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Abstract For a finite abelian group A, we determine the Balmer spectrum of
Spω

A, the compact objects in genuine A-spectra. This generalizes the case A =
Z/pZ due to Balmer and Sanders (Invent Math 208(1):283–326, 2017), by
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216 T. Barthel et al.

establishing (a corrected version of) their logp-conjecture for abelian groups.
We also work out the consequences for the chromatic type of fixed-points and
establish a generalization of Kuhn’s blue-shift theorem for Tate-constructions
(Kuhn in Invent Math 157(2):345–370, 2004).
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1 Introduction

Extended Abstract In [7], Balmer constructs a topological space Spc(T ),
called the Balmer spectrum of T , for any essentially small triangulated cate-
gory T equippedwith a compatible symmetricmonoidal structure. This theory
unifies the general reconstruction theorems for quasi-compact quasi-separated
schemes (e.g. [6,44]) and the notion of support varieties appearing in mod-
ular representation theory (e.g. [9,10]). Moreover, the primordial examples,
namely the thick subcategory theorem of Hopkins and Smith [24] for spectra
and the analogous result for the derived category of a Noetherian commutative
ring by Hopkins and Neeman [22,36], fit naturally into this framework. In
each case, the complete description of Spc(T ) was a major breakthrough in
the respective field, as the space Spc(T ) captures the global structure of T .

This paper is concerned with the Balmer spectrum of (the homotopy cate-
gory of) the category Spω

G of compact genuineG-spectra [28] for a finite group
G. This category blends topological information such as the stable homotopy
groups of spheres with group-theoretic information such as Burnside rings and
group cohomology. It has beenmuch studied in recent years, especially after its
crucial role in the solution of the Kervaire invariant one problem [19]. Build-
ing on unpublished work of Strickland and Joachimi [25], Balmer and Sanders
[11] determine the underlying set of Spc(Spω

G) and show that the topology of
Spc(Spω

G) is closely related to the blue-shift phenomenon in generalized Tate
cohomology discovered by Greenlees, Hovey, and Sadofsky [17,23]. More
precisely, they show that determining the topology on Spc(Spω

G) is equivalent
to computing the blue-shift numbers �n(G; −, −) (defined below in Defini-
tion 1.2) of G, which broadly speaking measure how equivariant homotopy
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The Balmer spectrum of genuine A-spectra 217

theory interactswith chromatic homotopy theory. They are able to deduce these
numbers for groups of square-free order from the seminal blue-shift result of
Kuhn [26], and propose a conjecture for the general case. Here, we resolve this
conjecture for all finite abelian groups A, thereby giving a complete descrip-
tion of Spc(Spω

A), and we deduce geometric consequences for finite complexes
with A-action (see Theorem 1.3). In particular, this establishes a far-reaching
generalization and geometric interpretation of Kuhn’s theorem.

Detailed description of the results We now go through the results of this
paper in more detail and recall the key definitions along the way. Let (T , ⊗, 1)
be an essentially small ⊗-triangulated category [37,45]. The points of the
Balmer spectrum Spc(T ) of T are the prime thick ⊗-ideals, i.e., those proper
thick ⊗-ideals I � T such that if a ⊗ b ∈ I, then a ∈ I or b ∈ I. A
basis for the open subsets of Spc(T ) is given by the complements of subsets
of the form Supp(a) = {P ∈ Spc(T ) | a /∈ P}, for some a ∈ T . When
T is rigid,1 and it will be in all examples below, then Balmer’s classification
theorem [7, Introduction] identifies the collection of thick ⊗-ideals of T with
theThomason subsets of Spc(T ), i.e., subsets given by unions of closed subsets
with quasi-compact complements. This shows in particular that the underlying
set of Spc(T ) determines only the prime thick ⊗-ideals, while the topology
of Spc(T ) is required to classify all thick ⊗-ideals of T .

In [11], Balmer and Sanders study, for a finite group G, the Balmer spec-
trum Spc(Spω

G) of the homotopy category Spω
G of compact genuine G-spectra

[28]. We recommend the introduction of [11] for a thorough overview of this
problem. The results depend on the thick subcategory theorem of Hopkins and
Smith [24,38], which we will now recall (see [8, Sec. 9] for more details).2

For each prime p ∈ Z and integer n ≥ 1, there is a prime thick ⊗-ideal in the
∞-category Spω of finite spectra

Cn
p := {X ∈ Spω | K (n − 1)∗X = 0},

and these constitute a descending chain

C1
p ⊇ · · · ⊇ Cn

p ⊇ · · · ⊇ C∞
p :=

⋂

n≥0

Cn
p = {X ∈ Spω | K (∞)∗(X) = 0}.

Here, K (n) denotes the nth Morava K -theory at the prime p with the usual
conventions that K (0) = HQ (independently of p) and K (∞) = HFp.

1 The consequence of this technical assumption is that every thick ⊗-ideal of T is radical, see
[7, Rem. 4.3 and Prop. 4.4].
2 Note that when the tensor unit 1 ∈ T generates T as a thick subcategory, then every thick
subcategory of T is also a thick ⊗-ideal. So there is no distinction between thick ⊗-ideals and
thick subcategories of Spω.
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218 T. Barthel et al.

Finally, Spc(Spω) is obtained by taking the union over all p of these sets of
prime ideals and noting that, independently of p, each of the prime ideals C1

p
equals the single prime consisting of torsion finite spectra.

Now we return to Spω
G . For each subgroup H of G we have an exact sym-

metric monoidal geometric fixed point functor

�H : Spω
G −→ Spω

which induces a continuous map of Balmer spectra �H ∗ : Spc(Spω) →
Spc(Spω

G). Balmer and Sanders show that these maps are jointly surjective
and that�H1∗(p) = �H2∗

(q) if and only if H1 is conjugate to H2 and p = q in
Spc(Spω) [11, Thm. 4.9 and Thm. 4.11]. This determines Spc(Spω

G) as a set.
To complete the identification of the topological space Spc(Spω

G), and hence
obtain the classification of the thick ⊗-ideals, one needs to further identify all
inclusions between the prime ideals3

Spc(Spω
G) = {P(H, q, n) := (�H )−1(Cn

q ) | H ⊆ G, 1 ≤ n ≤ ∞, q prime}.
Balmer and Sanders reduce this problem to the special case thatG is a p-group,
for some prime p, and q = p [11, Prop. 6.11]. They also give an important
result in this case [11, Prop. 8.1, Cor. 8.4]: Suppose thatG is a p-group, K ⊆ H
are subgroups of G, and denote s := logp(|H/K |). Then, for each n ≥ 1,

P(K , p, n + s) ⊆ P(H, p, n).

After the other reductions of Balmer and Sanders, the only remaining question
is as follows, cf. [11, Rem. 8.6].

Question 1.1 Let K ⊆ H be subgroups of a p-groupG and 1 ≤ n < ∞.What
is the minimal 0 ≤ i ≤ logp(|H/K |) such thatP(K , p, n+ i) ⊆ P(H, p, n)?

To underline their fundamental importance, we give these numerical invari-
ants of finite p-groups a proper name.

Definition 1.2 In the situation of Question 1.1, let �n(G; H, K ) := i and call
it the nth blue-shift number of G with respect to K ⊆ H .

