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Abstract 

In this paper, we present the basic facts of the theory of epicyclic spaces for the first time 
considered by T. Goodwillie in an unpublished letter to F. Waldhausen. An epicyclic space is 
a space-valued, contravariant functor on a category 2 which contains the cyclic category. Our 
results parallel basic facts of the theory of cyclic spaces established in [l] and [7]. We show that 
the geometric realization of an epicyclic space has an action of a monoid which is a semidirect 
product of S’ and the multiplicative monoid of natural numbers. We also show that the 
homotopy colimit of an epicyclic space is homotopy equivalent to the bar construction for the 
monoid action. Finally, we give an explicit description of the homotopy type of the classifying 
space of the category 2”. 

0. Introduction 

It is well known that the free loop space AY = map(S’, Y) carries a lot of 

interesting structure. Our object in this paper is to investigate the piece of structure 

given by power maps (Pi : A Y + AY which are induced on the free loop space by k-fold 

coverings of the circle ok : S’ -+ S’, ok(z) = zk. Despite their very simple definition, the 

power maps are of fundamental significance for the topology of the free loop space 

(cf. [2], where the power maps are shown to induce maps on real and equivariant 

cohomology of AM which correspond to Adams operations on the Hochschild and 

cyclic homology of the de Rham algebra of a l-connected manifold M). The maps (Pk 

together with rotation of loops yield on n Y a right action of a topological monoid J%‘. 

By definition &! = N x S’ and multiplication in J& is given by the formula: 

(k,,z,)(k,>z,) = (k,kz,zl+). (0.1) 

We define the action of &Z on n Y by sending a pair (M, (k, z)) E A Y x J@ to a loop 

whose value on x E S’ is cc(zxk). Zf Y is connected, with no loss of generality, one can 

assume that Y is the classifying space BG of a topological group G. Let NzycG be the 
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cyclic nerve of G, i.e., the cyclic space with NiycG = G”+‘, cf. [l]. It is a rudimentary 

fact of cyclic theory that there exists a homotopy equivalence f: IN”,Y”G I+ /1BG 

between the geometric realization of the cyclic set NiycG and the free loop space /1BG, 

cf. [l, Proposition 1.201. The map f is S’-equivariant with respect to the canonical 

S’-action on the geometric realization of the cyclic set NiycG and rotation of loops on 

ABG. 

Theorem A(2) below shows thatfis also equivariant with respect to the actions of 

the monoid 4: the A-action on ABG considered above and an d-action on 1 N”,Y’G 1 

induced by its cyclic structure and maps pf: : NzycG + NiS;,‘, i,_ i G which repeat 

(n + 1)-tuples k times, i.e., which send (go, gi, . . . , g,,) E G(“‘l) to the k(n + 1)-tuple 

The collection of maps {pi : k = 1,2, . . . ), while not simplicial maps, do define continu- 

ous maps on IN’, G I. 

It was an idea of T. Goodwillie to extend the cyclic category n to a category /i by 

adding to it some extra morphisms such that the cyclic set NzycG becomes a functor 

on zp with the maps pf: in its range. In [S] Goodwillie describes the category 2 which 

he calls the epicyclic category. Functors Jop -+ Top are called epicyclic spaces. 

In this paper, using methods developed for the case of cyclic spaces in [l] and 

generalized in [7], we obtain basic facts on epicyclic spaces. Our first result is the 

following. 

Theorem A. (1) IfX, is an epicyclic space, then its geometric realization has a canoni- 

cal, right action of the monoid A. 

(2) The homotopy equivalencef: 1 NiycG 1 + ABG is A-equivariant with respect to the 

_4!-action induced on 1 NkycG 1 by the maps pf: and the &!-action on the free loop space 

ABG. 

(3) The homotopy colimit over ;1” of an epicyclic space X, is homotopy equivalent to the 

two-sided bar construction B( 1 X, 1, A, pt) for the &-action of part (1). 

Recall that the realization of a cyclic space X, with respect to the cyclic category 

n (i.e., the homotopy colimit of X, over A) has the homotopy type of the Bore1 

construction ES’ x slI X, I for the S’-action on IX, 1, cf. [l, Theorem 1.81 or [7, 

Theorem 5.121. 

In case when X, is the one-point epicyclic space, one obtains the following 

corollary. 

