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Abstract. We show that the algebraic K-theory space of stable∞-categories
is canonically functorial in polynomial functors.

1. Introduction

The purpose of this note is to provide an additional structure on the higher
algebraic K-theory of stable ∞-categories, arising from polynomial rather than
exact functors.

In the case of the Grothendieck group K0, the construction is due to Dold [Dol72]
and Joukhovitski [Jou00]. Let A be an additive category. The group K0(A) is
defined to be the group completion of the additive monoid of isomorphism classes
of objects of A. By construction, an additive functor F : A → B induces a map of
abelian groups K0(A)→ K0(B).

The results of loc. cit. provide additional functoriality on the construction K0,
and show that if F : A → B is merely a polynomial functor in the sense of [EML54],
then F nevertheless induces a canonical map of sets F∗ : K0(A)→ K0(B), such that
F∗ carries the class of an object x ∈ A to the class of F (x) ∈ B. This polynomial
functoriality yields, for example, the λ-operations on K0(R) for a commutative ring
R, which arise from the exterior power operations on R-modules: the ith exterior

power functor
∧i

induces a polynomial endofunctor on finitely generated projective
R-modules, and hence a map of sets λi : K0(R)→ K0(R). Here we will extend this
polynomial functoriality to higher algebraic K-theory. To do this, it is convenient
to use the setup of the K-theory of stable ∞-categories.

Let C be a stable∞-category. As in [BGT13, Bar16], one constructs an algebraic
K-theory space K(C) via the Waldhausen S•-construction applied to C; an exact
functor C → D of stable ∞-categories induces a map of spaces K(C) → K(D).
For example, when C = Perf(X) is the stable ∞-category of perfect complexes
over a quasi-compact and quasi-separated scheme X, this is the K-theory space of
X (introduced in [TT90], or [Qui72] if X is affine). Moreover, one characterizes
[BGT13, Bar16] the construction C 7→ K(C), when considered as an invariant of all
stable ∞-categories and exact functors between them, via a universal property.

In this paper, we provide additional structure on the construction of algebraic
K-theory in analogy with the results on K0 from [Dol72, Jou00], and characterize
it by the same universal property.

To formulate the result, let Catperf
∞ denote the∞-category of small, idempotent-

complete stable ∞-categories and exact functors between them, and let S be the
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∞-category of spaces. Algebraic K-theory defines a functor

K : Catperf
∞ → S.

It receives a natural transformation from the functor ι : Catperf
∞ → S which carries

C ∈ Catperf
∞ to the space of objects in C, i.e., we have a map ι → K of functors

Catperf
∞ → S. The universal property of K-theory [BGT13, Bar16] states that K is

the initial functor Catperf
∞ → S receiving a map from ι such that K preserves finite

products, splits semiorthogonal decompositions, and is grouplike.
Let C,D be small, stable idempotent-complete ∞-categories. A functor f :

C → D is said to be polynomial if it is n-excisive for some n in the sense of
[Goo92]. Let Catpoly

∞ denote the ∞-category of small, idempotent-complete stable
∞-categories and polynomial functors between them. Thus, we have an inclusion
Catperf

∞ → Catpoly
∞ ; note that Catperf

∞ ,Catpoly
∞ have the same objects, but Catpoly

∞
has many more morphisms. Our main result states that K-theory can be defined
on Catpoly

∞ .

Theorem 1.1. There is a canonical extension of the functor K : Catperf
∞ → S to a

functor K̃ : Catpoly
∞ → S.

In fact, the construction K̃ is characterized by a similar universal property.
Namely, one has a canonical extension of the functor ι : Catperf

∞ → S to a functor

ι : Catpoly
∞ → S since ι can be defined on all ∞-categories and functors between

them. One defines the functor K̃ (with a natural map ι → K̃) by enforcing the

same universal property on Catpoly
∞ . The main computation one then carries out is

that K̃ restricts to K on Catperf
∞ , i.e., one recovers the original K-theory functor.

Remark 1.2. Theorem 1.1, together with the theory of the Bousfield–Kuhn functor
[Kuh89, Bou01], implies that for n ≥ 1, the (telescopic) T (n)-localization of the
algebraic K-theory spectrum of a stable ∞-category is functorial in polynomial
functors, i.e., extends to Catpoly

∞ .

Motivation and related work. Many previous authors have considered vari-
ous types of non-additive operations on algebraic K-theory spaces, which provided
substantial motivation for this work.

An important example is given by operations in the K-theory space (and on
the K-groups) of a ring R arising from exterior and symmetric power functors
on R-modules. Constructions of such maps appear in many sources, including
[Hil81, Kra80, Sou85, Gra89, Nen91, Lev97, HKT17]. We expect, but have not
checked, that these maps agree with the maps provided by Theorem 1.1 using the
derived exterior and symmetric power functors on Perf(R). Another example in this
vein is given by the multiplicative norm maps along finite étale maps constructed
in [BH17].

A different instance of non-additive operations in K-theory arises in Segal’s ap-
proach to the Kahn–Priddy theorem [Seg74]. These maps arise from the K-theory
of non-additive categories (such as the category of finite sets) and cannot be ob-
tained from Theorem 1.1.

Notation and conventions. We freely use the language of ∞-categories and
higher algebra as in [Lur09, Lur14]. Throughout, we let S denote the ∞-category
of spaces, and Sp the ∞-category of spectra.
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2. Polynomial functors

2.1. Simplicial and filtered objects. In this subsection, we review basic facts
about simplicial objects in a stable ∞-category. In particular, we review the stable
version of the Dold-Kan correspondence, following Lurie [Lur14], which connects
simplicial and filtered objects.

To begin with, we review the classical Dold-Kan correspondence. A general
reference for this is [GJ99, III.2] for the category of abelian groups or [Wei94, 8.4]
for an abelian category. We refer to [Lur14, 1.2.3] for a treatment for arbitrary
additive categories.

Theorem 2.1 (Dold-Kan correspondence). Let A be an additive category which is
idempotent-complete. Then we have an equivalence of categories

Fun(∆op,A) ' Ch≥0(A),

between the category Fun(∆op,A) of simplicial objects in A and the category Ch≥0(A)
of nonnegatively graded chain complexes in A.

The Dold-Kan equivalence arises as follows. Given a simplicial object X• ∈
Fun(∆op,A), we form an associated chain complex C∗ such that:

(1) Cn is a direct summand of Xn, and is given by the intersection of the
kernels

⋂
i≥1 ker(di) where the di’s give the face maps Xn → Xn−1. If A is

only assumed additive, the existence of this kernel is not a priori obvious
(cf. [Lur14, Rmk. 1.2.3.15]). However, we emphasize that the object Cn
depends only on the face maps di, i ≥ 1.

