
AC = |Bar•(B,A,C)| =

(⊕
k≥0 Fp{∆

k}⊗B⊗A⊗n⊗C

)/
∼,

where ∼ denotes the quotient by the Fp-linear subspace generated by the following relations:

(
0 ≤ . . . ≤ ti = ti+1 ≤ . . .

b ⊗ . . . ⊗ ai ⊗ ai+1 ⊗ . . .

)
∼

(
0 ≤ . . . ≤ ti ≤ ti+2 ≤ . . .

b ⊗ . . . ⊗ ai · ai+1 ⊗ ai+2 ⊗ . . .

)

(
0 ≤ . . . ≤ ti ≤ ti+1 ≤ . . .

b ⊗ . . . ⊗ ai ⊗ 1 ⊗ . . .

)
∼

(
0 ≤ . . . ≤ ti ≤ ti+2 ≤ . . .

b ⊗ . . . ⊗ ai ⊗ ai+2 ⊗ . . .

)
.

We endow B ⊗h
A C with the unique multiplication (B ⊗h

A C)⊗ (B ⊗h
A C)→ (B ⊗h

A C) satisfying
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(
0 ≤ ti1 ≤ . . . ≤ tin ≤ 1

b1 ⊗ ai1 ⊗ . . . ⊗ ain ⊗ c1

)
·

(
0 ≤ tj1 ≤ . . . ≤ tjm ≤ 1

b2 ⊗ aj1 ⊗ . . . ⊗ ajm ⊗ c2

)
=

(
0 ≤ t1 ≤ . . . ≤ tn+m ≤ 1

b1b2 ⊗ a1 ⊗ . . . ⊗ an+m ⊗ c1c2

)

for any disjoint union {1 < · · · < m + n} = {i1 < · · · < in}
∐
{j1 < · · · < jm}. Simple checks

show that this multiplication is well-defined, commutative and associative.

The following is proven by an argument entirely parallel to the proof of [AB18, Proposition 7.15]:

Proposition 7.23. If the unit Fp → A is a cofibration, then B⊗h

A C is a homotopy pushout of the
span B ← A→ C of topological J-graded Fp-algebras.

Definition 7.24. The suspension Σ⊗A of some A ∈ tAlg
J,aug
Fp

is given by Fp ⊗h
A Fp.

Homotopy Pullbacks of Algebras. Amuch simpler construction gives us explicit models for homotopy
pullbacks of J-graded topological Fp-algebras. For this, let D

I = MapTop([0, 1], D) denote the space
of paths in a given space D.

Definition 7.25. If B
f
−→ A

g
←− C is a diagram of J-graded topological commutative Fp-algebras,

we equip the J-graded space B ×h
A C determined by

(B
h
×
A
C)j :=

{
(b,α, c) ∈ Bj ×AI

j × Cj | α(0) = f(b),α(1) = g(c)
}

with an Fp-algebra structure by setting

λ1(b1,α1, c1) + λ2(b2,α2, c2) = (λ1b1 + λ2b2, λ1α1 + λ2α2, λ1c1 + λ2c2)

(b1,α1, c1) · (b2,α2, c2) = (b1b2,α1α2, c1c2),

where the paths λ1α1 + λ2α2 and α1α2 are defined using pointwise operations.

An entirely parallel argument to the proof of [AB18, Proposition 7.24] then shows:

Proposition 7.26. The homotopy pullback of a diagram B
f
−→ A

g
←− C in tAlgJ

Fp
is given by B ×h

A C.

Definition 7.27. The loop space of some A ∈ tAlgJ
Fp

is given by Ω⊗A := Fp ×h
A Fp.

Remark 7.28. The underlying space of Ω⊗A is given by the space of all paths [0, 1] → A which
start and end at the same point in Fp ⊂ A.

Suspension-Loops Adjunction. We can link the two constructions above by setting up an adjunction

Σ⊗ : tAlgJ
Fp

⇆ tAlgJ
Fp

: Ω⊗.

Its unit η is defined by by the following explicit formula:

A
ηA
−−→ Ω⊗Σ⊗A sends a ∈ A to αa :=

(
(0 ≤ s ≤ 1) 7→

(
0 ≤ s ≤ 1

1 ⊗ a ⊗ 1

))
.

