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BOUNDING THE K(p−1)-LOCAL EXOTIC PICARD GROUP AT p > 3

IRINA BOBKOVA, ANDREA LACHMANN, ANG LI, ALICIA LIMA, VESNA STOJANOSKA,

AND ADELA YIYU ZHANG

Abstract. In this paper, we bound the descent filtration of the exotic Picard group κn, for a prime num-

ber p > 3 and n = p−1. Our method involves a detailed comparison of the Picard spectral sequence,

the homotopy fixed point spectral sequence, and an auxiliary β-inverted homotopy fixed point spec-

tral sequence whose input is the Farrell-Tate cohomology of the Morava stabilizer group. Along the

way, we deduce that the K(n)-local Adams-Novikov spectral sequence for the sphere has a horizontal

vanishing line at 3n2 +1 on the E2n2+2-page.

The same analysis also allows us to express the exotic Picard group of K(n)-local modules over the

homotopy fixed points spectrum EhN
n , where N is the normalizer in Gn of a finite cyclic subgroup of

order p, as a subquotient of a single continuous cohomology group H2n+1(N,π2nEn).
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1. Introduction

A key objective of chromatic homotopy theory is to understand the K(n)-local category of spectra

SpK(n), at various primes p and heights n, as these are building blocks of spectra from the chromatic

point of view. Furthermore, K(n)-local spectra are approachable via descent from their Lubin-Tate

homology (aka Morava E-theory). Specifically, there is a K(n)-local even-periodicE∞-ring spectrum

En, whose π0 is a complete local ring carrying a universal deformation of a height n formal group

law in characteristic p [GH04, Lur09].

The automorphism group Gn of the formal group law1 acts on En through ring homomorphisms,

and the homotopy fixed points of the action recover the K(n)-local sphere [DH04]. In fact, this

relationship can be categorified to great effect, exhibiting the K(n)-local category as the homotopy

fixed points of the category of Gn-equivariant K(n)-local En-modules [Mat16, Mor23].

The invertible objects in SpK(n), in turn, can be thought of as the building blocks of the K(n)-local

category. Equipped with the K(n)-local smash product, they form the Picard group

Picn = Pic(SpK(n)) = {X ∈ SpK(n) | ∃Y such that X⊗Y ≃ S0
K(n)}/ ∼,

1together with the base field, which should contain enough roots of unity

1
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where the equivalence relation is K(n)-local homotopy equivalence.

The investigation into Picn was initiated by the groundbreaking work of Hopkins, Mahowald,

and Sadofsky [HMS94], in which they observe the wealth of information these groups can con-

tain. Indeed, while the category of (unlocalized) spectra has Picard group Z, consisting of only

the integer-dimensional spheres, the structure of Picn encodes the existence of p-adic dimensional

spheres [HMS94] and determinant spheres [BBGS22], among other beasts. A starting point in the

study of invertible K(n)-local spectra is their characterization as such spectra X for which (En)∗X is

invertible in the category of π∗En −Gn modules (i.e. modules over π∗En with compatible Gn action;

these are also called Morava modules). We let Pic
alg
n denote the Picard group of Morava modules,

and we consider the comparison map

ε : Picn→ Pic
alg
n (1)

which sends a spectrum X to (En)∗X = π∗LK(n)(En∧X). Since π0En is a complete local ring, an in-

vertible π∗En-module is completely determined by whether it is concentrated in even or odd degrees.

Thus, most of the information in the algebraic Picard group is encoded by twists of the Gn-action on

π∗En.

The map in (1) is known to be an isomorphism when 2p−2 > n2+n [Pst22], demonstrating the

fact that the K(n)-local category is algebraic in these cases. For small primes, ε is not injective, and

its kernel κn is the group of exotic invertible K(n)-local spectra. The few results that are known about

the non-trivial exotic Picard groups can be summarized as follows:

• At height n = 1, κ1 is non-zero only if p = 2, in which case it is Z/2 [HMS94];

• At height n = 2, κ2 is non-trivial only in two cases:

– When p = 3, κ2 � Z/3×Z/3 [GHMR15], and

– When p = 2, κ2 � (Z/8)2× (Z/2)3 [BBG+22];

• For all p and n = p− 1, κn contains a non-trivial subgroup of order p [BGHS22, Theorem

14.6];

• For odd primes p, κn is product of cyclic p-groups, according to [Hea14, Theorem 4.4.1];

• Conditional upon a homological conjecture, κ3 = 0 at the prime 5 [CZ24, Theorem 3.32].

In this paper we will further explore κn and related groups when n = p− 1. This is a boundary

case for complication: the Morava stabilizer group at n= p−1 has infinite cohomological dimension

because it contains finite torsion subgroups, but this is minimally complicated as the order of any

finite p-torsion subgroup is exactly p.

The analysis of κ2 at p= 2 in [BBG+22] contains a compendium of almost all the known strategies

for approaching κn, and in particular, it made clear that understanding two natural filtrations on κn
can be crucial for clarifying the structure of this group. In this paper we study the descent filtration

on κn (cf. [BBG+22, Definition 3.28], Definition 6.2). It is most naturally described as the filtration

arising from the descent spectral sequence for the Picard spectrum of the K(n)-local category. We

review this in more detail in Section 6.

To approach this descent spectral sequence, we first dive into a close study of the K(n)-local

Adams-Novikov spectral sequence for the sphere, i.e. the homotopy fixed point spectral sequence2

Hs(Gn,πtEn)⇒ πt−sS
0
K(n). (2)

While the group cohomology H∗(Gn,π∗En) is generally inaccessible, it is well-understood in high

cohomological degrees, at least in the case n = p− 1. Namely, above the p-virtual cohomolog-

ical dimension of Gn, which is n2, Hs(Gn,π∗En) is isomorphic to the Farrell-Tate cohomology

Ĥs(Gn,π∗En) explicitly computed by Symonds [Sym04] for n = p−1, which is the height we focus

2Here, and everywhere in this paper, group cohomology of profinite groups is always taken continuously.
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on. One key computational feature of Farrell-Tate cohomology is that for profinite groups of finite

virtual cohomological dimension, whose finite p-Sylow subgroups are cyclic, their Farrell-Tate co-

homology reduces to the Farrell-Tate cohomology of the normalizers of cyclic subgroups of order

p [Sym04, Theorem 1.3]. This result is a strengthening of Henn’s f-isomorphism theorem [Hen98,

Theorem 1.4].

In the case of Gn at height n = p− 1, any non-trivial finite p-subgroup of Gn is isomorphic to

the cyclic group Cp, and its normalizer N is such that the quotient N/Cp has virtual cohomological

dimension n. In fact, N/Cp is an extension of Zn
p and a finite group of order prime to p, making

its Farrell-Tate cohomology simple enough to compute. Then it is a result of Symonds [Sym04,

Theorem 1.1] that there is an isomorphism

Ĥ∗(Gn,π∗En) � Ĥ∗(N,π∗En) � Ĥ∗(F,π∗En)⊗ΛFp(a0, . . . ,an−1), (3)

where F is a maximal finite subgroup containing our Cp. The Tate cohomology of F with coefficients

in π∗En can be explicitly determined from a well-known computation due to Hopkins and Miller;

see [Nav10]. The exterior generators arise from the cohomology of N/Cp. We review these results

in Section 3 below.

The Farrell-Tate cohomology in (3) is in fact the E2-page of the β-localized homotopy fixed

point spectral sequence (2), where β is a cohomology class in H2(G,π2pnEn) detecting the class

β1 ∈ π2pn−2S0
K(n)

. There is a similar β-inverted homotopy fixed point spectral sequence for a finite

subgroup F ofG as well as for the normalizer N. Their relationship and full computation is described

in Corollary 4.8.

While the β-inverted spectral sequences converge to zero, they encode crucial information (in

high enough cohomological degree) about the homotopy fixed point spectral sequence (2), as well

as the analogous homotopy fixed point spectral sequence for the action of N on En. A detailed

analysis of this information yields the following explicit horizontal vanishing line, which we prove

in Section 7.

Theorem A (Theorem 5.2). Let n = p− 1 for the prime p ≥ 3, and let G be N or Gn. There is

a horizontal vanishing line s = 2n2 + vcd(G)+ 1 on the E2n2+2-page of the homotopy fixed points

spectral sequence

E s,t
2
= Hs(G,πtEn)⇒ πt−s(E

hG
n ).

Of course, nilpotence technology ensures the existence of a horizontal vanishing line on some

finite page of the homotopy fixed point spectral sequence for EhG
n for any closed subgroup G ⊆ Gn,

cf. [DH04, Lemma 5.11] and [BGH22, Corollary 2.3.10]. Nonetheless, there are few examples

where the exact bound is known, and our result contributes another class of such examples.