Corollary. The classifying spaces L?z and B&’ are homotopy equivalent. 0 

In the final part of the paper, we describe the homotopy type of the classifying space 

BM. The result is as follows. 

Theorem B. The,fundamental group of BL&’ is isomorphic to the multiplicative group of 

positive rational numbers. The universal covering of BL&’ has the homotopy type of the 
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Eilenherg-Mac Lane space K(Q,2), where Q is the additive group of rationals. x1 B&? 

acts on TC~BJH by multiplication of rational numbers. 

The Corollary and Theorem B determine the homotopy type of the classifying 

space Bn”. On the other hand (see Remark 3.5), the universal cover of Bi is homotopy 

equivalent to the orbit space of the classifying space E% for the family % of finite 

subgroups of S’, cf. [6]. This fact suggests a link between epicyclic theory and 

equivariant homology theories modeled on the space ES, see eg., [4, p. 251, we plan 

to address the matter elsewhere. 

The organization of the paper is as follows. In Section 1 we introduce 

necessary notation and definitions. The following sections contain proofs of Theorems 

A and B. 

1. Notation and definitions 

Let d denote the simplicial category generated by faces 6’ = Sk: [n - l] + [n] and 

degeneracies oi = 0:: [n + l] + [n] satisfying the usual commutation relations. Let 

Ak denote the k-cyclic category with the same objects as A and containing A as 

a subcategory, but with additional morphisms r,, =kr”: [n] + [n] satisfying the 

additional relations 

(1) k?,,dL = 6i11kT,_1 if i 2 1, 

(2) kz,cT; = IT-l k~,_l if i 2 1, 

(3) ( k~,)k(“+l) = id,,,. 

When k = 1, A, is Connes’ cyclic category denoted simply A. Let Pk : & + A, be 

the functor which is the identity of A and satisfying Pk(klr,) = lr,. We evidently have 

Pk’P, = Pkl. 

A k-cyclic space X, is a contravariant functor from the category & to the category 

of spaces. It is completely specified by the spaces X, = X([n]), face maps 

di=X(6i):X,+X,_1, degeneracy maps si = X(0’): X, + X,+ i, and cyclic maps 

t, = k t, = X(,7,) : X, + X,,. The face and degeneracy maps endow X, with the struc- 

ture of a simplicial space, while the cyclic maps specify actions by the cyclic groups 

Z/k(n + 1) on the spaces X,, of n-simplices. These two structures are interrelated by 

the commutation relations 

(1) d,t, = t,_Idi_I if i 2 1, 

(2) sitn = tn+lsi-l if i 2 1. 

When we refer to the geometric realization of a k-cyclic space we mean the 

geometric realization of its underlying simplicial space. 

The simplicial category A may be realized as a category of sets and functions by 

indentifying the object [n] with the poset (0 < 1 < 2 < ... < n}. The morphisms of 

A can then be identified as order preserving morphisms between these posets. We then 

define the kth subdivision jiunctor Sdk: A + A as follows (cf. [3]). One can identify the 

k-fold disjoint sum of posets [n] Ll [n] LI . ..LI [n] (with block ordering) with the poset 
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[(n + 1)k - 11. Thus we define 

Sdk([n]) = [(n + 1)k - l] on objects, 

Sd&) = c&I aII . ..I..I CI on morphisms. 

The subdivision functor can be extended to a functor Sdkl : & + A, by defining 

Sd&rn) = Izk(.+ l)- 1. It is obvious that SdkSdl = Sdkl. 

If X, is a simplicial space, we regard it as a functor dop -+ Top and define the k-th 

subdivision SdkX, to be the composite functor XSdk. If X, is an I-cyclic space, then 

SdkX, is a kl-cyclic space. Although X, and SdkX, are nonisomorphic simplicial 

spaces, their geometric realization are homeomorphic by a canonical homeomor- 

phism D, : 1 SdkX, I-+ 1 X, 1 induced by the diagonal imbedding diag : A” + dk(“’ ‘)k ’ 

given by 

diag&) = 
( 

$,$, . ..) ;r , 
> 

where we view the affine simplex dk(“+ ‘)P 1 as the k-fold join of A”. 

