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Stable finiteness properties of infinite discrete groups

Noé Bárcenas, Dieter Degrijse and Irakli Patchkoria

Abstract

Let G be an infinite discrete group. A classifying space for proper actions of G is a proper G-CW
complex X such that the fixed point sets XH are contractible for all finite subgroups H of G.
In this paper we consider the stable analogue of the classifying space for proper actions in the
category of proper G-spectra and study its finiteness properties. We investigate when G admits a
stable classifying space for proper actions that is finite or of finite type and relate these conditions
to the compactness of the sphere spectrum in the homotopy category of proper G-spectra and to
classical finiteness properties of the Weyl groups of finite subgroups of G. Finally, if the group G
is virtually torsion-free we also show that the smallest possible dimension of a stable classifying
space for proper actions coincides with the virtual cohomological dimension of G, thus providing
the first geometric interpretation of the virtual cohomological dimension of a group.

1. Introduction

Let G be an infinite discrete group and let F be the family of finite subgroups of G. Recall
that a classifying space for proper actions of G is a proper G-CW complex X such that the
fixed point sets XH are contractible for every finite subgroup H of G. Such a space is also
called a model for EG. These spaces appear naturally in geometric group theory and algebraic
topology, and are important tools for studying groups (for example, see [29]). Classifying spaces
for proper actions also have important K-theoretical applications. They appear for example
on left-hand side of assembly map conjectures (for example, see [32]) and in a generalization
of the Atiyah-Segal completion theorem (see [31]). With these applications and others in mind
it is important to have models for EG with good geometric finiteness properties. There has
therefore been a longstanding interest in finiteness properties of classifying spaces for proper
actions, for example, see [7, 22, 23, 28, 39] to list just a few references.

One can give an interpretation of EG in terms of homotopical algebra. There is a model
category structure on the category of pointed G-spaces, where the weak equivalences are those
maps which induce weak homotopy equivalences on fixed points for all finite subgroups of G
(see [15, Section 2.3]). This model category is known as the unstable proper G-equivariant
homotopy theory. By adding a disjoint G-fixed basepoint to a model for EG, one obtains
a cofibrant replacement of S0 in the latter model structure. One can think of this cofibrant
replacement as a proper cellular decomposition of S0 up to homotopy. In this paper we consider
the analogue of this in the stable model category of proper G-spectra SpG and define a stable
model for EG to be a certain proper cellular decomposition of the sphere spectrum S0 in
SpG (see below for the precise definition). Here, a G-spectrum is just an orthogonal spectrum
equipped with a G-action and the stable model category of proper G-spectra SpG and its
associated homotopy category Ho(SpG) are as defined in [15]. The weak equivalences in SpG

are morphisms of G-spectra which induce stable equivalences on derived fixed points for all
finite subgroups. In Section 3 we will briefly recall the definition of a G-spectrum and discuss
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some of the properties of SpG and Ho(SpG) that will be needed in this paper. Most of these
are contained in [15, Section 6].

The forthcoming paper by Degrijse, Hausmann, Lück, Patchkoria and Schwede provides an
alternative model structure on SpG which is Quillen equivalent to the one given in [15]. The
weak equivalences in both model structures are the same. However, the model structure of the
above mentioned forthcoming paper has much better control of fibrations compared to that of
[15] which is obtained by an abstract Bousfield localization procedure. The forthcoming paper
also conducts a detailed study of the proper G-equivariant stable homotopy category Ho(SpG)
and provides deloopings with respect to equivariant vector bundles. Furthermore, in this
paper, several equivariant cohomology theories, such as Borel cohomology, Bredon cohomology,
equivariant K-theory and equivariant stable cohomotopy are shown to be represented in
Ho(SpG). This tells us that the category Ho(SpG) contains interesting information about the
group G and understanding its properties is therefore useful. For example, if G is an infinite
discrete group, then the sphere spectrum S0 ∈ Ho(SpG) is in general not a compact object.
Hence, it makes sense to study the finiteness properties of S0 ∈ Ho(SpG), that is, the stable
finiteness properties of G. The purpose of this paper is to conduct such a study.

Definition 1.1. A stable model for EG consists of a collection of G-spectra {Xn}n∈Z

together with a collection of morphisms Xn−1 → Xn in Ho(SpG), where Xn = {∗} if n < 0
while for each n � 0 there exists a stable cofiber sequence

Xn−1 → Xn →
∨
i∈In

ΣnG/Hi + → ΣXn−1

such that Hi ∈ F for all i ∈ In, and

hocolimnX
n ∼= S0

in Ho(SpG). We will often refer to a specific model for hocolimnX
n as a stable model for EG,

keeping in mind that the specific G-spectra Xn and morphisms Xn−1 → Xn are part of the
data. If there exists a d such that Xn−1

∼=−→ Xn for all n � d + 1, then the stable model for
EG is called finite-dimensional. In this case, the smallest such d is called the dimension of the
stable model for EG. A stable model for EG is said to be of finite type if the sets In are finite
for all n � 0. A stable model for EG is a said to be finite if it is both finite-dimensional and of
finite type.

Recall that the geometric dimension for proper actions gd(G) of G is the smallest possible
dimension that a model for EG can have. This geometric invariant coincides with its algebraic
counterpart, called the Bredon cohomological dimension cd(G), except for the possibility that
cd(G) = 2 but gd(G) = 3 (see Section 4). We define the stable geometric dimension for proper
actions of G, denoted by gd

st
(G), to be the smallest possible dimension that a stable model for

EG can have. One of the main results of this paper (see Theorem 4.2) says that the geometric
invariant gd

st
(G) equals the Mackey cohomological dimension cdM(G) of G. This algebraic

invariant was introduced in [35] using Mackey functors for infinite discrete groups and shown
to be equal to the virtual cohomological dimension of G when G is virtually torsion-free. We
will recall some basics about the category of G-Mackey functors MackFG in Section 2.

Theorem 1.2. For any discrete group G, one has

cdM(G) = gd
st

(G).

In particular, if G is virtually torsion-free then vcd(G) = gd
st

(G).
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The virtual cohomological dimension vcd(G) of a virtually torsion-free group G is by definition
the cohomological dimension of any finite index torsion-free subgroup of G. It is a classical
algebraic invariant that satisfies vcd(G) � cd(G). But since this inequality can be strict, the
theorem above provides the first known geometric interpretation of the virtual cohomological
dimension of a virtually torsion-free group.

We also investigate when G admits a stable model for EG of finite type (see Theorems 5.1, 5.4
and 5.5) and relate this condition to the compactness of the sphere spectrum in Ho(SpG) and
to classical finiteness properties of the Weyl groups WG(H) = NG(H)/H of finite subgroups
H of G.

Theorem 1.3. For any countable group G, the following are equivalent.

• The sphere spectrum S0 is a compact object of Ho(SpG).
• There exists a finite-dimensional stable model for EG and there exists a finite-type stable

model for EG.
• There exists a finite length resolution of the Burnside ring functor A in MackFG consisting

of finitely generated projective modules.
• The Mackey cohomological dimension cdM(G) is finite, there are only finitely many

conjugacy classes of finite subgroups in G, and for every finite subgroup H of G there exists a
resolution of Z in Z[WG(H)]-mod consisting of finitely generated projective modules.

In Section 4.3 we show that the suspension Σ∞X+ of a proper G-CW complex X gives
rise to a stable model for EG if and only if XH is acyclic for every H ∈ F . This indicates
that the class of stable models for EG contains more than just the suspensions of certain
proper G-CW complexes and hence truly is a richer class. This fact is illustrated in the
last section of the paper where we consider an example given by Leary and Petrosyan in
[24] of a group G that does not admit a 2-dimensional contractible proper G-CW complex
but satisfies vcd(G) = 2 and cd(G) = gd(G) = 3. For this group we explicitly construct a
2-dimensional stable model for EG. The reader will see that the construction crucially involves
the attaching of equivariant cells via transfer maps that are unavailable in the unstable
setting.

2. Bredon modules and Mackey functors

Throughout this section, let G be a discrete group and let F be the family of finite subgroups
of G. Let us begin by recalling some basics concerning modules over the orbit category and
Bredon cohomology. This cohomology theory was introduced by Bredon in [8] for finite groups
as a means to develop an obstruction theory for equivariant extensions of maps. It was later
generalized to arbitrary groups by Lück with applications to finiteness conditions (see [27,
Section 9; 30]). We refer the reader to [27, Section 9] for more details.

The orbit category OFG is the category with G-sets G/H, H ∈ F , as objects and G-maps as
morphisms. Note that the set of morphisms Mor(G/H,G/K) can be identified with the fixed
point set (G/K)H and that a G-map G/H → G/K : H �→ xK will be denoted by G/H

x−→
G/K. A right OFG-module is a contravariant functor

M : OFG → Z-Mod.

The right OFG-modules are the objects of an abelian category Mod-OFG, whose mor-
phisms are natural transformations. The abelian group of morphisms between two objects
M,N ∈ Mod-OFG is denoted by HomOFG(M,N). Similarly, one defines the category
of left OFG-modules whose objects are covariant functors from the OFG to abelian
groups.
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The category Mod-OFG has free objects; more precisely, its free objects are isomorphic to
direct sums of basic free modules, which are of the form

Z[−, G/K],

where K ∈ F and Z[G/H,G/K] is the free Z-module with basis the set of G-maps from G/H
to G/K. A free module is finitely generated if it is isomorphic to a finite direct sum of basic
free modules. The module Z[−, G/K] is free in the sense that there is a Yoneda lemma which
states that for any M ∈ Mod-OFG, one has a natural isomorphism

HomOFG(Z[−, G/K],M)
∼=−→ M(G/K) : ϕ �→ ϕ(G/K)(IdG/K).