Remark 1.1. When p = 3, we recover the horizontal vanishing line (at s = 13 on the E10-page)

from [GHMR15, Theorem 4.2]. Furthermore, in op.cit, the authors demonstrated that the line is

sharp by finding elements in E
12,96+72k

10
that are detected by the Adams-Novikov spectral sequence

of the Smith-Toda complex V(0), see the paragraph after [GHMR15, Lemma 4.7]. Unfortunately,

our analysis does not prove sharpness for p > 3, as we do not have fine enough information about

the fate of the Tate cohomology classes that could interact with the β-torsion in the homotopy fixed

point spectral sequence for the sphere (2) or a suitable generalized Smith-Toda complex.

Remark 1.2. In comparison, if p−1 does not divide the height n, then there is a horizontal vanishing

line s = n2+1 on the E2-page. This is because H∗(Gn,π∗En) is isomorphic to the Galois fixed points

of the cohomology of the small Morava stabilizer group Sn, which has no p-torsion and thus its

cohomological dimension is n2; see for example ([Hen98, Theorem 3.2.1] and [GH22, Proposition

1.13]).
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The complete understanding of the homotopy fixed point spectral sequence (2) in high enough

degrees also yields useful information for the Picard group Picn of the K(n)-local category. Namely,

we use the additive-to-Picard comparison of differentials from [MS16] (see Theorem 6.1) to deduce

differentials in the Picard spectrum homotopy fixed point spectral sequence. Note that this is made

possible in the profinite case via the recent descent results of Mor [Mor23].

To wit, consider the Picard spectrum pic(En) of the category of K(n)-local En-modules. It has a

naturalGn-action, and for a closed subgroup G of Gn such as N when n = p−1 or all of Gn, we have

a spectral sequence

Hs(G,πtpic(En))⇒ πt−s (pic(En))hG . (4)

Here, π0 of the abutment is the Picard group of K(n)-local EhG
n -modules. Thus, the spectral sequence

induces a filtration on this Picard group, and the subgroup of filtration s ≥ 2 is the group κGn of exotic

invertible K(n)-local EhG
n -modules; see Definition 6.2. This is in agreement with κn = κ

Gn
n being the

kernel of the map ε in (1), since H0(G,π0pic(En)) = Z/2 and H1(G,π1(pic(En))) � H1(G, (π0En)×)

conspire to build the algebraic Picard group of G-equivariant π∗En-modules. In particular, κGn itself

inherits a filtration, called the descent filtration, and we deduce the following bound on its size. Note

that part (1) in the following result comes from knowing that there is only one descent filtration jump

in the case of the normalizer subgroup N.

Theorem B (Corollary 7.2). Let p ≥ 5 be a prime and let n = p−1.

(1) Let N be the normalizer of Cp ⊂ Gn. The exotic Picard group of K(n)-local EhN
n -modules is

a subquotient of H2n+1(N,πtEn). In particular, κNn is a finite group of simple p-torsion.

(2) The descent filtration on the exotic Picard group κn has length at most n2, and the associated

graded is concentrated in n
2
−1 degrees.

Conventions. Throughout this paper, we fix an odd prime number p and a height n. To avoid clunky

notation, we will omit the subscript n from En, denoting it by E = En, and then Et will denote πtEn.

We will also omit the subscript from the Morava stabilizer group, thus G denotes Gn, and the small

stabilizer group will be S. Other objects which depend on n might also have notation which does

not explicitly include n, but since n is fixed throughout, there is little chance of confusion.

We will work exclusively in a K(n)-local setting, thus all spectra are implicitly or explicitly K(n)-

local, and tensor products (i.e. smash products) are implicitly K(n)-localized as needed.

We denote cyclic groups of order m by Cm. The center Z×p of G contains a finite subgroup of the

roots of unity, which we denote by µp−1. All group cohomology of profinite groups is continuous.
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2. Preliminaries from chromatic homotopy theory

We begin by recalling some standard notions and notation from chromatic homotopy theory. Fix

a formal group law Γ of height n over Fpn that is already defined over Fp, for example the Honda

formal group law with [p]-series [p](x) = xpn
. The Morava K-theory spectrum K(n) is a 2-periodic

complex-oriented cohomology theory with a formal group law Γ, and coefficients K(n)∗ = Fpn[u±1],

where u is in degree −2.

The Morava stabilizer group G = Aut(Γ,Fpn) is the group of automorphisms of the pair (Γ,Fpn),

and the small Morava stabilizer group S =Aut(Γ/Fpn) is the group of automorphisms of Γ over Fpn .

Since Γ is defined over Fp, the Galois group Gal(Fpn/Fp) acts on S and there is a decomposition

G � S⋊Gal(Fpn/Fp).

Denote by E = En the Morava (or Lubin-Tate) E-theory E(Γ,Fpn). Its coefficient ring

E∗ �W(Fpn)[[u1, . . . ,un−1]][u±1]

is a Laurent polynomial ring on the ring E0, which classifies deformations of Γ. Indeed, the formal

group law of E is a universal deformation of Γ. The Morava stabilizer group G acts continuously on

E∗, and the Goerss-Hopkins-Miller theorem upgrades this action to an E∞-ring action on E [GH04].

The homotopy fixed points EhG with respect to this action recover the K(n)-local sphere LK(n)S
0

[DH04].

2.1. Subgroups of the Morava stabilizer groups. In this subsection we let n= p−1, and introduce

the subgroups N and F of the Morava stabilizer groups G, following [Hen07, Section 3.6]. The

reader is referred to [Hen07] for proofs and details on this rather brief summary.

The endomorphism ring of Γ can be described as a non-commutative algebra over the Witt vectors

of Fpn in one generator S satisfying S n = p, i.e.

EndFpn (Γ) �WFpn 〈S 〉/(S
n− p) .

It is the ring of integers of the division algebra D over Qp of dimension n2 and Hasse invariant

1/n. The Morava stabilizer group S is the group of automorphisms of Γ, i.e. it has the presentation

S � EndFpn (Γ)×.

Choose a primitive (pn−1)-st root of unity ω in F×
pn ⊆ S. Denote by X the element ω

p−1
2 S in S,

so Xn = −p. By [Hen07, Lemma 19], the field Qp(X) is a subalgebra of D isomorphic to Qp(ζp) for

some primitive p-th root of unity ζp in D, and this isomorphism restricts to

Zp[X]/(Xn+ p) � Zp[ζp].

The element ζp is an algebraic integer and also a unit inD, thus it is an element of S. We let Cp = 〈ζp〉;

as a subgroup of G it is unique up to conjugacy. We denote by N = NG(Cp) the normalizer of the

elementary abelian subgroup Cp in G.

Denote by τ the element

τ = ω
pn−1

(p−1)2 ∈ S .

The two elements X and τnX2 generate a subgroup of G denoted by H. This group is isomorphic to

C2n×Cn/2.

The elements X, ζp, and τ generate a finite subgroup of N of order pn3 which we denote by F. It

follows that F is a maximal finite subgroup of G.

Proposition 2.1 ([Hen07, Proposition 20]). The subgroups Cp,H,F, and N of G are related as

follows.
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(1) There is a short exact sequence

1→ H×Cp×Z
n
p→ N→Aut(Cp)→ 1.

(2) The subgroups H, Cp and Zn
p are invariant with respect to the action of Aut(Cp). The action

on Cp is the tautological action, while Zn
p is isomorphic to the direct sum of the distinct

one-dimensional Zp-representations of Aut(Cp).

(3) There is a short exact sequence

1→ H×Cp→ F→ Aut(Cp)→ 1 .

Remark 2.2. It follows that the quotient N/Cp is a group of cohomological dimension n at the

prime p, as it is an extension of Zn
p and finite subgroups of order prime to p.

2.2. Homotopy fixed points spectral sequences. We begin by briefly summarizing some results

of Devinatz-Hopkins [DH04] that relate the K(n)-local E-based Adams-Novikov spectral sequence

with the homotopy fixed points spectral sequence.

Construction 2.3. For any spectrum X, and a (homotopy) commutative ring spectrum R we can

form a cosimplicial object

R⊗X R⊗R⊗X R⊗R⊗X · · ·

in Sp, which is obtained by smashing the Amitsur complex of the unit map S 0 → R with X. The

R-based Adams-Novikov spectral sequence for X can be obtained as the Bousfield-Kan spectral

sequence associated to the totalization of this cosimplicial spectrum.

Alternatively, one constructs a “filtered” object giving the same spectral sequence after the E2-

page. Namely, denote by R the fiber of the unit map S0
K(n)
→ R; then we have the canonical Adams-

Novikov R-resolution

T R
• (X)→ X, (5)

where T R
m(X) = R

⊗m+1
⊗ X, as in [Rav86, Definition 2.2.10]. To avoid any potential for confusion

with the notion of resolution from Definition 2.9, we will refer to (5) as the Adams-Novikov tower

for X.

The classical Adams-Novikov tower is the above based on the complex cobordism spectrum, or

p-locally, on the Brown-Peterson spectrum BP. Throughout this paper we will be working K(n)-

locally, in which case all the terms in Construction 2.3 should be re-localized after tensoring.