Referring to [7] we can see that & is the category associated to the crossed 

simplicial group k C, whose Set of n-simplices is k C, = Z/k(n + 1). Moreover it follows 

that kc* can be identified with the kth subdivision Sd,(C,) of the cyclic cross- 

ed-simplicial group C,. It follows from results of [7] that if X, is an l-cyclic space, the 

actions 

z/Q? + 1) x x, + x, 

induced by the cyclic operators kt,, give rise to an action p of the crossed simplicial 

group Sd,C, on the simplicial space X,. Moreover, upon passage to geometric 

realizations, we obtain an action by the topological group SdlC, 1 z lC, 1 E S’ on 

IX*I. 
The functor pk : nkl - A, defined above, corresponds to the homomorphism of 

crossed simplicial groups k P* : Sdkl C, + S&C, given on n-simplices by reduction 

mod l(n + l), Z/kl(n + 1) + Z/l(n + 1). We have a commutative triangle 

(1.1) 

where ok(z) = zk on I Sd[C, 1 r S1. For an I-cyclic space X,, we denote by pk the 

ISd,,CI-action on IX.+1 given by the formula 

pk(z>x) = dkp*Itz),x). (1.2) 

Since the subdivision SdkX, of an l-cyclic space X, is a kl-cyclic I Sdk, C, I also acts 

on ISdkX,I. We denote the action by Sdkp. The naturality of the construction in [7] 
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implies that the following diagram commutes: 

lSd,,C,I x ISd,X,+%lSd,X,I 

Di x & 
i I 

D, 

liC*I x IX*I p ,IX*l 

(1.3) 

Following Goodwillie [S] we introduce the epicyclic category and the concept of 

epicyclic space. 

Definition 1.1 (1) The epicyclic category /i is the small category generated by mor- 

phisms and relations of the cyclic category LI together with new morphisms 

71;: [k(n + 1) - l] + [n], k,nE N, k 2 1 

which are subject to the following relations, 
I k kl 

(9 d = id,,,, GV(,+~)~~ = 71, , 

(ii) art; = r@dk(a), for a E Homd(Cml, CnlX 
(iii) r,rci = rriSdk(r,). 

Relations (ii) and (iii) amount to requiring that, for every k 2 1, postcomposition 

with morphisms rr”, in /i” yields a natural transformation of functors up to which the 

following diagram commutes: 

A s*, 
k- A 

(1.4) 

where i is the inclusion functor. 

(2) An epicyclic space is a functor X:/l”“p + Top, or equivalently a cyclic space 

X, with additional continuous operators ( pt = X,( ni) : X, + Xk(n+ iI- 1 } satisfying 

the following relations, 

(i) pf = idx,, P&+w~P~ 
I_ kl 

- Pn > 

(ii) Pidi = Sd/c(di)Pi+ 1) 

PiSi = Sdk(si)Pk I > 

(iii) P!k = tk(,+l)-ld~ 

Note that the maps pf(,+ 1)_ 1 define simplicial maps pi : SdkIX* + SdlX, which are 

maps of kl-cyclic spaces (cf. diagram (1.4)). 

(3) A morphism of epicyclic spaces f, :X, + Y, is a natural transformation of 

functors X 3 Y, and is given by continuous mapsf, : X, + Y, which commute with all 

the operators di, Si, t,, and pi. 

Remarks 1.2. Recall that in the cyclic category /i every morphism can be uniquely 

factored as GET;, for some c( E Horn,,, [ml, [n]). In ;1” every morphism can be factored as 

xi1 for some 1 E Hom,([m], [k(n + 1) - 11). However, since by relation (iii) of 

Definition 1.1(l), we have r$r$:i,_i = rci, the factorization is unique only up to 

a Z/k = (T$: 1j- 1 )-ambiguity. It follows that the simplicial set Horn&, [n]) can be 
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identified with a disjoint union of simplicial sets 

u Hom,(-,Ck(n + 1) - 11)/Z/k 
kzl 

where Z/k acts Horn,,-, [k(n + 1) - 11) by cyclicly permuting k blocks of 

k(n + 1) - l] = [n]I_I [n]...II [n]. Under geometric realization we obtain a homeo- 

morphism: 

1 Horn,+, [n])l = u S’ xnik dkCnil)~‘, 
k>l 

(1.5) 

where the Z/k-action is the restriction of the standard Z/m-action (m = k(n + 1) - 1) 

on S1 x A”’ given by 

r,(z,ncl,u1, ..., u,) = (Ze-zZiuo, ui, . ..) u In, no). (1.6) 

Example 1.3. The cyclic nerve N’,Y’G of a group G together with the maps pi from the 

Introduction is an epicyclic set, cf. [3]. More generally, the cyclic nerve of any small 

topological category is an epicyclic space, cf. [S]. 

