
Vol. 84, No. 3 DUKE MATHEMATICAL JOURNAL (C) September 1996

ON THE ALGEBRAIC K-THEORY OF SIMPLY
CONNECTED SPACES

M. BtKSTEDT, G. CARLSSON, R. COHEN, T. GOODWlLLIE,
W. C. HSIANG, ANO I. MADSEN

1. Introduction. This paper combines the cyclotomic trace invariant of
[BHM] with the calculus of functors [GI-I to evaluate Waldhausen’s (reduced)
functor A(X) in terms of more familiar objects in algebraic topology, in the case
of a simply connected X.
For each prime p, the cyclotomic trace gives a map of spectra

Trc: A(X) TC(X; p).

Here A(X) denotes the version of Waldhausen’s functor with n,oA(X) Z rather
than rcoA(X) Ko(Zrl X).

There is a stable map from TC(X; p) to the suspension spectrum of the free
loop space X Map(S1, X), with a disjoint base point added, and the compo-
sition with Trc is the topological Dennis trace of [B]. More generally, after p-adic
completion the spectrum TC(X; p) was described completely in [BHM, Sect. 5-1.
The argument there is only correct in the case when nX is finite. However, the
result is true in the general case by an argument due to Goodwillie. For a discus-
sion of this, see [M]. We recall the result.
The self-maps of the circle, in particular, the rotation group S and the degree

p-map Ap(z)= zp, act on X and therefore on the spectrum E(X). After p-
completion there is a fiber square (= homotopy cartesian diagram):

(1.1)

TC(X; p), Z(S ^ (ES x s, X+)),

Z(eX) -, z(x).

The right-hand vertical map is the Sl-transfer and Y.(Y) denotes the spectrum
whose ith space is equal to

lim_ f"(S"+ ^ Y+),

The composition of fl and Trc is the p-completion of the topological Dennis trace.
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THEOREM 1.2. Suppose X is simply connected, of finite type, and p is a prime.
Then there is a fiber square

A(X); ,,,, TC(X; p);

1 l
(*2, ", TC(,; p.

We see that the reduced functors A(X) and TC(X; p) agree after p-completion.
Moreover, we shall argue that

TC(X; p)
_
Z(X) x V(X),

with

V(X) fiber(Z(S /x (ES xs, X+)) Z(X))

the homotopy fiber of the Sl-transfer map composed with the map el: LaX
X, which evaluates a free loop at 1 S. A theorem of Waldhausen gives a

decomposition

a(x)
_
(x) x Wh(X),

and we therefore have the following result.

COROLLARY 1.3. For a simply connected space offinite type X, and every prime
p, Wh(X)

_
v(x).

Remark 1.4. An integral functor T(X) was introduced in [G3], and the
cyclotomic trace map extended to a map from A(X) to T(X). The p-adic com-
pletions of T(X) and TC(X) are equivalent, but T(X) has the added advantage
that its rational type agrees with that of A(X), cf. [Bu]. Using this integral version
one gets integral versions of the above.

The results above have consequences for diffeomorphisms of manifolds. We
briefly recall the connection. Let P(M) be the space of smooth pseudoisotopies of
the manifold M:

P(M) Diff(M x I, M x 0a OM x I).

It is the space of diffeomorphisms of M x I, which fix (some tubular neighbour-
hood of) M x 0 w OM x I. There is a suspension map from P(M) to P(M x I),
which essentially consists of crossing a pseudoisotopy with the unit interval (and
smoothing corners). The limit

(M) lim_, P(M x Ik)
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is the stable pseudoisotopy space of M. It is an infinite loop space, and it depends
only on the underlying homotopy type of M. Two main results connect P(M) to
A(M). There is Waldhausen’s theorem

(1.5) (M) - f2Wh(M)

(cf. [Wl], [W2]), and there is the stability result of Igusa [I] that the map

(1.6) P(M) (M)

is k-connected whenever dim M > max(2k + 7, 3k + 4).
Let P(M) be the pseudoisotopies of M, which are the identity on a small codim-

zero disk in M. It is a consequence of the above for a simply connected manifold
M that fi(M) and 2I(M) have the same p-completed homotopy type roughly
through dimensions 1/3 dim M. Since P(M) has finite type, this implies that

n.,P(M) - u,+2 V(M)

throughout the stability range.
One knows from [BHM] that the cyclotomic trace from A(.) to TC(.; p)

defines a split surjection after completion at p, onto a summand of the form
E(S ^ BO(2)), provided p is a regular odd prime in the sense of number theory
(i.e., if p does not divide the numerators of the Bernoulli numbers B1, Bp-3).
In fact the map might well be a homotopy equivalence at regular primes. In
any case, the cyclotomic trace does contain information about the unreduced
P(M).
The rational homotopy type of A(X) was calculated in [Bu]. The evaluation

of the integral homotopy type in terms of more accessible functors began in
[CCGH].