(2) The differential Cn → Cn−1 comes from the face map d0 in the simplicial
structure.

The Dold-Kan correspondence has an analog for stable∞-categories, formulated
in [Lur14, Sec. 1.2.4], yielding a correspondence between simplicial and filtered
objects.

Theorem 2.2 (Lurie [Lur14, Th. 1.2.4.1]). Let C be a stable ∞-category. Then we
have an equivalence of stable ∞-categories

Fun(∆op, C) ' Fun(NZ≥0, C),

which sends a simplicial object X• ∈ Fun(∆op, C) to the filtered object |sk0X•| →
|sk1X•| → |sk2X•| → . . . .
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Remark 2.3 (Making Dold-Kan explicit). We will need to unwind the correspon-
dence as follows. Given a filtered object Y0 → Y1 → Y2 → . . . in C, we form
the sequence of cofibers Y0, Y1/Y0, Y2/Y1, . . . , i.e., the associated graded. We have
boundary maps

Y1/Y0 → ΣY0, Y2/Y1 → ΣY1/Y0, . . . ,

and the sequence

(1) · · · → Σ−2Y2/Y1 → Σ−1Y1/Y0 → Y0

forms a chain complex in the homotopy category Ho(C): the composite of any
two successive maps is nullhomotopic. If C is an idempotent-complete stable ∞-
category, then Ho(C) is an idempotent-complete additive category. Given a sim-
plicial object X• ∈ Fun(∆op, C), we can also extract a simplicial object in Ho(C)
and thus a chain complex in Ho(C) by the classical Dold-Kan correspondence. A
basic compatibility states that this produces the sequence (1), i.e., the additive and
stable Dold-Kan correspondences are compatible [Lur14, Rem. 1.2.4.3].

2.2. Polynomial functors of stable ∞-categories. In this subsection, we re-
view the notion of polynomial functor between stable∞-categories. We first discuss
the analogous notion for additive ∞-categories.

Definition 2.4 (Eilenberg-MacLane [EML54]). Let F : A → B be a functor be-
tween additive∞-categories and assume first that B is idempotent complete. Then:

• F is called polynomial of degree ≤ −1 if it is the trivial functor which sends
everything to 0.

• F is called polynomial of degree ≤ 0 if it is a constant functor.
• Inductively, F is called polynomial of degree ≤ n if for each Y ∈ A the

functor

(DY F )(X) := ker
(
F (Y ⊕X)

F (prX)−−−−−→ F (X)
)

is polynomial of degree at most n − 1. Note that this kernel exists as we
have assumed B to be idempotent complete and it is the complementary
summand to F (X).

We let Fun≤n(A,B) ⊂ Fun(A,B) be the subcategory spanned by functors of degree
≤ n.1 Finally, a functor F : A → B is polynomial if it is polynomial of degree ≤ n
for some n.

The notion of a polynomial functor behaves in a very intuitive fashion. For
example, the composite of a functor of degree ≤ m with one of degree ≤ n is of
degree ≤ mn. As another example, we have:

Example 2.5. Let R be a commutative ring. The symmetric power functors

Symi and exterior power functors
∧i

on the category ProjωR of finitely generated
projective R-modules are polynomial of degree ≤ i.

Let C be a stable ∞-category.

Definition 2.6 (n-skeletal simplicial objects). We say that a simplicial object
X• ∈ Fun(∆op, C) is n-skeletal if it is left Kan extended from its restriction to
∆≤n ⊂ ∆.

1This notion easily generalizes when B is not idempotent complete. If B is not idempotent

complete then F : A → B is called polynomial of degree ≤ n if the composition A → B → B is
polynomial of degree ≤ n, where B → B is an idempotent completion.
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Remark 2.7 (n-skeletal geometric realizations exist). Note that if X• is n-skeletal
for some n, then the geometric realization |X•| exists in C.

Remark 2.8 (n-skeletal objects via Dold-Kan). The condition that X• should be
n-skeletal depends only on the underlying homotopy category of C, considered as
an additive category. Namely, using the Dold-Kan correspondence, we can form a
chain complex C∗ in the homotopy category of C from X•, and then we claim that
X• is n-skeletal if and only if C∗ vanishes for ∗ > n.

Indeed, if X• is n-skeletal, then clearly the maps |skiX•| → |ski+1X•| are equiv-
alences for i ≥ n, which implies that C∗ = 0 for ∗ > n. Conversely, if C∗ = 0 for
∗ > n, then the map of simplicial objects sknX• → X• has the property that it
induces an equivalence on i-truncated geometric realizations for all i ∈ Z≥0, which
implies by Theorem 2.2 that it is an equivalence of simplicial objects.

Definition 2.9. We say that a functor f : C → D of stable ∞-categories preserves
finite geometric realizations if for every simplicial object X• in C which is n-skeletal
for some n, the colimit |F (X•)| exists and the natural map |F (X•)| → F (|X•|) is
an equivalence in C.

Proposition 2.10. Let C,D be stable ∞-categories. Let F : C → D be a functor
such that the underlying functor on additive categories Ho(C) → Ho(D) is polyno-
mial of degree ≤ d. Then if X• is an n-skeletal simplicial object in C, F (X•) is an
nd-skeletal simplicial object in D.

Proof. As above in Remark 2.8, this is a statement purely at the level of homotopy
categories. That is, the simplicial object X• defines a simplicial object of the
additive category Ho(C), and thus a chain complex C∗ in Ho(C). Similarly F (X•)
defines a simplicial object of Ho(D) and thus a chain complex D∗ of Ho(D). The
claim is that if C∗ = 0 for ∗ > n then D∗ = 0 for ∗ > nd. This is purely a statement
about additive categories. For proofs, see [GS87, Lem. 3.3] or [DP61, 4.23]. �

Definition 2.11 (Polynomial functors). Let C,D be stable ∞-categories. We say
that a functor F : C → D is polynomial of degree ≤ d if the underlying functor
Ho(F ) : Ho(C) → Ho(D) of additive categories is polynomial of degree ≤ d and if
F preserves finite geometric realizations. We let Fun≤d(C,D) ⊂ Fun(C,D) denote
the full subcategory spanned by functors of degree ≤ d.

This notion of a polynomial functor will be fundamental to this paper. The
definition is equivalent to the more classical definition of a polynomial functor,
due to Goodwillie [Goo92], via n-excisivity. Of course, the primary applications of
the theory treat functors where either the domain or codomain is not stable. For
convenience, we describe the comparison below.