Similarly, one also has a natural isomorphism

Z[−, G/K] ⊗OFG N
∼=−→ N(G/K) : ϕ⊗m �→ N(ϕ)(m) (1)

for any K ∈ F and any left OFG-module N . Here −⊗OFG − denotes the categorical tensor
product over the orbit category. The analogous statements for covariant free modules of course
also hold true.

A sequence of modules in Mod-OFG is said to be exact if it is exact when evaluated at every
object. A right OFG-module P is called projective if the functor

HomOFG(P,−) : Mod-OFG → Z-Mod : M �→ HomOFG(P,M)

is exact. By the Yoneda lemma, free modules are projective and each module admits a free
(projective) resolution. An OFG-module M is said to be finitely generated if there exists a
surjection of a finitely generated free module onto M .

The nth Bredon cohomology of G with coefficients in a right OFG-module M is denoted by
Hn

F (G,M) and is defined as the nth cohomology of the cochain complex obtained by applying
the contravariant functor HomOFG(−,M) to a free (projective) resolution of the constant
functor Z : G/H �→ Z that sends objects to Z and all morphism to the identity map. In other
words, one has

H∗
F (G,M) = Ext∗OFG(Z,M).

The Bredon cohomological dimension of G is defined as

cd(G) = sup{n ∈ N | ∃M ∈ Mod-OFG : Hn
F (G,M) 	= 0}.

Standard techniques in homological algebra show that the number cd(G) coincides with
the length of the shortest free (or projective) resolution of Z in Mod-OFG (for example,
see [44, Lemma 4.1.6]).

We now turn to Mackey functors. Mackey functors were introduced for finite groups by
Dress and Green, and were studied extensively in this context by Thévenaz, Webb and others
(for example, see [41, 43]). However, many of the elementary results obtained about Mackey
functors for finite groups generalize to infinite groups and their families, F , of finite subgroups.
Our treatment of cohomology of Mackey functors follows the approach of Mart́ınez-Pérez and
Nucinkis in [35]. We will briefly recall some facts about Mackey functors here and refer to
[11, 35, 41, 43] for more details.

Consider the diagrams of the form

G/S
ϕ←− Δ

ψ−→ G/K (2)

where the maps ϕ and ψ are G-equivariant, S,K ∈ F and Δ =
∐n

i=1 G/Hi is a finitely
generated G-set with stabilizers in F . A diagram of the form (2) is said to be equivalent
to a diagram

G/S
ϕ′
←− Δ′ ψ′

−→ G/K
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if there exists a G-equivariant bijection θ : Δ → Δ′ such that ϕ′ ◦ θ = ϕ and ψ′ ◦ θ = ψ. The
set of equivalence classes of diagrams of the form (2) is denoted by ωF (S,K). Note that we
also allow the empty morphism G/S ← ∅ → G/K. One can check that ωF (S,K) is a free
abelian monoid with disjoint union of G-sets as addition and the empty morphism as neutral
element. The Mackey category (or Burnside category) MFG is defined as follows. Its objects
are the G-sets G/H for all H ∈ F . The space of morphisms Mor(G/S,G/K) is by definition
the abelian group completion of ωF (S,K). Composition is defined by taking pullbacks in the
category of G-sets on basis morphisms and then extended by linearity. We will denote the
set of morphisms from G/S to G/K in MFG by ZG[S,K]. Let us point out that this group
is different from Z[G/S,G/K], which is the free abelian group generated by the morphisms
from G/S to G/K in the orbit category OFG. The category MackFG is the category with
objects the contravariant additive functors M : MFG → Z-Mod, and morphisms all natural
transformations between these functors. An object of MackFG is called a Mackey functor. The
category MackFG is again an abelian category with enough projectives in which one can do
homological algebra in a similar way to in Mod-OFG. The free Mackey functors are the Mackey
functors that are isomorphic to direct sums of functors of the form ZG[−,K], for K ∈ F . The
Mackey cohomological dimension of G, denoted by cdM(G), is by definition

cdM(G) = sup{n ∈ N | ∃M ∈ MackFG : ExtnMFG(A,M) 	= 0}.
Here A is the Burnside ring functor that takes H ∈ F to the Burnside ring A(H) of H. As
before, one shows using standard techniques that the invariant cdM(G) coincides with the
length of the shortest free (or projective) resolution of the Burnside ring functor in MackFG.

Functors between orbit categories and Mackey categories give rise to induction, coinduction
and restriction functors on the level of module categories, satisfying the usual adjointness
properties (for example, see [35, Section 2]). One can construct a functor

πG : OFG → MFG (3)

that maps an object G/K in OFG to the object G/K in MFG and takes a morphism G/S
x−→

G/K to the morphism in the Mackey category represented by G/S
Id←− G/S

x−→ G/K. When
the group under consideration is clear from the context, we will simply denote πG by π. The
associated restriction and induction functors

resπ : MackFG → Mod-OFG : M �→ M ◦ π = M∗, (4)

and

indπ : Mod-OFG → MackFG : N �→ N(?) ⊗OFG ZG[−, π(?)] (5)

are connected via the adjointness isomorphism

HomOFG(N,M∗) ∼= HomMFG(indπ(N),M) (6)

and the natural isomorphism

indπ(N) ⊗MFG L ∼= N ⊗OFG resπ(L), (7)

where M,N are contravariant functors and L is a covariant functor. Similar constructions and
adjointness isomorphisms of course also hold true when considering covariant additive functors
MFG → Z-Mod.

One can show that indπ(Z[−, G/H]) = ZG[−, H] and indπ(Z) = A (see [35, Theorem 3.7]).
The functor indπ is not exact in general, but does preserve exactness of projective resolutions,
which yields that (see [35, Theorem 3.8])

ExtnMFG(A,M) ∼= ExtnOFG(Z,M∗) = Hn
F (G,M∗)
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for every M ∈ MackFG and every n ∈ N. This implies that

cdM(G) � cd(G). (8)

If G is virtually torsion-free, its virtual cohomological dimension, denoted by vcd(G), is by
definition the cohomological dimension of any torsion-free finite index subgroup of G. This
notion is well defined due to a result of Serre (for example, see [9, Chapter VIII]). A surprising
result proven by Mart́ınez-Pérez and Nucinkis in [35] says that if G is virtually torsion-free
one has

vcd(G) = cdM(G).

This equality is quite remarkable since the invariant on the left only involves the torsion-free
part of G, while the invariant on the right uses the full structure of finite subgroups of G in its
definition.

There are several important classes of groups for which one has cdM(G) = cd(G). For
instance, equality holds for elementary amenable groups of type FP∞ [21], lattices in classical
simple Lie groups [3], mapping class groups [4], outer automorphism groups of free groups
[29, 42] and for groups that act properly and chamber transitively on a building, such as
Coxeter groups and graph products of finite groups [12]. However, there are also groups
for which one has a strict inequality cdM(G) < cd(G). Indeed, such examples have been
constructed in [23, 24] (see also [13, 34]) and arise as certain semi-direct products of Bestvina–
Brady groups or right-angled Coxeter groups with finite groups. These examples also show
that one can have a strict inequality cdM(G) < cd(G) for CAT(0) groups and word-hyperbolic
groups, and that the gap between these two invariants can be arbitrary big. Hence, even for
groups G that are very well behaved from many perspectives, for example, they have strong
cohomological finiteness properties and nice metric properties, the invariants cdM(G) and
cd(G) can be quite different. The strongest general statement about their relationship that is
known at the moment is

cdM(G) � cd(G) � max
H∈F

{cdM(WG(H)) + l(H)}, (9)

where the length l(H) of a finite group H is the length of the longest chain of subgroups
of H and WG(H) = NG(H)/H is the Weyl group of H in G. Moreover, this upper bound
is attained (see ([11, Theorem A])). In particular, if there is uniform bound on the length
of finite subgroups of G, then the finiteness of cdM(G) implies the finiteness of cd(G), since
cdM(WG(H)) � cdM(G) for all H ∈ F (see [11, eq. (11) & Lemma 5.1]). However, in the case
when l(G) = ∞, it is still an open problem whether or not one can have cdM(G) < ∞ but
cd(G) = ∞.

Finally, it is also worth mentioning that one always has

cdQ(G) � cdM(G),

where cdQ(G) denotes the rational cohomological dimension of G. This follows from the fact
that if F∗ → A is a free resolution in MackFG, then F (G/e) ⊗Z Q → A(G/e) ⊗Z Q = Q is a
projective Q[G]-resolution of Q. Note that this inequality can be strict (for example, see [10,
Example 8.5.8]) and that it implies that cdM(G) = 0 if and only if G is finite.