It should be pointed out, however, that there is a serious flaw in [CCGH] in
that the trace-type invariant used there is not well defined: the error occurs in the
definition of the map zr on page 71, where the trace map defined on p-simplices
by the formula tr(al, a,; b)= trace(a1 a,,b) is not invariant under the face
operator do as claimed.
The bulk of the present paper, given the cyclotomic trace and calculus of func-

tors, is the long and somewhat painful Section 4 below. It is a complete recast of
[CCHG]. We finally note that Corollary 1.3 was conjectured in [CCH], without
completion.
The above remarks explain the many authors of the present paper.

We offer our admiration to F. Waldhausen, who introduced A(X) and dis-
covered its close connection with differentiable pseudoisotopy theory. The paper
is dedicated to him.
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2. Proof of Theorem 1.2. For every functor with smash product we have
stable maps (i.., maps of spectra), cf. [BHM3:

K(F)
T,

TC(F,p)

THH(F).

If F is of the form F Fx with Fx(A)= A ^ X+ (say, the Moore loops of X, or
in a simplicial setting the Kan loop group), then there are homotopy equivalences

K(Fx) A(X)

(2.2) TC(Fx, p) - TC(X, p),

THH(Fx) - (X).Here the right-hand sides are Waldhausen’s A-functor, the functor given by the
pullback diagram (1.1) and the suspension spectrum of the free loop space, re-
spectively. The decoration ), indicates p-adic completion in the sense of [BK].

Mostly in algebraic topology it does not really matter if maps like the above
Trc or Tr are natural transformations or only natural transformations up to
homotopy, i.e., natural transformations when the functors are projected into the
homotopy category of spectra. However, this is not so for "calculus of functors,"
which is the theory we want to apply; the theorems from [G1], [G2] require
"strict" natural transformations. We must argue that the cyclotomic trace with
the right "models" of K(F) and TC(F, p) is a strict natural transformation on the
category of FSPs. In the end we are using only the FSPs of the form

Fx(Y) Y ^ fX+,

so we ask for strict transformations from spaces to spectra.
Fortunately, the machinery from [BHM] can be adapted to give strict trans-

formations, but there are several steps, and we have to recall in part the defini-
tions from [BHM, Section 5]. Readers who are not interested in these details can
accept Proposition 2.6 below which summarizes the situation, and proceed from
there with the main argument. Given F there are grouplike topological monoids
Gk GLk(F). For monoids there are functors G G (free monoid) and G G
(group completion), and there are natural transformations G -G G^, which
induce the homotopy equivalences below when restricted to grouplike monoids:

IN,(G)I IN,(G’)I IN,(G^)I

Isdp,NP’(G)lCp Isd,,N?’(G")lcp Isd,,N.Y(G^)lCp".
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Let B’(G) be the pullback in

B’(G) - (holim,_ [sd,,N.r(G")lCp")h’

IN.(G)I IN.(G^)I (holim,_ Isd,,Nr(G^)lCp")ho

with ! from [BHM], (2.13). By the above,

B’(G) --, IN,(G)I IN.(G)I

are homotopy equivalences. For Gk GLk(F) we have the transformations

Isd,N.r(G)1%" Isd,N.r(G)1% Isd,THH(F,)1%

where Fk Mk(F) is the k x k matrix FSP associated with F (cf. [BHM, (5.11)]),
so we obtain a strict transformation

t: B’(G) (holim,_ Isd.THH.(F)ICp")(R),

one for each k. We next apply the infinite loop space machine in the formulation
of [BHM, Section 4-1. The transformations t induce a natural transformation of
spectra

Trc’: K’(F) TC(F, p).

Indeed, in i-BHM, (5.12)], TC(F, p) is defined to be the spectrum of the F-space
associated to the target of tk, cf. I-BHM, (4.19)]. Moreover, the maps in (2.3) give a
transformation

K’(F) K(F)

into the spectrum associated to the F-space build-up from the IN.(G)I, cf. [BHM,
(5.6)]. This transformation is a homotopy equivalence of spectra. Restricting to
the FSPs F Fx we can use K’(Fx) as a model for A(X). Indeed there is a strict
natural transformation K’(Fx) K(Fx) which is a homotopy equivalence, and
K(Fx) is one of the standard models for A(X). In particular, K(Fx) is a 1-analytic
functor of X by I-G2, (4.5)]. The same will then be the case for K’(Fx).
We next discuss analyticity of TC(Fx, p) and some related functors. Given a

group G and a G-space Y, let Z(Y+) be the equivariant suspension spectrum;
its nth space is

Z(Y+). lim_. Map(Sv, Sv+" ^ Y+)

with V running over lRG-modules (or more precisely over all submodules of a
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complete universe in the language of [LMS]). For a normal subgroup F there is a
transformation

o. ((Y+)) - yc/(Y
which takes a map f from Sv to Sv+R" ^ Y+ to its induced map on F-fixed sets.
We specialize to G Cp,, F C, and Y X. In this case we can compose with
the inverse of the homeomorphism A: X (X)Cp to get the transformation