Here s ∈ [0, 1] denotes a parameter for a loop, and it is not hard to check that the map ηA respects
the grading and is both linear and multiplicative. The unit ǫ is specified as follows:

Σ⊗Ω⊗A
ǫA−→ A sends

(
0 ≤ t1 ≤ . . . ≤ tn ≤ 1

λ ⊗ α1 ⊗ . . . ⊗ αn ⊗ µ

)
∈ Σ⊗Ω⊗A to λ·α1(t1)·. . .·αn(tn)·µ.
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Here α1, . . . , αn ∈ Ω⊗A are given paths, and we it is again straightforward to check that this
assignment gives a map in tAlgJ

Fp
. Observe that ǫΣ⊗ ◦Σ⊗η and Ω⊗ǫ ◦ ηΩ⊗ are indeed given by the

identity transformations, and we have therefore defined an adjunction.
The following result is proven by an argument parallel to the proof of [AB18, Proposition 7.28]:

Lemma 7.29. The adjunction Σ⊗ : tAlgJ
Fp

⇆ tAlgJ
Fp

: Ω⊗ is Quillen.

The EHP-sequence for Topological Vector Spaces. We proceed to generalise the EHP-sequence for
(strictly commutative) monoid spaces (cf. [AB18, Definition 7.42]) to the setting of topological
Fp-algebras. We begin with the following observation, which is immediate from Definition 7.24:

Proposition 7.30. Given a J-graded topological Fp-vector space V , we let Fp⊕V ∈ tAlgJ
Fp

denote
the trivial square-zero extension of Fp by V . There is an of J-graded topological Fp-vector spaces

Σ⊗(Fp ⊕ V ) ≃
⊕

k

Fp{S
k} ⊗ V ⊗k.

Using this splitting, we define a natural transformation of functors tModJ
Fp
→ tAlgJ

Fp
as follows:

Definition 7.31. Given V ∈ tMod
J
Fp
, the Einhängung EV : Σ⊗(Fp ⊕ V )→ Fp ⊕

(
Fp{S

1} ⊗ V
)
is

the map of J-graded topological Fp-algebras obtained by projecting to the first two summands.

The construction of the Hopf map is somewhat more interesting. To this date, we do not know
of a definition staying in the realm of higher category theory, and this is in fact the reason why we
had to work with strict models.

First, given any V ∈ tModJ
Fp
, we define a map of J-graded topological Fp-vector spaces

Φ : Fp{S
1} ⊗ V ⊗2 −→ Ω⊗Σ⊗(Fp ⊕ V )

(0 ≤ t ≤ 1)⊗ v ⊗ w 7→

(
s 7→

(
0 ≤ ts ≤ s ≤ 1

1 ⊗ v ⊗ w ⊗ 1

))
.

Since Φ(x) ·Φ(y) = 0 for all x, y by inspection, we obtain a map of J-graded topological Fp-algebras

Fp ⊕ (Fp{S
1} ⊗ V ⊗2) −→ Ω⊗Σ⊗(Fp ⊕ V ).

Definition 7.32. For V ∈ tModJ
Fp
, the Hopf map HV : Σ⊗(Fp⊕(Fp{S1}⊗V ⊗2)) −→ Σ⊗(Fp⊕V )

is adjoint to the map Fp ⊕ (Fp{S1} ⊗ V ⊗2) −→ Ω⊗Σ⊗(Fp ⊕ V ) specified above.

The Hopf map varies naturally in the Fp-module V .

We now fix the indexing monoid of nonnegative integers J = N, considered under addition. Ob-
serve that the∞-category DGr from Construction 5.36 arises as a full subcategory of the underlying
∞-category of tAlgN

Fp
. Namely, it is spanned by all algebras which are equal to Fp in weight 0.

Given a finite-dimensional discrete Fp-vector space V ∈ VectωFp
, we write V1 for the N-graded

topological Fp-vector space consisting of V concentrated in degree 1. Combining Definition 7.31
and Definition 7.32, we obtain a sequence of N-graded topological Fp-algebras

(19) Σ⊗(Fp ⊕ (Fp{S
1} ⊗ V ⊗21 ))

H
−→ Σ⊗(Fp ⊕ V1)

E
−→ Fp ⊕

(
Fp{S

1} ⊗ V1

)
.

which varies naturally in V . Inverting weak equivalences in tModN
Fp
, we obtain:



DEFORMATION THEORY AND PARTITION LIE ALGEBRAS 79

Proposition 7.33. There is a natural sequence of functors VectωFp
→ DGr (cf. Construction 5.36)

sending V ∈ Vectωk to a sequence

Σ⊗(sqz(ΣV ⊗21 ))
H
−→ Σ⊗(sqz(V1))

E
−→ sqz(ΣV1)

Here Σ⊗ denotes the suspension functor in the pointed ∞-category DGr, whereas Σ denotes the
suspension functor in Modk, i.e. the shift in Modk.