3. Proper G-spaces and proper G-spectra

Throughout this section, let G be a discrete group and let F be the family of finite subgroups
of G. If X is a G-space, then X+ denotes the space obtained by adding a disjoint G-fixed
basepoint {+} to X. In what follows we will freely use the language of triangulated categories
(for example, see [17]) and model categories (for example, see [19]).
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Denote by G-TopF
∗ the model category of compactly generated weakly Hausdorff spaces

equipped with a continuous G-action and G-fixed basepoint together with G-equivariant based
continuous maps, where weak equivalences and fibrations are required to be weak equivalences
and fibrations on H-fixed point spaces, for all H ∈ F (see [15, Sections 2.1–2.3]). The associated
homotopy category is denoted by Ho(G-TopF

∗ ). Note that if H is a subgroup of G, then G/H+

is a cofibrant object in G-TopF
∗ if and only if H ∈ F . In particular G/G+ = S0 is not a cofibrant

object in G-TopF
∗ if G is infinite.

Now let X be a model for EG. Since this by definition means that X is a proper G-CW
complex such that the map X → G/G is a weak equivalence on H-fixed point sets, for all
H ∈ F , it follows that

S0 ∼= colimnX
n
+ (10)

in Ho(G-TopF
∗ ), where Xn = {+} if n < 0 while for n � 0, one has inclusions of based G-spaces

Xn−1
+ → Xn

+ that fit into homotopy cofiber sequences

Xn−1
+ → Xn

+ → Xn/Xn−1 =
∨
i∈In

ΣnG/Hi + → ΣXn−1
+ ,

such that Hi ∈ F for all i ∈ In and Σn denotes the smash product with Sn. The isomorphism
(10) is called a proper decomposition of S0. Note in particular that X+ is a cofibrant
replacement of S0 in G-TopF

∗ and that the dimension of X as a G-CW complex corresponds to
the smallest d such that Xn−1

∼=−→ Xn for all n � d + 1. Note also that X is a G-CW complex
of finite type (meaning that the orbit space G \X has finitely many cells in each dimension)
if and only if the sets In are finite for all n.

We recall from [15, Section 6] that a G-spectrum is an orthogonal spectrum X equipped
with a G-action

G → Aut(X).

A morphism of G-spectra is a morphism of the underlying orthogonal spectra that commutes
with the G-action. The category of G-spectra is denoted by SpG. For every H ∈ F , one can
consider the category SpH of orthogonal H-spectra [33] and the restriction functor

resGH : SpG → SpH : X �→ resGH(X).

Any orthogonal H-spectrum Y can be evaluated on an arbitrary finite-dimensional orthogonal
H-representation V . The H-space Y (V ) is defined by

Y (V ) = L(Rn, V )+ ∧O(n) Yn,

where the number n is the dimension of V , the vector space Rn is equipped with the standard
scalar product and L(Rn, V ) is the space of (not necessarily equivariant) linear isometries from
Rn to V . The H-action on Y (V ) is diagonal. This construction allows one to define genuine
H-equivariant homotopy groups

πH
k Y = colimV⊂U [SRk⊕V , Y (V )]H , k ∈ Z,

where V ranges over all finite-dimensional H-subrepresentations of a complete H-universe U
(see [33, Section III.3] for details). Given a G-spectrum X and a finite subgroup H of G, one
defines πH

k X to be πH
k resGH(X). Finally, a map f : X → X ′ of G-spectra is called a (proper)

stable equivalence if the induced map

πH
k (f) : πH

k X → πH
k X ′

is an isomorphism for any integer k and any H ∈ F .
It follows from [15, Section 6] that there is a stable model category structure on SpG

with weak equivalences the stable equivalences. We refer to this model category as the model



1176 NOÉ BÁRCENAS, DIETER DEGRIJSE AND IRAKLI PATCHKORIA

category of proper G-spectra. The term proper here does not refer to the action of G on X,
but rather to the form of weak equivalences in SpG.

The homotopy category associated to the stable model category SpG will be denoted by
Ho(SpG). The category Ho(SpG) is naturally a triangulated category (see [19, Chapter 7]),
whose distinguished triangles will be called stable cofiber sequences and whose suspension
functor will be denoted by Σ, while its inverse will be denoted by Σ−1 as usual. The abelian
group of morphisms from X to Y in Ho(SpG) will be denoted by [X,Y ]G. Recall that an object
X of Ho(SpG) is called compact if the functor [X,−]G preserves infinite coproducts.

There is a suspension spectrum functor (see [15, Section 6])

Σ∞ : G-TopF
∗ → SpG : X �→ Σ∞X

that is a left Quillen functor and hence preserves cofibrations and weak equivalences between
cofibrant objects. Thus it yields a derived functor

Σ∞ : Ho(G-TopF
∗ ) → Ho(SpG)

that sends homotopy cofiber sequences to stable cofiber sequences. If H is a subgroup of G, we
will abuse notation slightly and sometimes denote Σ∞G/H+ by G/H+, hoping that it will be
clear from the context what is meant. In particular, letting H = G, we will denote Σ∞G/G+

by S0. Note that G/H+ is a cofibrant object in SpG if and only if H ∈ F . In particular, S0 is
not a cofibrant object in SpG if G is infinite. Recall that a cofibrant replacement of S0 in SpG

is a cofibrant object that is weakly equivalent to S0, that is, isomorphic to S0 in Ho(SpG).

Definition 3.1. A stable model for EG consists of a collection of G-spectra {Xn}n∈Z

together with a collection of morphisms Xn−1 → Xn in Ho(SpG), where Xn = {∗} if n < 0
while for each n � 0 there exists a stable cofiber sequence

Xn−1 → Xn →
∨
i∈In

ΣnG/Hi + → ΣXn−1

such that Hi ∈ F for all i ∈ In, and

hocolimnX
n ∼= S0 (11)

in Ho(SpG). In analogy with the unstable case, we call the isomorphism (11) a stable proper

decomposition of S0. If there exists a d such that Xn−1
∼=−→ Xn for all n � d + 1, then the

stable model for EG is called finite-dimensional. In this case, the smallest such d is called the
dimension of the stable model for EG. A stable model for EG is said to be of finite type if
the sets In are finite for all n � 0. A stable model for EG is a said to be finite if it is both
finite-dimensional and of finite type.

Remark 3.2. In what follows we will sometimes abuse terminology and refer to a certain
G-spectrum X as a stable model for EG. It should be understood that in this case we mean
that X is a specific model for the homotopy colimit hocolimnX

n where the G-spectra Xn

satisfy all the assumptions of Definition 3.1. In other words, we will often treat a stable model
for EG as a G-spectrum, keeping in mind that the specific G-spectra Xn and morphisms
Xn−1 → Xn are part of the data. In particular, if the collection of G-spectra {Xn}n∈Z forms
an m-dimensional stable model for EG, then we might as well take Xn = Xm for all n � m
and refer to Xm = hocolimnX

n as an m-dimensional stable model for EG.

The triangulated category Ho(SpG) is compactly generated by the set of compact generators

{G/H+ | H ∈ F}.
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This follows from the fact that for H ∈ F , n ∈ Z and X ∈ Ho(SpG), there is a natural
isomorphism (see [15, Lemma 6.11])

[ΣnG/H+, X]G ∼= [Sn, X]H = πH
n (X).

Using the double coset formula and the Wirthmüller isomorphism [38], the latter also implies
that for finite subgroups H and K of G, we have an isomorphism

[Σ∞G/K+,Σ∞G/H+]G∗ ∼=
⊕

[g]∈K\G/H

πK∩gH
∗ (S0).

In particular when ∗ = 0, we get

[Σ∞G/K+,Σ∞G/H+]G ∼=
⊕

[g]∈K\G/H

A(K ∩ gH),

where we remind the reader that A(K ∩ gH) denotes the Burnside ring of the finite group
K ∩ gH. It now follows from [35, Proposition 3.1] that the Mackey category MFG fully
faithfully embeds into Ho(SpG) by sending G/H to Σ∞G/H+, for any H ∈ F . Summarizing
the discussion we see that the abelian groups

πH
n (X) ∼= [ΣnG/H+, X]G

assemble together to form a Mackey functor

π−
n (X) : MFG → Z-mod : G/H �→ πH

n (X)

such that the functor π−
0 (G/K+) is isomorphic to the free Mackey functor ZG[−,K] and the

functor π−
0 (S0) is isomorphic to the Burnside ring functor A.

Next we note that the observations above together with [33, Theorem 3.4] imply that any
stable cofiber sequence

X → Y → Z
∂−→ ΣX

in Ho(SpG) induces an exact sequence of Mackey functors

π−
n (X) → π−

n (Y ) → π−
n (Z) ∂∗−→ π−

n (ΣX) → π−
n (ΣY )

for every n ∈ Z. The suspension and desuspension isomorphisms

π−
n (ΣX) ∼= π−

n−1(X)

and

π−
n (Σ−1X) ∼= π−

n+1(X)

can be used to splice these exact sequence together and form long exact sequences.
Another consequence of the fact that Ho(SpG) is compactly generated by the set

{G/H+ | H ∈ F}
is the existence of Eilenberg–Mac Lane objects for Mackey functors. Given a Mackey functor
M : MFG → Z-mod, there exists a G-spectrum HM , called the Eilenberg–Mac Lane spectrum
of M such that π−

0 (HM) is isomorphic as a Mackey functor to M and π−
n (HM) = 0 if n 	= 0.