Definition 2.12. Let [n] = {0, 1, . . . , n}, and let P([n]) denote the nerve of the
poset of subsets of [n], so that P([n]) ' (∆1)n+1. An n-cube in C is a functor
f : P([n]) → C. The n-cube is said to be strongly coCartesian if it is left Kan
extended from the subset P≤1([n]) ⊂ P([n]) spanned by subsets of cardinality ≤ 1,
and coCartesian if it is a colimit diagram. Note that a diagram is coCartesian if
and only if it is a limit or Cartesian diagram by [Lur14, Prop. 1.2.4.13].

Definition 2.13 (Goodwillie [Goo92, Def. 3.1]). Let C,D be small stable ∞-
categories and let F : C → D be a functor. For n ≥ 0, we say that F is n-excisive
if F carries strongly coCartesian n-cubes to coCartesian n-cubes.
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Example 2.14. For n = 0, the condition is that F should be a constant functor.
For n = −1, we say that F is n-excisive if F is identically zero. For n = 1, F is
1-excisive (or simply excisive) if it carries pushouts to pullbacks.

Proposition 2.15. The functor F : C → D is polynomial of degree ≤ n (in the
sense of Definition 2.11) if and only if it is n-excisive.

Proof. Suppose first that F is polynomial of degree ≤ n, and fix a strongly co-
Cartesian (n+ 1)-cube in C, which is determined by a collection of maps X → Yi,
i = 0, 1, . . . , n, in C. We would like to show that F carries this cube to a coCartesian
one. Since every object in Fun(∆1, C) is a finite geometric realization of arrows of
the form A→ A⊕B, and F preserves finite geometric realizations, we may assume
that we have Yi ' X ⊕ Zi for objects Zi, i = 0, 1, . . . , n.

Denote the above strongly coCartesian cube by f : P([n + 1]) → C. The
cofiber lim−→P′([n+1])

F ◦ f → F (f([n])) is given precisely by the iterated derivative

DZ0DZ1 . . . DZnF (X), as follows easily by induction on n. Thus, if F is polynomial
of degree ≤ n, we see that F is n-excisive.

Conversely, if F is n-excisive, the previous paragraph shows that Ho(F ) is poly-
nomial of degree ≤ n. It remains to show that F preserves finite geometric realiza-
tions. This follows from the general theory and classification of n-excisive functors,
cf. also [BM19, Prop. 3.36] for an account. We can form the embedding D ↪→ Ind(D)
to replace D by a presentable stable∞-category; this inclusion preserves finite geo-
metric realizations. In this case, the general theory shows that F can be built up
via a finite filtration from its homogeneous layers, and each homogeneous layer of
degree i is of the form X 7→ B(X,X, . . . ,X)hΣi for B : Ci → Ind(D) a functor
which is exact in each variable and symmetric in its variables (see [Lur14, Sec. 6.1]
for a reference in this setting). Therefore, it suffices to show that if B : Ci → Ind(D)
is a functor which is exact in each variable, then X 7→ B(X,X, . . . ,X) preserves
finite geometric realizations. This now follows from the cofinality of the diagonal
∆op → (∆op)i and the fact that B preserves finite geometric realizations in each
variable separately, since it is exact. �

2.3. Construction of polynomial functors. We now discuss some examples
of polynomial functors on stable ∞-categories; these will arise from the derived
functors of polynomial functors of additive ∞-categories. We first review the rela-
tionship between additive, prestable, and stable ∞-categories. Compare [Lur, Sec.
C.1.5].

Construction 2.16 (The stable envelope). Given any small additive ∞-category
A, there is a universal stable ∞-category Stab(A) equipped with an additive, fully
faithful functor A → Stab(A). Given any small stable ∞-category B, any additive
functor A → B canonically extends to an exact functor Stab(A) → B. In other
words, Stab is a left adjoint from the natural forgetful functor from the∞-category
of small stable ∞-categories to the ∞-category of small additive ∞-categories. We
refer to Stab(A) as the stable envelope of A.

Explicitly, Stab(A) is the stable subcategory of the ∞-category Fun×(Aop,Sp)
of finitely product-preserving presheaves of spectra on A generated by the image
of the Yoneda embedding.

Construction 2.17 (The prestable envelope Stab(A)≥0). LetA be a small additive
∞-category as above, and let Stab(A) be its stable envelope. We let Stab(A)≥0
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denote the subcategory of the nonabelian derived ∞-category [Lur09, Sec. 5.5.8]
PΣ(A) generated under finite colimits by A. Then Stab(A)≥0 is a prestable ∞-
category [Lur, Appendix C] and is the universal prestable ∞-category receiving an
additive functor A → PΣ(A), which we call the prestable envelope of A. There are
fully faithful embeddings

A ⊂ Stab(A)≥0 ⊂ Stab(A),

and Stab(A) is also the stabilization of the prestable ∞-category Stab(A)≥0.

Example 2.18. Let R be a ring, or more generally a connective E1-ring spectrum.
Then one has a natural additive ∞-category ProjωR of finitely generated, projective
R-modules. The stable envelope is given by the ∞-category Perf(R) of perfect
R-modules, and the prestable envelope is given by the ∞-category Perf(R)≥0 of
connective perfect R-modules.

Our main result is the following extension principle, which allows one to extend
polynomial functors from an additive ∞-category to the stable envelope.

Theorem 2.19 (Extension of polynomial functors). Let D be a stable, idempotent
complete ∞-category and A be an additive ∞-category. Pullback along the functor
A → Stab(A) induces an equivalence of ∞-categories

Fun≤n(A,D) ' Fun≤n(Stab(A),D),

between degree ≤ n functors A → D (in the sense of additive ∞-categories) and
degree ≤ n functors (in the sense of stable ∞-categories) Stab(A)→ D.

We use the following crucial observation due to Brantner.

Lemma 2.20 (Extending from the connective objects, cf. [BM19, Th. 3.35]). Let
D be a presentable, stable ∞-category. Restriction induces an equivalence of ∞-
categories

Fun≤n(Stab(A)≥0,D) ' Fun≤n(Stab(A),D),

between n-excisive functors Stab(A)≥0 → D and n-excisive functors Stab(A)→ D.

Lemma 2.21. Let C,D be stable ∞-categories. Let A ⊂ C be an additive subcat-
egory which generates C as a stable subcategory. Let F : C → D be a degree ≤ n
functor. Suppose F |A has image contained in a stable subcategory D′ ⊂ D. Then
F has image contained in D′.

