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Abstract

We show that there are infinitely many distinct closed classes of colimits (in the sense of the
Galois connection induced by commutation of limits and colimits in Set) which are intermediate
between the class of pseudo-filtered colimits and that of all (small) colimits. On the other hand, if
the corresponding class of limits contains either pullbacks or equalizers, then the class of colimits is
contained in that of pseudo-filtered colimits.

1 Introduction

The fact that colimits over filtered categories commute with finite limits in the category of sets (and in
many related categories) is very well known, and most students encounter it as part of a first course in
category theory (cf. [5], section IX 2). In what follows we shall restrict ourselves to limits and colimits in
Set. The relation ‘limits over I commute with colimits over J’ gives rise to a Galois connection between
classes of small categories regarded as limit-shapes and the same classes regarded as colimit-shapes: if
we set

Ir = {J | lim
→ J commutes with lim

← I for all I ∈ I}

and
J l = {I | lim

→ J commutes with lim
← I for all J ∈ J }

then we say I (resp. J ) is a closed class of limits (resp. colimits) if I = Irl (resp. J = J lr). It is also
well known that the class of filtered colimits is closed in this sense (filtered colimits are precisely those
which commute with all finite limits — cf. Lemma 2.1 below), but the class of finite limits is not: any
category admitting an initial functor from a finite category (in the sense of [5], p. 218) is in the closure
of the latter class.

There is a proper class of distinct closed classes: for any regular cardinal κ, the class of κ-filtered
colimits is closed (being the class of colimits which commute with all κ-small limits), and these classes
are all distinct. Nevertheless, it seems not unreasonable to hope that we might be able to classify all the
closed classes of colimits which contain that of filtered colimits (equivalently, for which the corresponding
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closed class of limits is generated by its finite members). There are seven such classes which are more
or less well known: in addition to filtered colimits and all colimits, we have the class of pseudo-filtered
colimits (also called weakly filtered colimits) which are precisely those colimits commuting with all
finite connected limits; a category is pseudo-filtered iff each of its connected components is filtered. The
class of sifted colimits (‘colimites tamisantes’ in French [3]), being the class of colimits which commute
with all finite products, is also reasonably well known by now. Three more classes arise from the
anomalous behaviour of the empty set (the empty colimit does not commute with the empty limit, but
does commute with all nonempty ones): we may add the empty colimit to the class of filtered colimits
or the class of sifted colimits, to obtain the classes which commute with all nonempty finite limits (resp.
with nonempty finite products), and by cutting down the class of all colimits to the class of connected
colimits, we obtain the class which commutes (with all conical limits and) with the empty limit.

Incidentally, we say a category I is conical if the identity functor I→ I has a cone over it. It is easy
to see that this is equivalent to saying that I has an initial idempotent in either of two possible senses:
(a) that the idempotent-completion of I has an initial object, and (b) that there is an initial functor
E→ I where E is the ‘free living idempotent’, i.e. the two-element monoid {1, e} with e2 = e. It follows
easily that conical limits are absolute (that is, preserved by all functors), and that they are precisely
the limits which commute with all colimits in Set (again, this follows from Lemma 2.1 below, taking
J = Iop).

It is tempting to conjecture that these seven classes might be the only ones containing all filtered
colimits, and indeed the first author of the present paper claimed at one stage to have a proof of this.
However, the conjecture is false, and the counterexamples are surprisingly easy to describe. An infinite
family of counterexamples was discovered by the second author in December 2013, and improved by the
third author the following day, when he showed that they could be reduced to commutation of limits
and colimits over groups of coprime orders, considered as categories with one object. The fourth author,
in response to a query by the third on the MathOverflow website [6], provided a necessary and sufficient
condition for limits over one group to commute with colimits over another. The purpose of this note is
to present both (some of) the evidence in favour of the conjecture accumulated by the first author, and
the group-theoretic counterexamples; we do not claim to be anywhere near a complete classification of
the closed classes of colimits containing filtered colimits, and indeed we suspect that such a classification
would be very hard to obtain.

