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Abstract

We develop a notion of an n-fold monoidal category and show that it corresponds in a

precise way to the notion of an n-fold loop space. Specifically, the group completion of the

nerve of such a category is an n-fold loop space, and free n-fold monoidal categories give rise

to a finite simplicial operad of the same homotopy type as the classical little cubes operad used

to parametrize the higher H-space structure of an n-fold loop space. We also show directly

that this operad has the same homotopy type as the n-th Smith filtration of the Barratt-Eccles

operad and the n-th filtration of Berger’s complete graph operad. Moreover, this operad

contains an equivalent preoperad which gives rise to Milgram’s small model for O2S2X when

n ¼ 2 and is very closely related to Milgram’s model of OnSnX for n42:
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0. Introduction

For many years it has been known that there is a strong connection between
coherence theory of categories and coherence problems in homotopy theory. Early
work of Stasheff [24] and MacLane [13] showed that monoidal categories are
analogous in a precise way to 1-fold loop spaces. Later a similar connection was
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noted between symmetric monoidal categories and infinite loop spaces. This
connection was exploited with great success in algebraic K-theory. For instance, the
group completion of the nerve of a symmetric monoidal category is an infinite loop
space, and the homotopy groups of this infinite loop space are the Quillen K-groups
of that category, which provide algebraic information about the original category.
Conversely this fact has also been used to construct new examples of infinite loop
spaces and infinite loop maps of great interest to topologists.
In recent years, many examples of a new kind of algebraic structure on a category

have been discovered; braided monoidal categories, such as categories of
representations of quantum groups (cf. [11,12]). It is striking to note that there
appears to be a very similar connection between braided monoidal categories and 2-
fold loop spaces. It is shown in [9] that the group completion of the nerve of a
braided monoidal category is a 2-fold loop space. This result raises an obvious
question: what algebraic structure on a category corresponds to an n-fold loop
structure for 3pnoN? Unfortunately, the proof sheds no light on this matter.
In this paper we provide a comprehensive solution to this problem. Our solution is

based on pursuing an analogy to the tautology that an n-fold loop space is a loop
space in the category of ðn � 1Þ-fold loop spaces. Noting the correspondence
between loop spaces and monoidal categories, we iteratively define the notion of n-
fold monoidal category as a monoid in the category of ðn � 1Þ-fold monoidal
categories. There are some subtleties involved in making this definition work: one
has to define ‘‘monoidal’’ up to a requisite degree of what category theorists call
‘‘laxness’’. If one were to require strict monoidal structures everywhere, then a 2-fold
monoidal category would be strictly commutative and the group completion of its
nerve would be a product of abelian Eilenberg–MacLane spaces. Another version of
this concept investigated by Joyal and Street [10] gives a correct analog for 2-fold
loop spaces but for nX3 gives a notion equivalent to symmetric monoidal category,
which as noted above is analogous to an infinite loop space.
Our main result is that there is a notion of iterated monoidal category which

precisely corresponds to the notion of an n-fold loop space for all n: Firstly, the
group completion of the nerve of such a category is an n-fold loop space. Secondly,
one can form an operad in the category of small categories which parametrizes the
algebraic structure of an n-fold monoidal category. We show that the nerve of this
categorical operad is a topological operad which is equivalent, as an operad, to the
little n-cubes operad, which as shown in [4,14] characterizes the notion of n-fold loop
space. Thus, our result can be regarded as an algebraic characterization of the notion
of n-fold loop space. We also note that this algebraically defined operad is a finite
simplicial operad and is closely related to the Milgram construction [17] for OnSnX :

1. n-Fold monoidal categories

In this section we gradually develop the notion of iterated monoidal category. We
start by recalling the standard notion of monoidal category and defining a slightly
nonstandard variant of the notion of monoidal functor.
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Definition 1.1. A (strict) monoidal category is a category C together with a functor
& : C� C-C and an object 0 such that

1. & is strictly associative.
2. 0 is a strict 2-sided unit for &:

A monoidal functor ðF ; ZÞ :C-D between monoidal categories consists of a
functor F such that Fð0Þ ¼ 0 together with a natural transformation

ZA;B : FðAÞ&FðBÞ-FðA&BÞ;

which satisfies the following conditions

1. Internal associativity: The following diagram commutes

2. Internal unit conditions: ZA;0 ¼ Z0;A ¼ idFðAÞ:

Given two monoidal functors ðF ; ZÞ :C-D and ðG; zÞ :D-E; we define
their composite to be the monoidal functor ðGF ; xÞ :C-E; where x denotes the
composite

GFðAÞ&GFðBÞ ���!zFðAÞ;FðBÞ
GðFðAÞ&FðBÞÞ ���!GðZA;BÞ

GFðA&BÞ:

(It is an exercise to check that x satisfies the associativity condition above.) We
denote byMonCat the category of monoidal categories and monoidal functors. Note
that the usual product in Cat defines a product in MonCat.

Remark 1.2. It is usually required in standard definitions of the notion of monoidal
functor that Z be an isomorphism. As we will discuss below, it is crucial for us not to
make this requirement.

Definition 1.3. A 2-fold monoidal category is a monoid in MonCat. This means that
we are given a monoidal category ðC;&1; 0Þ and a monoidal functor ð&2; ZÞ :C�
C-C which satisfies
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1. External associativity: The following diagram commutes in MonCat

2. External unit conditions: The following diagram commutes in MonCat

Explicitly, this means that we are given a second associative binary operation
&2 :C� C-C; for which 0 is also a two-sided unit. Moreover, we are given a
natural transformation

ZA;B;C;D : ðA&2BÞ&1ðC&2DÞ-ðA&1CÞ&2ðB&1DÞ:

The internal unit conditions give ZA;B;0;0 ¼ Z0;0;A;B ¼ idA&2B; while the external unit

conditions give ZA;0;B;0 ¼ Z0;A;0;B ¼ idA&1B: The internal associativity condition gives

the commutative diagram

The external associativity condition gives the commutative diagram

Remark 1.4. Notice that we have natural transformations

ZA;0;0;B :A&1B-A&2B and Z0;A;B;0 :A&1B-B&2A:
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If we had insisted a 2-fold monoidal category be a monoid in the category of
monoidal categories and strictly monoidal functors, this would amount to requiring
that Z ¼ id: In view of the above, this would imply A&1B ¼ A&2B ¼ B&1A and
similarly for morphisms. Thus, the nerve of such a category would be a commutative
topological monoid and its group completion would be equivalent to a product of
abelian Eilenberg–MacLane spaces.

Remark 1.5. Recall that a braided monoidal category (also known as braided tensor
category) is a category C together with a functor &1 :C� C-C which is strictly
associative, has a strict 2-sided unit object 0 and with a natural commutativity
isomorphism cA;B :A&1B-B&1A satisfying the following properties:

1. Unit condition: cA;0 ¼ c0;A ¼ idA:
2. Associativity conditions: For any three objects A; B; C the following diagrams
commute:

We claim that a braided monoidal category is exactly the same thing as a 2-fold
monoidal category with &1 ¼ &2; Z an isomorphism, and with

ZA;B;0;C ¼ ZA;0;B;C ¼ idA&1B&1C :

Assuming that &1 ¼ &2 and that the natural isomorphism ZA;B;C;D satisfies

ZA;B;0;C ¼ ZA;0;B;C ¼ idA&1B&1C ; one proceeds as follows to show that we have a

braided monoidal category. In the internal associativity diagram take V ¼ W ¼ 0
and obtain that ZU ;X ;Y ;Z ¼ idU&1Z0;X ;Y ;Z: Then take X ¼ Y ¼ 0 and

obtain that ZU ;V ;W ;Z ¼ ZU ;V ;W ;0&1idZ: Combining these two facts, one obtains

that

ZA;B;C;D ¼ idA&1cB;C&1idD; ð�Þ

where cB;C ¼ Z0;B;C;0: Then take U ¼ Z ¼ W ¼ 0 in the internal associativity law to

get the first associativity law for c; and take U ¼ Z ¼ X ¼ 0 to get the other one.
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With the additional conditions we have here the external associativity law is
superfluous.
Conversely given a braided monoidal category, we can define a 2-fold monoidal

structure by ð�Þ:

Remark 1.6. Joyal and Street [11] considered a very similar concept to our notion of
2-fold monoidal category. They loosened our requirement that the two operations
&1 and&2 be strictly associative with a strict unit by only requiring these conditions
to hold up to coherent natural isomorphisms. More significantly, they required the
natural transformation ZA;B;C;D to be an isomorphism. They then showed that such a

category is naturally equivalent to a braided monoidal category. Briefly, given such a
category one obtains an equivalent braided monoidal category by discarding one of
the two operations, say &2; and defining the commutativity isomorphism for the
remaining operation &1 to be the composite

A&1B ��!Z0;A;B;0
B&2A ��!Z�1

B;0;0;A
B&1A:

Our requirement that the operations be strictly associative and unital are not
significant restrictions and were adopted for convenience and simplicity. One can
always replace categories with operations which are associative and unital up to
coherent natural isomorphisms by equivalent categories with strictly associative and
unital operations.
There is now a pretty obvious way to define the notion of a 2-fold monoidal

functor between 2-fold monoidal categories F :C-D: It is a functor together with
two natural transformations:

l1A;B : FðAÞ&1FðBÞ-FðA&1BÞ

l2A;B : FðAÞ&2FðBÞ-FðA&2BÞ

satisfying the same associativity and unit conditions as in the case of monoidal
functors. In addition, we require that the following hexagonal interchange diagram
commutes:
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We can now define the category 2-MonCat of 2-fold monoidal categories and 2-
fold monoidal functors, and then define a 3-fold monoidal category as a monoid in
2-MonCat. From this point on, the iteration of this notion is quite straightforward
and we arrive at the following definitions.

Definition 1.7. An n-fold monoidal category is a category C with the following
structure:

1. There are n distinct multiplications

&1;&2;y;&n :C� C-C

which are strictly associative and C has an object 0 which is a strict unit for all the
multiplications.

2. For each pair ði; jÞ such that 1piojpn there is a natural transformation

Zij
A;B;C;D : ðA&jBÞ&iðC&jDÞ-ðA&iCÞ&jðB&iDÞ:

These natural transformations Zij are subject to the following conditions:

(a) Internal unit condition: Zij
A;B;0;0 ¼ Zij

0;0;A;B ¼ idA&jB:

(b) External unit condition: Zij
A;0;B;0 ¼ Zij

0;A;0;B ¼ idA&iB:

(c) Internal associativity condition: The following diagram commutes.

(d) External associativity condition: The following diagram commutes.
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Finally, it is required that for each triple ði; j; kÞ satisfying 1piojokpn the (big!)
hexagonal interchange diagram commutes.

Definition 1.8. An n-fold monoidal functor ðF ; l1;y; lnÞ :C-D between n-fold
monoidal categories consists of a functor F such that Fð0Þ ¼ 0 together with natural
transformations

li
A;B : FðAÞ&iFðBÞ-FðA&iBÞ i ¼ 1; 2;y; n

satisfying the same associativity and unit conditions as monoidal functors. In
addition, the following hexagonal interchange diagram commutes:

Composition of n-fold monoidal functors is defined in exactly the same way as for
monoidal functors. However there is an additional exercise to check that the
resulting composite satisfies the hexagonal interchange diagram.
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It is pretty straightforward to check that an ðn þ 1Þ-fold monoidal category is
exactly the same thing as a monoid in n-MonCat, the category of n-fold monoidal
categories and functors. Note that the hexagonal interchange diagrams for the
ðn þ 1Þth monoidal operation regarded as an n-fold monoidal functor is what gives
rise to the giant hexagonal diagrams involving &i;&j and &nþ1:

Remark 1.9. Recall that a symmetric monoidal category is defined in the same way
as a braided monoidal category, subject to the additional requirement that the
commutativity isomorphism

cA;B :A&B!C B&A

satisfy the symmetry condition

cB;A ¼ c�1A;B:

It is easy to see a symmetric monoidal category is n-fold monoidal for all n: One
merely has to take

&1 ¼ &2 ¼ ? ¼ &n ¼ &

and define

Zij
A;B;C;D ¼ idA&cB;C&idD

for all ioj:

Remark 1.10. Joyal and Street [11] arrived at pretty much the same definitions as we
do in their context. Because of their insistence that the interchange natural

transformations Zij
A;B;C;D be isomorphisms, however as they observed, for nX3 such a

notion is equivalent to the notion of symmetric monoidal category, by an argument
similar to that of Remark 1.6. Thus the nerves of such categories have group
completions which are infinite loop spaces rather than n-fold loop spaces. In Remark
3.15 we will give a homotopy theoretic interpretation of this phenomenon.

2. Connection with n-fold loop spaces

In this section we sketch a proof of our assertion that the group completion of the
nerve of an n-fold monoidal category is a n-fold loop space. The proof closely mimics
Thomason’s [26] proof for the analogous connection between symmetric monoidal
categories and infinite loop spaces. That proof in turn is based on Segal’s ideas [22].
Our proof sketch omits some important details which depend on the coherence
theorem for n-fold monoidal categories which we will discuss in Section 4. Later on
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in Section 6 we will give an alternative proof of our assertion based on the operad
approach to n-fold loop spaces due to May [14].
Segal showed that a space Y is homotopy equivalent to a 1-fold loop space if and

only if one can construct a ‘‘bar construction on Y up to homotopy.’’ This means a
simplicial space X� : Dop-Top (where Top is the category of compactly generated
spaces) with X1 ¼ Y and satisfying

1. There is a homotopy equivalence Xn !
C ðX1Þn induced by certain iterated face maps

and X0 is contractible.

2. The multiplication induced by ðX1Þ2’
C

X2!
d1

X1 admits a homotopy inverse. (This

holds if p0ðX1Þ is a group and if X1 is numerably contractible, e.g. a CW-
complex.)

Moreover he showed that the geometric realization jX�j is an up-to-homotopy
delooping of X1 ¼ Y ; i.e. OjX�jCX1 ¼ Y : It was subsequently shown [16] that if
condition (2) is omitted, then under some mild additional homotopy commutativity
assumption H�ðOjX�jÞ is obtained from H�ðX1Þ by inverting the elements of
p0ðX1ÞCH0ðX1Þ: This relation is usually referred to as saying that OjX�j is the group

completion of X1: Simplicial spaces satisfying condition (1) are referred to as special

D-spaces.
Segal also noted that one could formulate categorical versions of these concepts.

For instance, a special D-category is a simplicial category C� : Dop-Cat satisfying

1. There is an equivalence of categories Cn !
C ðC1Þn induced by certain iterated face

maps and C0 has a initial/terminal object.

Since the nerve construction preserves products and sends categorical equivalences
to homotopy equivalences, the nerve of a special D-category is a special
D-space.
Segal noted that a strictly monoidal category C naturally gives rise to a special D-

category C� with Cn ¼ ðCÞn via the bar construction. If the monoidal structure is not
strictly associative, then one can still construct a special D-category C� but with
CnCðCÞn: Here one has to use the extra flexibility of allowing categorical
equivalences rather than isomorphisms. (This is not critical in this case, since
monoidal categories are equivalent to strictly associative ones. When one attempts to
put symmetric monoidal categories in this framework one encounters the problem
that commutativity can not be made strict.)
Segal’s construction of special D-categories in the absence of strict algebraic

relations (like associativity) was incomplete and ad hoc. This was remedied by
Thomason [26], who noted that this construction could be done in two steps. First

one can construct a lax functor C� : Dop-Cat such that Cn ¼ ðC1Þn: Next one could
use the result of Street [25], which states that for any category I and any lax functor

F :I-Cat; one can construct a homotopy equivalent strict functor F̂ : I-Cat:

This functor F̂ is called the Street rectification of the original lax functor F : Applying
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this to the lax functor C� : Dop-Cat; one obtains a strict functor bCC� : Dop-Cat;
which is the desired special D-category.
While Segal never explicitly considered n-fold loop spaces except in the special

cases n ¼ 1 andN; as noted by Dunn [7], his ideas can easily be adapted to this case.

One needs to consider special ðDÞn-spaces. These are the same thing as n-simplicial
spaces X��?� : Dop � Dop �?� Dop-Top satisfying the condition

1. There is a homotopy equivalence Xp1;p2;y;pn !
C ðX11y1Þp1p2ypn induced by certain

iterated face maps.

We call such functors special ðDÞn-spaces. From Segal’s results in the 1-fold loop

case, we easily see that, for a special ðDÞn-space X��?�; OnjX��?�j is a group

completion of X��?�: The notion of special ðDÞn-category can be formulated
similarly.