Moreover, HM is unique up to stable homotopy. This follows from [40, Proposition 3.8] which
asserts that under certain general conditions, a set of compact generators in any triangulated
category with infinite sums determines a t-structure (see also [2]). The Eilenberg–Mac Lane
objects are then just the objects of the heart of this t-structure. The forthcoming paper by
Degrijse, Hausmann, Lück, Patchkoria and Schwede shows that the spectrum HM represents
G-equivariant Bredon cohomology with coefficients in M .
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Finally, in light of Remark 3.2, we can say that a stable model for EG is a proper cellular
stable decomposition of S0 and that finite stable models for EG are compact objects of Ho(SpG)
because they can be built in finitely many steps by iterated stable cofiber sequences from shifts
of the suspension spectra Σ∞G/H+ for suitable finite subgroups H of G. The objects Σ∞G/H+

are compact as pointed out above and the class of compact objects in any triangulated category
is closed under 2 out of 3 in distinguished triangles, so the claim follows. By the properties
of the functor Σ∞ listed above and the fact that S0 is cofibrant in H-TopF

∗ for all finite H,
it follows that if X is a model for EG, then Σ∞X+ is a stable model for EG. Moreover, if
dim(X) = d then Σ∞X+ is d-dimensional and if X is of finite type, then so is Σ∞X+.

4. Geometric versus cohomological dimension

Throughout this section, let G be a discrete group and let F be the family of finite subgroups
of G. Recall that the geometric dimension for proper actions gd(G) of G is by definition the
smallest possible dimension that a model for EG can have and note that if X is a model for
EG, then the cellular chain complexes

· · · → Cn(XH) → Cn−1(XH) → · · · → C0(XH) → Z → 0

of the fixed points subspaces XH , for all H ∈ F , assemble to form a free resolution C∗(X−) → Z

in Mod-OFG (see [30]). This implies that cd(G) � gd(G). In [30, Theorem 0.1] it is shown
that one even has

cd(G) � gd(G) � max{3, cd(G)}.

It is not hard to check that gd(G) = 0 if and only if cd(G) = 0 if and only if G is finite.
Since one has cd(G) = 1 if and only if gd(G) = 1 by [14, Corollary 1.2], we conclude that the
invariants cd(G) and gd(G) coincide, except for the possibility that one could have cd(G) = 2
but gd(G) = 3. That this Eilenberg–Ganea exception actually occurs in the torsion setting
is shown in [7] (see also Section 6). We conclude that in the unstable world there is a nice
geometric interpretation for the algebraic invariant cd(G). The main purpose of this section is
the show that there is a similar geometric interpretation for the algebraic invariant cdM(G) in
the stable world.

Definition 4.1. The stable geometric dimension for proper actions of G, denoted by
gd

st
(G), is the smallest integer d such that there exists a d-dimensional stable model for EG.

If such an integer does not exist, then we set gd
st

(G) = ∞.

Theorem 4.2. For any discrete group G, one has

cdM(G) = gd
st

(G).

In particular, if G is virtually torsion-free then

vcd(G) = gd
st

(G).

The next two subsections will be devoted to proving this theorem. The proof will also provide
us with a method to construct stable models for EG that do not (necessarily) come from
suspending unstable models. This will be illustrated in Section 6.
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4.1. The proof of �
If gd

st
(G) = ∞, then there is nothing to prove. So let us assume that gd

st
(G) = m is finite and

let Xm be an m-dimensional stable model for EG (see Remark 3.2). For each n � 1, consider
the stable cofiber sequences

Xn−2 i−→ Xn−1 π−→ Xn−1/Xn−2 ∂−→ ΣXn−2

and

Xn−1 i−→ Xn π−→ Xn/Xn−1 ∂−→ ΣXn−1,

and define

dn : π−
n (Xn/Xn−1) ∂∗−→ π−

n (ΣXn−1)
−(Σπ)∗−−−−−→ π−

n (ΣXn−1/Xn−2) ∼= π−
n−1(X

n−1/Xn−2).

Since ∂ ◦ π = 0, one has dn−1 ◦ dn = 0 and

π−
n (Xn/Xn−1) ∼= π−

n

( ∨
i∈In

ΣnG/Hi +

)
∼=

⊕
i∈In

π−
n (ΣnG/Hi +) ∼=

⊕
i∈In

ZG[−, Hi].

Hence we obtain a chain complex of free Mackey functors

0 → π−
m(Xm/Xm−1) dm−−→ π−

m−1(X
m−1/Xm−2)

dm−1−−−→ · · · d2−→ π−
1 (X1/X0) d1−→ π−

0 (X0) d0−→ 0.

(12)

We claim that the homology of this chain complex is zero, except in degree zero where it is
isomorphic to the Burnside ring functor A via the inclusion X0 → Xm ∼= S0.

To prove this claim, let us first fix K ∈ F and denote A = resGKA. Recall from [26]
that Bredon homology of K-spectra with Burnside ring coefficients, denoted by HK

∗ (−), is
represented by an Eilenberg–Mac Lane K-spectrum HA. By [25, Theorem 2.1], the unit map
S0 → HA induces a stable Hurewicz isomorphism

πK
0 (D)

∼=−→ πK
0 (D ∧HA) = HK

0 (D)

for every connective K-spectrum D. Denote Y n = resGK(Xn) for all n ∈ Z. Since resGK is exact
and

resGK(G/Hi +) =
∨

[g]∈K\G/Hi

K/K ∩ gHi +

it follows that Y m = hocolimnY
n is a K-CW spectrum that is isomorphic to S0 = K/K+ in

Ho(SpK) and whose cellular decomposition is given by restricting the stable cofiber sequences
of X to Ho(SpK). For each n, there is a commutative diagram of cofiber sequences of K-spectra

Applying K-homotopy groups to this sequence and using the fact that resGK(G/Hi +) is a
connective K-spectrum, we conclude that the chain complex (12) evaluated at K is naturally
isomorphic to

0 → HK
m(Y m/Y m−1) dm−−→ HK

m−1(Y
m−1/Y m−2)

dm−1−−−→ · · · d2−→ HK
1 (Y 1/Y 0) d1−→ HK

0 (Y 0) d0−→ 0.

Since this is the cellular chain complex of Y m, its homology computes

HK
∗ (Y m) ∼= HK

∗ (S0) ∼= πK
∗ (HA)



1180 NOÉ BÁRCENAS, DIETER DEGRIJSE AND IRAKLI PATCHKORIA

(for example, see [37, Chapter XIII]). This shows that (12), evaluated at K ∈ F , has zero
homology except in degree zero, where it is isomorphic to A(K) via the inclusion Y 0 → Y m ∼=
S0. This proves our claim.

We conclude that there is a free resolution

0 → π−
m(Xm/Xm−1) dm−−→ · · · d2−→ π−

1 (X1/X0) d1−→ π−
0 (X0) d0−→ A → 0 (13)

of A in MackFG of length m, which implies that cdM(G) � m and hence

cdM(G) � gd
st

(G).

4.2. The proof of �
If cdM(G) = ∞ then we are done since cdM(G) � gd

st
(G). If cdM(G) = 0, then G is finite

which implies that gd
st

(G) = 0 since in this case G/G+ is a stable model for EG of dimension
zero. Now assume that cdM(G) = m � 1 is finite. Let EG be a (possible infinite-dimensional)
classifying space for proper actions. Such a space always exists by [29, Theorem 1.9].
Applying the functor Σ∞(−)+ to the weak equivalence EG → G/G we obtain a stable proper
decomposition

f : X = hocolimnX
n ∼=−→ S0

in Ho(SpG). Just as in the previous section, X gives rise to a free resolution (possibly of infinite
length)

· · · → π−
n (Xn/Xn−1) dn−→ · · · d2−→ π−

1 (X1/X0) d1−→ π−
0 (X0) d0−→ A → 0

of A in MackFG. Since cdM(G) = m, it follows from standard techniques in homological algebra
that ker dm−1 is a projective Mackey functor. By the Eilenberg swindle there exists a free
Mackey functor

F ′ =
⊕
j∈J

ZG[−, Hj ]

such that F = F ′ ⊕ ker dm−1 is a free Mackey functor. Hence, by replacing Xm−1 with

Xm−1 ∨
⎛⎝∨

j∈J

Σm−1G/Hj +

⎞⎠
and letting f(

∨
j∈J Σm−1G/Hj +) = ∗, we may assume that ker dm−1 is a free Mackey functor

F so that we obtain a free resolution of length m

0 → F → π−
m−1(X

m−1/Xm−2)
dm−1−−−→ · · · d2−→ π−

1 (X1/X0) d1−→ π−
0 (X0) d0−→ A → 0 (14)

of A in MackFG and a map

f : Xm−1 → S0

that is (m− 1)-connected. Here, (m− 1)-connected means that for all K ∈ F , πK
i (f) is an

isomorphism for all i � m− 2, while πK
m−1(f) is surjective. For every −1 � n � m− 1, the

G-spectrum Xn fits into a stable cofiber sequence

Xn f−→ S0 → Y n+1 → ΣXn.
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Using the octahedral axiom for triangulated categories, we deduce the existence of the dotted
arrows in the commutative diagram

(15)

where the two upper horizontal lines and the two middle vertical lines are stable cofiber
sequences. Note that Y 0 = S0 and that by rotating, we obtain for each 0 � n � m− 1, a
stable cofiber sequence

Y n αn−−→ Y n+1 Σπ◦∂−−−→
∨
i∈In

Σn+1G/Hi + → ΣY n.

As before, these cofiber sequences give rise to a chain complex

0 → π−
m(Y m/Y m−1) → · · · → π−

1 (Y 1/Y 0) → A = π−
0 (Y 0) → 0

in MackFG where the π−
n (Y n/Y n−1) are free Mackey functors for n � 1. Using the same stable

Hurewicz argument as in Subsection 4.1, one deduces that this chain complex is naturally
isomorphic to

0 → H−
m(Y m/Y m−1) → · · · → H−

1 (Y 1/Y 0) → A → 0.

