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1. Introduction

Algebraic K-theory provides rich invariants of rings, schemes, and manifolds, encoding
information reflecting arithmetic, geometry, and topology. The algebraic K-theory of a
ring or scheme captures information about classical arithmetic invariants (e.g., the Picard
and Brauer groups) [50]; for a manifold M , the algebraic K-theory of Σ∞

+ ΩM (Wald-
hausen’s A-theory) is closely related to stable pseudo-isotopy theory and B Diff(M), the
classifying space of the space of diffeomorphisms of M [54]. These seemingly disparate
examples are unified by the perspective that algebraic K-theory is a functor of stable
categories; e.g., a suitable enhancement of the derived category of a scheme, or the cat-
egory of modules over a ring spectrum. This viewpoint was initiated by Thomason and
Trobaugh [50]; see also [11].

For a commutative ring (or more generally a scheme) R, the derived category of R
possesses the additional structure of a symmetric monoidal tensor product. Similarly, the
category of modules over an E∞ ring spectrum is symmetric monoidal. In this situation,
the algebraic K-theory spectrum inherits the structure of an E∞ ring spectrum [10,23,
40,53]. These results have been important both as a source of structured ring spectrum
models for geometric spectra (e.g., topological K-theory) as well as a source of input to
calculation of algebraic K-groups.

The main computational tool for understanding algebraic K-theory of rings is the cy-
clotomic trace map K → TC → THH from algebraic K-theory to topological cyclic and
Hochschild homology [14]; this map can be regarded as a spectrum-level enhancement
of the Dennis trace K → HC− → HH , and induces an equivalence between relative
K-theory and relative TC [17,41] in many cases. Multiplicative structures play an es-
sential role in these calculations, as both THH and TC are commutative ring spectra
when applied to commutative rings and the cyclotomic trace is compatible with this
multiplicative structure (e.g., see [29, §1] and [26, §6]).

However, the existing constructions of the multiplicative cyclotomic trace in the lit-
erature are very complicated and apply only in limited settings. Hence, it would be very
useful to have a general characterization and construction of the multiplicative cyclo-
tomic trace map in terms of a simple universal property. In this paper, making use of the
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theory of noncommutative motives, we resolve this problem: Roughly speaking, the mul-
tiplicative topological Dennis trace is the unique multiplicative natural transformation
from algebraic K-theory to THH (see Theorem 1.11), and the multiplicative cyclotomic
trace is the unique lifting to TC (see Theorem 1.15).

Statement of results. Let Catperf
∞ denote the ∞-category of small idempotent-complete

stable ∞-categories and exact functors. Recall from [11, §6] that a functor
E : Catperf

∞ → D with values in a stable presentable ∞-category D, is called an ad-
ditive invariant if it preserves filtered colimits and sends split-exact sequences of stable
∞-categories to cofiber sequences of spectra. When E moreover sends all exact sequences
of stable ∞-categories to cofiber sequences, we say it is a localizing invariant. In [11] we
produced stable presentable ∞-categories Madd and Mloc of noncommutative motives
and functors

Uadd : Catperf
∞ −→ Madd Uloc : Catperf

∞ −→ Mloc

characterized by the following universal properties: given any stable presentable
∞-category D, there are induced equivalences

(Uadd)∗ : FunL(Madd,D) ∼−→ Funadd
(
Catperf

∞ ,D
)

(1.1)

(Uloc)∗ : FunL(Mloc,D) ∼−→ Funloc
(
Catperf

∞ ,D
)
, (1.2)

where the left-hand sides denote the ∞-categories of colimit-preserving functors and the
right-hand sides the ∞-categories of additive and localizing invariants.

As stable ∞-categories, Madd and Mloc carry a natural enrichment in spectra; see [11,
§4]. In [11] we showed that the connective algebraic K-theory spectrum functor K(−) and
the non-connective algebraic K-theory spectrum functor IK(−) become co-representable
in Madd and Mloc respectively. More precisely, given any idempotent-complete small
stable ∞-category A, there are equivalences of spectra

Map
(
Uadd

(
Sω
∞
)
,Uadd(A)

)
� K(A) Map

(
Uloc

(
Sω
∞
)
,Uloc(A)

)
� IK(A), (1.3)

where S∞ denotes the stable ∞-category of spectra and Sω
∞ the (essentially small) stable

subcategory of compact objects in S (see Theorem 1.3 in [11]). Our first main result is
the following:

Theorem 1.4. (See Theorem 5.8.) The ∞-categories Madd and Mloc carry natural sym-
metric monoidal structures making the functors Uadd and Uloc symmetric monoidal. The
tensor units are Uadd(Sω

∞) and Uloc(Sω
∞) respectively.

Here the symmetric monoidal structure is induced from the convolution symmetric
monoidal structure on the ∞-category Pre((Catperf

∞ )ω) of presheaves indexed on the
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symmetric monoidal ∞-category of compact objects in Catperf
∞ . Similar considerations

in the “dual” setting of covariant functors from Madd and Mloc to spectra give rise to
symmetric monoidal structures on the ∞-categories of additive and localizing invariants:

Theorem 1.5. (See Theorem 5.14.) The ∞-categories of additive and localizing invariants,
Funadd(Catperf

∞ ,S∞) and Funloc(Catperf
∞ ,S∞), are symmetric monoidal ∞-categories.

That is, they are the underlying ∞-categories of symmetric monoidal presentable sta-
ble ∞-categories Funadd(Catperf

∞ ,S∞)⊗ and Funloc(Catperf
∞ ,S∞)⊗. The tensor units are

the connective and non-connective algebraic K-theory functors K and IK.

Theorem 1.5 allows us to study En algebras and En maps in Funadd(Catperf
∞ ,S∞) and

Funloc(Catperf
∞ ,S∞). Since algebraic K-theory is the tensor unit, a consequence of Theo-

rem 1.5 and the fact that the space of multiplicative maps out of the unit is contractible
is the following strong uniqueness result:

Corollary 1.6. (See Corollary 7.2.) There exists a unique E∞ algebra structure on K,
viewed as an object of the symmetric monoidal ∞-category Funadd(Catperf

∞ ,S∞)⊗. Fur-
thermore, for any 0 � n � ∞ and any En algebra F , the space of En algebra maps from
K to F is contractible. Analogous statements hold for IK.

By combining Theorem 1.5 with the recent work of Glasman [27], we obtain the
following relation between E∞ algebras and lax symmetric monoidal functors:

Corollary 1.7. For any presentable symmetric monoidal ∞-category D, there are equiv-
alences of ∞-categories

Alg/E∞

(
Funadd

(
Catperf

∞ ,D
)) ∼−→ Funlax

add
(
Catperf

∞ ,D
)

Alg/E∞

(
Funloc

(
Catperf

∞ ,D
)) ∼−→ Funlax

loc
(
Catperf

∞ ,D
)
.

This leads to the following sharpening of equivalences (1.1) and (1.2).

Theorem 1.8. For any presentable symmetric monoidal ∞-category D, there are equiva-
lences of ∞-categories

(Uadd)∗ : FunL,lax(Madd,D) ∼−→ Funlax
add

(
Catperf

∞ ,D
)

(Uloc)∗ : FunL,lax(Mloc,D) ∼−→ Funlax
loc

(
Catperf

∞ ,D
)
,

where the left-hand sides denote the ∞-category of lax symmetric monoidal colimit-
preserving functors and the right-hand sides denote the ∞-categories of lax symmetric
monoidal additive or localizing invariants, respectively.

In order to produce lax monoidal functors of ∞-categories Catperf
∞ → S∞, we develop

a multiplicative version of Morita theory for spectral categories. In [11, §4] we proved
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that the ∞-category Catperf
∞ of small stable idempotent-complete ∞-categories admits

a model given by the localization of the category CatS of spectral categories (categories
enriched in spectra) with respect to the class W of Morita equivalences. Here recall that
a spectral functor C → D is a DK-equivalence if it induces weak equivalences C(X,Y ) →
D(FX,FY ) on all mapping spectra and is homotopically essentially surjective, and a
Morita equivalence if it induces a DK-equivalence on the induced functor Mod(C) →
Mod(D). In particular, any (stable) ∞-category can be “rigidified” to a (stable) spectral
category.

For our applications herein, we generalize this rigidification result to the multiplicative
setting. To maintain homotopical control on the smash product of spectral categories,
we use the notion of a flat spectral category, i.e., a spectral category such that tensoring
with it preserves Morita equivalences. Since pointwise-cofibrant spectral categories are
flat, and any flat spectral category is DK-equivalent to a pointwise-cofibrant spectral
category, we will write Catflat

S for the full subcategory of pointwise-cofibrant spectral
categories. Following [35], we write N for the nerve functor from categories (or, more
generally, simplicial categories) to ∞-categories.

Theorem 1.9. (See Theorem 4.6.) There is an equivalence of symmetric monoidal
∞-categories between (Catperf

∞ )⊗ and (N(Catflat
S )[W−1])⊗, where W denotes the class

of Morita equivalences.

Since the ∞-category associated to Catflat
S is a model for the ∞-category of spec-

tral categories and Morita equivalences, we use (N(Catflat
S )[W−1])⊗ as a specific model

of the symmetric monoidal ∞-category of spectral categories and Morita equivalences.
Hence, Theorem 1.9 allows us to describe multiplicative objects in Funadd(Catperf

∞ ,S∞)
and Funloc(Catperf

∞ ,S∞) as functors from spectral categories to spectra. Specifically, we
prove in Section 6 that suitable homotopical point-set lax symmetric monoidal functors
from spectral categories to spectra give rise to E∞ algebras in Funadd(Catperf

∞ ,S∞) and
Funloc(Catperf

∞ ,S∞).

Theorem 1.10. (See Theorem 6.3.) Let E be a lax symmetric monoidal functor from spec-
tral categories to spectra. Further assume that E preserves Morita equivalences between
flat spectral categories and that the induced functor Ẽ : Catperf

∞ → S∞ is an additive
invariant. Then Ẽ naturally extends to an E∞ algebra object of Funadd(Catperf

∞ ,S∞)⊗.
The analogous results for localizing invariants hold.

Our main example of a functor E satisfying the hypotheses of Theorem 1.10 is topo-
logical Hochschild homology; see Corollary 6.9.

Applications. Recall that one of the most interesting applications of the theory developed
in [11] was the proof that the set of homotopy classes of natural transformations from K

to THH is isomorphic to Z, with the topological Dennis trace corresponding to 1 ∈ Z. The
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following consequence of Corollary 1.6 and Theorem 1.10, which is our main application,
is a significant sharpening of this result.

Theorem 1.11. (See Theorem 7.3.) The space of maps of E∞ algebras from K to THH
in Funadd(Catperf

∞ ,S∞)⊗ is contractible. Equivalently, the space of natural transforma-
tions of lax symmetric monoidal functors from K → THH in Funlax

add(Catperf
∞ ,S∞) is

contractible. The unique element of this space is the topological Dennis trace map. The
analogous result holds for IK.

Although TC is not an additive invariant (as it does not preserve filtered colimits),
we can extend this result to an identification of the cyclotomic trace. Specifically, TC
can be described as holimn TCn, where the TCn are additive invariants, and this char-
acterization gives rise to the following result.

Theorem 1.12. (See Theorem 7.4.) The space of maps of E∞ algebras from K → TCn

in Funadd(Catperf
∞ ,S∞)⊗ is contractible. Equivalently, the space of natural transforma-

tions of lax symmetric monoidal functors from K → TCn in Funlax
add(Catperf

∞ ,S∞) is
contractible. The unique homotopy class of maps of E∞ algebras in Fun(Catperf

∞ ,S∞)⊗
from K to TC that restrict to maps of E∞ algebras K → TCn is the cyclotomic trace.

Our second application, which generalizes results of [10,23], is the following:

Theorem 1.13. (See Proposition 5.9 and Corollary 5.10.) The algebraic K-theory functors
are lax symmetric monoidal as functors from Catperf

∞ to S∞. In particular, for every En

object A in Catperf
∞ , with 0 � n � ∞, K(A) and IK(A) are En ring spectra.