After K(n)-local localization, the E2-page of the BP-based Adams-Novikov spectral sequence

is usefully identified with the E2-page of the E-based Adams-Novikov spectral sequence, which in

turn becomes group cohomology of the stabilizer group. In fact, that is an identification on the level

of spectral sequences, per the following result.

Theorem 2.4 ([MR77, DH04]). For G any closed subgroup of G, the spectral sequence associated

to the K(n)-localized Adams-Novikov tower of the homotopy fixed points spectrum EhG is strongly

convergent with signature

E
s,t
2

(G,E) = Hs(G,Et)⇒ πt−s(E
hG). (6)

Furthermore, if X is a dualizable object in the K(n)-local category, then the spectral sequence

obtained by mapping X into the K(n)-local Adams-Novikov tower of EhG is strongly convergent with

signature

E
s,t
2

(G,E⊗X) = Hs(G,Et(X))⇒ πt−s(E
hG ⊗X). (7)
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While very little can be said about the homotopy fixed point spectral sequence (6) in general, if

the subgroup G contains the subgroup µp−1 of (p−1)st roots of unity, which are central inG, then we

have the following well-known sparseness result on the E2-page. We record it here for convenience,

as it will be used to reduce the size of some exotic Picard groups below in Section 7.

Proposition 2.5. Let G be any closed subgroup of G containing the central subgroup µp−1 of roots

of unity. Then for any s, Hs(G,Et) = 0 unless t is divisible by 2(p−1).

Proof. The argument here is the same as the argument in the standard sparsity result for the Adams-

Novikov Spectral Sequence. For completion, we will just include the argument as given in Heard’s

thesis [Hea14, Proposition 4.2.1].

Given our assumption on G, we have the Lyndon-Hochschild-Serre spectral sequence

Hi(G/µp−1,H
j(µp−1,Et))⇒ Hi+ j(G,Et).

For a given element g ∈ G, one can find a description of the action of g∗ on E∗ in [DH95]. In the

case of central elements in G, such as elements in µp−1, one can be very explicit: if ζ is a generator

of µp−1, then

ζ∗u
k = ζuk and ζui = ui.

One should note that since the order of µp−1 is coprime to p, hence invertible in E∗, the group

H j(µp−1,Et) is zero unless j = 0. So that means we are only left to compute the group H0(µp−1,Et),

which from the action of µp−1 given above, one can see that H0(µp−1,Et) is nonzero only when t is

a multiple of 2(p−1), finishing the proof. �

2.3. Homotopy fixed point spectral sequence for EhF . Suppose now that p is odd, and n= p−1.

The homotopy fixed points spectral sequence (6), in case G is a finite subgroup of G, is explicitly

well-understood, due to Hopkins and Miller, and first published in [Nav10, Section 2]. The starting

point is the following calculation of the E2-page modulo the transfers in the case G = Cp.

Proposition 2.6 (Hopkins-Miller, cf. [Nav10, Theorem 2.1], [HMS17, Proposition 2.6]). There is

an exact sequence

Et
tr
−→ Hs(Cp,Et)→ Fpn[α,β,δ±]/(α2)→ 0

of bigraded groups, where the (s, t)-bidegrees are |α| = (1,2n), |β| = (2,2pn), and |δ| = (0,2p).

When F ⊂ G is a maximal finite subgroup containing Cp, we obtain a similar exact sequence.

The following result follows from the explicit understanding of the homotopy fixed points spectral

sequence of EhF , which was first recorded in [Nav10, Section 2], and the fact that the generators on

its E2-page are invariant under the action by the Galois group.

Theorem 2.7 (Hopkins-Miller, cf. [HMS17], Lemma 2.8). Modulo transfer elements, the E2-page

of the homotopy fixed point spectral sequence

E
s,t

2
(F,E) = Hs(F,Et) =⇒ πt−sE

hF , (8)

is given by

E∗,∗
2
/(tr) = H∗(F,E∗)/(tr) � Fp[α,β,∆±1]/(α2)

with |α| = (1,2n), |β| = (2,2pn), and |∆| = (0,2pn2). Along the line s = 0, classes are concentrated in

degrees t = t− s divisible by 2n.

The differentials are generated multiplicatively by

d2n+1(∆) = d2p−1(∆) = αβn and d2n2+1(∆nα) = βn2+1, (9)

up to units, with E∞(F,E) = E2n2+2(F,E). The class ∆p is a permanent cycle and a periodicity

generator for π∗E
hF .
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Remark 2.8. The differentials of this spectral sequence are deduced by a comparison with the

classical Adams-Novikov spectral sequence, via the composition

ExtBP∗BP(BP∗,BP∗)→ H∗(G,E∗)→ H∗(F,E∗).

In particular, under this map the element β1 ∈ π2pn−2(S 0) is detected by the permanent cycle β, cf.

[Nav10] and [Rav78].

2.4. Finite resolutions of EhN and EhG. As can be glimpsed from Theorem 2.4, the K(n)-local

category of spectra SpK(n) is largely controlled by the continuous cohomology of the Morava sta-

bilizer group G. As a result, the homological properties of G are reflected in homotopy. For one,

the existence of a finite length Adams E-resolution for S0
K(n)

is closely connected to the existence of

a finite length projective resolution of the trivial G-module Zp. However, that can only happen in

case (p−1) does not divide n; see [Hen07, Theorem 4]. Otherwise the small stabilizer group S has

infinite virtual cohomological dimension at p.

In [GHMR05], Goerss, Henn, Mahowald, and Rezk pioneered the study of finite resolutions of

the K(n)-local sphere by spectra which are not E-injective or flat over E, but are nonetheless well

understood. While [GHMR05] deals with the case of p = 3 and n = 2, [Hen07] discusses similar

resolutions at more general heights and primes. In particular, in op.cit., Henn constructs a resolution

of the K(n)-local sphere and the related spectrum EhN at height n = p−1 for arbitrary odd primes p.

We review those resolutions here, as they will play an important role in proving Corollary 4.8 below.

Throughout this paper we will use the term “resolution” of spectra which we define below.

Definition 2.9 ([Hen07, Section 3.3.1]). A sequence of spectra

∗ → X→ X0→ X1→ ·· · (10)

is a resolution of X if the composite of any two consecutive maps is null-homotopic, and any of

the maps Xi→ Xi+1 for i ≥ 0 can be written as Xi → Ci → Xi+1 such that each Ci−1 → Xi → Ci is a

cofibration for every i ≥ 0. Here, our convention is that C−1 := X. We say that the resolution is of

length n if Cn � Xn and Xi � ∗ for i > n.

Remark 2.10. Note that this definition implies that the resolution can be refined to a tower of spectra

X

��❂
❂❂

❂ F0
oo

��❄
❄❄

❄
F1

oo

��❄
❄❄

❄
F2

��❄
❄❄

❄
oo . . .oo

X0

??⑧
⑧

X1

??⑧
⑧

X2

??⑧
⑧

X3

??�
�

�

(11)

in which each Fi+1 is the homotopy fiber of the map Fi → Xi. Note that Fi = Σ
−i−1Ci for all i ≥ 0.

This tower gives rise to an associated resolution spectral sequence

E
s,t

1
= πtXs =⇒ πt−sX, (12)

For the remainder of this section, let n = p− 1 for an odd prime p. While a finite E-based

Adams resolution (i.e. tower) for S0
K(n)

does not exist, in [Hen07, Section 3.6], Henn constructs a

finite resolution for it whose terms are wedge sums of suspensions of homotopy fixed points of E

under the action of the finite subgroup F of G, as well as certain retracts of E.

Note that EhF is well understood due to the Theorem 2.7.

The first step towards a resolution of S0
K(n)

is an algebraic resolution of Zp as a Zp[[G]]-module.

To construct this algebraic resolution, Henn considers the following short exact sequence of Zp[[G]]-

modules [Hen07, Prop. 17],

0← Zp
ǫ
←− Zp ↑

G
N

f
←− K← 0 (13)
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where the map ǫ is the canonical augmentation map from the induced module to the trivial one, and

K is simply defined as the kernel of ǫ. Thus, having appropriate resolutions of K and Zp ↑
G
N

would

yield a resolution of Zp, by taking the total complex of the resulting double complex.

On the topological level, the exact sequence (13) is realized by a cofibration

S0
K(n) ≃ EhG ǫ−→ EhN →C. (14)

The finite algebraic resolution of Zp ↑
G
N

by permutation modules yields an analogous resolution of

EhN . Similarly, the finite projective resolution for K gives rise to a finite topological resolution of

C. Here we summarize these results in the following theorem; see [Hen07, Section 3.5, Proposition

17, and Section 3.6] for details.

Theorem 2.11 ([Hen07, Theorems 25 and 26]). Let p > 2 be a prime number and let n = p−1.