0. ...(x+)c.
_

OOc.. _,(ex+).
It is Cp,- equivariant when the Cp,-1-action on the source is via the identification
Cp,/Cp Cp,-1. In particular, (p induces

Cpn-1

Let TC’(X, p) be the functor

(2.4) TC’(X, p) (holim,_ E tc-aX "tCpn’h
Cpn,’:’ +

From [BHM] one gets a (noncomposable) sequence of strict transformations, all
homotopy equivalences, which connect the functors TC(Fx, p) and TC’(X, p). See
in particular the proofs of Proposition 3.7, Proposition 3.9, and Corollary 4.24
of i-BHM]. It follows from the above that TC(Fx, p) is analytic if and only if
TC’(X, p) is analytic, which we will now show. The cofibration

induces a cofibration of functors

(2.5)

The mapping gives a strict transformation

z (G. ^ x+)c"" - z -,(x+)c""-’Cpn Cpn

which is a homotopy equivalence; cf. [BHM, Section 5]. The transfer, in the
formulation of [LMS, Chapter II, Section 7], is a transformation

which again is a homotopy equivalence, and such that the inclusions of fixed sets
in the target corresponds to the transfers in the source.
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Before we can proceed we must recall the definition from [G2, Section 4] of
analyticity. Functors 3 from the category of subsets of {1,..., m} to spaces are
called m-cubes. The homotopy limit over all spaces in the diagram except the
initial one, 3(), is called h(3); there is a map a(3): 3() h(3), and the dia-
gram is called k-cartesian if a(30 is k-connected. A functor U has property E,n(C, k)
if for every strongly cocartesian (rn + 1) cubical diagram 3 with ()--. 3(s)
ks-connected and ks > k, the diagram U(3) is (Eks- c)-cartesian. U is called p-
analytic if it satisfies Em(pm- c, p + 1) for all m and some constant c. We are
interested in p 1 where we just call the functor analytic. We will need to show
that the functor (ZCpn( Cpn x is analytic. Our original argument used
the equivalence .. z (ec.. Xc . x

p

induced by the equivariant transfer. It is a sticky question if z, is a natural trans-
formation in X. It seems to be when one unravels the definitions of i-LMS], but
the following argument, due to the referee, avoids the question.
The functor Z(X+) is analytic according to a version of the Blakers-Massey

theorem. The same is then the case for Z(flX+) and Z(&aX+); the constant c
decreases by 1. Precisely, if 3 is a strongly cocartesian S-cube with I$1 n, then
fl(a:) and a(3) are (-n + ks)-cartesian. According to [G2, (2.6)] it follows
that ’(3) is (- 1 + ks)-cocartesian. That is, the map

b: h (5a(3)) (L’(3))

is (-1 + ks)-connected. Here h1((3)) is the homotopy colimit of .a(3) with
the terminal vertex ((S)) removed. Taking (equivariant) suspension spectra
and smashing with a space commutes with homotopy colimits, so we have an
equivalence

h(E.,(ECp, x a(3))+)- E,(EC, x h(a(3)))+.
p p

The map E.,b is a (-1 + ks}-connected map of free C,, spectra, so the
induced map of C,-fixed spectra is again (-1 + ks)-connected. Therefore,
(Ec,(EC, x (t))+)Cp" is (-1 + ks)-cocartesian, which for a spectrum is the
same as (-n + ks)-cartesian. It follows that (E,,(EC,, x ,a(30}+)Cp" is

p
1-analytic with the constant c 1.

It further follows that E(ECp, X cp" _’X) is analytic. Using (2.5) and induction
over n, we see that E,(f’x+)Cp is analytic for each n (with constant c 1,
independent of n). Giver(an inverse system

of analytic functors with the same constant c, then the functor U holim._ Un is
analytic. Indeed, let 3 be a strongly cocartesian (m + 1)-cube. For each n, Un(3)
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is (Eks- m / c)-cartesian, and we must prove that the homotopy inverse limit
of k-cartesian diagrams is k-cartesian. Since homotopy inverse limits commute
among themselves, this reduces to the true statement that the homotopy inverse
limit of k-connected spaces is k-connected.

Applied to U.(X) E ,(q’X+)Cp" we see that holim._ E_,(Aax+)Cp" is analytic.
p

Finally, for a transformation : U --. U, the homotopy fixed set is the homotopy
inverse limit of

U (, id) A,UxU U.

It is analytic by the reasoning above. We have proved the following result.

PROPOSITION 2.6. The functors THH(Fx) and TC(Fx, p) are analytic, and there
is a model for A(X) with a strict natural transformation Trc from A(X) into
TC(Fx, p). El

We next recall the part of "calculus of functors" needed for our main conclu-
sion, Theorem 1.2. Recall from [G1] that the derivative at (X, x) of a functor
from based spaces to spectra is the spectrum cx(X whose nth term is

(2.7) (t3x)(X), fiber((X v S") --* ,(X)).