Theorem 2.1. An n-fold monoidal category C determines a lax functor C��?� : Dop �
Dop �?� Dop-Cat such that Cp1;p2;y;pn

¼ Cp1p2ypn :

Proof. The lax functor C��?� is already specified on objects of ðDopÞn: We begin to

define the lax functor on morphisms of ðDopÞn by first considering morphisms of the
special form

ðid;y; id; a; id;y; idÞ : ðp1;y; pi�1; qi; piþ1;y; pnÞ-ðp1;y; pi�1; pi; piþ1;y; pnÞ;

which have only one nontrivial component a : qi-pi in D:
Recall that given a morphism a : pi-qi in Dop and a strict monoidal category A;

the bar construction defines a corresponding functor Api-Aqi : Now consider the
category A ¼ Cpiþ1piþ2ypn as a monoidal category with respect to the ith operation
&i applied componentwise. This defines a functor

Cpipiþ1ypn ¼ Api !a
�
Aqi ¼ Cqipiþ1ypn :

Now taking the p1p2ypi�1-fold product of this functor with itself gives a functor

Cp1;p2;y;pn
¼ Cp1p2ypn �����!ða�Þp1p2ypi�1

Cp1yqiypn ¼ Cp1;y;qi ;y;pn

which we define to be the value of the lax functor C��?� on the morphism
ðid;y; id; a; id;y; idÞ:
Now given an arbitrary morphism ða1; a2;y; anÞ : ðp1; p2;y; pnÞ-ðq1; q2;y; qnÞ

in ðDopÞn we define its value under C��?� to be the resulting composite functor.

Cp1;p2;y;pn
-Cq1;p2;y;pn

-?-Cq1;q2;y;qn�1;pn
-Cq1;q2;y;qn�1;qn

:
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We claim that this defines a lax functor C��?� : Dop � Dop �?� Dop-Cat: To see
this suppose we are given two morphisms

%
a ¼ða1; a2;y; anÞ;

%
b ¼ðb1;b2;y;bnÞ

in ðDopÞn and consider the composite

%
b
%
a ¼ ðb1a1; b2a2;y; bnanÞ:

By definition the value of C��?� on
%
b
%
a is the functor given by the composite of the

induced functor

ðb1a1; id;y; idÞ�

followed by

ðid; b2a2; id;y; idÞ�;

etc. Since C��?� is a functor when restricted to morphisms having the form that

all but one component is trivial, ð
%
b
%
aÞ� can be further decomposed as the

composite

ðb1; ; id;y; idÞ�ða1; ; id;y; idÞ�

followed by

ðid; b2; id;y; idÞ�ðid; a2; id;y; idÞ�;

etc. Similarly
%
b�

%
a� breaks up as a composite of exactly the same functors, but

composed in a different order.

Thus to construct a natural transformation
%
b�

%
a�-ð

%
b
%
aÞ� it suffices to construct

natural transformations

ðid;y; id; ki; id;y; idÞ�ðid;y; id; lj ; id;y; idÞ�

-ðid;y; id; lj; id;y; idÞ�ðid;y; id; ki; id;y; idÞ�;

where the indices i; j indicating the location of the nontrivial components satisfy ioj

and ki : pi-qi; lj : pj-qj are arbitrary morphisms in Dop:
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Thus, we have to construct a natural transformation from the top-right to the left-
bottom of the following diagram:

(The vertical equality signs in the diagram are actually canonical permutations.)
Now to construct a natural transformation between two functors taking values in

a product of categories, it suffices to construct a natural transformation separately in
each component of the product. Thus we may as well assume that

p1 ¼ ? ¼ pi�1 ¼ qi ¼ piþ1 ¼ ? ¼ pj�1 ¼ qj ¼ pjþ1 ¼ ? ¼ pn ¼ 1:

To simplify the notation a little bit, we denote pi ¼ r and pj ¼ s: Then the previous

diagram simplifies to

Now k�i and l�j ; being induced maps in the bar construction, have to have the
general form:

k�i ðA1;y;ArÞ ¼ Ak&iAkþ1&iy&iAkþu :¼
Y&i

kpxpkþu

Ax;

l�j ðB1;y;BsÞ ¼ Bl&jBlþ1&jy&jBlþv :¼
Y&j

lpyplþv

By:
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Now if we track an arbitrary object across the top and right of this diagram we
obtain

On the other hand if we track it across the left and bottom we obtain

It is clear that there is a natural transformation, built out of repeated applications

of Zij ; Y&i

kpxpkþu

Y&j

lpyplþv

Cxy

 !
-

Y&j

lpyplþv

Y&i

kpxpkþu

Cxy

 !
:

Lastly, we must verify that the natural transformations
%
b�

%
a�-ð

%
b
%
aÞ� we have just

constructed satisfy a certain associativity condition. To see this we rely on the
coherence theorem for n-fold monoidal categories, which we will state and prove in
the following two sections. That theorem states that any diagram built out of the

natural transformations Zij must commute. &

Theorem 2.2. The group completion of the nerve of an n-fold monoidal category is an

n-fold loop space.

Proof (Sketch). By the preceding theorem, we have a lax functor

C��?� : Dop � Dop �?� Dop-Cat

such that Cp1;p2;y;pn
¼ Cp1p2ypn : Now apply Street rectification to obtain a genuine

functor

bCC��?� :Dop � Dop �?� Dop-Cat;

with bCCp1;p2;y;pn
CCp1p2ypn : Taking nerves we obtain a functor BbCC��?� : Dop � Dop �

?� Dop-Top; with BbCCp1;p2;y;pn
CðBCÞp1;p2;y;pn : Thus BbCC��?� is a special ðDÞn-

space, and the result follows. &
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3. Free n-fold monoidal categories and their associated operad: statement of main

results

In this section we consider an alternative and more precise way of relating n-fold
monoidal categories to n-fold loop spaces: via operads. First of all, we consider free
n-fold monoidal categories and construct an associated operad which acts on nerves
of n-fold monoidal categories. We then discuss the relation of this operad to
Milgram’s permutohedral construction used to approximate free loop spaces, and to
the little n-cubes operad of Boardman and Vogt.

Definition 3.1. Let C be a small category. By FnC we will denote the free n-fold
monoidal category generated by C: FnC may be constructed as follows. As objects
one takes all finite expressions generated by the objects of C using associative
operations &1;&2;y;&n: For example

ðððC1&1C2&1C3Þ&2C4&2ðC5&3C6ÞÞ&2C7Þ&3ðC8&2C9Þ:

Included among such possible expressions is the vacuous expression, denoted 0,
which serves as the unit object. The morphisms of FnC are finite composites of all
possible finite formal expressions generated by the morphisms of C and symbols

Zij
A;B;C;D with 1piojpn and A;B;C;D objects of FnC; using the associative

operations &1;&2;y; and &n: Two such composites of formal expressions are
identified if and only if one can be converted to the other by repeated use of various
functoriality, naturality and associativity diagrams. (This is a special case of forming
a colimit in theories, cf. [4, Proposition 2.5, p. 33].)
As a special case we may take C to be a finite set whose elements are taken to be

the objects, with the morphisms understood to be just the identities of these objects.
We will denote by MnðkÞ the full subcategory of Fnf1; 2;y; kg whose objects are
expressions in which each element 1; 2;y; k occurs exactly once. For example
ð2&11Þ&23 is an object of Mnð3Þ but not of Mnð4Þ; whereas ð1&22Þ&11 is not in
anyMnðkÞ: The symmetric group Sk acts freely onMnðkÞ via functors, by permuting
labels on both objects and morphisms. It is easy to see that for any category C

FnCD
a
kX0

MnðkÞ �Sk
Ck:

In particular,

Fnf1gD
a
kX0

MnðkÞ=Sk:

If C is already n-fold monoidal, then we have a natural evaluation functor
FnC-C which gives rise to functors

MnðkÞ �Sk
Cn-C:
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As a special case we get maps

MnðkÞ �Mnði1Þ �Mnði2Þ �?�MnðikÞ-Mnði1 þ i2 þ?þ ikÞ

by replacing the labels f1; 2;y; ijg in MnðijÞ with the labels fi1 þ i2 þ?þ ij�1 þ
1;y; i1 þ i2 þ?þ ij�1 þ ijg: This gives fMnðkÞgkX0 the structure of an operad in

the category of small categories, with a natural action on n-fold monoidal categories.
Since the nerve construction preserves products, the nerve of this categorical operad
is a topological operad, which we also abusively denoteMn; and this operad acts on
nerves of n-fold monoidal categories.

Definition 3.2. It will be convenient to be a bit more general and consider categories
MnðSÞ; where S is an arbitrary finite set. Again we define MnðSÞ to be the full
subcategory of the free n-fold monoidal category FnðSÞ whose objects are
expressions in which each element of S occurs precisely once. Obviously, any
bijection SDS0 extends to an isomorphism of categories MnðSÞDMnðS0Þ: If SCT ;
there is a restriction functor MnðTÞ-MnðSÞ; induced by the functor
FnðTÞ-FnðSÞ which sends the elements of T � S to 0.

The following is an amusing exercise for the reader:

Exercise 3.3. Let an
k denote the number of objects in MnðkÞ=Sk: Then an

0 ¼ an
1 ¼ 1;

an
2 ¼ n; an

3 ¼ 2n2 � n; an
4 ¼ 5n3 � 5n2 þ n and we have the recurrence relation

an
k ¼ nan

1a
n
k�1 þ

Xn�1
i¼2

ðn � 1Þan
i an

k�i:

The ratios
an

kþ1
an

k

slowly increase to a limit of 2n � 1þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � n

p
: Thus the number of

objects in MnðkÞ is k!an
k:

While it may seem from the definition that the operads MnðkÞ are some infinite-
dimensional abstract algebraic monstrosities, this is not the case. They are actually
nice compact polyhedra.

Example 3.4. It is not difficult to see that Mnð2Þ is the ðn � 1Þ-dimensional
octahedron and thus homeomorphic to Sn�1: (By ðn � 1Þ-dimensional octahedron
we mean the boundary of the convex hull of f7e1;7e2;y;7eng; where e1; e2;y; en

is the standard basis for Rn:) Clearly Mnð2Þ is generated by the morphisms Zij
a;0;0;b

and Zij
0;a;b;0; where aabAf1; 2g and 1piojpn: The ‘‘Giant Hexagon’’ shows that

this set of morphisms is closed under composition. We thus obtain the following
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picture for the nerve M3ð2Þ:

and this picture obviously generalizes to Mnð2Þ for all n:
If we hope to get similar nice pictures of MnðkÞ for k42; we need a better

description of the categories MnðkÞ than that given in the definition. It is a priori
very difficult to determine when two different formal expressions describe the same
morphism in the category. What we are dealing with, in effect, is the word problem
for a category described by generators and relations. To present the solution to this
word problem we need the following preliminary definition.

Definition 3.5. If a and b are distinct elements of f1; 2;y; kg and A is an object of
MnðkÞ; we say that a&ib in A if the restriction functor MnðkÞ-Mnðfa; bgÞ sends A

to a&ib:

Theorem 3.6 (Coherence theorem for n-fold monoidal categories). Let A and B be

objects of MnðkÞ: Then

1. There is at most one morphism A-B

2. A necessary and sufficient condition for the existence of a morphism A-B is that

for any two elements a; b in f1; 2;y; kg if a&ib in A; then in B either a&jb for

some jXi or b&ja for some j4i:
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Example 3.7. There is a morphism A ¼ ð2&23Þ&11-2&21&23 ¼ B in M2ð3Þ
since

* 2&11 in A and 2&21 in B;
* 3&11 in A and 1&23 in B;
* 2&23 in A and 2&23 in B;

but there is no morphism from A to C ¼ 1&23&22 since 2&23 in A; while 3&22 in
C:

Remark 3.8. The first part of the Coherence Theorem asserts that any diagram built

out of the natural transformations Zij must commute. The necessity of the conditions
in the second part of the Coherence Theorem is forced by existence of the restriction
functors Rfa;bg :MnðkÞ-Mnðfa; bgÞ; i.e. if there is a morphism A-B in MnðkÞ; then
there must be a morphism Rfa;bgðAÞ-Rfa;bgðBÞ in Mnðfa; bgÞ: It is far from obvious

however, that these conditions are sufficient to insure the existence of a morphism
A-B:

Remark 3.9. The coherence theorem implies that the topological operad spaces
MnðkÞ are nerves of finite posets, and hence are compact polyhedra.

Definition 3.10. We define the Milgram subspaceJnðkÞ to be the full subcategory of
MnðkÞ whose objects are contained in the free monoid with respect to&1 on the free
monoid with respect to &2y on the free monoid with respect to &n on the set

f1; 2;y; kg: Thus the objects ofJnðkÞ look like

ððy&3yÞ&2yÞ&1y&1ððy&3yÞ&2yÞ

i.e. the operation &1 can only occur at the outermost level, the operation &2 can
only occur at the next level, y; the operation &n can only occur at the innermost
level. Equivalently, we can define the Milgram subspace to be the full subcategory of
MnðkÞ consisting of objects which can be written without parentheses using the
operation precedence rules: &n has the highest precedence, &n�1 has the next
highest precedence,y,&1 has the lowest precedence.

Remark 3.11. The collection of Milgram subspaces fJnðkÞgkX0 is not a suboperad of

the categorical operad Mn: It is only closed under the actions of the symmetric
groups and the unit maps

sj :JnðkÞ-Jnðk � 1Þ j ¼ 1; 2;y; k:

In other words JnðkÞ; or rather its nerve which we also denote by JnðkÞ; is a
preoperad in the sense of Berger [3]. This structure is sufficient to define the
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premonad construction

JnðXÞ ¼
a
kX0

JnðkÞ �Sk
X k

 !,
E;

where X is any based space. If Jn were an operad, this construction would be a
monad, but this is not the case here. The notion of preoperad and the associated
premonad construction were introduced in [6], where preoperads are called
‘‘coefficient systems’’ (also cf. [14]).
In [17] Milgram defined a construction

JnðXÞ ¼
a
kX0

ðPkÞn�1 � X k

 !,
E

on based spaces X ; where Pk denotes the permutohedron: the convex hull in Rk of
the Sk orbit of a point such as ð1; 2;y; kÞ; all of whose coordinates are distinct. ðPk

is a ðk � 1Þ-dimensional cell. Milgram uses the notation Cðk þ 1Þ to denote Pk:) He
showed that if X is connected, then JnðXÞ has the weak homotopy type of OnSnðX Þ:

Theorem 3.12. For all spaces X ; there is a natural homeomorphism

J2ðX ÞDJ2ðXÞ:

Unfortunately for n42 this does not hold. It turns out that our construction

JnðXÞ is a natural quotient of Milgram’s construction, and may be thought of as a
sort of thin version of the Milgram construction.

To understand the connection between JnðX Þ and JnðX Þ; we have to consider yet
another variant form of the Milgram construction, which we will call the thick

Milgram construction and denote J̃nðX Þ: This is defined as the premonad

construction on a preoperad f eJJnðkÞgkX0 whereeJJnðkÞ ¼ Pn�1
k � Sk=E;

where the equivalence relation glues together the k! copies of Pn�1
k along certain

codimension 1 faces in the boundary.

Theorem 3.13. 1. There are natural quotient maps

J̃nðXÞ!q1 JnðXÞ!q2 JnðX Þ

which are homotopy equivalences.
2. Each of the variant forms of the Milgram construction arises from a preoperad

having the generic form

Dðn�1Þðk�1Þ � Sk=E;
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where the equivalence relation glues together k! copies of the ðn � 1Þðk � 1Þ-
dimensional disk Dðn�1Þðk�1Þ along certain codimension 1 faces in the boundary. The

quotient maps q1 and q2 induce equivalences of preoperads.

We would like to note that an earlier version of this paper suffered from some
confusion about the relation between the Milgram construction and the preoperad

fJnðkÞg: We would like to thank Clemens Berger for clearing up this point.
Our main result is the following:

Theorem 3.14. There is a chain of operad equivalences

MnðkÞ’
C

hocolim
MnðkÞ

F !C colim
MnðkÞ

F +
C

CnðkÞ;

where CnðkÞ denotes the little n-cubes operad of Boardman and Vogt (and

F :MnðkÞ-Top is a functor we construct in Section 6). Moreover, the inclusion of

the Milgram preoperad JnðkÞ in the operad MnðkÞ is an equivalence of preoperads.

This gives a more definitive way of showing that the group completion of the nerve
of an n-fold monoidal category is an n-fold loop space. For the proof we have given
in the preceding section leaves open the possibility that the group completion of the
nerve of an n-fold monoidal category might have more structure than that of an
n-fold loop space (e.g. perhaps it might be an infinite loop space). This is a serious
possibility, since as we have noted in Section 1, slightly variant definitions of the
notion of n-fold monoidal category do indeed correspond to infinite loop spaces
rather than n-fold loop spaces. The proof based on Theorem 3.14 rules out this
possibility, since it shows that the free n-fold loop spaces OnSnX ; where X is a
discrete space do arise as group completions of n-fold monoidal categories. In a
subsequent paper we will show that in fact any n-fold loop space can be realized in
this way.