(1) There is a resolution of length n

X• : ∗ → EhN → X0→ ·· · → Xn→ ∗ (15)

The spectrum X0 is equivalent to EhF , while for r > 0 we have

Xr ≃
∨

(i1 ,··· ,ir)

Σ2p2n(i1+···+ir)EhF

where the wedge is taken over all sequences of integers (i1, · · · , ir) with 0 ≤ i1 < i2 · · · < ir ≤

n−1.

(2) There is a resolution of finite length m > n,

Z
•

: ∗ → S0
K(n)→ Z0→ ·· · → Zm→ ∗ (16)

The spectrum Z0 is equivalent to EhF , for r > n each Zr is a summand of a finite wedge of

E’s, while for 0 < r ≤ n,

Zr ≃ Vr∨Xr

where the Xr’s are as in (1) and Vr is a direct summand of a finite wedge sum of E’s.

From a computational standpoint, the resolution Z• of S0
K(n)

may be inefficient, since it lacks

an explicit description of all the Vr terms. By construction, these terms are derived from an alge-

braic resolution of the Zp[[G]]-module K, which is generally mysterious and encodes the difference

between H∗(G) and H∗(N). Nonetheless, the close relationship between the resolution X• of EhN

and Z• of S0
K(n)

was the main inspiration for us to first attempt to understand the Picard group of

K(n)-local EhN-modules, as a step toward that of the K(n)-local category.

Remark 2.12. The length m of the resolution Z• can be explicitly bounded. Namely, there is a

resolution of length n2 stemming from the fact that there exists a minimal-length algebraic resolution

of the Zp[[G]]-module K [Sch96, Sym07].

Remark 2.13. Note that in the case p = 3, the resolution of Theorem 2.11(2) is very different from

the duality resolution of [GHMR05]. Nonetheless, just as in [GHMR15], this resolution can be key

to understanding the exotic K(n)-local Picard group κn.

Remark 2.14. By construction, the terms in the resolution EhN → X• are indexed by a graded

exterior algebra Λ(a0, . . . ,an−1), cf. [Hen07, Proposition 21], such that X1 can be thought of as∨
i aiE

hF . More precisely, there is an equivalence

n∨

r=0

Xr ≃ Λ(a0, . . . ,an−1)⊗EhF .
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Compare with Remark 3.4 below. Note, however, that since the resolution X• is not constructed to

have any multiplicative properties, this is only an additive equivalence which nonetheless underlies

the multiplicative structure in the Farrell-Tate cohomology of N.

3. Farrell-Tate cohomology with coefficients in E∗

A first obstruction to understanding the K(n)-local E-based Adams-Novikov, or homotopy fixed

point spectral sequence (6), is computing its E2-page, namely the continuous group cohomology of

a closed subbroup of the Morava stabilizer group with coefficients in E∗. While a complete deter-

mination is out of reach, we can get partial information by passing to the Farrell-Tate cohomology,

which is controlled by the maximal finite subgroups.3 For G = G or N at the heights n = p−1, this

results in a full and explicit computation in high degrees (more precisely, above the virtual cohomo-

logical dimension). The topological companion of this comparison is discussed in Section 4. In this

section we will recall the background and relevant computations at n = p−1.

First, let us briefly recall some properties of the Farrell-Tate cohomology of profinite groups of

finite virtual cohomological dimension; for details, the reader can consult [Sch96, Sym07]. Espe-

cially Scheiderer’s approach closely follows the classical case for (infinite) discrete groups, details

of which can be found in [Bro94, X.2-3].

Suppose G is a profinite group, satisfying the FP∞ finiteness criterion over Zp; in other words,

there exists a resolution of the trivial module Zp by finitely generated projective Zp[[G]]-modules.

We also assume that the virtual cohomological dimension d of G is finite. It is well-established

that the Morava stabilizer groups G (and thus any of its closed subgroups), at any height and prime,

satisfy these conditions.

In this situation, the trivial G-module Zp has a complete resolution F• by finitely generated

projectives, and for a discrete or compact Zp[[G]]-module M, the Tate-Farrell cohomology Ĥ∗(G,M)

can be defined as the cohomology of the complex of continuous G-homomorphisms from F• to M

[Sch96, Definition 4.1]. When G is finite, this is exactly the standard definition of Tate cohomology,

which in positive degrees agrees with ordinary cohomology. The analogue of that latter fact in the

positive virtual dimension case fact is the following comparison result.

Theorem 3.1. [Sch96, Sym07] Let G be a profinite group with vcd(G) = d <∞. Suppose that M is

either a discrete or compact Zp[[G]]-module. Then the canonical map

Hs(G,M)→ Ĥs(G,M)

is an isomorphism for s > d.

Example 3.2. The natural action of G on E∗ makes E∗ a compact Zp[[G]]-module. Restricting to N

makes E∗ a compact Zp[[N]]-module.

Theorem 3.3. [Sym04, Theorem 1.1] There is an isomorphism of bigraded algebras

Ĥ∗(G,E∗) � Ĥ∗(N,E∗) � Fp[α,β±1,∆±1]/(α2)⊗Fp Λ(a0, . . . ,an−1). (17)

The bidegrees of the generators are given in the following table

s t

α 1 2n

β 2 2pn

∆ 0 2pn2

ai 1 2p2ni

3For the precise statement, see [Sym04, Theorem 1.3] or [Sym07, Theorem 7.3].
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in which having a bidegree (s, t) corresponds to being an element of Ĥs(G,Et).

Remark 3.4. The classes α,β,∆ are chosen so that they map to their namesakes in the Tate coho-

mology of the finite subgroup F

Ĥ∗(F,E∗) � Fp[α,β±1,∆±1]/(α2). (18)

Note that our choice of generators is different from Symonds’s in [Sym04, Proposition 2.3], but is

compatible with the Hopkins-Miller computation Theorem 2.7. We choose the exterior generators

ai to be in one to one correspondence with each copy of Σ2p2niEhF in the term X1 of the resolution

of EhN in Theorem 2.11. Our ai’s can be obtained from Symonds’ xi’s via multiplication by powers

of β∆ ∈ Ĥ2(G,E2p2n). More precisely, for 0 ≤ i ≤ n−1, we have ai = xiβ
i∆i.

Proposition 3.5. Let G be N or G. The natural map H∗(G,E∗)→ Ĥ∗(G,E∗) can be identified with

the β-inversion map

ϕG : H∗(G,E∗)→ β
−1H∗(G,E∗).

In particular, the β-inverted group cohomology β−1H∗(G,E∗) is isomorphic to the Tate cohomology

Ĥ∗(G,E∗), and the map ϕG is an isomorphism in cohomological degrees above the virtual cohomo-

logical dimension n2.

Proof. Given Theorem 3.3, it suffices to prove the case G = N.

The statement follows by tracing through the proof of [Sym04, Theorem 1.1]. First, note that

for the cyclic group Cp, the β-inversion map ϕCp identifies β−1H∗(Cp,E∗) with Ĥ∗(Cp,E∗); this is

classical and the interested reader can find details in loc.cit., for example. As in loc.cit., there is a

spectral sequence

H∗(N/Cp, Ĥ
∗(Cp,E∗))⇒ Ĥ∗(N,E∗), (19)

whose E2-term is now identified with β−1H∗(N/Cp,H
∗(Cp,M)), since β is an N-invariant permanent

cycle. Thus we identify (19) with the β-inverted Lyndon-Hochschild-Serre spectral sequence, and

the claim follows. �

4. The β-inverted spectral sequences

The homotopy fixed points spectral sequences for EhN and EhG are difficult to understand fully

or directly. However, we saw in Theorem 3.3 that the Farrell-Tate cohomology, unlike the ordinary

continuous cohomology, is readily computable. By Proposition 3.5, the passage from ordinary to

Farrell-Tate cohomology amounts to inverting the class β. Thus, while we lose information about β-

torsion classes, the Farrell-Tate cohomology retains information about ordinary cohomology classes

which are not killed by powers of β.

By Remark 3.4 and Theorem 2.7, the class β detects its namesake in π∗E
hF , which is well-

known to be (up to a unit) the Hurewicz image of the element β1 ∈ π2pn−2(S 0); see for example

[Rav78]. Since β1 is nilpotent, its inversion results in the zero spectrum, so in particular β−1
1

EhG

is contractible. Nonetheless, the β-inverted homotopy fixed point spectral sequence can be used

to determine differentials in the non-β-inverted one, despite its convergence to zero. The strategy

of using β-inverted or Tate spectral sequence to deduce information is well-established; see for

example [Sto12]. Our argument is inspired by the analogous one at p= 3 in [GHMR15, Section 4.2],

where the β-inverted homotopy fixed point spectral sequence and the resolution spectral sequence

are played against each other.

