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Abstract. In this paper, we show that the finite subalgebra AR(1), gener-
ated by Sq1 and Sq2, of the R-motivic Steenrod algebra AR can be given 128

different AR-module structures. We also show that all of theseA-modules can
be realized as the cohomology of a 2-local finite R-motivic spectrum. The

realization results are obtained using an R-motivic analogue of the Toda real-

ization theorem. We notice that each realization of AR(1) can be expressed as a
cofiber of an R-motivic v1-self-map. The C2-equivariant analogue of the above

results then follows because of the Betti realization functor. We identify a rela-

tionship between the RO(C2)-graded Steenrod operations on a C2-equivariant
space and the classical Steenrod operations on both its underlying space and its

fixed-points. This technique is then used to identify the geometric fixed-point

spectra of the C2-equivariant realizations of AC2 (1). We find another applica-
tion of the R-motivic Toda realization theorem: we produce an R-motivic, and

consequently a C2-equivariant, analogue of the Bhattacharya-Egger spectrum

Z, which could be of independent interest.
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1. Introduction

This paper is a continuation of the work that began in [BGL], where we studied
periodic self-maps of a certain finite R-motivic spectrum YR

(h,1). There, we proved

that YR
(h,1) supports a 1-periodic v(1,nil)-self-map (see [BGL, Definition 1.7])

(1.1) v : Σ2,1YR
(h,1) YR

(h,1),

whose cofiber realizes the sub-algebra AR(1) of the R-motivic Steenrod algebra AR

generated by Sq1 and Sq2.

The spectrum YR
(h,1) is an R-motivic lift of the classical spectrum

Y := Σ−3CP2 ∧ RP2.

From the chromatic point of view, the spectrum Y is extremely useful because
it supports a v1-self-map of lowest possible periodicity, that is, one. Famously,
Mark Mahowald used the spectrum Y and the low periodicity of its v1-self-map
to prove the height 1 telescope conjecture at the prime 2 [M1, M2]. However, 1-
periodic v1-self-maps of Y are not unique. In fact, up to homotopy, there are eight
different v1-self-maps supported by Y, all of whose cofibers are realizations of A(1)
(see [DM]). Up to weak equivalence, there are four different finite spectra realizing
A(1), and all of them can be obtained as the cofiber of some v1-self-map of Y.
These four different realizations can be distinguished by their A-module structures.
Therefore, it is natural to ask if all of the v1-self-maps of Y can be lifted to R-
motivic analogues, and whether all of the R-motivic realizations of AR(1) can be
obtained as the cofiber of such a lift.

The answer to the above question is complicated by the fact that there are multiple
R-motivic lifts of the spectrum Y (see [BGL]). Even if we insist on those lifts which
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can potentially realize AR(1) as a cofiber of a periodic self-map, we are left with two
choices; YR

(h,1) and YR
(2,1). We state our first result towards answering these questions

after establishing some notations. Further, we shall see that some realizations of
AR(1) must be given as the cofiber of a map between YR

(h,1) and YR
(2,1) rather than

as the cofiber of a self-map of either.

Before describing the results of this article, we present some notation that will be
used throughout.

Notation 1.2. Throughout this paper, we use the following notations:

• SpR – the ∞-category of R-motivic spectra.

• SpC2 – the ∞-category of genuine C2-equivariant spectra.

• HRF2 – the R-motivic Eilenberg-Mac Lane spectrum with F2-coefficients.

• HF2 – the C2-equivarient Eilenberg-Mac Lane spectrum at the constant
Mackey functor F2.

• SpR
2,fin – the category of cellular HRF2-complete R-motivic spectra with

finitely many cells.

• We denote the 1-dimensional trivial R-representation of C2 by ε, the sign
representation by σ and the regular representation by ρ.

• Hn,m
R (E) := [E,Σn,mHRF2] – the R-motivic cohomology of E ∈ SpR with

constant sheaf F2, where n is the topological degree and m is the motivic
weight.

• SpC2

2,fin – the category of cellular HF2-complete C2-equivariant spectra with
finitely many cells.

• H?
C2

(E) = [E,HF2]C2
−? – the RO(C2)-graded cohomology of E ∈ SpC2 with

coefficients in the constant Mackey functor. We will often use motivic
bigrading for H?

C2
(E) under the identification

(n,m) (n−m)ε+mσ.

• MR
2 := π∗,∗HRF2. By a calculation of Voevodsky [V]

MR
2
∼= F2[τ, ρ]

with |τ | = (0,−1) and |ρ| = (−1,−1).

• MC2
2 := π?HF2. This computation can be found in [C, Appendix] or [HK,

Proposition 6.2] and is given by

MC2
2
∼= F2[uσ, aσ]⊕Θ{u−iσ a−jσ : i, j ≥ 0},

where |uσ| = (0,−1), |aσ| = (−1,−1) and |Θ| = (0, 2). .

• We follow [DI,BI,BGL] in grading ExtAR as Exts,f,wAR , where s is the stem,
f is the Adams filtration, and w is the motivic weight.

Our first result concerns realizations of AR(1).

Theorem 1.3. There exists 128 different AR-modules whose underlying AR(1)-
module structures are free on one generator, all of which can be realized as H∗,∗R (X)

for some X ∈ SpR
2,fin.
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x0,0

x1,0

x2,1

x3,1

y6,2
y5,2

y4,1

y3,1

Figure 1.4. We depict a singly-generated free AR(1)-module,
where each • represents a MR

2 -generator. The black and blue lines
represent the action of motivic Sq1 and Sq2, respectively. A dot-
ted line represents that the action hits the τ -multiple of the given
MR

2 -generator.

Notation 1.5. For the rest of the paper, we fix an MR
2 -basis

{x0,0, x1,0, x2,1, x3,1, y3,1, y4,1, y5,2, y6,2}
of AR(1) as in Figure 1.4, so that

• Sq1(x0,0) = x1,0

• Sq1(x2,1) = x3,1

• Sq1(y3,1) = y4,1

• Sq1(y5,2) = y6,2

• Sq2(x0,0) = x2,1

• Sq2(x1,0) = y3,1

• Sq2(x2,1) = τy4,1

• Sq2(x3,1) = y5,2

• Sq2(y4,1) = y6,2.

We now record all 128 AR-modules of Theorem 1.3 using the basis above.

Theorem 1.6. For every vector (α03, β03, β14, β06, β25, β26, γ36) ∈ V = F7
2 and

j24 = β03γ36 + α03(β25 + β26),

there exists a unique isomorphism class of AR-module structures on AR(1) deter-
mined by the formulas

(i) Sq4(x0,0) = β03(ρ · y3,1) + (1 + β03 + β14)(τ · y4,1) + α03(ρ · x3,1)

(ii) Sq4(x1,0) = y5,2 + β14(ρ · y4,1)

(iii) Sq4(x2,1) = β26(τ · y6,2) + β25(ρ · y5,2) + j24(ρ2 · y4,1)

(iv) Sq4(x3,1) = (β25 + β26)(ρ · y6,2)

(v) Sq4(y3,1) = γ36(ρ · y6,2)

(vi) Sq8(x0,0) = β06(ρ2 · y6,2).

Further, any AR-module whose underlying AR(1)-module is free on one generator
is isomorphic to one listed above.

Notation 1.7. For any vector v ∈ V, we denote the corresponding AR-module in
Theorem 1.6 byAR

v (1). ByAR
1 [v], we denote an object of SpR

2,fin, whose cohomology

is isomorphic to AR
v (1) as an AR-module. We let

AR
1 := {AR

1 [v] : v ∈ V}/(weak equivalence)

denote the set of equivalence classes of finite R-motivic spectra whose cohomology
are free of rank 1 over AR(1).
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Let BRh (1) and BR2 (1) denote the AR-modules H∗,∗R (YR
(h,1)) and H∗,∗R (YR

(2,1)), respec-

tively. As shown in [BGL, Lemma 4.6], these differ in that the bottom cell of YR
(2,1)

supports a Sq4, whereas the bottom cell of YR
(h,1) does not. In [BGL], we used a

method due to Smith ([Ra, Appendix C]) to produce the AR-module AR
1 [0]. Then

we observed that AR
1 [0] fits into a short exact sequence

Σ3,1BRh (1) AR
1 [0] BRh (1)

that can be realized as a cofiber sequence of finite spectra. The connecting map of
this cofiber sequence is the map (1.1). In this paper, we extend the above result of
[BGL] to prove the following.

Theorem 1.8. Given v = (α03, β03, β14, β06, β25, β26, γ36) ∈ V, define

ε =

{
h if β25 + β26 + γ36 = 0

2 if β25 + β26 + γ36 = 1,
and δ =

{
h if α03 + β03 = 0

2 if α03 + β03 = 1.

Then there exists a short exact sequence

(1.9) Σ3,1BRε (1) AR
v (1) BRδ (1)

of AR-modules. Moreover, this exact sequence can be realized as the cohomology of
a cofiber sequence

(1.10) YR
(δ,1) AR

1 [v] Σ3,1YR
(ε,1)

in the category SpR
2,fin.

The map of spectra that underlies the connecting map

(1.11) v : Σ2,1YR
(ε,1) YR

(δ,1)

of (1.10) is a v1-self-map of Y of periodicity 1.

The algebraic part of Theorem 1.8 is a straightforward consequence of Theorem 1.6
once we identify the AR-modules BRh (1) and BR2 (1) (we refer to [BGL, Figure 4.7]
for a complete description). However, the topological assertions in Theorem 1.8, as
well as in Theorem 1.3, require a technical tool, which we refer to as the R-motivic
Toda realization theorem.

Theorem 1.12 (R-motivic Toda realization theorem). Let M be an AR-module

whose underlying MR
2 -module is free and finite. There exists X ∈ SpR

2,fin such that

H∗,∗R (X) ∼= M as AR-modules if

(1.13) Ext−2,f,0
AR (M,M) = 0

for all f ≥ 3.