Example 1.4. The total singular complex T,X of a topological space X which has 

a right action i; of the monoid 4 from (0.1) is an epicyclic set. To check that T, X 

extends to )1” one has to define maps pi which satisfy relations dual to (i), (ii) and (iii) 

from Definition 1.1(2). We give a formula for pf leaving the general case to the reader. 

Let g: A” + X be a singular simplex and let (s, t) E A2”+’ = A” * A”. Denote by IsI the 

sum of coordinates of s, p,“(o) is by definition a simplex A2”+’ + X whose value at (s, t) 

equals /i(~(s + t), (2, e2rri1s1)), where (2, e2rri1si) E A. 

Example 1.5. Similarly to the categories A and A, the epicyclic category )1” has “an 

affine realization” by which we mean a functor /1”+ Top whose value of an object [n] 

of 2 is the affine n-simplex A”. The value of the functor on the morphism ~1: is an affine 

map A k(n+l’-l + A” which sends a point (si, s2, . . . , Sk) in the simplex Ak(“+‘)~‘, 

viewed as a k-fold join A”* A” * ...* A”, to (si + s2 + ... + Sk) in A”. In what follows, 

the affine map Akcn+ ‘)P ’ + A” is also denoted by rci. 

Remark 1.6. A natural question arises. What is the homotopy type of the classifying 

space SL of the epicyclic category /i”. To answer the question one can try to adapt the 

argument given in [l, Proposition 1.121 (see also [7, Proposition 5.83) based on 

Quillen’s Theorem B [lo], which shows that B/1 ‘v BS’. Let J: A + /i” be the inclusion 

functor. Proceeding as in [l] one obtains: 

B([n]\\J) N Horn,+, [n])l = u S’ x L,k Akcn+‘)- ‘, 
kZ1 

cf. Remark 1.2. (Here [n]\\J denotes the overcategory at the object [n] for the 

functor j.) However, for a morphism y = rcf, A from 2, the transition map 
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induces multiplication by 1 on the fundamental group, i.e. it is not a homotopy 

equivalence for 1 > 1. Consequently, we can not use Quillen’s Theorem B here. We 

return to the problem of determining the homotopy type of Si in Section 3. 

2. Proof of Theorem A 

Proof of (1). For X, an epicyclic space let us define the map & : IX, ( -+ 1 X, 1 to be the 

composite 

IX,$$SdkX,l+X,I, (2.1) 

where Dk is the homeomorphism from Section 1. We are going to show that the maps 

(Pi have the following equivariant properties: 

(i) &(zkX) = z@(x), for i! E 1X*1, 

(ii) (p[’ (Pk = (Plk. 

Assuming (i) and (ii), one checks easily that the following formula gives a right action 

b of the monoid JH on IX, 1. 

i&U, Z)) = (PktZ-’ X). (2.2) 

To complete the proof it is enough to show that (i) and (ii) hold. Since p”, is a map of 

k-cyclic spaces, the following diagram commutes, 

ISdkC,I X Ix,1 ” .I-& 

lXlP:,I I I IP:l 

If&& X ISdkX*ISdL/‘[SdkX*I 

(2.3) 

where pk and Sdkp are the actions from (1.2) and (1.3). The diagram (2.3) composed 

with diagram (1.3) gives the following commutative square, 

S’xlX*I --vX*l 
1 xcp,, I 

s’ x IX*IiL, lx*: 
I- (2.4) 

where we have identified I Sd,C,) and 1 C, ( with S’. Commutativity of (2.4) implies 

property (i). Property (ii) is an immediate consequence of relation (i) from Definition 

Ll(2). 0 

Proof of (2). Since the nerve NiycG is an epicyclic set (cf. Example 1.3), formula (2.2) in 

the proof of part (1) gives a right action of the monoid JH on I N’,Y’G I. To complete the 

proof it is enough to show that for any k 2 1 the following diagram commutes, 

(N;Y’GI. f ,ABG 

(2.5) 
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where (Pk is the map (2.1) induced by the maps pf: : NzYcG + N;f;lC+ i)_ i G from the 