The termblue-shift here ismotivated by the fact thatBalmer andSanders link
Question 1.1, which asks how the chromatic type of the geometric fixed points
of a finite G-spectrum can vary, to a blue-shift phenomenon for generalized
Tate cohomology, cf. [11, Section 9].

3 The fact that determining these inclusions is equivalent to knowing the topology follows from
the second sentence of [11, Cor. 8.19].
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The Balmer spectrum of genuine A-spectra 219

In summary, computing, for a p-group G, all of the blue-shift numbers
�n(G; H, K ) is equivalent to identifying the topological space Spc(Spω

G).
Moreover, the identification of the Balmer spectrum for general finite groups
reduces to the case of p-groups. Balmer and Sanders conjecture [11, logp-
Conjecture 8.7] that their bound is optimal, namely that �n(G; H, K ) =
logp(|H/K |). In Corollary 1.4 we will identify �n(G; H, K ) precisely when
G = A is an abelian p-group. Our identification agrees with the Balmer–
Sanders conjecture when A is an elementary abelian p-group, and disagrees
otherwise. We then provide the necessary correction to complete the identifi-
cation of Spc(Spω

A) for all abelian groups A.
To make Question 1.1 more concrete, recall that Hopkins and Smith define

for a finite p-local spectrum Y ∈ C0
p := Spω

(p), type(Y ) := max{n | Y ∈
Cn

p} ∈ [0, . . . , ∞] to be the type of Y ; here we abuse notation and let Cn
p

also denote the p-local analogues of the subcategories discussed above. Using
the reduction to the p-local case and unwinding the definitions, one sees that
Question 1.1 is concerned with determining how the type of �H (X) varies
with respect to a choice of subgroup H ⊆ G, for a finite p-local G-spectrum
X ; see Remark 4.3 for a simple example along these lines.
We now fix a prime p, a finite abelian group A (not necessarily a p-group),

and we let � denote the set of subgroups of A. To every X ∈ Spω
A,(p) we

associate the function fX : � −→ [0, 1, . . . , ∞], defined by fX (A′) :=
type(�A′

(X)). This function encodes which prime thick ⊗-ideals of Spω
A,(p)

the spectrum X belongs to and, as we vary X , the inclusions among all prime
thick⊗-ideals. Finally, let us denote by rk p(B) := dimFp(B⊗ZFp) the p-rank
of a finite abelian group B.

Theorem 1.3 For a function f : � → [0, 1, . . . , ∞], the following are equiv-
alent:

(i) There is some X ∈ Spω
A,(p) such that f = fX .

(ii) For every chain of subgroups A′ ⊆ A′′ ⊆ A such that A′′/A′ is a p-group,
we have

f (A′) ≤ f (A′′) + rk p(A
′′/A′).

This answers Question 1.1 for abelian p-groups, as follows.

Corollary 1.4 When p is a prime, A is an abelian p-group, and K ⊆ H ⊆ A
are subgroups, then �n(A; H, K ) = rk p(H/K ) for all 1 ≤ n < ∞.

We note that as an immediate consequence of Corollary 1.4, the blue-shift
numbers �n(A; H, K ) are independent of n. In case A = Z/pZ, Theorem 1.3
is due to Balmer and Sanders [11, Sec. 7].
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220 T. Barthel et al.

To prove it, they make use of Kuhn’s seminal blue-shift theorem for Tate
cohomology [26, Prop. 1.11]. We will prove a generalization of Kuhn’s theo-
rem, which also is of interest in its own right. We must first fix some notation.
For a spectrum X ∈ Sp, let ϕA(X) := �A(X) ∈ Sp be the A-geometric fixed
points of the Borel A-equivariant spectrum X associated with X .4 Moreover,
let L f

n−1 denote the Bousfield localization functor on Sp
ω with kernel Cn

p.

Theorem 1.5 For every abelian p-group A and integer n ≥ 1 we have

{X ∈ C0
p | ϕA(L f

n−1(S
0)) ⊗ X = 0} = C

max(n−rk p(A),0)
p .

Outline of the proof of Theorem 1.3 We first show that for abelian groups
A, the blue-shift numbers �n(A; A′, A′′) are determined by the absolute ones
�n(A) := �n(A; A, e) (Proposition 2.4 and Proposition 2.5). In terms of the
�n(A), the proof of Theorem 1.3 has two major ingredients which establish a
lower and an upper bound, respectively.

The first ingredient is a far-reaching generalization of the blue-shift theo-
rem for complex oriented cohomology theories due to Greenlees, Hovey, and
Sadofsky [17,23]. Indeed, the natural map from L f

n−1S
0 to aMorava E-theory

spectrum E of height n − 1 allows us to obtain an upper bound for �n(A) by
considering ϕA(E). The key idea is then to recognize ϕA(E) as suitable sec-
tions of the structure sheaf on a certain non-connective derived scheme. This
makes it possible to use derived algebraic geometry and the geometry of the
stack of formal groups to completely describe the height shifting behaviour of
ϕA(E).

As a second ingredient, we make use of equivariant finite complexes F(n)

built from partition complexes that feature prominently in the Goodwillie
calculus of functors. In particular, we rely on the study of their chromatic
behaviour in [3,5] and on that of their fixed points in [2]. These results imply
that the complexes F(n) realize the stipulated blue-shift, thereby establishing
our lower bound for �n(A).

Finally, we show that our upper and lower bounds for �n(A) coincide and
deduce the description of Spc(Spω

A). Since for non-abelian groups G one has
ϕG(E) = 0 ([34, Prop. 5.26]), and there are no suitable non-abelian general-
izations of the F(n) known, we believe that the determination of the Balmer
spectrum for any interesting class of finite non-abelian groups requires sub-
stantial new ideas. In fact, we are not even able to see that for a general finite
group G, the number �n(G) is independent of n.

Organization of the paper This paper is organized as follows: In Sect. 2
we prove Theorem 1.3 and Theorem 1.5, postponing the proofs of two key

4 For comparisonwith [26], observe thatϕA(X) = �A(Ẽ A∧F(E A+, i∗X)) are the geometric
fixed points of the Tate-construction of the A-spectrum i∗X , where i∗X is the inflation of X .
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The Balmer spectrum of genuine A-spectra 221

technical results to the following two sections. The first technical result
is Theorem 3.4 in Sect. 3 which determines the blue-shift of generalized
Tate-constructions on Lubin–Tate spectra. It will be used to establish the impli-
cation i)⇒ ii) in Theorem 1.3. The second one is Theorem 4.1 in Sect. 4, and is
a guide through previous work of Arone, Lesh, Dwyer, and Mahowald which
provides examples of finite A-complexes with very subtle properties. This is
the key result needed to show the implication ii) ⇒ i) in Theorem 1.3.

2 Proofs of the main results

We first state two key technical results, the proofs of which are postponed to
Sect. 3 and Sect. 4, respectively.

Theorem 2.1 Assume p is a prime, A is a finite abelian p-group and X ∈
Spω

A,(p). Then type (�A(X)) ≥ type(�{0}(X)) − rk p(A).