Theorem 1.13, combined with Lurie’s proof [36, 8.1.2.6] of a conjecture of Mandell [37,
5.3], which asserts that an En+1 algebra in spectra gives rise to an En category of compact
modules in Catperf

∞ , implies that the K-theory of an En+1 ring spectrum is an En ring
spectrum. Our third application, which is a consequence of Theorem 1.4 and equivalences
(1.3), is the following:

Corollary 1.14. (See Corollary 5.18.) The symmetric monoidal homotopy categories
Ho(Madd) and Ho(Mloc) are enriched over the symmetric monoidal homotopy category
Ho(ModA(∗)) of A(∗)-modules, where A(∗) = K(S) � IK(S).

Our final application is a consistency result for multiplicative structures on algebraic
K-theory. Associated to a spectral category C is its pre-triangulated spectral category
Perf(C) of (homotopically) compact C-modules, which has a Waldhausen structure in-
herited from the projective model structure on C-modules. There are now two possible
constructions of algebraic K-theory landing in the ∞-category of spectra. This is de-
picted as follows:
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N(CatS)
Perf(−)

N(CatS)
K(−)

S∞

Catperf
∞

Uadd(−)
Madd

Map(Uadd(Sω
∞,−))

S∞.

In [11, §7] it was proved that these two approaches (as well as a third ∞-categorical ver-
sion of the Waldhausen construction) are canonically equivalent. The following corollary
of Corollary 1.6 promotes this equivalence to the multiplicative setting.

Corollary 1.15. (See Corollary 7.5.) Let C be a symmetric monoidal spectral category,
and Perf(C) be the resulting symmetric monoidal category of compact modules. The two
algebraic K-theory spectra described above are naturally equivalent as E∞ algebras in
the ∞-category of spectra. If C is a monoidal spectral category, the resulting algebraic
K-theory spectra are naturally equivalent as A∞ algebras in the ∞-category of spectra.
Analogous results hold for IK.

Finally, we note that there has been recent work on the subject of multiplicative
structures on an ∞-categorical model of algebraic K-theory due to Barwick [1]. Naturally,
the basic results are broadly similar, but certain technical differences arise in both the
method of proof and the approach to describing the input data for algebraic K-theory.

Notations. Throughout the article we will use the letter T to denote the symmetric
monoidal simplicial model category of simplicial sets and the letter S for the symmetric
monoidal simplicial model category of symmetric spectra of simplicial sets [33].

2. Background on spectral categories

Our work depends on a careful analysis of the interplay between different models of
the homotopy theory of stable homotopy categories. In this section, we briefly review the
details of the model given by spectral categories. Other references on spectral categories
include [7, Section 2], [11, Section 2.1], [42, Appendix A], or [45, Section 2].

Recall that a spectral category A is a category enriched in the category S of symmetric
spectra. Concretely, it consists of the following data:

• A class of objects obj(A);
• A symmetric spectrum A(x, y) for each ordered pair of objects (x, y);
• Composition morphisms in S

A(y, z) ∧ A(x, y) −→ A(x, z) x, y ∈ obj(A)

satisfying the usual associativity condition;
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• Unit morphisms S → A(x, x), x ∈ obj(A), satisfying the usual unit condition with
respect to the above composition.

A spectral category is called small whenever its class of objects forms a (small) set.
A spectral functor F : A → B is a functor enriched over S. Concretely, it consists of a
map obj(A) → obj(B) and of morphisms in S

F (x, y) : A(x, y) −→ B(Fx, Fy) x, y ∈ obj(A)

satisfying the usual unit and associativity conditions.

Notation 2.1. Let CatS denote the category of small spectral categories.

Given a small spectral category A, one can form a genuine category [A] by keeping
the same set of objects and by defining [A](x, y) as the set of morphisms in the homotopy
category Ho(S) from the sphere spectrum S to A(x, y). This gives naturally rise to a
well-defined functor

[−] : CatS −→ Cat

with values in the category of small categories.
We now turn to the homotopy theory of spectral categories.

Definition 2.2. A spectral functor F : A → B is called a DK-equivalence if:

• The morphisms in S

F (x, y) :A(x, y) −→ B(Fx, Fy) x, y ∈ obj(A)

are stable equivalences of spectra;
• The induced functor [F ] : [A] → [B] is an equivalence of categories.

As proved in [45, Thm. 5.10], CatS carries a (right proper) Quillen model structure
whose weak equivalences are the DK-equivalences. Moreover, the criteria of [4, Thm. 2.5,
Thm. 2.20] implies that this model structure is in fact cofibrantly-generated.

For the purposes of algebraic K-theory (and related functors), it is convenient to
work with a weaker notion of equivalence than DK-equivalence. Given a spectral cat-
egory A, an A-module is a spectral functor from the opposite spectral category Aop

(where Aop(x, y) := A(y, x)) to the spectral category S of symmetric spectra. Let us
denote by Â the spectral category of A-modules. As explained in [42, A.1.1], Â carries a
(combinatorial) spectral model structure in which the weak equivalences are the point-
wise stable equivalences and the fibrations are the pointwise fibrations. In what follows
we will denote by D(A) the derived category of A, i.e., the homotopy category Ho(Â)
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associated to this model structure. Note that one has a (fully faithful) spectral Yoneda
embedding

A −→ Â z �→ A(−, z).

Let Dtri(A) denote the smallest triangulated subcategory of D(A) containing the
image of A under the Yoneda embedding, and Dperf(A) the smallest thick triangulated
subcategory of D(A) containing the image of A under the Yoneda embedding.

Note that every spectral functor F : A → B gives rise to a restriction/extension
Quillen adjunction

B̂

F∗

Â.

F!

We hence obtain a total left-derived functor LF! : D(A) → D(B) which restricts to
LF! : Dperf(A) → Dperf(B) and furthermore to LF! : Dtri(A) → Dtri(B).

Definition 2.3. A spectral functor F : A → B is called:

• A triangulated equivalence if LF! : Dtri(A) ∼−→ Dtri(B) is an equivalence;
• A Morita equivalence if LF! : Dperf(A) ∼−→ Dperf(B) is an equivalence.

As we shall recall below, with these notions of equivalence spectral categories provide
a point-set model of the homotopy theory of small stable homotopical categories. To this
end, it is sometimes convenient to work with a variant model of spectral categories. Let
M denote the symmetric monoidal category of S-modules of Elmendorf, Kriz, Mandell
and May [25] and CatM denote the category of small categories enriched in M and the
spectral (enriched) functors. The notions of DK-equivalence, triangulated equivalence,
and Morita equivalence generalize in the obvious fashion. Recall from [38, 3.7] that there
is a Quillen equivalence (N ◦ P,U ◦ N�) connecting S and M. The left adjoint is strong
monoidal and the right adjoint is lax monoidal.

Proposition 2.4. The induced adjoint pair of functors between CatS and CatM produces
a transferred model structure on CatM in which the weak equivalences are the DK-
equivalences. This model structure is Quillen equivalent to the model structure on CatS .

Proof. We can apply standard transfer arguments to lift the DK-equivalence model
structure on CatS to a model structure on CatM (e.g., see [3, §2.5]). We define weak
equivalences and fibrations in CatM to be maps which are weak equivalences and fibra-
tions via U ◦ N�. Since the right adjoint U ◦ N� creates the weak equivalences, preserves
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sequential colimits along closed inclusions, all objects in CatM are fibrant, and there are
functorial path objects (via the construction of [46, 4.1.1]), this specifies a transferred
model structure on CatM. Since M and S are Quillen equivalent, it is clear that the
transferred model structure on CatM is Quillen equivalent to CatS . �

The category CatM allows us to correct a small error in [11]. Specifically, we studied
therein the construction ψperf that takes a small pointwise-cofibrant spectral category C
to the cofibrant, fibrant, homotopically compact objects in the projective model structure
on Mod(C) [11, §4.1]. A functor F : C → D induces a functor Mod(C) → Mod(D) via
left Kan extension followed by fibrant replacement. Because of the appearance of fibrant
replacement, ψperf is not a strict endofunctor on CatS , although it does have suitable
coherence to give rise to an ∞-functor. However, since all objects in CatM and in the
variant of Mod(C) in this setting are fibrant, the fact that the left Kan extension is
a Quillen left adjoint (and so preserves cofibrant objects and hence cofibrant–fibrant
objects) implies that ψperf is functorial in this setting. An analogous issue arises with
the functoriality of the spectral envelope [11, 4.10], and can be corrected in the same
fashion.

3. Background on ∞-categories and ∞-operads

The basic setting for our work is the theory of ∞-categories (and particularly stable
∞-categories), which provide a tractable way to handle the abstract homotopy theory
of the “category of homotopical categories” as well as categories of homotopical func-
tors. There are now many competing models of ∞-categories, including Rezk’s Segal
spaces [47], the Segal categories [32,49] of Simpson and Tamsamani, the “quasicate-
gories” (weak Kan complexes) introduced by Boardman and Vogt and studied by Joyal
and Lurie [12,34,35], the homotopy theory of simplicial categories as studied by Dwyer,
Kan and Bergner [20,5], and others, all of which are known to be equivalent (see [6]
for a nice discussion of the situation). We have chosen to work in this paper with the
theories of quasicategories and spectral categories. Our basic references for the former
material are Lurie’s books [35,36]. In this section we give a brief review of certain essen-
tial foundational aspects of the theory of quasicategories and then review the theory of
∞-operads as we will apply it in the body of the paper, following [36, §2].

We begin by recalling the passage from categories with weak equivalences (e.g., model
categories) to ∞-categories in the setting of quasicategories. One way to produce an
∞-category from a category C with weak equivalences wC is to take a fibrant replace-
ment of the Dwyer–Kan simplicial localization of (C, wC) and apply the coherent nerve
functor N. In general, for a category C with weak equivalences we will denote this pro-
cess by N(LHC). For the purposes of studying the multiplicative structure induced by
a monoidal product, it is convenient to use the repackaging of this approach to pass-
ing from a model category to an ∞-category described in [36, §1.3.4 and §4.1.3]. The
construction of [36, Construction 4.1.3.1] produces from an ∞-category C and a suitable
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collection of weak equivalences W an ∞-category C[W−1]. In particular, given a model
category D which is not necessarily simplicial, the coherent nerve of the subcategory of
cofibrant objects Dc is an ∞-category and the ∞-category N(Dc)[W−1] is a version of
the underlying ∞-category of D.

Proposition 3.1. Let C be a combinatorial model category with weak equivalences W.
Then there is a categorical equivalence N(Cc)[W−1] → N(LHC) induced by the inclusion
Cc → LHCc.

Proof. This follows from the fact that the map N(C) → N(LHC) exhibits N(LHC) as
the ∞-category obtained from N(C) by inverting the morphisms of W, in the sense
of [36, Definition 1.3.4.1]. To see this, recall from [16] that the combinatorial model
category C is Quillen equivalent to a combinatorial simplicial model category C′. By [36,
Lemma 1.3.4.21], this induces an equivalence of ∞-categories

N
(
Cc)[W−1] −→ N

((
C′)c)[W−1].

Next, [36, Theorem 1.3.4.20] implies that there is an equivalence of ∞-categories

N
((
C′)c)[W−1] −→ N

((
C′)◦),

where (C′)◦ denotes the full simplicial subcategory consisting of the cofibrant–fibrant
objects in C′. Thus, it suffices to compare N(LHD) and N(D◦) for a simplicial model
category D. By [21, 4.8] there is a natural zig-zag of equivalences of simplicial categories
connecting D◦ and LHD, and so the result follows. �

Next, we briefly review the definitions of stable ∞-categories. An ∞-category that
has finite colimits and limits is stable [36, 1.1.1.9] when pushout and pullback squares
coincide [36, 1.1.3.4]; it is straightforward to check that a stable ∞-category has a tri-
angulated structure on its homotopy category coming from the cofiber sequences [36,
1.1.2.13]. A functor between stable ∞-categories is exact when it preserves finite colim-
its [36, §1.1.4]. An exact functor is an equivalence when it induces an equivalence on
the underlying (triangulated) homotopy categories. One of the basic attractive aspects
of the theory of quasicategories is that the quasicategory of quasicategories is tractable.
Herein, we are particularly interested in Catex∞ and Catperf

∞ , which are respectively the
∞-categories of small stable and idempotent-complete small stable ∞-categories (with
the equivalences given as above).