The exterior classes in the Farrell-Tate cohomology in Theorem 3.3 are closely related to the

generators (i.e. shifted units of the summands) of the spectra Xi in the resolution of EhN in The-

orem 2.11; see Remark 2.14. Understanding their behavior in the homotopy fixed point spectral
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sequence will be done by comparison to their behavior in the resolution spectral sequence (12). We

will review how such comparisons can be done in the first subsection, and then we pass to inverting

β in the next.

4.1. Combining the two towers for EhN and EhG. Combining Henn’s finite resolutions of EhN

and EhG from Theorem 2.11 with their Adams-Novikov resolutions as in Construction 2.3, results

in squares of spectral sequences, which will help us relate their differentials. This was done in

[BGH22], see the construction on page 401 of op.cit. Since we will further invert β in this square of

spectral sequences, we review the construction.

Construction 4.1. Let G be one of N or G, and let F•(G) denote the tower

F•(G)→ EhG

constructed as in Remark 2.10 from the corresponding finite resolution in Theorem 2.11. For each

Fr(G), let Fr,•(G)→ Fr(G) denote its canonical E-based K(n)-local Adams-Novikov tower, as in (5).

Naturality of the Adams-Novikov tower makes F•,•(G) into what could be called a double filtration

of spectra.

This double filtration gives rise to a square of spectral sequences, by filtering in the two different

directions, following the procedure in [Mil81, Section 3]. We can first take the E1-terms in the

finite resolution direction. For specificity, note these are the Xi’s (resp. Zi’s) in the resolution from

Theorem 2.11, and the corresponding d1-differentials are the maps in these resolutions. Naturality of

Adams-Novikov towers now implies that we get maps between the Adams-Novikov towers of these

E1-terms. Thus the Adams-Novikov differentials will also commute with the finite resolution d1-

differentials. Altogether, taking first the resolution direction E1-page, and then the Adams-Novikov

E2-page, yields

Λ(a0, . . . ,an−1)⊗H∗(F,E∗) (20)

in the case of G = N, due to Remark 2.14 and Theorem 2.4. In the case of G =G, there are additional

summands coming from the spectra Vr in part (2) of Theorem 2.11.

The expression (20) is the beginning of two spectral sequences: assembling it in the Adams-

Novikov filtration gives rise to the homotopy fixed point spectral sequence, whereas assembling it

in the finite resolution direction gives an algebraic resolution spectral sequence. The abutments of

these spectral sequences in turn are the starting pages of two more spectral sequences.

Altogether, in the case of G = N, this becomes

H∗(N,E∗) π∗(E
hN)

Λ(a0, . . . ,an−1)⊗H∗(F,E∗) Λ(a0, . . . ,an−1)⊗π∗(E
hF).

HFP

HFP

(21)

The horizontal arrows denote the homotopy fixed points spectral sequences arising from the Adams-

Novikov tower direction, while the vertical ones arise from the finite resolution in Construction 4.1.

There is a similar square of spectral sequences for G instead of N, but its starting corner is

slightly more mysterious, due to the Vr summands in part (2) of Theorem 2.11. Indeed, we have the

following square

H∗(G,E∗) π∗(E
hG)

H∗(F,E∗)⊗Λ(a0, . . . ,an−1) π∗(E
hF)⊗Λ(a0, . . . ,an−1)

⊕H0(G,
⊕m

r=0
Qr) ⊕H0(G,

⊕m

r=0
Qr)

HFP

HFP

, (22)
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where each Qr is a finitely generated projectiveZp[[G]]-module related to the Vr from Theorem 2.11.

Our Qr is denoted by Q′r in [Hen07, Theorem 26].

Remark 4.2. In both (21) and (22), the exterior algebra consists of permanent cycles for the bot-

tom horizontal spectral sequence almost tautologically, due to the naturality of the Adams-Novikov

differentials.

4.2. The β-inverted homotopy fixed point spectral sequences. Now we turn to studying what

happens after inverting β in the two squares of spectral sequences (21) and (22). While the β-

inverted homotopy fixed point spectral sequence for the finite group F has a solid footing as a Tate

spectral sequence [GM95], we explain a construction of the others before working with them.

As discussed above, the element β1 ∈ π2pn−2S 0 is detected by a cohomology class

β ∈ E
2,2pn

2
(G,E) � H2(G,E2pn).

Let β̃ be a lift of β to the E1-page of the K(n)-local Adams-Novikov spectral sequence constructed

from the K(n)-localized tower T•(S
0) = T E

• (S 0)→ S 0 in (5). Since β̃ is a permanent cycle, it defines

a map β̃ : S 2pn→ T2(S 0) = E
⊗3

.

For any X then, the “inclusion” E→ S 0 allows us to extend β̃ to a map of Adams-Novikov towers

β̃ : T•(X)→ T•+2(X),

where we have suppressed the shift of internal degree from the notation. The β-localized Adams-

Novikov tower of X is the colimit

β−1T•(X) = colimβ̃T•(X).

It is a Z-indexed diagram of spectra, which is natural in X, and which gives rise to a four-quadrant

spectral sequence whose E2-page is the β-inverted E2-page arising from T•(X). Furthermore, the

localization map T•(X)→ β−1T•(X) gives rise to a map of spectral sequences with corresponding

multiplicative properties.

While the convergence properties of whole plane spectral sequences are generally tricky (see

[Boa99, Section 8]), the diagram β−1T•(X) gives rise to a conditionally convergent spectral sequence

since T•(X) does. In our case, some power of the cohomology class β is a target of an Adams-

Novikov differential in the spectral sequence for the sphere. This implies that the β-localized spectral

sequence for any X will collapse to zero at a finite stage, and strong convergence follows from

[Boa99, Theorem 8.10].

Now consider the “double complex” F•,•(G) from Construction 4.1. It can also be viewed as a

diagram of Adams-Novikov towers

T•(Fd(G))→ ·· · → T•(F1(G))→ T•(F0(G)),

and hence it gives rise to a diagram of β-inverted towers

β−1T•(Fd(G))→ ·· · → β−1T•(F1(G))→ β−1T•(F0(G)).

This diagram, in turn, gives rise to a square of spectral sequences as in (21) and (22) above, and we

record the corresponding result as follows.
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Theorem 4.3. For G = N and G, there exists a commutative square of strongly convergent spectral

sequences

β−1H∗(G,E∗) � Ĥ∗(G,E∗) π∗(β
−1
1

EhG) = 0

Ĥ∗(F,E∗)⊗Λ(a0, . . . ,an−1) π∗(β
−1
1

EhF)⊗Λ(a0, . . . ,an−1) = 0

β−1HFP

β−1Alg

β−1HFP

. (23)

Proof. The only thing that remains is to identify the terms. First, note that when G = G, the con-

tribution from the projective modules Qr in (22) are killed after β-inversion since β is in positive

cohomological dimension. Now apply Proposition 3.5 to identify the β-inverted ordinary group

cohomology with the Farrell-Tate cohomology. �

Remark 4.4. In the β-inverted Adams-Novikov spectral sequence along the bottom of (23), the

exterior algebra Λ(a0, . . . ,an−1) consists of permanent cycles by Remark 4.2, and thus the spectral

sequence can be thought of as the Λ(a0, . . . ,an−1)-tensored β-inverted F-homotopy fixed point spec-

tral sequence. The latter is identified with the Tate spectral sequence for the action of F on E, and

it appears in Heard’s thesis [Hea14] and in his preprint [Hea15]. We record it here as a corollary of

the Hopkins-Miller computation from Theorem 2.7.

Proposition 4.5. The β-inverted homotopy fixed point spectral sequence for EhF takes the form

β−1E
s,t
2

(F,E) = Ĥs(F;Et) � Fp[α,β±1,∆±1]/(α2)⇒ πt−s(β
−1
1 EhF) = 0. (24)

Its differentials are multiplicatively generated by the formulas in (9), and the spectral sequence

collapses to zero on the E2n2+2-page.

Proof. Since β1 is detected by β on the E2-page, inverting β1 in the homotopy fixed points spectral

sequence

E
s,t
2

(F,E) = Hs(F,Et)⇒ πt−s(E
hF)

is the same as inverting the element β on the E2-page, which is Fp[α,β,∆±1]/(α2) modulo transfer

elements. It follows from Theorem 2.7 and the fact that transfer elements are β-torsion that the

β-inverted homotopy fixed points spectral sequence has E2-page Fp[α,β±1,∆±1]/(α2). The spec-

tral sequence collapses to 0 on the E2n2+2-page, since the unit is hit by a differential; namely

d2n2+1(αβ−1−n2
∆n) = 1. �

Remark 4.6. Note that α, β, and ∆p are permanent cycles, and we can give explicit formulas for all

differentials in the spectral sequence (24). Namely, we have that d2n+1(βm∆k) = kαβm+n∆k−1, which

is non-zero if and only if k is not divisible by p, while all the α-multiples are (2n+ 1)-cycles since

α2 = 0. Thus, the E2n+2 page is generated by classes of form βm∆pk and αβm∆n+pl, for some integers

m,k, l. Then d2n2+1(αβm∆n+pk) = βm+n2+1∆pk wipes away all the classes on E2n2+1.