Theorem 2.2 (Arone, Dwyer, Lesh, Mahowald) Let p be a prime, n ≥ 1
and � := (Z/pZ)×n the corresponding elementary abelian p-group. Then,
there is a p-local finite�-equivariant spectrum F(n) ∈ Spω

�,(p) satisfying the
following conditions:

(i) The geometric fixed points ��(F(n)) have type 0.
(ii) The underlying non-equivariant spectrum of F(n), i.e., �{0}(F(n)), has

type n.

Fix a finite abelian group A and a prime p (where A is not required to be
a p-group). Now we turn to determining the Balmer spectrum of Spω

A,(p), the
localization at p of Spω. For every subgroup A′ ⊆ A and 1 ≤ n ≤ ∞, we
have a prime ideal5

P(A′, n) := P(A′, p, n) := �(A′)−1
(Cn

p)

= {X ∈ Spω
A,(p) | type(�A′

(X)) ≥ n} ∈ Spc(Spω
A,(p)).

Writing � for the set of subgroups of A, even more is true: The map

� × [1, . . . , ∞] −→ Spc(Spω
A,(p)) , (A′, n) �→ P(A′, n)

is bijective [11,Thms. 4.9 and4.14].Determining the topologyonSpc(Spω
A,(p))

is more subtle, and is equivalent to deciding for which pairs (A′, n), (A′′,m) ∈
�×[1, . . . , ∞]wehave an inclusionP(A′, n) ⊆ P(A′′,m), cf. [11,Cor. 8.19].

Our result is as follows.

5 Since we are nowworking p-locally, wewill omit the second entry in the notationP(A′, q, n)

from the introduction, since q will always be p.
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222 T. Barthel et al.

Theorem 2.3 Given subgroups A′, A′′ ⊆ A and 1 ≤ n,m ≤ ∞, the following
are equivalent:

(i) We have P(A′, n) ⊆ P(A′′,m).
(ii) We have A′ ⊆ A′′, the quotient A′′/A′ is a p-group, and n ≥ m +

rk p(A′′/A′).

We will now explain how to use results of [11] to reduce the proof of
Theorem 2.3 to the special case that A′ ⊆ A′′ equals {0} ⊆ A: By [11,
Prop. 6.9], the inclusion in Theorem 2.3, i) is possible only if A′ ⊆ A′′ and
A′′/A′ is a (possibly trivial) p-group, so we assume this from now on. In
the following, we will write PA(?, ?) = P(?, ?) when it seems necessary to
identify that the ambient group is A. We can then state the first reduction step:

Proposition 2.4 For subgroups A′ ⊆ A′′ ⊆ A and 1 ≤ m, n ≤ ∞, the
following are equivalent:

(i) We have PA(A′, n) ⊆ PA(A′′,m).
(ii) We have PA′′(A′, n) ⊆ PA′′(A′′,m).

Proof Restriction induces a continuous map of spectra

Res : Spc(Spω
A′′,(p)) −→ Spc(Spω

A,(p))

which, for all subgroups B ⊆ A′′ and 1 ≤ k ≤ ∞, satisfies Res(PA′′(B, k)) =
PA(B, k). So ii) implies i).

The reverse implication is more subtle and uses the observation [11,
Sec. 2.1, (F)] that Res satisfies a Going-Up theorem. Following the nota-
tion there, choose P ′ := PA(A′, n) and Q := PA′′(A′′,m). We then have
Res(Q) = PA(A′′,m) ⊇ P ′, i.e., P ′ ∈ {Res(Q)}, and the Going-Up theorem
implies that there is some Q′ ∈ {Q} such that Res(Q′) = P ′. Since for sub-
groups of abelian groups, Res is injective [11, Cor. 4.4 and Thm. 4.14] and we
have Res(PA′′(A′, n)) = PA(A′, n) = P ′, we conclude thatQ′ = PA′′(A′, n),
and the relation Q′ ∈ {Q} then means that ii) holds. ��

Replacing A by A′′, we have thus reduced to understanding possible inclu-
sions PA(A′, n) ⊆ PA(A,m). We reduce this problem further with the
following proposition.

Proposition 2.5 For a subgroup A′ ⊆ A and 1 ≤ m, n ≤ ∞, the following
are equivalent:

(i) We have PA(A′, n) ⊆ PA(A,m).
(ii) We have PA/A′({0}, n) ⊆ PA/A′(A/A′,m).
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The Balmer spectrum of genuine A-spectra 223

Proof We use [11, §2.1, (H)]. The adjoint functors

�A′ : SpA ↔ SpA/A′ : Inf

satisfy �A′ ◦ Inf � id. Hence the induced maps on spectra exhibit
Spc(Spω

A/A′,(p)) as a retractive subspace of Spc(Spω
A,(p)). Furthermore,

by [11, Prop. 4.7], we have Spc(�A′
)(PA/A′({0}, n)) = PA(A′, n) and

Spc(�A′
)(PA/A′(A/A′,m)) = PA(A,m), which concludes the proof. ��

To summarize, for the proof of Theorem 2.3 we can assume A′ ⊆ A′′
with A′′/A′ a p-group, by the discussion immediately following Theorem 2.3,
we can then assume that A = A′′ by Proposition 2.4, and that A′ = 0 by
Proposition 2.5. This now reduces the proof of Theorem 2.3 to the following
special case.

Theorem 2.6 Assume A is a finite abelian p-group and 1 ≤ m, n ≤ ∞. Then
the following are equivalent:

(i) We have P({0}, n) ⊆ P(A,m).
(ii) We have n ≥ m + rk p(A).

Proof Let k := rk p(A). We first assume that m, n < ∞. To show that i)
implies ii), we will prove the contrapositive. In other words, we assume that
m > n − k, and then we will show that P({0}, n) � P(A,m). To do this, we
consider two cases.

First assume that n ≥ k. Since m ≥ n − k + 1 ≥ 1, we have P(A,m) ⊆
P(A, n−k+1), and it suffices to show thatP({0}, n) � P(A, n−k+1), i.e.,
that there is some X ∈ Spω

A,(p) with type(�{0}(X)) ≥ n and type(�A(X)) ≤
n − k. Our example will achieve equality in both cases. To start, use The-
orem 2.2 to choose some Y ∈ Spω

(Z/pZ)×n,(p) with type(�{0}(Y )) = n and

type(�(Z/pZ)×n
(Y )) = 0.We choose a subgroup (Z/pZ)×k ⊆ (Z/pZ)×n , and

consider Z := Res(Z/pZ)×n

(Z/pZ)×k (Y ) ∈ Spω
(Z/pZ)×k ,(p)

. It satisfies type(�{0}(Z)) =
n, and the type of �(Z/pZ)×n

(Y ) � �(Z/pZ)×n/(Z/pZ)×k
(
�(Z/pZ)×k

(Z)
)

is zero. Since the individual fixed-point functors can drop height at most
by the rank of the group involved by Theorem 2.1, we conclude that
type(�(Z/pZ)×k

(Z)) = n − k. Denoting by X the inflation of Z along
A → A/pA � (Z/pZ)×k , it is now clear that X has the desired proper-
ties.