A natural transformation t: W between such functors induces a map of deriv-
ative spectra

cxt(X): xO(X) --+ (X).

It is, of course, a (weak) homotopy equivalence when is, but for analytic functors
there is a partial converse. This is Theorem 5.9 of [G2], which states that for a
natural transformation between p-analytic functors, and for any (p + 1)-connected
map f: X -B,

(x) v(x)

1(R)<s) l
+(B) q(B)

is a fiber square, provided the induced map

,,t: xO(X)-+

is an equivalence for any based space (X, x).
We need one more fact about analytic functors, namely, the principle of "ana-

lytic continuation" from [G2]; cf. the proof of Proposition 5.1. It states in the
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special case of a natural transformation between 1-analytic functors t: O(X)
W(X) that induces an equivalence of the reduced theories for 1-connected spaces
if and only if it induces an equivalence on suspensions. Differently expressed, to
check that O,t(X) is an equivalence for general 1-connected spaces it is enough to
do the case ct(EX). Moreover,

(2.8) ( o )(x)=

We want to apply this theory to the functors at hand, and we must calculate
derivatives. We know from [G1] that

GA(X) - (nx)
where fX denotes the loops at x X, and where &a(E(fX)) is the functional
spectrum Map(S1, E(fX)).
We prove in Section 3 below that for the functor defined by (1.1),

(2.9) OTC(X, p) E(flX).

More precisely, we show that the composition

(2.10) t3,TC(X; p), - 3THH(X),

is an equivalence. Here THH(X), E(X),, and

e,: E(flX) -+ E(flX)

is the evaluation at 1.
Let us assume that two homotopy functors F, G have the property that for all

spaces X the two spaces F(X), G(X) are homotopy equivalent. It is obvious from
the definition of a derivative that even if the two functors are not necessarily
homotopy equivalent by a sequence of strict transformations, they do have
homotopy equivalent derivatives. We have

(2.11)
e.K(F,) - K’(F.) -

cTC(Fx, p) = O,TC(X, p),
_
E(tlX),

since by [BHM, Section 5] and [M, Section 4.4]

TC(Fx, p), - TC(X, p),

and since taking derivatives commutes with completion.
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To complete the proof of Theorem 1.2 we must argue that

(2.12) c9,Trc" O,K’(Fx), ,TC(Fx, p)

is an equivalence. The source and target are abstractly homotopy equivalent.
However, the calculation of OxK’(Fx) dxK(Fx) from [G1] uses the manifold
model for A(X) and fits poorly with the above strictly homotopy-theoretic
approach. We proceed therefore in a very roundabout way. First we notice from
the analytic continuation (cf. (2.8)) that it suffices to show that

xK(Fy.x) xK (Fy,x)p
0xTr c.TC(Fzx, p),

is an equivalence for connected X. Second, by (2.11), we are reduced to checking
that

OxTrcO,K’(Fzx)p ,0,THH(Fr.x), --% 0x(E(XX))
e,

X(fEX),

is a homotopy equivalence. This is done in Section 4 below. Indeed, Corollary
4.15 implies that the composition induces a split surjection on spectrum homology
with IF, coefficients, and hence an isomorphism because the homology is finitely
generated in each degree, provided that X has finite type.

Remark 2.13. One would like to generalize Theorem 2.1 to include the
statement that for a 2-connected map f: X B there is a homotopy cartesian
diagram

A(X) Trc, TC(X, p),

A(B) Tr,,, TC(B, p),.

When r1B is finite, [G2, Theorem 5.2] tells us that it suffices to check that O,Trc
is an equivalence for all (X, x). The above reasoning only gives this statement for
X simply connected, but it is, of course, very likely true in general.

3. Derivative calculation.
in the proofs in Section 2.

This section contains the derivative calculations used

PROPOSITION 3.1. The derivative c3TC(X, p), is naturally equivalent to (XfX),.

Proof. The description of TC(X, p), as a fiber product may be expressed as
follows. The self-maps of the circle, in particular, the rotation group S and the
degree-p map A(z) z, act onX and therefore on the spectrum EffX. After
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p-completion, we have a fiber square

(3.2)

Here Trf is the S1-transfer, a map of spectra

(3.3) S A (ES+ As, Z)- Z

defined whenever S acts on a spectrum Z. If Z (Zli 0}, then the left-hand
side of (3.3) denotes the spectrum associated to the prespectrum {S A (ES+ As, Z)},
and the map Trf is defined using the usual transfer maps

(3.4) E(SX A (ES1+ AS’ Zi)) Trf, +Zi

which in turn are defined whenever S acts on a based space Z. Note that to
define (3.3) all that is required is a spectrum Z with an Sl-action in the naive
sense: S acts on the spaces Z, and the structure maps S A Z Z+ are S-maps.