We now turn to the theory of ∞-operads. Let Fin∗ denote the category with objects
the pointed sets 〈n〉 = {∗, 1, 2, . . . , n} and morphisms those functions which preserve the
basepoints ∗. (Classically, this category is also denoted Γ op.) Recall that N will denote
the nerve functor; the nerve of an ordinary category is a quasicategory [35, 1.1.5.5].
In mild abuse of notation, we will also use N to denote the homotopy coherent nerve
functor from simplicial categories to quasicategories [35, 1.1.2.6]. This is reasonable since
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the homotopy coherent nerve of an ordinary category regarded as a discrete category
coincides with the standard nerve [35, 1.1.5.8].

Before providing the definition of an ∞-operad, we recall two basic definitions. First,
a map f : 〈m〉 → 〈n〉 is inert if f−1(i) has precisely one element for i �= ∗ [35, 2.1.1.8].
There are distinguished inert morphisms ρi : 〈n〉 → 〈1〉 that take everything to the
basepoint except i, which is taken to 1. Second, we need to recall the definition of
p-coCartesian morphisms. Given an object x ∈ C, let Cx/ denote the category of objects
under x. Similarly, given a morphism f in an ∞-category C, let Cf/ denote the category
of morphisms under f . Then given a functor p : C → D, a morphism f : x → y in C is
p-coCartesian (lifting p(f) : px → py) if the natural map

Cf/ −→ Cx/ ×Dpx/
Dp(f)/

is a trivial fibration of simplicial sets [35, §2.4.1]. A map p : C → D is a coCartesian
fibration if it is an inner fibration (has the right lifting property with respect to inner
horn inclusions) and for each c ∈ C and map pc → d, there is a p-coCartesian edge c → c′

that lifts the given map; see [35, §2.4] for more details.

Definition 3.2. (See [36, Definition 2.1.1.10].) An ∞-operad is then an ∞-category O⊗

and a functor p : O⊗ → N(Fin∗) satisfying the following conditions:

(1) For every inert morphism f : 〈m〉 → 〈n〉 in Fin∗ and every object C of O⊗
〈m〉, there

exists a p-coCartesian morphism f̃ : C → C ′ in O⊗ lifting f and hence an induced
functor f! : O⊗

〈m〉 → O⊗
〈n〉.

(2) Let C ∈ O⊗
〈m〉 and C ′ ∈ O⊗

〈n〉 be objects, let f : 〈m〉 → 〈n〉 be a morphism in Fin∗,
and let mapf

O⊗(C,C ′) denote the union of the components of mapO⊗(C,C ′) which
lie over f ∈ homFin∗(〈m〉, 〈n〉). Choose p-coCartesian morphisms C ′ → C ′

i lying over
the inert morphisms ρi : 〈n〉 → 〈1〉 for each 1 � i � n. Then the induced map

mapf
O⊗

(
C,C ′) −→ ∏

1�i�n

mapρi◦f
O⊗

(
C,C ′

i

)

is a homotopy equivalence.
(3) For every finite collection of objects C1, . . . , Cn of O⊗

〈1〉, there exists an object C of
O⊗

〈n〉 and p-coCartesian morphisms C → Ci covering ρi, 1 � i � n.

This is the generalization of the notion of a multicategory (colored operad); to obtain
the generalization of an operad we restrict to ∞-operads equipped with an essentially
surjective functor Δ0 → p−1(〈1〉). To make sense of this, note that p−1(〈1〉) should be
thought of as the “underlying” ∞-category associated to O⊗, which should contain only
a single (equivalence class of) object if we’re interested studying the ∞-version of an
ordinary operad.
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More precisely, given a multicategory A, we can construct a category Ã as fol-
lows: the objects are finite sets of objects in A, and morphisms from {X1, . . . , Xm} →
{Y1, . . . , Yn} are specified by maps 〈m〉 → 〈n〉 in Fin∗ and a collection of morphisms
{φj ∈ A({Xi}i∈α−1(j), Yj)}1�j�n. Composition is determined by the composition laws
in the multicategory. There is a natural functor Ã → Fin∗; Definition 3.2 is modeled
on this structure. It is straightforward to check that this construction, the “category of
operations”, is functorial.

More generally, given a simplicial multicategory, there is an analogue of this con-
struction which yields a simplicial category [36, 2.1.1.22], and applying the homotopy
coherent nerve to the resulting category yields an ∞-operad provided that each morphism
simplicial set of the multicategory is a Kan complex; consult [36, Proposition 2.1.1.27]
for further discussion or see [30, §2]. This construction is sometimes referred to as the
operadic nerve of the simplicial multicategory.

We now turn to some examples of interest. The identity map N(Fin∗) → N(Fin∗) is an
∞-operad; this is the analogue of the E∞ operad. More generally, for each 0 � n � ∞,
we can define a topological category Ẽ[n] as follows (see also [36, Definition 5.1.0.2]).
The objects of Ẽ[n] are the objects of Fin∗. Morphisms consist of maps α : 〈n〉 → 〈m〉
along with for each non-basepoint j ∈ 〈m〉 disjoint rectilinear embeddings (0, 1)n →
(0, 1)n (i.e., maps given by component-wise linear maps) for each element of α−1(j).
Composition is defined in the usual fashion. Using the singular complex functor to get
a simplicial category and applying the homotopy coherent nerve, there is a natural
functor N(Ẽ[n]) → N(Fin∗) which is an ∞-operad [36, 5.1.0.3]. We refer to the resulting
∞-operad as the En operad.

Given an ∞-operad q : O⊗ → N(Fin∗) and a coCartesian fibration p : C⊗ → O⊗

from an ∞-category C⊗, we say that p : C⊗ → O⊗ is an O-monoidal ∞-category if
the composite q ◦ p : C⊗ → O⊗ → N(Fin∗) is an ∞-operad. Such a map p is called a
coCartesian fibration of ∞-operads. In particular, a symmetric monoidal ∞-category is
an ∞-operad C⊗ such that the structure map is a coCartesian fibration of ∞-operads
(see [36, Example 2.1.2.18])

p : C⊗ −→ N(Fin∗).

The underlying ∞-category is obtained as the fiber C = p−1(〈1〉). More generally, the
fiber over 〈n〉 is equivalence to the n-fold product of C. In abuse of terminology, we
will say that an ∞-category C is a symmetric monoidal ∞-category if it is equivalent to
p−1(〈1〉) for some symmetric monoidal ∞-category C⊗.

Recall from [36, Example 2.1.1.5] that given a symmetric monoidal category C, there is
an associated multicategory in which the multihomomorphisms are given by the formula

hom
(
(X1, . . . , Xn), Y

)
= hom(X1 ⊗ · · · ⊗Xn, Y ).
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Associated to this multicategory we can construct a category C⊗ → Fin∗ over Fin∗
(see [36, Construction 2.1.1.7]) such that the coherent nerve N(C⊗) → N(Fin∗) exhibits
N(C⊗) as a symmetric monoidal ∞-category; see [36, Examples 2.1.1.21 and 2.1.2.22].

When C is a symmetric monoidal model category, we can also obtain a symmet-
ric monoidal ∞-category using the coherent nerve. Specifically, there is a symmetric
monoidal ∞-category (N(Cc)[W−1])⊗ with underlying ∞-category N(Cc)[W−1]; see [36,
Proposition 4.1.3.4 and Example 4.1.3.6]. If C is simplicial, then there is an equivalence
of symmetric monoidal ∞-categories between (N(Cc)[W−1])⊗ and the operadic nerve
N⊗(C◦) (cf. [36, Definition 2.1.1.23]) of C◦, the full subcategory of cofibrant–fibrant ob-
jects of C by [36, Corollary 4.1.3.16].

An ∞-operad map

f : O⊗ −→ O′ ⊗

is a map of simplicial sets f : O⊗ → O′ ⊗ over N(Fin∗) such that f takes inert mor-
phisms in O⊗ to inert morphisms in O′ ⊗. The ∞-category of ∞-operad maps is written
AlgO(O′) and is defined to be the full subcategory of FunN(Fin∗)(O⊗,O′ ⊗) spanned by
the ∞-operad maps. (Here FunN(Fin∗) denotes maps over N(Fin∗).)

More generally, we can work over a fixed ∞-operad O⊗. If p : C⊗ → O⊗ is an
∞-operad map such that p is also a categorical fibration (a fibration of ∞-operads) and
α : O′ ⊗ → O⊗ is an arbitrary ∞-operad map, then AlgO′/O(C) is the full subcategory of
FunO⊗(O′ ⊗, C⊗) spanned by the ∞-operad maps; see [36, Definitions 2.1.2.7 and 2.1.3.1].
An object of AlgO′/O(C) is referred to as an O′-algebra object of C over O. Note that
the ∞-category AlgO′/O(C) is the fiber of the projection AlgO′(C) → AlgO′(O) over α.
Also, when α : O′ ⊗ → O⊗ is the identity, we write Alg/O(C) in place of AlgO′/O(C).

For example, the ∞-category of commutative algebras in a symmetric monoidal
∞-category C⊗ is given by suitable sections of the coCartesian fibration C⊗ → N(Fin∗).
The data of such a section at 〈n〉 is n copies of the underlying object (the section
evaluated at 〈1〉), and the lifting condition for p-coCartesian edges provides the multi-
plications. See [28, §4.2] for a nice discussion in detail.

Definition 3.3. Let O⊗ be an ∞-operad with a single object and let C be an O-monoidal
∞-category. There is a natural map from Alg/O(C) → C induced by the image of the
object in O. Then the space of O-algebra structures on an object X, denoted Alg/O(X),
is the largest Kan complex contained in the full subcategory of Alg/O(C) spanned by
objects which project to X under this map.

Given an ∞-operad O⊗ and O-monoidal ∞-categories p : C⊗ → O⊗ and q :
D⊗ → O⊗, we have two associated categories of functors between them:

(1) The ∞-category of ∞-operad maps AlgC/O(D), which should be thought of as the
analogue of lax O-monoidal functors; consult [36, Definition 2.1.2.7] for details.
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(2) The full subcategory Fun⊗
O(C,D) of AlgC(D) consisting of the ∞-operad maps over

O⊗ which carry p-coCartesian morphisms to q-coCartesian morphisms, which should
be regarded as the analogue of symmetric monoidal functors; consult [36, Defini-
tion 2.1.3.7] for details.

We now explain how to produce symmetric monoidal functors of ∞-categories from
point-set data. We rely on the foundational work of [24].

Lemma 3.4. Let C and D be symmetric monoidal categories and f : C → D a lax sym-
metric monoidal functor. Then there is an induced ∞-operad map

N(f) : N(C)⊗ −→ N(D)⊗,

making N(−)⊗ into a functor from the (nerve of the) category of symmetric monoidal
categories and lax symmetric monoidal functors to the ∞-category of ∞-operads.

Proof. Associated to any symmetric monoidal category is an underlying multicategory,
and the work of [24, §3], particularly the proof of Theorem 1.1, implies that a lax map
f : C → D induces a map of multicategories. It is clear from [36, Remark 2.1.1.7] that
a map of multicategories induces a functor f⊗ : C⊗ → D⊗ over the natural projections
to Fin∗. Since f⊗ came from a map of multicategories, on passage to the coherent nerve
f⊗ takes inert morphisms to inert morphisms and so induces a map of ∞-operads. The
behavior of composites follows immediately from the functoriality of the passage from
lax maps to multicategory maps. �

Next, we integrate this with the localization N(C)[W−1].

Proposition 3.5. Let C and D be symmetric monoidal categories equipped with subcat-
egories WC ⊂ C and WD ⊂ D of weak equivalences such that both collections of weak
equivalences are closed under tensor with any fixed object. Let f : C → D be a lax symmet-
ric monoidal functor such that f preserves weak equivalences and f is weakly symmetric
monoidal in the sense that the maps 1D → f(1C) and f(c1)⊗ f(c2) → f(c1 ⊗ c2), for all
pairs of objects c1 and c2 of C, are in WD. Then

(1) there are symmetric monoidal ∞-categories N(C)[W−1
C ]⊗ and N(D)[W−1

D ]⊗ with un-
derlying ∞-categories N(C)[W−1

C ] and N(D)[W−1
D ] respectively, and

(2) there is a map of ∞-operads

f̃ : N(C)
[
W−1

C
]⊗ −→ N(D)

[
W−1

D
]⊗

such that on underlying ∞-categories f̃ restricts to the functor induced by f via
Lemma 3.4.



