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HIGHER ASSOCIATIVITY OF MOORE SPECTRA

PRASIT BHATTACHARYA

Abstract. The Moore spectrum Mp(i) is the cofiber of the pi map on the
sphere spectrum. For a fixed p and n, we find a lower bound on i for which
Mp(i) is guaranteed to be n-fold associative. This bound depends on the stable
homotopy groups of spheres.

1. Introduction

Let (Sp,∧, S) denote the category of S-modules of [EKMM97], a modern point-
set category of spectra, which is closed symmetric monoidal. In this category, an
associative monoid is precisely an A∞-ring spectrum and a commutative monoid
is precisely an E∞-ring spectrum. The sphere spectrum S0, being the unit, is a
perfectly good E∞-ring spectrum. The i-th mod p Moore spectrum, denoted by
Mp(i), is the cofiber of the multiplication by pi map

S S Mp(i) .
pi

The category (Sp,∧, S) can be compared to the symmetric monoidal category of
Abelian groups (Ab,⊗,Z) via the monoidal functor

π0(−) : (Sp,∧, S) (Ab,⊗,Z)

which assigns a spectrum its zeroth stable homotopy group. Under this comparison
Mp(i) is analogous to Z/pi, the quotient of the multiplication by pi map on the unit
Z. While Z/pi inherits the commutative and the associative structure from Z,
Mp(i) does not inherit the E∞-structure from S (see [MNN15, Remark 4.3] for a
proof). In fact, Mark Mahowald conjectured that Mp(i) does not even admit an
A∞-structure (see Conjecture 2.27). The conjecture holds true in the case when
i = 1.

Example 1.1. The mod 2 Moore spectrum M2(1) does not admit a multiplication.
The proof is as follows. If M2(1) does admit a unital multiplication

µ : M2(1) ∧M2(1) M2(1) ,

then the map µ splits the cofiber sequence

M2(1) M2(1) M2(1) ∧M2(1) ΣM2(1) . . .2
µ

resulting in an equivalence

M2(1) ∧M2(1) ≃ M2(1) ∨ ΣM2(1) .
1
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However, the above equivalence is a contradiction to the fact that the cohomology
of M2(1) ∧M2(1) does not split as a module over the Steenrod algebra.

Example 1.2. If p is odd, the Mp(1) an Ap−1-algebra structure (see Example 2.25)
but not an Ap-algebra structure. The proof is obtained by combining the work
of Toda [Tod68], Kochman [Koc72] and Kraines [Kra66] as explained in [Ang08,
Example 3.3].

Following Conjecture 2.27, Example 1.1 and Example 1.2, it is natural to ask ‘for
what values of n does Mp(i) admit an An-structure when i > 1?’

Before the results in this paper, hardly anything was known about the An-structures
of Mp(i) for i > 1. The only result dates back to 1982 when Oka [Oka84, Theorem
2] proved that M2(i) admits an A3-structure (i.e. a homotopy associative multipli-
cation) for i ≥ 2. In this paper, we prove that:

Main Theorem 1.3. Fix a prime p and an integer n > 1. Define the function
op(n) as

op(n) = #{k : k ≤ 2n− 3, k odd, and p-torsion of πk(S
0) is nonzero}.

When p is odd, Mp(i) admits an An-algebra structure if i > op(n). When p = 2,
M2(i) admits an An-algebra structure if i > o2(n) + 1.

n o2(n) o3(n) o5(n) n o2(n) o3(n) o5(n)

2 1 0 0 9 6 5 2
3 2 1 0 10 7 5 2
4 2 1 0 11 8 6 2
5 3 2 1 12 9 6 2
6 4 2 1 13 10 7 3
7 5 3 1 14 11 7 3
8 5 4 1 15 12 8 3

Table 1. Values of op(n) for p = 2, 3 and 5.

To establish the usefulness of Main Theorem 1.3, we provide Table 2 listing few
examples of the highest value of n for which Mp(i) admits An-structure. The
conclusions are made using Main Theorem 1.3, expect when p = 2 and i ∈ {2, 3}.
In the case of M2(2) and M2(3), Example 2.26 provides a better answer.

i → 1 2 3 4 5 6 7

p = 2 A1 A4 A4 A4 A5 A6 A8

p = 3 A2 A4 A6 A7 A8 A10 A12

p = 5 A4 A8 A12 A16 A20 A23 A24

Table 2. List of highest n for which Mp(i) is known to admit an
An-structure ( Restricted to i ≤ 7 and p = 2, 3 and 5.)
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The key idea behind the proof of Main Theorem 1.3 is to obtain Mp(i) as a Thom
spectrum (see Corollary 3.9). Using a result due to Stasheff Theorem 2.36, the
problem of obtaining An-structure on Mp(i) can be reduced to the study of an
Atiyah-Hirzebruch spectral sequence (4.7).