Differentiation of (analytic spectrum-valued) functors commute (up to natural
equivalence) with p-completion, fiber product, S:-transfer, and subtraction of
stable maps. It follows that after p-completion there is a fiber square

(3.5)

OxTC(X, p) S A (ESX+ As, GEZ,eX)

id-A_

Gzex ozex
where S and Ap act on OxEX by functoriality of cOx.

According to [G1, Corollary 2.5] and [G2, Appendix], OxEZ’X is equiva-
lent to ’EFX, that is, the spectrum {Q(SA fX+)li > 0}, with S and Ap
acting as follows: Ap acts on Y’EfX both through the "" and the "fl" in the
sense that

s Q(s’ ^
goes to

S1 Ap S1 Q(S A f)X+) O.ts’,,a+)Q(Si A DX+),

where in the last arrow, A(og)= o o Ap; S acts on ZDX through the "Se"
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only. Rewrite (3.5) and combine it with another square:

eTC(X, p) S ^ (ES+ ^s

1 1
(3.6)

Here et is evaluation at 1 S 1, and Ap acts on EfX by EA,.
LEMMA 3.7. The composed map el o Trf is an equivalence.

LEMUA 3.8. The lower square in (3.6) is afiber square after p-completion.

Proof of Lemma 3.7. More generally, for any spectrum W, the composed map

^ (ES + W

is an equivalence. This follows from the fact that for any spectrum Y, the com-
posed map

$1 ^ (ESX+ ^s’ (SX+ ^ Y)) Trf, S+ A Y .., S’ ^ Y

is an equivalence. (Put Y fW and use the map S ^ fW W, which is an
S-map and a nonequivariant equivalence.) El

Proof of Lemma 3.8. A, acts onX fiber(e) through both the inside
and outside "f", as described above. In particular A, acts like zero on the mod-p
spectrum homotopy, and id-A induces an equivalence after p-completion. E!

This completes the proof of Proposition 3.1. El

PROPOSITION 3.9. If X is 1-connected, then the square

+,.X id-Ap EX

121’(ea) 12;(et)

0gx

is afiber square after p-completion, so that by (3.2), we have

TC(X, p) - (ZX x fiber(Z(ex)o Trf)).
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Proof. This is certainly true when X is a point. Since the functors are 1-
analytic, it will be enough (by [G2]) if the square of derivatives is a fiber square.

This is the outer square in

The top half is a fiber square (after p-completion) by Lemma 3.8. The bottom half
is, too. That is, the map

(3.10) ZoofX id-Ap

is an equivalence after p-completion. To check this, consider the mapping tele-
scope of

fX apx apfX ’".

Because Ap acts like multiplication by p on homotopy groups of fX, the tele-
scope is a simple space with homotopy groups n,(fX)[1/p-]. This implies that its
mod-p homology is zero, and that means that (3.10) induces an isomorphism on
mod-p spectrum homology. El

4. The suspension case. This section studies the topological Dennis trace

Tr: A(ZX)--+ THH(ZX)

for a simply connected space X, homotopy equivalent to a CW-complex. Since
both functors are homotopy invariants and commute with filtered direct limits, it
suffices to consider the case where X is a finite CW complex.
The simplifications which occur in the suspension case are twofold. On the

one hand the spectrum THH(EX) simplifies to a wedge of much simpler functors,
and on the other hand there are good embeddings

(4.1) O: ($1+ A Xa) + A(X),

one for each natural number a, cf. [CCGH]. We shall examine the compositions
Tr o 0, but first we need to recall some general theory about topological Hochs-
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child homology. Let F be a functor with smash products. There are spectra EF
and THH(F) and a suspension S+ ^ ZF THH(F). In our applications, F will
be associated to a grouplike monoid G, i.e., F(X)= t(X)= X ^ G/, and EF
and THH(F) are then equivalent to the spectra E(G) and E(BG).
The spectrum homology H,(THH(F)) can be calculated via a spectral sequence

whose EZ-term is a Hochschild homology of H.(EF), provided we use field
coefficients

(4.2) HHn(H,(F)) H,(THH(F)).

For (4.2) to work, we need to assume that F(S") is (n c)-connected, and that the
stabilization map F(S") fF(S"+1) is (2n c)-connected, for some constant c.
The spectral sequence has been used before, e.g., in connection with the calcula-

tion of THH(Z), but it has not been fully documented in the available literature.
We take the opportunity to do so here.