Remark 3.15. Joyal and Street [11] noted that their theory of iterated monoidal
categories collapses to the theory of symmetric monoidal categories when n42: The
reason for this is that their theory requires that the interchange natural

transformations Zij
A;B;C;D be isomorphisms. Hence the categorical operad for their

theory is essentially obtained from our operad Mn by inverting all the morphisms.
But inverting all the morphisms in a category has the effect of killing off all the
higher homotopy groups of its nerve, leaving only the fundamental group intact (cf.
[19]). But according to Theorem 3.14 the homotopy groups ofMn are isomorphic to
those of Cn: The spaces of C2 are Kðp; 1Þ’s whereas the spaces of Cn are simply
connected for n42: Thus inverting all the morphisms in M2 does not change its
homotopy type, since all its higher homotopy groups are trivial anyway. But
inverting the morphisms of Mn for n42 kills off all the homotopy, rendering them
into trivial categories, which endows iterated monoidal categories on which they act
with a symmetric monoidal structure.
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A related result is

Theorem 3.16. There is a chain of operad equivalences

Mn !
C
KðnÞ !C GðnÞ;

where KðnÞ denotes the nth filtration of Berger’s complete graph operad (cf. [3]) and

GðnÞ is the nth Smith filtration of the operad which parametrizes (strict) symmetric

monoidal categories (cf. [23]).

Remark 3.17. The homotopy type of the Milgram preoperad in the case n ¼ 2 was
determined by Salvetti [21], in the more general context of complements of
hyperplane arrangements (also cf. [5]).

4. The coherence theorem for n-fold monoidal categories

This section is devoted to the proof of Theorem 3.6, the coherence theorem for n-
fold monoidal categories. Before we proceed to the proof however, it will be
convenient to reformulate the theorem.

Definition 4.1. Let cMMnðkÞ denote the category with the same objects as MnðkÞ; but
whose morphisms are as given in Theorem 3.6. That is, there is a (unique) morphism
between objects A-B if and only if for any two elements a; b in f1; 2;y; kg if a&ib

in A; then in B either a&jb for some jXi or b&ja for some j4i: Note that by

definition cMMnðkÞ is a poset. More generally, following Definition 3.2, we can define a
similar category cMMnðSÞ for any finite set S: Note that if S and T are disjoint, then
there are induced functors

&i :cMMnðSÞ �cMMnðTÞ-cMMnðSNTÞ

for i ¼ 1; 2;y; n:

It follows immediately from Remark 3.8 that there is a functor

Ln
S :MnðSÞ-cMMnðSÞ

given by the identity on objects (which we will denote simply as Ln
k if

S ¼ f1; 2;y; kg). Then the following is an obvious reformulation of Theorem 3.6.

Theorem 4.2 (Reformulation of the coherence theorem for n-fold monoidal
categories). The functor

Ln
S :MnðSÞ-cMMnðSÞ

is an isomorphism of categories.
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As we noted in Definition 3.2, sinceMnðSÞ only depends on the cardinality of S; it
suffices to prove the coherence theorem for Ln

k: However it is convenient to recast
our basic induction hypothesis in terms of Ln

S:

(IH.1) We assume that Ln
S is an isomorphism for every proper subset SCf1; 2;y; kg:

We note that the coherence theorem is trivially true when k ¼ 1 and the octahedral
picture ofMnð2Þ given in the preceding section shows that it is also true when k ¼ 2:
This starts our induction going.

Definition 4.3. If A&iB is an object in MnðSÞ; we denote by jAj the subset of S

consisting of all the generators present in A: Thus by definition

S ¼ jAjNjBj:

We will say that AAMnðTÞ is a partial object of MnðSÞ if TCS:

We begin with a few basic observations about the categories MnðkÞ:

Lemma 4.4. Suppose that X is an object of MnðSÞ and that there is a partition

S ¼ S1NS2 such that for any xAS1 and any yAS2; x&iy in X : Then X has a

decomposition

X ¼ X1&iX2

with jX1j ¼ S1 and jX2j ¼ S2:

The proof is left as an easy exercise for the reader. (Hint: use induction on the
cardinality of S:)

Definition 4.5. Let A and B be two partial objects in MnðkÞ:

1. The difference A � jBj is the restriction of A to MnðjAj � jBjÞ; i.e. it is the object
obtained from A by zeroing out all generating objects of A which are also present
in B:

2. The intersection A-jBj is defined to be A � jA � jBjj; i.e. the object obtained from
A by zeroing out all generating objects of A which are not present in B:

Proposition 4.6. Let f :A&iB-C&jD be a morphism in MnðkÞ:

1. If A; B; C and D are all different from 0, then jXi:
2. If j ¼ i and cardðjAjÞ ¼ cardðjCjÞ then there exist two morphisms g :A-C and

h : B-D in MnðjAjÞ and MnðjBjÞ; respectively, such that f ¼ g&ih (we shall call

such a morphism f a &i-split morphism).
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3. If j ¼ i and cardðjAjÞ4cardðjCjÞ then there exist two morphisms g :A-C&iðA �
jCjÞ and h : ðA � jCjÞ&iB-D so that f factors as the composite

A&iB ���!g&i idB
C&iðA � jCjÞ&iB ���!idC&ih

C&iD:

4. If j ¼ i and cardðjAjÞocardðjCjÞ then there exist two morphisms g : B-
ðC � jAjÞ&iD and h :A&iðC � jAjÞ-C so that f factors as the composite

A&iB ���!idA&ig
A&iðC � jAjÞ&iD ���!h&i idD

C&iD:

Proof. By definition any morphism in MnðkÞ is a composition of nontrivial

morphisms of the form Zij
X ;Y ;Z;W and f1&if2 where exactly one of f1 or f2 is an

identity map (of a nonzero object). We shall refer to such morphisms as
indecomposable morphisms. To prove part (1) it suffices to prove it for
indecomposable morphisms. Now the assertion is evidently true for indecomposable
morphisms of the form f1&if2: For nontrivial morphisms of the form

Zij
X ;Y ;Z;W : ðX&jY Þ&iðZ&jWÞ-ðX&iZÞ&jðY&iWÞ

the outer operation in the source object is i and the outer operation in the target

object is j4i; since by the unit conditions Zij
X ;Y ;Z;W is the identity if any of the objects

X&jY ; Z&jW ; X&iZ; Y&iW are equal to 0.

To check part (2), note first that the conditions j ¼ i and cardðjAjÞ ¼ cardðjCjÞ
imply that jAj ¼ jCj and jBj ¼ jDj: For otherwise there would have to exist elements
xAjAj-jDj and yAjBj-jCj and then we would have x&iy in the source object
A&iB but y&ix in the target object C&iD; which is precluded by the very existence
of the functor Ln

k: If we then factor f into indecomposable morphisms

A&iB-X1-X2-?-Xm�1-C&iD;

it follows directly from Lemma 4.4 that each intermediate object Xr has a
decomposition Xr ¼ X 0

r&iX
00
r with jX 0

r j ¼ jAj ¼ jCj and jX 00
r j ¼ jBj ¼ jCj: This

reduces proving part (2) to the case when f is indecomposable. By the argument
of the preceding paragraph, f would then have to have the form f ¼ f1&if2; for
some possibly different &i decomposition of the objects A&iB and C&iD: But in
that case an easy argument using induction hypothesis (IH.1) shows that the
decomposition f ¼ f1&if2 can be reparenthesized to a decomposition f ¼ g&ih of
the requisite form.
To check part (3), we first demonstrate that f factors through an object

X&iY&iZ such that jX j ¼ jCj; jY j ¼ jAj � jCj and jZj ¼ jBj: Begin by factoring
f as

A&iB!f1 W !f2 C&iD

ARTICLE IN PRESS
C. Balteanu et al. / Advances in Mathematics 176 (2003) 277–349 299



with W having a maximal number of &i summands. Now factor f2 into
indecomposable morphisms as

W ¼ U0-U1-U2-?-Um ¼ C&iD:

We claim that for each Up and any decomposition Up ¼ U 0
p&iU

00
p there is a

corresponding decomposition W ¼ W 0&iW
00 with jW 0j ¼ jU 0

pj and jW 00j ¼ jU 00
p j: If

not, let Up be the first object in the chain having a decomposition Up ¼ U 0
p&iU

00
p

incompatible with W : Since the morphism

Up�1-Up

must be&i-split, there is another decomposition Up ¼ V 0
p&iV

00
p which is compatible

with Up�1 and hence with W : Let W ¼ W 0&iW
00 be the compatible decomposition

with jW 0j ¼ jV 0
pj and jW 00j ¼ jV 00

p j: Then according to part (2) f2 factors as

W ¼ W 0&iW
00 ���!f 0

2
&i f

00
2

Up ¼ V 0
p&iV

00
p -C&iD:

Then the incompatible decomposition Up ¼ U 0
p&iU

00
p must give either a decomposi-

tion of V 0
p which is incompatible with that of W 0 or a decomposition of V 00

p which is

incompatible with that of W 00: In the first case, (IH.1) produces an intermediate
object G0 between W 0 and V 0

p with more &i summands than W 0: Hence f factors

through G0&iW
00 which has more &i summands than W ; which contradicts our

choice of W : In the second case, we obtain a similar contradiction. This proves the
claim. Applying this to the decomposition Um ¼ C&iD; we obtain a compatible
decomposition W ¼ X&iT with jX j ¼ jCj and jT j ¼ jDj:
A similar argument on f1 yields another decomposition W ¼ S&iZ with jSj ¼ jAj

and jZj ¼ jBj: Combining the two decompositions yields the desired decomposition
W ¼ X&iY&iZ with jY j ¼ jAj � jCj: Then (2) yields a factorization of f as

A&iB ���!g1&ig2
X&iY&iZ ���!h1&ih2

C&iD

for some morphisms g1 :A-X&iY ; g2 : B-Z; h1 :X-C and h2 :Y&iZ-D: This
yields another factorization of f as

A&iB ���!g0&i idB
C&iY&iB ���!idC&ih

0
C&iD;

where g0 ¼ ðh1&iidY Þg1 :A-C&iY and h0 ¼ h2ðidY&ig2Þ :Y&iB-D: Then (IH.1)
yields a further factorization of g0 as

A!g C&iðA � jCjÞ ���!idC&i l
C&iY :
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Then the desired factorization

A&iB ���!g&i idB
C&iðA � jCjÞ&iB ���!idC&ih

C&iD

is obtained by setting h ¼ h0ðl&iidBÞ: This concludes the proof of (3). The proof of
(4) is similar. &

Remark 4.7. The results listed in Proposition 4.6 are also true in the category cMMnðkÞ;
but in this case they follow immediately from the conditions that have to be satisfied
by any two objects which are, respectively, the source and the target of a certain
morphism.

Remark 4.8. By similar arguments one can show that given any morphism f :
A&iB-C&iD in MnðkÞ with i ¼ 1 or i ¼ n; there are compatible &i decomposi-
tions of the source and target, and hence by (2) f has a nontrivial decomposition
f ¼ f1&if2:

Definition 4.9. Let m :A&iB-C be a morphism in cMMnðkÞ with jAj having
cardinality p and jBj having cardinality q (so p þ q ¼ kÞ: We say that m is a strong

ðp; qÞ-shuffle if

C � jBj ¼ A and C � jAj ¼ B:

Note that this means that the order in which the generating objects appear in C is a
ðp; qÞ-shuffle (in the standard sense) of the order in which they appear in A and B:
However it means that in addition the operations appearing in C are in some sense
the operations appearing in A and B shuffled together.

Remark 4.10. The notion of strong shuffle defined above assumes implicitly the

existence of at most one morphism between any two objects of the category cMMnðkÞ:
This is why we cannot define it a priori in the category MnðkÞ:

Proposition 4.11. Let m :A&iB-C be a morphism in cMMnðkÞ: Then the following

conditions are equivalent:

1. m is a strong shuffle;
2. there is no nontrivial factorization of m as

A&iB ���!m1&im2
X&iY !x C

with m1 :A-X and m2 : B-Y :
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Proof. Let A0 and B0 denote, respectively, the objects C � jBj and C � jAj: Then m
obviously factors as

A&iB-A0&iB
0-C:

Therefore conditions (1) and (2) are equivalent. &

Definition 4.12. An object (or a partial object) A in MnðkÞ is called

1. &i-reducible if it can be expressed nontrivially as A1&iA2;
2. &i-irreducible if it is not &i-reducible.

Definition 4.13. A morphism f :A&iB-C&rD in MnðkÞ (or a morphism

m :A&iB-C&rD in cMMnðkÞ) is called:

1. irreducible if r4i and all the objects through which f (or m) factors nontrivially are
&j-irreducible for all jAfi; i þ 1;y; r � 1g;

2. reducible if it is not irreducible.

As we shall see below, we cannot get very far with our basic induction hypothesis
(IH.1). We have to use double induction, the second inductive hypothesis being
related to the outermost operation in the targets of the morphisms to be considered.
More precisely, we need:
(IH.2) Let rX2 be a positive integer. Then

Ln
S :HomMnðkÞðA;BÞ-HombMMnðkÞ

ðA;BÞ

is a bijection, whenever B is &j-reducible with jor:

Remark 4.14. Note that according to Remark 4.8 and Proposition 4.6 if j ¼ 1 and
B ¼ B1&1B2; then there is a compatible splitting A ¼ A1&1A2 and any morphism
f :A-B in MnðSÞ must also split f ¼ f1&1f2: Thus in this case, our first induction
hypothesis (IH.1) implies that Ln

S is a bijection. This starts our second induction

hypothesis. Note also that this argument proves more: namely that Ln
S is bijective on

morphisms where the source and target have the same outermost operation &r and
compatible &r splittings. Moreover this also holds when the source and target have
the same outermost operation even when there are no compatible splittings. For by
Proposition 4.6 (3) and (4), in that case one can insert a canonical intermediate
object having splittings compatible with both source and target through which all
morphisms must factor.

Lemma 4.15. (1) Let m :A&iB-C be a strong shuffle in cMMnðkÞ; with C &r-reducible.
Then for any splitting C ¼ C1&rC2 there are (possibly trivial) splittings A ¼ A1&rA2
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and B ¼ B1&rB2 and morphisms g1 :A1&iB1-C1 and g2 :A2&iB2-C2 in MnðkÞ
such that m lifts to the composite

A&iB ¼ ðA1&rA2Þ&iðB1&rB2Þ ����!Zir
A1 ;A2 ;B1 ;B2ðA1&iB1Þ&rðA2&iB2Þ ���!g1&rg2

C1&rC2

(2) Any diagram of the form

with both Zir
A1;A2;B1;B2

and Zir
A0
1
;A0

2
;B0
1
;B0
2

nontrivial, commutes in MnðkÞ:

Proof. Note first that the objects A;B;C can be decomposed into &r-irreducible
objects as follows:

A ¼A1&rA2&ry&rAs;

B ¼B1&rB2&ry&rBt;

C ¼C1&rC2&ry&rCu

with s; tX1 and uX2: Since m is a strong shuffle there exist nondecreasing functions

s : f1; 2;y; sg-f1; 2;y; ug;

t : f1; 2;y; tg-f1; 2;y; ug

defined, respectively, by the relations

jAjjCjCsð jÞj; for all jAf1; 2;y; sg;

jBjjCjCtð jÞj; for all jAf1; 2;y; tg:

Then

C1 ¼ C1&rC2&ry&rCv;

C2 ¼ Cvþ1&rCvþ2&ry&rCu

for some v: Now define the objects A1; A2; B1; B2 by

A1 :¼ &rfAj j sð jÞpvg; B1 :¼ &rfBj j tð jÞpvg;

A2 :¼ &rfAj j sð jÞ4vg; B2 :¼ &rfBj j tð jÞ4vg:
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Then clearly there are morphisms A1&iB1-C1 and A2&iB2-C2 in cMMnðkÞ: By
(IH.1) these morphisms have lifts g1 :A1&iB1-C1 and g2 :A2&iB2-C2 in MnðkÞ:
It is immediate that

A&iB ¼ ðA1&rA2Þ&iðB1&rB2Þ ����!Zir
A1 ;A2 ;B1 ;B2ðA1&iB1Þ&rðA2&iB2Þ ���!g1&rg2

C1&rC2

is a lift of m:
To prove part (2) we begin with a definition. We say that the chain in MnðkÞ

A&iB ¼ ðA0
1&rA

0
2Þ&iðB0

1&rB
0
2Þ ����!Zir

A0
1
;A0
2
;B0
1
;B0
2ðA0

1&iB
0
1Þ&rðA0

2&iB
0
2Þ!

h
C

is subordinate to the chain

A&iB ¼ ðA1&rA2Þ&iðB1&rB2Þ ����!Zir
A1 ;A2 ;B1 ;B2ðA1&iB1Þ&rðA2&iB2Þ!