Proof. We use essentially the notions of levels in C, cf. [ABIM10, Sec. 2], although
we are not assuming idempotent completeness.

We define an increasing and exhaustive filtration of subcategories C≤1 ⊂ C≤2 ⊂
· · · ⊂ C as follows. The subcategory C≤1 is the additive closure of A under shifts,
so any object of C≤1 can be written in the form Σi1A1 ⊕ · · · ⊕ ΣinAn for some
A1, . . . , An ∈ A and i1, . . . , in ∈ Z. Inductively, we let C≤n denote the subcategory
of objects that are extensions of objects in C≤a and C≤b for 0 < a, b < n with
a+ b ≤ n. Each C≤n is closed under translates, and it is easy to see that

⋃
n C≤n is

stable and contains A and hence equals C.
We claim first that F (C≤1) ⊂ D. That is, we need to show that for A1, . . . , An ∈

A and i1, . . . , in ∈ Z, we have F (Σi1A1 ⊕ · · · ⊕ ΣinAn) ∈ D. If i1, . . . , in ≥ 0, then
we can choose a simplicial object in A which is d-truncated for some d and whose
geometric realization is Σi1A1 ⊕ · · · ⊕ ΣinAn. Since F preserves finite geometric
realizations, the claim follows. In general, for any object X ∈ C, we can recover
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F (X) as a finite homotopy limit of F (0), F (ΣX), F (ΣX ⊕ ΣX), . . . via the Tn-
construction, since F is n-excisive. Using this, we can remove the hypotheses that
i1, . . . , in ≥ 0 and conclude that F (C≤1) ⊂ D.

Given an object of C≤n with n > 1, it is an extension of objects in C≤a and C≤b for
some a, b < n. In view of Construction 3.8 below, it follows that any such object can
be written as a finite geometric realization of objects of level < n. Since F preserves
finite geometric realizations, it follows by induction that F (C≤n) ⊂ D. �

Proof of Theorem 2.19. Embedding D inside Ind(D), we may assume that D is
actually presentable. By Lemma 2.21, we do not lose any generality by doing so.

By the universal property of PΣ, we have an equivalence

(2) Fun≤n(A, Ind(D)) ' FunΣ
≤n(PΣ(A), Ind(D)),

where Σ denotes functors which preserve sifted colimits; the universal property
gives this without the ≤ n condition, which we can then impose. Now the inclusion
Stab(A)≥0 ⊂ PΣ(A) exhibits the target as the Ind-completion of the source, which
yields an equivalence

(3) Fun≤n(Stab(A)≥0, Ind(D)) ' Funω≤n(PΣ(A), Ind(D)),

where ω denotes functors which preserve filtered colimits. By definition, any func-
tor in Funω≤n(PΣ(A), Ind(D) preserves finite geometric realizations, and hence all
geometric realizations; thus it also preserves all sifted colimits. This shows that the
categories in (2) and (3) are identified. Now the result follows by combining this
identification with Lemma 2.20. �

Corollary 2.22. Let A → B be additive ∞-categories. Then a degree ≤ n func-
tor A → B canonically prolongs to a degree ≤ n functor of stable ∞-categories,
Stab(A)→ Stab(B). �

Example 2.23. Let R be a commutative ring. Then we have a functor Symi :
Perf(R) → Perf(R) which is i-excisive and which extends the usual symmetric
powers of finitely generated projective R-modules. We can regard this as a derived
functor of the usual symmetric power, although we are allowing nonconnective
objects as well.

The above construction of extending functors, for Stab(A)≥0, is the classical one
of Dold-Puppe [DP61] of “nonabelian derived functors” constructed using simplicial
resolutions. Compare also [JM99] for the connection between polynomial functors
on additive categories and n-excisive functors. The extension to Stab(A), at least in
certain cases, goes back to Illusie [Ill71, Sec. I-4] in work on the cotangent complex,
using simplicial cosimplicial objects.

3. K0 and polynomial functors

3.1. Additive ∞-categories. In this section, we review the result of [Dol72,
Jou00] that K0 of additive ∞-categories is naturally functorial in polynomial func-
tors; this special case of Theorem 1.1 will play an essential role in its proof.

Definition 3.1 (Passi [Pas74]). Let M be an abelian monoid and A be an abelian
group. We will define inductively when a map f : M → A (of sets) is called
polynomial of degree ≤ n.

• A map f is called polynomial of degree ≤ −1 if it is identically zero.
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• A map f if called polynomial of degree ≤ n if for each y ∈ M the map
Dyf : M → A defined by

(Dyf)(x) := f(x+ y)− f(x)

is polynomial of degree ≤ n− 1.

We say that f is polynomial if it is polynomial of degree n for some n.
We denote the set of polynomial maps M → A of degree ≤ n by Hom≤n(M,A).

It is straightforward to check that composing polynomial maps whenever this is
defined is again polynomial and changes the degree in the obvious way.

Example 3.2. A map f : Z→ Z is polynomial of degree ≤ n precisely if it can be
represented by a polynomial of degree n with rational coefficients. In this case it
has to be of the form

f(x) =

n∑
i=0

αi

(
x

i

)
with αi ∈ Z.

Now let i : M → M+ be the group completion of the abelian monoid M . Then
the following result states that we can always extend polynomial maps uniquely
over the group completion. This is surprising if one thinks about how to extend to
a formal difference.

Theorem 3.3 ([Jou00, Prop. 1.6]). For any abelian monoid M and abelian group
A, the map

i∗ : Hom≤n(M+, A)→ Hom≤n(M,A)

is a bijection.

The proof in loc. cit. gives an explicit argument. For the convenience of the
reader, we include an abstract argument via monoid and group rings.

Proof. The first step is to reformulate the condition for a map f : M → A to be
polynomial of degree ≤ n. To do this we will temporarily for this proof write M
multiplicatively, in particular 1 ∈M is the neutral element.

A map of sets f : M → A is polynomial of degree at most n precisely if the
induced map f : Z[M ]→ A defined by∑

m∈M
αm ·m 7→

∑
m∈M

αmf(m)

(with αm ∈ Z) factors over the (n + 1)’st power In+1 of the augmentation ideal
I ⊆ Z[M ]. In other words, there is a canonical bijection

(4) Hom≤n(M,A)
'−→ HomAb(Z[M ]/In+1, A).