Proof. Writing Fp{S1
•} for the free simplicial Fp-module on the simplicial circle S1

• with the base-
point equal to 0, we verify the universal property to deduce that |Fp{S1

•}| ∼= Fp{S1}. Since the
geometric realisation functor | − | : sModFp → tModFp also respects tensor products, we deduce

that |Fp{S1
•} ⊗ V1| ∼= Fp{S1} ⊗ V1 is equivalent to the chain complex ΣV ∈Modk, concentrated in

weight 1. The claim follows from Proposition 7.23, since all appearing units are cofibrations. �

Decomposing Lie Algebras on an Even Class. The preceding section allows us to decompose even
Lie algebras in terms of odd ones. In the terminology of Section 3.3 and Definition 1.5, we obtain:

Proposition 7.34. For w ≥ 0, there is a natural sequence of functors Vectωk → Modk sending V to

ΣFΣ|Πw
2
|⋄(ΣV

⊗2) −→ ΣFΣ|Πw|⋄(V ) −→ FΣ|Πw |⋄(ΣV ),

where the leftmost module is interpreted as zero whenever w is odd.

Proof. First, we apply the cotangent fibre functor cot (for simplicial commutative rings) to the
sequence appearing in Proposition 7.33. In a second step, we note that since the left adjoint cot∆
preserves colimits, there is a natural equivalence Σ◦cot∆ ≃ cot∆ ◦Σ⊗. Finally, we proceed as in the
proof of Proposition 5.49 to evaluate the functor cot∆ on a trivial square-zero extension, thereby
keeping track of the weights. �

By Theorem 3.26, we can in fact take the right-left Kan extension and obtain a sequence of
w-excisive functors Modk → Modk sending V to

(20) ΣFΣ|Πw
2
|⋄(ΣV

⊗2)→ ΣFΣ|Πw|⋄(V )→ FΣ|Πw |⋄(ΣV ).

Applying the reduced singular chains functor C̃∗(−,Fp) to [AB18, Theorem 8.5], we see that
(20) is a cofibre sequence when evaluated on modules V = ΣnFp with n ≥ 0 even. By [AM99,
Proposition 4.6], this implies that (20) is in fact a cofibre sequence on all modules of the form
V = ΣnFp with n an even integer. Applying linear duality and using Proposition 5.49, we deduce:

Theorem 7.35. For all even integers n and all weights w ≥ 0, there is a cofibre sequence in Modk

ΣFreeLieπk,∆
[w](Σn−1Fp)→ FreeLieπk,∆

[w](ΣnFp)→ FreeLieπk,∆

[w
2

]
(Σ2n−1Fp).

The forgetful functor DGr → CGr from graded simplicial algebras to graded E∞-algebras de-
scribed in Construction 5.41 preserves pushouts and trivial square-zero extensions. We may there-
fore interpret Proposition 7.33 as a natural sequence of E∞-algebras. Repeating the argument in
the proof of Proposition 7.33 in this context, we conclude:

Theorem 7.36. For all even integers n and all weights w ≥ 0, there is a cofibre sequence in Modk

ΣFreeLieπ
k,E∞

[w](Σn−1Fp)→ FreeLieπ
k,E∞

[w](ΣnFp)→ FreeLieπ
k,E∞

[w
2

]
(Σ2n−1Fp).
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7.3. Free Partition Lie Algebras on Many Generators. We can express free Lie algebras on
many classes in terms of free Lie algebras on a single generator. Recall the following terminology:

Definition 7.37. A Lyndon word in letters x1, . . . , xk is a word which is lexicographically (strictly)
minimal among all its cyclic rotations. Write Bk for the set of Lyndon words in k letters and let
B(m1, . . . ,mk) ⊂ Bk be the subset consisting of all words involving each xi precisely mi times.

Given a Lyndon word w ∈ Bk, we write |w|i for the number of occurrences of the letter xi in w.

Our decomposition will follow from [AB18, Theorem 5.10], which we will now recall:

Theorem 7.38. Given a decomposition n = n1 + . . .+ nk, there is a Σn1 × . . .× Σnk
-equivariant

(simple) homotopy equivalence

Σ|Πn|
⋄ ≃
−−−−→

∨

d| gcd(n1,...,nk)

w∈B(
n1
d ,...,

nk
d )

Ind
Σn1×...×Σnk

Σd

(
(S

n
d−1)∧d ∧ Σ|Πd|

⋄
)
.