Let I be the category whose objects are the ordered sets n (1,..., n) and
whose morphisms are the injective maps. Each morphism f I(n, m) can be de-
composed as f tr o with the standard inclusion and tra permutation of m
letters. We let

f: nF(Sn ^ X) fmF(S ^ X)

be equal to tr o i, with i the obvious suspension map and a the (conjugation)
operation on f’F(S); cf. [BHM, Section 3-1. Consider the simplicial spaces,
which have p-simplices:

(4.3)
holim____Map(Sio ^... ^ Sip, F(Sio) ^... ^ F(Sip))

lp+

holim____ Map(Si-,+i ^ ^ Sip, F(Si-, ^ Sk

^ Sio) ^ ^ F(Sip)),
lP+2

respectively, equipped with the usual "Hochschild-type" face operators. The first
space is THH.(F) with topological realization THH(F); the second space is
denoted T.k(F) with topological realization Tk(F). The spaces THH(F) and Tk(F),
k > 0 all have F-structures. This fact is based on Morita invariance, and is
explained in [BHM], Section 4 for THH(F). The argument is the same for each of
the functors Tk(F).

There is an obvious map of F-spaces

TO(F) - THH(F)

which is a homotopy equivalence by the approximation lemma from I-B], which
states that the homotopy limits in (4.3) are well behaved in the sense that the term
corresponding to (io, i,) approximates the limit as io, ip . See I-M,
Lemma 2.3.7].
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The space of p-simplices Tpk(F) form a spectrum, but more importantly, we
have the next result.

LEMMA 4.4. The spaces Tk(F) form a spectrum T(F).

Proof. In each simplicial degree p, one can define

$1^ Tpk(F)- Tpk/(F)

by using the composition

S ^ F(Si-l ^ Sk

^ Si)F(S) ^ F(Si-,
^ Sk

^ Si)

F(S ^ (Si-, ^ Sk

^ Sio))

F(Si- ^ (S ^ S) ^ Sio),

where the last map is induced by the obvious permutation of coordinates. One
checks that the face operators commute with this suspension map, so it induces

S ^ Tk(F)-} Tk+I(F).

Its adjoint is a homotopy equivalence, because DTk+(F) can be calculated by
realizing the simplicial space whose p-simplices is the space fTk+(F). El

LEMMA 4.5. The spectrum {Tk(F)} is homotopy equivalent to the spectrum
{BkTHH(F)} associated with the F-structure on THH(F).

Proof Let B(-) denote the classifying space in the F-structure; then

Tk(F) nBTk(F) BnTk(F)
_
BTk-(F),

where the second equivalence involves the fact, also used above, that the loop
space can be calculated degreewise. El

The spectral sequence in (4.2) is associated to the skeleton filtration of the
spectrum T(F)= {Tk(F)}. Indeed, if H,(-) denotes homology with field coeffi-
cients, then

H,+k(holim_ Map(Si-’+i ^ ^ Sip, F(Si- ^ Sk

^ Si) ^ F(Si’) ^." ^ F(Sip)))_
lim_ H,+k(F(Si-’ ^ Sk

^ Sio) ^ F(Si’) ^... ^ F(Sip))_
H,(EF) (R)... (R) H,(EF),

where the limits run over the category Ip+2. This uses the approximation lemma,
the Kiinneth formula, and the fact that F(S") is roughly n-connected. It follows
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that the El-term of the spectral sequence is the standard cyclic construction
applied to the algebra H,(EF), and hence that the E2-term is the claimed
Hochschild homology groups.
We will apply (4.2) for the functor with smash product with B(A)=

A ^ fEX+ associated to the monoid G fEX, X connected. It will be conve-
nient to use the stable splitting of G flEX, and we briefly recall it.

Consider the inclusion i’X flEX. It maps the base point of X to the con-
stant loop at the base point and induces

: x(x)-+ x(xx); "[(u) Ei(u) e,

where e" EX -+ E(,) E(DEX). Using the product, we get

u -+ na:, (u),

where uv is the vth projection. This map factors over .,(x(a)) and induces the
James-Milnor decomposition

V Y’(x(a)) -’ ’(n’X); x(O)-- SO.
a=0

It follows that the homology of E+ (with field coefficients) is the tensor algebra
of H,(X),

H,(Et) T(H,X).

The Hochschild homology of a (graded) tensor algebra is concentrated in degrees
0 and 1. In fact,

(4.6)
HHo(H,(t)) X+[/,(X)(R)]/(1 z)

HHI(H,(G)) ,([/",:(x)(R)a]t,

where z acts by cyclic permuting the factors with the usual sign convention, i.e.,

(cf. [LQ, Section 4]).
The spectral sequence (4.2) is forced to collapse, being concentrated in filtration

degrees p 0 and p 1, but let us spell it out by examining the abutment di-
rectly. The analogue of the James-Milnor splitting for the free loop space is the
decomposition

Xoo(sl+ x(a))Z(XX) - V=o ^c.
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(cf. [CC], IBM]). Its homology can be calculated from the chain complex