206 A.J. Blumberg et al. / Advances in Mathematics 260 (2014) 191–232
Proof. By Lemma 3.4, we have a map

N(C)⊗ N(f)−−−−→ N(D)⊗,

and since by hypothesis the localization N(D⊗) → N(D⊗)[W−1
D ] is symmetric monoidal

(it satisfies the criterion of [36, Proposition 4.1.3.4]), we have a lax symmetric monoidal
functor

N(C)⊗ N(f)−−−−→ N(D)
[
W−1

D
]⊗

.

Furthermore, N(f) lies in the subcategory

Fun⊗(N(C),N(D)
[
W−1

D
])

⊆ AlgN(C)
(
N(D)

[
W−1

D
])

of symmetric monoidal functors since each of the comparison maps (for each active map
μ : 〈n〉 → 〈m〉 in Γ )

μ!
(
F (A1, . . . ,An)

)
−→ F

(
μ!(A1, . . . , An)

)

is a weak equivalence in D, and hence becomes an equivalence in N(D)[W−1
D ] [36, Def-

inition 1.3.4.1]. Finally, since f takes elements of WC to elements of WD, the result
follows from [36, Proposition 4.1.3.4], which we summarize in the following commutative
diagram:

N(C)⊗
N(f)

N(D)⊗

N(C)[W−1
C ]⊗

N(f̃)
N(D)[W−1

D ]⊗.

�

We also use a comparison between point-set E∞ algebras in a symmetric monoidal
simplicial model category with E∞ algebras in the underlying ∞-category. We thank
Jacob Lurie for suggesting this argument. (See also [30, §6.2] for progress towards this
kind of result in the context of arbitrary multicategories rather than just operads.)

Proposition 3.6. Let O be a cofibrant simplicial E∞ operad and C a symmetric monoidal
simplicial model category. Then there is an equivalence of ∞-categories

N
(
AlgO(C)

)[
W−1] � CAlg

(
N(C)

[
W−1]⊗).

Proof. First, there is an equivalence of symmetric monoidal ∞-categories between
N(C)[W−1]⊗ and N(C◦)⊗, where C◦ denotes the cofibrant–fibrant objects in C [36,
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Variant 4.1.3.17]. By the functoriality of the operadic homotopy coherent nerve, we have
a canonical map

N
(
AlgO

(
C◦)) → AlgN(O)⊗

(
N
(
C◦)⊗) � AlgN(O)⊗

(
N(C)

[
W−1]⊗).

Since this map clearly preserves weak equivalences, it factors as a map

γ : N
(
AlgO

(
C◦))[W−1] → AlgN(O)⊗

(
N(C)

[
W−1]⊗).

Since O is cofibrant, the results of [48, §4] produce a J-semi model category structure on
the category AlgO(C). The proof of [36, Theorem 1.3.4.20] goes through in this context
to show that the map

N
(
AlgO

(
C◦))[W−1] → N

(
AlgO(C)

)[
W−1]

is an equivalence of ∞-categories.
Finally, we follow the strategy of the proof of [36, Theorem 4.4.4.7] to prove that γ is

an equivalence of ∞-categories. We have the commutative diagram

N(AlgO(C◦))[W−1]
γ

G

AlgN(O)(N(C)[W−1]⊗)

G

N(C)[W−1]

and we will apply the ∞-categorical Barr–Beck theorem via [36, Corollary 6.2.2.14].
The verification of the required hypotheses proceeds exactly as in [36, 4.4.4.7] except
for two conditions. First, we need to check that G : N(AlgO(C◦))[W−1] → N(C)[W−1]
preserves geometric realizations of simplicial objects. Second, we need to show that the
free O-algebra functor C → AlgO(C) → C on a cofibrant–fibrant object X is computed by
the homotopy colimit

∐
n(O(n)×X⊗n)hΣn

. Both of these can be verified using the J-semi
model structure on O-algebras in C and the fact that O is a cofibrant E∞ operad. For
the first, the arguments for [25, §VII.3] apply since the free O-algebra functor commutes
with geometric realizations in C. For the second, this is an immediate consequence of the
fact that O is a cofibrant E∞ operad and so the derived functor of the free O-algebra
functor is a homotopy colimit of the desired form. �

We conclude this section with some remarks about the behavior of the unit object in
monoidal ∞-categories. Let 1 denote the unit object in an En monoidal ∞-category. Our
main results rely on the following analogues of the standard fact that the unit is initial
in a monoidal category; these ∞-categorical versions follow from [36, Proposition 3.2.1.8]
(e.g., see [36, Corollary 3.2.1.9]).
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Lemma 3.7. Let C⊗ be an En monoidal ∞-category, n � 0. Then the ∞-category
Alg/En

(C) has an initial object, and an object A of Alg/En
(C) is initial if and only

if the unit map 1 → A is an equivalence in C.

Corollary 3.8. Let C⊗ be an En monoidal ∞-category, n � 0. Then, the ∞-category
Alg/En

(1) of En algebra structures on the unit object 1 of C is contractible and, for any
other En algebra A of C, the space of En algebra maps from 1 to A is contractible.

4. Multiplicative Morita theory

The ∞-category Catperf
∞ of idempotent-complete small stable ∞-categories has a sym-

metric monoidal structure with product ⊗∨ and the unit the ∞-category Sω
∞ of compact

objects in S∞ [36, §6.3.1]. Recall from [11, Thms. 4.22 and 4.23] that we have a de-
scription of Catperf

∞ as the accessible localization of the ∞-category N(CatS)[W−1] along
the Morita equivalences. The goal of this section is to promote this equivalence to an
equivalence of symmetric monoidal ∞-categories, using the smash product of spectral
categories; see Theorem 4.6.

The category CatS has a closed symmetric monoidal product given by taking (C,D)
to the spectral category with objects ob C×obD and morphism spectra C(c, c′)∧D(d, d′).
However, the smash product of cofibrant spectral categories is not necessarily cofibrant,
and consequently the model structure is not monoidal [45] (and see [51] for a discussion
of this in the setting of DG-categories). This issue is one of the persistent technical
difficulties in working with these models of Catperf

∞ .
To resolve this problem, we employ the notion of flat objects and functors (e.g., see

[31, B.4]). Recall that a functor between model categories is flat if it preserves weak
equivalences and colimits. An object X of a model category (whose underlying category
is monoidal with respect to a tensor product ⊗) is then said to be flat if the functor
X ⊗ (−) is a flat functor. Cofibrant objects in a monoidal model category are flat; in
particular, cofibrant spectra are flat. The utility of this definition comes from the fact
that the smash product of flat spectra computes the derived smash product.

We define a spectral category C to be pointwise-cofibrant if each morphism spectrum
C(x, y) is a cofibrant spectrum. The following proposition summarizes the facts about
pointwise-cofibrant spectral categories that we will need. Recall that a spectral category
C has an associated spectral category of perfect modules (equivalently, homotopically
compact modules, or retracts of finite cell modules), and that a map of spectral categories
f : C → D is a Morita equivalence if f induces a DK-equivalence between spectral
categories of perfect modules; see [11, §2] for details.

Proposition 4.1.

(1) Every spectral category is functorially Morita equivalent to a pointwise-cofibrant spec-
tral category with the same objects.
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(2) The subcategory of pointwise-cofibrant spectral categories is closed under the smash
product.

(3) A pointwise-cofibrant spectral category is flat with respect to the smash product of
spectral categories.

(4) If C and D are pointwise-cofibrant spectral categories, the smash product C ∧D com-
putes the derived smash product C ∧L D.

Proof. By construction of the generating cofibrations (see [45, Def. 4.4]), there exists
a cofibrant resolution functor Q(−) on CatS such that for any spectral category C the
spectral functor Q(C) → C induces the identity map on the set of objects. Item (1)
follows then from [45, Prop. 4.18], which shows that every cofibrant spectral category is
pointwise-cofibrant. Item (2) follows from the fact that the smash product of cofibrant
spectra remains cofibrant. Item (4) follows from item (3).

Let C be a pointwise-cofibrant spectral category. The functor − ∧ C : CatS → CatS
clearly preserves colimits as the symmetric monoidal structure is closed. Hence, in order
to prove item (3), it remains to show that if f : A → B is a Morita equivalence (see [44,
Def. 6.1]), then f ∧ id : A ∧ C → B ∧ C is also a Morita equivalence.

If f : A → B is a Morita equivalence then the induced map f! : Mod(A) → Mod(B) is
a DK-equivalence of spectral categories. Let C be a pointwise-flat spectral category. We
must show that

(f ∧ id)! : Mod(A ∧ C) −→ Mod(B ∧ C)

is also a DK-equivalence, which is to say that it is homotopically fully faithful and
essentially surjective. We begin with the former. Since any cofibrant A ∧ C-module is a
retract of a cellular A∧ C-module and (f ∧ id)! is a left Quillen functor which preserves
representable modules, it suffices to check that f ∧ id itself is homotopically fully faithful.
But this follows because C is pointwise-cofibrant, so

(f ∧ id)
((
a′, c′

)
, (a, c)

)
: (A ∧ C)

((
a′, c′

)
, (a, c)

)
−→ (B ∧ C)

((
fa′, c′

)
, (fa, c)

)

is a weak equivalence of spectra for any pair of objects (a, c) and (a′, c′) of A ∧ C. To
verify essential surjectivity, it suffices to check that the B ∧ C-module (̂b, c) represented
by the object (b, c) ∈ B ∧ C is equivalent to the image of an A ∧ C-module. Since f

is a Morita equivalence, there exists a perfect A-module M and a weak equivalence of
B-modules f!M � b̂. Thus

(f ∧ id)!(M ∧ ĉ)
(
b′, c′

)
� M

(
b′
)
∧ C

(
c′, c

)
� B

(
b′, b

)
∧ C

(
c′, c

)
� (f ∧ id)!

(
(̂b, c)

)(
b′, c′

)
,

so that (f ∧ id)! is also homotopically essentially surjective. �
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Remark 4.2. The use of pointwise-cofibrant spectral categories is analogous to the use
of homotopically flat DG-modules in the differential graded setting. See for instance [15]
for a similar development to the work of this section in that context.

Therefore, we use the subcategory Catflat
S of pointwise-cofibrant spectral categories to

produce a suitable symmetric monoidal model of the ∞-category of idempotent-complete
small stable ∞-categories. The following lemma is a first consistency check:

Lemma 4.3. Let CatcS denote the full subcategory of cofibrant objects in CatS . The functor
induced by cofibrant replacement Catflat

S → CatcS induces a categorical equivalence

N
(
Catflat

S
)[
W−1] −→ N

(
CatcS

)[
W−1].

Proof. Recall from the proof of Proposition 4.1 that the cofibrant replacement of a spec-
tral category is pointwise-cofibrant. It is now clear that the inclusion and the functorial
cofibrant replacement induce inverse equivalences. �

By combining Proposition 3.1 with [11, 4.22, 4.23] we obtain:

Proposition 4.4. There is an equivalence of ∞-categories

Catperf
∞ � N

(
Catflat

S
)[
W−1].

Furthermore, Proposition 4.1 implies that Catflat
S is a symmetric monoidal category

such that the smash product preserves equivalences. Thus we conclude from [36, Propo-
sition 4.1.3.4 and Example 4.1.3.6] that we obtain a symmetric monoidal ∞-category
(N(Catflat

S )[W−1])⊗ with underlying ∞-category N(Catflat
S )[W−1]. We now upgrade the

comparison of [11, 4.22, 4.23] to a comparison of symmetric monoidal ∞-categories.
To explain how to do this, we need to review some details about the construction

of the symmetric monoidal structure on Catperf
∞ . Recall that this is determined by the

symmetric monoidal structure on the ∞-category PrLst, as follows. First, there is an
equivalence between the ∞-category PrLst,ω of compactly-generated stable presentable
∞-categories and idempotent-complete small stable ∞-categories which is realized by
passage to compact objects (denoted (−)ω) and the formation Ind(−) of the Ind-category
[35, §5.5.7]. Next, PrLst,ω inherits a symmetric monoidal structure from the structure on
PrLst [36, 6.3.7.11]. Unwinding this, for C and D in Catperf

∞ , the tensor product C ⊗∨ D
can be computed as (Ind(C) ⊗ Ind(D))ω.