From this, we can obtain the following decomposition:

Proposition 7.39. Given integers ℓ1, . . . , ℓm, there are isomorphisms of Nm-graded Fp-modules
⊕

w∈Bm

FreeLieπ
k,∆

(
Σ1+

∑
i(ℓi−1)|w|i(Fp)

)
∼= FreeLieπ

k,∆

(
Σℓ1Fp ⊕ . . .⊕ ΣℓmFp

)

⊕

w∈Bm

FreeLieπk,E∞

(
Σ1+

∑
i(ℓi−1)|w|i(Fp)

)
∼= FreeLieπk,E∞

(
Σℓ1Fp ⊕ . . .⊕ ΣℓmFp

)

The “multinomial” grading by Nm will be constructed in the course of the proof.

Proof. Recall the colimit-preserving functors F(−), F
h
(−) : S

Σn
∗ → EndnΣ(ModFp) from Section 3.3.

For X ∈ SetFin∗ , V ∈Modωk , and ℓ1, . . . , ℓm ∈ Z, expanding “binomially” gives a natural equivalence

Fp[X ] ⊗
Σn

(Σ−ℓ1V ⊕ . . .⊕ Σ−ℓmV )⊗n ≃
⊕

n1+...+nk=n

Σ−ℓ1n1−...−ℓmnm

(
Fp[X ] ⊗

Σn1×...×Σnm

V ⊗n
)
.

Taking the right-left extension of these degree n functors (cf. Theorem 3.26), we obtain

(21) FX(Σ−ℓ1V ⊕ . . .⊕ Σ−ℓmV ) ≃
⊕

n1+...+nk=n

Σ−ℓ1n1−...−ℓmnmFIndΣn
Σn1×...×Σnk

(X)(V ).

Since F(−) : SΣn
∗ → EndnΣ(ModFp) was defined by freely extending from finite Σn-sets to genuine

Σn-spaces under sifted colimits, this equivalence in fact holds for general Σn-spaces X in SΣn
∗ .

We will further analyse the right hand side of the above equivalence in the case X = Σ|Πn|⋄.
Here, Theorem 7.38 gives rise to an equivalence of Σn-spaces

IndΣn

Σn1×...×Σnk
(Σ|Πn|

⋄) ≃
∨

d| gcd(n1,...,nk)

w∈B(
n1
d ,...,

nk
d )

IndΣn

Σd

(
(S

n
d−1)∧d ∧ Σ|Πd|

⋄
)

Plugging this equivalence into (21), we obtain an identification

FΣ|Πn|⋄(Σ
−ℓ1V⊕. . .⊕Σ−ℓmV ) ≃

⊕

n1+...+nm=n
d| gcd(n1,...,nk)

w∈B(
n1
d ,...,

nk
d )

FΣ|Πd|⋄

(
Σ1+(1−ℓ1)

n1
d +...+(1−ℓm)nm

d V
)
.
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Combining this with Proposition 5.49, we can deduce the first claim: the weight n piece of

FreeLieπk,∆

(
Σℓ1Fp ⊕ . . .⊕ ΣℓmFp

)
is
(
FΣ|Πn|⋄(Σ

−ℓ1Fp ⊕ . . .⊕ Σ−ℓmFp)
)∨

, whereas the weight n piece

of
⊕

w∈Bm

FreeLieπ
k,∆

(
Σ1+

∑
i(ℓi−1)|w|i(Fp)

)
is

⊕

n1+...+nm=n
d| gcd(n1,...,nk)

w∈B(
n1
d ,...,

nk
d )

(
FΣ|Πd|⋄

(
Σ1+(1−ℓ1)

n1
d +...+(1−ℓm)nm

d Fp

))∨
.

The second claim follows by a parallel argument using the construction Fh
(−) instead of F(−). �

We combine our results to prove the main claim of this section.

Proof of Theorem 7.3 and Theorem 7.4. We first consider the case m = 1.
If p = 2 or ℓ1 odd, both statements can be read off from Theorem 7.5 and Theorem 7.6, respectively.

If p is odd and ℓ1 is even, we recall the two cofibre sequences of weight graded Fp-module spectra
established in Theorem 7.35 and Theorem 7.36:

ΣFreeLieπk,∆
[w](Σℓ1−1Fp)→ FreeLieπk,∆

[w](Σℓ1Fp)→ FreeLieπk,∆

[w
2

]
(Σ2ℓ1−1Fp).

ΣFreeLieπ
k,E∞

[w](Σℓ1−1Fp)→ FreeLieπ
k,E∞

[w](Σℓ1Fp)→ FreeLieπ
k,E∞

[w
2

]
(Σ2ℓ1−1Fp).