0 + k[Ca]e (C I,(X)(R)a d. k[Ca-le (Ca i,(x)(R)a --+ O,

where

c(ex (R) x (R)"’(R) Xa) eo (R) x (R)’"(R) xa (-- 1)=eo (R) x2 (R)’" "(R) X ( X

and e Ixxl(Ix21 + ""+ IXal). Indeed, this can be seen by choosing a chain
homotopy equivalence H,(X)& C,(X), and using the Eilenberg-Zilber theorem.
We get

(4.7) H,(E’EX) Za_-o {eo (R) [I,(X)(R)a-I/(1 "C) O) ex (R) [/,_ (X)(R)a]’}

in agreement with (4.3). The suspension mapping

o’: S+ A Z(F)--+ THH(F)

is in the case at hand, F t, the map

a: s+ ^ nx -+ezx
induced from the SX-action on &aZX, and the inclusion of fZX. On homology it
is given by

0",(/1 () X @ () Xa) eN (R)c, (x (R)" "(R) x,),

with N 1 + T + ""+ Ta-.
We next review the embedding 0 from [CCGH]. Given any FSP F, we have

the associated matrix FSP

Ma(F)(S’) Map*(a, a ^ F(S’)),

where a {0, a} with zero as base point. There are maps

E,u: F(S’)-+ Ma(F)(S’)

which to u F(S) associate Ev, u(u), the map which sends v a to (#, u) a ^ F(S)
and any other element of a to the base point. It defines a morphism of spectra

Ev, u: E+F -+ ZM(F).

When F t as above, we can compose with the map : ZX Z+tl3. Let us
consider

P: ,(xa)---+ _,ma(j)
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given by

P(x) E,,_x,,,(’[(x,,)),
v’-I

where Ea+l, --El, and x (xv) was defined above in connection with the
James-Milnor splitting. We adjoin to get

(4.8) P: X - lim_. "M(t)(S").

It reduces to zero in M,(Z) under linearization, so

O(X1, Xa) I P(x, x,) e GL,(),

Using the suspension S ^ GLa(II3 --* BGL,() and the inclusion of GL,() into
A(ZX), we obtain a map

O" Y.(S ^ X") A(GX).

The restriction of the topological Dennis trace to BGLa(t) is by definition in-
duced by the composition

(4.9) BGLa( THH(M()) THH()

Here is the realization of the simplicial map, which takes a k-simplex JAil""
Ak-I into the k-simplex

Ao ^ ^ Ak e holim_, Map(Si ^ ...^ S*k, M,(t)(S) ^ ^ Ma(tB)(Sik)),

where Ao is the inverse of the product A1...Ak in GLa((). (Some consistency in
choosing inverses is needed (cf. Section 2 above); here however we are only inter-
ested in what the map induces on homotopy groups and, more generally, on the
functor IS: ^ Xa, ].)
The Morita equivalence / is cumbersome to define and hard to calculate

directly, because it involves the use of a double simplicial space; cf. [BHM, Sec-
tion 3]. However, we shall only evaluate it in homology, where we can make use
of the spectral sequences (4.2) for F t and F M,(t).
More precisely,/ defines a map of spectral sequences, and on the E2-1evel,

#," HH(Ma(H,(G)))--* HH,(H,(G))

is equal to the "usual trace operator,"/, tr,. In the cyclic bar construction,
whose homology is HHp(-), tr, is given by the formula

(4.10) tr,(Ao (R)’"(R) At,) E A)’i’ (R)’" "(R) A’i,
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with A denoting the ijth entry, and where the sum extends over all sets of
indices.
We can now begin to examine Tr o 0 (in homology). In fact, we settle for less

and just attempt to describe the map into filtration degree p 1, or what is the
same thing (see below), the quotient map

Tr o 0: E(S ^ Xa) THH(ti3)/THHo(tB),

where THHo(tl3) -E is the subspectrum of the zero-simplices in ITHH.()I

(4.11) THH(tB)/THHo(() - E(EX/fZX) -- v= G(S/Cb ^ X()).

Its homology can be calculated from (4.7). We notice that

e (R) [/,(X)(R)b]* H,(THH())

injects into H,(THH(tB)/THHo(tB)), and that the other summand eo (R) ffI,(X)(R)b/
(1 z) is sent to zero. By definition,

[, o 0] E(I P)- A (I P)] EE(S A Xa), THH(M((B))].

The advantage of dividing out the spectrum of zero-simplices THHo(Ma()) is
that we can make use of the decomposition

[(I P)-t] [I + P + p2 +...]

as follows. Each term pk A P (or pk A I) gives a map

X THH(Ma(tl3))

into the spectrum of 1-simplices, and hence a map

A x xa/tA x X A x THH(M.(IB))/cA x THH(M.(t))

THH(M())/THHo(Ma(tl3)).

This determines a well-defined homotopy class

[P* A P] [g(S A Xa), THH(M((B))/THHo(M((B))].