In the case n < k, it suffices to check that P({0}, k) � P(A,m), i.e., that
there exits X ∈ Spω

A,(p) with type(�{0}(X)) ≥ k and type(�A(X)) ≤ m − 1.
The existence of such a spectrum follows again from Theorem 2.2, since k

123



224 T. Barthel et al.

is the p-rank of A, and hence we can even find some X ∈ Spω
A,(p) with

type(�{0}(X)) = k and type(�A(X)) = 0.
To see that ii) implies i), we need to see that if X ∈ Spω

A,(p) satisfies

type(�{0}(X)) ≥ n ≥ m + k, then type(�A(X)) ≥ m. This is precisely
the content of Theorem 2.1.

The remaining cases with∞ ∈ {m, n} reduce to showing thatP({0}, ∞) ⊆
P(A, ∞) which follows from the above as in [11, Cor. 7.2]. ��
Proof of Theorem 1.3 To see that i) implies ii), take subgroups A′ ⊆ A′′ ⊆ A
such that A′′/A′ is a p-group, say of p-rank k, and also fix some X ∈ Spω

A,(p).
We wish to show that

f (A′′) = type(�A′′
(X)) ≥ type(�A′

(X)) − k (= f (A′) − k).

Restricting to A′′ we can assume that A = A′′, and using that in this case
�A = �A/A′ ◦ �A′

, we can further reduce to A′ = {0}. In this case, the
desired conclusion is Theorem 2.1.

To see that ii) implies i), consider the following subset

Spc(Spω
A,(p)) ⊇ Z := {P(A′, n) | ∀A′ ⊆ A : n > f (A′)}

(where, in the above expression, we use the convention ∞ ≯ ∞). This subset
is closed by our assumption ii) on the function f and Theorem 2.3. Indeed, if
P(A′, n) ∈ Z and P(B, l) ⊆ P(A′, n) (i.e., P(B, l) ∈ P(A′, n)), then

l ≥ n + rk p(A
′/B) > f (A′) + rk p(A

′/B) ≥ f (B),

hence P(B, l) ∈ Z . The open complement of Z is quasi-compact by [11,
Prop. 10.1]. By [7, Prop. 2.14], there is some X ∈ Spω

A,(p) with supp(X) = Z .
It is clear that this X has the desired properties. ��
Proof of Theorem 1.5 Fix an integer n ≥ 1, set k := rk p(A), and recall we
wish to prove that

{X ∈ C0
p | ϕA(L f

n−1(S
0)) ⊗ X = 0} = C

max(n−rk p(A),0)
p .

To show the inclusion ⊆, we can assume that n − k ≥ 1, for otherwise the
claim is trivial. Take X ∈ C0

p with ϕA(L f
n−1(S

0)) ⊗ X � ∗. Since there is

a ring map L f
n−1S

0 −→ E for a Lubin–Tate theory E at p of height n − 1,
we see that ϕA(E) ⊗ X � ∗ as well. Since the chromatic height of ϕA(E) is
n − 1 − k (Remark 3.5, ii)), we have X ∈ Cn−k

p by Lemma 3.6, iii).
To see the inclusion ⊇, by the thick subcategory theorem it is sufficient to

find a single example of some X ∈ Cmax(n−k,0)
p such thatϕA(L f

n−1(S
0))⊗X �
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The Balmer spectrum of genuine A-spectra 225

∗. As in the proof of Theorem 2.6, we see that there is some Y ∈ Spω
A,(p) such

that type(�A(Y )) = max(n − k, 0) and such that type(�{0}Y ) = max(n, k).
We then have L f

n−1(S
0)⊗Y � ∗, and hence L f

n−1(S
0) ⊗ Y � L f

n−1(S
0)⊗Y �

∗, which implies:

∗ � ϕA(L f
n−1(S

0)) ⊗ �A(Y ),

and X := �A(Y ) is as desired. ��

3 Blue-shift for Lubin–Tate spectra

The aim of this subsection is to compute the blue-shift on Lubin–Tate spec-
tra of F-geometric fixed points for general families F in abelian groups, see
Theorem 3.4 below. There are many similar and overlapping results in the lit-
erature, and while we will not try to be exhaustive here, we mention at least the
following sources: [17] consider the Tate cohomology of vn-periodic complex
oriented spectra, [23] consider the Bousfield classes of the Tate cohomology
of the Ln-localizations of finite spectra, [42] considers elementary abelian
p-groups and an alternative Tate construction, [4] consider the Z/pZ-Tate
construction on Johnson–Wilson spectra, and [20] provide crucial results on
the Lubin–Tate cohomology of finite groups which we will use below.

Fix a prime p, an integer n ≥ 1, and a Lubin–Tate spectrum E of height n at
the prime p, see [29,39] for general background. We denote by Ln := LE the
corresponding Bousfield localization functor, cf. [38, Ch. 7]. This localization
only depends on n (and the implicit prime p), and not on our choice of Lubin–
Tate spectrum E .

Definition 3.1 The chromatic height of an E∞-E-algebra E → R �� 0 is

ht(R) := min{t ≥ 0 | R
�−→ Lt R}.

Remark 3.2 Since E � LnE , we have 0 ≤ ht(R) ≤ n. By analyzing chro-
matic fracture squares (cf. [13, Eq. (0.1)], one sees that ht(R) = t is equivalent
to K (i)∗R = 0 for i > t and K (t)∗R �= 0. By [18, Thm. 1.1], the for-
mer condition follows from only knowing K (t + 1)∗R = 0, so we see that
ht(R) = max{t ≥ 0 | K (t)∗R �= 0}.

Fix a finite abelian p-group A.

Definition 3.3 (i) For a proper family F of subgroups of A, we call

cork p(F) := min{rk p(A
′) | A′ ⊆ A such that A′ /∈ F}

the p-corank of F .
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(ii) For a family F of subgroups of A, there are A-spaces EF and ẼF , the
latter of which is pointed, which are characterized, up to an essentially
unique equivariant weak equivalence, by their fixed point data:

EFK �
{

∗ if K ∈ F
∅ otherwise

ẼFK �
{

∗ if K ∈ F
S0 otherwise.

(3.1)

(iii) In ii), when F = {{0}} is the family only containing the trivial subgroup,
it is customary to write E A := EF and Ẽ A := ẼF .

(iv) For a spectrum X ∈ Sp, let X ∈ SpA denote the Borel completion of
X , that is the unique A-spectrum which is Borel complete and whose
underlying spectrum is X with trivial A-action, cf. [35, Sec. 6.3].

(v) For a family F of subgroups of A, and X ∈ SpA, we call

�F (X) := (
ẼF ⊗ X

)A

theF-geometric fixed points of X . As special cases, �{0}(X) = t A(X) is
the classical Tate construction as in [16], and for the family P of proper
subgroups of A, �A(X) := �P(X) are the (usual) A-geometric fixed
points.

The following is the main result of this section.

Theorem 3.4 Let p be a prime, A a finite abelian p-group, n ≥ 1 an integer,
E a Lubin–Tate spectrum at p of height n and F a family of subgroups of A.
Then �F (E) = 0 if and only if cork p(F) ≥ n + 1. Otherwise, the chromatic
height of the E∞-E-algebra �F (E) is given by

ht(�F (E)) = ht(E) − cork p(F) = n − cork p(F).