2 Colimits commuting with pullbacks or equalizers

If one considers the Hasse diagram of the seven closed classes of colimits mentioned in the Introduction,
it soon becomes clear that the only interval where one might expect to find further closed classes is
that between (pseudo-filtered colimits) and (all colimits). For example, there can be no closed class
intermediate between (filtered or empty colimits) and (pseudo-filtered colimits), because as soon as one
adds a single non-connected category to the list of limit shapes with which J-colimits must commute,
one forces J to have at most one connected component. In what follows, we therefore concentrate our
attention on this interval.

The following necessary condition for commutation of limits and colimits is well-known (and has
already been invoked in the Introduction).

Lemma 2.1 Suppose I-limits commute with J-colimits in Set. Then J has cocones over all diagrams

of shape Iop.

Proof Suppose given such a diagram D : Iop → J. Consider the functor F : I× J→ Set sending (i, j)
to J (Di, j); it is easy to see that lim

→ JF (i,−) ∼= 1 for all i, so that lim
← I lim→ JF ∼= 1. But elements of

lim
← IF (−, j) correspond to cocones over D with vertex j; so if there are no such cocones then lim

→ J lim← IF
is empty. �
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The next lemma is much less well-known; it is due to F. Foltz [1].

Lemma 2.2 Suppose that I-limits commute with J-colimits in Set, and that I is connected but not

conical. Then J has cocones over diagrams of shape (• ← • → •).

Proof Suppose not; let (j1
β
← j0

γ
→ j2) be a diagram of the indicated shape with no cocone over it.

Consider the functor F : I× J→ Set defined by

F (−,−) =

((

∐

i∈ob I

I (i,−)

)

× J (j0,−)

)/

∼

where ∼ is the equivalence relation (clearly a congruence) which identifies all pairs (α, δ), (α′, δ) for
which α and α′ have the same codomain and δ factors through either β or γ. It is easy to see that, for
fixed j, F (−, j) may be written as

∐

δ∈A

(

∐

i∈ob I

I (i,−)

)

∐
∐

δ∈B

1

where A is the set of maps δ : j0 → j which do not factor through β or γ, and B is the set of those which
do; but lim

← I preserves coproducts since I is connected, and lim
← II (i,−) = ∅ since I is not conical, so

lim
← IF (−, j) ∼= B. In other words, lim

← IF is the subfunctor of J (j0,−) which is the union of the images
of J (β,−) and J (γ,−); and the latter union is disjoint since there is no cocone over (β, γ). It follows
easily that lim

→ J lim← IF has two elements. On the other hand, it is not hard to see that lim
→ JF (i,−) has

just one element for any i, since any two elements (α, δ) and (α′, δ′) can be linked by a zigzag of the
form

(α, δ)← (α, 1j0)→ (α, β) ∼ (α′, β)← (α′, 1j0)→ (α′, δ′) .

So lim
← I lim→ JF is a singleton, which provides the required contradiction. �

Corollary 2.3 If colimits of shape J commute with equalizers in Set, then J is pseudo-filtered.

Proof By the two previous lemmas, J has cocones over diagrams of shapes (•⇒ •) and (• ← • → •);
but these suffice for pseudo-filteredness. �

For completeness, we also record

Lemma 2.4 If colimits of shape J commute with pullbacks in Set, then J is pseudo-filtered.

Proof This follows from the well-known fact ([2], A1.2.9) that if C is a category with all finite limits
then any functor C → D which preserves pullbacks preserves all finite connected limits. �

Since both pullbacks and equalizers are required to generate the class of finite connected limits (in
the sense that a category has all finite connected limits iff it has pullbacks and equalizers, though it
can have either pullbacks or equalizers without possessing the other), the fact that either pullbacks or
equalizers suffice to generate the closure of finite connected limits (in the sense of the Galois connection
mentioned in the Introduction) is striking.
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3 Some new classes of commuting limits and colimits