In this paper, we also prove various weaker versions of the R-motivic Toda realiza-
tion theorem (see Theorem 2.4, Theorem 2.6 and Theorem 2.9), which are perhaps
more convenient for application purposes.
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A realization theorem is often accompanied by a uniqueness theorem, as is the case
with Toda’s classical result (see [BE, Proposition 5.1]). The R-motivic analogue
can be stated as follows:

Theorem 1.14 (R-motivic unique realization theorem). Let X ∈ SpR
2,fin such that

Ext−1,f,0
AR (H∗,∗R (X),H∗,∗R (X)) = 0

for any f ≥ 2. Then any spectrum X′ ∈ SpR
2,fin for which there exists an AR-module

isomorphism H∗,∗R (X′) ∼= H∗,∗R (X), is weakly equivalent to X. In other words, the

AR-module H∗,∗R (X) is uniquely realized in SpR
2,fin up to a weak equivalence.

Proof. The result follows from the fact that the nonzero element

ι ∈ Ext0,0,0
AR (H∗,∗R (X′),H∗,∗R (X))

representing the isomorphism H∗,∗R (X′) ∼= H∗,∗R (X) survives the Adams spectral se-
quence converging to [X,X′]. �

The uniqueness theorem applies to theAR-modules BRh (1) and BR2 (1) (see Lemma 4.4).
However, it does not apply toAR

1 [v] for any v ∈ V. Potentially, there can be multiple
different finite spectra realizing AR

v (1) up to a weak equivalence (see Remark 4.3),
making it difficult to get a precise count of the number of 1-periodic v1-self-maps
on YR

(h,1) and YR
(2,1) from Theorem 1.8.

Upon applying the Betti realization functor

β : SpR SpC2

we get various C2-equivariant maps β(v) : Σ2,1YC2

(ε,1) −→ Y
C2

(δ,1) (where ε, δ ∈ {2, h})
whose underlying maps are v1-self-maps of Y. We also get the following corollary
of Theorem 1.3 (see Remark 4.8).

Corollary 1.15. There exists 128 different AC2-modules whose underlying AC2(1)-
module structures are free on one generator, all of which can be realized as the
RO(C2)-graded cohomology of a 2-local finite C2-spectrum.

Notation 1.16. Let AC2
1 [v] denote the Betti realization β(AR

1 [v]), where v ∈ V.

Let < : SpC2 → Sp denote the restriction functor (restricting the C2-action to the

trivial group) and Φ : SpC2 → Sp denote the geometric fixed-point functor. Note
that the geometric fixed-point spectra

Φ(YC2

(h,1)) := Φ(CC2(h) ∧ CC2(η1,1)) ' M2(1) ∨ ΣM2(1)

and
Φ(YC2

(2,1)) := Φ(CC2(2) ∧ CC2(η1,1)) ' M2(1) ∧M2(1)

are both of type 1 (see [BGL]). Further, for degree reasons

Φ(β(v)) : ΣΦ(YC2

(ε,1)) Φ(YC2

(δ,1))

cannot be a v1-self-map, and hence must be nilpotent, using [HS]. Therefore, the

fiber Φ(AC2
1 [v]) is a type 1 spectrum, i.e. AC2

1 [v] is of type (2, 1) in the sense of
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[BGL]. Much more can be said about Φ(AC2
1 [v]) than just its type. In this paper,

we give a complete description of the A-module structure of H∗(Φ(AC2
1 [v])) for all

v ∈ V by developing a general method that compares the RO(C2)-graded squaring
operations of a C2 spectrum with the ordinary squaring operations of its underlying
spectrum as well as its geometric fixed-point spectrum (compare [BW, §3]).

Since <(HF2) ' HF2 we have a natural map

<∗ : Hn,m
C2

(E) ' [E,Σn,mHF2] [<(E),Σn<(HF2)] ' Hn(<(E))

for any E ∈ SpC2 . We use the following theorem to identify the spectrum underlying
AC2

1 [v] (see Theorem 4.9).

Theorem 1.17. For E ∈ SpC2

2,fin and any class u ∈ H?
C2

(E), <∗(Sqn(u)) = Sqn(<∗(u)).

Using the fact that the projection map

π
(0)
F2

: Φ(HF2) HF2,

is an E∞-ring map, one defines (also see [BW, (2.7)]) the map

(1.18) Φ̂∗ : Hn,m
C2

(E) Hn−m(Φ(E))

which compares the RO(C2)-graded cohomology of a C2-spectrum E with the or-
dinary cohomology of its geometric fixed-point spectrum. We show:

Theorem 1.19. For E ∈ SpC2

2,fin and any class u ∈ H?
C2

(E),

Φ̂∗(Sq2n(u)) = Sqn(Φ̂∗(u)).

We find Theorem 1.17 and Theorem 1.19 very handy for computational purposes.
These results can be applied to understand the RO(C2)-graded squaring opera-
tions on the cohomology of a wide variety of C2-spectra whose underlying and
geometric fixed-point spectra are known. Alternatively, one can identify the action
of the classical Steenrod algebra on the cohomology of the underlying as well as
the geometric fixed-points of a C2-spectrum from the knowledge of RO(C2)-graded
Steenrod operations. We apply Theorem 1.17 and Theorem 1.19 to identify the
A-module structure of the underlying and the geometric fixed-points of AC2

1 [v] (see
Theorem 4.9 and Theorem 4.11).

In Figure 1.20, we provide the A-module structure of the underlying and the geo-
metric fixed points of AC2

1 [v] for selected values of v ∈ V. We express Sq1, Sq2 and

Sq4 using black, blue, and red lines respectively.

Remark 1.21 (Appearance of the Joker). We note that the A(1)-module

,

often called the Joker, is a subcomplex of the geometric fixed point of AR
1 [v] if and

only if j24 = 1. Further, when j24 = 1 then in (1.9), ε and δ cannot both equal h.
This can easily be derived from Theorem 1.6 and Theorem 1.19.



8 P. BHATTACHARYA, B. GUILLOU, AND A. LI

Figure 1.20. Some underlying and fixed A-modules of AC2
1

v ∈ V H∗(<(AC2
1 [v])) H∗(Φ(AC2

1 [v])) Cofiber of

(0, 0, 1, 0, 0, 0, 0) v : Σ2,1Y(h,1) → Y(h,1)

(1, 1, 0, 0, 0, 0, 1) v : Σ2,1Y(2,1) → Y(h,1)

(0, 1, 0, 1, 0, 1, 0) v : Σ2,1Y(2,1) → Y(2,1)

(1, 0, 0, 0, 0, 1, 1) v : Σ2,1Y(h,1) → Y(2,1)

(0, 0, 0, 1, 0, 1, 0) v : Σ2,1Y(2,1) → Y(h,1)

(1, 0, 0, 0, 0, 0, 0) v : Σ2,1Y(h,1) → Y(2,1)

(1, 0, 0, 0, 0, 0, 1) v : Σ2,1Y(2,1) → Y(2,1)

(1, 1, 1, 1, 1, 0, 1) v : Σ2,1Y(2,1) → Y(2,1)

Remark 1.22. In [BGL], the authors construct AR
1 [0] as a split summand of Q∧3

R
using a certain idempotent of Z(2)[Σ3]. Let Q̃R ∈ SpR

2,fin be such that its cohomol-

ogy as an AR(1)-module is isomorphic to QR, but has the additional relation

Sq4(a) = ρ · c
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(in the notation of [BGL, Figure 3.6]), as an AR-module. If we replace QR by

a complex Q̃R in [BGL], we get AC2
1 [v], where v = (1, 1, 1, 1, 1, 0, 1) (see the last

diagram in Figure 1.20).

Remark 1.23. The classical spectrum A1 is a type 2 spectrum and supports a 32
periodic v2-self-map [BEM]. It remains to be seen if this v2-self-map can be lifted
to AR

1 [v] for various v ∈ V.

Recently in [BE], the authors introduced a new type 2 spectrum Z which is no-
table for admitting a v2-self-map of lowest possible periodicity, that is 1. The low
periodicity of the v2-self-map makes the spectrum Z suitable for the analysis of
the telescope conjecture which, if true, would imply that the natural map from the
telescope of Z to the K(2)-localization of Z is a weak equivalence. While the tele-
scope conjecture is true for finite spectra of type 1 [M1, M2, Mi], it is expected to
be false for finite spectra of type ≥ 2 (see [MRS]). In fact, in [BBB+], the authors
study the prime 2, height 2 telescope conjecture using the spectrum Z and lay
down several conjectures (see [BBB+, §9]), whose validity would lead to a disproof
of the telescope conjecture. In this paper, we also construct an R-motivic analogue
of Z which is likely to shed light on some of these conjectures.

Theorem 1.24. There exists ZR ∈ SpR
2,fin such that the underlying AR(2)-module

structure of its cohomology is isomorphic to

H∗,∗R (ZR) ∼=AR(2) AR(2)⊗Λ(Q̃R
2) M

R
2

where Q̃R
2 := [Sq4,QR

1 ].

In future work, we intend to study the properties of ZR extensively and hope to
prove, among other things, the following conjecture.

Conjecture 1.25. The spectrum ZR is of type (2, 2) and admits a v(2,nil)-self-map

v : Σ6,3ZR ZR

of periodicity 1.

Acknowledgements. The authors have benefited from conversations with Mike
Hill, Nick Kuhn, Piotr Pstragowski, Paul VanKoughnett, and Dylan Wilson. The
first author would also like to acknowledge his debt to Mark Behrens for his relent-
less support.