Moreover, for each K ∈ F this chain complex evaluated at K computes HK
∗ (Y m). Since the

map f : Xm−1 → S0 is (m− 1)-connected, standard long exact sequence arguments imply
that π−

n (Y m) = 0 for all n � m− 1. An application of the stable Hurewicz theorem (see
[25, Theorem 2.1]) then yields that for each K ∈ F , HK

n (Y m) = 0 for all n � m− 1 and the
Hurewicz map

πK
m(Y m) → HK

m(Y m)

is an isomorphism. Moreover, the commutativity of (15) implies that there is an isomorphism
of chain complexes

(16)

Since F is a free Mackey functor, we have

F ∼=
⊕
i∈Im

ZG[−, Hi],

so the isomorphism F ∼= π−
m(Y m) yields a map∨

i∈Im

ΣmG/Hi + → Y m (17)
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that induces an isomorphism on π−
m. Now consider the composite∨

i∈Im

ΣmG/Hi + → Y m ∂−→ ΣXm−1

and desuspend it, by applying Σ−1, to obtain the map∨
i∈Im

Σm−1G/Hi +
ω−→ Xm−1.

We now define Xm to be the G-spectrum that fits into a stable cofiber sequence∨
i∈Im

Σm−1G/Hi +
ω−→ Xm−1 → Xm →

∨
i∈Im

ΣmG/Hi +.

This determines Xm uniquely up to non-canonical isomorphism. By rotating, we also obtain a
stable cofiber sequence

Xm−1 → Xm →
∨

i∈Im

ΣmG/Hi + → ΣXm−1.

Now define Y m+1 as the mapping cone of the map (17) and use the octahedral axiom for
triangulated categories to deduce the existence of the dotted arrows in the diagram

where the two upper horizontal lines and the two middle vertical lines are stable cofiber
sequences. So we obtain an m-dimensional proper G-CW spectrum Xm together with a map

f̃ : Xm → S0

that extends f . We claim that πK
∗ (f) is an isomorphism for every K ∈ F . Proving this is

equivalent to showing that πK
∗ (Y m+1) = 0 for all K ∈ F . Since Y m+1 is connective, it follows

from the stable Hurewicz isomorphism [25, Theorem 2.1] that this is equivalent to proving
that HK

∗ (Y m+1) = 0 for all K ∈ F . If we evaluate at K ∈ F , then this homology is computed
by the chain complex

0 → HK
m+1(Y

m+1/Y m) d−→ HK
m(Y m/Y m−1) → · · · → HK

1 (Y 1/Y 0) → HK
0 (Y 0) → 0. (18)

We already know this sequence is exact up to degree m− 1. The map d is constructed as the
composition

d : HK
m+1(Y

m+1/Y m) ∂∗−→ HK
m(Y m) → HK

m(Y m/Y m−1).

By the stable Hurewicz isomorphism, (17) and the exactness of (16), we conclude that (18) is
exact. This proves the claim, so we may conclude that Xm is an m-dimensional stable model
for EG, hence

cdM(G) � gd
st

(G). �
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4.3. Suspension models

We have already seen that if a proper G-CW complex X is a model for EG, then its suspension
spectrum Σ∞X+ is a stable model for EG. The following proposition shows that the converse
of this statement also holds if one additionally assumes that X is F-simply connected, meaning
that XK is simply connected for every K ∈ F . This additional assumption is a necessary one.
Indeed, in Section 6 we will give an example of a group G and proper G-CW complex X such
that X is not F-simply connected and Σ∞X+ is a stable model for EG.

Proposition 4.3. Let X be an F-simply connected proper G-CW complex. Then Σ∞X+

is a stable model for EG if and only if X is a model for EG.

Proof. Suppose that we are given an isomorphism Σ∞X+
∼= S0 in Ho(SpG). This implies

that for any H ∈ F , the geometric fixed point spectrum (see [33, Section V.4])

ΦH(Σ∞X+) = ΦH(resGH(Σ∞X+))

is stably equivalent to S0. By [33, Corollary 4.6], one has

ΦH(Σ∞X+) ∼= Σ∞XH
+

which shows that Σ∞XH
+ is stably equivalent to the sphere spectrum S0. Since XH is simply

connected, the Whitehead and Hurewicz theorems imply that XH is contractible. �

Note that for every based G-space Y and every n � 0, there is a natural transformation

π−
n+2(Σ

2Y ) → resπ(π−
n (Σ∞Y ))

of right OFG-modules. At K ∈ F , this map is given by mapping the homotopy class of a
K-map f : Sn+2 → S2 ∧ Y to its image in the colimit colimV⊂U [SV +n, SV ∧ Y ]K over a
complete universe U of representations of K. Let X be a proper G-CW complex with associated
homotopy cofiber sequences

Xn−1
+ → Xn

+ → Xn/Xn−1 → ΣXn−1
+ .

By suspending these homotopy cofiber sequences twice and noting that the suspension gives
an isomorphism

π−
n+1(Σ

2(Xn−1/Xn−2)) ∼= π−
n+2(Σ

3(Xn−1/Xn−2))

for every n � 1, we obtain the chain complex of right OFG-modules

→ π−
n+2(Σ

2(Xn/Xn−1)) → π−
n+1(Σ

2(Xn−1/Xn−2)) → · · · → π−
2 (Σ2X0

+) → 0.

By the Hurewicz theorem, this chain complex is isomorphic to the cellular OFG-chain complex
of X (see beginning of Section 4)

→ Cn(X−) dn−→ Cn−1(X−) → · · · → C0(X−) → 0.

Now the natural transformation discussed above entails a commutative diagram

Using the adjointness of resπ and indπ and indπ(Z[−, G/K]) = ZG[−,K], we conclude that the
chain complex obtained from Σ∞X+ by applying the methods from Subsection 4.1 to the stable
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cofiber sequences obtained by applying Σ∞ to the homotopy cofiber sequences of X, coincides
with the chain complex obtained by applying the induction functor indπ to the cellular chain
complex C∗(X−) of X.

The above discussion shows that the suspension spectrum functor is a geometric analog
of the induction functor indπ. This indicates that there should be an algebraic version of
Proposition 4.3. Indeed, [35, Theorem 3.8] shows that if P∗ is a projective resolution of Z,
then indπ(P∗) is a projective resolution of A. Below we show that the converse of the latter is
also true. The proof requires the following lemma and uses notation and isomorphisms from
Section 2.

Lemma 4.4. For any right OFG-module M and any K ∈ F , indπ(M)(G/K) = 0 implies
that M(G/K) = 0.

Proof. Fix K ∈ F and let indG
K denote the induction functor from the category of left

OFK-modules to the category of left OFG-modules, associated to the inclusion iGK of K into
G. Then

indG
K(ZK [K,πK(−)]) ∼= ZG[K,πG(−)],

where π = πG and πK are the functors defined in (3). This can be seen by writing out the
definition of the induction functor, noting that

resGK
(
Z[−, G/L]

) ∼=
⊕

[g]∈K\G/L

Z[−,K/K ∩ gL]

and

resGK
(
ZG[−, L]

) ∼=
⊕

[g]∈K\G/L

ZK [−,K ∩ gL]

(see [35, Proposition 3.1]) for any finite subgroup L of G and using (1). Using this isomorphism,
we conclude that

indπ(M)(G/K) = M(−) ⊗OFG ZG[K,πG(−)] ∼= M(iGK(−)) ⊗OFK ZK [K,πK(−)].

Since Z[K/K,−] is easily seen to be a direct summand of ZK [K/K, π(−)] as left OFK-modules,
it follows that indπ(M)(G/K) = 0 implies that

M(G/K) = M(iGK(−)) ⊗OFK Z[K/K,−] = 0. �

The following proposition provides the converse of [35, Theorem 3.8].

Proposition 4.5. Let P∗ be a non-negative chain complex of projective right OFG-modules
such that H0(P∗) = Z. Then P∗ is a projective resolution of Z if indπ(P∗) is a projective
resolution of A.

Proof. First, let Q∗ be a resolution of M consisting of projective left OFG-modules. Then
one can consider the double complex C = P∗ ⊗OFG Q∗ whose column and row filtrations give
rise to two convergent spectral sequences

E2
p,q = Hh

pHv
q(C) ⇒ Hp+q(Tot(C))

and

E2
p,q = Hv

pH
h
q (C) ⇒ Hp+q(Tot(C)).
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Since Pp is projective, Hv
q (Pp ⊗OFG Q∗) = 0 if q > 0 and Hv

0 (Pp ⊗OFG Q∗) = Pp ⊗OFG M . We
therefore conclude from the first spectral sequence that

Hp+q(Tot(C)) = Hp+q(P∗ ⊗OFG M).