Introduction, and qk is the kth power map on the free loop space ABG. The mapfwas 

defined in [l] as a composition which in the present notation looks as follows: 

lN;ycGI + IN,Ad Gl+ lF(C,, N,G)l+ /lBG. (2.6) 

(The first two maps are homeomorphisms, which identify the cyclic nerve of G with the 

nerve of the adjoint category of G and then with the simplicial function space 

F(C,, N,G) which in [l] was denoted by F,(S:,B,G). The last map is the natural 

map from a simplicial mapping space to the topological mapping space.) Com- 

mutativity of (2.5) follows by a lengthy but straightforward diagram chase using 

formulas for fgiven in [l, Proof of Proposition 1.201 and the following lemma. 

Lemma 2.1. There exists a natural, simplicial isomorphism 

g:Sd,F(C,,N,G)+ F(SdkC,,N,G). 

Proof. To simplify notation we assume that k = 2. The general case follows in 

a similar way. First of all, as in [l], identify n-simplices of Sd,F(C,, N,G) with 

diagrams: 

(2.7) 

where gi, Xi E G and Xi = g,rl Xi_ 1gi. Since the simplicial set Sd2C, has four non- 

degenerate simplices: two O-dimensional and two l-dimensional, we can identify 

n-simplices of F(Sd* C,, N,G) with pairs of diagrams, 

*‘ YO 
* *< x0 * 

(2.8) 

9. I I hn h. 9. 

*A* I I 
*A* 

where 

_Yi= h[‘yi-lgi, Zi = g;lzi-lhi, i=1,2 n. 3 . . . . 
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On n-simplices we define the map g by sending a diagram (2.7) to (2.8) where we put 

zi = gi+lgi+2”‘gn+l+i9 

Yi = xn+l+iziel, 

hi = Sn+l+i, i=O,1,2 ,..., n. 

The inverse of g is given on n-simplices by sending a diagram (2.8) to (2.7) where we 

Put 

Sn+1 = (glc?2~~%l-‘%~ 

gn+2 = hl, gnt3 = h2, . . ..g2n+1 = h,, 

x0 = ZOYO, Xl = ZlYl, . ..> xn = ZnYn, 

x,+1 = YOZO, x,+2 = YlZl, . . ..X2n+1 = YnZn. 0 

Proof of (3). We adapt to the epicyclic case the proof of Theorem 5.12 from [7]. In the 

sequel, we use coends and homotopy colimits of space-valued functors, see e.g., 

[S, Section 11. The homotopy colimit over pp of an epicyclic space X, will be denoted 

by hocolim X,. 

Definition 2.2. For a simplicial space X,, let F”X, be the epicyclic space defined by the 

following coend: 

Fx, = s X, x Horn,+, [n]). (2.2) 
[nl E d 

Let r : X, + fX* and v : f(FX,) -+ FX, be maps which are defined, respectively, by 

sending x E X, to [x, id,,,] E FX, and by composition of morphisms in 2. fX* is the 

free epicyclic space, on X, in the sense that any simplicial map X, -+ Y,, where Y, is 

an epicyclic space, factors through 1. If X, is epicyclic, let ev: FX* + X, be the 

evaluation map: ev( [x, y]) = X(y)(x). FX,, v and z give rise to a monad F” on the 

category of simplicial spaces, cf. [9]. Let B(F, F, X,) denote the monadic two-sided bar 

construction whose space of n-simplices is the (n + 1)-fold iterate F”(..(FX.&..) with 

faces given by ev and the monadic multiplication v and with degeneracies given by the 

monadic unit 1. Using standard methods, one can prove the following result (cf. [9, 

Proof of Theorem 9.101). 

Lemma 2.3. If X, is an epicyclic space, then the map ev induces a natural homotopy 

equivalence of homotopy colimits, 

hocolim IB(f, F, X,)1 -+ hocolim X,. 0 

The proof of Theorem A(3) is based on the following two lemmas which are 

epicyclic versions of Theorem 5.3 and Proposition 5.11 from [7]. 



10 D. Burghelea et al. 1 Journal qf Pure and Applied Algebra 96 (1994) I-14 

Lemma 2.4. For a simplicial space X,, there exists a natural homotopy equivalence, 

pJF”X*I+ IX*lxJH. 