In turn, the symmetric monoidal structure on PrLst can be obtained as a symmetric
monoidal localization of the ∞-category PrL of presentable ∞-categories, as we now de-
scribe. The symmetric monoidal structure on PrL is induced from the monoidal structure
on the ∞-category of ∞-categories [36, 6.3.1.14], and in PrL the ∞-category of spectra
S∞ is an idempotent object [36, 6.3.2.18]. Therefore, the functor −⊗S∞ in PrL defines
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a symmetric monoidal localization on PrL such that the full subcategory of local objects
is precisely PrLst [36, 6.3.2.19].

Translating back to small ∞-categories, the symmetric monoidal structure on PrL is
determined by the Cartesian monoidal structure on Cat∞. Furthermore, we can char-
acterize this structure in terms of the category CatΔ of small simplicial categories.
Since CatΔ has all homotopy limits, the associated ∞-category N(CatΔ)[W−1] ad-
mits a (necessarily unique) Cartesian symmetric monoidal structure which we denote
N(CatΔ)[W−1]⊗; see [36, Corollary 2.4.1.9]. The uniqueness implies that there is an
equivalence of symmetric monoidal ∞-categories

N(CatΔ)
[
W−1]⊗ � Cat×∞

in which Cat∞ is endowed with the Cartesian symmetric monoidal structure.
Recall that S∞ is an idempotent commutative algebra object of PrL and that the

presheaf functor Pre : Cat∞ → PrLω (specifically, the covariant version in which the
functor Pre(C) → Pre(D) induced by a functor C → D is left adjoint to the restriction
Pre(D) → Pre(C)) is symmetric monoidal. We therefore obtain a symmetric monoidal
functor

PreS∞ � Pre(−) ⊗ S∞ : Cat∞ −→ PrLst,ω,

the functor which sends the small ∞-category C to the compactly generated ∞-category
of spectral presheaves on C. Composing with the symmetric monoidal equivalence (−)ω :
PrLst,ω → Catperf

∞ , we obtain a symmetric monoidal functor

PreS∞(−)ω : Cat∞ −→ Catperf
∞ .

Lemma 4.5. There is a unique commutative algebra structure Catperf
∞

⊗ on Catperf
∞ in PrL

such that

PreS∞(−)ω : Cat∞ −→ Catperf
∞

extends to a map of commutative algebras Cat×∞ → Catperf
∞

⊗.

Proof. Recall that a commutative algebra in PrL is a symmetric monoidal ∞-category
such that tensoring with a fixed object preserves colimits. As a consequence, it suffices to
show that the functor PreS∞(−)ω uniquely determines the tensor products of a collection
of objects that generate Catperf

∞ under colimits.
As reviewed in Section 2, Catperf

∞ is equivalent to the ∞-category produced by taking
the underlying ∞-category associated to the model category of spectral categories with
weak equivalences the DK-equivalences and Bousfield localizing at the Morita equiva-
lences. This model category is cofibrantly generated, with generating cofibrations and
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acyclic cofibrations (described explicitly in [4, §2.16]) that have mapping spectra de-
termined by the generating acyclic cofibrations and acyclic cofibrations of the category
of symmetric spectra. In particular, the generating cofibrations and acyclic cofibrations
have mapping spectra that are suspension spectra and therefore are in the image of Σ∞

+
applied to the category of simplicial categories.

Finally, since any object in the Bousfield localization is weakly equivalent to a cellular
object (generated as a filtered colimit of pushouts along generating cofibrations) in the
DK-equivalence model structure, we see that any object of Catperf

∞ is weakly equivalent
to a colimit of objects in the image of PreS∞(−)ω. The result now follows from the fact
that PreS∞(−)ω is strong symmetric monoidal. �

We finally have all the tools needed for the proof of the multiplicative Morita theory
result.

Theorem 4.6 (Multiplicative Morita theory). There is an equivalence of symmetric
monoidal ∞-categories

(
Catperf

∞
)⊗ �

(
N
(
Catflat

S
)[
W−1])⊗.

Proof. Consider the composite

Φ : CatfΔ
(−)+−−−−→

(
CatfΔ

)
∗

Σ∞−−−→ Catflat
S ,

where CatfΔ denotes the full subcategory of fibrant simplicial categories and (CatΔ)∗
denotes the pointed simplicial categories (which means that all the mapping complexes
have basepoints). The functor Φ satisfies the requirements of Proposition 3.5, and so we
have an induced map of symmetric monoidal ∞-categories

Cat×∞ � N
(
CatfΔ

)[
W−1]× Σ∞

+−−−→ N
(
Catflat

S
)[
W̃−1]⊗,

where here W̃ denotes the class of DK-equivalences of spectral categories. Next,
by Proposition 4.1, composing with the symmetric monoidal localization at the
Morita equivalences of spectral categories gives rise to a map of symmetric monoidal
∞-categories

θ : Cat×∞
Σ∞

+−−−→ N
(
Catflat

S
)[
W̃−1]⊗ −→

(
N
(
Catflat

S
)[
W−1])⊗.

(Recall that we know from [11, 4.23] that this localization is in fact the Bousfield lo-
calization at a set of generating Morita equivalences.) By Proposition 4.4, we have that
N(Catflat

S )[W−1] is equivalent to Catperf
∞ . Therefore, by the discussion preceding the the-

orem, in order to identify the symmetric monoidal structure on N(Catflat
S )[W−1] as a

model of (Catperf
∞ )⊗, it suffices to identify the composite θ as PreS∞(−)ω.
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The comparison of [11, 4.22, 4.23] identifies the functor

Ψ : Catflat
M −→ Catflat

M ,

that takes a small pointwise-cofibrant spectral category C to the cofibrant–fibrant homo-
topically compact objects in the projective model structure on Mod(C), as the localization
at the Morita equivalences. Therefore, ignoring the symmetric monoidal structure, the
underlying functor of θ can be described as the composite of Φ, the equivalence between
CatS and CatM, and Ψ . But now the identification of θ is clear, since

N
(
Ψ
(
Σ∞

+ C
))

� N
(
Mod

(
Σ∞

+ C
))ω � N

(
Fun

(
Cop,S∞

))ω
is precisely a model of Fun(N(C)op,S∞)ω � PreS∞(N(C))ω. �

One immediate consequence of the preceding comparison result is that we can explic-
itly describe the mapping spectra in the tensor product of small stable ∞-categories in
terms of the smash product of spectra. Specifically, let C and D be small stable idem-
potent complete ∞-categories and C̃ and D̃ cofibrant–fibrant pre-triangulated spectral
categories lifting C and D. Then there is a natural equivalence

(C ⊗∨ D)
(
(c, d),

(
c′, d′

))
� C̃

(
c, c′

)
∧ D̃

(
d, d′

)
.

5. The symmetric monoidal structure on noncommutative motives

In this section, we show that Madd and Mloc are symmetric monoidal ∞-categories
and that the localization functors

Uadd : Catperf
∞ −→ Madd and Uloc : Catperf

∞ −→ Mloc

are symmetric monoidal. This is an interesting result in its own right; for instance,
it implies that Madd is canonically enriched in A(∗) = K(S)-modules (see Corol-
lary 5.18). Herein, we use these results to compare symmetric monoidal structures on
the ∞-categories of colimit-preserving functors from Madd to S∞ and additive functors
from Catperf

∞ to S∞ (and analogously in the localizing case).
Our approach is motivated by the following classical picture. If R is a spectrum, then

we may view the associated cohomology theory as a (pre)sheaf of spectra T op → S∞ on
the ∞-category of spaces. If R has an E∞ structure, then this functor is canonically lax
symmetric monoidal via the external cup product pairing

Map(Σ∞
+ X,R) ∧ Map(Σ∞

+ Y,R) Map(Σ∞
+ (X × Y ), R ∧R)

Map(Σ∞
+ (X × Y ), R).
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In fact, the lax symmetric monoidal structure on Map(Σ∞
+ (−), R) is equivalent to a

symmetric monoidal structure on R itself, as the latter may be recovered by restricting to
the point. Here, we are studying the analogous picture in the setting of noncommutative
motives.

We begin by fixing some notation. We will refer to commutative algebra objects of PrLst
as stable presentable symmetric monoidal ∞-categories and denote by CAlg(PrLst) the
∞-category on these objects and morphisms the colimit-preserving symmetric monoidal
functors. Note that this specifies a full subcategory of the more general class of (large)
symmetric monoidal ∞-categories: an object of the latter is an object of the former if
and only if the category is stable, presentable, and the monoidal product commutes with
colimits in each variable; see [36, §6.3.2]. Also, recall that Catperf

∞ is itself presentable
and that the monoidal product commutes with colimits in each variable.

Now, recall that Uadd is defined to be the composite of the Yoneda embedding

φ : Catperf
∞ −→ Pre

((
Catperf

∞
)ω)

(where the presheaves are restricted to the full subcategory (Catperf
∞ )ω of Catperf

∞ consist-
ing of the compact objects), followed by stabilization and then localization at a generating
set E of split-exact sequences. The functor Uloc is defined analogously, with localization
taken with respect to a generating set of all exact sequences. As such, our investigation
of the symmetric monoidal structure involves assembling the analysis of each piece of
the composite.

Yoneda embedding and stabilization. First, we observe that the symmetric monoidal
structure on Catperf

∞ descends to the subcategory of compact objects. For this, we need
a technical proposition.

Proposition 5.1. Let A be a compact object of Catperf
∞ and {Bi}i∈I a filtered diagram in

Catperf
∞ . Then the map

colimi∈I Funex(A,Bi) −→ Funex(A, colimi∈I Bi)

is an equivalence of small stable idempotent-complete ∞-categories.

Proof. The inclusion Funex(A,B) → Funex(A ⊗∨ Bop,S∞) is the full subcategory on
those f : A⊗∨ Bop → S∞ which restrict to representable functors for each a in A. This
gives a commuting square

colim Funex(A,Bi) colim Funex(A⊗∨ Bop
i ,S∞)

Funex(A, colimBi) Funex(A⊗∨ colimBop
i ,S∞)

,
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where we use the fact that (colimBi)op � colimBop
i . The horizontal maps are fully

faithful inclusions and the vertical map on the right is an equivalence since Funex(A⊗∨

(−)op,S∞) preserves filtered colimits. It follows that the vertical map on the left is fully
faithful. Restricting to maximal subgroupoids (i.e., the mapping spaces), we see that for
A compact the left-hand vertical map induces an equivalence (by definition), so it is also
essentially surjective. �

This allows us to prove the following result.

Proposition 5.2. The ∞-category of compact objects (Catperf
∞ )ω in Catperf

∞ is a full sym-
metric monoidal subcategory.

Proof. Let A and B be compact small stable idempotent-complete ∞-categories. We
must show that A ⊗∨ B is compact. To this end, let Ci be a filtered system of small
stable idempotent-complete ∞-categories. By Proposition 5.1, we obtain the following
sequence of equivalences

map(A⊗∨ B, colimi∈I Ci) � map
(
A,Funex(B, colimi∈I Ci)

)
� map

(
A, colimi∈I Funex(B, Ci)

)
� colimi∈I map

(
A,Funex(B, Ci)

)
� map(A⊗∨ B, Ci),

which implies that map(A ⊗∨ B,−) commutes with filtered colimits. (Here we are de-
noting by map(−,−) the derived simplicial mapping space.) �

Next, we use the fact that passage to presheaves and stabilization are both symmetric
monoidal functors.

Proposition 5.3. The stable presentable ∞-category

Stab
(
Pre

(
Catperf

∞
)ω) � Fun

(((
Catperf

∞
)ω)op

,S∞
)

has a canonical presentable symmetric monoidal structure. This structure is compatible
with the symmetric monoidal structure on Catperf

∞ in the sense that the functor

Catperf
∞ −→ Stab

(
Pre

(
Catperf

∞
)ω)

is symmetric monoidal.