Since Qp is projective, we have Hh
q (P∗ ⊗OFG Qp) = Hq(P∗) ⊗OFG Qp. This implies that the

E2-term of the second spectral sequence equals TorOFG
p (Hq(P∗),M). We conclude that there

is convergent spectral sequence

E2
p,q = TorOFG

p (Hq(P∗),M) ⇒ Hp+q(P∗ ⊗OFG M). (19)

Recall that P∗ is a positive chain complex of projective right OFG-modules such that H0(P∗) =
Z and such that indπ(P∗) is a projective resolution of A. We need to prove that Hn(P∗)(G/K) =
0 for all n � 1 and all K ∈ F . To this end, fix K ∈ F and let M be the covariant functor
ZG[K,−] from MFG to abelian groups, restricted to the orbit category via π : OFG → MFG.
Note that P∗ ⊗OFG M = indπ(P∗)(G/K) and hence Hn(P∗ ⊗OFG M) = 0 for all n > 0. Since
indπ takes projective resolutions of Z to projective resolutions of A (see [35, Theorem 3.8])
and H0(P∗) = Z, it follows from (7) that

TorOFG
n (H0(P∗),ZG[K,π(−)]) ∼= TorMFG

n (A,ZG[K,−]) = 0

for all n > 0. The spectral sequence (19) now implies that

E2
0,1 = indπ

(
H1(P∗)

)
(G/K) = 0.

By Lemma 4.4, we have that H1(P∗) = 0 showing the entire q = 1 row of (19) is zero. This in
turn implies that

E2
0,2 = indπ

(
H2(P∗)

)
(G/K) = 0.

Continuing inductively, we can deduce that Hn(P∗)(G/K) = 0 for all n � 1, as desired. �

Note that by applying Proposition 4.5 to the cellular chain complex of X, we can give an
alternative proof of Proposition 4.3.

5. Finite and finite-type models

In this section we relate the finiteness properties of stable models for EG to cohomological
finiteness properties in the categories Mod-OFG and MackFG, to the compactness of S0 in
Ho(SpG) and to finiteness properties of unstable models for EG.

We first consider stable models of finite type.

Theorem 5.1. Let G be a discrete group and let F be its family of finite subgroups. The
following are equivalent.

(1) There exists a stable model for EG of finite type.
(2) There exists a resolution of A in MackFG consisting of finitely generated free modules.
(3) There exists a resolution of Z in Mod-OFG consisting of finitely generated free modules.
(4) There are only finitely many conjugacy classes of finite subgroups in G and the Weyl

group WG(H) of any finite subgroup H of G admits a Z[WG(H)]-resolution of Z consisting of
finitely generated free modules, that is, WG(H) is of type FP∞.

Moreover, if one adds to (1)–(4) the assumption that for every H ∈ F , the Weyl-group
WG(H) = NG(H)/H is finitely presented, then the resulting statements are equivalent to the
existence of an unstable model for EG of finite type.
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Proof. It follows from [20, Corollary 3.7] that (2) and (3) are equivalent and from [21,
Lemma 3.1] that (3) and (4) are equivalent. If X is a stable model for EG of finite type then
proceeding as in Section 4.1 yields a resolution

· · · → π−
m(Xm/Xm−1) dm−−→ · · · d2−→ π−

1 (X1/X0) d1−→ π−
0 (X0) d0−→ A → 0

of A in MackF (G) consisting of finitely generated free modules. This proves that (1) implies (2).
Now assume that there exists a free resolution of A in MackFG consisting of finitely generated
free modules. By [20, Lemma 3.2] we know that G has only finitely many conjugacy classes of
finite subgroups. This implies that there exists a model for EG whose zero skeleton consists of
finitely many orbits. Via the functor Σ∞(−)+, we obtain a stable map

f0 : X0 =
∨
i∈I0

G/Hi + → S0

that is 0-connected and such that I0 is finite and Hi ∈ F for all i ∈ I0. We can now inductively
apply the procedure of Section 4.2 to obtain for each n ∈ N a G-spectrum Xn that fits into a
stable cofiber sequence

Xn−1 → Xn →
∨
i∈In

ΣnG/Hi + → ΣXn−1

with In finite and an n-connected map

fn : Xn → S0

that extends fn−1. Indeed, suppose Xn−1 and fn−1 have been constructed. Then we obtain an
exact sequence

0 → ker dn−1 → π−
n−1(X

n−1/Xn−2)
dn−1−−−→ · · · d2−→ π−

1 (X1/X0) d1−→ π−
0 (X0) d0−→ A → 0.

Since there exists a free resolution of A in MackFG consisting of finitely generated free modules,
an application of Schanuel’s lemma (for example, see [9, Lemma VIII.4.4]) in this setting shows
that ker dn−1 is finitely generated, that is, there exists a surjection of Mackey functors

F =
⊕
i∈In

ZG[−, Hi] → ker dn,

where In is finite and Hi ∈ F for all i ∈ In. This gives us an exact sequence of Mackey functors

F → π−
n−1(X

n−1/Xn−2)
dn−1−−−→ · · · d2−→ π−

1 (X1/X0) d1−→ π−
0 (X0) d0−→ A → 0.

If we now apply the procedure of Section 4.2 starting from (14), one checks that we obtain the
desired G-spectrum Xn. Since each map fn is n-connected, we have

hocolimnX
n ∼= S0.

In conclusion, we have constructed a stable model for EG that is of finite type. This shows
that (2) implies (1), hence (1)–(4) are all equivalent. The final statement of the theorem follows
from what is already proven and [30, Theorem 0.1]. �

Remark 5.2. The assumption of finite presentability above is necessary. Indeed, Bestvina
and Brady (see [5, Example 6.3]) have famously constructed examples of torsion-free groups
G that are not finitely presented but do admit a finite length resolution of Z consisting of
finitely generated free Z[G]-modules. Such groups admit stable models for EG of finite type
(even finite), but they do not admit an unstable finite-type model for EG since that would
imply that they are finitely presented.
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Next, we determine when S0 is a compact object in Ho(SpG). We start with the following
easy and well-known lemma. Since the proof is short, we include it for completeness.

Lemma 5.3. If S0 is a compact object in Ho(SpG), then

colimn[S0, Xn]G
∼=−→ [S0,hocolimnX

n]G

for any a sequence of maps

X0 → X1 → X2 → · · · → Xn → · · ·
in Ho(SpG).

Proof. Note that (by definition) the homotopy colimit fits into a stable cofiber sequence∨
n�0

Xn 1−Sh−−−→
∨
n�0

Xn → hocolimnX
n →

∨
n�0

ΣXn,

where Sh denotes the shift-map. Applying [S0,−]G and using the fact that S0 is compact, we
obtain a long exact sequence of abelian groups⊕

n�0

[S0, Xn]G 1−Sh−−−→
⊕
n�0

[S0, Xn]G → [S0,hocolimnX
n]G

→
⊕
n�0

[S0,ΣXn]G 1−Sh−−−→
⊕
n�0

[S0,ΣXn]G.

Since the maps 1 − Sh are injective and the cokernel of
⊕

n�0[S
0, Xn]G 1−Sh−−−→ ⊕

n�0[S
0, Xn]G

is by definition colimn[S0, Xn]G, we conclude that

colimn[S0, Xn]G
∼=−→ [S0,hocolimnX

n]G. �

Theorem 5.4. Let G be a countable discrete group and let F be its family of finite
subgroups. The following are equivalent.

(1) S0 is a compact object in Ho(SpG).
(2) There exists a finite length resolution of the Burnside ring functor A in MackFG

consisting of finitely generated projective modules.
(3) There exists a finite-dimensional (stable) model for EG and there exists a finite-type

stable model for EG.

Proof. Assume that Σ∞EG+
∼= S0 is a compact object and let {Mi}i∈I be a countable

collection of Mackey functors for G. As noted in Section 3, there exists a family of Eilenberg–
Mac Lane G-spectra {HMi}i∈I such that

[Σ∞EG+,ΣnHMi]
G ∼= Hn

F (G,Mi)

and [
Σ∞EG+,

∨
i∈I

ΣnHMi

]G

∼= Hn
F

(
G,

⊕
i∈I

Mi

)
for each n � 0. We conclude that for each n � 0, Hn

F (G,−) commutes with countable direct
sums of Mackey functors. By Proposition 5.7 in the setting of Mackey functors (note that
MFG is countable if G is), it follows that the Burnside ring A is of type FP∞ in the category
of G-Mackey functors, meaning that there exists a (possibly infinite length) resolution P∗ → A



1188 NOÉ BÁRCENAS, DIETER DEGRIJSE AND IRAKLI PATCHKORIA

consisting of finitely generated free G-Mackey functors. By Theorem 5.1 this implies that there
exist a stable model X for EG of finite type. In particular, S0 ∼= hocolimnX

n, where each Xn

is a compact object of Ho(SpG). It follows from Lemma 5.3 that

colimn[S0, Xn]G
∼=−→ [S0, S0]G.

By considering the identity map in [S0, S0]G, we conclude that there exists an n ∈ N such that
S0 is a retract of Xn in Ho(SpG). But then Hn+1

F (G,M) = Hn+1
G (S0,M) is a retract of the

Hn+1
G (Xn,M), which is zero for every Mackey functor M , hence cdM(G) � n. This implies

that the kernel of Pn−1 → Pn−2 is a finitely generated projective module, proving that (1)
implies (2).

Now assume that (2) holds. Then cdM(G) < ∞ and an application of Schanuel’s lemma
shows that there exists a resolution of A in MackFG consisting of finitely generated free
modules. It follows from Theorem 5.1 that there exists a finite-type stable model for EG and
that the number of conjugacy class of finite subgroups of G is finite. This implies that the length
l(G) of G is also finite. Therefore the inequality (9) implies that cd(G) < ∞. We conclude that
there exists a finite-dimensional model for EG and hence also a finite-dimensional stable model
for EG. This proves that (2) implies (3).