Remark 3.5 (i) In the language of [34], the vanishing criterion in Theo-
rem 3.4 for �F (E) is equivalent to the determination of the derived
defect base of E : Since ẼF ⊗ E is a ring spectrum, its A-fixed points,
i.e., �F (E), vanish if and only if it is itself equivariantly contractible,
i.e., ẼF ⊗ E = 0. By definition, this is equivalent to F containing the
derived defect base of E which consists of those subgroups of A of p-rank
at most n by [34, Prop. 5.36]. Theorem 3.4 extends that result by further
identifying how the chromatic height varies for all families of subgroups
of A.

(ii) For the familyP of proper subgroups of a non-trivial finite abelian group
A, the p-corank cork p(P) = rk p(A) is the p-rank of A, hence the chro-
matic height of the geometric fixed points �A(E) = �P(E) of E drops
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by the p-rank of A. After taking into account [15, Prop. 3.20], this case
was implicitly studied in [40, p. 1015].

(iii) IfF is taken to be the family of subgroups of p-rank atmostm < rk p(A),
then the chromatic height drops by cork p(F) = m + 1. In particular,
every height drop between 0 and rkp(A) can be realized by a suitable
F-geometric fixed points functor.

The proof of Theorem 3.4will be through a series of lemmas.We first record
a folklore result, Lemma 3.6 below, relating the height ofE∞-E-algebras with
the geometry of Lubin–Tate space (cf. [12, Ch. 12, Lem. 8.1(2)]). To formulate
it,weneed tofix somenotationfirst:Choose amapofE1-algebrasMU(p) → E
and denote by vi ∈ π2(pi−1)(E) (i ≥ 0, v0 := p) the images of the Araki-
generators of the same name under this map. We can arrange that vn is a unit
which admits a root vn = u1−pn

n (hence un is of degree −2), and we then

have ui := vi u
pi−1
n ∈ π0(E) (0 ≤ i ≤ n − 1). The deformation theory of

formal groups implies that π∗(E) = W (k)[[u1, . . . , un−1]][u±1
n ] and that the

u0, . . . , un−1 determine the height filtration of the formal part of the universal
p-divisible group G over Spec(π0(E)). For every 0 ≤ t ≤ n − 1, we denote
by It+1 := (u0, . . . ut ) ⊆ π0(E) the ideal which cuts out the locus of height
at least t + 1. We also set In+1 := (1).

Recall ([30, Def. 8.5, Thm. 8.42]) that a non-connective spectral DM-
stack can be thought of as a pair X = (X,OX) consisting of a classical
Deligne-Mumford stack (X,OX ) ([27]) and a hyper-complete sheaf OX of
E∞-rings on the étale site of X such that π0(OX) � OX and such that
the OX -module πi (OX) is quasi-coherent for all i ∈ Z. Every E∞-ring
R canonically determines a non-connective spectral DM-stack Spét(R) =
(Spec(π0(R)),OSpét(R)) (cf. [31, §1.4.2]).

6

Lemma 3.6 Assume that ∅ �= X = (X,OX)
f−→ Spét(E) is a non-connective

spectral DM-stack, and 0 ≤ t ≤ n is an integer. Then the following are
equivalent:

(i) The sheaf of E∞-ringsOX is Lt -local, i.e., for every étale open U → X,
the E∞-ring OX(U ) is Lt -local.

(ii) The map of underlying spaces [31, §1.5.4] determined by f , namely
| f | : |X | → ∣∣Spét(E)

∣∣ = Spec(π0(E)) factors through the open sub-
scheme Spec(π0(E)) \ V (It+1) (i.e., the locus of height at most t).

(iii) For every finite p-local spectrum F of type greater than t, we haveOX⊗
F � 0.

6 The construction ofOSpét(R) will partially be recalled during the proof of Lemma 3.11 below.
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In particular, the chromatic height of the global sections �(X,OX) is given
by

ht(�(X,OX)) = max{ht((G	)for) | 	 → X a geometric point}, (3.2)

where ht((G	)for) denotes the height of the formal part of the base-change of
G to 	 (along the composition 	 → X → Spec(π0(E)).

Proof We show the equivalence between i) and iii) first: If R is an Lt -local
ring spectrum and F is a finite p-local spectrum of type 
 > t , then R ⊗ F �
Lt (R) ⊗ F � R ⊗ Lt (F) � 0 since Lt is smashing. Applying this with R =
OX(U ) shows that i) implies iii). Conversely, iii) implies that for every 
 > t ,
we have R ⊗ T (
) � 0, and thus 0 = K (
)∗(R ⊗ T (
)) � K (
)∗(R) ⊗K (
)∗
K (
)∗(T (
)). Since K (
)∗(T (
)) �= 0 and K (
)∗ is a (graded) field,we deduce
that K (
)∗(R) = 0. Applying this to the relevant chromatic fracture squares,

we see that Lk(R)
�→ Lt (R) for all k ≥ t . Since OX is a sheaf of Ln-local

ring spectra, this implies R
�→ Ln(R)

�→ Lt (R), and hence that i) holds.
To establish the equivalence between the first two conditions, we first

observe that both i) and ii) are étale local on X : For i), this is just the sheaf
condition for OX together with the fact that any limit of Lt -local spectra is
Lt -local. For ii), this follows more directly because the underlying map of any
étale cover is surjective.

We can thus assume that X = Spét(R) for some E∞-E-algebra E → R ��
0. To settle this special case, we will freely use the notation and results of [14].
Specifically, we have Lt (R) � R[I−1

t+1] � E[I−1
t+1] ⊗E R, and there is a fiber

sequence of E-modules

K (It+1) −→ E −→ E[I−1
t+1].

This shows that i) is equivalent to K (It+1) ⊗E R � 0. Direct inspection of
the construction of K (It+1) shows that K (It+1) ⊗E R � K (It+1 · π∗R), and
that K (It+1 ·π∗R) � 0 is equivalent to It+1 ·π∗R = π∗R, which is equivalent
to ii).

Finally, the formula for ht(�(X,OX)) in Eq. (3.2) follows because, for every
0 ≤ t ≤ n, condition ii) can be checked on geometric points. ��
Remark 3.7 In the above proof we used the well-known implication T (
)∗(X)

= 0 ⇒ K (
)∗(X) = 0, valid for any spectrum X . The reverse implication is
the telescope conjecture, now believed by many to be false. One can, however,
establish the reverse implication for up-to-homotopy ring spectra, using the
nilpotence theorem of [24].

Recall that we fixed a finite abelian p-group A, a family F of its sub-
groups and a Lubin–Tate spectrum E of height n at p. To apply Lemma 3.6
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to determine the chromatic height of the E∞-E-algebra �F (E), we review
the modular interpretation of the E∞-E-algebra EBA+ . We will show, in par-
ticular, that all �F (E) occur as suitable local sections of its structure sheaf.
So we study in some detail the affine spectral scheme Spét(EBA+) corre-
sponding to the E∞-ring EBA+ . The first step is to recall the determination of
the (classical) commutative ring π0(EBA+) in algebro-geometric terms. The
commutative ring π0(E) carries a one-dimensional formal group F which is
a universal deformation of its special fiber. The system G := (F[pk])k≥0 of
p-power torsion constitutes a p-divisible group overπ0(E).7 We denote by A∗
the Pontryagin dual of A. Choosing N so large that pN A = 0, we consider the
functor Hom(A∗,G[pN ]) on π0(E)-algebras valued in abelian groups, which
sends every R to the group of homomorphisms from A∗ to G[pN ](R).