If w = pk for some k, then the right terms vanish. This implies by the “odd case” that in both
cases, the middle terms have a basis consisting of all sequences (i1, . . . , ik) satisfying conditions
(1), (2) and (1)′, (2)′ respectively, together with the respective conditions

(3) (p− 1)(ℓ1 − 1) ≤ ik < −1 or 0 ≤ ik ≤ (p− 1)(ℓ1 − 1)

(3)’ ik ≤ (p− 1)(ℓ1 − 1).

Since ℓ1 is even, these conditions are (in light of the congruences (1) or (1)′) equivalent to

(3) (p− 1)ℓ1 − 1 ≤ ik < −1 or 0 ≤ ik ≤ (p− 1)ℓ1 − 1

(3)’ ik ≤ (p− 1)ℓ1 − 1.

This agrees with the assertions made in the two theorems (where ǫ = 1 and e = 0 in this case).

If w = 2pk for some k, then the respective left terms in the above cofibre sequences vanish. By
the “odd cases”, the middle terms have a basis consisting of all sequences (i1, . . . , ik) satisfying
conditions (1), (2) or (1)′, (2)′ , together with the respective conditions

(3) (p− 1)(2ℓ1 − 1) ≤ ik < −1 or 0 ≤ ik ≤ (p− 1)(2ℓ1 − 1).

(3)’ ik ≤ (p− 1)(2ℓ1 − 1).

In light of the congruence conditions (1) or (1)′, these conditions are in turn equivalent to

(3) (p− 1)(2ℓ1)− 1 ≤ ik < −1 or 0 ≤ ik ≤ (p− 1)(2ℓ1)− 1.

(3)’ ik ≤ (p− 1)(2ℓ1)− 1.

Again, this agrees with the assertions made in the two theorems (with ǫ = 1 and e = 1 in this case).
If w 6= pk, 2pk for all k, then the outer summands in the above cofibre sequences vanish, which

implies that the middle term must also vanish. This verifies the two claims in these weights. We
have finally verified the two theorems whenever there is just a single generator.

The statement for m > 1 follows immediately from the single generator case by the direct sum
decomposition established in Proposition 7.39. �
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8. Appendix: Hypercoverings and Kan extensions

In higher algebra, simplicial resolution arguments often proceed by writing a given object X
(which we want to control) as a geometric realisation of a simplicial diagram X• consisting of
simpler objects (which we can control). The theory of hypercoverings gives a general tool for
building such simplicial resolutions. It goes back to Verdier’s Exposé V in SGA 4 (cf. [AGV72]),
and was studied in a higher categorical context by Dugger-Hollander-Isaksen [DHI04], Toën-Vezzosi
[TV05, Section 3.2], Lurie [Lur09, Section 6.5.3] [Lur17, Section Prop. 7.2.1], and many others.

In this appendix, we will develop a variant of these ideas which will allow us to construct
completed-free resolutions of complete Noetherian algebras in Theorem 6.13 above. Moreover, we
will use hypercoverings to explicitly describe certain left Kan extensions of algebras; this technical
result is needed in Construction 6.17 in the main body of this article.

8.1. Construction of hypercoverings. We begin by recalling the following classical definition:

Definition 8.1 (Matching and latching objects). Let X• be a simplicial object in an∞-category C.

(1) The nth matching object Mn(X•) is given by the limit Mn(X•) = lim
←−[m]→[n],m<n

Xm, if

this limit exists. The limit is taken over the opposite of the subcategory of ∆/[n] spanned

by arrows [m] → [n] with m < n. Equivalently, by a classical cofinality argument, we can
take the limit over the opposite of the poset of proper subsets of [n].

(2) The nth latching object Ln(X•) is given by the colimit lim
−→[n]→[m],m<n

Xm, if it exists. By

cofinality, we can also take the colimit over the poset of surjections [n] ։ [m] with m < n.

For each n, we have natural maps Ln(X•)→ Xn →Mn(X•).

We recall a criterion for contractibility, together with its relative variant:

Example 8.2. Let X• be a simplicial space. Suppose the map Xn →Mn(X•) induces a surjection
on π0 for all n ≥ 0. Then |X•| is contractible. This is proven in [Lur09, Lemma 6.5.3.11].

Example 8.3. LetX• be a simplicial space augmented over a space Z, i.e. a simplicial object of S/Z .
Consider the nth mapping object Mn(X•) in S/Z (by computing the relevant limit internal to S/Z ).
If the map Xn →Mn(X•) induces a surjection on π0 for all n ≥ 0, then |X•| ≃ Z. This reduces to
the previous example by taking homotopy fibre products over points of Z.