Next, assume that (3) holds. Let Y be an n-dimensional stable model for EG and let X

be a finite-type stable model for EG. So in Ho(SpG) there are isomorphisms g : X
∼=−→ S0

and f : Y
∼=−→ S0 and a map i : Xn → X. Denote α = f−1 ◦ g ◦ i and note that by cellular

approximation, there exists a map β : Y → Xn such that i ◦ β = g−1 ◦ f . It follows that α ◦
β = Id, proving that Y , and hence also S0, is a retract of Xn. Since Xn is compact and
retracts of compact object are compact, we conclude that S0 is compact. This shows that (3)
implies (1). �

Note that Theorems 4.2, 5.1 and 5.4 together imply Theorem 1.3 from the introduction. We
now turn to finite stable models.

Theorem 5.5. Let G be a discrete group and let F be its family of finite subgroups. The
following are equivalent.

(1) There exists a finite stable model for EG.
(2) There exists a finite stable model for EG of dimension cdM(G).
(3) There exists a finite length resolution of A in MackFG consisting of finitely generated

free modules.

Proof. The proof is very similar to the proof of Theorem 5.1, so we will only give a sketch.
Assume there exists a finite stable model for EG. Then its associated resolution is obviously
a finite length free resolution of A in MackFG consisting of finitely generated free modules,
proving that (1) implies (3). Assuming (3) and cdM(G) = n, we obtain MFG resolutions

0 → Fm → Fm−1 → Fm−2 → · · · → F0 → A → 0

and

0 → P → Fn−1 → Fn−2 → · · · → F0 → A → 0

with m � n and where each Fi is free and finitely generated and P is finitely generated
projective. Another application of Schanuel’s lemma shows that there exists a finitely generated
free Mackey functor F such that P ⊕ F = F̃n is finitely generated and free, that is, P is stably
free. This implies the existence of free resolution of A in MackFG of length n, consisting of
finitely generated free modules. This resolution can be used to build a finite stable model for
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EG of dimension n. This shows that (3) implies (2). Since (2) clearly implies (1), the theorem
is proven. �

In the remainder of this section we will prove a refinement of the Bieri–Eckmann criterion
for group cohomology (see [6]) in the more general setting of modules over a category (see [20,
Theorem 2.6; 36, Theorems 5.3–5.4]). This criterion was used in the proof of Theorem 5.4.
The refinement refers to the fact that we only assume preservation of countable direct sums,
while the usual criterion asks for preservation of all filtered colimits. The proof is completely
standard, but since we could not find a reference, we have included it here.

Assume that C is a countable category enriched in abelian groups, meaning that C is a small
category such that the set of objects and all the abelian groups of morphisms of C are countable.
A module M over a C (that is, an additive contravariant functor from C to Z-Mod) is called
countable is M(c) is countable for every c ∈ Ob(C). Note that finitely generated free modules
over C are countable. Since finitely generated modules over C are by definition quotients of
finitely generated free modules, all finitely generated modules over C are countable.

Lemma 5.6. Let M be a countable right module over C.

(1) The module M has a countable ascending union of finitely generated submodules

M0 ⊆ M1 ⊆ M2 ⊆ · · ·Mn ⊆ Mn+1 ⊆ · · ·
such that colimnMn = M .

(2) The module M is finitely generated if and only if HomC(M,−) preserves countable direct
sums.

Proof. First enumerate the objects of C, that is, write Ob(C) = {c0, c1, c2, . . .}. Since M(ci)
is countable for every i � 0, there exists for every object ci a C-module map

fi :
⊕
j�0

C(−, ci) → M

such that fi(ci) is surjective. For each pair (i, j) ∈ N × N, let M j
i be the image of jth summand

C(−, ci) under fi. Now define for each n � 0, the submodule Mn of M generated by the M j
i

for all i � n and j � n. Then each Mn is finitely generated and there is a countable ascending
union

M0 ⊆ M1 ⊆ M2 ⊆ · · ·Mn ⊆ Mn+1 ⊆ · · ·
such that colimnMn = M .

Now assume that M is finitely generated. By definition, this means that there exists a
surjection

π : F =
k⊕

i=0

C(−, ci) → M.

It follows from Yoneda’s lemma that HomC(F,−) preserves countable direct sums. Let K
denote the kernel of π and let {Vi}i∈I be a countable collection of modules over C. Note that
for every module V , the canonical map

⊕
i∈I

HomC(V, Vi) → HomC

(
V,

⊕
i∈I

Vi

)
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is injective. We therefore obtain a commutative diagram with exact rows

where the middle vertical arrow is an isomorphism and the right vertical arrow is injective. It
follows from a diagram chase that

⊕
i∈I

HomC(M,Vi) → HomC

(
M,

⊕
i∈I

Vi

)

is an isomorphism, as desired.
Finally, suppose M is a countable module such that HomC(M,−) preserves countable direct

sums. By the first part of the lemma, we can write M as a countable ascending union
⋃

n�0 Mn

of finitely generated submodules. Now consider the directed system {M/Mn}n�0 and note that
colimnM/Mn = 0 fits into a short exact sequence

0 →
⊕
n�0

M/Mn
Id−Sh−−−−→

⊕
n�0

M/Mn → colimnM/Mn → 0.

Since F (−) = HomC(M,−) preserves countable direct sums, we obtain an exact sequence

0 →
⊕
n�0

F (M/Mn)
Id−F (Sh)−−−−−−→

⊕
n�0

F (M/Mn) → F (colimnM/Mn) = 0.

It follows that the cokernel of the map Id − F (Sh) is the colimit of

F (M1) → F (M2) → F (M3) → · · ·
and conclude that

colimnHomC(M,M/Mn) = 0.

This means that the image of the identity map M → M must be contained in Mn for some n,
implying that M = Mn is finitely generated. �

Proposition 5.7. Let C be a countable category and M ∈ Mod-C a countable module. For
every n � 0, the following two statements are equivalent.

(1) The functor ExtkC(M,−) commutes with countable direct sums for every k � n.
(2) There exists an exact sequence

Pn → Pn−1 → · · · → P0 → M → 0

in Mod-C such that all Pi are finitely generated projective (free) modules.

Proof. Let us first prove by induction on n that (2) implies (1). If n = 0, then (2) says that M
is finitely generated, in which case it follows from Lemma 5.6 that Ext0C(M,−) = HomC(M,−)
commutes with countable direct sums. Now let n > 0 and assume there exists a projective
resolution

· · · → Pn → Pn−1 → · · · → P0 → M → 0
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such that Pi is finitely generated for i ∈ {0, . . . , n}. Let {Vi}i∈I be a countable collection of
modules over C. By induction we just need to show that ExtnC(M,−) preserves countable direct
sums. This follows easily from the commutative diagram

where the left and middle vertical arrows are isomorphisms and the right vertical arrow is
injective.

Next we prove by induction on n that (1) implies (2). The case n = 0 follows from Lemma 5.6.
Now let n � 1 and proceed by induction, assuming the theorem is true for all k < n. Assume
that the Ext-functor ExtkC(M,−) commutes with countable direct sums for all k � n. By the
induction hypothesis we can construct an exact sequence

0 → K → Pn−1 → · · · → P0 → M → 0,

where all Pi are finitely generated projective (free). By dimension shifting, there is a natural
isomorphism

ExtnC(M,−) ∼= Ext1C(K̃,−),

and a natural exact sequence

HomC(Pn−1,−) → HomC(K,−) → Ext1C(K̃,−) → 0.

Here K̃ is the kernel of Pn−2 → Pn−3. Since Pn−1 is finitely generated, HomC(Pn−1,−)
preserves countable direct sums by Lemma 5.6. Since ExtnC(M,−) ∼= Ext1C(K̃,−) also preserves
countable direct sums by assumption, it follows that HomC(K,−) preserves countable direct
sums. Indeed, the canonical map

⊕
n�0

HomC(K,Vn) → HomC

⎛⎝K,
⊕
n�0

Vn

⎞⎠
is always injective and the commutative diagram with exact rows

shows that it is also surjective. We therefore conclude from Lemma 5.6 that K is finitely
generated, that is, there exists a finitely generated projective (free) module Pn that surjects
onto K, yielding an exact sequence

Pn → Pn−1 → · · · → P0 → M → 0

as desired. �

6. An example

Let A5 be the alternating group on five elements. We recall the construction of a 2-dimensional
acyclic A5-CW complex without global fixed point, due to Floyd and Richardson (see [16]).
The particular construction presented here is taken from [23, Section 9, Example 4]. Consider
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the 1-skeleton of the simplex with five vertices {1, . . . , 5}. Recall that the conjugacy class of
the 5-cycle (1, 2, 3, 4, 5) in A5 contains 12 elements, and that each element x of order 5 in A5

is conjugate to x4 but not to x2 and x3. Therefore, the conjugacy class of (1, 2, 3, 4, 5) is of
the form {x1, x

−1
1 , x2, x

−1
2 , . . . , x6, x

−1
6 }. Now attach six pentagonal cells to the aforementioned

1-skeleton according to x1, x2, . . . , x6 to form the 2-complex M . One can check that M may
also be obtained by identifying opposite faces of a dodecahedron by a twist of π

5 . From this
description it is easily seen to be a 2-spine of the punctured Poincaré homology 3-sphere
which proves that M is acyclic. However, M is not contractible since its fundamental group is
isomorphic to SL2(F5). In fact, it follows from [7, Proposition 5] that M cannot be embedded
in any contractible 2-complex. Now let L be the barycentric subdivision of M . Then L is a
2-dimensional acyclic flag complex admitting an admissible A5-action such that LA5 is empty.
Here, admissible means that simplices are fixed by an element of A5 if and only if they are fixed
pointwise. Since every proper subgroup of A5 is solvable, it follows from a result of Segev (for
example, see [1, Theorem 3.1]) that LH is acyclic for every proper subgroup of A5. Denoting
the family of proper subgroups of A5 by P, one checks that (for example, see [1, Example 5.1])
the cellular chain complexes of LH , for all H ∈ P, assemble to form an exact OPA5-resolution
of the constant functor Z of the form

0 → Z[−, A5/e] →

Z[−, A5/C2]
⊕

Z[−, A5/C2]
⊕

Z[−, A5/C3]

→

Z[−, A5/A4]
⊕

Z[−, A5/D5]
⊕

Z[−, A5/D3]

→ Z → 0, (20)

where Dn is the dihedral group of order 2n and Cn is the cyclic group of order n. Denote the
1-skeleton of L by L1.