Proposition 3.8 There is an isomorphism of finite flat group schemes of rank
|A|n over π0(E)

Spec(π0(E
BA+)) � Hom(A∗,G[pN ]).

Proof The isomorphism is [20, Prop 5.12]. The computation of the rank is
immediate, cf. [41, Sec.7]. ��

Remark 3.9 (i) The above can be rephrased by saying that Spét(EBA+) is an
even periodic enhancement of the composition

Hom(A∗,G[pN ]) −→ Spec(π0(E)) −→ MFG

in the sense of [33, Def. 2.5].
(ii) For cyclic A, Proposition 3.8 admits an interesting generalization from

the case of BA = K (A, 1) to considering K (A,m) for arbitrary m ≥ 1
instead, see [21, Thm. 3.4.1].

We next consider the principal open subschemes of Hom(A∗,G[pN ]) deter-
mined by Euler classes. We fix a coordinate t : BS1+ −→ E for the formal
group F := Gfor, and for every character ρ : A −→ S1 refer to the composi-
tion

e(ρ) :=
(
BA+

Bρ+−−→ BS1+
t−→ E

)
∈ π0(E

BA+)

7 More is true: This is part of an equivalence between p-divisible commutative formal Lie
groups over π0(E) and connected p-divisible groups over π0(E) [43, Prop. 1].
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as the Euler class of ρ. The principal open subscheme determined by ρ is

U (e(ρ)) := Spec(π0(E
BA+)[e(ρ)−1]) ⊆ Spec(π0(E

BA+))

� Hom(A∗,G[pN ]).
Observe that there is a closed immersion

Hom(ker(ρ)∗,G[pN ]) ↪→ Hom(A∗,G[pN ])
determined by pullback along the surjective restriction of characters A∗ →
ker(ρ)∗. The following Proposition 3.10 is a basic observation. After translat-
ing between affine schemes and algebra, the proof is just as in [15, Prop. 3.20].
We denote byOHom(A∗,G[pN ]) the structure sheaf of the affine derived scheme
Spét(π0(EBA+)), taking the result of Proposition 3.8 as an identification in
the following.

Proposition 3.10 In the above situation, we have

(i) an equality

U (e(ρ)) = Hom(A∗,G[pN ]) \ Hom(ker(ρ)∗,G[pN ])
of open subschemes of Hom(A∗,G[pN ]) and

(ii) an identification of E BA+-algebras

�(U (e(ρ)),OHom(A∗,G[pN ])) � �[≤ker(ρ)](E),

where [≤ ker(ρ)] := {A′ ⊆ A | A′ ⊆ ker(ρ)} denotes the family of
subgroups of A on which ρ vanishes.

Proof To prove i), we observe there is an obvious cartesian square

Hom(ker(ρ)∗,G[pN ]) Hom(A∗,G[pN ])

{0} Hom(im(ρ)∗,G[pN ]).

The zero section of Hom(im(ρ)∗,G[pN ]) is given by the vanishing of the
Euler class e(im(ρ) ⊆ S1) (because im(ρ) is cyclic of p-power order), and the
naturally of e(−) implies that the closed immersionHom(ker(ρ)∗,G[pN ]) ↪→
Hom(A∗,G[pN ]) is given by the vanishing of e(ρ).

For the proof of ii), we will need a bit more information about e(ρ). We will
abuse notation and let ρ denote the corresponding complex representation.

123



The Balmer spectrum of genuine A-spectra 231

Applying one point compactification to the inclusion 0 ↪→ ρ, we obtain a map
of based A-spaces e(ρ)′ : S0 → Sρ . Smashing e(ρ)′ with E , taking A fixed
points, and using our complex orientation, we obtain the EBA+-module map
EBA+ → EBA+ corresponding to the map e(ρ) above [34, §5.1].
Now we do have �(U (e(ρ)),OHom(A∗,G[pN ])) � EBA+[e(ρ)−1] by the

construction of the structure sheaf OHom(A∗,G[pN ]). To see the claim, we will
use the equivalence Ẽ[≤ ker(ρ)] � colimnSnρ (which can be checked using
Definition 3.3, ii)) with transition maps given by multiplication with e(ρ)′.
Using this, we see

�[≤ker(ρ)](E) = (
Ẽ[≤ ker(ρ)] ⊗ E

)A

� colimn

(
E A ·e(ρ)−−→ E A ·e(ρ)−−→ · · ·

)

� E A[e(ρ)−1]
� EBA+[e(ρ)−1]
� �(U (e(ρ)),OHom(A∗,G[pN ])). ��

We want to generalize Proposition 3.10, ii) by finding an open subscheme
(typically non-principal) of Hom(A∗,G[pN ]) over which the sections are
�F (E) for a given family F . We also want this open subscheme to have a
modular interpretation, as in Proposition 3.10, i) above, which will ultimately
allow for the height computation of Theorem 3.4.

We begin by observing that for every family F we have

F =
⋃

A′∈F
[≤ A′] =

⋃

A′∈F

⋂

ρ∈(A/A′)∗
[≤ ker(ρ)]. (3.3)

The first equality in (3.3) is trivial and the second one follows from duality of
finite abelian groups. Here, we commit a mild abuse of notation by identifying

some ρ ∈ (A/A′)∗ with the composition A → A/A′ ρ−→ S1.
The decomposition (3.3) suggests to consider the following open subscheme

of Hom(A∗,G[pN ]):

U (F) :=
⋂

A′∈F

⋃

ρ∈(A/A′)∗
U (e(ρ)). (3.4)

By Proposition 3.10, i), this equals

U (F) = Hom(A∗,G[pN ]) \
⎛

⎝
⋃

A′∈F

⋂

ρ∈(A/A′)∗
Hom(ker(ρ)∗,G[pN ])

⎞

⎠ .(3.5)
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This last equation gives us the desired modular interpretation of U (F), and
we can also identify the sections over it, as follows.

Lemma 3.11 In the above situation, we have

�(U (F),OHom(A∗,G[pN ])) � �F (E)

as algebras over E BA+ = �(Hom(A∗,G[pN ]),OHom(A∗,G[pN ])).

Proof For every open U ⊆ X := Hom(A∗,G[pN ]) and e ∈ π0(EBA+) =
π0 (�(X,OX )) we have a cartesian square

�(U ∪U (e),OX ) �(U,OX )

�(U (e),OX ) �(U ∩U (e),OX ) � �(U,OX )[e−1].

Given any familyF and any characterρ : A −→ S1,we also have a cartesian
square of genuine G-spectra

�∞ (
Ẽ (F ∩ [≤ ker(ρ)])) �∞ (

ẼF)

�∞ (
Ẽ ([≤ ker(ρ)])) �∞ (

Ẽ (F ∪ [≤ ker(ρ)])) � �∞ (
ẼF) ⊗ �∞ (

Ẽ ([≤ ker(ρ)])) .