Next, we investigate the spectral sequence β−1Alg in square (23).

Proposition 4.7. The left vertical spectral sequence β−1Alg in diagram (23) has no non-trivial

differentials.

Proof. This follows from Theorem 3.3. There is a clear bijection between the E2-page and the

E∞-page, and any non-zero differentials would contradict Theorem 3.3. �

As a corollary of Remark 4.4 and Proposition 4.7, we conclude that all higher differentials in the

β-inverted spectral sequence

β−1E
s,t
2

(G,E) = β−1H∗(G,E∗) = Ĥs(G,Et)⇒ πt−s(β
−1
1 EhG)
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i.e. the top horizontal spectral sequence in (23), come from the Tate spectral sequence from (4.5),

i.e. the bottom horizontal spectral sequence in (23). We record this conclusion as the following

result.

Corollary 4.8. Let G be one of N or G. The β-inverted homotopy fixed points spectral sequence

β−1E
s,t
2

(G,E) = Ĥs(G,Et)⇒ πt−s(β
−1
1 EhG) = 0

splits as a direct sum of shifts of the Tate spectral sequence (24) for β−1
1

EhF indexed over the mono-

mial basis of the exterior algebra Λ(a0, . . . ,an−1).

In particular, the spectral sequence collapses to zero on the E2n2+2 page.

5. Differentials detected by the β-inverted homotopy fixed point spectral sequence

Let n = p− 1, and let G denote either G or N. In this section, we import differentials in the

homotopy fixed points spectral sequence E
∗,∗
∗ (G,E) (6), above the virtual cohomological dimension

of G, using our complete knowledge of the β-inverted homotopy fixed points spectral sequence from

Corollary 4.8.

To do so, we consider the map of homotopy fixed point spectral sequences

E
∗,∗

2
(G,E) = H∗(G,E∗) π∗(E

hG)

β−1E
∗,∗

2
(G,E) = β−1H∗(G,E∗) � Ĥ∗(G,E∗) π∗(β

−1
1

EhG).

HFP

ϕ

β−1HFP

(25)

Lemma 5.1. Let r ≥ 2, and suppose that x ∈ E
s,t
r (G,E) is a class on the Er-page of the homotopy

fixed points spectral sequence

E s,t
r (G,E)⇒ πt−s(E

hG).

Suppose that s> d = vcd(G). Then dr(x)= y ∈ E
s+r,t+r−1
r if and only if dr(ϕ(x))= ϕ(y) ∈ β−1E

s+r,t+r−1
r .

Proof. The comparison map ϕ in (25) is an isomorphism for s > vcd(G) = d by Proposition 3.5.

Hence any differential whose source and target have cohomological degrees greater than d along the

bottom spectral sequence pulls back isomorphically via ϕ to the differential in the homotopy fixed

points spectral sequence along the top. �

This immediately yields a general statement about vanishing lines of the homotopy fixed points

spectral sequence. While we will not need this result in the analysis of the K(n)-local Picard groups,

we record it here as it is of independent interest.

Theorem 5.2. Let n= p−1 for the prime p ≥ 3, and let G be N orG. There is a horizontal vanishing

line s = 2n2+vcd(G)+1 on the E2n2+2-page of the homotopy fixed points spectral sequence

E
s,t
2
= Hs(G,Et)⇒ πt−s(E

hG).

In other words, E
s,t
r (G,E) = 0 for s ≥ 2n2+vcd(G)+1, all t, and r ≥ 2n2+2.

Remark 5.3. In particular, the case G =G and Theorem 2.4 give that the K(n)-local Adams-Novikov

spectral sequence for the sphere has a horizontal vanishing line s = 3n2+1 at the E2n2+2-page.

Proof. Let d = vcd(G), and suppose x is a class in E
s,t
r (G,E), with s > 2n2+d+1. By Lemma 5.1,

dr(x) is determined by dr(ϕ(x)) in the β-inverted homotopy fixed point spectral sequence.

(1) First, assume that dr(ϕ(x)) , 0. Then r ≤ 2n2+1, and dr(x) , 0, so x does not survive to the

E2n2+2-page.
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(2) Now suppose dk(ϕ(x)) = 0 for all k ≥ r. Then, ϕ(x) must be a boundary, i.e. there exists k

and z ∈ β−1E
s−k,t−k+1
k

(G,E) such that dk(z) = ϕ(x). From Lemma 5.1 and Proposition 4.5,

we conclude that k must be one of 2n+1 or 2n2+1. Thus, the cohomological degree s−k of

z is at least s− (2n2+1) > d. Applying Lemma 5.1 again, we conclude that x is the target of

a differential in the homotopy fixed point spectral sequence, and so again it does not survive

to the E2n2+2-page.

�

Now we turn to a finer analysis of classes on the vertical line t− s=−1 in the homotopy fixed point

spectral sequence E
∗,∗
∗ (G,E), as those groups provide an upper bound for the filtration quotients of

the exotic Picard group of K(n)-local EhG-modules, by Section 6.2 below.

First we record some elementary facts, accounting the supply of classes in Ĥt+1(G,Et) above the

virtual cohomological dimension. For the rest of this section, we let p ≥ 5, so that n2 > 2n+1.

Proposition 5.4. Suppose that G is N or G, and p ≥ 5.

(1) For s> vcd(G) we have that the groups Hs(G,Et)� Ĥs(G,Et) are zero, unless t = 2nǫ+2pnl

for some ǫ ∈ {0,1} and l ∈ Z.

(2) In the β-inverted homotopy fixed points spectral sequence, let x be a class in β−1E
t+1,t
2

(G,E)�

Ĥt+1(G,Et) with n2 ≤ t ≤ 4pn. If x survives to the E2n+2 � E2n2+1-page, it cannot be the tar-

get of a d2n2+1-differential.

Proof. (1) This follows from Theorem 3.3 and degree considerations. Note that we are not claiming

much here, an arbitrary element in Ĥ∗(G,E∗) has the form αǫβm∆ka
ǫ0
0
. . .a

ǫn−1

n−1
and has topological

degree t = 2nǫ+2pnl, where l = m+nk+ p
∑n−1

i=0 iǫi.

(2) If n2 ≤ t = 2nǫ + 2pnl ≤ 4pn, then l = 1 and ǫ = 0 or 1. If ǫ = 1, then x has the form

αβm∆ka
ǫ0
0
· · ·a

ǫn−1

n−1
, which can not be the target of a d2n2+1-differential by Remark 4.6 and Corol-

lary 4.8. If ǫ = 0, then again by Remark 4.6, x has the form βm∆kpa
ǫ0
0
· · ·a

ǫn−1

n−1
, where the variables

m,k ∈ Z, and ǫi ∈ {0,1} for i = 0, . . . ,n−1 satisfy

2m+

n−1∑

i=0

ǫi = 2pn+1, and (26)

m+ pnk+ p

n−1∑

i=0

iǫi = 1. (27)

From (27), we deduce that m− 1 is divisible by p. Setting m− 1 = ph with h ∈ Z and plugging

into (26), we obtain that
∑n−1

i=0 ǫi equals 2p(n− h)− 1. But each ǫi is either 0 or 1, implying that

0 ≤ 2p(n−h)−1≤ n = p−1, which is impossible. �

6. K(n)-local Picard groups

In this section we let n ≥ 1 be an arbitrary height again, and introduce the objects of main interest

in this paper, namely the various K(n)-local Picard groups. Recall that in wide generality, the Picard

group of a (small enough) symmetric monoidal category C is the group of isomorphism classes

of invertible objects in C , equipped with the monoidal tensor operation. In chromatic homotopy

theory, the Picard group of the K(n)-local stable homotopy category is usually denoted Picn, and

often called the Hopkins’ Picard group honoring the fact that Mike Hopkins first observed how rich

its structure can be.
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One of the original tools for studying Picn is the fundamental exact sequence [HMS94]

0→ κn→ Picn
ε
−→ Pic

alg
n � H1(G,E×∗ ), (28)

determined by the map ε that sends an invertible K(n)-local spectrum X to its (K(n)-local) E-

homology, which is a graded invertible E∗-module with a compatible G-action. Since E0 is a com-

plete local ring and E∗ = E0[u±1], invertible E∗-modules (without the G-action) are determined by

whether they are concentrated in even or odd degrees. In other words, the Picard group Pic(E∗) is

Z/2. Denoting by Pic0
n the kernel of the natural map Picn → Pic(E∗) � Z/2, the sequence (28) is

refined to the following form

0→ κn→ Pic0
n

ε
−→ H1(G, (E0)×), (29)

which is often easier to work with since E0 is not a graded ring.