We end the paper with Conjecture 4.12, which predicts that the obstruction to
A∞-structure on Mp(i) is in the chromatic layer 1 of its homotopy groups.

Remark 1.4. For this paper, one can also choose any other modern point-set
categories of spectra, such as the symmetric spectra in simplicial sets of [HSS00]
or the orthogonal spectra of [MMSS01], however, technical adjustments needed at
various stages of the paper may vary depending on the chosen category of spectra.

Organization of the paper

In Section 2 has been established to provide the necessary background and dis-
cuss finer details that goes into the proof of Main Theorem 1.3. In the process,
we discuss basics of operad theory, Stasheff’s An-operad, obstruction theory for
An-structures (developed by Stasheff), a conjecture of Mahowald for 2-cell com-
plexes, An-maps, homotopy An-maps, an obstruction theory for homotopy An-maps
(Theorem 2.36) and a rigidification theorem of Boardman and Vogt (Theorem 2.37)
which converts a homotopy An-map into anAn-map. The best knownAn-structures
on M2(2) and M2(3) are obtained as an application of an obstruction theory (see
Example 2.26).

In Section 3, we review the general construction of Thom spectra and show that
Moore spectra can be realized as Thom spectra.

In Section 4 we prove Main Theorem 1.3.
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2. Background

2.1. Operads and operad algebras

Operads are mathematical objects which encodes algebraic structures in a symmet-
ric monoidal category.

Definition 2.1. A topological operad O is a sequence of spaces O(n) for n ≥ 0
together with distinguished element 1 ∈ O(1) and the data of continuous functions

γ(n; j1, . . . , jn) : O(n) × (O(j1)× · · · × O(jn)) → O(j)

where j = j1 + · · ·+ jn, which satisfy

(i) γ(γ(n; j1, . . . , jn); i1, . . . , ij) = γ(n; γ(j1; i1, . . . , ij1), . . . , γ(jn; ij−jn+1, . . . , ij)),

(ii) γ(1;n)(1, x) = x and γ(n; 1, . . . , 1)(x, 1, . . . , 1) = x.

A nonunital operad is an operad such that O(0) = ∅. A unital operad is an operad
with O(0) = ∗.

Remark 2.2. Operads often come with symmetries, and those that do not are
called non-Σ operads. Since we mostly work with non-Σ operads, we use the term
‘operad’ to refer to non-Σ operads.

Remark 2.3. Let ◦i denote the map

γ(n, 1, . . . , 1, k, 1, . . . , 1) : O(n)× (O(1)×i−1 ×O(k)×O(1)×n−i) −→ O(n+ k− 1).

The operations {◦i : i ≥ 1} determine and are determined by the operad structure
on O (see [MSS02, 1.7.1]).

Example 2.4 (Endomorphism operad). For every object X ∈ T op, the endomor-
phism operad E(X) is the operad whose n-th space is

E(X)(n) = Func(X×n, X)

and the map

◦i : E(X)(n)× E(X)(m) −→ E(X)(n+m− 1)

sends (f, g) to the composite

X×(n+m−1) X×n X.
1

×(i−1)
X

×g×1
×(n−i)
X f

A map of operads f : O → P is a sequence of maps fn : O(n) → P(n) such that
f1(1) = 1 and commutes with the structure maps, i.e. the diagram

O(n)× (O(j1)× · · · × O(jn)) O(j1 + · · ·+ jn)

P(n)× (P(j1)× · · · × P(jn)) P(j1 + · · ·+ jn)

fn×(fj1×···×fjn ) fj1+···+jn

commutes for all n, j1, . . . , jn ≥ 0.

Definition 2.5. Let O be a topological operad. An O-algebra structure on X ∈
T op is a map of operads

µ : O → E(X).
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The above definition can easily be extended to define O-algebra structure for ob-
jects in Sp. Note that Sp is closed symmetric monoidal, where the suspension
functor

S[ ] : T op → Sp

is monoidal and admits a right adjoint. Therefore, for any two spectrum R and L
the collection of functions

Func(R,L)

can be thought of as an object in T op. As a result, for any R ∈ Sp, we can
define the endomorphism operad E(X), which is a topological operad with the n-th
space

E(R)(n) = Func(R∧n,R).