This fact is proven in [Pas74], but let us give an argument. The augmentation ideal
I is generated additively by elements of the form (m− 1) with m ∈ M . Therefore
In+1 is generated additively by elements of the form

(m0 − 1) · . . . · (mn − 1)

with mi ∈M . A slightly bigger additive generating set for In+1 is then given by

x · (m0 − 1) · . . . · (mn − 1)
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with mi, x ∈ M . Using this fact we have to show that f : M → A is polynomial
of degree at most n precisely if f : Z[M ] → A vanishes on these products for all
x,mi ∈M . This follows from the following pair of observations:

• A map f : M → A is polynomial of degree at most n precisely if for each
sequence m0, ...,mn, x of elements in M we have

(Dm0
Dm1

...Dmnf)(x) = 0.

• There is an equality

(Dm0
Dm1

...Dmnf)(x) = f
(
x · (m0 − 1) · (m1 − 1) · . . . · (mn − 1)

)
.

The first of these observations is the definition. The second observation follows
inductively from the case n = 0 which is obvious.

Now we can proceed to the proof of the theorem. By virtue of the natural
bijection (4) it suffices to show that the map

Z[M ]/In+1 → Z[M+]/In+1

is an isomorphism of abelian groups. Both sides are actually rings and the map in
question is a map of rings. In order to construct an inverse ring map, it suffices
to check that all elements m ∈ M represent multiplicative units in Z[M ]/In+1;
however, this follows because m− 1 is nilpotent. �

The last result shows that group completion is universal with respect to polyno-
mial maps and not only for additive maps. From this, the extended functoriality
of K0 readily follows, as in [Jou00]; we review the details below.

Definition 3.4 (K0 of additive ∞-categories). For an additive ∞-category A, the
group K0(A) is the group completion of the abelian monoid π0(A) of isomorphism
classes of objects with ⊕ as addition. Concretely K0(A) is the abelian group gener-
ated from isomorphism classes of objects subject to the relation [A]+[B] = [A⊕B].

Let Catadd be the ∞-category of additive ∞-categories and additive functors.
Let Ab denote the ordinary category of abelian groups. Then K0 defines a functor

K0 : Catadd → Ab

Let Catadd,poly be the∞-category of additive∞-categories and polynomial func-
tors between them. The next result appears in the present form in [Jou00] and (for
modules over a ring) in [Dol72].

Proposition 3.5 ([Jou00, Prop. 1.8]). There is a functor K̃0 : Catadd
poly → Set with

a transformation π0 → K̃0 such that the diagram

Catadd

��

K0 // Ab

��
Catadd

poly

K̃0 // Set

commutes up to natural isomorphism.

Proof. For a polynomial functor F : A → B the map π0(A) → π0(B) → K0(B)
is polynomial. Thus by Theorem 3.3 it can be uniquely extended to a polynomial
map K0(A)→ K0(B). This gives the desired maps, and it is easy to see that they

define a functor K̃0 : Catadd,poly → Set. �
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3.2. Stable ∞-categories. In this section, we extend the results of the previ-
ous section to show that K0 is functorial in polynomial functors of stable ∞-
categories; the strategy of proof is similar to that of [Dol72]. Recall that for stable
∞-categories, one has the following definition of K0, which only depends on the
underlying triangulated homotopy category.

Definition 3.6. Given a stable ∞-category C, we define the group K0(C) as the
quotient ofKadd

0 (C) (i.e., K0 of the underlying additive∞-category) by the relations
[X] + [Z] = [Y ] for cofiber sequences X → Y → Z in C.

Proposition 3.7. Let F : C → D be a polynomial functor between the stable ∞-
categories C,D. Then there is a unique polynomial map F∗ : K0(C)→ K0(D) such
that F∗([X]) = [F (X)] for X ∈ C.

We have already seen an analog of this result for Kadd
0 , the K0 of the underlying

additive ∞-category (Proposition 3.5). The obstruction is to understand the in-
teraction with cofiber sequences. For this, we will need the following construction,
and a general lemma about simplicial resolutions.

Construction 3.8. Let C be a stable∞-category. Suppose given a cofiber sequence
X ′ → X → X ′′ in C. Then we form the Čech nerve of the map X → X ′′. This
constructs a 1-skeletal simplicial object A• in C of the form

. . . ////
//
// X
′ ⊕X ′ ⊕X ////// X ′ ⊕X //// X .

Alternatively, we can consider this simplicial object as the two-sided bar construc-
tion of the abelian group object X ′ ∈ C acting on X (via X ′ → X). We observe
that each of the terms in the simplicial object, and each of the face maps di, i ≥ 1
depend only on the objects X ′, X (and not on the map X ′ → X). Also, A• is
augmented over X ′′ and is a resolution of X ′′.

Lemma 3.9. Suppose C is a stable ∞-category and X1
• , X

2
• ∈ Fun(∆op, C) are two

simplicial objects such that:

(1) Both X1
• , X

2
• are d-skeletal for some d.

(2) We have an identification X1
n ' X2

n for each n.
(3) Under the above identification, the face maps di, i ≥ 1 for both simplicial

objects are homotopic.

Then |X1
• |, |X2

• | define the same class in K0(C).

Proof. This follows from the fact thatX1
• , X

2
• have finite filtrations whose associated

gradeds are identified in view of the stable Dold-Kan correspondence. �

Proposition 3.10. Let f : A → A′ be a polynomial map between abelian groups.
Let M ⊂ A be an abelian submonoid. Suppose that for m ∈M and x ∈ A, we have
f(x + m) = f(x). Then for any m′ belonging to the subgroup M ′ generated by M
and x ∈ A, we have f(x+m′) = f(x) and f factors over A/M ′.

Proof. Fix x ∈ A. Consider the polynomial map A → A′ sending y 7→ f(x + y) −
f(x). Since this vanishes for y ∈M , it vanishes on the image of M+ → A and the
result follows. �

Proposition 3.11. Let f : M → A be a polynomial map from an abelian monoid
M to an abelian group A. Let N ⊂ M ×M be a submonoid which contains the
diagonal. Suppose that for each (m1,m2) ∈ N , we have f(m1) = f(m2). Then the
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unique polynomial extension f+ : M+ → A factors over the quotient of M+ by the
subgroup generated by {m1 −m2}(m1,m2)∈N .