g
C

if there exists a splitting A0
1 ¼ A1&rA

00
1 and B0

1 ¼ B1&rB
00
1: We first show that the

diagram in part (2) is commutative in this case. In other words, if one chain is
subordinate to the other then their composites are equal.
Note that our hypothesis implies that A2 ¼ A00

1&rA
0
2 and B2 ¼ B00

1&rB
0
2: The

existence of the morphisms

g : ðA1&iB1Þ&rððA00
1&rA

0
2Þ&iðB00

1&rB
0
2ÞÞ-C;

h : ððA1&rA
00
1Þ&iðB1&iB

00
1ÞÞ&rðA0

2&iB
0
2Þ-C

implies the existence of a morphism

ðA1&iB1Þ&rðA00
1&iB

00
1Þ&rðA0

2&iB
0
2Þ-C

in cMMnðkÞ which according to Remark 4.14 has a unique lift

l : ðA1&iB1Þ&rðA00
1&iB

00
1Þ&rðA0

2&iB
0
2Þ-C
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in MnðkÞ: This then yields the following diagram in MnðkÞ

where the unlabelled arrows are those which occur in the external associativity
diagram. Then the left-hand side of the diagram is one of our given chains and the
right-hand side is the other (subordinate) one. This diagram commutes because all
the inner diagrams commute: square (1) by the external associativity law and the two
triangles (2) and (3) by Remark 4.14.
Now given two arbitrary chains

A&iB ¼ ðA1&rA2Þ&iðB1&rB2Þ ����!Zir
A1 ;A2 ;B1 ;B2ðA1&iB1Þ&rðA2&iB2Þ!

g
C;

A&iB ¼ ðA0
1&rA

0
2Þ&iðB0

1&rB
0
2Þ ����!Zir

A0
1
;A0
2
;B0
1
;B0
2ðA0

1&iB
0
1Þ&rðA0

2&iB
0
2Þ!

h
C;

one can construct a third chain

provided that A1-jA0
1j and B1-jB0

1j are not simultaneously 0. (Again we use

Remark 4.14 to construct l:) In this case both of the given chains are subordinate to
this third one, hence the composites of the two are both equal to the composite of the
third, and thus equal to each other.
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The remaining case is that both A1-jA0
1j ¼ 0 ¼ B1-jB0

1j: In this case we may
assume without loss of generality that A0

1 ¼ 0 ¼ B1: Then again using Remark 4.14
we can again construct a third chain

A&iB ����!Zir

A1 ;A2 ;B
0
1
;B0
2ðA1&iB

0
1Þ&rðA2&iB

0
2Þ!

l
C:

This time the third chain is subordinate to both of the original ones, and again we get
that their composites are equal. This completes the proof of part (2). &

Lemma 4.16. If f :A&iB-C is an irreducible morphism in MnðkÞ; with C &r-
reducible, then:

1. A and B are &i-irreducible objects (in MnðjAjÞ and MnðjBjÞ; respectively);
2. f factors as a composite:

with Ln
jC1jðg1Þ and Ln

jC2jðg2Þ strong shuffles, where g1; resp. g2 are the restrictions of

g to A1&iB1; resp. A2&iB2;

3. Ln
kð f Þ is a strong shuffle in cMMnðkÞ:

Proof. Note first that the irreducible morphism f can be obviously written as a
composite

due to the structure of its source.

Next we shall prove that A is&i-irreducible. If not, then one of the objects A1 and
A2 must be equal to 0 and the other one must be&i-split. Without loss of generality,
we may assume A1 ¼ 0 and A2 ¼ A21&iA22 with both A21 and A22 different from 0
(since the other case follows from a similar argument). Then the morphism

Zir
A1;A2;B1;B2

¼ Zir
0;A21&iA22;B1;B2

can be written as the composite
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according to the internal associativity law, contradicting the irreducibility of f : Thus
A must be &i-irreducible. In a similar way one can obtain the same property for B;
finishing the proof of (1).
Next, suppose that at least one of the morphisms Ln

jC1jðg1Þ; L
n
jC2jðg2Þ is not a strong

shuffle. Then, as in the proof of Proposition 4.11 and using Remark 4.14, g can be
factored as

ðA1&iB1Þ&rðA2&iB2Þ ����������!ða1&ib1Þ&rða2&ib2ÞðX1&iY1Þ&rðX2&iY2Þ!
g0

C

with at least one of the morphisms a1; b1; a2; b2 different from the corresponding
identity, and we obtain the following commutative diagram (by the naturality

of Zir):

contradicting the irreducibility of f and completing the proof of (2).
To prove (3) assume that Ln

kð f Þ is not a strong shuffle. Then we can factor Ln
kð f Þ

as

A&iB-A0&iB
0 !m C:

From the fact that Ln
jC1jðg1Þ and Ln

jC2jðg2Þ are strong shuffles and Proposition 4.6, it
follows that any splitting A0 ¼ A0

1&rA
0
2 corresponds to a splitting A ¼ Ã1&rÃ2; and

similarly that any splitting B0 ¼ B0
1&rB

0
2 corresponds to a splitting B ¼ B̃1&rB̃2:

According to Lemma 4.15(1), m can be lifted to a composite

A0&iB
0 ¼ ðA0

1&rA
0
2Þ&iðB0

1&rB
0
2Þ ����!Zir

A0
1
;A0
2
;B0
1
;B0
2ðA0

1&iB
0
1Þ&rðA0

2&iB
0
2Þ!

h
C:

Pick the corresponding splittings of A ¼ Ã1&rÃ2 and B ¼ B̃1&rB̃2; then use (IH.1)
to lift to morphisms

l1:Ã1-A0
1; l2:Ã2-A0

2; l3:B̃1-B0
1; l4:B̃2-B0

2:
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Then we have the following diagram in MnðkÞ:

This diagram commutes since the two inner diagrams commute: (1) by naturality of

Zir and (2) according to Lemma 4.15(2). Since the composite across the top and right
is f ; this contradicts the supposed irreducibility of f : &

Remark 4.17. Clearly if f :A&iB-C is a morphism in MnðkÞ such that Ln
kð f Þ is

irreducible, then f is also irreducible.

Lemma 4.18. If m :A&iB-C is an irreducible morphism in cMMnðkÞ; then m has a

unique preimage f :A&iB-C in MnðkÞ:

Proof. By induction hypothesis (IH.2) we may as well assume that C is &r-
reducible. By Proposition 4.11, m is a strong shuffle. By Lemma 4.15(1), m has at least
one preimage f : But m irreducible implies that any preimage f is also irreducible. This
in turn implies that any preimage f must be a composite of the form

A&iB ¼ ðA1&rA2Þ&iðB1&rB2Þ ����!Zir
A1 ;A2 ;B1 ;B2ðA1&iB1Þ&rðA2&iB2Þ!

g
C:

By Lemma 4.15(2) it follows that f is unique. &

Remark 4.19. The reader might wonder why the same argument does not show that
any strong shuffle m :A&iB-C has a unique preimage in MnðkÞ: According to
Lemma 4.15, m has a preimage of the form
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and any two such preimages are equal. However at this point we cannot rule out the
possibility the m has other preimages which do not decompose in this way. We will
refer to the unique preimage of the first kind as the standard lift of the strong shuffle
m: For example, by Lemma 4.16 any irreducible morphism inMnðkÞ is automatically
a standard lift.

Lemma 4.20. Suppose the following diagram is given in MnðkÞ:

with F &r-reducible, with Ln
kðhÞ; Ln

kðlÞ; Ln
kð f Þ and Ln

kðgÞ all strong shuffles, and with

h and l being standard lifts. Then the diagram is commutative.

Proof. Let us first decompose the objects A; B; D; C and F into &r-irreducible
objects:

A ¼A1&rA2&ry&rAs;

B ¼B1&rB2&ry&rBt;

D ¼D1&rD2&ry&rDu;

C ¼C1&rC2&ry&rCv;

F ¼F 1&rF 2&ry&rFw:

Then a similar argument to the one used in Lemma 4.15 gives the nondecreasing
functions

s : f1; 2;y; ug-f1; 2;y;wg;

t : f1; 2;y; vg-f1; 2;y;wg

defined, respectively, by the relations

jDjjCjFsð jÞj; for all jAf1; 2;y; ug;

jCj jCjF tð jÞj; for all jAf1; 2;y; vg:

Since h is the standard lift, according to Lemma 4.15 it factors as the composite

ðD1&rD2Þ&iðC1&rC2Þ ����!Zir
D1 ;D2 ;C1 ;C2ðD1&iC1Þ&rðD2&iC2Þ ���!h1&rh2

F
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with

D1 :¼ &rfDj j jAs�1ð1Þg; C1 :¼ &rfCj j jAt�1ð1Þg;

D2 :¼ &rfDj j jes�1ð1Þg; C2 :¼ &rfCj j jet�1ð1Þg:

Moreover, the splitting of D as D1&rD2 gives the nondecreasing functions

x : f1; 2;y; sg-f1; 2g;

z : f1; 2;y; tg-f1; 2g

defined, respectively, by the relations

jAjjCjDxð jÞj; for all jAf1; 2;y; sg;

jBjjCjDzð jÞj; for all jAf1; 2;y; tg:

Therefore by (IH.1) f factors as the composite

ðA1&rA2Þ&iðB1&rB2Þ ����!Zir
A1 ;A2 ;B1 ;B2ðA1&iB1Þ&rðA2&iB2Þ ��!f1&rf2

D1&rD2

with

A1 :¼ &rfAj j jAx�1ð1Þg; B1 :¼ &rfBj j jAz�1ð1Þg;

A2 :¼ &rfAj j jex�1ð1Þg; B2 :¼ &rfBj j jez�1ð1Þg:

Since Ln
kð f Þ and Ln

kðhÞ are strong shuffles, we have that

A1 ¼ A-jF1j; B1 ¼ B-jF1j; C1 ¼ C-jF1j

and that

A2 ¼ A-jF2j; B2 ¼ B-jF2j; C2 ¼ C-jF2j;

where F2 ¼ F 2&rF 3&ry&rFw:
Similar arguments give decompositions

ðA1&rA2Þ&iðG1&rG2Þ ����!Zir
A1 ;A2 ;G1 ;G2ðA1&iG1Þ&rðA2&iG2Þ ��!l1&rl2

F

and

ðB1&iB2Þ&iðC1&iC2Þ ����!Zir
B1 ;C1 ;B2 ;C2ðB1&iC1Þ&rðB2&iC2Þ ���!g1&rg2

G1&rG2

of l; respectively g:
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Thus we obtain the following diagram in MnðkÞ:

The outer square of this diagram is the original diagram we want to show commutes.
This follows from the fact that all the inner subdiagrams commute: (1) by the

internal associativity diagram, (2) and (3) by naturality of Zir; and (4) by
Remark 4.14. &

Lemma 4.21. Suppose the following diagram is given in cMMnðkÞ:

with both morphisms strong shuffles and ipj: Let Xs; s ¼ 1; 2; 3; 4; be the objects

defined, respectively, by

X1 ¼ D � jCj; X3 ¼ D � jBj;

X2 ¼ F � jCj; X4 ¼ F � jBj:

Then:

1. There exist two morphisms

ðX1&jX2Þ&iðX3&jX4Þ ���!j1&ij2
B&iC;

ðX1&iX3Þ&jðX2&iX4Þ ���!j1&jj2
D&jF

in cMMnðkÞ extending the given diagram to
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2. The extended diagram can be completed into a commutative triangle whenever either

one of the following conditions are satisfied:

(a) iaj;
(b) i ¼ j and at least one of the objects X2; X3 is equal to 0.

Proof. Note first that (b) follows immediately from (a). Indeed, the morphism

ðX1&jX2Þ&iðX3&jX4Þ �������!Ln
k
ðZij

X1 ;X2 ;X3 ;X4
Þ
ðX1&iX3Þ&jðX2&iX4Þ

has the required property if iaj; while the morphism idX1&iX2&iX4
is taking care of

the case i ¼ j (assuming, without loss of generality, X3 ¼ 0). So all we have to prove
is (1).
The condition that both j and c are strong shuffles yields the existence of the

following morphisms:

ðD � jCjÞ&jðF � jCjÞ ¼ ðD&jFÞ � jCj!j1 G � jCj ¼ B;

ðD � jBjÞ&jðF � jBjÞ ¼ ðD&jFÞ � jBj!j2 G � jBj ¼ C;

ðB � jF jÞ&iðC � jF jÞ ¼ ðB&iCÞ � jF j!c1 G � jF j ¼ D;

ðB � jDjÞ&iðC � jDjÞ ¼ ðB&iCÞ � jDj!c2 G � jDj ¼ F

and therefore the only thing still to prove is the following set of equalities:

D � jCj ¼ B � jF j; D � jBj ¼ C � jF j;

F � jCj ¼ B � jDj; F � jBj ¼ C � jDj:

But this can be easily done—by using again the fact that both j and c are strong
shuffles—as follows:

D � jCj ¼ ðD � jF jÞ � jCj ¼ ððD&jFÞ � jF jÞ � jCj ¼ ðG � jF jÞ � jCj

¼ ðG � jCjÞ � jF j ¼ ððB&iCÞ � jCjÞ � jF j ¼ ðB � jCjÞ � jF j ¼ B � jF j;

F � jCj ¼ ðF � jDjÞ � jCj ¼ ððD&jFÞ � jDjÞ � jCj ¼ ðG � jDjÞ � jCj

¼ ðG � jCjÞ � jDj ¼ ððB&iCÞ � jCjÞ � jDj ¼ ðB � jCjÞ � jDj ¼ B � jDj;
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D � jBj ¼ ðD � jF jÞ � jBj ¼ ððD&jFÞ � jF jÞ � jBj ¼ ðG � jF jÞ � jBj

¼ ðG � jBjÞ � jF j ¼ ððB&iCÞ � jBjÞ � jF j ¼ ðC � jBjÞ � jF j ¼ C � jF j;

F � jBj ¼ ðF � jDjÞ � jBj ¼ ððD&jFÞ � jDjÞ � jBj ¼ ðG � jDjÞ � jBj

¼ ðG � jBjÞ � jDj ¼ ððB&iCÞ � jBjÞ � jDj ¼ ðC � jBjÞ � jDj ¼ C � jDj

and the proof is completed. &

Lemma 4.22. Suppose the following diagram is given in MnðkÞ:

with G &r-reducible and with iojor: If Ln
kðhÞ and Ln

kðlÞ are both strong shuffles

and h and l are standard lifts (cf. Remark 4.19), then the diagram is

commutative.

Proof. Let G1 and G2 be the objects defined (uniquely) by the equality G ¼ G1&rG2

and the condition that G1 is &r-irreducible. By Lemma 4.15 we can replace the
original given decompositions of h and l by new ones compatible with this splitting
of G:

B&iC ¼ ðX1&rX2Þ&iðX3&rX4Þ ����!Zir
X1 ;X2 ;X3 ;X4ðX1&iX3Þ&rðX2&iX4Þ ���!h1&rh2

G;

D&jF ¼ ðZ1&rZ2Þ&jðZ3&rZ4Þ ����!Zir
Z1 ;Z2 ;Z3 ;Z4ðZ1&jZ3Þ&rðZ2&jZ4Þ ��!l1&rl2

G:

Then the morphisms j1 :¼ Ln
jG1jðh1Þ; j2 :¼ Ln

jG2jðh2Þ; c1 :¼ Ln
jG1jðl1Þ and c2 :¼

Ln
jG2jðl2Þ are strong shuffles and we are within the hypotheses of Lemma 4.20 with the

following two diagrams (in cMMnðjG1jÞ and cMMnðjG2jÞ; respectively):
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Therefore there exist the objects Yu; u ¼ 1; 2;y; 8 together with the following

morphisms (in the corresponding components of bMMn):

Y1&jY3!
x1

X1; Y2&jY4!
x2

X2;

Y5&jY7!
x3

X3; Y6&jY8!
x4

X4;

Y1&iY5!
z1

Z1; Y2&iY6!
z2

Z2;

Y3&iY7!
z3

Z3; Y4&iY8!
z4

Z4

which—according to (IH.1)—can be lifted, respectively, to

Y1&jY3!
f1

X1; Y2&jY4!
f2

X2;

Y5&jY7!
f3

X3; Y6&jY8!
f4

X4;

Y1&iY5!
g1

Z1; Y2&iY6!
g2

Z2;

Y3&iY7!
g3

Z3; Y4&iY8!
g4

Z4

in the corresponding components of Mn since the cardinalities of all the targets are
smaller than k:
Also note that there exists a unique morphism u :A-ðY r

12&jY
r
34Þ&iðY r

56&jY
r
78Þ

in MnðkÞ; since such a morphism exists in cMMnðkÞ and its target is &i-split, with Y r
12

denoting the object Y1&rY2 and so on.
This gives rise to the following diagram in MnðkÞ:
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Here we denote

Y
pqs
abcdxyzw :¼ ðððYa&pYbÞ&qðYc&pYdÞÞ&sððYx&pYyÞ&qðYz&pYwÞÞÞ;

X i
ab :¼ Xa&iYb; Z

j
ab :¼ Za&jZb;

f :¼ ð f1&rf2Þ&ið f3&rf4Þ; f̂ :¼ ð f1&if3Þ&rð f2&if4Þ;
g :¼ ðg1&rg2Þ&jðg3&rg4Þ; ĝ :¼ ðg1&jg3Þ&rðg2&jg4Þ:

Then the outer hexagon is an expansion of the original diagram which we want to
show commutes. To show this we observe that all the inner subdiagrams commute:

diagrams (1) and (5) by (IH.2), diagrams (2) and (4) by naturality of Zir and Z jr

respectively, diagram (6) is the ‘‘Giant Hexagon’’, and diagram (3) by Remark 4.14.
This concludes the proof. &

Lemma 4.23. Let the following diagram be given in MnðkÞ:

with iojor; Zij
A0
11
;A0

12
;A0

21
;A0

22
and Zir

A00
11
;A00

12
;A00

21
;A00

22
nontrivial and

A1 ¼ A0
11&jA

0
12 ¼ A00

11&rA
00
12;

A2 ¼ A0
21&jA

0
22 ¼ A00

21&rA
00
22:

If Ln
kðgZ

ij
A0
11
;A0

12
;A0

21
;A0

22
Þ ¼ Ln

kðhZir
A00
11
;A00

12
;A00

21
;A00

22
Þ is a strong shuffle then the diagram is

commutative.