Organization of the paper. In Section 2, we discuss the R-motivic Toda realiza-
tion Theorem 1.12 and derive various weak forms that are suitable for applications.
In Section 3, we construct the equivariant Steenrod operations using the equivariant
extended power construction and prove Theorem 1.17 and Theorem 1.19, which es-
tablish comparisons with the classical Steenrod operations. In Section 4, we apply
the discussion in Section 2 to obtain the R-motivic topological realizations of AR(1)
and analyze the properties of their Betti realizations using results from Section 3.
In Section 5, we construct the R-motivic spectrum ZR using a method of Smith.
Finally, the short Appendix A lists the Adem relations in the R-motivic Steenrod
algebra.
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2. R-motivic Toda realization theorem

The classical Toda realization theorem [T] (see also [BE, Theorem 3.1]), is recast in
the modern literature as a special case of Goerss-Hopkins obstruction theory [GH]
(when the chosen operad is trivial). This obstruction theory can be generalized to
the R-motivic setting [MG], and Theorem 1.12 would then be a special case of such
a generalization.

More recent work of [PV] conceptualizes Goerss-Hopkins obstruction theory in the

general setup of stable ∞-categories with t-structures. If we set C = SpR
2,fin, A =

SHRF2 , and let K to be a finite AR
∗ -comodule in [PV, Corollary 4.10], then we get a

sequence of obstruction classes

(2.1) θn ∈ Ext−2,n+2,0
AR
∗

(K,K)

for each n ≥ 0, the vanishing of which guarantees the existence of an SHRF2
-module

whose homology is isomorphic to K as an AR
∗ -comodule. Since the t-structure in

SpR does not change the motivic weight, the obstruction classes in (2.1) lie in the
Ext-groups of motivic weight 0.

If M is a finite MR
2 -free AR-module then K := homMR

2
(M,MR

2 ) is a finite AR
∗ -

comodule,

Ext∗,∗,∗AR
∗

(K,K) ∼= Ext∗,∗,∗AR (M,M),

and therefore, Theorem 1.12 follows. Alternatively, one can prove Theorem 1.12
simply by emulating the classical proof (as exposed in [BE, §3]).

The purpose of this section is to prove various weaker forms of the R-motivic Toda
realization theorem (Theorem 1.12), which are perhaps more convenient for appli-
cation purposes. Explicit calculation of Ext∗,∗,∗AR (M,M) can often be difficult, and
one can use a sequence of spectral sequences to approximate these ext groups. Each
such approximation leads to a corresponding weaker form.

2.1. Weak R-motivic Toda realization – version (I). Let M be an AR-module
whose underlying MR

2 -module is free and finitely generated. Let BM denote its MR
2 -

basis and DM denote the collection of bidegrees in which there is an element in BM.
For any element x ∈ Ms,w, we let t(x) = s+ w and define

M≥n := MR
2 · {b ∈ BM : t(b) ≥ n}

as the free sub MR
2 -module of M generated by {b ∈ BM : t(b) ≥ n}.

Note that the AR-module structure of M is determined by the action of AR on the
elements of BM and the Cartan formula. This, along with the fact that t(a) ≥ 0 for
all a ∈ AR, implies that M≥n are also a sub AR-module of M. Therefore, we get an
AR-module filtration of M

M = M≥k ⊃ M≥k+1 ⊃ · · · ⊃ M≥k+l = 0

such that we for each i there is a short exact sequences

(2.2) 0 M≥i+1 M≥i
⊕

{b∈BM:t(b)=i}
Σ|b|MR

2 0
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of AR-modules.

A short exact sequence of AR-modules gives a long exact sequence in Ext. By
splicing the long exact sequences induced by (2.2), we get an “algebraic” Atiyah-
Hirzebruch spectral sequence

(2.3) Es
′,w′,s,f,w

2 := Bs
′,w′

M ⊗ Exts,f,wAR (M,MR
2 )⇒ Exts−s

′,f,w−w′
AR (M,M)

and a corresponding weak version of Theorem 1.12, along with a uniqueness crite-
rion, which is a weak form of Theorem 1.14.

Theorem 2.4. Let M denote an AR-module whose underlying MR
2 -module is free

and finite. Suppose

Exts−2,f,w
AR (M,MR

2 ) = 0

for f ≥ 3 whenever (s, w) ∈ DM. Then there exists an X ∈ SpR
2,fin such that

H∗,∗R (X) ∼= M as an AR-module. Further, such a realization is unique if

Exts−1,f,w
AR (M,MR

2 ) = 0

for all f ≥ 2 and (s, w) ∈ DM.

2.2. Weak R-motivic Toda realization – version (II).

For any AR-module M which is MR
2 -free, the quotient M/(ρ) is an AC-module. In

particular,
AR/(ρ) ∼= AC

as a graded Hopf-algebra. Therefore, we have a spectral sequence

(2.5) ρEs,f,w,i2 :=
⊕

i≥0 Exts+i,f,w+i
AC (M/(ρ),MC

2 ) Exts,f,wAR (M,MR
2 )

which is often called the (algebraic) ρ-Bockstein spectral sequence. Thus we get the
following version of the R-motivic Toda realization and uniqueness theorem which
is weaker than Theorem 2.4.

Theorem 2.6. Let M denote an AR-module whose underlying MR
2 -module is free

and finite. Suppose

Exts−2+i,f,w+i
AC (M/(ρ),MC

2 ) = 0

for f ≥ 3 and all i ≥ 0 whenever (s, w) ∈ DM, then there exists an X ∈ SpR
2,fin such

that H∗,∗R (X) ∼= M as an AR-module. Further, such a realization is unique if

Exts−1+i,f,w+i
AC (M/(ρ),MC

2 ) = 0

for all f ≥ 2, i ≥ 0 and (s, w) ∈ DM.

2.3. Weak R-motivic Toda realization – version (III).

Similarly to the classical case, the C-motivic Steenrod algebra enjoys an increasing
filtration called the May filtration, which is easier to express on its dual (see [DI]).
On AC

∗ , the May filtration is induced by assigning the May weights

m(τi−1) = m(ξ2j

i ) = 2i− 1

and extending it multiplicatively. The associated graded is an exterior algebra

(2.7) gr(AC) ∼= ΛMC
2
(ξi,j : i ≥ 1, j ≥ 0),
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where ξi,0 represents (τi−1)∗ and (ξi,j+1)∗ represents (ξ2j

i )∗ in the associated graded.
When M = MR

2 in (2.8), then

MayE∗,∗,∗,∗
1,MC

2

∼= MC
2 [hi,j : i ≥ 1, j ≥ 0],

where hi,j represents the class ξi,j . The (s, f, w,m)-degrees of these generators are
given by

|hi,j | =
{

(2i − 2, 1, 2i−1 − 1, i) if j = 0, and,
(2j(2i − 1)− 1, 1, 2j−1(2i − 1), i) otherwise.

When M is a cyclic AR-module, M/(ρ) is also cyclic as an AC-module, thus the
May filtration induces a filtration on M/(ρ). Thus, we get a corresponding May
spectral sequence

(2.8) MayEs,f,w,m1,M/(ρ) := Exts,f,w,m
gr(AC)

(gr(M/(ρ)),MC
2 )⇒ Exts,f,wAC (M/(ρ),MC

2 )

computing the input of the ρ-Bockstein spectral sequence (2.5). Thus we can for-
mulate a version of R-motivic Toda realization theorem which is even weaker than
Theorem 2.6.

Theorem 2.9. Let M denote an cyclic AR-module whose underlying MR
2 -module

is free and finite. Suppose

MayEs−2+i,f,w+i,∗
1,M/(ρ) = 0.

for f ≥ 3 and all i ≥ 0 whenever (s, w) ∈ DM. Then there exists an X ∈ SpR
2,fin

such that H∗,∗R (X) ∼= M as an AR-module. Further, such a realization is unique if

MayEs−1+i,f,w+i,∗
1,M/(ρ) = 0

for f ≥ 2, i ≥ 0 and (s, w) ∈ DM.

3. A comparison between C2-equivariant and classical squaring
operations

For any C2-equivariant space X ∈ TopC2
∗ we can functorially assign two non-

equivariant spaces – the underlying space <(X), which is obtained by restricting
the action of C2 to the trivial group, and the space of C2-fixed-points XC2 . For a
C2-equivariant spectrum E ∈ SpC2 , restricting the action to the trivial subgroup
results in a monoidal functor

< : SpC2 Sp

that identifies the underlying spectrum. However, there are two different notions of
fixed-point spectrum – the categorial fixed-points and the geometric fixed-points.

The categorical fixed-points functor is a lax monodial functor

(−)C2 : SpC2 Sp,

which is defined so that πk(EC2) ∼= πC2

k (E), but it does not interact well with
infinite suspensions. The correction term is explained by the tom Dieck splitting
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[LMSM, Theorem V.11.1]:

(3.1) (Σ∞C2
X)

C2 ' Σ∞(XC2) ∨ Σ∞(XhC2
),

where XhC2
is the homotopy orbit space. Let ẼC2 := Cof(EC2+ → S). The

geometric fixed-point functor

Φ : SpC2 Sp,

is a symmetric monoidal functor given by Φ(E) := (E ∧ ẼC2)
C2

. When E ∈ SpC2 ,

(3.2) Φ(Σ∞C2
E) ' Σ∞EC2

is the first component in (3.1). For any E ∈ SpC2 , there is a natural map of spectra

ιE : EC2 Φ(E)

induced by the map S→ ẼC2.

The Eilenberg-Mac Lane spectrum HF2 is an EC2
∞ -ring ([LMSM, VII]), i.e. a commu-

tative monoid as a genuine C2-spectrum. The restriction <(HF2) ' HF2, the cate-

gorical fixed-points HF2
C2 ' HF2 and the geometric fixed-points Φ(HF2) ' HF2[t]

are E∞-rings. It follows from the knowledge of MC2
2 := πC2

? HF2 that

(ΣnσHF2)
C2 '

∨n
i=0 ΣiHF2 Φ(HF2) ' colimn (ΣnσHF2)

C2 ' HF2[t]

is the inclusion of the first (n + 1) components. The above map clearly splits.