Proof. Note first that the collection C = {m1 − m2}(m1,m2)∈N ⊂ M+ is a sub-

monoid. We claim that for any x ∈ M+ and c ∈ C, we have f+(x) = f+(x + c).
Equivalently, for any y ∈ M+, f+(y + m1) = f+(y + m2). Since both are poly-
nomial maps, it suffices to check this for y ∈ M , in which case it follows from
our assumptions. Thus the function f+ : M+ → A is invariant under translations
by elements of C. Since C is a monoid, it follows by Proposition 3.10 that f+ is
invariant under translations by elements of the subgroup generated by C. �

Proof of Proposition 3.7. By Theorem 3.5, we have a natural polynomial map on
additive K-theory

Kadd
0 (C) F add

∗−−−→ Kadd
0 (D),

such that F add
∗ ([X]) = [F (X)] for X ∈ C. It suffices to show the composite

Kadd
0 (C) F add

∗−−−→ Kadd
0 (D) � K0(D) factors through K0(C). To see this, recall that

K0(C) is the quotient of Kadd
0 (C) (in turn the group completion of π0(C)) by the

relations [X] = [X ′ ⊕X ′′] for each cofiber sequence

(5) X ′ → X → X ′′.

The collection of such defines a submonoid of π0(C)×π0(C) containing the diagonal.
To prove the assertion, we need to show2 that if (5) is a cofiber sequence in C, then

[F (X)] = [F (X ′ ⊕X ′′)].

To see this, we construct two simplicial objects C1
• and C2

• as in Construction 3.8
such that:

(1) C1
• , C

2
• are identified in each degree n with X ′ ⊕ X ′′[−1]⊕n and the face

maps di, i ≥ 1 are homotopic.
(2) We have |C1

• | ' X ′ ⊕X ′′ and |C2
• | ' X.

(3) Both C1
• , C

2
• are 1-skeletal.

Namely, C1
• is the Čech nerve of X ′

(id,0)−−−→ X ′ ⊕X ′′ while C2
• is the Čech nerve of

X ′ → X. We then find that the simplicial objects F (C1
•), F (C2

•) are n-skeletal (if
F has degree ≤ n) and the geometric realizations are given by F (X ′ ⊕X ′′), F (X)
respectively. Moreover, F (C1

•), F (C2
•) agree in each degree and the face maps di, i ≥

1 are identified. By Lemma 3.9, it follows that their geometric realizations have
the same class in K0, as desired. �

4. The main result

4.1. The universal property of higher K-theory. Our first goal is to review
the axiomatic approach to higher K-theory, and its characterization. We will use
the K-theory of stable ∞-categories, as developed by [BGT13] and [Bar16], follow-
ing ideas that go back to Waldhausen [Wal85] and ultimately Quillen [Qui73].

Throughout, we fix (for set-theoretic reasons) a regular cardinal κ. Recall that

Catperf
∞ is compactly generated [BGT13, Cor. 4.25]. Let Catperf

∞,κ denote the subcat-
egory of κ-compact objects.

2Compare also [Jou00, Th. A] for a related type of statement.
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Definition 4.1 (Additive invariants). (1) Let Funπ(Catperf
∞,κ,S) denote the∞-

category of finitely product-preserving functors Catperf
∞,κ → S.

(2) We say that f ∈ Funπ(Catperf
∞,κ,S) is additive if f is grouplike and f carries

semiorthogonal decompositions in Catperf
∞,κ to products.

We let Funπadd(Catperf
∞,κ,S) ⊂ Funπ(Catperf

∞,κ,S) be the subcategory of additive
invariants. This inclusion admits a left adjoint (−)add, called additivization.

The construction ι which carries C ∈ Catperf
∞,κ to its underlying space (i.e., the

nerve of the maximal sub ∞-groupoid) yields an object of Funπ(Catperf
∞,κ,S). The

construction of the algebraic K-theory space K(−) yields an additive invariant, by
Waldhausen’s additivity theorem.

Theorem 4.2 (Compare [BGT13, Bar16]). The K-theory functor K : Catperf
∞,κ → S

is the additivization of ι ∈ Funπ(Catperf
∞,κ,S).

Remark 4.3. As the results in loc. cit. are stated slightly differently (in partic-
ular, κ = ℵ0 is assumed), we briefly indicate how to deduce the present form of
Theorem 4.2.

To begin with, we reduce to the case κ = ℵ0. Let F = (ι)add denote the

additivization of ι considered as an object of Funπ(Catperf
∞,κ,S). We can also consider

the additivization of ι considered as an object of Funπ(Catperf
∞,ω,S) and left Kan

extend from Catperf
∞,ω to Catperf

∞,κ; we denote this by F ′ : Catperf
∞,κ → S. By left Kan

extension, we also have a map ι→ F ′ in Funπ(Catperf
∞,κ,S).

Now F ′ is also an additive invariant, thanks to [HSS17, Prop. 5.5]. It follows

that we have maps in Funπ(Catperf
∞,κ,S) under ι from F ′ → F and F → F ′, us-

ing the universal properties. It follows easily (from the universal properties in

Funπ(Catperf
∞,κ,S) and Funπ(Catperf

∞,ω,S)) that the composites in both directions are
the identity, whence F ' F ′.

Thus, we may assume κ = ℵ0 for the statement of Theorem 4.2. For κ = ℵ0, we
have that Funπadd(Catperf

∞,ω,S) is the ∞-category of Sp≥0-valued additive invariants
in the sense of [BGT13], whence the result.

We will also need a slight reformulation of the universal property, using a variant
of the definition of an additive invariant, which turns out to be equivalent. In the
following, we write Funex(−,−) denote the ∞-category of exact functors between
two stable ∞-categories.

Definition 4.4 (Universal K-equivalences). A functor F : C → D in Catperf
∞ is said

to be a universal K-equivalence if there exists a functor G : D → C such that

(6) [G ◦ F ] = [idC ] ∈ K0(Funex(C, C)), [F ◦G] = [idD] ∈ K0(Funex(D,D)).

Equivalently, this holds if and only if for every E ∈ Catperf
∞ , the natural map

Funex(D, E)→ Funex(C, E) induces an isomorphism on K0.

Example 4.5. The shear map C×C → C×C, i.e., the functor (X,Y ) 7→ (X⊕Y, Y ),
is a universal K-equivalence. If C admits a semiorthogonal decomposition into
subcategories C1, C2, then the projection C → C1 × C2 is a universal K-equivalence.

Proposition 4.6. A functor in Funπ(Catperf
∞,κ,S) is additive if and only if it carries

universal K-equivalences to equivalences.
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Proof. By the above examples, any object in Funπ(Catperf
∞,κ,S) which preserves uni-

versal K-equivalences is necessarily additive. Thus, it remains only to show that
an additive invariant carries universal K-equivalences to equivalences. Note that
an additive invariant f : Catperf

∞,κ → S naturally lifts to Sp≥0, since it is grouplike.