Proof. The ∞-category Pre(C) admits a symmetric monoidal structure such that the
Yoneda embedding C → Pre(C) is a symmetric monoidal functor; see [36, Corol-
lary 6.3.1.12]. Furthermore, the ∞-category Stab(C) admits a symmetric monoidal
structure such that the stabilization functor C → Stab(C) is symmetric monoidal; see
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[36, Example 6.3.1.22 and Proposition 6.3.2.18]. It follows that Stab(Pre(Catperf
∞ )ω) is a

stable presentable symmetric monoidal ∞-category. Finally, the functor

Catperf
∞ −→ Stab

(
Pre

(
Catperf

∞
)ω)

is symmetric monoidal since we know that Catperf
∞ is compactly generated; it is generated

under filtered colimits by (Catperf
∞ )ω [11, 3.22] (and Ind(C) is a symmetric monoidal

subcategory of Pre(C) [36, Proposition 6.3.1.10]). �
Localization at a generating set. Finally, in order to show that Madd and Mloc are
symmetric monoidal, it will suffice to show that the localization at E inherits the structure
of a symmetric monoidal ∞-category. As a consequence of the argument, we will also
show that the localization functor is symmetric monoidal. Recall that E consists of the
maps

B̂/Â −→ Ĉ

in Stab(Pre(Catperf
∞ )ω) associated to a generating set of split-exact sequences A → B → C

in (Catperf
∞ )ω, where here B̂/Â denotes the cofiber [11, §5].

Provided that we can show that the localization functor is compatible with the
symmetric monoidal structure (in the sense of [36, Definition 2.2.1.6]), then [36, Propo-
sition 2.2.1.9] will establish that the localization is symmetric monoidal. Recall that to
show compatibility, by [36, Example 2.2.1.7] it suffices to show that for every local equiv-
alence X → Y and any object Z, the induced map X⊗Z → Y ⊗Z is a local equivalence.
To do this, we characterize exact sequences of ∞-categories in terms of acyclics. (See
also [7, §7] for similar identifications in the language of spectral categories.) Recall that
an exact sequence is in particular a cofiber sequence [11, 5.9].

Lemma 5.4. Let A → B → C be a cofiber sequence of idempotent-complete small stable
∞-categories such that A → B is fully faithful. Then A is canonically equivalent to the
fiber (over 0) of B → C, i.e., the full subcategory of B on the objects which are equivalent
to ∗ in C.

Proof. Write A′ for the fiber of B → C and let A → A′ be the resulting map, which is
necessarily fully faithful. To check that it is essentially surjective, it suffices to check on
triangulated homotopy categories. Let b be an object of A′. Recall that we can identify
Ho(C) � Ho(B/A) as the Verdier quotient of triangulated categories Ho(B)/Ho(A) [11,
5.13]. By the description of maps in the Verdier quotient, we can easily check that the
identity map b → b must be equal to the zero map b → b. That is, there is a commutative
diagram
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b

id

b 0 b

b

0

which implies that the cofiber b of 0 → b must lie in A. �
Lemma 5.5. Let A → B → C be an exact sequence of idempotent-complete small sta-
ble ∞-categories. Then, for any idempotent-complete small stable ∞-category D, the
sequence

D ⊗A −→ D ⊗ B −→ D ⊗ C

is exact.

Proof. Since the tensor product on Catperf
∞ commutes with colimits, it is enough to show

that D ⊗A is equivalent to the full subcategory F of D ⊗ B consisting of those objects
which are sent to zero objects in D ⊗ C. We first show that the functor D ⊗A → D⊗B
is fully faithful by direct computation of the mapping spectra: given a pair of objects d,
d′ of D and a, a′ of A with images b, b′ in B, we have that

Map
(
(d, a),

(
d′, a′

))
� Map

(
d, d′

)
∧ Map

(
a, a′

)
� Map

(
d, d′

)
∧ Map

(
b, b′

)
� Map

(
(d, b),

(
d′, b′

))
.

Since D⊗A is stable, it follows that the inclusion D⊗A → D⊗B is fully faithful on all
objects which are retracts of finite colimits of objects of the form (d, a); since all objects
of D⊗A are of this form, we see that the inclusion is fully faithful. The fact that D⊗A
surjects onto F now follows from Lemma 5.4. �
Proposition 5.6. The localization of Stab(Pre(Catperf

∞ )ω) at E is compatible with the sym-
metric monoidal structure given above.

Proof. Since the ∞-category Stab(Pre(Catperf
∞ )ω) is generated under filtered colimits by

representables and these tensors commute with filtered colimits, it suffices to check that

map
(
D̂ ⊗

(
Ĉ/(B̂/Â)

)
, F

)
� ∗

for all D and split-exact sequences A → B → C in E . This follows because

D̂ ⊗
(
Ĉ/(B̂/Â)

)
� D̂ ⊗ C/(D̂ ⊗ B/D̂ ⊗ A),
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and, by Lemma 5.5, D ⊗A → D ⊗ B → D ⊗ C is exact when A → B → C is exact, and
therefore split-exact when A → B → C is split-exact. �

Similarly, we have the following result for localizing invariants:

Proposition 5.7. The localization of Stab(Pre(Catperf
∞ )ω) at the set generated by those

objects of the form Ĉ/(B̂/Â) for each (equivalence class of ) exact sequence A → B → C
with B κ-compact is compatible with the symmetric monoidal structure given above.

Proof. As in the proof of 5.6, it is enough to check that map(D̂ ⊗ (Ĉ/(B̂/Â)), F ) � ∗ for
all D and exact sequences A → B → C with B κ-compact. The result follows because

D̂ ⊗
(
Ĉ/(B̂/Â)

)
� D̂ ⊗ C/(D̂ ⊗ B/D̂ ⊗ A),

and D ⊗A → D ⊗ B → D ⊗ C is exact since A → B → C is exact by Lemma 5.5. �
Summarizing, we have the following theorem:

Theorem 5.8. The ∞-categories Madd and Mloc are endowed with natural symmetric
monoidal structures making the functors Uadd and Uloc symmetric monoidal. The tensor
units are Uadd(Sω

∞) and Uloc(Sω
∞) respectively.

In particular, this implies that algebraic K-theory is a lax symmetric monoidal functor.

Proposition 5.9. The functors

K(−) = Map
(
Uadd

(
Sω
∞
)
,Uadd(−)

)
: Catperf

∞ −→ S∞

and

IK(−) = Map
(
Uloc

(
Sω
∞
)
,Uloc(−)

)
: Catperf

∞ −→ S∞

are lax symmetric monoidal.

Proof. We give the argument for K(−); the proof for IK(−) is the same. Our work
in [11, §4] gave a construction for any stable ∞-category of the mapping spectrum
functor MapC(X,−). Since Uadd is lax symmetric monoidal, it will suffice to show that
Map(Uadd(Sω

∞),−) is lax symmetric monoidal. First, observe that this functor preserves
limits, and so by the adjoint functor theorem [35, 5.5.2.9] it has a left adjoint. The left ad-
joint can be described as follows. Since Madd is a presentable stable ∞-category, it is ten-
sored over S∞ (see [36, Remark 6.3.2.17]) in the sense of [36, Definition 4.2.1.19]. There-
fore, the left adjoint is given by Uadd(Sω

∞) ⊗ (−). By definition, this left adjoint is sym-
metric monoidal. Then, [36, Corollary 8.3.2.7] implies (as in [36, Example 8.3.2.8]) that
there exists a lax symmetric monoidal right adjoint extending Map(Uadd(Sω

∞),−). �
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This result in turn has the following corollary:

Corollary 5.10. Let A be an En object in the symmetric monoidal ∞-category Catperf
∞ ,

0 � n � ∞. Then K(A) and IK(A) are En ring spectra.

Since an En ring spectrum has an ∞-category of compact modules which is an En−1
object in Catperf

∞ (see [36, Theorem 5.1.4.2]), we can specialize Corollary 5.10 to conclude
that algebraic K-theory takes En ring spectra to En−1 ring spectra.

Corollary 5.11. Let R be an En ring spectrum. Then K(R) and IK(R) are En−1 ring
spectra.

Symmetric monoidal structure on additive and localizing invariants. We now obtain
“dual” symmetric monoidal structures on the functor ∞-categories of additive and lo-
calizing invariants.

Proposition 5.12. Let C be a small symmetric monoidal ∞-category. Then there is a
natural equivalence

FunL(Stab
(
Pre(C)

)
,S∞

)
� Stab

(
Pre

(
Cop))

between the dual of Stab(Pre(C)), the stable presentable symmetric monoidal ∞-category
generated by C, and the stable presentable symmetric monoidal ∞-category generated
by Cop.

Proof. This follows from a calculation: If Stab(Pre(C)) = Fun(Cop,S∞) is the presentable
stable ∞-category freely generated by the small ∞-category C, then

FunL(Stab
(
Pre(C)

)
,S∞

)
� FunL(Pre(C),S∞

)
� Fun(C,S∞) � Stab

(
Pre

(
Cop))

is a presentable stable ∞-category which is dual to Stab(Pre(C)) under the symmetric
monoidal structure on PrLst. (See [11, §3.3] for further discussion.) �

In particular, we have the following:

Corollary 5.13. Let C be a small symmetric monoidal ∞-category. Then the ∞-category
FunL(Stab(Pre(C)),S∞) is symmetric monoidal.

Proof. If C is a small symmetric monoidal ∞-category, then Cop is also a small symmetric
monoidal ∞-category. Therefore, [36, Corollary 6.3.1.12] shows that the Day convolu-
tion product endows Pre(Cop) with a canonical symmetric monoidal structure. Since
stabilization is a symmetric monoidal functor, this implies that Stab(Pre(Cop)) is also
symmetric monoidal. �
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Proposition 5.6 and Corollary 5.13 now imply the ∞-categories FunL(Madd,S∞) and
FunL(Mloc,S∞) are symmetric monoidal. Analogous results for the categories of additive
and localizing invariants hold:

Theorem 5.14. The ∞-categories Funadd(Catperf
∞ ,S∞) and Funloc(Catperf

∞ ,S∞) are sym-
metric monoidal ∞-categories. The units are the connective and non-connective algebraic
K-theory functors K(−) and IK(−).

Proof. The argument for Corollary 5.13 implies that, for any infinite regular cardinal κ,
the ∞-category of functors Fun((Catperf

∞ )κ,S∞) is a symmetric monoidal ∞-category
(again with respect to the convolution tensor product). It is straightforward to check
(again using the criterion of [36, Proposition 2.2.1.6]) that this induces symmetric
monoidal structures on the subcategories Funadd(Catperf

∞ ,S∞) and Funloc(Catperf
∞ ,S∞).

Specifically, the analogues of the arguments for Proposition 5.6 and Proposition 5.7 hold
with ((Catperf

∞ )κ)op in place of (Catperf
∞ )κ. �

Moreover, we have the following comparison result:

Theorem 5.15. The functor Uadd induces a symmetric monoidal equivalence

FunL(Madd,S∞)⊗ �−→ Funadd
(
Catperf

∞ ,S∞
)⊗

.

In particular, Uadd induces an equivalence of E∞-algebras in the two symmetric monoidal
∞-categories. Analogously, the functor Uloc induces a symmetric monoidal equivalence

FunL(Mloc,S∞)⊗ �−→ Funloc
(
Catperf

∞ ,S∞
)⊗

.

Proof. Tracing through the constructions of the symmetric monoidal structures and
using the fact that Uadd is symmetric monoidal, we see that it induces a symmetric
monoidal functor

FunL(Madd,S∞)⊗ −→ Funadd
(
Catperf

∞ ,S∞
)⊗

.