One can endow (ΣnσHF2)
C2 with an E∞-structure isomorphic to the truncated

polynomial algebra HF2[t]/(tn+1) so that the splitting map

π
(n)
F2

: Φ(HF2) ' HF2[t] (ΣnσHF2)
C2 ' HF2[t]/(tn+1)

is an E∞-map. The composition

(3.3) HF2
C2 Φ(HF2) HF2

C2
ιF2

π
(0)
F2

is the identity and exhibits Φ(HF2) as an augmented HF2-algebra.

For any C2-space X ∈ TopC2
∗ , the restriction functor induces a natural transforma-

tion

<∗ : Hi,j
C2

(X+) Hi(<(X)+).

To compare the cohomology of XC2 with the RO(C2)-graded cohomology of X, we
make use of the splitting (3.3) to define the natural ring map

Φ̂∗ : Hi,j
C2

(X+) Hi−j(XC2
+ ),

which sends u ∈ Hi,j
C2

(X+) to the composite (as defined in [BW, (2.7)])

Σ∞XC2 Σi−jΦ(HF2) Σi−jHF2.
Φ(u) π

(0)
F2

The purpose of this section is to compare the RO(C2)-graded squaring operations

with the classical squaring operations along the maps <∗ and Φ̂∗. We begin with
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a brief recollection of the construction of the classical and C2-equivariant squaring
operations.

3.1. Steenrod’s construction of squaring operations. The construction of
the classical mod 2 Steenrod algebra, which is the algebra of stable cohomology
operations for ordinary cohomology with F2-coefficients, involves the E∞-structure1

of HF2 and the fact that the tautological line bundle γ over RP∞ is HF2-orientable.
We review here how the mod 2 Steenrod operations are derived from that structure.
A similar discussion can be found in [BMMS, Section VIII.2].

Notation 3.4. For any space or spectrum X and n ≥ 1, we let

Dn(X) := (EΣn)+ ∧Σn (X∧n),

where Σn acts by permuting the factors of X∧n. By convention, D0(X) = S.

An E∞-ring structure on a spectrum R is a collection of maps of the form

ΘR
n : Dn(R) R

for each n ≥ 0, which satisfy the usual coherence conditions (see [Ma]). By as-
sumption, ΘR

0 is the unit map of R and ΘR
1 is the identity map.

The HF2-orientibility of γ implies the existence of an HF2-Thom class

(3.5) un : Th(γ⊕n) ' RP∞n ΣnHF2

for each n ≥ 0. These are compatible as n varies, in the sense that the following
diagram commutes:

(3.6)

Th(γ⊕(m+n)) Th(γ⊕m) ∧ Th(γ⊕n) ΣmHF2 ∧ ΣnHF2

HF2.um+n

um∧un

µF2

For any spectra E and F, there is a natural map

δn : Dn(E ∧ F) Dn(E) ∧Dn(F)

induced by the diagonal on EΣn and the isomorphism (E ∧ F)∧n ∼= E∧n ∧ F∧n.
Thus, we may define the map τn as the composition
(3.7)

D2(ΣnHF2) Σ2nHF2

D2(Sn) ∧D2(HF2) ΣnRP∞n ∧D2(HF2) Σ2nHF2 ∧HF2.

δ2

τn

' Σnun∧Θ
F2
2

µF2

Definition 3.8. The power operation is a natural transformation

P2 : Hn(−) H2n(D2(−)),

1Technically, we only make use of the H∞-ring structure that underlies the E∞-structure of
HF2
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which takes a class u ∈ Hn(E) to the composite class

P2(u) : D2(E) D2(ΣnHF2) ΣnHF2
D2(u) τn

for any E ∈ Sp.

From (3.6), we deduce the commutativity of the diagram
(3.9)

D2(ΣnHF2 ∧ ΣmHF2) D2(ΣnHF2) ∧D2(ΣmHF2) Σ2nHF2 ∧ Σ2mHF2

D2(Σn+mHF2) Σ2n+2mHF2.

D2(µF2 )

τn∧τm

µF2

τn+m

As a result, we have

δ∗2(P2(u)⊗ P2(v)) = P2(u⊗ v)

which leads to the Cartan formula for the Steenrod algebra.

If X ∈ Top∗ is given the trivial Σ2-action and X ∧ X the permutation action, the
diagonal map X→ X∧X is Σ2-equivariant. Consequently, we have an induced map

∆X : (BΣ2)+ ∧X ' (EΣ2)+ ∧Σ2
X D2(X).

Since H∗(BΣ2) ∼= F2[t], we may write (using the Kunneth isomorphism)

(3.10) ∆∗X(P2(u)) =

n∑
i=0

tn−i ⊗ Sqi(u),

which defines the natural transformations Sqi : Hn(−) −→ Hn+i(−).

Remark 3.11. The squaring operation Sqi(u) for any class u ∈ Hn(X) is deter-
mined by Sqi(ιn), where ιn ∈ H∗(K(F2, n)) is the fundamental class, because of
the universal property of K(F2, n). A priori, Sqi(u) depends on the cohomological
degree of u. However, this dependence is eradicated by the fact that the squaring
operations are stable, i.e. for any u ∈ H∗(X)

Sqi(σ∗(u)) = σ∗(Sqi(u)),

where σ∗ : H∗(X) ∼= H∗+1(ΣX) is the suspension isomorphism. The HF2-orientibility
of γ implies Sq0(ι) = ι for the generator ι ∈ H1(S1), which, along with Cartan for-
mula, implies stability.

3.2. The C2-equivariant squaring operations. The construction of the clas-
sical squaring operations can be adapted to construct squaring operations on the
RO(C2)-graded cohomology of a C2-space.

Remark 3.12. Our ideas are closely related to the construction of the R-motivic
squaring operations due to Voevodsky [V]. Certain parts, such as the construction
of the power operation Definition 3.19, though different, can be compared to [W1,
W2], where the author studies C2-equivariant power operations on the homology
of spaces.
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Notation 3.13. For any group G and a family of subgroups F closed under sub-
conjugacy, there exists a space EF determined up to a G-weak equivalence by its
universal property

EFH '
{
∗ if H ∈ F ,
∅ otherwise.

When G = C2 × Σn and Fn = {H ⊂ G : H ∩ Σn = 1}, we denote EFn by EC2Σn.
Note that there is a natural C2-equivariant map EΣn −→ EC2

Σn.

Notation 3.14. For a based C2-space or a C2-spectrum X, we let

DC2
n (X) := (EC2

Σn)+ ∧Σn (X∧n)

the n-th equivariant extended power construction on X. There is a natural C2-
equivariant map

δC2
n : DC2

n (X ∧Y) DC2
n (X) ∧DC2

n (Y)

induced by the diagonal map of EC2Σn for any pair X and Y of C2 space or spectra.

For a C2-equivariant space X ∈ TopC2
∗ , the inclusions XC2 ↪→ X and EΣn −→

EC2Σn together induce a natural map

(3.15) λX : D2(XC2) DC2
2 (X)

C2

which is usually not an equivalence.

Example 3.16. When X ' S0, λS0 : (BΣ2)+ (BC2
Σ2)

C2 ' BΣ2 ∧ S0
+ is

the inclusion of a summand.

Likewise, when E ∈ SpC2 , the map EC2 ↪→ E induces a natural map

λE : D2(EC2) DC2
2 (E)

C2
.

Using the fact that ẼC2 is an E∞-ring C2-spectrum we define a map λΦ
E as the

composition
(3.17)

D2(Φ(E)) Φ(DC2
2 (E))

(D2(ẼC2 ∧ E))C2 (D2(ẼC2) ∧D2(E))
C2

(ẼC2 ∧D2(E))
C2 ∼= Φ(D2(E))

λΦ
E

λ
ẼC2∧E

By definition, an EC2
∞ -ring structure on a spectrum R consists of a system of maps

ΘR
n : DC2

n (R) R

for each n ≥ 0, which satisfy certain compatibility criteria [LMSM, §VII.2]. The
categorical fixed-point spectrum RC2 as well as the geometric-fixed point spectrum
Φ(R) of an EC2

∞ -ring spectrum R are E∞-ring spectra with structure maps

ΘRC2

n : D2(RC2) DC2
2 (R)

C2
RC2

λR (ΘR
n )

C2
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and

Θ
Φ(R)
n : D2(Φ(R)) Φ(DC2

2 (R)) Φ(R),
λΦ

R Φ(ΘR
n )

respectively. Further, the natural map

ιR : RC2 Φ(R)

is an E∞-ring map.

Let ω denote the sign representation of Σ2. The equivariant Eilenberg-Mac Lane
spectrum HF2 does not distinguish between the C2-equivariant bundles

ε : EC2
Σ2 ×Σ2

(ρ) BC2
Σ2

γ : EC2Σ2 ×Σ2 (ρ⊗ω) BC2Σ2,

i.e. there exists a C2-equivariant Thom isomorphism

Th(γ) ∧HF2 ' Th(ε) ∧HF2 ' Σρ(BC2
Σ2)+ ∧HF2.

The above Thom isomorphism results in an HF2-Thom class

un : Th(γ⊕n) ΣnρHF2

for each n ≥ 0, and these Thom classes can be used to define the C2-equivariant
power operations. Since

DC2
2 (Snρ) ' Th(nρ⊕ n(ρ⊗ω)) ' ΣnρTh(γ⊕n),

we define the map τn as the composition
(3.18)

D2(ΣnρHF2) Σ2nρHF2

DC2
2 (Snρ) ∧DC2

2 (HF2) ΣnρTh(γ⊕n) ∧DC2
2 (HF2) Σ2nρHF2 ∧HF2.