Proof. Rewrite g : B1&jB2-D1&rD2 in the form

B1&jB2!
g0

B0
1&j0B

0
2!

g00

D1&rD2;

where g00 is irreducible. Then the result follows by applying Lemma 4.22 to the
diagram:
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Lemma 4.24. f :A&iB-C is irreducible in MnðkÞ iff Ln
kð f Þ :A&iB-C is

irreducible in cMMnðkÞ:

Proof. By (IH.2) we may as well assume that C is&r-reducible. As noted in Remark
4.17, the implication

Ln
kð f Þ irreducible) f irreducible

is trivially true.
Now suppose f is irreducible. Then by Lemma 4.16, Ln

kð f Þ is a strong shuffle and
A and B are both &i-irreducible. Thus we cannot have a nontrivial factorization of
Ln

kð f Þ of the form

A&iB-D&iG-C:

For if cardðjDjÞ ¼ cardðjAjÞ; then this contradicts Ln
kð f Þ being a strong shuffle. If

cardðjDjÞocardðjAjÞ; then this contradicts Ln
kð f Þ being a strong shuffle and A being

&i-irreducible (cf. Proposition 4.6(4) and Remark 4.7). Similarly we can rule out
cardðjDjÞ4cardðjAjÞ:
Thus if Ln

kð f Þ were not irreducible in cMMnðkÞ; then there would have to be a

factorization of Ln
kð f Þ of the form

A&iB!m D&jG !j C

with iojor and j irreducible. Then by (IH.2) we can lift m to a morphism h and by
Lemma 4.18 we can lift j to an irreducible morphism l: But then by Lemma 4.22 we
have the following commutative diagram in MnðkÞ:

contradicting the irreducibility of f : Thus Ln
kð f Þ must be irreducible. &

Lemma 4.25. Suppose the following diagram is given in MnðkÞ:

with G &r-reducible. If h and l are both irreducible then the diagram is commutative.
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Proof. Note first that the given diagram can be projected in cMMnðkÞ via the functor
Ln

k; the result being the commutative diagram

ð1Þ

with j ¼ Ln
kðhÞ and c ¼ Ln

kðlÞ: According to Lemma 4.16, j and c are strong

shuffles in cMMnðkÞ: Therefore the lower right-hand side corner of (1) is exactly the
diagram in Lemma 4.21 with i ¼ j:

Case 1: Suppose the additional hypothesis in Lemma 4.21(b) is satisfied in our
situation, namely one of the objects X2; X3 is equal to 0. Without loss of generality,
we can assume X3 ¼ 0: Then the extended diagram in Lemma 4.21 can be written as

ð2Þ

Next, the fact that B and C; on one hand, and D and F ; on the other hand, have
no common generating objects yields the following equivalences:

X3 ¼ 03C � jF j ¼ 03F � jBj ¼ C3X4 ¼ C;

X3 ¼ 03D � jBj ¼ 03B � jF j ¼ D3X1 ¼ D

together with the equalities j2 ¼ idC and c1 ¼ idD (in cMMnðkÞ). Therefore Lemma
4.18 and (IH.1) give the following (unique) lift of (2) in MnðkÞ:

satisfying the hypotheses in Lemma 4.20; hence it is commutative:

h3ð f1&iidCÞ ¼ l3ðidD&ig2Þ: ð3Þ

Finally, there exists a morphism

x :A-D&iX2&iC
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in cMMnðkÞ: According to (IH.2), x has a unique lift a inMnðkÞ and the morphisms f ; g

factor, respectively, as

A!a D&iX2&iC ���!f1&i idC
B&iC

A!a D&iX2&iC ���!idD&ig2
D&iF : ð4Þ

Now the conclusion follows immediately from (3) and (4).
Case 2: Let us assume now that both X2 and X3 are different from 0. In this

situation the extended diagram in Lemma 4.21 cannot be closed to a commutative
triangle. Nevertheless, we can consider the objects B-D :¼ B-jDj ¼ D-jBj (since
both B and D are restrictions of the object G as both j and c are strong shuffles) and
C-F :¼ C-jF j ¼ F-jCj:

Subcase 2.1: Suppose that at least one of the objects B-D and C-F is not equal
to 0. (Without loss of generality we may consider Y :¼ B-Da0:)

Then the morphism j3Ln
kð f Þ ¼ c3Ln

kðgÞ factors (in cMMnðkÞ) through the object
Y&iZ; with Z :¼ G � jY j: Suppose this factorization is

A!x Y&iZ !m G:

Then x has a unique lift a in MnðkÞ; according to (IH.2), while m is a strong shuffle,
by the definition of the objects Y and Z; and therefore it has a unique standard lift b

in MnðkÞ; according to Lemma 4.15 and Remark 4.19.
Then we have the following diagrams in MnðkÞ which can be shown to commute

by the same argument as in Case 1:

Subcase 2.2: The remaining situation is B-D ¼ C-F ¼ 0: In this case we must
have jBj ¼ jF j and jCj ¼ jDj: Since all the objects B; C; D and F are restrictions of
the object G (because j and c are strong shuffles), we must have B ¼ F and C ¼ D:
Therefore the given diagram can be written as

ð5Þ

A closer look at the morphism f shows that—according to (IH.2)—it factors
through a certain object

Z :¼ B1&i�1C1&i�1B2&i�1C2&i�1y&i�1Bm&i�1Cm ð6Þ
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with m a positive integer and the objects Bt; CtðtAf1; 2;y;mgÞ given by the
procedure described below.
Consider the following subsets of f1; 2;y; kg:

B1 :¼ fbAjBj j8cAjCj; (soi such that b&sc in Ag;

C1 :¼ fcAjCj j8bAjBj\B1; (soi such that c&sb in Ag;

B2 :¼ fbAjBj\B1j8cAjCj\C1; (soi such that b&sc in Ag;

C2 :¼ fcAjCj\C1j8bAjBj\ðB1,B2Þ; (soi such that c&sb in Ag;

y

Bm�1 :¼ bAjBj
[m�2

t¼1
Bt

 !-
j8cAjCj

[m�2

t¼1
Ct

 !
; (soi such that b&sc in A

-( )
;

Cm�1 :¼ cAjCj
[m�2

t¼1
Ct

 !-
j8bAjBj

[m�1

t¼1
Bt

 !
; (soi such that c&sb in A

-( )
;

Bm :¼ jBj
[m�1

t¼1
Bt

 !-

Cm :¼ jCj
[m�1

t¼1
Ct

 !-
:

Then the objects Bt ðtAf1; 2;y;mgÞ are defined as the results obtained by deleting
in B all the generating objects from jBj\Bt; respectively. A similar definition gives the

objects Ct: Note that only B1 or Cm or both can be equal to 0. Moreover, if B1 ¼ 0
then mX2:

Subcase 2.2.1: If only two of the objects Bt; Ct in the right-hand side of (6) are
different from 0 then Z is given by one of the equalities

Z ¼ B1&i�1C1;

Z ¼ C1&i�1B2

and, in order to make a choice, we shall assume the first one to hold (the other
situation being treated in a similar way). In this case we obviously have B1 ¼ B and
C1 ¼ C:
According to (IH.2), there exists a unique morphism a :A-B&i�1C in MnðkÞ:

Then, again by (IH.2), both f and g factor through B&i�1C as

f ¼ Z ji
B;0;0;C3a;

g ¼ Z ji
0;B;C;03a
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with j :¼ i � 1 and the commutativity of (5) is obviously reduced to the
commutativity of the following diagram:

ð7Þ

Next, let us have a closer look at the irreducible morphism h: According to Lemma
4.15, the morphism h can be factored as

for any decomposition G1&rG2 of the &r-reducible object G: But this fact implies
the existence of a &r-split morphism

m1&rm2 : ðB1&jC1Þ&rðB2&jC2Þ-G1&rG2

in cMMnðkÞ which, according to (IH.1), has a unique lift h0
1&rh

0
2 in MnðkÞ: Hence we

have obtained the following two diagrams in MnðkÞ:

with D1&rD2 denoting the object ðB1&jC1Þ&rðB2&jC2Þ: Now the conclusion

follows easily by applying Lemma 4.23.

Subcase 2.2.2: If at least three of the objects Bt; Ct in the right-hand side of (6) are
different from 0 then Z is given by an equality having one of the forms

Z ¼ B1&i�1C1&i�1V ;

Z ¼ C1&i�1B2&i�1V

corresponding to B1a0 and B1 ¼ 0; respectively. Again we can assume the first

equality to hold.
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It follows that we have the following diagram in cMMnðkÞ:

A!m B1&i�1ðG � jB1jÞ!
n

G:

Next factor n as

B1&i�1ðG � jB1jÞ!
n1

X&jY !n2 G

with jor; n2 irreducible and X&jY different from both B&iC and C&iB (since

there are no morphisms from B1&i�1ðG � jB1jÞ into either B&iC or C&iB incMMnðkÞ). Now use (IH.2) to lift m and n1 and Lemma 4.18 to lift n2: We denote
the lifts by u; v1 and v2 respectively. This gives us a morphism A-G in MnðkÞ
given by

A!a X&jY !b G;

where a ¼ v1u and b ¼ v2:
Finally, let us consider the diagrams

which are commutative, either by Lemma 4.22 (for iaj) or by one of the cases
already discussed during this proof (for i ¼ j). Now the conclusion is immediate and
the lemma is completely proven. &

Finally, we have all the necessary preliminaries for the proof of Theorem 4.2.

Proof of the coherence theorem for n-fold monoidal categories. It remains to show
that

Ln
k : HomMnðkÞðA;BÞ-HombMMnðkÞ

ðA;BÞ

is a bijection when A is &r-irreducible and B is &r-reducible, since (IH.2) and
Remark 4.14 take care of all the other possibilities.
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Note first that any morphism m :A-B incMMnðkÞ with A &r-irreducible and B &r-
reducible can be factored as

A!m
0

A0
1&iA

0
2!

m0
B

with m0 irreducible in cMMnðkÞ: Since both m0 and m0 have lifts inMnðkÞ; the former by
(IH.2) and the latter by Lemma 4.18, it follows that the morphism m has such a lift.
Therefore the functor Ln

k is surjective on morphisms.

Next let us consider two morphisms f ; g :A-B in MnðkÞ; with A &r-irreducible
and B &r-reducible. Obviously f and g can be factored, respectively, as

A!f0 A0
1&iA

0
2!

f 0

B

A!g0 A00
1&jA

00
2 !

g00

B

with f 0 and g00 irreducible. But in this way we have obtained in fact the following
diagram in MnðkÞ:

which, according to Lemmas 4.22 (if iaj) or 4.25 (if i ¼ j), is commutative and
therefore yields the equality f ¼ g:
Thus the factor Ln

k is also injective on morphisms and the coherence theorem is

completely proved. &

5. The Milgram construction

This section is devoted to a detailed discussion of the relation between the
Milgram construction and the premonad construction with respect to the Milgram

subpreoperad J of the n-fold monoidal operad Mn; introduced in Section 3.

Definition 5.1. Let X be an object in the categoryJnðkÞ:We denote bySðXÞ the full
subcategory of JnðkÞ consisting of all the objects Y in JnðkÞ which map into X

(including X itself). As usual abusively we also use the same notation SðXÞ to
denote the nerve of this category.
For n ¼ 2 the natural homeomorphism of Theorem 3.12 between the Milgram

construction and the premonad constructionJnðX Þ is a direct consequence of the
following result:
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Theorem 5.2. Sð1&22&23&2y&2kÞ is homeomorphic to the permutohedron Pk:
More precisely:

1. The simplicial triangulation of Sð1&22&23&2y&2kÞ arising from its definition

as a nerve is isomorphic to the barycentric subdivision of the natural cell structure

on Pk:
2. There is a functorial action of the symmetric group Sk on the category

Sð1&22&23&2y&2kÞ inducing an action on its nerve which corresponds under

this isomorphism to the natural action of Sk on Pk:
3. For each i ¼ 1; 2;y; k the functor Sð1&22&2y&2kÞ-Sð1&22&2y&2ðk �
1ÞÞ induced by the map of generating elements:

1/1; 2/2;y; ði � 1Þ/ði � 1Þ; i/0; ði þ 1Þ/i; ði þ 2Þ/ði þ 1Þ;y; k/ðk � 1Þ

corresponds to the i-degeneracy map Di : Pk-Pk�1:

Before we go on to the proof of this theorem, we illustrate this for the case k ¼ 3:
Recall that P3 is a hexagon. Here is a picture of the nerve Sð1&22&23Þ:

(Here, as elsewhere throughout this section, we rely heavily on the coherence
theorem for n-fold monoidal categories. Thus we do not have to worry about
labelling the arrows in our diagram, since there can be at most one between any pair
of objects, and the existence of the arrows shown can be easily checked.)
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Proof of Theorem 5.2. The coherence theorem implies that the objects of
Sð1&22&23&2y&2kÞ have the form A1&1A2&1y&1As; with

Ar ¼ ir1&2ir2&2y&2irjr ; 1pir1oir2o?oirjrpk;

i.e. ððirtÞ jr
t¼1Þ

s
r¼1 forms a ð j1; j2;y; jsÞ-shuffle in Sk:

We begin by defining a functorial action of the symmetric group Sk on
Sð1&22&23&2y&2kÞ: Given an element of sASk; there is a functor

Sð1&22&23&2y&2kÞ-Sðsð1Þ&2sð2Þ&2sð3Þ&2y&2sðkÞÞ

given by permuting the generating elements f1; 2;y; kg according to s:We compose
this with the functor

Sðsð1Þ&2sð2Þ&2sð3Þ&2y&2sðkÞÞ-Sð1&22&23&2y&2kÞ

which reorders the generating elements within the linear parentheses in their natural
order when read from left to right. (To see that this defines a functor one must use
the coherence theorem.)
To illustrate this action consider the totally order reversing permutation

½6; 5; 4; 3; 2; 1� acting on the object ð2&24Þ&1ð3&25&26Þ&11A
Sð1&22&23&23&24&25&26Þ: We have

ð2&24Þ&1ð3&25&26Þ&11/ ð5&23Þ&1ð4&22&21Þ&16

/ ð3&25Þ&1ð1&22&24Þ&16:

We now proceed by induction on k to prove part (1) of the theorem. For k ¼ 1 this
is trivially true, since both Sð1Þ and P1 are consist of a single point. We then note
that by the coherence theorem, Sð1&22&23&2y&2kÞ is the cone, with respect to
the vertex 1&22&23&2y&2k; of the union

[k�1
p¼1

[
aAShp;k�p

aðSðð1&22&2y&2pÞ&1ððp þ 1Þ&2ðp þ 2Þ&2y&2kÞÞÞ;

where Shp;k�p denotes the set of ðp; k � pÞ shuffles acting via the symmetric group
action defined above.
Moreover by the coherence theorem, any object in

Sðð1&22&2y&2pÞ&1ððp þ 1Þ&2ðp þ 2Þ&2y&2kÞÞ

must have a canonical splitting X1&1X2; with X1 inSð1&22&2y&2pÞ: Thus there
is a canonical isomorphism

Sðð1&22&2y&2pÞ&1ððp þ 1Þ&2ðp þ 2Þ&2y&2kÞÞ

DSð1&22&2y&2pÞ �Sð1&22&2y&2ðk � pÞÞ:
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Hence Sð1&22&23&2y&2kÞ can be identified with the cone on

[k�1
p¼1

[
aAShp;k�p

aðSðð1&22&2y&2pÞ �Sð1&22&2y&2ðk � pÞÞÞ:

Now according to [17], the boundary of the permutohedron Pk has a similar
decomposition as a union:

[k�1
p¼1

[
aAShp;k�p

aðPk � Pk�pÞ:

Thus we construct our simplicial isomorphism by sending the vertex
1&22&2y&2k to the barycenter of Pk and then extending to the boundary by
sending

aðSð1&22&2y&2pÞ �Sð1&22&2y&2ðk � pÞÞÞ

to aðPp � Pk�pÞ via the inductively defined isomorphisms Sð1&22&2y&2pÞDPp

and Sð1&22&2y&2ðk � pÞÞDPk�p:

To check that this is well defined, we note that if two codimension 1 faces

aðSð1&22&2y&2pÞ �Sð1&22&2y&2ðk � pÞÞÞ

and

a0ðSð1&22&2y&2qÞ �Sð1&22&2y&2ðk � qÞÞÞ

have a nonempty intersection, then we must have paq and the intersection must
have the form

bðSð1&22&2y&2uÞ �Sð1&22&2y&2vÞ �Sð1&22&2y&2wÞÞ;

where u ¼ minðp; qÞ; w ¼ minðk � p; k � qÞ; v ¼ k � u � w; and b is a ðu; v;wÞ-
shuffle. Moreover b is determined as the only shuffle such that bð1&12&1y&1kÞ is
contained in both codimension 1 faces. We then note that the analogs of these facts
are also true in Pk:
The rest of the proof is straightforward and is left as an exercise.