Moreover, given C,D ∈ Catperf
∞,κ, the map obtained by applying f ,

π0(Funex(C,D)')
f−→ π0HomSp≥0

(f(C), f(D))

has the property that it factors through K0(Funex(C,D)): indeed, this follows using

additivity for D∆1

. This easily shows that f sends universal K-equivalences to
equivalences. �

We thus obtain the following result, showing that additivization is the Bousfield
localization at the universal K-equivalences.

Corollary 4.7. Funπadd(Catperf
∞,κ,S) is the Bousfield localization of Funπ(Catperf

∞,κ,S)

at the class of maps in Catperf
∞,κ (via the Yoneda embedding) which are universal K-

equivalences. �

4.2. The universal property with polynomial functors. In this subsection,
we formulate the main technical result (Theorem 4.9) of the paper, which controls
the additivization of a theory functorial in polynomial functors. Throughout, we
fix a regular uncountable cardinal κ.

Definition 4.8. We let Catpoly
∞,κ denote the∞-category whose objects are κ-compact

idempotent-complete, stable ∞-categories and whose morphisms are polynomial
functors between them.

We consider the ∞-category Funπ(Catpoly
∞,κ,S) of functors Catpoly

∞,κ → S which

preserve finite products. We say that an object T ∈ Funπ(Catpoly
∞,κ,S) is additive if

its restriction to Catperf
∞,κ is additive. We let Funπadd(Catpoly

∞,κ,S) ⊂ Funπ(Catpoly
∞,κ,S)

denote the subcategory of additive objects. This inclusion admits a left adjoint
(−)addp, called polynomial additivization.

As an example, the underlying ∞-groupoid functor still defines a functor ι :
Catpoly

∞,κ → S which preserves finite products, and hence an object of Funπ(Catpoly
∞,κ,S).

We now state the main technical result, which states that the polynomial additiviza-
tion recovers the additivization when restricted to Catperf

∞,κ. This will be proved
below in section 4.4.

Theorem 4.9. Let T ∈ Funπ(Catpoly
∞,κ,S) and let Taddp denote its polynomial ad-

ditivization. Then the map T → Taddp, when restricted to Catperf
∞,κ, exhibits the

restriction Taddp|Catperf
∞,κ

as the additivization of T |Catperf
∞,κ

.

A direct consequence of the theorem is a sort of converse: given any map T → T ′

such that the restricted transformation exhibits T ′|Catperf
∞,κ

as the additivization of

T |Catperf
∞,κ

, then T ′ is already the polynomial additivization. To see this simply note

that T ′ is additive since this is only a condition on the restricted functor. Thus we
get a map Taddp → T ′ which is, by the theorem, an equivalence when restricted to

Catperf
∞,κ and therefore an equivalence.

Taking T = ι and using the universal property of K-theory (as in Theorem 4.2),
we obtain the polynomial functoriality of K-theory (Theorem 1.1 from the intro-
duction).
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Corollary 4.10. There is a (unique) functor K̃ : Catpoly
∞,κ → S together with a

map ι → K̃ in Funπ(Catpoly
∞,κ,S), such that the underlying map ι|Catperf

∞,κ
K̃|Catperf

∞,κ

identifies K̃|Catperf
∞,κ

with K. Moreover, K̃ is the polynomial additivization of ι. �

Remark 4.11. Proving such a result directly (e.g., by examining the S•-construction)
seems to be difficult. In fact, since the maps on K-theory spaces induced by poly-
nomial functors are in general not loop maps they cannot be induced by maps of
the respective S•-constructions.

4.3. Generalities on Bousfield localizations. We need some preliminaries about
strongly saturated collections, cf. [Lur09, Sec. 5.5.4].

Definition 4.12. Let E be a presentable ∞-category. A strongly saturated class
of maps is a full subcategory of Fun(∆1, E) which is closed under colimits, base-
changes, and compositions.

Construction 4.13 (Strongly saturated classes correspond to Bousfield localiza-
tions). Given a set of maps in E , they generate a smallest strongly saturated class.
A strongly saturated class arising in this way is said to be of small generation.

The class of maps in E that map to equivalences under a Bousfield localization
E → E ′ of presentable ∞-categories is strongly saturated and of small generation,
and this in fact establishes a correspondence between accessible localizations and
strongly saturated classes of small generation [Lur09, Props. 5.5.4.15-16]. Specifi-
cally, given a set S of maps, the Bousfield localization corresponding to the strongly
saturated class generating is the Bousfield localization whose image consists of the
S-local objects. To summarize, given a presentable ∞-category E , we have a cor-
respondence between the following collections:

• Presentable ∞-categories E ′, equipped with fully faithful right adjoints
E ′ → E (so the left adjoint is a localization functor).

• Strongly saturated classes of maps in E which are of small generation.
• Accessible localization functors L : E → E .

Proposition 4.14. Let C be a presentable ∞-category which is given as the non-
abelian derived ∞-category of a subcategory C0 ⊂ C closed under finite coprod-
ucts. Let S be the strongly saturated collection of maps in C generated by a subset
S0 ⊂ Fun(∆1, C0). Suppose that S0 is closed under finite coproducts and contains
the identity maps. Let F : C → D be a functor which preserves sifted colimits and
let V be a strongly saturated class in D. If F (S0) ⊂ V , then F (S) ⊂ V .

Proof. Consider the collection M of maps x → y in C such that for every map
x → x′, the map F (x′ → y ∪x x′)) ∈ V . This collection M (in Fun(∆1, C)) is
clearly closed under base-change, composition, and sifted colimits. Therefore, M
is closed under all colimits and is in particular a strongly saturated class.

We claim that this collection M contains all of S; it suffices to see that S0 ⊂M .
To see this, let x0 → y0 be a map in S0. We need to see that the base-change
of this map along a map x0 → x′0 is carried by F into V . Any map x0 → x′0
can be written as a sifted colimit of maps x0 → x0 t z for z ∈ C, so one reduces
to this case. Writing z as a sifted colimit of objects in C0, we reduce to the case
where z = z0 ∈ C0. Then the assertion is part of the hypotheses, so we obtain
(x0 → y0) ∈M as desired. �
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Corollary 4.15. Let A,B be ∞-categories admitting finite coproducts. Let F0 :
A → B be a functor preserving finite coproducts, inducing a cocontinuous functor
F : PΣ(A) → PΣ(B) with a right adjoint G : PΣ(B) → PΣ(A) which preserves
sifted colimits.

Let S0 be a class of maps in A and let T0 = F (S0) denote the induced class of
maps in B; let S, T be the induced strongly saturated classes of maps in PΣ(A) →
PΣ(B), and let LS , LT be the associated Bousfield localization functors. Suppose
that the class of maps G(T0) = GF (S0) in PΣ(A) belongs to the strongly saturated
class generated by S0.