τn

' Σnun∧Θ
F2
2

µF2

Definition 3.19. The equivariant power operation is a natural transformation

Pnρ : Hnρ
C2

(−) H2nρ
C2

(DC2
2 (−)),

which takes a class u ∈ Hnρ
C2

(E) to the composite class

Pnρ(u) : DC2
2 (E) DC2

2 (ΣnρHF2) Σ2nρHF2

D
C2
2 (u) τn

for any E ∈ SpC2 .

When X ∈ TopC2
∗ is given the trivial Σ2-action and X∧X is given the permutation

action, the diagonal map X→ X ∧X is a C2 ×Σ2-equivariant map. Consequently,
we have a C2-equivariant map

∆C2

X : (BC2Σ2)+ ∧X ' (EC2Σ2)+ ∧Σ2 X DC2
2 (X).

By [HK, Lemma 6.27] (also see [W1, Proposition 3.2]),

H?
C2

((BC2
Σ2)+) ∼= MC2

2 [y, x]/(y2 = aσy + uσx),
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where |y| = (1, 1) and |x| = (2, 1). Since H?
C2

((BC2
Σ2)+) is MC2

2 -free, we also have
a Kunneth isomorphism

H?
C2

((BC2Σ2)+ ∧X) ∼= H?
C2

((BC2Σ2)+)⊗MC2
2

H?
C2

(X).

Thus, for any u ∈ Hnρ
C2

(X), we may write (∆C2

X )∗(Pnρ(u)) using the formula

(3.20) (∆C2

X )∗(Pnρ(u)) =

n∑
i=0

xn−i ⊗ Sq2i(u) +

n∑
i=0

yxn−i−1 ⊗ Sq2i+1(u),

which defines the equivariant squaring operations Sqi for all i ≥ 0. These can
be extended to operations on the entire RO(C2)-graded cohomology ring as in
[V, Prop 2.6]).

Remark 3.21. Just like the classical case, one can easily deduce that the RO(C2)-
graded squaring operations defined this way are natural, stable and obey the Cartan
formula. In fact, Voevodsky [V] uses a similar approach to establish these properties
for the R-motivic Steenrod algebra, which can be emulated in the C2-equivariant
case using the Betti realization functor.

3.3. Comparison theorems. Since the restriction functor is monoidal, it induces
a ring map

<∗ : H?
C2

(X+) H∗(<(X)+)

for any X ∈ TopC2
∗ .

Example 3.22. When X = ∗, the map

<∗ : πC2
? HF2 π∗HF2

∼= F2

sends uσ 7→ 1, aσ 7→ 0, and Θ 7→ 0. This follows from the fact that the cofiber

sequence C2+ −→ S0 aσ−→ Sσ shows that the kernel of <∗ consists of precisely the
aσ-divisible elements.

Proposition 3.23. For any X ∈ TopC2
∗ and a class u ∈ Hnρ

C2
(X)

<∗(Pnρ(u)) = P2n(<∗(u)).

Proof. Since, <(γ) = 2γ, it follows that <∗(un) = u2n. This, along with the fact

that <(Θ
F2
2 ) = ΘF2

2 shows <(τn) = τ2n, and the result follows. �

Proof of Theorem 1.17. Let X ∈ TopC2
∗ and u ∈ Hnρ

C2
(X). Since <(BC2

Σ2) ' BΣ2,

<(∆C2) = ∆, <∗(y) = t and <∗(x) = t2, it follows that

∆∗<(X)(P2n(<∗(u))) =

n∑
i=−n

tn−i ⊗ Sqi(<∗(u))
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must equal

<∗((∆C2

X )∗(Pnρ(u))) = <∗(
n∑

i=−n
xn−i ⊗ Sq2i(u) +

n∑
i=−n

yxn−i−1 ⊗ Sq2i+1(u))

=

n∑
i=−n

t2n−2i ⊗<∗(Sq2i(u))

+

n∑
i=−n

t2n−2i−1 ⊗<∗(Sq2i+1(u)).

Thus, the result is true for cohomology classes u ∈ Hnρ
C2

(X) for any space X ∈
TopC2

∗ .

Since the squaring operations are stable, the result extends to arbitrary RO(C2)-
graded cohomology classes. Moreover, since < commutes with suspensions, in the
sense that < ◦ Σ∞C2

' Σ∞ ◦ <, and any E ∈ SpC2

2,fin is equivalent to Σ−nΣ∞C2
X for

some n and X ∈ TopC2
∗ , we conclude the same for any u ∈ H?

C2
(E). �

Now we draw our attention towards comparing the action of the C2-equivariant
Steenrod algebra AC2 on H?(X+) to the action of the classical Steenrod algebra A
on H∗(XC2

+ ), where X ∈ TopC2
∗ . Note that

Φ̂∗ : H?
C2

(X+) H∗(XC2
+ )

is a ring map.

Example 3.24. When X = ∗, the map

Φ̂∗ : πC2
? HF2

∼= F2[uσ, aσ]⊕Θ{u−iσ a−jσ } π∗HF2
∼= F2

sends aσ 7→ 1, uσ 7→ 0, and Θ 7→ 0. This is essentially because smashing with

ẼC2 ' colim{S0 aσ−→ Sσ aσ−→ S2σ −→ . . . }

amounts to inverting aσ and the projection π
(0)
F2

kills uσ.

Remark 3.25. One can deduce from Example 3.16 that in cohomology, the map

λ∗S0 : H∗(BC2
Σ2

C2

+ ) ∼= F2[t][ι]/(ι2 − ι) H∗((BΣ2)+) ∼= F2[t],

is the quotient map sending ι 7→ 0.

Example 3.26. The map Φ̂∗ : H?
C2

((BC2
Σ2)+) → H∗(BC2

Σ2
C2

+ ) sends x 7→ t and
y→ ι, aσ 7→ 1 and uσ 7→ 0.

Lemma 3.27. The composition

H?
C2

(Th(γ⊕n)) H∗(Th(γ⊕n)
C2) H∗(Th(γ⊕n))

Φ̂∗ λSρ⊗ω

sends un 7→ un.
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Proof. Let ζC2
: (BC2

Σ2)+ → Th(γ⊕n) denote the zero-section. Under the zero
section map the Thom class is mapped to the Euler class, and therefore ζ∗C2

(un) =

xn. Likewise, the zero-section for the nonequivariant bundle ζ : (BΣ2)+ → Th(γ⊕n)

sends un 7→ tn. By naturality of Φ̂∗ and λ, we get a commutative diagram

H?
C2

(Th(γ⊕n)) H∗(Th(γ⊕n)
C2) H∗(Th(γ⊕n))

H?
C2

((BC2Σ2)+) H∗(BC2Σ2
C2

+ ) H∗((BΣ2)+).

ζ∗C2

Φ̂∗ λ∗
Sρ⊗ω

(ζ
C2
C2

)∗ ζ∗

Φ̂∗ λ∗
S0

which along with Remark 3.25 and injectivity of ζ∗ implies the result. �

Corollary 3.28. For any space X ∈ TopC2
∗ and a class u ∈ Hnρ

C2
(X),

(3.29) Pn(Φ̂∗(u)) = λ∗X(Φ̂∗(Pnρ(u))).

Proof. It is enough to show that in the following diagram commutes as the blue
path and the red path indicates the left-hand side and the right-hand side of (3.29)
respectively.

D2(XC2) DC2
2 (X)

C2

D2(ΣnHF2) D2(Φ(ΣnρHF2)) Φ(DC2
2 (ΣnρHF2))

D2(Sn) ∧D2(HF2) D2(Sn) ∧D2(Φ(HF2)) Φ(DC2
2 (Snρ)) ∧ Φ(DC2

2 (HF2))

Σ2nHF2 ∧HF2 Σ2nHF2 ∧ Φ(HF2) Φ(Σ2nρHF2) ∧ Φ(HF2)

Σ2nHF2 Σ2nΦ(HF2)

D2(Φ(u)) (A)

λX

Φ(D
C2
2 (u))

δ2 (B)

D2(Σnπ
(0)
F2

)

(C)

λΦ
Σnρ∧HF2

δ2 Φ(δ
C2
2 )

un∧Θ
F2
2 (E)

1∧D2(π
(0)
F2

)

un∧Θ
ΦF2
2 (F) un∧Θ

F2
2

Σ2nµF2 (G)

1∧π(0)
F2

Σ2nπ
(0)
F2
∧1

Σ2nΦ(µF2 )

Σ2nπ
(0)
F2

The squares (A), (B) and (C) commute naturally, the squares (E) and (G) commute

because π
(0)
F2

is an E∞-ring map, and (F) commutes because of Lemma 3.27. �
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Proof of Theorem 1.19. For any space X ∈ TopC2
∗ and a class u ∈ Hnρ

C2
(X), we have

a commutative diagram

(BΣ2)+ ∧XC2 D2(XC2))

(BC2
Σ2)+ ∧XC2 DC2

2 (X)
C2
.

∆
XC2

λS0∧1XC2
λX

(∆
C2
X )

C2

Therefore,

n∑
i=0

tn−i ⊗ Sqi(Φ∗(u)) = ∆∗XC2 (Pn(Φ∗(u)))

= ∆∗XC2 (λ∗X(Φ∗(P2n,n(u))))

= (λ∗S0 ⊗ 1∗XC2 )(((∆C2

X )
C2

)∗(Φ∗(P2n,n(u))))

= (λ∗S0 ⊗ 1∗XC2 )Φ∗((∆
C2

X )∗(P2n,n(u)))

= (λ∗S0 ⊗ 1∗XC2 )Φ∗

(
n∑
i=0

xn−i ⊗ Sq2i,i(u)

+

n∑
i=0

yxn−i−1 ⊗ Sq2i+1(u)

)

= (λ∗S0 ⊗ 1∗XC2 )

(
n∑
i=0

tn−i ⊗ Φ∗(Sq2i(u))

+

n∑
i=0

ιtn−i−1 ⊗ Φ∗(Sq2i+1(u))

)

=

n∑
i=0

tn−i ⊗ Φ∗(Sq2i(u)),

and hence, the result is true for all u ∈ Hnρ
C2

(X) for any X ∈ TopC2
∗ .