Since we know it induces an equivalence on the underlying categories, this implies it
induces an equivalence of symmetric monoidal ∞-categories; see [36, Remark 2.1.3.8].
The argument for the localizing case is analogous. �

Using recent work of Glasman [27], we can rephrase the preceding result to obtain the
following relation between E∞-algebras and lax symmetric monoidal functors. Specifi-
cally, the main result of [27] establishes that there is an equivalence

Alg/E
(
Fun(C,S∞)⊗

)
� Funlax(C,S∞),
∞
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for any small ∞-category C, where the functor category is given the convolution symmet-
ric monoidal structure. Combining this equivalence with the preceding result, we have
the following:

Corollary 5.16. There are equivalences of ∞-categories

Alg/E∞

(
Funadd

(
Catperf

∞ ,S∞
)) ∼−→ Funlax

add
(
Catperf

∞ ,S∞
)

Alg/E∞

(
Funloc

(
Catperf

∞ ,S∞
)) ∼−→ Funlax

loc
(
Catperf

∞ ,S∞
)

and

Alg/E∞

(
FunL(Madd,D)

) ∼−→ FunL,lax(Madd,D)

Alg/E∞

(
FunL(Mloc,D)

) ∼−→ FunL,lax(Mloc,D)

Corollary 5.16 and Theorem 5.15 leads to the following comparison.

Theorem 5.17. For any presentable symmetric monoidal ∞-category D, there are equiv-
alences of ∞-categories

(Uadd)∗ : FunL,lax(Madd,D) ∼−→ Funlax
add

(
Catperf

∞ ,D
)

(Uloc)∗ : FunL,lax(Mloc,D) ∼−→ Funlax
loc

(
Catperf

∞ ,D
)
,

where the left-hand sides denote the ∞-category of lax symmetric monoidal colimit-
preserving functors and the right-hand sides denote the ∞-categories of lax symmetric
monoidal additive or localizing invariants, respectively.

The localizing subcategory generated by the unit. One interesting application of the
symmetric monoidal structures on Madd and Mloc is the fact that these imply these
categories are enriched over the endomorphisms of the unit; i.e., algebraic K-theory
spectra of S. Specifically, the following result follows from Theorem 5.8 and from the
equivalences (1.3).

Corollary 5.18. The symmetric monoidal homotopy categories Ho(Madd) and Ho(Mloc)
are enriched over the homotopy category Ho(A(∗)-Mod) of A(∗)-modules.

In particular, if A and B are small stable ∞-categories, then the mapping spectrum
Map(Uadd(B),Uadd(A)) is a module over

Map
(
Uadd

(
Sω
∞
)
,Uadd

(
Sω
∞
))

� K(S) = A(∗).

Similarly, the mapping spectrum Map(Uloc(B),Uloc(A)) is a module over

Map
(
Uloc

(
Sω
∞
)
,Uloc

(
Sω
∞
))

� IK(S) � A(∗).
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Remark 5.19. In fact, it is possible to promote the enrichments of Ho(Madd) and
Ho(Mloc) over Ho(A(∗)-Mod) to enrichments of Madd and Mloc over the ∞-category
A(∗)- Mod of A(∗)-modules. This can be done directly, using the formalism of ∞-operads
as in [36, Definition 4.2.1.28]. Briefly, the action of A(∗) on the mapping spectra is given
as follows. The endomorphism spectrum End(1) of the unit is an A∞-ring spectrum
(even E∞). For objects X and Y , the mapping spectrum F (X ⊗ 1, Y ) is equivalent to
F (X,Y ) and has an action of End(1) via the composite map

End(1) −→ End(X ⊗ 1) −→ F (X ⊗ 1, Y ).

In any symmetric monoidal stable ∞-category C, we can consider the smallest stable
subcategory LocC(1) generated by the unit object 1 which is closed under (not necessarily
finite) direct sum; this is a lift of the localizing subcategory of the homotopy category
generated by the image of the unit. If C is generated by the unit, then this subcategory
is actually all of C; in general, it is smaller.

Let FC(−,−) denote the mapping spectrum in C. The endomorphism spectrum
EndC(1) = FC(1,1) is a commutative ring spectrum, and there is a functor

FC(1,−) : C −→ EndC(1)-Mod.

When 1 is a compact object in C, this functor induces an equivalence between the
category of modules over EndC(1) and LocC(1) (see [22] for a nice discussion of this kind
of “generalized Morita theory”). Moreover, there is an induced equivalence

FC(X,Y ) ∼−→ FEndC(1)
(
FC(1, X), FC(1, Y )

)

for every X ∈ LocC(1) and Y ∈ C. Once consequence of this is the following Ext spectral
sequence (e.g., see [25, 4.1]):

Corollary 5.20. Given objects X1 and X2 in LocC(1), we have a convergent spectral
sequence

Ep,q
2 = Extp,qπ−∗ EndC(1)

(
π−∗FC(1, X1), π−∗FC(1, X2)

)
⇒ π−p−qFEndC(1)

(
FC(1, X1), FC(1, X2)

)

and we can interpret both the E2 term and the target in terms of maps in C.

Since IK(S) � K(S) = A(∗), in our setting these localizing subcategories can be
identified with the ∞-category of A(∗)-modules.

6. THH and TC as multiplicative theories

In this section, we discuss a model for THH which is a multiplicative localizing in-
variant, i.e., an object of the ∞-category Alg/E (FunL(Mloc,S∞)⊗). We also explain
∞
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how to interpret the construction of TC in this context; TC itself is not an additive in-
variant as it does not preserve filtered colimits, but constituents of TC do yield additive
invariants.

More generally, we explain the passage from lax symmetric monoidal functors from
small spectral categories to spectra, such that the lax comparison maps are weak equiv-
alences of spectra, to objects in Alg/E∞(Fun((Catperf

∞ )ω,S∞)⊗); see Theorem 6.3. If, in
addition, the underlying functor is additive or localizing, then we shall see Section 7 that
these lax symmetric monoidal spectral-valued functors will admit unique multiplicative
natural transformations of additive functors from K or localizing functors from IK. We
will be especially interested in the case of THH and TC , which we will show admit
concrete models as lax symmetric monoidal functors from small spectral categories to
spectra.

We begin by producing a particular model of the convolution product on the
∞-category Fun((Catperf

∞ )ω,S∞). Let Catcpt
S denote a small full subcategory of CatS

which contains a representative of each weak equivalence class of compact objects, con-
sists of pointwise-cofibrant objects, is closed under smash product, and is closed under
the functorial cofibrant–fibrant replacement. Let PreS((Catcpt

S )op) denote the category
of presheaves of symmetric spectra (a.k.a. spectral presheaves) on (Catcpt

S )op. This has
a symmetric monoidal product given by the Day convolution.

Proposition 6.1. With respect to the projective model structure and the convolution sym-
metric monoidal structure, PreS((Catcpt

S )op) is a symmetric monoidal simplicial model
category, as is the Bousfield localization of PreS((Catcpt

S )op) at the Morita equivalences in
(Catcpt

S )op, which we denote by PreMor
S ((Catcpt

S )op). Moreover, the symmetric monoidal
simplicial model structure on PreMor

S ((Catcpt
S )op) induces an equivalence of symmetric

monoidal ∞-categories

(
N
(
PreMor

S
((

Catcpt
S

)op))[W−1])⊗ � Fun
((

Catperf
∞

)ω
,S∞

)⊗
.

Proof. The existence of the symmetric monoidal projective model structure on
PreS((Catcpt

S )op) is straightforward (e.g., see [18, 4.2]). The criterion of [15, 5.8] and
the fact that the (opposite of the) Morita equivalences on Catcpt

S are closed under the
smash product imply that PreMor

S ((Catcpt
S )op) is a symmetric monoidal model category.

The fact that the ∞-categorical Yoneda embedding is fully-faithful [35, 5.1.3.1] implies
that there is an equivalence

N
(
PreMor

S
((

Catcpt
S

)op))[W−1] � Fun
((

Catperf
∞

)ω
,S∞

)
,

and the universal property of the ∞-categorical Day convolution (see [36, Corollary
6.3.1.12]) promotes the equivalence of Theorem 4.6 to an equivalence of symmetric
monoidal ∞-categories

(
N
(
PreMor

S
((

Catcpt
S

)op))[W−1])⊗ � Fun
((

Catperf
∞

)ω
,S∞

)⊗
. �
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Although we do not know that the model structure on PreMor
S ((Catcpt

S )op) satisfies
the monoid axiom, nonetheless the results of [48, §4] produce a J-semi model category
structure on the category of algebras over a cofibrant E∞ operad O. Such a structure
suffices to maintain homotopical control over the underlying ∞-category. In particular,
cofibrant–fibrant objects in the J-semi model category of O-algebras forget to cofibrant–
fibrant objects in the underlying category.

Next, recall the following comparison [39, 22.1]:

Proposition 6.2. The category of commutative algebras in the presheaf category
PreS((Catcpt

S )op) equipped with the (symmetric monoidal) convolution product is equiv-
alent to the category of lax symmetric monoidal functors Catcpt

S → S.

We now use Proposition 3.6 and the J-semi model structure on E∞-algebras in
PreMor

S ((Catcpt
S )op) to deduce the following theorem.

Theorem 6.3. Let E be a lax symmetric monoidal functor from spectral categories to
spectra. Assume that E preserves Morita equivalences of flat spectral categories and that
the induced functor Ẽ : Catperf

∞ → S∞ is an additive invariant. Then Ẽ naturally extends
to an E∞-algebra object of Funadd(Catperf

∞ ,S∞)⊗. The analogous results for localizing
invariants hold.

Proof. By Proposition 6.2, E, when restricted to Catcpt
S , yields a commutative algebra in

PreS((Catcpt
S )op). Fixing a cofibrant–fibrant E∞ operad O, we can restrict along the map

from O to the terminal operad to produce an O-algebra structure on E. After cofibrant–
fibrant replacement in the J-semi model structure on O-algebras in PreMor

S ((Catcpt
S )op),

Proposition 3.6 now implies that E descends to an E∞ algebra in the symmetric monoidal
∞-category Fun((Catperf

∞ )ω,S∞) such that the underlying functor agrees with Ẽ up to
equivalence.

According to the results of Section 5, the additive localization is symmetric monoidal,
so we obtain a symmetric monoidal functor

Fun
((

Catperf
∞

)ω
,S∞

)⊗ −→ Funadd
((

Catperf
∞

)ω
,S∞

)⊗ � FunL(Madd,S∞)⊗.

Since Ẽ is already an additive invariant, it comes from an E∞ algebra in the symmet-
ric monoidal ∞-category Funadd((Catperf

∞ )ω,S∞)⊗ of additive functors from compact
idempotent-complete small stable ∞-categories to spectra. But this latter symmetric
monoidal ∞-category is (symmetric monoidal) equivalent to the symmetric monoidal
∞-category FunL(Madd,S∞)⊗ by Proposition 5.15, so we may also regard Ẽ as an E∞
algebra here. �
Remark 6.4. Equivalently, Corollary 5.16 implies that a functor satisfying the conditions
of the preceding theorem gives rise to a lax symmetric monoidal additive functor of
∞-categories.
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We now apply this work in the context of the topological Hochschild homology of
spectral categories, which can be constructed using a version of the Hochschild–Mitchell
cyclic nerve [7, 3.1].

Definition 6.5. For a small spectral category C let

THH q(C) =
∨

C(cq−1, cq) ∧ · · · ∧ C(c0, c1) ∧ C(cq, c0),

where the sum is over the (q + 1)-tuples (c0, . . . , cq) of objects of C. This becomes a
simplicial object using the usual cyclic bar construction face and degeneracy maps. We
will write THH (C) for the geometric realization.

We do not expect this construction to have the correct homotopy type unless the
spectral category C is pointwise-cofibrant.

Lemma 6.6. The point-set functor THH from Definition 6.5 descends to a functor of
∞-categories

THH : Catperf
∞ −→ S∞.

Proof. Restricting to pointwise-cofibrant spectral categories, the result follows from the
fact that THH takes Morita equivalences of spectral categories to weak equivalences [7,
5.9, 5.12]. �
Remark 6.7. We can construct THH directly on the level of ∞-categories as follows.
(This perspective is closely related to the view taken in [2], for instance.) A small stable
∞-category C determines an exact functor

MapC : Cop ⊗ C −→ S∞

given by the morphism spectra in C (cf. [11, §3]). Extending by (filtered) colimits results
in a colimit preserving functor

ΘC : Funex(Cop ⊗ C,S∞
)
� Funex(C ⊗ Cop,S∞

)
� Ind

(
Cop ⊗ C

)
−→ S∞

(note that we must use the canonical equivalence Cop ⊗ C � C ⊗ Cop in order to obtain
the first map in the above composite). One can check that the value of ΘC on MapC ∈
Funex(Cop ⊗ C,S∞) is precisely the spectrum THH (C). (See [52, 5.2.3] for a discussion
of this in the context of DG categories.)