Then the functor G : PΣ(B)→ PΣ(A) commutes with the respective localization
functors. More precisely:

(1) For any Y ∈ PΣ(B) which is T -local, G(Y ) is S-local.
(2) For any Y ′ ∈ PΣ(B), the natural map Y ′ → LT (Y ′) induces (by the property

(1)) a map LSG(Y ′)→ G(LT (Y ′)); this map is an equivalence.
(3) G induces a functor LTPΣ(B) → LSPΣ(A) which commutes with limits

and sifted colimits, which is right adjoint to the functor LTF : LSPΣ(A)→
LTPΣ(B).

Proof. Part (1) follows because F (which preserves colimits) carries S into T , so
the right adjoint necessarily carries T -local objects into S-local objects.

By Proposition 4.14, G carries the strongly saturated class T in PΣ(B) into the
strongly saturated class S in PΣ(A). Now in (2), the map Y ′ → LT (Y ′) belongs
to the strongly saturated class T , whence G(Y ′) → G(LT (Y ′)) belongs to the
strongly saturated class S. Since the target of this map is S-local, it follows that
LSG(Y ′)

∼−→ G(LT (Y ′)). This proves part (2).
For (3), we already saw in (1) that G induces a functor LTPΣ(B)→ LSPΣ(A),

and clearly this commutes with limits. It also commutes with sifted colimits since
the functor G : PΣ(B)→ PΣ(A) commutes with sifted colimits and since G carries
the LT -localization into the LS-localization. From this (3) follows. �

4.4. Proof of Theorem 4.9. The proof of Theorem 4.9 will require some more
preliminaries. To begin with, we will need the construction of a universal target for
a degree ≤ n functor.

Construction 4.16. Given C ∈ Catperf
∞ , we define the object ΓnC ∈ Catperf

∞ such

that we have a natural equivalence for any D ∈ Catperf
∞ ,

Funex(ΓnC,D) ' Fun≤n(C,D).

In particular, Γn receives a degree ≤ n functor C → ΓnC and ΓnC is universal for
this structure. Explicitly, ΓnC is obtained by starting with the free idempotent-
complete stable ∞-category on C, i.e., compact objects in Sp-valued presheaves on
C, and then forming the minimal exact localization such that the Yoneda functor
becomes n-excisive.

Remark 4.17 (Some cardinality estimation). Recall again that κ is assumed to

be uncountable. If C ∈ Catperf
∞,κ, then we claim that ΓnC ∈ Catperf

∞,κ for all n ≥ 0.

In fact, we observe that C ∈ Catperf
∞,κ if and only if C is κ-compact as an object of

Cat∞; moreover, this holds if and only if C has < κ isomorphism classes of objects
and the mapping spaces in C are κ-small.
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The crucial observation, for our purposes, is simply that Γn behaves relatively
well with respect to semiorthogonal decompositions: it transforms them into some-
thing that, while slightly more complicated, is very controllable on K-theory.

Proposition 4.18. Let F : C → C′ be a universal K-equivalence. Then the map
ΓnC → ΓnC′ is a universal K-equivalence. That is, for every D ∈ Catperf

∞ , the
functor

F ∗ : Fun≤n(C′,D)→ Fun≤n(C,D),

induces an isomorphism on K0.

Proof. Let G : C′ → C be a functor such that F ◦ G,G ◦ F satisfy (6). It suffices

to show that the composite Fun≤n(C,D)
G∗→ Fun≤n(C′,D)

F∗→ Fun≤n(C,D) is the
identity on K0 (and the converse direction follows by symmetry).

To see this, fix a functor f ∈ Fun≤n(C,D). We then have a degree n functor

f ◦ · : Funex(C, C)→ Fun≤n(C,D), φ 7→ f ◦ φ.

By Proposition 3.7, this induces a unique map on K0. It follows that since G◦F, id
define the same class in K0(Funex(C′, C)), the functors f ◦G ◦ F, f define the same
class in K0(Fun≤n(C,D)). This shows precisely that F ∗ ◦ G∗ induces the identity
on K0. Similarly, G∗◦F ∗ induces the identity on K0. This completes the proof. �

Proof of Theorem 4.9. Consider the commutative diagram

Funπadd(Catpoly
∞,κ,S)

Res

��

// Funπ(Catpoly
∞,κ,S)

Res

��
Funπadd(Catperf

∞,κ,S) // Funπ(Catperf
∞,κ,S)

,

where the horizontal rows are the inclusions and the vertical arrows are given by
restriction along Catperf

∞,κ ⊂ Catpoly
∞,κ. Our goal is to show that when we reverse

the horizontal arrows by replacing the inclusion functors by additivizations, the
diagram still commutes.

This statement fits into the setup of Corollary 4.15. Here we takeA = (Catperf
∞,κ)op

and B = (Catpoly
∞,κ)op, and F0 to be the opposite of the inclusion Catperf

∞,κ → Catpoly
∞,κ.

Moreover, S0 can be taken to be the class of universal K-equivalences in A =
(Catperf

∞,κ)op. The local objects then correspond to the additive invariants (Corol-
lary 4.7).

Unwinding the definitions, we find that in order to apply Corollary 4.15, we now
need to verify that if C → D is a universal K-equivalence in Catperf

∞,κ, then the map

in Funπ(Catperf
∞,κ,S) given by

HomCatpoly
∞,κ

(D,−)→ HomCatpoly
∞,κ

(C,−)

induces an equivalence upon additivizations. Now by definition we have

HomCatpoly
∞,κ

(D,−) = lim−→
n

HomCatperf
∞

(ΓnD,−),

and similarly for HomCatpoly
∞,κ

(C,−). It therefore suffices to show that

HomCatperf
∞

(ΓnD,−)→ HomCatperf
∞

(ΓnC,−)
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(as a map in Funπ(Catperf
∞,κ,S)) induces an equivalence on additivizations. This

follows from Proposition 4.18 and Corollary 4.7, noting that ΓnC,ΓnD belong to
Catperf

∞,κ since C,D do and κ is uncountable. �
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Birkhäuser Boston, Boston, MA, 1990, pp. 247–435. MR 1106918
[Wal85] Friedhelm Waldhausen, Algebraic K-theory of spaces, Algebraic and geometric topol-

ogy (New Brunswick, N.J., 1983), Lecture Notes in Math., vol. 1126, Springer, Berlin,
1985, pp. 318–419. MR 802796 (86m:18011)

[Wei94] Charles A. Weibel, An Introduction to Homological Algebra, Cambridge University

Pres, 1994.