Since the squaring operations are stable, the result extends to arbitrary RO(C2)-
graded cohomology classes. Moreover, since the geometric fixed point functor Φ
commutes with suspensions (3.2), and any E ∈ SpC2

2,fin is equivalent to Σ−nΣ∞C2
X

for some n and X ∈ TopC2
∗ , we conclude the same for any u ∈ H?

C2
(E). �

4. Topological realization of AR(1)

We begin by proving Theorem 1.6, which identifies all possible AR-module struc-
tures on AR(1) up to isomorphism.

Proof of Theorem 1.6. Note that the Cartan formula of AR and finiteness of AR(1)
imply that the AR-module structure on AR(1) is determined once the action of Sq4

and Sq8 are specified on its MR
2 -generators. The following are possible Sq4 and
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0 1 2 3 4 5 6 7 8

0

1

2

3

4

x0,0 x1,0

x2,1

x3,1
y3,1

y4,1

y5,2 y6,2

Figure 4.1. This figure displays the free MR
2 -module AR(1), with

Sq1 and Sq2-multiplications drawn in only on the MR
2 -module gen-

erators.

Sq8-actions on the MR
2 -module generators. As can be seen in Figure 4.1, there is

no room for other possible actions.

Sq4(x0,0) = β03(ρ · y3,1) + β04(τ · y4,1) + α03(ρ · x3,1)

Sq4(x1,0) = β14(ρ · y4,1) + β15(y5,2)

Sq4(x2,1) = j24(ρ2 · y4,1) + β25(ρ · y5,2) + β26(τ · y6,2)

Sq4(x3,1) = β36(ρ · y6,2)

Sq4(y3,1) = γ36(ρ · y6,2)

Sq8(x0,0) = β06(ρ2 · y6,2)

The Adem relation Sq2Sq3 = Sq5 + Sq4Sq1 + ρSq3Sq1 (see Proposition A.1), when
applied to x0,0 and x2,1, yields β15 = 1, β03 + β04 + β14 = 1 and β25 + β26 = β36.
The equation

j24 = β03γ36 + α03β36,

is forced by the Adem relation Sq4Sq4 = Sq2Sq4Sq2 + τSq3Sq4Sq1 when applied to
x0,0. This exhausts all constraints imposed by Adem relations in these dimensions.

�

In Theorem 1.6, there are exactly seven free variables taking values in F2, and
therefore, there are exactly 128 different AR-module structure on AR(1). Thus,
in order to complete the proof of Theorem 1.3, we realize these AR-modules as
spectra using Theorem 2.9, which is a weak form of the R-motivic Toda realization
theorem.

Proof of Theorem 1.3. Firstly, note that AR
v (1) is a cyclic AR-module for all v ∈ V,

therefore AC
v (1) := AR

v (1)/(ρ) admits a May filtration. Secondly, note that

gr(AC
v (1)) ∼= ΛMC

2
(ξ1,0, ξ1,1, ξ2,0)

as an gr(AC)-module (see (2.7) for notation). Consequently,

(4.2) MayE∗,∗,∗,∗
1,AC

v(1)
∼= MayE∗,∗,∗,∗

1,MC
2
/(h1,0, h1,1, h2,0) ∼=

MC
2 [hi,j : i ≥ 1, j ≥ 0]

(h1,0, h1,1, h2,0)
.
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In the notation of Subsection 2.3

DAR(1) = {(0, 0), (1, 0), (2, 1), (3, 1), (4, 1), (5, 2), (6, 2)}

By directly inspecting the (s, f, w)-degree of MayE∗,∗,∗,∗
1,AC

v(1)
, we see that the condition

necessary for existence in Theorem 2.9 is satisfied. Hence, the result. �

Remark 4.3. The vanishing region of MayE∗,∗,∗,∗
1,AC

v(1)
does not preclude the possibility

of having a nonzero element in Ext−1,2,0
AR (M,M). We suspect (even after running

the differentials in (2.3) and (2.5)), that the above group is nonzero for a given
AR-module structure on AR(1), and that there are, up to homotopy, multiple real-
izations as R-motivic spectra.

Our next goal is to prove Theorem 1.8. We begin with the following observation.

Lemma 4.4. The AR-modules BR2 (1) and BRh (1) are uniquely realizable as objects

in SpR
2,fin.

Proof. Both BR2 (1) and BRh (1) are cyclic MR
2 -free finite AR-module and

BR2 (1)/(ρ) ∼= BRh (1)/(ρ)

as AC-module. Let BC(1) := BR2 (1)/(ρ). It is easy to see that gr(BC(1)) is isomor-
phic to ΛMC

2
(ξ1,0, ξ1,1) as an gr(AC)-module, and therefore

(4.5) MayE∗,∗,∗,∗
1,BC(1)

∼= F2[τ ][hi,j : i ≥ 1, j ≥ 0]/(h1,0, h1,1).

Using this, along with the fact that

DBC(1) = {(0, 0), (1, 0), (2, 1), (3, 1), }
shows that the condition necessary for existence as well as uniqueness in Theo-
rem 2.9 is satisfied. Hence, the result. �

Proof of Theorem 1.8. Consider the injective AR-module map Σ3,1BRε (1) → AR
v

sending the MR
2 generator in degree (3, 1) to x3,1 +y3,1. It follows from Theorem 1.6

that the quotient is isomorphic to BRδ (1). Thus, we have the exact sequence (1.9).

The topological realization of (1.9), i.e. the cofiber sequence (1.10), would follow
immediately from Lemma 4.4 once we show that any one of the AR-module maps
in (1.9) can be realized as a map in SpR

2,fin. Thus, it is enough to show that the

nonzero class in the E2-page represented by the projection map AR
v (1)� BRδ (1) in

degree (0, 0, 0) of the R-motivic Adams spectral sequence

(4.6) Es,f,w2 := Exts,f,wAR (AR
v (1),BRδ (1))⇒

[
YR

(δ,1),A
R
1 [v]

]
s,w

is a nonzero permanent cycle.

Using (4.2), the ρ-Bockstein spectral sequence (2.5) for AR
1 [v] and the Atiyah-

Hirzebruch spectral sequence

Bs
′,w′

BR
δ (1)
⊗ Exts,f,wAR (AR

1 [v],MR
2 )⇒ Exts+s

′,f,w+w′

AR (AR
1 [v],BRδ (1)),

one can easily check E−1,f,0
2 = 0 for all f ≥ 2, and thus any nonzero element in

degree (0, 0, 0) of the E2-page in (4.6) is, in fact, a nonzero permanent cycle. �
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Our next goal is to analyze the underlying spectrum and geometric fixed-points
spectrum of AC2

1 [v], the Betti realization of AR
1 [v].

4.1. The Betti realization of AR
1 .

Under the Betti-realization map

(4.7) β∗ : π∗,∗HRF2
∼= F2[ρ, τ ] π?HF2

ρ 7→ aσ and τ 7→ uσ. Since the functor β is symmetric monoidal and β(HRF2) =
HF2, the i-th R-motivic squaring operations maps to the i-th RO(C2)-graded squar-
ing operations under the map

β∗ : AR AC2 .

Hence, H?
C2

(AC2
1 [v]) is MC2

2 -free (as H∗,∗R (AR
1 [v]) is MR

2 -free) and its AC2-module

structure is essentially given by Theorem 1.6 (after replacing Sqi with Sqi and

MR
2 -basis elements by its image under β∗).

Remark 4.8. The map β∗ of (4.7) is only an injection with cokernel the summand

Θ{u−iσ a−jσ : i, j ≥ 0} of MC2
2 . In general, for an AR(1)-module MR, the number

of AC2-module structures on β(MR) can be strictly larger than the number of AR-
module structures on MR. But this is not the case when MR = AR

v (1) simply for
degree reasons, therefore Corollary 1.15 holds.

As discussed in Example 3.22, the restriction map

<∗ : MC2
2 F2

sends aσ 7→ 0, uσ 7→ 1, and Θ 7→ 0. Thus, when H?
C2

(E) is MC2
2 -free, <∗ is

simply “setting aσ = 0, uσ = 1, and Θ = 0”. This observation, along with Theo-
rem 1.17, allows us to completely deduce the A-module structure of H∗(<(AR

v (1)))
from Theorem 1.6. Together with the fact that the A-module structures on A(1) are
uniquely-realized, our observations yield the following theorem, where the notation
A1[i, j] is adopted from [BEM].

Theorem 4.9. For v = (α03, β03, β14, β06, β25, β26, γ36) ∈ V (as in Theorem 1.6),

<(AC2
1 [v]) ' A1[1 + β03 + β14, β26].

Now we shift our attention towards understand the geometric fixed-points ofAC2
1 [v].

As discussed in Example 3.24, the modified geometric fixed-points functor

Φ̂∗ : MC2
2 F2

sends aσ 7→ 1, uσ 7→ 0, and Θ 7→ 0. Thus, when H?
C2

(E) is MC2
2 -free, Φ̂∗ is

simply “setting aσ = 1, uσ = 0, and Θ = 0”. This, along with Theorem 1.6 and
Theorem 1.19, gives the following.