Definition 2.6. We say that R ∈ Sp admits an O-algebra structure if there exists
a map of operads

µ : O → E(R).

2.2. Stasheff An-operad

In 1963, Stasheff [Sta63] introduced a sequence of polytopes Kn which are now
known as Stasheff polytopes. These polytopes are designed to describe a sequence
of unital operads, called the Stasheff An-operads. These operads can be used to
describe a hierarchy of coherence for homotopy associative multiplications.

The Stasheff polytope Kn, as a topological space, is just homeomorphic to the disk
Dn−2, but encodes a rich cellular structure which parametrizes a homotopy coherent
associative structure. The cells of Kn are indexed by the set of planar rooted trees
with n leaves. The polytopes K1 and K2 are just one-point spaces. The polytope
K3 is the unit interval and its cellular structure is described in the picture below.

• •

Figure 2.1. Cellular structure of K3 expressed in terms of trees

A product structure on X ∈ T op is a map µ : X ×X → X . One can also think of
the product structure as a map

µ2 : K2 ∼= ∗ → Func(X ×X,X).

If this multiplication is homotopy associative then the homotopy can be thought of
as a map

µ3 : K3 ∼= [0, 1] → Func(X ×X ×X,X)

such that µ3(0) = µ2 ◦ (µ2 × 1X) and µ3(1) = µ2 ◦ (1X × µ2).

The polytope K4 is the pentagon. Given a multiplication µ2, there are five different
four-fold multiplications, producing five different maps from X×4 to X . These
multiplications can be encoded by five different binary trees with four leaves. These
trees label the five vertices of K4 (see Figure 2.2). Moreover, if the multiplication
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is homotopy associative, i.e. µ3 exists, then one can construct homotopies between
any two four-fold multiplications. These homotopies can be glued together to give
a map

∂µ4 : S1 ∼= ∂K4 → Func(X×4, X).

The edges of K4 are denoted by the planar rooted trees with four leaves and exactly
one internal vertex. The arrangement is such that the tree that represents an edge
can be obtained by collapsing one of the branches of those trees that represent one
of the adjacent vertices. If the map ∂µ4 is homotopic to a constant map, then we
can use this homotopy to obtain a map

µ4 : K4 → Func(X×4, X).

Thus K4 parameterizes homotopy coherence of the associativity among the four-fold
multiplications.

Figure 2.2. K4 with its cells indexed by trees

In general the cells of Kn are in one-to-one correspondence with the planar rooted
trees with n leaves. More specifically, the codimension k cells are in bijection with
the planar rooted trees with n leaves and k internal vertices.

Notation 2.7. Let Tn be the collection of planar rooted trees with n leaves and

T∗ =
⋃

n

Tn.

For each t ∈ Tn, let K〈t〉 denote the corresponding cell of Kn.

Definition 2.8. A corolla is a planar rooted tree with no internal vertex.

For every n ∈ N, Tn contains exactly one corolla. If t ∈ Tn is a corolla then K(t) is
the Stasheff polytope Kn. For any other tree t ∈ Tn, we can obtain a set of corollas
by breaking the tree off at each vertex. We call this set the corolla decomposition
of t and denote it by C(t).

Example 2.9. If t is the tree

then C〈t〉 = { , , , }.
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The cell K(t) ⊂ Kn is homeomorphic to

(2.10)
∏

s∈C(t)

K(s) =
∏

s∈C(t)

Kl(s)

where l(s) denotes the number of leaves in the corolla s. This product is unique
up to association. There are various models for the Stasheff polytope Kn. The
first one is of course due to Stasheff [Sta63]. Other prominent models include
[BV73, CFZ02, Lod04, Ton97]. Define

Kk〈n〉 =
⋃

t∈Tk〈n〉

K(t) ⊂ Kk = Kk〈∞〉.

Figure 2.3. The complex K5〈3〉

Remark 2.11. When k ≤ n, the set of trees with at most n descendants from each
vertex, include all the trees with k leaves, i.e. Tk = Tk〈n〉. Therefore,

Kk〈n〉 = Kk

for k ≤ n.

Remark 2.12. Tn+1〈n〉 consists of all trees Tn+1 except the corolla with n + 1-
leaves. Hence,

Kn+1〈n〉 = ∂Kn+1.

Definition 2.13. For 1 ≤ n ≤ ∞, the Stasheff An-operad is an operad formed
from out of the sequence

An(k) = Kk〈n〉,

where k ≥ 0.