The space L1 is a finite graph whose vertex set is denoted by S and whose set of edges is
denote by E(L). The right-angled Coxeter group W associated to L is the group defined by
the presentation

W = 〈S | s2 for all s ∈ S and (st)2 if (s, t) ∈ E(L)〉.
Note that W fits into the short exact sequence

1 → N → W
p−→ F =

⊕
s∈S

C2 → 1,

where p takes s ∈ S to the generator of the C2-factor corresponding to s. A subset J ⊆ S is
called spherical if the subgroup WJ = 〈J〉 is finite (and hence isomorphic to

⊕
s∈J C2). Note

that the empty subset of J is spherical. We denote the poset of spherical subsets of S ordered by
inclusion by S and its geometric realization by K. Note the K is the cone over the barycentric
subdivision of L. If J ∈ S, then WJ is called a spherical subgroup of W , while a coset wWJ is
called spherical coset. We denote the poset of spherical cosets, ordered by inclusion, by WS.
Note that W acts on WS by left multiplication, preserving the ordering. The Davis complex X
of W is the geometric realization of WS. One sees that X is a proper 3-dimensional cocompact
W -CW complex with strict fundamental domain K. Since X admits a complete CAT(0)-metric
such that W acts by isometries, it follows that X is a 3-dimensional cocompact model for EW
(see [10, Theorems 12.1.1 and 12.3.4]). A consequence of this fact is that every finite subgroup
of W is subconjugate to some spherical subgroup of W . This implies that the group N defined
above is torsion-free, proving that W is virtually torsion-free. We refer the reader to [10] for
more details and information about Coxeter groups.

The singular set Xsing is by definition the subcomplex of X consisting of all cells with
non-trivial stabilizers. In others words, it is the geometric realization of the subposet of WS
consisting of cosets wWJ with J 	= ∅. Note that Xsing is 2-dimensional. [7, Proposition 4]
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says that XK
sing is acyclic for every K ∈ F , vcd(W ) = cdM(W ) = cd(W ) = 2 but gd(W ) = 3.

(warning: L is denoted by K in [7].) In particular, Xsing is not contractible. (Note that by [24,
Remark 6.4] there in fact does not exist any contractible proper 2-dimensional W -CW complex.)
However, Σ∞Xsing+ is a 2-dimensional stable model for EW and gd

st
(W ) = 2. Hence, Xsing

is an example of a space that is not a model for EW , but its suspension Σ∞Xsing+ is a stable
model for EW (see Proposition 4.3).

The action of A5 on L induces a map A5 → Aut(W ) that allows one to form the semi-direct
product Γ = W � A5. The action of A5 on L also allows one to extend the action of W on X
to Γ such that X becomes a 3-dimensional cocompact model for EΓ and hence gd(Γ) = 3 (see
[24, Lemma 3.5 and Example 5.1]). Here, A5 acts trivially on the vertex in X corresponding
to W∅ ∈ WS. Since Γ contains W as a finite index subgroup, we have vcd(Γ) = cdM(Γ) = 2.
However, it is proven in [24, Theorem 1.1 and Example 5.1] that cd(Γ) = 3. We conclude that
there exists a 2-dimensional stable model for EΓ, but that this model cannot be of the form
Σ∞X+, for some proper Γ-CW complex X. We finish this paper by explaining how such a
2-dimensional stable model can be constructed. To do this, we will avoid using the general
result that vcd(G) = cdM(G) and instead prove this directly for Γ using the following lemma,
where MPA5 denotes the Mackey category of A5 for the family of proper subgroups P.

Lemma 6.1. The Burnside functor A : MPA5 → Z-Mod : F �→ A(F ) is a projective right
MPA5-module.

Proof. Let H∗
MP (A5,−) = Ext∗MPA5

(A,−). It follows from [18, Corolary 21.4] that there
exists a positive non-zero integer n(P) such that multiplication with n(P) annihaltes
H1

MP (A5,M) for every MPA5-module M . It follows from [18, Example 21.5(iii)] that n(P) =
1. Hence H1

MP (A5,M) = 0 for every MPA5-module M , proving that A is projective (but not
free). �

Following [35, Theorem 3.8], one checks that by applying the induction functor associated to
OPA5 → MPA5 to the OPA5-chain complex of the barycentric subdivision of L, one obtains
a free MPA5-resolution F∗ of A of the form

0 → ZA5 [−, e]6 s−→

ZA5 [−, e]6

⊕
ZA5 [−, C2]4

⊕
ZA5 [−, C3]2

→ F0 → A → 0. (21)

Since A is a projective MPA5-module, it follows that there exists a map of MPA5-modules

r :

ZA5 [−, e]6

⊕
ZA5 [−, C2]4

⊕
ZA5 [−, C3]2

→ ZA5 [−, e]6

such that r ◦ s = Id. Using the fact that these are free functors, it follows that r and s extend
to maps of MFA5-modules such that r ◦ s = Id. Here the family of finite subgroup F of A5

coincides with the family of all subgroups of A5.
As mentioned above, the Davis complex X of W is a 3-dimensional cocompact model for EΓ.

This implies that Σ∞X+ is a 3-dimensional stable model for EΓ and that its chain complex
indπ(C∗(X−)) is a free MFΓ-resolution of A. Letting Xsing denote the singular set of X with
respect to the W -action, there is a short exact sequence of MFΓ-chain complexes

0 → indπ(C∗(X−
sing)) → indπ(C∗(X−)) → D∗ → 0, (22)
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where D∗ is obtained by applying the induction functor associated to MFA5 → MFΓ to (21)
and is therefore of the form

0 → D3 = ZΓ[−,Γ/e]6 →

ZΓ[−,Γ/e]6

⊕
D2 = ZΓ[−,Γ/C2]4

⊕
ZΓ[−,Γ/C3]2.

→ D1 → D0 → 0.

The splitting r above yields a splitting ρ of D3 → D2 which in turn (recall that Xsing is
2-dimensional) leads to a splitting μ of d3 in the resolution

0 → indπ(C3(X)) d3−→ indπ(C2(X)) d2−→ indπ(C1(X)) d1−→ indπ(C0(X)) d0−→ A → 0.

Therefore, ker d1 is projective (proving that cdM(Γ) = 2),

ker d1 ⊕ indπ(C3(X)) ∼= indπ(C2(X)),

and we can construct a free MFΓ-resolution

0 → indπ(C2(X))

(
d2

μ

)
−−−−→

ind(C1(X))
⊕

ZΓ[−,Γ/e]6
(d1,0)−−−−→ ind(C0(X)) d0−→ A → 0.

Applying the techniques of the previous section, this resolution corresponds to a 2-dimensional
stable model Y 2 for EΓ, where

Y 1 = Σ∞X1
+ ∨

6∨
i=1

ΣΓ/e+

and the spectrum Y 2 fits into the stable cofiber sequence

Y 1 → Y 2 → Σ∞X2
sing/X

1
sing ∨A

Σ∞α∨Σ2ρ−−−−−−−→ ΣY 1,

where

A =
6∨

i=1

Σ2Γ/e+ ∨
4∨

i=1

Σ2Γ/C2+ ∨
2∨

i=1

Σ2Γ/C3+

and α is the unstable attaching map fitting into the homotopy cofiber sequence

X1
sing+

→ X2
sing+

→ X2
sing/X

1
sing

α−→ ΣX1
sing+

.

The spectrum Y 2 is not of form Σ∞Z+ for any proper Γ-CW complex Z because ρ contains
transfer maps and therefore only exists in the stable world. Indeed, there do not exist Γ-maps
from the Γ-sets Γ/C2 and Γ/C3 to the Γ-set Γ/e.

Acknowledgements. We would like to thank Markus Hausmann, Wolfgang Lück and Stefan
Schwede for useful conversations. We also thank the referee for helpful comments.

References

1. A. Adem, ‘Finite group actions on acyclic 2-complexes’, Séminaire N. Bourbaki, 2001–2002, exp. no. 894
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2. L. Alonso Tarŕıo, A. Jereḿıas López and M. J. Souto Salorio, ‘Construction of t-structures and
equivalences of derived categories’, Trans. Amer. Math. Soc. 355 (2003) 2523–2543.
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Noé Bárcenas
Centro de Ciencias Matemáticas
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