Assume now that U and F are such that �(U,OX ) � �F (E) as EBA+-
algebras. Comparison of the above two cartesian squares (with e := e(ρ))
and using Proposition 3.10, ii) then implies that �(U ∪ U (e(ρ)),OX ) �
�F∩[≤ker(ρ)](E) as EBA+-algebras. Applying this inductively with Proposi-
tion 3.10, ii) as a starting point, we see that for every A′ ∈ F , we have

�

⎛

⎝
⋃

ρ∈(A/A′)∗
U (e(ρ)),OX

⎞

⎠ � �
⋂

ρ [≤ker(ρ)]
(E)

(3.3)� �[≤A′](E). (3.6)

Finally, for any two opens U, V ⊆ X , we have

�(U ∩ V,OX ) � �(U,OX ) ⊗�(X,OX ) �(V,OX ), (3.7)
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and conclude

�(U (F),OX )
(3.4)� �

⎛

⎝
⋂

A′∈F

⋃

ρ∈(A/A′)∗
U (e(ρ)),OX

⎞

⎠

(3.7)�
⊗

A′∈F
�(

⋃

ρ∈(A/A′)∗
U (e(ρ)),OX )

(3.6)�
⊗

A′∈F
�[≤A′](E)

(∗)� �
⋃

A′∈F [≤A′](E)

(3.3)= �F (E).

For the equivalence (∗) we used ẼF1 ⊗ ẼF2 � Ẽ(F1 ∪ F2), which is again
easily inferred from Definition 3.3, ii). ��

Now we have assembled everything to prove the main result of this subsec-
tion.

Proof of Theorem 3.4 Taking the identification of Lemma 3.11 and applying
Eq. (3.2) with X := (U (F),OHom(A∗,G[pN ]) |U (F)), we find that

ht(�F (E)) = max{ht((G	)for) | 	 → U (F) a geometric point}.
If 	 is any geometric point of Spec(π0(E)), then we have G[pN ](	) �
(
Z/pNZ

)n−ht((G	)for)
, so using (3.5), we obtain the following cumbersome, but

elementary, description of the sought for ht(�F (E)): It is the largest t ≥ 0 such
that there is a homomorphism ϕ : A∗ → (

Z/pNZ
)n−t

such that for all A′ ∈ F
there is a character ρ ∈ (A/A′)∗ such that ker(A∗ → ker(ρ)∗) � ker(ϕ).

Observe that
{
ker(A∗ → ker(ρ)∗) = im(ρ)∗ | ρ ∈ (A/A′)∗

}

= {
C ⊆ (A/A′)∗ ⊆ A∗ cyclic

}
.

So the condition on ϕ is that it does not vanish on (A/A′)∗, for every A′ ∈ F .
We now determine which C ⊆ A∗ can occur as the kernels of such ϕ. Since
pN A = 0, for any subgroup C ⊆ A∗ there will be an inclusion A∗/C ↪→(
Z/pNZ

)n−t
if and only if rk p(A∗/C) ≤ n − t .

Now a maximal t satisfying the above is determined by:

n − t = min
{
rk p(A

∗/C) | C ⊆ A∗ s.t. ∀A′ ∈ F, (A/A′)∗ � C
}
.
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Using that for any finite abelian p-group B we have rk p(B) = rk p(B∗), that
A′ �→ (A/A′)∗ andC �→ (A∗/C)∗ ⊆ A∗∗ = A aremutually inverse inclusion
reversing bijections between subgroups of A and A∗, and that F is a family,
this becomes

n − t = min
{
rk p(C̃) | C̃ ⊆ A, C̃ /∈ F

} = cork p(F),

as claimed. ��

Wefinally use Theorem 3.4 to prove Theorem 2.1, which shows that the for-
mation of geometric fixed points can lower the type of a finite complex at most
by the p-rank of the group acting. We repeat the statement for convenience.

Corollary 3.12 Assume A is a finite abelian p-group and X ∈ Spω
A,(p). Then

type(�A(X)) ≥ type(�{0}(X)) − rk p(A).

Proof Let k := rk p(A), and we can assume that n := type(�{0}(X)) ≥
k + 1 for otherwise our assertion is vacuously true. Our assumption is that
K (n−1)∗(�{0}(X)) = 0; in the case n = ∞, i.e., �{0}(X) is contractible, the
following argument is applied for every Morava K -theory.

Denote by E a Lubin–Tate spectrum at p of height n − 1. Since
type(�{0}(X)) > n − 1 and any map into a K (n − 1)-local spectrum fac-
tors through the K (n − 1)-localization, we have E∗(�{0}(X)) = 0. Then we
have more generally E∗(E A′+ ⊗A′ X) = 0 for all subgroups A′ ⊆ A by
considering the collapsing homotopy fixed point spectral sequence. In other
words, the Borel spectrum F(X, E) is equivariantly contractible because we

have π∗
(
F(X, E)A

′) = E−∗(E A′+ ⊗A′ X) = 0. Equivalently, all of the

geometric fixed points of this spectrum are contractible. We conclude that

0 � �A(F(X, E)) � D(�A(X)) ⊗ �A(E).

The second of these equivalences uses the finiteness of X and the fact that�A is
a symmetric monoidal functor. We know that the chromatic height of �A(E)

is n − k − 1 by Remark 3.5, ii), so its p-local finite acyclics are precisely
the complexes of type at least n − k, cf. Lemma 3.6, iii). This means that
type(�A(X)) = type(D(�A(X))) ≥ n − k (also in case n = ∞).8 ��

8 Poincaré duality for K (n)-cohomology makes it clear that the types of a finite complex and
its dual agree.
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4 The complexes of Arone and Lesh

The aimof this subsection is to useworkofArone,Dwyer, Lesh, andMahowald
to give a proof of Theorem 2.2, the statement of which we repeat for conve-
nience:

Theorem 4.1 (Arone, Dwyer, Lesh, Mahowald)
Let p be a prime, n ≥ 1 and� := (Z/pZ)×n the corresponding elementary

abelian p-group. Then, there is a p-local finite�-equivariant spectrum F(n) ∈
Spω

�,(p) satisfying the following conditions:

(i) The geometric fixed points ��(F(n)) have type 0.
(ii) The underlying non-equivariant spectrum of F(n), i.e., �{0}(F(n)), has

type n.

This result is of central importance to the entire paper. We remark that the
complexes F(n) are closely related to the complexes constructed by Mitchell
in [32], which were the first examples of finite (non-equivariant) complexes
of arbitrary type. The exact relation between these two families of complexes
is worked out in [5, Sec. 2].

The construction of F(n) uses equivariant homotopy theory for compact
Lie groups, and we refer the reader to [34] for a rapid review of this. We
first describe the groups involved. Fix an integer m ≥ 1 and let U (m) denote
the unitary group of rank m. Embed the permutation group �m ⊆ U (m)

as the subgroup of permutation matrices. Fix the (non-standard) embedding
U (m − 1) ⊆ U (m) corresponding to the embedding C

m−1 ⊆ C
m as the

orthogonal complement of the diagonal. Note that then �m ⊆ U (m − 1) ⊆
U (m).