The theory of hypercoverings provides a generalisation of the last example: we will look for (pos-
sibly augmented) simplicial objects such that the map Xn →Mn(X•) has some type of surjectivity.
We will study hypercoverings in the following general context:

Definition 8.4. Let C be an∞-category which admits (finite nonempty) coproducts and a terminal
object ∗, S a class of morphisms in C, and F ⊂ C a class of objects. We say that (F , S) forms a
weakly orthogonal pair if:

(1) S is closed under composition and contains all equivalences. Moreover, we have the following
two-out-of-three property: given composable arrows g, f with g ◦ f ∈ S, we have g ∈ S too.

(2) Pullbacks of morphisms in S along morphisms in S exist and belong to S.
(3) F is closed under coproducts.
(4) For each F ∈ F , the map F → ∗ belongs to S.
(5) Given F ∈ F and a morphism f : Y → Y ′ in S, the map MapC(F, Y )→ MapC(F, Y

′) is
surjective on π0. Hence objects in F have the left lifting property with respect to S.

(6) Given an object Y ∈ C, there exists a map f : F → Y in S with F ∈ F .
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Remark 8.5. Let C,F , S be as in Definition 8.4 and fix an object Z ∈ C. Consider the full
subcategory (CZ)′ ⊂ C/Z consisting of those maps Y → Z which belong to S. Our assumptions
imply that (CZ)′ contains a terminal object as well as finite nonempty coproducts. Then (CZ)′

admits a weakly orthogonal pair (FZ , SZ) as follows. The class FZ consists of those objects in
(C/Z)

′ whose underlying object of C belongs to F . The class S/Z consists of those morphisms whose
underlying morphism in C belongs to S.

We will now define the notion of a hypercovering and prove an existence statement. This is
essentially a classical result from SGA4; the ∞-categorical treatment is a slight modification of
[Lur17, Proposition 7.2.1.5], except that we do not assume the existence of finite limits.

Lemma 8.6 (General hypercovering lemma). Assume that (F , S) is a weakly orthogonal pair in an
∞-category C which admits finite nonempty coproducts and a terminal object ∗. Then there exists
a simplicial object X• such that for all n ≥ 0, we have:

(1) The object Xn belongs to F .
(2) The matching object Mn(X•) exists in C.
(3) The latching object Ln(X•) exists in C.
(4) The map Xn →Mn(X•) belongs to S. (When n = 0, this is the map X0 → ∗.)
(5) The map Ln(X•)→ Xn expresses Xn as a coproduct of the source and an object in F .

Definition 8.7 ((F , S)-hypercoverings). Fix a weakly orthogonal pair (F , S) on an ∞-category C.

(1) A simplicial object X• is said to be an (F , S)-hypercovering of the terminal object ∗ if it
satisfies conditions (1)–(5) of Lemma 8.6.

(2) An augmented simplicial object X• → Z is called an (F , S) hypercovering of Z if each
Xi → Z belongs to S, and, when considered as a simplicial object of (C/Z)

′, it is an
(FZ , SZ) hypercovering of the terminal object.

To prove Lemma 8.6, we will need the following technical result:

Proposition 8.8. Let P be a finite poset. Let D be an ∞-category containing an initial object and
suppose that T is a class of morphisms in D which is closed under composition and contains all
equivalences. Let G : P → D be any functor. Suppose that:

(1) Pushouts of morphisms in T along morphisms in T exist, and remain in T .
(2) For any x ∈ P, the functor G|P<x : P<x → D admits a colimit in D.
(3) For any x ∈ P, the morphism lim

−→y∈P<x
G(y)→ G(x) belongs to T .

Then G admits a colimit in D, and the canonical map from the initial object to lim
−→P

G belongs to T .

Proof. Let Q ⊂ P be an arbitrary downward-closed subset; this means that if x ∈ Q and y ∈ P
satisfies y ≤ x, then y ∈ Q. We claim that if Q′ ⊂ Q is a downward closed subset of Q, then the
colimits of G over Q,Q′ exist, and the morphism lim

−→Q′
G → lim

−→Q
G belongs to T . Taking Q = P

(and Q′ = ∅) will then imply the result.
Suppose Q is maximal among downward closed subsets for which the above claim holds true.

If Q 6= P , let z ∈ P be an element minimal subject to the condition that z /∈ Q; this means that

any z′ with z′ < z belongs to Q. In particular, Q̃ := Q ∪ {z} is a downward closed subset as well.