The isomorphism Pic
alg
n � H1(G, (E∗)

×) [HMS94, Proposition 8.4] gives cohomological descrip-

tion of this algebraic Picard group. While complete calculations of Pic
alg
n are few and far between

(see, for example [Kar10] for a computation of Pic
alg

2
at the prime 3), understanding Pic

alg
n may be

best suited as a problem in arithmetic geometry [HG94], and homotopy theorists tend to focus their

attention on the complementary information contained in κn. This is what we will do here as well.

The group κn is simply defined as the kernel of ε, and is called the exotic K(n)-local Picard

group. Its elements are those invertible K(n)-local spectra X whose E-homology is G-equivariantly

isomorphic to E∗, thus they are exotic in the sense that they are not seen by the algebra of their

E-homology (i.e. by their Morava modules).

While our main interest is in the (exotic) Picard groups of the various K(n)-local categories of

interest, for many purposes it is useful to think of them as the connected components of the respective

Picard spaces, or π0 of the Picard spectra. Given a presentable symmetric monoidal category C ,

its Picard spectrum pic(C ) is the connective spectrum obtained by delooping the ∞-groupoid of

invertible objects of C . See, for example, [MS16] or [GL21] for more details.

As is usual, if R is a commutative ring spectrum, we denote by Pic(R) and pic(R) the Picard group

and spectrum of the category of R-modules. In fact, when R is a K(n)-local ring spectrum, such

as the K(n)-local sphere, the Lubin-Tate spectrum E, or any homotopy fixed point spectrum EhG,

we will denote by Pic(R) and pic(R) the Picard group and spectrum of the category of K(n)-local

R-modules.

6.1. Descent for Picard groups. The main appeal of studying Pic(C ) as π0pic(C ) is the amenabil-

ity of the Picard spectrum to descent techniques. In [GL21, Theorem 6.31], see also [MS16, Section

3.3], Picard spectrum descent was established for faithful finite Galois extensions. More recently,

[Mor23, LZ23] studied profinite Galois descent for Picard spectra in the K(n)-local setting. We will

be mostly referencing [Mor23], as Mor’s approach is more suitable for our intended applications.

Let R be a ring spectrum. Then the homotopy groups of pic(R), the Picard spectrum of R-modules,

are given by

πtpic(R) =



Pic(R), for t = 0;

π0(R)×, for t = 1;

πt−1(R), for t > 1.

Suppose that A→ B is a faithful G-Galois extension for a finite group G, which in particular implies

that A ≃ BhG. Then pic(A) is equivalent to the connective cover of pic(B)hG [MS16, Section 3.3],

and there is an associated homotopy fixed point spectral sequence, also called the Picard spectral

sequence

E
s,t
2

(G,pic(B)) = Hs(G,πtpic(B))⇒ πt−spic(B)hG. (30)
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Restricting to t− s≥ 0, this spectral sequence computes π∗(pic(A)), which yields Pic(A)� π0(pic(A)).

In particular, this gives a natural filtration of Pic(A) � π0pic(B)hG, whose filtration quotients are

E
s,s
∞ (G,pic(B)) for s ≥ 0. We will come back to this filtration below in Section 6.2.

Furthermore, Mathew-Stojanoska obtained a general comparison tool ([MS16, 5.2.4]) to deduce

differentials in the Picard spectral sequence (30) (in a range) from those in the homotopy fixed points

spectral sequence

E
s,t
2

(G,B) = Hs(G,πt(B))⇒ πt−s(B
hG). (31)

The key observation is that there are equivalences

Στ[m,2m−1]B ≃ τ[m+1,2m]pic(B), (32)

for any m ≥ 2 that are natural in the spectrum B. If B is equipped with a G-action, then this equiva-

lence is compatible with the G-action, so one can compare the differentials in (31) with those in (30)

in a suitable range.

The quintessential Galois extension of chromatic homotopy theory, namely S 0
K(n)
→ E, has a

profinite Galois group. The recent work [Mor23] (see also [LZ23]) establishes an analogous descent

equivalence pic(S 0
K(n)

) ≃ τ≥0pic(E)hG, giving rise to an associated spectral sequence (30) with E2-

page the continuous G-cohomology of the homotopy groups of pic(E). In fact, Mor’s work also

allows us to conclude that for any closed subgroup G of G, there is an equivalence

pic(EhG) ≃ τ≥0pic(E)hG. (33)

Thus we obtain an associated spectral sequence (30), whose E2-page is the continuous cohomology

of G; see also [LZ23, Corollary 3.3.14]. The natural equivalences (32) then allow us to generalize

Mathew-Stojanoska’s comparison tool.

Theorem 6.1 ([Mor23, Theorem A.IV][LZ23, Theorem B, Corollary 3.3.14]). Let G be any closed

subgroup ofG, and consider the homotopy fixed point spectral sequences E
∗,∗
r (G,E) (as in (31)) with

differentials dr,+, and E
∗,∗
r (G,pic(E)) (as in (30)) with differentials dr,s.

Let x be an element in E
s,t

2
(G,E), with t ≥ 2, and let xs be the corresponding element in

E
s,t+1
2

(G,picE) � E
s,t
2

(G,E).

Given 2 ≤ r ≤ t, assume that x survives to E
s,t
r (G,E), i.e. for all q < r, dq,+(x) = 0 and x is not in the

image of dq,+. Then, xs survives to E s,t+1
r (G,pic(E)) and dr,s(xs) is identified with dr,+(x).

6.2. The descent filtration on exotic Picard groups. The Picard group of EhG inherits a natural

filtration fsPic(EhG) from the descent spectral sequence, which in the case of G =G is closely related

to (28) and (29), as well as the descent filtration on κn from [GHMR15, Construction 3.2], [BBG+22,

Section 3.3], or [CZ24, Section 1.2, 1.3]. To be more precise, note that Pic(E) � Pic(E∗) = Z/2,

generated by the suspension shift. Thus, for any subgroup G of G, we have H0(G,π0pic(E)) � Z/2,

and the bottom of the filtration is an exact sequence

0→ f1Pic(EhG)→ Pic(EhG)→ E0,0
∞ (G,pic(E)) � E

0,0
2

(G,pic(E)) � Z/2→ 0,

where f1Pic(EhG) consists of those invertible EhG-modules X for which X⊗EhG E is concentrated in

even degrees. In particular, f1Pic(EhG) = Pic0
n.

The next step in the filtration is the exact sequence

0→ f2Pic(EhG)→ f1Pic(EhG)→ E1,1
∞ (G,pic(E)) ⊆ H1(G,E×0 ),

which is precisely (29) when G = G. Thus, κn = f2Pic(EhG). In line with this example, we make the

following definition.
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Definition 6.2. Let G be a closed subgroup of the Morava stabilizer groupG. The group κGn of exotic

elements in the Picard group Pic(EhG) is f2Pic(EhG). Equivalently, κGn consists of X ∈ Pic(EhG) such

that π∗(X⊗EhG E) is G-equivariantly equivalent to E∗, and it sits in an exact sequence

0→ κGn → Pic(EhG)→ H1(G,E×∗ ). (34)

Furthermore, the descent filtration on κGn is κGn,s = fsPic(EhG) for s ≥ 2.

Note that by Definition 6.2, κGn,s comes with a map κGn,s → E s,s
s (G,pic(E)), and we have a com-

parison of the target group with E
s,s−1
s (G,E) according to Theorem 6.1. In particular, the latter is a

subquotient of Hs(G,Es−1).

If the group G contains the central roots of unity µp−1, the sparsity result of Proposition 2.5 im-

plies a corresponding sparsity of the descent filtration on κGn . We record it here for future reference.

In this paper, we will use it in the proof of Corollary 7.2.

Lemma 6.3. Assume the closed subgroup G of G contains the central subgroup µp−1 ∈ G. Then the

associated graded of the descent filtration on κGn is concentrated in degrees congruent to 1 modulo

2(p−1).

Remark 6.4. The relationship of the descent filtration quotients κGn,s/κ
G
n,s+1

to Hs(G,Es−1) can be

used to describe the filtration without reference to the Picard spectral sequence (30). Instead, one

studies the differential pattern of the Adams-Novikov spectral sequence (7) for a representative ex-

otic invertible K(n)-local spectrum. For details on this approach, the reader is referred to [BBG+22,

Section 3.3].

Example 6.5. From [MS16, Theorem 7.1.2], we conclude that at the prime 2 we have κ
C2

1
= Z/2.

From the computation in the proof of [MS16, Theorem 8.1.3], we deduce that at the prime 3, κF
2
=

Z/3, for a maximal finite subgroup of F of G. Further, the proof of [HMS17, Theorem 4.1] shows

that if G is a finite group containing Cp, then κG
p−1
= Z/p.

At the prime 2, larger groups appear; for example, for a maximal finite subgroup F = G48, we

conclude that κF
2
= Z/8 from [MS16, Theorem 8.2.2]. The group κ

C4

2
at p = 2 has order 4, according

to the proof of [BBHS20, Proposition 7.4].