By Foltz’s Lemma 2.2, if we wish to find a closed class of colimits lying between (pseudo-filtered colimits)
and (all small colimits) (equivalently, a closed class of limits lying between (conical limits) and the closure
of (finite connected limits)), we must consider colimits over categories which have cocones over diagrams
of shape (• ← • → •), but not over those of shape (•⇒ •). In trying to construct such a category, one
might be led to the following example: the objects of J are the natural numbers, there is one (identity)
morphism n → n for each n, and two morphisms n ⇒ m (labelled 0 and 1) for each n < m, and
composition of non-identity morphisms is defined by addition of labels mod 2, i.e. the composite of two
morphisms with the same label is labelled 0 and that of two morphisms with different labels is labelled
1. And indeed, there are non-conical limits which commute with colimits over this category; specifically,
limits over the cyclic group of order 3 (or, more generally, any nontrivial group of odd order) considered
as a category. (More generally still, if we modify J so that it has k > 1 morphisms n → m whenever
n < m, with labels 0 to k − 1 and composition given by addition mod k, then colimits over J commute
with limits over any group of order prime to k.)

But it is not necessary for the colimit category J to have more than one object; we can take it to
be a group, too. Of course, any group satisfies the condition that it has cocones over diagrams of shape
(• ← • → •) (semigroup-theorists call this the left Ore condition), but no nontrivial group has cocones
over diagrams of shape (•⇒ •). We may now prove

Lemma 3.1 Let G and H be finite groups of coprime orders, considered as categories. Then limits over

G commute with colimits over H in Set.

Proof Of course, a functor G → Set is just a set equipped with an action of G; its limit is its set of
G-fixed points, and its colimit is the set of G-orbits. So we need to show that, if G×H acts on a set A,
then the H-orbits which are fixed under the induced action of G on these orbits are exactly the orbits
which contain (equivalently, consist of) G-fixed elements of A. But this is easy: if a is any element of
such a fixed orbit, then for any g ∈ G we have (g, 1)a = (1, h)a for some h ∈ H , and then since (g, 1) and
(1, h) commute we have (gn, 1)a = (1, hn)a for all n. In particular, the least n > 0 such that (gn, 1)a = a
must divide both the order of g and that of h; but these two are coprime, and so (g, 1)a = a. �

In fact, by an (only slightly) more sophisticated argument, we may obtain a necessary and sufficient
condition on a pair of groups G,H for limits over G to commute with colimits over H .

Lemma 3.2 Given two groups G and H, limits over G commute with colimits over H in Set iff no

nontrivial quotient group of G is isomorphic to a subquotient group of H.

Proof Since any (G×H)-set is the coproduct of its orbits (and lim
← G and lim

→ H both preserve coprod-
ucts), it suffices to consider a single (G×H)-orbit, i.e. a (G×H)-set isomorphic to the set (G×H) : S
of left cosets of a subgroup S of G ×H . By Goursat’s Lemma [4], any subgroup S ≤ G ×H is of the
form {(g, h) ∈ K1 ×K2 | θ(gL1) = hL2} where L1 ⊳K1 ≤ G, L2 ⊳K2 ≤ H and θ : K1/L1 → K2/L2 is
an isomorphism. It is easy to see that the H-orbits of (G×H) : S form a single G-orbit, which may be
identified with G : K1; so there is a G-fixed H-orbit iff K1 = G. On the other hand, (G ×H) : S has
G-fixed points iff L1 = G (in which case S is simply G × L2); so the given condition is equivalent to
saying that every transitive (G×H)-set has either a G-fixed point or no G-fixed H-orbits. �

In particular, we may conclude that there are infinitely many closed classes of colimits intermediate
between pseudo-filtered colimits and all small colimits: for each finite simple group G, the class of
colimits which commute with limits over G contains colimits over all groups which do not have G as a
subquotient, but not over G itself. Thus the problem of classifying all closed classes of colimits which
contain all pseudo-filtered colimits is at least as hard as that of classifying finite simple groups.
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