The poset Q̃ is the union of Q and P≤z, with common intersection being given by P<z. Moreover,
we have a pushout, and in fact a homotopy pushout in the Joyal model structure, of simplicial sets

N(Q̃) = N(Q) ⊔N(P<z) N(P≤z).
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By assumption, the colimit lim
−→y∈P<z

G(y) exists, and lim
−→y∈P<z

G(y) → G(z) = lim
−→y∈P≤z

G(y)

belongs to T . By the defining hypothesis on Q, we know that lim
−→y∈P<z

G(y)→ lim
−→y∈Q

G(y) belongs

to T as well. Using [Lur09, Corollary 4.2.3.10], we deduce that G|Q̃ admits a colimit as desired,

which is given as the pushout of the restricted colimits. It follows from (1) that both lim
−→y∈Q

G(y)→

lim
−→y∈Q̃

G(y) and lim
−→y∈P≤z

G(y) → lim
−→y∈Q̃

G(y) belong to T . Since any proper subposet Q′′ of Q̃

is contained in either P≤z or Q, we conclude that lim
−→y∈Q′′

G(y) → lim
−→y∈Q̃

G(y) belongs to T by

using the defining hypothesis of Q and the fact that T is closed under composition. �

We are now in a position to construct hypercoverings:

Proof of Lemma 8.6. Using condition (5) in Definition 8.4, we can chose an object X0 ∈ F such
that X0 → ∗ belongs to S. We will now construct a simplicial object by a recursive construction.

Suppose that we have defined X on ∆op
≤r so that it satisfies conditions (1)–(5) of Lemma 8.6, for

all n ≤ r. In order to extend X to ∆op
≤r+1, we first observe that the colimit lim

−→[r+1]→[m],m<r+1
Xm

(i.e. the latching object, which is already defined for the r-truncated simplicial object) and the limit

lim
←−[m]→[r+1],m<r+1

Xm (i.e. the corresponding matching object) both exist. Furthermore, we claim

that the latching object belongs to F . To verify these claims, we apply Proposition 8.8 as follows:

(1) The matching object Mr+1(X•) (if it exists) can be computed as the limit lim
←−U([r+1]

XU ,

taken over the opposite of the poset of proper subsets U ( [r + 1]. Given a proper subset

U ( [r + 1], say U = [m], the limit lim←−U ′([m]
XU ′ exists and Xm → lim←−U ′([m]

XU ′ belongs

to S by the inductive hypothesis. Therefore, the matching object exists by Proposition 8.8.

(2) We apply a dual argument for the latching object. Indeed, define T to be the class of
morphisms which are equivalent to Y → Y ⊔ X with X ∈ F . By Proposition 8.8, it then
follows that the latching object exists and belongs to F .

To construct X on ∆op
≤r+1, by [Lur09, Proposition A.2.9.15] and the surrounding discussion, it

suffices to provide an object Xr+1 and a factorisation

lim
−→

[r+1]→[m],m<r+1

Xm −→ Xr+1 −→ lim
←−

[m]→[n],m<n

Xm.

We define Xr+1 as the coproduct of the left-hand-side with an object F ∈ F with a map F →
lim
←−[m]→[n],m<n

Xm that belongs to S. Then, Xr+1 → lim
←−[m]→[n],m<n

Xm belongs to S by the two-

out-of-three property of S. This extends X to ∆op
≤r+1, and it is not hard to check that the conditions

(1)–(5) are satisfied for all n ≤ r + 1. �

8.2. Kan extensions. Hypercoverings will allow us to compute certain left Kan extensions via
geometric realisations. For this, we will need a general way of producing weakly orthogonal pairs:

Construction 8.9. Let C be a presentable ∞-category, and assume that F0 is a set of objects
which is closed under finite coproducts.

a) Let F denote the class of objects of C which are (possibly infinite) coproducts of objects in F0.
b) Let S denote the class of morphisms f : X → Y in C such that for all F ∈ F0, the map of sets

π0 MapC(F,X)→ π0 MapC(F, Y ) is surjective.

It is then straightforward to check that (F , S) forms a weakly orthogonal pair in C. Part 6 of
Definition 8.4 follows from a compactness argument.
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Proposition 8.10. Suppose C and (F , S) are specified as in Construction 8.9. Let D be a pre-
sentable ∞-category and assume that G : C → D is a functor which is left Kan extended from F0.
Given any (F , S)-hypercovering X• of an object Y ∈ C, we have

|G(X•)| ≃ G(Y ).

Proof. Let F1 be a small subcategory with F0 ⊂ F1 ⊂ F such that the image of X• is contained
in F1. By assumption, the functor G is left Kan extended from F1 too; in fact, the sole purpose of
introducing F1 is to avoid discussing Kan extensions from non-small subcategories.

Recall (cf. [Lur09, Section 4.3.2]) that the left Kan extension can be computed by the formula

G(Y ) ≃ lim
−→

Z∈F1
/Y

G(Z).