Notation 4.10. Because H?
C2

(AC2
1 [v]) is MC2

2 -free, the HF2-cohomology of Φ(AC2
1 [v])

consists of eight F2-generators, all of which are in the image of Φ̂∗. We let

s0 := Φ̂∗(x0,0), s1a := Φ̂∗(x2,1), s1b := Φ̂∗(x1,0), s2 := Φ̂∗(y3,1)
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t2 := Φ̂∗(x3,1), t3a := Φ̂∗(y5,2), t3b := Φ̂∗(y4,1), t4 := Φ̂∗(y6,2).

Note that |si(−)| = |ti(−)| = i.

Theorem 4.11. Let v = (α03, β03, β14, β06, β25, β26, γ36) ∈ V, and let

j24 = β03γ36 + α03(β25 + β26)

as in Theorem 1.6. The A-module structure on H∗(Φ(AC2
1 [v])) is determined by the

following relations, as depicted in Figure 4.12:

• Sq1(s0) = s1a

• Sq1(s1b) = s2

• Sq1(t2) = t3a

• Sq1(t3b) = t4

• Sq2(s0) = β03s2 + α03t2

• Sq2(s1a) = β25t3a + j24t3b

• Sq2(s1b) = t3a + β14t3b

• Sq2(s2) = γ36t4

• Sq2(t2) = (β25 + β26)t4

• Sq4(s0) = β06t4.

α
0
3

β 03

β
2
5

j24

β 1
4

γ
3
6

β25
+
β26

s0

s1a
s1b

s2t2

t3a
t3b

t4

β06

Figure 4.12. The A-module H∗(Φ(AC2
1 [v]))

5. An R-motivic analogue of the spectrum Z

The type 2 spectrum Z ∈ Sp2,fin, introduced in [BE], is defined by the property
that its cohomology as an A(2)-module is

B(2) := A(2)⊗Λ(Q2) F2,

where Q2 = [Sq4,Q1] is dual to the Milnor generator ξ3 of the dual Steenrod
algebra. They first show that an A-module structure on A(2) satisfying the criteria
in [BE, Lemma 2.7] leads to an A-module structure on B(2). In [BE], the authors
show that among the 1600 possible A-module structures on A(2) [Ro], there are
some A-modules that satisfy [BE, Lemma 2.7]. Then they use the classical Toda
realization theorem to show that any A-module whose underlying A(2)-module
structure is B(2) can be realized as a 2-local finite spectrum, which they call Z.

We construct ZR ∈ SpR
2,fin by emulating the construction of the classical Z (as

in [BE]) in the R-motivic context. Since there is no a priori AR-module structure
on AR(2), we produce one in the following subsection. In fact, we construct an
R-motivic spectrum whose cohomology is the desired AR-module.
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5.1. A topological realization of AR(2). Let AR(2) denote the sub-MR
2 -algebra

of the R-motivic Steenrod algebra AR generated by Sq1,Sq2, and Sq4. We will
use a method of Smith (exposed in [Ra, Appendix C]) to construct an R-motivic

spectrum AR
2 ∈ SpR

2,fin such that its cohomology as an AR(2)-module is free on one
generator.

Let h, η1,1 and ν3,2 denote the first three R-motivic Hopf-elements.

Lemma 5.1. The R-motivic Toda-bracket 〈h, η1,1, ν3,2〉 contains 0.

Proof. In this argument, it will be convenient to refer to the “coweight”, by which
we mean the difference s− w, as in [GI].

Since h and η1,1 have coweight 0 while ν3,2 has coweight 1, it follows that the bracket
〈h, η1,1, ν3,2〉 is comprised of elements in stem 5 with coweight 2. The only element
in stem 5 with coweight 1 is ρ · ν2

3,2 [BI]. Since this element is a ν3,2 multiple, it lies
in the indeterminacy, which means that the R-motivic Toda-bracket does contain
zero. �

Lemma 5.1 implies that we can construct a 4-cell complex K whose cohomology
as an AR-module has the structure described in Corollary 5.2 and displayed in
Figure 5.3.

Corollary 5.2. There exists K ∈ SpR
2,fin such that H∗,∗R (K) is MR

2 -free on four

generators x0, x1, x3 and x7, such that Sqi+1(xi) = x2i+1 for i ∈ {0, 1, 3}.

H∗,∗R (K) =

x0

x1

x3

x7

Figure 5.3. We depict the AR-structure of H∗,∗R (K) by marking

the Sq1-action by black straight lines, the Sq2-action by blue curved
lines, and the Sq4-action by red lines between the MR

2 -generators.

Let e ∈ Z(2)[Σ6] denote the idempotent corresponding to the Young tableaux

6

4

1

5

32

which is constructed as follows. Let ΣRow ⊂ Σ6 denote the subgroup comprised
of permutations that preserve each row. Likewise, let ΣCol denote the subgroup
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comprised of column-preserving permutations. Let

(5.4) R =
∑

r∈ΣRow

r and C =
∑

c∈ΣCol

(−1)sign(c)c

and define

e =
1

µ
R · C,

where µ is an odd integer defined in [Ra, Theorem C.1.3]. We let e denote the
resulting idempotent in F2[Σ6].

Proposition 5.5. The idempotent e ∈ F2[Σ6] has the property that e(V⊗6) = 0 if
dimF2

V < 3 and

dimF2
e(V⊗6) =

{
8 if dimF2 V = 3
64 if dimF2 V = 4

Proof. Let R and C denote the images of R and C in F2[Σ6], respectively. Then
e = R · C. It is straightforward that C vanishes on V⊗6 if dim V ≤ 2.

Now suppose that V has basis {a, b, c}. Then a basis for e(V⊗6) is given by{
e

(
c
b
a
c
cb

)
, e

(
c
a
b

c
ca

)
, e

(
b
c
a
b
bc
)
, e

(
b
a
c
b
ba
)
, e

(
a
b
c
a
ab

)
, e

(
a
c
b
a
ac

)
,

e

(
c
b
a
a
cb

)
, e

(
b
c
a
a
bc
)}

.

Finally, suppose that dim V = 4 with basis {a, b, c, d}. For any subspace W ⊂ V
spanned by three of these basis elements, the space e(W⊗6) has dimension 8, as we
have just seen. There are 4 choices of W, which together yield a 32-dimensional
subspace of V⊗6. Now consider Young tableaux in which all four basis elements
appear and only one is repeated. In the case that d is repeated, we generate only
two independent elements:

e

(
d
b
a
d
dc
)

and e

(
d
b
c
d
da
)
.

Allowing any basis element to be the repeating one, this gives an 8-dimensional
subspace. Finally, we consider Young tableaux in which all four basis elements
appear and two are repeated. In the case that c and d are repeated, we have the
four elements

e

(
c
b
a
d
dc

)
, e

(
d
c
a
b
dc
)
, e

(
d
b
b

c
cd

)
, and e

(
c
d
a
b

cd

)
.

As there are
(

4
2

)
= 6 such choices, this contributes another subspace of dimension

4 · 6 = 24. �

We define

AR
2 := Σ−5,−1e(K∧6) = Σ−5,−1(hocolim {K∧6 e→ K∧6 e→ . . . }),

which is a split summand of Σ−5,−1K∧6 as e is an idempotent. We shift the grading
by (−5,−1) to make sure that the AR(2)-module generator of H∗,∗R (AR

2 ) is in (0, 0)
(see Remark 5.12).
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Theorem 5.6. H∗,∗R (AR
2 ) ∼= AR(2) as an AR(2)-module.

Proof. By [BGL, Corollary 2.7], H∗,∗R (AR
2 ) is a free AR(2)-module if and only if

H∗,∗R (AR
2 ) is free as an MR

2 -module and the Margolis homology M(H∗,∗R (AR
2 ) ⊗MR

2

F2, x) vanishes for x ∈ {QR
0 ,Q

R
1 ,P

1

1,Q
R
2 ,P

1

2}, where P
1

1 and P
1

2 are the elements in
AR dual to ξ1 and ξ2, respectively.

Let KR := H∗,∗R (K). The AR-module H∗,∗R (AR
2 ) is MR

2 -projective as it is a summand
of

H∗,∗R (Σ−5K∧6) ∼= Σ−5K
⊗MR

2
6

R ,

which is MR
2 -free. However, MR

2 is a graded local ring, and over a local ring,
being projective is equivalent to being free. Hence, H∗,∗R (AR

2 ) is MR
2 -free. Since

QR
0 ,Q

R
1 ,Q

R
2 ,P

1

1, and P
1

2 are primitive modulo (ρ, τ), and for K := KR ⊗MR
2
F2,

i ∈ {0, 1, 2} and t ∈ {1, 2}

dimF2
M(K,QR

i ) = 2 = dimF2
M(K,P

1

t ),

it follows from Proposition 5.5 that

M(H∗,∗R (AR
2 )⊗MR

2
F2, x) ∼=M(e(K⊗6), x) ∼= e(M(K, x)⊗6) = 0

for x ∈ {QR
0 ,Q

R
1 ,P

1

1,Q
R
2 ,P

1

2}. Thus, H∗,∗R (AR
2 ) is free over AR(2). Proposition 5.5

also implies that the MR
2 -rank of H∗,∗R (AR

2 ) is 64, and therefore H∗,∗R (AR
2 ) has rank

1 over AR(2). �

5.2. An R-motivic lift of B(2). Let Q̃R
2 = [Sq4,QR

1 ]. Unlike the classical Steenrod

algebra, QR
2 does not agree with Q̃R

2 . Instead, as in [V, Example 13.7], these are
related by the formula

QR
2 = [Sq4,QR

1 ] + ρSq5Sq1.

However, one can check that both QR
2 and Q̃R

2 square to zero, hence generate exterior
algebras. We define (left) AR(2)-modules

BR(2) := AR(2)⊗Λ(QR
2) MR

2

and

(5.7) B̃R(2) := AR(2)⊗Λ(Q̃R
2) M

R
2 .