If X, is epicyclic, then the following diagram commutes, 

(2.10) 

where ,ij is the action constructed in Theorem A(1). 

Lemma 2.5. For a simplicial space X,, there exists a natural homotopy equivalence 

p2 : hocolim F”X, + IX, 1 

such that the following diagram commutes, 

hocolim F”(F”X,) p2 .IFX*I 

hocolim Y 
I I 

(2.11) 

hocolim fX* p2 D IX, I 

where the vertical map on the right side is the composition of the map p1 from Lemma 2.4 

and projection onto the jirst factor of IX, I x JH. 

Granting these lemmas for the moment, we see that 

hocolim X, N hocolim JB(F, f, X,)1 (by Lemma 2.3) 

E In + hocolim Ipn+r X, 1 I (by commutativity of coends) 

N In -b IF”“X,ll (by Lemma 2.5) 

N In + IX,1 x A?’ (by Lemma 2.4) 

= wIX*I,~,Pt), 

which proves part (3) of Theorem A. 

Since the homotopy colimit of the one-point epicyclic space is Bi, Theorem A(3) 

implies the following equivalence. 

Corollary 2.6. B/l E BA’. 

Proof. B/l” r hocolimpt N B(pt,.M,pt) = BM. 0 

Proofs of Lemmas 2.4 and 2.5 (sketch). We construct maps p1 and pz, leaving to the 

reader to fill in details of the proofs. 

Define p1 to be the following map: 

(2.12) 
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The map c(i in (2.12) is given by the formula 

~I(Cx,y,tl) = Kx,r(Ol, CPt>Y>tl), (2.13) 

where x E X,, y : [m] + [n] is a morphism in 2 and y(t) denotes value on t E A” of the 

affine map A” + A” associated to y, as in Example 1.4. In order to define a2 notice that 

by Remark 1.2 we have 

IF”ptI = IHom,+,[O])I = u S’ xhikdk-’ 

Collapsing simplices Ak- ’ to barycenters gives a retraction of IF”ptI onto 

LI k> 1 S’lW 

The last space is homeomorphic to the monoid A! via a map induced by k-fold 

covers cuk of S’ which together with the retraction gives a homotopy equivalence 

between Ifpt 1 and A!. For the map z2 in (2.12) we take the Cartesian product of the 

identity on IX, I and the equivalence lF”pt I-+ A’. 

Define p2 to be the following composite: 

hocolim FIX, 81 1 xnx~(m~lP4~*l. (2.14) 
[riled 

The map pi in (2.14) is a homeomorphism obtained by formal properties of homotopy 

colimits as in [7, Proof of Proposition 5.111. Here, /i//[n] denotes the comma 

category whose objects are morphisms y: [m] + [n] in /1” and whose morphisms are 

commutative triangles: 

where CI is a morphism in A. For f12 in (2.14) we take a map induced on coends by 

a cosimplicial equivalence: 

d”,:B()1”//[n])+ A” 

To define & one uses the formula for the equivalence & : B(/i”//[n]) -+ A” from [7, 

Proof of Proposition 5.1 l] together with the affine maps 71:: Akcnf ‘)-’ + A” from 

Example 1.5. It follows easily that the map p2 = Sl x & is an equivalence, cf. [S, 

Proposition 1.131. 0 

3. Proof of Theorem B 

Let % be the multiplicative group of positive rational numbers. Note that % is the 

group completion of the monoid of natural numbers. The monoid A! acts on % and 

N by projection onto first factor A! + N and multiplication in a. In the sequel, we use 
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the two-sided bar construction for the actions, cf. [9]. We will show that the obvious 

projection B( pt, A, N) + B(pt, .A’, pt) is the universal covering of &A’ = B(pt, A, pt). 

Lemma 3.1. B(pt,A, N) E B(pt,A,%). 

Lemma 3.2. B(pt, A, a) N K(Q, 2). 

Since % acts freely on the space B(pt, A!, %) and the orbit space of the action is B&Y, 

it follows from the lemmas that the universal covering of BA’ is K(Q2). The 

statement in Theorem B about the action of z1 BAY on rc2 Bd’ can be easily deduced 

from proofs given below. We leave this to the reader. 

Proof of Lemma 3.1. First of all observe that % = ti a,,, where 4?,, = N and the 

direct system is indexed by the poset of natural numbers ordered by divisability. 