For spectral categories C1, C2, . . . , Cn, the standard shuffle product maps induce
Σn-equivariant equivalences

THH (C1) ∧ THH (C2) ∧ · · · ∧ THH (Cn) −→ THH (C1 ∧ C2 ∧ · · · ∧ Cn).

These maps are associative and unital, and therefore we deduce the following lemma.
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Lemma 6.8. The shuffle product maps make THH a lax symmetric monoidal functor
from spectral categories to spectra.

Applying Theorem 6.3 we obtain the following corollary:

Corollary 6.9. The functor THH yields an object of Alg/E∞(FunL(Mloc,S∞)⊗) or equiv-
alently an object of Funlax

loc(Catperf
∞ ,S∞).

Proof. This follows from Lemma 6.6, the discussion above and the fact that THH de-
scends to a localizing invariant: THH preserves filtered homotopy colimits and sends
exact sequences of small stable ∞-categories to cofiber sequences of spectra [7, 7.1]. �
Remark 6.10. Since the shuffle product maps are equivalences, Proposition 3.5 implies
that THH in fact descends to a symmetric monoidal functor Catperf

∞ → S∞.

Establishing the analogue of Corollary 6.9 for topological cyclic homology (TC ) is
somewhat more complicated. For one thing, TC does not preserve filtered homotopy
colimits of spectral categories, and so cannot give rise to an additive or localizing invari-
ant. Moreover, the model of THH given in Definition 6.5 is not the construction that is
used to build TC , and so a different construction (and argument) is needed to see that
TC is lax symmetric monoidal.

We now review a different model of THH of a spectral category which is adapted
to the construction of TC and related invariants which do preserve filtered homotopy
colimits. Our treatment is relatively rapid; we refer the interested reader to [8, §5] and
[7, §4] for a more detailed discussion.

The key observation that leads to the construction of TC is the fact that the cyclic
bar construction of Definition 6.5 is not just a simplicial set, but in fact a cyclic set; the
cyclic operator is given by “rotating” the smash factors. As a consequence, the geometric
realization is a spectrum with an S1-action. In fact, THH can be constructed as an
S1-equivariant spectrum equipped with additional structure that models the structure
of the free loop space. Specifically, the pth root self-equivalences S1/H ∼= S1 (for finite
H ⊂ S1) induces equivariant weak equivalences

Map
(
S1, X

)H −→ Map
(
S1, X

)

for reasonable spaces X. We are going to give a model of THH as a cyclotomic spec-
trum, which is a spectrum-level version of this structure. Roughly speaking, a cyclotomic
spectrum is equipped with compatible maps

ΦHTHH (C) −→ THH (C)

for finite H ⊂ S1, where ΦH denotes the geometric fixed points of the S1-spectrum.
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We now fix a prime p and consider the subgroups H = Cpk as k varies. The structure of
a cyclotomic spectrum supplies the system of “categorical” fixed points {THH (C)Cpn−1}
with a pair of maps

F,R : THH (C)Cpn −→ THH (C)Cpn−1 ,

where F (the Frobenius) denotes the obvious inclusion of fixed points and R (the re-
striction) is a much less obvious map coming from the cyclotomic structure.

For convenience, we denote the fixed points to be

TRn(C) = THH (C)Cpn−1 ,

the categorical fixed points with respect to the induced Cpn−1 action. We then define
TCn(C) to be the homotopy equalizer

holimF,R TRn(C) −→ TRn−1(C)

and we finally define

TC (C) = holimn TCn(C),

where we form the homotopy limit over the maps induced by the restriction R; this
definition is equivalent to the one originally given in [14].

The issue that arises with Definition 6.5 is that traditionally it has been difficult to
obtain the correct equivariant homotopy type directly from the cyclic nerve and in par-
ticular build the restriction maps. Instead, we need to use a variant of Bökstedt’s original
construction, which we now review. Let I denote the category of finite ordered sets, with
objects n = {1, . . . , n} and morphisms the injections. For a symmetric spectrum X, we
will denote by Xn the nth space.

Definition 6.11. Let C be a small spectral category and X a space. Define the functor
G(C,X)n0,...,nq

from Iq+1 to spaces by the formula

G(C,X)n0,...,nq
= Ωn0+···+n1+···+nq

(∨
C(cq−1, cq)nq

∧ · · · ∧ C(c0, c1)n1 ∧ C(cq, c0)n0

)

and define

THH (C;X)q = hocolimn̄∈Iq+q G(C,X)n̄.

For fixed X, the spaces THH (C;X)q assemble into a cyclic space with degeneracy map
induced by the unit and face maps induced by the composition in C. This assignment is
functorial in X, and so restricting to spheres
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Sn ∼= S1 ∧ S1 ∧ · · · ∧ S1

defines a symmetric spectrum THH (C) = {THH (C;Sn)}. When C is a point-wise cofi-
brant spectral category, an elaboration of the work of Shipley [43] shows that there is a
natural isomorphism in the stable category between this model of THH and the cyclic
nerve of Definition 6.5 [7, 3.5].

Now we fix a complete S1-universe U (i.e., an infinite-dimensional real S1-inner prod-
uct space that contains each irreducible finite-dimensional representation infinitely many
times). Evaluating at the representation spheres SV , where V is a finite-dimensional real
S1-inner product space, the collection {THH (C;SV )} forms an orthogonal S1-spectrum.
Here each space is given the diagonal S1-action from the cyclic structure as well as the
action of S1 on SV .

This realization of THH (C) as an orthogonal S1-spectrum is a cyclotomic spectrum [7,
§4], and therefore can be used to define TCn and TC . It is possible to show that THH (−)
is a lax symmetric monoidal functor regarded as a functor to cyclotomic spectra in
orthogonal spectra. However, herein we employ a shortcut due to Hesselholt and Madsen
in order to obtain the multiplicative properties we want. Specifically, one can write
down directly the restriction and Frobenius maps as maps of non-equivariant symmetric
spectra.

To capture the monoidal properties of these maps, we use a generalization of Bökst-
edt’s original construction of THH [29, §1.7]. Let P be a finite ordered set. Define

G(C,X)Pn0,...,nq
:
(
IP

)q+1 −→ T

to be the functor determined by composing G(C,X) with the functor ∪P : IP → I.
This construction is functorial in both X with respect to continuous maps and P with
respect to injective maps. For fixed P , as above we can define an orthogonal spectrum
THHP (C). Bökstedt’s lemma about “good indexing categories” implies that THHP (C)
is equivalent to THH (C) [13, 1.6]. Moreover, the proof of [29, 1.7.1] extended to spectral
categories as in [26, §6.2] gives rise to an S1 ×Σm ×Σn-equivariant multiplication

THHP (C;X) ∧ THHQ(D;Y ) −→ THHP
∐

Q(C ∧ D;X ∧ Y ), (6.12)

where |P | = m and |Q| = n.
Considering the collection of spaces {THHP (C;Sn)}, where |P | = n, we have a

symmetric spectrum which is again equivalent to THH (C). The multiplication map in
Eq. (6.12) is associative and unital, and so we have the following result:

Lemma 6.13. The construction {THHP (C;Sn)} gives rise to a lax symmetric monoidal
functor from spectral categories to symmetric spectra.
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Moreover, one can directly construct the restriction and Frobenius maps Rr, Fr on
the fixed points of this model. Furthermore, these maps are compatible with the product
structure [29, 1.7.1]. Therefore, we have the following extension of [29, 3.6].

Theorem 6.14. There are lax symmetric monoidal functors TCn and TC from spectral
categories to symmetric spectra.

Although TC does not preserve filtered colimits and therefore cannot be a localizing
invariant, using [11, 10.8] we do have the following analogue of Corollary 6.9.

Corollary 6.15. For each n, the functor TCn from spectral categories to spectra yields an
object of Alg/E∞(FunL(Mloc,S∞)⊗) or equivalently Funlax

loc(Catperf
∞ ,S∞).

We conclude this section by remarking on what we did not prove. Although we con-
structed THH and TC as lax symmetric monoidal functors from spectral categories to
spectra, we did not construct point-set models of the topological Dennis trace or cy-
clotomic trace that are compatible with the multiplicative structure. To do so involves
“mixing” Waldhausen’s S• construction with the construction of THH and TC , and
handling multiplicative coherence is quite intricate in this framework. Although this can
be carried out using the coherence machinery of [9] (see also [19, §V.4] for discussion of
this approach to multiplicative coherence), a distinct advantage of our framework herein
is that we will obtain existence and uniqueness results for these multiplicative trace maps
without an explicit model.

7. Uniqueness results

In this section, we apply the framework we have developed to deduce various unique-
ness results for multiplicative structures on algebraic K-theory and apply the work of
Section 6 to deduce uniqueness and existence results for multiplicative natural transfor-
mations out of algebraic K-theory. In particular, our work gives universal constructions
of the topological Dennis trace K → THH and cyclotomic trace K → TC .

Using equivalences (1.1) and (1.2), Theorem 1.5 implies that FunL(Madd,S∞) and
FunL(Mloc,S∞) are symmetric monoidal ∞-categories with tensor units the respective
algebraic K-theory functors. Hence, Corollary 3.8 immediately implies the following re-
sult:

Proposition 7.1.

(1) For any n � 0, the space Alg/En
(Map(Uadd(Sω

∞),−)) of En monoidal structures on
the algebraic K-theory functor is contractible.

(2) For any n � 0, the space of maps in Alg/En
(FunL(Madd,S∞)) with source

Map(Uadd(Sω
∞),−) is contractible.

Analogous results hold in the localizing case.
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In particular, we obtain the following corollary:

Corollary 7.2. There exists a unique E∞ algebra structure on the K-theory func-
tor, viewed as an object of the symmetric monoidal ∞-category Funadd(Catperf

∞ ,S∞)⊗.
Furthermore, for any 0 � n � ∞ and any En algebra F , the space of En algebra maps
from K to F is contractible. Analogous statements hold for IK.

Coupled with Theorem 1.10, this specializes into our main application:

Theorem 7.3. The space of maps of E∞-algebras in Funadd(Catperf
∞ ,S∞)⊗ from K-theory

to THH is contractible. Equivalently, the space of lax symmetric monoidal additive func-
tors from K-theory to THH is contractible. The unique element is the topological Dennis
trace map.

We identify the unique element as the topological Dennis trace map using the main
classification result of [11, 10.6]. Specifically, the image of this element under the for-
getful functor to natural transformations of additive functors is the unit in the set Z

of homotopy classes of natural transformations of additive functors K → THH . Note
that our results in fact give a construction of the multiplicative trace in the generality
of stable ∞-categories.

We can deduce analogous results about TC even though TC is not itself a localizing
invariant. As in [11, 10.11] we use the fact that TC can be described as holimn TCn(−).
As such, any natural transformation of functors K → TC is equivalent to the data of
compatible maps to each TCn. Corollary 6.15 now implies that our uniqueness results
extend to natural transformations which arise from transformations K → TCn. Since
the cyclotomic trace is of this form, we deduce the desired uniqueness result.

Theorem 7.4. For each n, the space of E∞ algebra maps from K to TCn in
Funadd(Catperf

∞ ,S∞)⊗ is contractible. Equivalently, the space of lax symmetric monoidal
additive functors from K to TCn is contractible. The unique homotopy class of maps of
E∞ algebras in Fun(Catperf

∞ ,S∞)⊗ from K to TC that restrict to maps of E∞ algebras
K → TCn is the multiplicative cyclotomic trace.

Another application of Corollary 7.2 is the following uniqueness result:

Corollary 7.5. Let C be a symmetric monoidal spectral category, and Perf(C) be the re-
sulting symmetric monoidal category of compact modules. There is a unique E∞ algebra
structure on K(C) in the ∞-category of spectra. Similarly, if C is a monoidal spectral cat-
egory, there is a unique A∞ structure on K(C) in the ∞-category of spectra. Analogous
results hold for IK.
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Proof. Since K-theory has a unique structure as a lax symmetric monoidal functor from
Catperf

∞ to S∞, in particular when evaluated at any point there is a unique E∞ or A∞
structure on the resulting spectrum. �
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