Proof of Theorem 3.12 (For n ¼ 2). The Milgram construction for n ¼ 2 can be
rearranged as the premonad construction on the preoperad whose kth space is the
quotient space Pk � Sk=E: The equivalence relation E identifies the codimension 1
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face aðPp � Pk�pÞ in Pk � fsg with the codimension 1 face Pp � Pk�p in Pk �
fa�1sg; for any ðp; k � pÞ-shuffle a:
The preoperad space J2ðkÞ can be similarly expressed as a similar quotient space

Sð1&22&23&2y&2kÞ � Sk=E; where we identify Sð1&22&23&2y&2kÞ �
fsg with Sðsð1Þ&2sð2Þ&2sð3Þ&2y&2sðkÞÞ � {id}. The result now follows
directly from Theorem 5.2. &

The following is left as an exercise for the interested reader. It gives an intrinsic

description in terms of generators and relations of the categories J2ðkÞ and
J2ðkÞ=Sk: (It is not difficult to do the exercise with the help of the coherence
theorem.)

Exercise 5.3. A J2 functor is a functor F :A-B between monoidal categories which
is strongly monoidal in the following sense. Denote by &2; &1 the monoid
operators inA; B; respectively, and by 0 the unit object in either category. Then we
require that Fð0Þ ¼ 0 and that for each ðp; qÞ-shuffle sASk there is given a natural
transformation

zsA1;A2;y;Ap;Apþ1;Apþ2;y;Ak
: FðA1&2y&2ApÞ&1FðApþ1&2y&2AkÞ

-FðAs�11&2As�12&2y&2As�1kÞ

satisfying the following properties:

1. (Unit condition) zsA1;A2;y;Ap;0;0;y0 ¼ idFðA1&2A2&2y&2ApÞ and zs0;0y;0;Apþ1;Apþ2;yAk
¼

idFðApþ1&2Apþ2&2y&2AkÞ:

2. (Substitution property) If Ai ¼ Bij1&2Bij2&2y&2Biji ; then

zsA1;A2;y;Ap;Apþ1;Apþ2;y;Ak
¼ zs

0

B11;y;B1j1
;B21;y;Bpjp ;Bpþ1;1;y;Bkjk

;

where s0ASj1þj2þ?þjk permutes the block f1; 2;y; j1g; fj1 þ 1; j1 þ 2;y; j1 þ
j2g;y; fj1 þ?þ jk�1 þ 1; j1 þ?þ jk�1 þ 2;y; j1 þ?þ jk�1 þ jkg the same
way that s permutes 1; 2;y; k: A special case of this is if any Ai ¼ 0 (i.e. a 0-
fold &2-sum), in which case the resulting z is the same as one where the
corresponding 0 entries have been deleted.

3. (Associativity) Given p þ q þ r ¼ k; a ðp; qÞ-shuffle s; a ðp þ q; rÞ-shuffle t; a ðq; rÞ-
shuffle k and a ðp; q þ rÞ-shuffle l; such that lðid"kÞ ¼ tðs"idÞ ¼ g in Sk; then
the following diagram commutes
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where *k is the translation of k to the set fp þ 1; p þ 2;y; kg:

Show that J2ðkÞ=Sk is the target of the universal J2 functor from the free monoidal

category on one object. Similarly J2ðkÞ can be described as a subcategory of the
universal J2 functor from the free monoidal category on f1; 2;y; kg:
The basic building block of the Milgram construction JnðXÞ for n42 is the

product ðPkÞn�1: In order to relate JnðXÞ to the Milgram construction, we have to

relate ðPkÞn�1 to Sð1&n2&ny&nkÞ: Unfortunately, the analog of Theorem 5.2
breaks down when n42: Sð1&n2&ny&nkÞ is not isomorphic as a cell complex to
ðPkÞn�1 but rather to a quotient of ðPkÞn�1: Nevertheless as we show below,
Sð1&n2&ny&nkÞ is homeomorphic to a disk of dimension ðn � 1Þðk � 1Þ; and
thus also to ðPkÞn�1:

Definition 5.4. Let A and B be two objects of Pk ¼ Sð1&22&23&2y&2kÞ (using
Theorem 5.2). Suppose that A ¼ A1&1A2&1y&1Ap where each Ai is &1-

irreducible. Define a new object pAðBÞ of Pk by

pAðBÞ ¼ ðB-jA1jÞ&1ðB-jA2jÞ&1ðB-jA3jÞ&1y&1ðB-jApjÞ:

It is obvious that this induces a map of posets

pA :Pk-Pk

retracting Pk onto the face SðAÞ:
We collect here, for future reference, the following basic properties of the

retractions pA:

Lemma 5.5. If A and B are objects of Pk ¼ Sð1&22&23&2y&2kÞ; then

(i) pApB ¼ ppAðBÞ:

(ii) If SðAÞ-SðBÞ ¼ SðCÞ; then

pAðBÞ ¼ pBðAÞ ¼ C;
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and consequently

pApB ¼ pBpA ¼ pC :

(iii) If sASk; then

spAðBÞ ¼ psAðsBÞ:

Definition 5.6. Given a based space X we define the thick Milgram construction

J̃nðX Þ to be the quotient of the disjoint union
‘

kX0 ðPkÞn�1 � X k by the equivalence

relation generated by the relations

(i) ðc1; c2;y; cn�1; x1;y; xi�1; �; xi;y; xk�1ÞEðsiðc1Þ; siðc2Þ;y;
siðcn�1Þ; x1;y; xi�1; xi;y; xk�1Þ:

(ii) If some ci is in a boundary face aðPp � PqÞ; where a is a ðp; qÞ shuffle in Sk; then

ðc1; c2;y; cn�1; x1; x2;y; xkÞEða�1ðc1Þ; a�1ðc2Þ;y; a�1ðcn�1Þ; aðx1; x2;y; xkÞÞ:

We define the Milgram construction JnðX Þ to be the quotient of the thick
Milgram construction by the following additional equivalence relations:

(iii) If ci is in a boundary face SðAÞ; then

ðc1; c2;y; ci; ciþ1;y; cn�1; x1; x2;y; xkÞ

Eðc1; c2;y; ci; pAðciþ1Þ;y; pAðcn�1Þ; x1; x2;y; xkÞ:

Finally, we define the thin Milgram construction Ĵ nðX Þ by conically extending

relations (iii) to the interior of Pn�1
k :

(iii0) If ðc1; c2;y; cn�1Þ is in the cone (with respect to
ð1&22&2y&2k; 1&22&2y&2k;y; 1&22&2y&2kÞÞ of Pk �?� Pk �
SðAÞ � Pk �?� Pk; then

ðc1; c2;y; cn�1; x1; x2;y; xkÞEðc01; c02;y; c0n�1; x1; x2;y; xkÞ;

where ðc01; c02;y; c0n�1Þ is the image of ðc1; c2;y; cn�1Þ under the conical
extension of the map

ðd1:d2;y; di; diþ1;y; dn�1Þ/ðd1:d2;y; di; pAðdiþ1Þ;y; pAðdn�1ÞÞ

on the boundary face.

Remark 5.7. In Milgram’s own description of his construction JnðXÞ; relations (ii)
and (iii) are combined into a single relation, cf. [18, p. 24].
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It is clear that each of the above variants of Milgram’s construction arises as the

premonad construction on a preoperad. The preoperad eJJn associated with the thick
Milgram construction has the form

eJJnðkÞ ¼ Pn�1
k � Sk=E;

where the equivalence relation identifies a point ðc1; c2;y; cn�1; sÞ; if some ci is in

aðPp � PqÞ; with the point ða�1ðc1Þ; a�1ðc2Þ;y; a�1ðcn�1Þ; asÞ: The unit maps si :eJJnðkÞ- eJJnðk � 1Þ are applied coordinatewise:

siðc1; c2;y; cn�1; sÞ ¼ ðsiðc1Þ; siðc2Þ;y; siðcn�1Þ; siðsÞÞ:

The preoperad Jn; corresponding to the Milgram construction, is obtained from eJJn

by taking the quotient of Pn�1
k by the relations

ð�Þ If ci is in a boundary face SðAÞ; then

ðc1; c2;y; ci; ciþ1;y; cn�1ÞEðc1; c2;y; ci; pAðciþ1Þ;y; pAðcn�1ÞÞ:

The preoperad bJJn; corresponding to the thin Milgram construction, is obtained fromeJJn by taking the quotient of Pn�1
k by the conical extension of the relations ð�Þ:

ð��Þ If ðc1; c2;y; cn�1Þ is in the cone (with respect to
ð1&22&2y&2k; 1&22&2y&2k;y; 1&22&2y&2kÞÞ of Pk �?� Pk �
SðAÞ � Pk �?� Pk; then

ðc1; c2;y; cn�1ÞEðc01; c02;y; c0n�1Þ;

where ðc01; c02;y; c0n�1Þ is the image of ðc1; c2;y; cn�1Þ under the conical extension
of the map

ðd1:d2;y; di; diþ1;y; dn�1Þ/ðd1:d2;y; di; pAðdiþ1Þ;y; pAðdn�1ÞÞ

on the boundary face.
Thus all of these preoperads take the generic form

eJJnðkÞ ¼ D̃nðkÞ � Sk=E;

JnðkÞ ¼ DnðkÞ � Sk=E;

bJJnðkÞ ¼ D̂ nðkÞ � Sk=E;

where D̃nðkÞ ¼ Pn�1
k and DnðkÞ; resp. D̂ nðkÞ; are the quotients of Pn�1

k by relations

ð�Þ; resp. ð��Þ: (One needs Lemma 5.5 to check that relations ð�Þ and ð��Þ commute
with the equivariancy relations used to glue together the k! copies of these quotients.)
The following pictures illustrate these constructions for n ¼ 3 and k ¼ 2:
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The first picture shows D̃3ð2Þ ¼ P2
2 ¼ I � I : The second picture shows D3ð2Þ; which

is obtained from the first picture by collapsing the vertical sides of the shaded
triangles to points. The collapsed traingles become ‘‘polygons’’ with two sides. The

third picture shows D̂ 3ð2Þ; which is obtained from the first picture by collapsing the
shaded triangles to horizontal lines.
To complete the proof of Theorem 3.13 we will need the following elementary

result from PL topology:

Lemma 5.8. Let Di denote the i-dimensional disk.

(a) If DmC@Dn is a PL imbedded disk and f :Dm-Dk is an elementary collapse to a

boundary face, then Dn,Dm DkDDn:
(b) If Dn;f :Dm-Dk are as in ðaÞ and CpX denotes the cone with respect to an

interior point pADn; then Dn,CpDm CpDkDDn:

Proof. We first prove part (a) for the case m ¼ n � 1:We take as a model for Dn the

prism Dn�1 � I and we take the boundary disk we are collapsing to be the top face

Dn�1 � f1g: (That we can arrange this follows from the Disk Theorem of PL

topology, cf. [20, p. 56].) Let K denote the convex hull in Dn�1 � I of Dn�1 � f0g
and Dk � f1g: Then K is obviously an n-dimensional topological disk.

Now consider the map of pairs l : ðDn�1 � I ;Dn�1 � f1g-ðK;Dk � f1gÞ given by
the formula

ðx; tÞ/ðð1� tÞxþ tfðxÞ; tÞ:

This map is a relative homeomorphism, since if ðx1; tÞ and ðx2; tÞ both mapped to the
same point for some to1; then the vectors x1 � x2 and fðx1Þ � fðx2Þ would have to
point in opposite directions, which cannot happen for a linear retraction f: Since the
restriction of l to Dn�1 � f1g-Dk � f1g is just f; l induces a homeomorphism

Dn
[
Dm

Dk ¼ ðDn�1 � IÞ,Dn�1�f1g D
k � f1gDKDDn:
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We can reduce the general case of part (a) to the special case proved above as
follows:

Dn
[
Dm

DkDðDn,Dn�1 DmÞ,Dm DkDDn,Dn�1 DkDDn:

Finally we can reduce part (b) to part (a) as follows. Cut apart the given disk Dn

along a suitable codimension 1 subdisk passing through the point p: (If m ¼ n � 1;

excise the interior of the cone CpDm first.) Then the we can realize Dn,CpDm CpDk as

the result of a two-step process. In the first step we are attaching Dkþ1 to each of the
two n-dimensional disks we obtained after the cut, by an attachment of the form
given in part (a). By part (a) we know that the resulting spaces are homeomorphic to
n-disks. In the second step we glue together these disks along the parts of the
boundaries of the two pieces which were originally ðn � 1Þ-disks (where we originally
made the cut), but where we attached Dkþ1’s. That the resulting part of the
boundaries are still ðn � 1Þ-disks follows by noting that the complementary parts of
the boundaries are PL imbedded ðn � 1Þ-disks.

Proof of Theorem 3.13. eJJnðkÞ ¼ Pn�1
k is evidently a ðk � 1Þðn � 1Þ-dimensional disk.

By repeated applications of part (a) of Lemma 5.8, so is JnðkÞ: By repeated

applications of part (b) of Lemma 5.8, bJJnðkÞ is also a ðk � 1Þðn � 1Þ-dimensional
disk.