Now consider the case m = pn and embed � ⊆ �pn using the regular
representation of � on its underlying set. Let Ppn denote the (geometric real-
ization of the) poset of non-trivial proper partitions of a set with pn elements.
The equivariant Spanier–Whitehead dual D(P�

pn ) of its unreduced suspension
is canonically an object of Spω

�pn
, i.e., a finite genuine �pn -spectrum, and we

consider its twist D(P�
pn )⊗Sρ by the representation sphere of the reduced reg-

ular representation ρ of �pn . We denote by IndU (pn−1)
�pn

: Sp�pn
→ SpU (pn−1)

the induction functor and by ResU (pn−1)
� : SpU (pn−1) → Sp� the restriction

functor. Note that both induction and restriction preserve finite spectra. We
can thus finally define

F(n) :=
(
ResU (pn−1)

�

(
IndU (pn−1)

�pn
(D(P�

pn ) ⊗ Sρ)
))

(p)
∈ Spω

�,(p).

The geometric fixed points of F(n) will be analyzed through the following
result, which is essentially contained in [2, § 5].
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Proposition 4.2 We have

�∞ (
U (1)×(pn−1)

+
)

⊗ (
��(−)

) �−→ �� ◦ IndU (pn−1)
�pn

(−)

as functors Sp�pn
−→ Sp.

Proof Wewill first establish the following unstable refinement of our assertion.
Denote byC := CU (pn−1)(�) � U (1)p

n−1 the centralizer of� inU (pn −1),
and note that � ⊆ C . For every �pn -space X , we define a map between fixed
point spaces

ϕX : C/� × X� −→
(
U (pn − 1) ×�pn X

)�

,

ϕX (c�, x) := [c, x],
(4.1)

which we claim is an equivalence, functorial in X .
It is immediate that (4.1) is well-defined and functorial in X . Its injectivity

results from an easy computation, using that � ⊆ �pn is its own centralizer:
If [c, x] = [c′, x ′], then there exists some σ ∈ �pn such that

(c, x) = (c′σ−1, σ x ′) ∈ U (pn − 1) × X.

This implies cσ = c′ ∈ C and hence cσdσ−1c−1 = d for all d ∈ �. From
this we see that σ ∈ �pn ∩ C = � and hence c = c′σ−1 for some σ−1 ∈ �

and x = σ x ′ = x ′, as desired.
To see the surjectivity of (4.1), recall the general computation of the fixed

points of an induced space

(
U (pn − 1) ×�pn X

)�

=
{
[u, x] | u ∈ U (pn − 1) such that u−1�u ⊆ �pn and x ∈ Xu−1�u

}
.

Denoting by N := NU (pn−1)(�; �pn ) :=
{
u ∈ U (pn − 1) | u−1�u ⊆ �pn

}
,

Arone and Lesh show in [2, §5], that the obvious inclusion C · �pn ⊆ N is

in fact an equality. Now, given [u, x] ∈
(
U (pn − 1) ×�pn X

)�

, we can write

u = cσ with c ∈ C , σ ∈ �pn and x ∈ Xu−1�u = Xσ−1�σ . We conclude that
x = σ−1y for some y ∈ X�, and then compute

ϕX (c�, y) = [c, y] = [cσ, σ−1y] = [u, x],

hence ϕX is indeed surjective.
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To identify C/�, we observe that � → C � U (1)×(pn−1) maps to each of
the pn − 1 components by each of the non-trivial irreducible representations
of �. The quotient of each of these actions is

U (1)/� = U (1)/Im(�) = U (1)/(Z/pZ) � U (1).

We can thus identify the quotient U (1)×(pn−1)/�×(pn−1) � U (1)×(pn−1). To
identify the quotient C/� � U (1)×(pn−1)/� by the diagonal copy of � we
consider the induced quotient fiber sequence:

�×(pn−1)/� → U (1)×(pn−1)/� → U (1)×(pn−1)/�×(pn−1)(� U (1)×(pn−1)).

This forces U (1)×(pn−1)/� to be a K (Z×(pn−1), 1) � U (1)×(pn−1).
In order to pass to the stable setting, we observe that the above equivalence

(4.1) has an obvious analogue for pointed �pn -spaces which implies a natural
stable equivalence for pointed �pn -spaces X of the form

�∞ (C/�+) ⊗ �∞(X�)
�−→ �∞

((
U (pn − 1)+ ∧�pn X

)�
)

� ��
(
�∞(U (pn − 1)+) ⊗�pn �∞(X)

)
.

(4.2)

Since both functors displayed in the statement of Proposition 4.2 preserve
colimits, the claim follows, taking into account that C/� � U (1)×(pn−1). ��
Proof of Theorem 2.2 Recall that we defined

F(n) :=
(
ResU (pn−1)

�

(
IndU (pn−1)

�pn
(D(P�

pn ) ⊗ Sρ)
))

(p)
∈ Spω

�,(p),

and now need to check properties i) and ii) for F(n).
By Proposition 4.2, we see that

��(F(n)) � U (1)×(pn−1)
+ ⊗ ��(D(P�

pn ) ⊗ Sρ)(p).

Observe that ��(−) is symmetric monoidal, and in particular commutes over
Spanier–Whitehead duals. Since P�

pn is the Tits-building of Gln(Fp) (cf. [1,

Lem. 10.1]) which is a wedge of p
n(n−1)

2 spheres of dimension n − 2 if n ≥ 2
(for n = 1, the Tits-building is empty and its unreduced suspension is S0), and
��(Sρ) � S0, we see that ��(F(n)) has type zero.
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Showing property ii) requires much harder previous work of Arone and
Mahowald. Using that �{0} ◦ IndU (pn−1)

�pn
� U (pn − 1)+ ⊗h�pn (−), we see

that the underlying spectrum of F(n) is given as

�{0}(F(n)) � U (pn − 1)+ ⊗h�pn (D(P�
pn ) ⊗ Sρ)(p).

This is easily recognized to be, up to a shift, one of the spectra figuring in [5]
(where Arone uses Kn to denote the suspension ofP�

n ). In [5, Thm. 0.4], build-
ing on work of Arone andMahowald [3], it is shown that H∗(�{0}(F(n)), Fp)

is finitely generated, free and non-zero over the subalgebra An−1 of the mod
p Steenrod algebra.
Using this to compute connective Morava K -theories through the Adams

spectral sequence, it easily follows that the type of�{0}(F(n)) is at least n (see
the proof of [32, Thm. 4.8] for details of this argument). Since we have already
seen that the �-geometric fixed points of F(n) have type zero, we know that
the type of �{0}(F(n)) can be at most n by Theorem 2.1. So it must be exactly
n, which concludes the proof. ��
Remark 4.3 The case n = 1 of Theorem 2.2 admits a nice direct proof, which
we learned from Akhil Mathew: Let F(1)′ ∈ Spω

Z/pZ
denote the cofiber

of the transfer map t : S0 → Z/pZ+ → S0. On geometric fixed points,
this map is zero because it factors through �Z/pZ(Z/pZ+) � 0, hence
�Z/pZ(F(1)′) � S0 ∨ S1 has type zero. The non-equivariant map under-
lying t is simply multiplication by p, hence�{0}(F(1)′) is equivalent to S0/p,
and thus has type one.
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