Remark 6.6. Note that while κGn is not unrelated to the subgroup filtration on κn from [BBG+22,

Section 3.1], it is different. In particular, if G1 ⊆G2 are nested closed subgroups of G, then we have

a map κ
G2
n → κ

G1
n making the diagram

0 // κG2
n

//

��

Pic(EhG2) //

��

H1(G2,E
×
∗ )

��
0 // κG1

n
// Pic(EhG1) // H1(G1,E

×
∗ )

commute, in which the middle and right-most maps are the natural ones. However, κ
G2
n need not be

a subgroup of κ
G1
n , and in fact none of the vertical maps need be inclusions. For a closed sugroup G

of G, the group κn(G) of [BBG+22] is closely related to the kernel of κn = κ
G
n → κ

G
n .

7. Bounding the descent filtration

We are finally ready to apply the tools we have developed above and deduce certain differentials

in the Picard spectral sequence (30) with B = E, at height n = p− 1, and where G is G or N. As a

result, we obtain a bound on the descent filtration of κNn and κn, as well as an explicit bound on the

size of κNn .
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Using Theorem 6.1 will allow us to compare an appropriate range of the Picard spectral sequence

with the homotopy fixed point spectral sequence for the G action on E. We have partial but crucial

information about the latter in Proposition 5.4.

Theorem 7.1. Suppose that p ≥ 5, and let G be G or N. Let x♤ be a class of bidegree (t+1, t+1) in

the E2 page of the homotopy fixed point spectral sequence

E
∗,∗

2
(G,pic(E))⇒ π∗pic(E)hG. (35)

Assume that t ≥ 1, and that x♤ is a non-trivial permanent cycle. Then

(1) when G = N, t equals 2n, while

(2) when G = G, t is less than n2.

Proof. First of all, note that for m ≥ 1, we have an isomorphism E
s,m+1
2

(G,pic(E)) � E
s,m
2

(G,E), so

for each y ∈ E
s,m

2
(G,E), denote by y♤ the corresponding class in E

s,m+1
2

(G,pic(E)). Since x♤ has a

companion class in x ∈ E
t+1,t
2

(G,E), by the sparseness result of Proposition 2.5, we conclude that if

x♤ is to be non-trivial, t must be at least 2n.

(1) Suppose G = N and x♤ ∈ E
t+1,t+1
2

(G,pic(E)) is a non-zero permanent cycle in cohomological

degree above vcd(N) = n. By looking at its companion x ∈ E
t+1,t
2

(G,E), we deduce that t has form

2nǫ + 2pnl by part (1) of Proposition 5.4. We need to show that if t > 2n, then x♤ will be in the

image of a differential. The formula t = 2nǫ+2pnl implies that if t > 2n, then t ≥ 2pn = 2n2+2n.

By Theorem 6.1, and the assumption that x♤ is a permanent cycle, we conclude that dr(x) = 0

for r < 2n2 + 2n. Now Lemma 5.1 implies that the image ϕ(x) of x in the β-inverted homotopy

fixed point spectral sequence is a dr-cycle for r < 2n2 + 2n. In light of Corollary 4.8, this means

ϕ(x) is a permanent cycle. So, ϕ(x) must be in the image of a differential, i.e. there exists either

ỹ ∈ β−1E
t−2n,t−2n

2n+1
(G,E) such that d2n+1(ỹ) = ϕ(x), or z̃ ∈ β−1E

t−2n2,t−2n2

2n2+1
(G,E) such that d2n2+1(z̃) =

ϕ(x). In either case, the cohomological degree of the class hitting ϕ(x) is at least 2n, thus invoking

Lemma 5.1 again gives that x is the target of either a d2n+1 or a d2n2+1 differential.

Suppose d2n+1(y) = x for some y ∈ E
t−2n,t−2n
2n+1

(G,E). Then its topological degree t− 2n is at least

2n2, so by Theorem 6.1, the companion class y♤ hits x♤. If x♤ is not in the image of d2n+1, we

conclude that there exists z ∈ E
t−2n2,t−2n2

2n2+1
(G,E) such that d2n2+1(z) = x. Part (2) of Proposition 5.4

now implies that t > 4n2. Invoking Theorem 6.1, since the topological degree t−2n2 of z is at least

2n2+1, we conclude that d2n2+1(z♤) = x♤.

Altogether, we have that if x♤ is a non-trivial permanent cycle in E
t+1,t+1
∗ (N,pic(E)), and t ≥ 1,

then t = 2n.

(2) Now we turn to the case G = G, which we argue in a similar fashion. We only need to show

that if t > n2 = vcd(G), then a permanent cycle x♤ ∈ E
t+1,t+1
2

(G,pic(E)) must be hit by a differen-

tial. The companion class in E
t+1,t
2

(G,E) will have topological degree t = 2nǫ + 2pnl by part (1) of

Proposition 5.4, implying that l ≥ 1, i.e. t ≥ 2n2+2n.

The rest of the argument proceeds exactly as in the case of G = N. We argue that x is a perma-

nent cycle, by comparison to the β-inverted homotopy fixed point spectral sequence. If ϕ(x) is in

the image of a d2n+1-differential, we import this differential to the Picard spectral sequence using

Lemma 5.1 and Theorem 6.1. If not, then it is in the image of a d2n2+1-differential, but in this case

we conclude t > 4n2 by Proposition 5.4, which in turn allows us to import this differential to the

Picard spectral sequence by another application of Theorem 6.1. �

With this result in hand, we are ready to read off the implications for the K(n)-local exotic Picard

group. Recall that κGn is the subgroup of Pic(EhG) of filtration 2 (and above) in the spectral sequence
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(35), and its descent filtration is the one inherited from this spectral sequence; cf. Definition 6.2.

Thus, part (1) of Theorem 7.1 implies that κNn in fact equals κN
n,2n+1

and further, that κN
n,2n+2

= 0.

When G is the whole groupG, part (2) of Theorem 7.1 gives that κn,n2+1 = κ
G

n,n2+1
= 0. While this

much less precise, the sparsity result from Lemma 6.3 implies that the filtration quotients of κn are

concentrated in degrees congruent to 1 modulo 2n.

Corollary 7.2. Suppose p ≥ 5 and n = p−1. Let N be the normalizer of Cp ⊂ G.

(1) The exotic Picard group of K(n)-local EhN-modules is a subquotient of H2n+1(N,E2n). In

particular, κNn is a finite group of simple p-torsion.

(2) The descent filtration on the exotic Picard group κn has length at most n2, and its associated

graded is concentrated in degrees congruent to 1 modulo 2n. More precisely,

gr∗κn �

n/2−1⊕

m=1

E2nm+1,2nm
∞ (G,pic(E)),

and each E
2nm+1,2nm
∞ (G,pic(E)) is a subquotient of H2nm+1(G,E2nm).

Example 7.3. When p = 5, part (2) gives that κn itself is concentrated in a single degree and is a

subquotient of H9(G,E8)

Remark 7.4. Unlike H2n+1(G,E2n), the cohomology group H2n+1(N,E2n) is not particularly mys-

terious. A combinatorial description of an Fp-basis of H2n−1(N,E2n) � Ĥ2n−1(N,E2n) can be ob-

tained as follows. By Theorem 3.3, a generator with internal degree 2n has to be of the form x =

α(βn∆−1)kx
ǫ0
0
· · · x

ǫn−1

n−1
, where k ∈ Z and ǫ, ǫi ∈ {0,1}. Hence we want to find all tuples (k, ǫ0, . . . , ǫn−1)

such that the cohomological degree of x is

1+2nk+

n−1∑

i=1

(2i+1)ǫi = 2n+1. (36)

It follows that there is an even number of ǫi’s that are 1, say those indexed by 0≤ i1 < · · · < i2l ≤ n−1.

Then (36) can be rewritten as

−l+

2l∑

r=1

ir ≡ 0 mod n. (37)

In other words, the dimension of H2n−1(N,E2n) as an Fp-vector space is given by the sum, as l ranges

from 0 to n−1
2

, of the number of 2l-tuples 0 ≤ i1 < · · · < i2l ≤ n−1 satisfying (37).

Remark 7.5. In an alternative approach, one could use obstruction theory on Henn’s resolution

EhN → X0→ X1→ ·· · → Xn

of EhN (Theorem 2.11) to bound the size of κNn by modifying the argument in [Hea14, 4.4.1.(iii)].

Consider the homomorphism κNn → κ
F
n sending Y to Y ⊗EhN EhF . An upper bound for the kernel is

given by the amount of obstructions to lifting a non-exotic EhF-module Y ⊗EhN EhF to a non-exotic

EhN-module Y via the spectral sequence associated to the resolution of EhN tensored with Y. The

obstructions live in πsXs+1 where 0 ≤ s ≤ n− 1. Then a straightforward combinatorial argument

shows that the size of obstructions is precisely H2n+1(N,E2n), which recovers the upper bound of κNn
given in Corollary 7.2.
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