We now construct a map of posets q : eJJnðkÞ ¼ Pn�1
k -JnðkÞ ¼ Sð1&n2&ny

&nkÞ as follows. Given ðA1;A2;y;An�1ÞAPn�1
k ¼ ðSð1&n2&ny&nkÞÞn�1; first

replace it by

ðB1;B2;y;Bn�1Þ ¼ ðA1; pA1
ðA2Þ; pA1

pA2
ðA3Þ;y; pA1

pA2
ypAn�2ðAn�1ÞÞ:

We then have

Bn�1pBn�2p?pB2pB1;

from which it follows that the parenthesization of any object Bi induces a (usually
redundant) parenthesization of the object Biþ1: From this it follows that we can
endow Bn�1 with n � 1 levels of parentheses: the innermost coming from the original
parenthesization of Bn�1; the next level coming from the parenthesization of
Bn�1;y; the outermost level coming from the parenthesization of B1: Now define
qðA1;A2;y;An�1Þ to be the object constructed from this heavily parenthesized
version of Bn�1 as follows. Replace each&2 in the innermost level of parentheses by
&n: Then replace each &1 in the next level of parentheses by &n�1; etc. At the
penultimate step replace each &1 in the next to outermost level of parentheses by
&2: At the final step leave the outermost &1’s alone.
The following example (with n ¼ 4; k ¼ 5) illustrates this process. Let

ðA1;A2;A3Þ ¼ ðð1&23Þ&1ð2&24&25Þ; ð1&23&24Þ&1ð2&25Þ; ð1&22&24&25Þ&13Þ:
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Then

ðB1;B2;B3Þ ¼ ðð1&23Þ&1ð2&24&25Þ; ð1&23Þ&14&1ð2&25Þ; 3&11&14&1ð2&25ÞÞ;

and the resulting redundant parenthesization of B3 is

B3 ¼ ððð3Þ&1ð1ÞÞÞ&1ðð4Þ&1ðð2&25ÞÞ:

Thus

qðA1;A2;A3Þ ¼ ð3&31Þ&1ð4&2ð2&45ÞÞ:

It is easy to see that this map of posets extends to a map of preoperads q : eJJn-Jn;

which factors through a map of preoperads q0 : bJJn-Jn: To check that q0 is a
simplicial isomorphism, it is only necessary to note that XpY in

Sð1&n2&ny&nkÞ if and only if we can find A; B in ðPkÞn�1 so that qðAÞ ¼ X ;
qðBÞ ¼ Y and ApB:
Thus we have quotient maps of preoperads

eJJn !
q1
Jn !

q2 bJJnDJn:

We have that q2 is an equivalence, since DnðkÞ-D̂ nðkÞ are both given by elementary
collapses of D̃nðkÞ; and since the gluings of the k! copies of DnðkÞ; resp. D̂ nðkÞ are
along the boundaries where DnðkÞ and D̂ nðkÞ are isomorphic.
So it remains to show that

q ¼ q2q1 : eJJn-Jn

is an equivalence. Since this map is given by a map of posets, we use Quillen’s

Theorem A: we show that for any object in the posetJn the overcategory of objects

in eJJn is contractible. But this is easy: elementary collapses of this overcategory given

by relations ð��Þ above gives the cone over that inJn: Since the cone is obviously
contractible, and elementary collapse do not change the homotopy type, the
overcategory must be contractible too. This completes the proof. &

Remark 5.9. In [10, p. 55], Getzler and Jones consider a poset closely related to

JnðkÞ: More precisely their poset is isomorphic to the ‘‘dual’’ JnðkÞ�: By this we
mean the full subcategory ofMnðkÞ consisting of objects whose nesting of operations
is opposite to those inJnðkÞ: the &n operations are nested on the outermost level,
the &n�1 operations are nested at the next outermost level, y; the &1 operations
are nested at the innermost level. Getzler and Jones denote the objects of their poset
as ‘‘multiple bar codes’’: permutations sASk with their elements separated by
multiple bars

sð1Þji1sð2Þji2yjik�1sðkÞ;
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where the subscript on each bar is pn and denotes the number of times the bar is

supposed to be repeated. The poset isomorphism with JnðkÞ� is given by the
replacement ji/&i; with the resulting object parenthesized according to the

operation precedence rules: &1 has the highest precedence, &2 has the next highest
precedence,y;&n has the lowest precedence.
There is a duality anti-automorphism of MnðkÞ given by &i/&n�iþ1; which is

easy to verify using the coherence theorem. This anti-automorphism takesJnðkÞ to
JnðkÞ�: ThusJnðkÞ is anti-isomorphic toJnðkÞ� and hence also to the Getzler–Jones
poset. It follows that the nerve ofJnðkÞ is isomorphic to the nerve of the Getzler–
Jones poset.
Getzler and Jones also consider an operad freely generated by these posets. This

operad obviously maps into our operad MnðkÞ:
There is also an extensive discussion of the Getzler–Jones posets and their relation

to various other constructions in [3, p. 46].

6. Relation to little n-cubes

Boardman and Vogt [4] introduced the little n-cubes operad to parametrize
multiplications on an n-fold loop space. Later May [14] used these operads to
construct small models of OnSnX ; an alternative to Milgram’s models. This section is
devoted to the proof of our main result, Theorem 3.14, relating the n-fold monoidal
operad Mn to the little n-cubes operad Cn; and then derive some consequences
relating n-fold monoidal categories to n-fold loop spaces.
We begin by associating to each object of MnðkÞ a contractible space of k-fold

configurations of little n-cubes.

Definition 6.1. We think of a little n-cube c as a product of closed subintervals of the
unit interval. Thus the elements of the kth space of little n-cubes CnðkÞ have the form
ðc1; c2;y; ckÞ where

cj ¼ ½uj1; vj1� � ½uj2; vj2� �?� ½ujn; vjn�;

where the interiors of the little n-cubes cj are required to be pairwise disjoint. If

c ¼ ½u1; v1� � ½u2; v2� �?� ½un; vn�; d ¼ ½z1;w1� � ½z2;w2� �?� ½zn;wn�

are little n-cubes we write coid to mean that vipzi: Equivalently coid if there is a
hyperplane perpendicular to the i-coordinate axis such that the interior of c lies on
the negative side of the hyperplane and the interior of d on the positive side of the
hyperplane. (Note that this condition forces the interiors of c and d to be disjoint.) If
A is an object ofMnðkÞ let GðAÞ denote the space of all k-fold configurations of little
n-cubes satisfying the following conditions:

GðAÞ ¼ fðc1; c2;y; ckÞjcaoicb if a&ib in Ag
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(cf. Definition 3.5). Note that we do not have to explicitly require that GðAÞ be a
subspace of CnðkÞ—the ordering relations defining GðAÞ force the little n-cubes in a
configuration in GðAÞ to have pairwise disjoint interiors thus forcing the
configuration to be in CnðkÞ: Because of this, GðAÞ may be identified with a convex,
hence contractible, subspace of R2k given by a set of inequalities between the

coordinates. For the same reason GðAÞ is a closed subspace of CnðkÞ (but not of R2k

and hence not compact, since the requirement that each little n-cube have a
nonvacuous interior is an open condition given by strict inequalities).

Example 6.2. The following two figures represent configurations belonging to
Gðð1&22Þ&1ð3&24ÞÞ:

More generally, such configurations could have the subcube i properly contained
in the region marked i 1pip4:

Remark 6.3. If A ¼ B&iC then for any configuration ðd1; d2;y; dkÞ in GðB&iCÞ;
we can find a hyperplane perpendicular to the ith coordinate axis such that all little
cubes in the configuration having labels coming from the generating objects in B

have their interiors on the negative side of the hyperplane and all little cubes in the
configuration whose labels come from the generating objects in C have their interiors
on the positive side of the hyperplane. For if

dj ¼ ½uj1; vj1� � ½uj2; vj2� �?� ½ujn; vjn�
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and if we let

M ¼ maxfvbi j b in Bg; m ¼ minfuci j c in Cg;

then the conditions that ðd1; d2;y; dkÞ must satisfy in order to be in GðB&iCÞ imply
that Mpm: Thus we can take xi ¼ M as a separating hyperplane with the required
properties. ðxi ¼ m would also work, as would any hyperplane in between those
two.) It follows from this observation that[

AAobjðMnðkÞÞ
GðAÞ ¼ DnðkÞ;

where DnðkÞCCnðkÞ is the subspace of decomposable configurations of little cubes.
Decomposability is defined recursively as follows. First of all a configuration
consisting of a single n-cube, i.e. an element of Cnð1Þ; is declared to be
decomposable. For a k-fold configuration to be decomposable, we require that
there be a hyperplane perpendicular to one of the coordinate axes which does not
pass through the interior of any little n-cube in the configuration and which divides
the configuration into two proper subconfigurations. We further require that the
subconfigurations on both sides of the separating hyperplane to be themselves
decomposable. It is trivially true that all C1ðkÞ;Cnð1Þ; and Cnð2Þ consist entirely of
decomposable configurations. The same is also true for C2ð3Þ; but all other spaces in
the little n-cubes operads contain nondecomposable configurations. For instance
ðc1; c2; c3Þ where

c1 ¼ ½0; 1
2
� � ½0; 1� � ½0; 1

2
� c2 ¼ ½0; 1� � ½0; 1

2
� � ½1

2
; 1� c3 ¼ ½1

2
; 1� � ½1

2
; 1� � ½0; 1�

is a nondecomposable configuration of little 3-cubes in C3ð3Þ and the following
figure shows a 4-fold configuration of little 2-cubes which is nondecomposable:

The decomposable little n-cubes form a suboperad Dn of Cn: By sufficiently
shrinking every little n-cube in a configuration towards its barycenter, we can convert
any configuration into a decomposable one. This shows that the inclusion DnCCn is
an equivalence of operads. The operad Dn was studied by Dunn [7] who showed it is
homeomorphic to the n-fold tensor product C1#C1#?#C1 of the little 1-cubes
operad.
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The assignment A/GðAÞ is only defined on objects, not on morphisms. In order
to construct a functor on MnðkÞ we proceed as follows:

Definition 6.4. For any object AAMnðkÞ define

FðAÞ ¼
[

X-A

GðXÞ;

where the union is indexed over all objects XAMnðkÞ which map into A: Then by
definition given a morphism B-A in MnðkÞ; there is an induced inclusion of
subspaces FðBÞCFðAÞ: Thus we have constructed a functor F :MnðkÞ-Top:

Remark 6.5. This construction and proof of Theorem 3.14, based on the analysis of
the resulting colimits, was inspired by the work of Clemens Berger on cellular
operads. Our original proposed line of proof was to form similar colimits over the
barycentric subdivision of MnðkÞ; associating to the barycenter the intersection of
the spaces GðX Þ over all the vertices in the simplex. This caused a great number of
technical difficulties due to the fact that some of these intersections are empty.

Lemma 6.6. For any object AAMnðkÞ the inclusion

GðAÞCFðAÞ

is a strong deformation retract. Thus FðAÞ is contractible.

Proof. The deformation retraction is constructed in a number of stages. If A ¼
B&iC; we first show that the subspace[

X1&iX2-A

GðX1&iX2ÞCFðAÞ

is a strong deformation retract, where the union is taken over all objects of the form
X1&iX2 which map into A; with X1; X2 having the same underlying sets of
generating objects as B and C; respectively.
Suppose X is an arbitrary object of MnðkÞ which maps into A: Then define

X1 ¼ X � jCj; X2 ¼ X � jBj;

(cf. Definition 4.5). By the coherence theorem X1&iX2 maps into A. Now let
ðd1; d2;y; dkÞ be a configuration of little n-cubes contained in GðXÞ; with

dj ¼ ½uj1; vj1� � ½uj2; vj2� �?� ½ujn; vjn�;

and let

M ¼ maxfvbi j b in Bg; m ¼ minfuci j c in Cg:

ARTICLE IN PRESS
C. Balteanu et al. / Advances in Mathematics 176 (2003) 277–349336



If Mpm then ðd1; d2;y; dkÞ is contained in GðX1&iX2Þ and we leave the
configuration alone. Otherwise if M4m; let D1 denote the linear deformation

which takes the closed interval ½0;M� onto the closed interval ½0;Mþm
2

� and let D2

denote the linear deformation which takes the closed interval ½m; 1� to the closed
interval ½Mþm

2
; 1�: Now apply the deformation D1 (resp. D2) simultaneously to the ith

coordinates of all little cubes db (resp. dc) whose labels correspond to generators b in
B (resp. c in C). We claim that this defines a strong deformation retraction of GðXÞ
onto GðXÞ-GðX1&iX2Þ: The only nonobvious point is that the retraction stays
within GðX Þ: This follows from the coherence theorem. For the relative position of
any two little cubes in the configuration can change only if the label of one, say db is
in B and the label of the other dc is in C: Moreover this only happens in the ith
coordinate direction and only if db5idc: So the only trouble which could arise is if
ðd1; d2;y; dkÞAGðXÞ required that dcoidb: But this could only happen if c&ib in X :
But if that were the case, by the coherence theorem, there couldn’t be a morphism
X-A ¼ B&iC since b&ic in A:
By gluing together the deformations of GðX Þ onto GðX Þ-GðX1&iX2Þ over all

objects X in MnðkÞ mapping into A one obtains that[
X1&iX2-A

GðX1&iX2ÞCFðAÞ

is a strong deformation retract. In the next stage of the deformation one decomposes
B ¼ B0&rB

00 and C ¼ C0&sC
00 obtaining a decomposition

A ¼ ðB0&rB
00Þ&iðC0&sC

00Þ;

and then one shows by a similar argument that[
ðX 0

1
&rX

00
2
Þ&iðX 0

2
&sX

00
2
Þ

GððX 0
1&rX

00
2 Þ&iðX 0

2&sX
00
2 ÞÞC

[
X1&iX2-A

GðX1&iX2Þ

is a strong deformation retract. Composing the two retractions, one obtains that[
ðX 0

1
&rX

00
2
Þ&iðX 0

2
&sX

00
2
Þ

GððX 0
1&rX

00
2 Þ&iðX 0

2&sX
00
2 ÞÞCFðAÞ

is a strong deformation retract. One continues this refinement process, restricting to
objects X which map into A and which resemble A to an ever deeper level of
parentheses and operations, showing at each stage that the resulting union of GðX Þ is
a strong deformation retract of the union of GðXÞ at the preceding stage and hence is
also a strong deformation retract of FðAÞ: After finitely many stages the only object
X left is A itself. Thus we obtain that GðAÞCFðAÞ is a strong deformation retract.
Now as we noted in Definition 6.1, GðAÞ can be identified with a convex subspace of
Euclidean space and hence is contractible. Therefore FðAÞ is also contractible.
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Lemma 6.7. For any two objects A; B of MnðkÞ;

FðAÞ-FðBÞ ¼
[

X-A
X-B

FðX Þ;

where the union is indexed over all objects X in MnðkÞ which map into both A and B:

Proof. First note that the inclusion[
X-A
X-B

FðX ÞDFðAÞ-FðBÞ

is immediate from definition. To prove equality, we proceed by double induction.
Our primary induction is on k; the number of generating objects, starting with the
observation that the lemma holds trivially if k ¼ 1: Building on this induction we
first prove the following:

Claim. If there are nontrivial decompositions A ¼ A1&iA2 and B ¼ B1&iB2 with A1

and B1 (and hence also A2 and B2) having the same underlying set of generating objects,

then the intersection FðAÞ-FðBÞ satisfies the lemma.

By our primary induction:

FðA1Þ-FðB1Þ ¼
[

X1-A1
X1-B1

FðX1Þ; FðA2Þ-FðB2Þ ¼
[

X2-A2
X2-B2

FðX2Þ:

It follows immediately that

FðAÞ-FðBÞ ¼
[

X1-A1
X1-B1
X2-A2
X2-B2

FðX1&iX2Þ

and thus implies the lemma in this case, proving the claim.
Our secondary induction is on objects A and B with respect to the ordering in the

poset MnðkÞ: If A or B; say A; is minimal in the poset MnðkÞ; then A has the form

A ¼ j1&1 j2&1 j3&1y&1 jk:

Now there are two possibilities. First of all if m1&1m2 in B implies that m1&1m2 in
A; then by the coherence theorem A maps into B and we have

FðAÞ-FðBÞ ¼ FðAÞ

and we are done. Conversely if there is a pair of generating objects m1; m2 such that
m1&1m2 in A; whereas m2&1m1 in B; then by the coherence theorem m2&1m1 in X

for any object X mapping into B: Hence GðAÞ-GðXÞ ¼ | for all such X ; since a
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requirement for a configuration ðc1; c2;y; ckÞ to lie in GðAÞ is that cm1
o1cm2

whereas a requirement for that configuration to lie in GðXÞ is that cm2
o1cm1

; and no
configuration can simultaneously satisfy both requirements. It follows that

FðAÞ-FðBÞ ¼ |;

and the lemma again holds in this case. This starts the secondary induction.
Now suppose we have shown that the lemma holds for all intersections

FðCÞ-FðDÞ where C maps into A; D maps into B; and at least one of C; D is
not equal to A; resp. B: Let us suppose that the outermost operation in A is&i and
the outermost operation in B is &j: Thus A ¼ A1&iA2 and B ¼ B1&jB2: Without

loss of generality, we may suppose that ipj:
Consider the partial objects

A0
1 ¼ B-jA1j; A0

2 ¼ B-jA2j

(cf. Definition 4.5). We clearly have

FðAÞ-FðBÞ ¼ FðAÞ-FðA0
1&iA

0
2Þ-FðBÞ:

We can apply the claim above to the intersection FðAÞ-FðA0
1&iA

0
2Þ: We can then

distribute the intersection with FðBÞ over the resulting union. If A ¼ A0
1&iA

0
2; we get

no reduction, since then FðAÞ-FðA0
1&iA

0
2Þ ¼ FðAÞ: Otherwise we can apply our

secondary induction to the resulting union of intersections. Similarly we consider

B0
1 ¼ A-jB1j; B0

2 ¼ A-jB2j;

note that

FðAÞ-FðBÞ ¼ FðAÞ-FðB0
1&jB

0
2Þ-FðBÞ

and apply the claim to the intersection FðB0
1&jB

0
2Þ-FðBÞ: Again using our

secondary induction we obtain that the lemma applies unless B ¼ B0
1&jB

0
2:

Thus we are left with the case when both A ¼ A0
1&iA

0
2 and B ¼ B0

1&jB
0
2 hold. But

in this case we must have decompositions

A ¼ ðC&jDÞ&iðU&jVÞ; B ¼ ðC&iUÞ&jðD&iVÞ

for some objects C; D; U and V : Now if ioj; then there is a morphism

Zij
C;D;U ;V :A-B: Hence FðAÞ-FðBÞ ¼ FðAÞ and the lemma holds. If i ¼ j and either

D ¼ 0 or U ¼ 0; then A ¼ B and again we are done. Finally if both Da0 and Ua0;

then GðAÞ-GðBÞ ¼ | for a configuration of little n-cubes in the intersection would
have to satisfy contradictory specifications on the relative positions of little n-cubes
with labels in D and U : This then means that

FðAÞ-FðBÞ ¼
[

X-A
XaA

FðXÞ-FðBÞ
[ [

Y-B
YaB

FðAÞ-FðYÞ
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and we can apply our secondary induction. This concludes the induction and
proof. &

In view of Remark 6.3 and the obvious fact that the inclusion of a finite union of

closed convex spaces of RN into a bigger such finite union is a closed cofibration, a
direct consequence of the preceding lemma is:

Corollary 6.8. The natural map induced by inclusions

colim
AAMnðkÞ

FðAÞ-
[

AAObjðMnðkÞÞ
FðAÞ ¼ DnðkÞ

is a homeomorphism. Moreover for each object A in MnðkÞ the induced map

colim
X !a A

FðXÞ-FðAÞ

is a closed cofibration.