Let AR
2 denote H∗,∗R (AR

2 ). It is easy to check that the left ideal generated by QR
2

(likewise Q̃R
2 ) in AR(2) is isomorphic to Σ7,3BR(2) (likewise Σ7,3B̃R(2)). It follows

that there is an exact sequence of AR(2)-modules

(5.8) 0 Σ7,3BR AR
2 BR 0,ι π

where BR is either BR(2) or B̃R(2). The main purpose of this subsection is to show
that:

Lemma 5.9. There exists an exact sequence of AR-modules whose underlying
AR(2)-module exact sequence is isomorphic to (5.8) with BR ∼= B̃R(2).

Remark 5.10. In the case of BR = BR(2), the image of Σ7,1BR(2) −→ AR
2 is a

sub-AR(2)-module, but not a sub-AR-module. See Remark 5.15 for more details.
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Lemma 5.9 and Remark 5.10 are direct consequences of the AR-module structure
of AR

2 which can be deduced from the injection

Σ5,1AR
2 K

⊗MR
2

6

R ,

where KR = H∗,∗R (KR). We do not want to entirely leave this calculation to the
reader because, without a few tricks, this calculation is likely to require computer
assistance as e has 144 elements in its expression (in terms of the standard F2-

generators of F2[Σ3]) and K
⊗MR

2
6

R has 212 elements in its MR
2 -basis. We begin after

setting the following notation.

Notation 5.11. Let xi denote the MR
2 -generators of KR in degree i as in Corol-

lary 5.2. We use the numbered Young diagram (abbrev. NYD)

i6

i4

i1
i5

i3i2

to denote the MR
2 -basis element xi1 ⊗ · · · ⊗ xi6 ∈ K

⊗MR
2

6

R , where ij ∈ {0, 1, 3, 7}.

As in Proposition 5.5, let R and C denote the images of R and C (see (5.4)) in F2[Σ6],
respectively. Since e = R · C, we record a few properties of R and C. Note that R
annihilates an NYD if it has repeating digits in a row. Likewise, C annihilates an
NYD if there are repeating digits in a column. For instance,

R(
3
3
0
7
01 ) = 0 = C(

3
3
0
7
01 ).

Remark 5.12. The lowest degree NYD which is not annihilated by e is

3
1
0

1
00

which lives in degree (5, 1). Of course, there are multiple NYD’s in bidegree (5, 1)
not annihilated by e but their images are the same. Likewise, the NYD of the
highest degree not annihilated by e is

1
3
7

3
77

which lives in bidegree (28, 11).

The lowest degree element ι := e(
3
1
0
1
00 ), which serves as the AR-module generator

of Σ5,1AR
2 , can also be expressed as

ι = R(
0
1
3
0
01 )

because the other NYDs present in the expression C(
3
1
0
1
00 ) are annihilated by R.

Since the R-motivic Steenrod algebra is cocommutative we get

R(C(Sqi(−))) = R(Sqi(C(−))) = Sqi(R(C(−))).
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This, along with the Cartan formula, allows us to calculate a · ι for any a ∈ AR,
fairly easily. For example,

Sq1 · ι = R(Sq1

0
1
3
0
01 )

= R(
0
1
3
0
11 +

0
1
3
1
01 +

1
1
3
0
01 )

= R(
1
1
3
0
01 ),

Sq2 · ι = R(Sq2

0
1
3
0
01 )

= R(
0
1
3
0
03 +

0
3
3
0
01 + τ(

0
1
3
1
11 +

1
1
3
0
11 +

1
1
3
1
01 ))

= R(
0
3
3
0
01 ),

Sq4 · ι = R(Sq4(
0
1
3
0
01 ))

= R(
0
1
7
0
01 +

0
3
3
0
03 + τ(

0
1
3
1
13 +

1
1
3
0
13 +

1
1
3
1
03 )

+τ(
0
3
3
1
11 +

1
3
3
0
11 +

1
3
3
1
01 ))

= R(
0
1
7
0
01 + τ

1
3
3
1
01 ).

In this way, we calculate

Q̃R
2 · ι = R(

7
1
3
0
01 +

0
7
3
1
01 +

0
1
7
0
13 )

QR
2 · ι = R(

7
1
3
0
01 +

0
7
3
1
01 +

0
1
7
0
13 + ρ

3
3
3
1
01 ),

where the details are left to the reader.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0

1

2

3

4

5

6

7

8

9

10

Figure 5.13. MR
2 -module generators of AR(2). Black dots corre-

spond to generators of B̃R(2) and orange dots to Σ7,3B̃R(2).
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Remark 5.14. We record (see Figure 5.13), in the notation introduced in Subsec-
tion 2.1, that

DB̃R(2) = {(0, 0), (1, 0), (2, 1), (3, 1), (4, 1), (4, 2), (5, 2), (6, 2), (6, 3), (7, 3), (8, 3), (8, 4),

(9, 4), (10, 4), (10, 5), (11, 5), (12, 5), (12, 6), (13, 6), (14, 6), (15, 7), (16, 7)}

and DAR
2

= {(i+ 7ε, j + 3ε) : (i, j) ∈ DB̃R(2) and ε ∈ {0, 1}}.

Proof of Lemma 5.9. Recall that the image of Σ7,3B̃R(2) in (5.8) is the (left) AR(2)-

submodule of AR
2 generated by Q̃R

2 . We must check that this is closed under the
action of AR. Since Sq1,Sq2,Sq4 are in AR(2), it remains to check that for all i ≥ 3
and a ∈ AR(2)

Sq2i · (aQ̃R
2 · ι) = bQ̃R

2 · ι
for some b ∈ AR(2). For degree reasons (see Remark 5.14), we only need to consider
the case when i = 3 and a ∈ {1,Sq1,Sq2}. We check

Sq8 · (Q̃R
2 · ι) = (Sq4Sq4 + Sq4Sq2Sq2)Q̃R

2 · ι
Sq8 · (Sq1Q̃R

2 · ι) = (Sq7Sq2 + Sq2Sq7)Sq1Q̃R
2 · ι

Sq8 · (Sq2Q̃R
2 · ι) = (Sq4Sq4Sq2 + Sq4Sq2Sq4 + τSq5Sq4Sq1)Sq2Q̃R

2 · ι

and thus the result holds. �

Remark 5.15. We notice that

Sq8 · (QR
2 · ι) = R(

7
3
7
0
03 +

0
7
7
3
03 + τ

1
7
7
1
13 + ρ(

3
7
7
1
01 +

7
3
7
1
01 +

7
7
3
1
01 ))

cannot be equal to bQR
2 ·ι for any b ∈ AR(2). This is an easy but tedious calculation.

For the convenience of the reader, we note that an F2-basis for the elements in degree
|Sq8| = (8, 4) of AR(2) is given by

{Sq6Sq2, τSq7Sq1, τSq5Sq2Sq1, ρSq7, ρSq6Sq1, ρSq5Sq2, ρSq4Sq2Sq1, ρ2Sq5Sq1}.

5.3. The construction of ZR.

Recall the AR-module B̃R
2 , as given in (5.7), and let

BC
2 := B̃R

2 /(ρ).

Proof of Theorem 1.24. Since BC
2 is cyclic as an AC-module, it admits a May fil-

tration, whose associated graded is isomorphic to

gr(BC
2 ) ∼= Λ(ξ1,0, ξ1,1, ξ1,2, ξ2,0, ξ2,1)

and whose E2-page of the corresponding May spectral sequence is isomorphic to

(5.16) MayE∗,∗,∗,∗
1,BC

2

∼=
MC

2 [hi,j : i ≥ 1, j ≥ 0]

(h1,0, h1,1, h1,2, h2,0, h2,1)
.

From this and Remark 5.14, one easily checks that the condition for Theorem 2.9
is satisfied. Thus, there exists ZR ∈ SpR

2,fin such that H∗,∗R (ZR) ∼= B̃R
2 . �
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Remark 5.17. Since, as an A(2)-module

H∗(<(β(ZR))) ∼= <∗(β∗(H∗,∗R (ZR))) ∼= B(2),

the underlying spectrum of β(ZR) is indeed one of the spectra Z considered in [BE],
and therefore of type 2.

Appendix A. The R-motivic Adem relations

Voevodsky established the motivic version of the Adem relations [V, Section 10].
However, his formulas contain some typos, so for the convenience of the reader, we
here present the Adem relations, in the R-motivic case.

Proposition A.1. In the R-motivic Steenrod algebra AR, the product SqaSqb is
equal to

(1) (a and b both even)

a/2∑
j=0

τ j mod2

(
b− 1− j
a− 2j

)
Sqa+b−jSqj

(2) (a odd and b even)

(a−1)/2∑
j=0

(
b− 1− j
a− 2j

)
Sqa+b−jSqj + ρ

(
b− j
a− 2j

)
Sqa+b−j−1Sqj .

(3) (a even and b odd)

a/2∑
j=0

(
b− 1− j
a− 2j

)
Sqa+b−jSqj + ρ

(
b− 1− j
a+ 1− 2j

)
Sqa+b−j−1Sqj .

(4) (a and b both odd)

(a−1)/2∑
j=0

(
b− 1− j
a− 2j

)
Sqa+b−jSqj

Remark A.2. Given that Sqa = Sq1Sqa−1 if a is odd and also that Sq1(τ) = ρ,
cases (2) and (4) follow from (1) and (3), respectively. Note also that (1) is the
classical formula, but with τ thrown in whenever needed to balance the weights. In
formula (2), the left term appears only when j is even, while the second appears
only when j is odd. In formula (3), the second term appears only when j is odd.

Example A.3. Some examples of the R-motivic Adem relation in low degrees are

Sq2Sq2 = τSq3Sq1, Sq3Sq2 = ρSq3Sq1,

and

Sq2Sq3 = Sq5 + Sq4Sq1 + ρSq3Sq1.
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