Maps @,, + am, of the system are given by multiplication by 1. Since 

B(pt, A, %I) = & B( pt, A, en), it is enough to show that maps 

B(pt, A, %) + B(pt, A> %J (3.1) 

induced by the system maps Q,, + @,,[ are equivalences. To achieve this we identify 

B(pt, A!, a,,) with the classifying space of the translation category %? whose objects are 

(k~r) natural numbers and whose morphisms are m- mk, where (k, z) is an element of A’. 

Composition in %? is given by the multiplication (O.l), in A%‘. Under the identification 

the map (3.1) becomes BF,, where F,:%+ %? is the functor defined by 

F,(m) = ml, ~~~~ (k,Z) mk) = (m/m mkl). 

Let us define another functor GI: %? + +Z by the formulas 

G,(m) = m, Gl(mu mk) = (m’k,‘i!mk). 

The multiplication law in A! gives the following commutative diagram in the 

category %:: 

m (1, 1) *ml 

(k 4 I 
mk 

(k z’) 
(1. 1) qmkl 

(3.2) 

For a fixed 1 and varying A4 E N, (k, z) E .A’, the diagrams (3.2) define a natural 

transformation from Idc to the functor 4 0 GI = G1 0 FI. It follows by [ll, Proposition 

2.11 that BGI is the homotopy inverse of BF,, i.e., the map (3.1) is an equivalence as 

required. 0 

Remark 3.3. The category %’ used in the proof of Lemma 3.1 is isomorphic to the orbit 

category Co(p), cf. [6, p. 721, where 9 is the family of all finite subgroups of S’. 

Objects of O(F) are orbits S’/Z/m, for m 2 1. Morphisms in 0(q) and S1-maps of 

the orbits S’/Zlm + S’/Z/mk. Using homeomorphisms S’/Zln + S’ induced by 
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n-fold covers o,, of S’, one can identify a morphism in O(%) as above with a map 

S’ + S’ given, for some (k,z) E A!, by sending x E S’ to zxk E S’. Then Corollary 2.6 

and Lemma 3.1 imply that the classifying space BO(%) is homotopy equivalent to the 

universal cover of the classifying space BI?. Note that BO(%) E E%/S’, where E% is 

the classifying space for the family %, cf. [6]. 

Proof of Lemma 3.2. By the proof of Lemma 3.1 B(pt, .&‘,a) E B@‘, where V? is the 

same category as before. Note that BG5’ = 3 B?L?~, where G5’N is the full subcategory of 

$$ whose objects are numbers m which divide N E l+J. Maps of the direct system are 

Bjf , where jf : %& + VM d enotes the obvious inclusion functior for N dividing M. We 

will prove the following two claims: 

(1) BUN = K(Z2), 
(2) 7c2(BjE) is multiplication by M/N. 

The lemma follows from the claims, since the limit of the direct system with spaces and 

maps as in (1) and (2) equals K(Q2). 

Proofof( 1) Let 9N be the full subcategory of the category G9N whose only object is 

the number N. Clearly, BgN 21 BS’ = K(Z,2). We will show that BgN is a deforma- 

tion retract of the space BVN. Let iN: CSN + SN be the obvious inclusion and let 

r’N : %TN + gN be the functor defined by the formulas 

rN(m) = N, rN(m (k,r! mk) = (NY’N), 

where 1 = Nlmk. Obviously r, 0 iN = Ids,, and to complete the proof it is enough to 

construct a homotopy between IdsqN and BiN 0 Br,. For a fixed N E kJ and varying 

m E N, (k, z) E A’, the following commutative diagrams in +& define a natural trans- 

formation Id,* =z= iN 0 rN which induces the required homotopy. (cf. [ll]): 

m O’h 1) >N 

(k> ~1 
I I 

(1,ZN’“k) (3.3) 

mk (NW, 1) IN 

Proof of (2). To identify the effect of the map Bjr : BG5’N + BgM on the homotopy 

group of BWN N K(Z, 2), one uses the following composition of maps: 

BW~~!K+BC~~B~,M’BW~B,,‘B~~. (3.4) 

The maps Bi,and B,, are equivalences from the proof of claim (2). It follows easily that 

(3.4) is a map of degree M/N on K(Z,2). 0 
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