The main technical ingredient in the proof of Theorem 3.14 is the following:

Proposition 6.9. Let P be a finite poset and let F :P-Top be a functor satisfying the

property that for each object i in P the induced map

colim
joi

Fð jÞ-FðiÞ

is a closed cofibration. Then the natural map hocolimP F-colimP F is an equivalence.

Proof. We first observe that

hocolim
P

F ¼ colim
P

G;

where G :P-Top is given by

GðiÞ ¼ hocolim
jpi

F

and that G satisfies the cofibration condition also. We note that GðiÞ-FðiÞ is an
equivalence for all objects iAP:
Then we filter the objects of P according to the length of the largest increasing

chain of objects which terminates in the given object. Thus the objects of filtration 0
are the minimal objects. We denote by Pk the full subcategory of P whose objects
have filtration pk: We proceed by induction on k to show that

colim
Qk

G- colim
Qk

F
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is an equivalence, for any subposet QkDPk satisfying the condition that if joi and
iAQk; then jAQk: This is true for k ¼ 0 since in that case the colimits are just disjoint
unions of the values of G and F over minimal objects.
The induction step from k � 1 to k is based upon the pushout lemma for

equivalences: suppose given a commutative cubical diagram of spaces and maps as
shown

Assume that the front and back faces are pushout squares with the map across the
top being a closed cofibration in each case. (In the sequel, we will refer to such
pushout squares as cofibration squares. It will also be useful to note that in such a
cofibration square the map across the bottom is also a cofibration.) If the maps
marked a; b; and g are equivalences, then so is the map marked d:
We note that we have a pushout square

with Qk�1 ¼ Qk-Pk�1: The map across the top is a closed cofibration by hypothesis.
The same considerations apply to the functor G and we get an analogous

cofibration square. We thus obtain a commutative cube as in the pushout lemma,
with the front face being the cofibration square for F and the back face being the
cofibration square for G; and the maps from the back face to the front face being
induced by the natural transformation G-F : It is immediate that the map
corresponding to b is an equivalence, while the maps corresponding to g and b are
equivalences by the induction hypothesis. This completes the induction and
proof. &

Remark 6.10. Proposition 6.9 is true for any cofinite strongly directed set P (i.e. P is
a directed set such that apb and bpa implies a ¼ b; and each aAP has only a finite
number of predecessors). This statement is a fairly immediate consequence of the
closed model category structure on the category of P-diagrams in Top dual to the
one constructed by Edwards and Hastings [8, Section (3.2)].
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Lemma 6.11. Let fMðnÞgnX0 be an operad in the category of small categories. Let

fFn :MðnÞ-TopgnX0 be a collection of functors satisfying the following conditions:

1. There is an operad C such that FnðAÞDCðnÞ for each object A of MðnÞ; and

Fnð f Þ : FnðAÞ-FnðBÞ is an inclusion for each morphism f :A-B in MðnÞ:
2. For each permutation sASn; action by s on CðnÞ sends the subspace FnðAÞ to the

subspace FnðAsÞ:
3. Given objects AAMðnÞ; BiAMð jiÞ 1pipn; the structure map

CðnÞ � Cð j1Þ � Cð j2Þ �?� Cð jnÞ-Cð j1 þ j2 þ?þ jnÞ

sends the subspace FnðAÞ � Fj1ðB1Þ �?� FjnðBnÞ to the subspace

Fj1þ?þjnðgðA;B1;B2;y;BnÞÞ; where g denotes the structure map of M:

4. The unit element in Cð1Þ is contained in F1ð1Þ; where 1 denotes the unit element of

Mð1Þ:

Then fhocolimMðnÞ FngnX0 is an operad and the natural map

fhocolimMðnÞ FngnX0-C is a map of operads.

The proof of this lemma is completely straightforward and will be left as an
exercise for the reader. Moreover we also note that in case the action of Sn on both
MðnÞ and CðnÞ is free, then the same is the case with the action on hocolimMðnÞ Fn:

Proof of Theorem 3.14. Corollary 6.8, Proposition 6.9, Lemma 6.11 and Remark 6.3
imply that the chain

hocolim
MnðkÞ

F- colim
MnðkÞ

FDDnðkÞCCnðkÞ
� �

kX0

is a chain of operad maps which are also equivalences. Similarly by Lemma 6.6 the
natural map of the diagram F :MnðkÞ-Top to the trivial diagram � :MnðkÞ-Top

induces a map of operads which is also an equivalence:

hocolim
MnðkÞ

F- hocolim
MnðkÞ

� ¼ NMnðkÞ ¼ MnðkÞ
� �

kX0

;

where the last equality is our usual notational abuse of using the same symbol for a
category and its nerve.

It remains to show that the inclusion of the Milgram preoperad JnðkÞ in the
operad MnðkÞ is an equivalence. To do this requires defining a subdiagram of

subspaces of the diagram F ; indexed over the Milgram subcategory JnðkÞ:
Specifically given an object A inJnðkÞ we define

FðAÞ ¼
[

X-A

GðX Þ;
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where the union is indexed over all objects X inJnðkÞ (not MnðkÞ) mapping into A:
The inclusion of diagrams then induces a commutative diagram:

We have already shown that the maps across the bottom row are equivalences. Using
similar arguments, first proving the analogs of Lemmas 6.6 and 6.7 and Corollary 6.8

hold for the diagram F ; we can show the maps across the top row are also
equivalences. Thus it suffices to show that the right hand vertical arrow is an
equivalence.

By the analog of Corollary 6.8 we can identify colimJnðkÞ F with the union

[
AAJnðkÞ

GðAÞCDnðkÞCCnðkÞ:

This in turn is the subspace of Milgram decomposable configurations of little n-
cubes. A configuration in CnðkÞ is said to be Milgram decomposable if one can cut
through the configuration with a finite set of hyperplanes perpendicular to the first
coordinate axis which miss the interiors of all the little n-cubes and each of the
resulting strips individually can then be cut through by a finite number of
hyperplanes perpendicular to the second coordinate axis (again missing the interiors
of all the little cubes in the strip), and each of those resulting strips can then be cut by
hyperplanes perpendicular to the third coordinate axis, etc. with the final cuts being
done by hyperplanes perpendicular to the last coordinate axis, so that at the end of
this process there is exactly one little cube in each compartment.
The following two figures in C2ðkÞ illustrate the concept of Milgram

decomposability:
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The first configuration is Milgram decomposable, whereas the second one is not
(although it is decomposable).
We now show that the inclusion of the space of Milgram decomposable

configurations of little n-cubes into CnðkÞ is an equivalence. Given any configuration
of little n-cubes in CnðkÞ let m be the minimum distance between barycenters of
different subcubes in the cN norm. Define a map CnðkÞ-CnðkÞ which linearly
shrinks (towards their barycenters) those the little cubes in a configuration whose
dimensions are bigger than m

2k
by m

2k
to subcubes of this size (leaving alone dimensions

of cubes which are smaller). This map is clearly homotopic to the identity.
It also takes any configuration to a Milgram decomposable one by the following

argument. We say that two little cubes in a configuration overlap in the first
coordinate direction if there is a hyperplane perpendicular to the first coordinate
direction which passes through the interiors of both. We say that two little cubes are
in the same 1-clump if there is chain of little cubes from one to the other such that
any two adjacent ones in the chain overlap in the first coordinate direction. Clearly
the 1-clumps of little cubes can be separated from each other by hyperplanes
perpendicular to the first coordinate direction. The barycenters of any two little
cubes in the same 1-clump are separated in the first coordinate direction by a
distance at most m

2
: (There are at most k elements in the chain connecting the little

cubes, with the barycenters of adjacent subcubes in the chain having separation in
the first coordinate direction at most m

2k
:) Thus the separation in at least one of the

other coordinate directions between the barycenters of any two little cubes in the 1-
clump must be at least m: Now for the little cubes within a given 1-clump define an
analogous notion of 2-clump and repeat. At the final stage of this process we will
have an ðn � 1Þ-clump of cubes which overlap in all the coordinate directions except
the last. It will follow that all the little cubes in this ðn � 1Þ-clump must have
barycenters separated in the last coordinate direction by distances of at least m: Since
the little cubes have dimensions m

2k
; they can then be separated from one another by

hyperplanes perpendicular to the last coordinate direction, proving the configuration
is Milgram decomposable.
Moreover the homotopy from the shrinking map to the identity restricts to the

subspace of Milgram decomposable configurations. It follows that the inclusion of
the space of Milgram decomposable configurations in CnðkÞ is an equivalence,
completing the proof of Theorem 3.14. &
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Before we proceed to the proof of Theorem 3.16 we recall the basic definitions, due
to Berger [2].

Definition 6.12. An acyclic orientation of the complete graph on the set of vertices
f1; 2; 3;y; kg is an assignment of direction to each edge of the graph such that no
directed cycles occur. Equivalently, an acyclic orientation is determined uniquely by
a total ordering (i.e. a permutation) of the vertices. A coloring of the complete graph
on k vertices is an assignment of colors to each edge of the graph from the countable
set of colors f1; 2; 3;yg: The poset KðkÞ has as elements pairs ðm; sÞ; where m is a
coloring and s is an acyclic orientation of the complete graph on k vertices. The
order relation onKðkÞ is determined as follows: we say that ðm1; s1Þpðm2; s2Þ if for
every edge a!i

b in ðm1; s1Þ the corresponding edge in ðm2; s2Þ has either orientation

and coloring a!j
b with jXi or b!j

a with j4i: Per our usual abuse we also denote

by KðkÞ the nerve of this poset.

The action of the symmetric group Sk onKðkÞ is via permutation of the vertices.
The structure map

KðkÞ �Kðm1Þ �Kðm2Þ �?�KðmkÞ-Kðm1 þ m2 þ?þ mkÞ

assigns to a tuple of orientations and colorings in KðkÞ �Kðm1Þ �Kðm2Þ �?�
KðmkÞ the orientation and coloring obtained by subdividing the set of m1 þ m2 þ
?þ mk vertices into k blocks containing m1;m2;y;mk vertices, respectively. The
edges connecting vertices within the ith block are oriented and colored according to
the given element inKðmiÞ: The edges connecting vertices between blocks i and j are
all oriented and colored according to the corresponding edge in the given element of
KðkÞ: It is easy to check that this specification givesKðkÞkX0 the structure of an EN

operad.

The nth filtration KðnÞðkÞ is the subposet of KðkÞ where the colorings are
restricted to take values in the subset f1; 2; 3;y; ng: It is obvious thatKðnÞðkÞkX0 is

a suboperad of K: There is an inclusion of posets MnðkÞCKðnÞðkÞ which takes an
object A to the complete graph on f1; 2; 3;y; kg with edges oriented and colored as
follows:

a!i
b if a&ib in A:

These inclusions define a map of operads Mn-KðnÞ:

Remark 6.13. This definition departs slightly from that in [2] in that Berger takes
colorings with values in the set f0; 1; 2;yg rather than f1; 2; 3;yg:

Definition 6.14. Define GðkÞ to be the category whose objects are permutations in Sk

and with a unique morphism between any two objects (which is hence an
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isomorphism). The nerve of this category, also abusively denoted GðkÞ; can be
identified with the standard simplicial model ESk of the total space of the universal
principal Sk bundle. By rewriting the objects of GðkÞ in the form

i1&i2&y&ik;

instead of ½i1; i2;y; ik�; and appealing to MacLane’s coherence theorem, we can
identify GðkÞ with a full subcategory of the free strict symmetric monoidal category
on k generators. Thus the spaces fGðkÞgkX0 can be naturally endowed with the

structure of an operad which acts on the nerves of strict symmetric monoidal
categories. The operad G was extensively studied by Barratt and Eccles [1] and May
[15] (who denotes the operad D instead).

Smith [23] defined a filtration on G as follows. First of all he defined GðnÞð2Þ to be
the n � 1 skeleton of Gð2Þ; which is easily identified as the standard Z=2-equivariant

simplicial model of Sn�1: Then he defined a simplex in GðkÞ to be in the nth filtration

GðnÞðkÞ if its images under all restriction maps

Ra;b : GðkÞ-Gð2Þ

lies in GðnÞð2Þ (cf. Remark 3.8). Equivalently an r-simplex

s0-s1-s2-?-sr

lies in GðnÞðkÞ if any pair of elements a; b in f1; 2;y; kg change their relative order in
the given sequence of permutations at most n � 1 times. For example the 3-simplex

½1; 2; 3�-½2; 1; 3�-½2; 3; 1�-½2; 1; 3�

lies in Gð3Þð3Þ since the pair ð1; 2Þ changes order once, the pair ð1; 3Þ changes order
twice and the pair ð2; 3Þ does not change order at all. It is easy to see that GðnÞðkÞkX0

forms a suboperad of G:
The forgetful map ðm; sÞ/s; which forgets the coloring, defines a functor and

hence a map of operads K-G: It also preserves filtrations. For given an r-simplex

ðm0; s0Þ-ðm1; s1Þ-ðm2; s2Þ-?-ðmr; srÞ

inKðnÞðkÞ; any edge connecting two given vertices a and b can only change direction
at most n � 1 times. For every change in direction must correspond to an
incrementation of the coloring of that edge.
The composite

Mn-KðnÞ-GðnÞ

can be identified with the map of operads arising from the fact that any symmetric
monoidal category is n-fold monoidal (cf. Remark 1.9).
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Smith [23] conjectured that GðnÞ has the same homotopy type as the little n-cubes
operad Cn; and thus could also be used to parametrize the structure of an n-fold loop
space. This conjecture was proved by Berger [2]. Our proof of Theorem 3.16 below
gives an alternative proof of this conjecture.

Proof of Theorem 3.16 (Sketch). The diagram F in the proof of Theorem 3.14 can be

expanded in the evident way to a diagram onKðnÞðkÞ containing F as a subdiagram

of subspaces, and the inclusionMn-KðnÞ can be shown to be an equivalence by an

argument similar to the proof we used above to prove that JnCMn is an
equivalence. See [2] for details.

To show that the map p : KðnÞ-GðnÞ is an equivalence we have to show that for

any simplex S in GðnÞ the inverse image p�1ðSÞ is contractible. We prove this by
induction on the dimension ofS: IfS ¼ s is a vertex, then p�1ðsÞ is a simplicial cone
on the object ðm0; sÞ; where m0 is the coloring which assigns to each edge the color 1.
Assume we have already shown the contractibility of inverse images for simplices

of dimension less than that of

S ¼ s0-s1-s2-?-sr:

We note that

p�1ðSÞ ¼ TðSÞ,
[r

i¼0
p�1ðSiÞ;

where TðSÞ is the union of all simplices in KðnÞ which map surjectively onto S and
the Si are the codimension 1 faces of S: To show that this union is contractible, it
suffices to show that all the intersections

\
jAJ

p�1ðSjÞ ¼ p�1
\
jAJ

Sj

 !
;

TðSÞ-
\
jAJ

p�1ðSjÞ ¼TðSÞ-p�1
\
jAJ

Sj

 !

are contractible. Intersections of the first kind are contractible by induction
hypothesis. To see that intersections of the second kind are contractible, we first
consider the following distinguished simplex in TðSÞ:

ðm0; s0Þ-ðm1; s1Þ-ðm2; s2Þ-?-ðmr; srÞ;

where the coloring mi assigns to the edges joining a pair of vertices a; b the color
which is 1 more than the number of times that this pair of elements changes relative
position in the subsimplex

s0-s1-s2-?-si
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of S: Then it is easy to see that TðSÞ-p�1ð
T

jAJ SjÞ is a cone on the vertex ðmm; smÞ
where sm is the initial vertex of the face

T
jAJ Sj of S; and is thus contractible. This

completes the induction and proof. &
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