It follows that there is a well-defined weak homotopy class:

[zoO]= [P*AI]-- ’ [P*AP] E(S Ax"a),I-IE(S/CAX(b)

k=O k=O b=l
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Since X is connected and Xtb) is (b 1)-connected, the inclusion

b=l b=l

is a weak homotopy equivalence, so that the infinite sums also make sense in

THH(M({B))/THHo(M({B)).

The Morita equivalence map can be chosen so as to map THHo(M.()) into
THHo(), inducing

It: THH(M(EJ))/THHo(M()) -* THH()/THHo({B).

This reduces us to calculating l.t,[Pk A P] in homology. Before we do this, let us
retreat to the algebraic situation and consider the linear Dennis trace

Try" K (R) --, HHI(R),

when R is a (completed) tensor algebra

R HV(a), W<a) W ()’"" W.

Given elements e V, we want to determine the image of I- P(, a) in
HHI(R). An easy calculation (in R (R) R) gives

Trl (I P) Z tr,(P’ (R) I) tr,(P’ (R) P)

tr,(U (R) I) 0

0

tr, (pi-1 (R) p) a-1

j=0

if 0 (mod a)

if ka.

Here is the product of the . Hence we get in HH1 (R) the formula

(4.12) Tr1(I P(,..., a)) E E T’(I (R)"" (R) ,)(R).
k=l i=0

Here T is the cyclic permutation of ka letters, and each term Ti(t (R)-"(R) Ca)(R)k

in Vtka) is considered an element of R (R) R by rewriting Vtka) Vtka-) (R) V. Let

projb: THH(tl3)/THHotl3 ---, Z(SI/Cb ^ X(b))

be the projection onto the bth factor in (4.11).
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THEOREM 4.13. For classes H,(X),

0

(projb o Tr o 0),01 (R) ( (R)"" (R) a)) a-1

i=0

ifb<a

el (R) T(1 ()’’’()a) ifb=a.

Proof. There are maps

pik: xa-.G G

e,: E(R)(G+ ^ G+) THH(M({13)),

with

e,(g, h)= E,.,+(g) ^ E,+.,(h).

The notation is 2 II2v and 2v (x); cf. the James-Milnor splitting above.
Then

a-1 [e oE,=o Zp] [P*- A P].

We are primarily interested in k 1, where we see from (4.2) and (4.12) that

(# o ei o Zp),(1 (R) ( (R)..-(R) a)) e, (R) Ti(, (R)’"(R) a)"

For k > 1, (# o e o E(R)p), maps trivially under (proj,),, but does in general have
a nontrivial image under (projk,),. The result, however, is cumbersome to de-
scribe because it involves the reduced diagonal in H,(X). Fortunately we will
have no use for it. For @ 0 (mod a), (/z o (p- ^ P)), 0 and (kt o (P ^ I)), 0,
since the resulting matrices have no tr,-invariant (P has no diagonal entries).

The projection X" --, X(a) of the cartesian product into the smash product has a
stable splitting, and 0 then induces

0." ,(S1 A X(a)) -- A(EX).
Suppose X Y v Z. Then

ytb v S+ ^ ytb-t ^ Z vS+ ^Cb(Y v Z)tb S+ ^Cb
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We have the injection and the projection

j: Z(S A y(a-1) A Z)---, ](S A X(a))

r: Z(S+ ^Cb X(b)) Z(S+ ^ y(b-1) ^ Z).

COROLLARY 4.14. The composition n o projb o Tr o 0 o j from E(S ^ yta-) ^ Z)
into E+(S ^ y(b-1) ^ Z) induces zero in homology for b < a and isomorphism for
b=a.

Since for any functor c3r(F o Z)(Y) EtrF(Z Y), (2.8) implies

G(THH o E)(Y) EaE(flEY)
_

v E(S+ ^ Y(-))a--I

This follows alternatively from the homotopy equivalence

z+(s+ ^ x<:).E(.X) V 0 Ca

Since

y<a) SI+ ^cSl+ ^Ca (Y v ,kz)(a)2_lS1+ ^Ca V Y("-) ^ ZkZ

so that

lim+ YaZ(S+ ^Ca (Y v Xkz)<))/S’+ ACa y(a)__ Xoo(s+ A y<a-) ^ Z).

Similarly,

(yZ(S A y<a))_. V] Z(S ^ Y(-’)).

Consider now the diagram

v E(R)(S X(.)
a=l ^

Va=l

A(XX)

TH(Xt

(S ^ X".Va=l C

COROLLARY 4.15. The map t3y(ex o Tr o 0) is a split surjection of spectra.
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Proof. It is directly from (4.14) and the definition of derivative that

oo(S1 A Y(a-1))L Va= V (sl / y(a-1))Va=l

y(e Tr

Va=l Z(S1 A y(a-1))

induces an isomorphism on homology (with field coefficients). Hence it induces
isomorphism on homology with integral coefficients, and is an equivalence of
spectra. El

[A]

IBM]

[B]
[BHM]
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