We have a natural functor ∆op → F1
/Y given by the simplicial object X•, and it therefore suffices

to check that this functor is left cofinal.
Using the∞-categorical version of Quillen’s Theorem A [Lur09, Theorem 4.1.3.1], we are reduced

to proving that for any Y1 ∈ F1
/Y , the homotopy pullback ∆op×F1

/Y
F1

Y1//Y
has a weakly contractible

nerve. By the Grothendieck construction, it in fact suffices to show that the geometric realisation
of the simplicial space HomF1

/Y
(Y1, X•) is weakly contractible. This is true because X• being an

(F , S)-hypercovering of Y implies that HomF1
/Y

(Y1, X•) satisfies the conditions of Example 8.2. �

We now illustrate Proposition 8.10 in two examples of interest:

Example 8.11 (Left Kan extension from Perfk,≤0). Suppose that k is a field. We can then take
C to be the ∞-category Modk and F0 to be the subcategory Perfk,≤0. It is then not hard to check
that S becomes the class of morphisms in Perfk,≤0 which induce surjections on πi for all i ≤ 0.

We now claim that any (F , S)-hypercovering X• of Y ∈ Modk is a colimit diagram. Indeed,
applying the functors HomModk

(k[−n],−), and combining condition (4) of Lemma 8.6 with Exam-
ple 8.3, we see that |Ω∞−nX•| ≃ Ω∞−nY is an equivalence for all n ≥ 0. As we can write any
spectrum Z as a canonical colimit Z ≃ lim

−→n
Σ∞−nΩ∞−nZ, we deduce our claim.

We can therefore explicitly describe the procedure of left Kan extension along the inclusion
Perfk,≤0 → Modk, even for functors which do not preserve finite coconnective geometric realisations.
For this, let G0 : Perfk,≤0 → D be any functor. To compute its left Kan extension G : Modk → D,
we first extend G0 in a filtered-colimit-preserving way to a functor G1 : Modk,≤0 → D.

Given an arbitrary k-module Y ∈Modk, we can pick an (F , S)-hypercoveringX• → Y by apply-
ing Lemma 8.6. By construction this means that each Xi belongs to Modk,≤0. By Proposition 8.10,
we obtain an equivalence G(Y ) ≃ |G1(X•)|. Note in particular that while G need not preserve all
geometric realisations, it can still be computed in this fashion.

We conclude by generalising the preceding application of Proposition 8.10 to algebras:

Example 8.12 (Left Kan extension for ∞-categories of algebras). Let T : Modk → Modk be a
monad which preserves sifted colimits. Write F0 ⊂ AlgT for the full subcategory spanned by all
free T -algebras of the form T (V ) with V ∈ Perfk,≤0. It is again not difficult to check that the
associated class S consists those maps of T -algebras which induce surjections on πi for all i ≤ 0.

Let now D be a presentable ∞-category, and suppose that we are given a functor G0 : F0 → C.
We can then ask: what is the left Kan extension G : AlgT → C of G0 to all of AlgT ?
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We observe that the associated∞-category F is spanned by all free T -algebras of the form T (W )
with W ∈ Modk,≤0. Since G is left Kan extended from its values on compact objects, it follows
that G commutes with filtered colimits, which determines its values on all objects in F .

Given an arbitrary T -algebra A, we can use Lemma 8.6 to find an (F , S)-hypercoveringX• of A.
It follows as in Example 8.11 that in T -algebras, we have |X•| ≃ A, and Proposition 8.10 gives rise
to an equivalence

|G(X•)| ≃ G(A).

For each i, the value G(Xi) is determined since Xi is free on a coconnective k-module spectrum.
As a simple consequence, we deduce that any sifted-colimit-preserving functor AlgT → C is left

Kan extended from F0. The forgetful functor AlgT → Modk is therefore left Kan extended from F0.
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1985/Quebec, Que., 1985), Lecture Notes in Math., vol. 1234, Springer, Berlin, 1986, pp. 126–159.
MR 927763

[Kal15] D. Kaledin, Trace theories and localization, Stacks and categories in geometry, topology, and algebra,

Contemp. Math., vol. 643, Amer. Math. Soc., Providence, RI, 2015, pp. 227–262. MR 3381474
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[TV08] Bertrand Toën and Gabriele Vezzosi, Homotopical algebraic geometry. II. Geometric stacks and applica-

tions, vol. 193, 2008. MR 2394633

https://stacks.math.columbia.edu

	1. Introduction
	2. Preliminaries
	3. Functors of k-modules
	4. The axiomatic argument
	5. Deformations over a field
	6. Deformations over a complete local base
	7. The homology of partition Lie algebras
	8. Appendix: Hypercoverings and Kan extensions
	References