All but the degenerate structure maps of An, at the cellular level, can be described
in terms of concatenation of trees. The cellular description of a basic degenerate
map

(2.14) si := γ(n; 1, . . . , 1
︸ ︷︷ ︸

i−1

, 0, 1 . . . , 1) : Kk〈n〉 → Kk−1〈n〉

correspond to deleting the i-th leaf. The point-set level description of these maps
are well-documented, for example see [Sta63].
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2.3. Obstruction theory for An-structures

Let n be a finite positive integer thorught this subsection. An An-algebra structure
on X ∈ T op equivalent to a collection of

µk〈n〉 : K
k〈n〉 ×X×n → X

which satisfies the usual compatibility criterions. Since Kk〈n〉 = Kk for k ≤ n, we
will denote abbreviate µk〈n〉 to µk for the remainder of the paper. Also note that
when k > n each cell of Kk〈n〉 is isomorphic to a finite product of Ki for 1 ≤ i ≤ n.
As a result the finite collection of maps

{µ0, . . . , µn}

determines µk〈n〉 for k > n. This leads to an obstruction theory.

Suppose, X ∈ T op admits an An−1-structure. If we want to extend this structure
to an An-structure, then we simply need to define a map

µn : Kn ×X×n → X

which is compatible with {µ0, . . . , µn−1} determined by the An−1-structure. The
compatibility criteria emerges from that fact that the An−1-structure already de-
termines the map µn restricted to certain subspaces of Kn ×X×n.

The fact that Kn〈n−1〉 = ∂Kn (see Remark 2.11) implies µn must restrict to

(2.15) µn−1〈n〉 : ∂Kn ×X×n Kn ×X×n X
µn

Another collection of restrictions come from the fact that the operad An, by virtue
of being a unital operad, admits degeneracy maps (see (2.14)). Let

δi : X
×(n−1) X×n

1×(i−1)×µ0×1
×(n−i−1)

where µ0 : ∗ → X denote the unit map. Then µn must make the diagram

(2.16)

Kn ×X×(n−1) Kn ×X×n

Kn−1 ×X×(n−1) X

si×1

1×δi

µn

µn−1

commute. If we define

X×n[n−1] := {(x1, . . . , xn) : xi = ∗ for some i} ⊂ Xn,

where ∗ is the image of µ0, then An−1-structure on X determines a map

µ[n−1] : K
n ×X×n[n−1] → X

and (2.16) implies µn must restrict to µ[n−1] on Kn×X×n[n−1]. The map µ[n−1]

Let Φn(X) denote the pushout

(2.17)

∂Kn ×X×n[n−1] Kn ×X×n[n−1]

∂Kn ×X×n Φn(X).
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The An−1-structure on X induces a map

Φn(µ) : Φn(X) → X.

There is a natural map Φn(X) → Kn × X×n and by (2.15) and (2.16), any map
µn : Kn ×X×n → X which restricts to Φn(µ) extends the An−1-structure on X to
an An-structure. Suppose there is an object σn(X) such that

σn(X) → Φn(X) → Kn ×X×n

is a cofiber sequence, then we get the following theorem.

Theorem 2.18 (Stasheff). An An−1-algebra structure on X ∈ T op can be extended
to an An-structure if and only if the composite

σn(X) Φn(X) X
Φn(µ)

is homotopic to the trivial map.

A similar obstruction theory holds for An-structures on objects of Sp. Suppose
R ∈ Sp admits an An−1-algebra structure, i.e. a collection of maps

µi : K
i
+ ∧ R∧i → R

for 0 ≤ i ≤ n− 1. Assuming the unit map

µ0 : S → R

to be cofibration, one can construct the object R∧n[n−1] as a colimit. Let [n] denote

the category of ordered subsets of the order set {1 < · · · < n}. Let C(n, n− 1) be
the full subcategory consisting of subsets of at most n− 1 elements. Let

FR
n,n−1 : C(n, n− 1) → Sp

denote the functor which sends a subset with i element to R∧i and uses the unit
map µ0 to establish the necessary maps between R∧i and R∧j . Define

R∧n[n−1] := colim
C(n,n−1)

FX
n,n−1.

One can construct a spectrum Φn(R) by replacing Kn by Kn
+, the cartesian product

× by the smash product ∧ and X by R in the (2.17). Since cofiber sequences are
fiber sequences in Sp, the object σn(R) always exists, it is the fiber of the map

Φn(µ) : Φn(R) Kn
+ ∧ R∧n.

Theorem 2.19 (Stasheff). An An−1-algebra structure on R ∈ Sp can be extended
to an An-structure if and only if the composite

σn(R) Φn(R) R
Φn(µ)

is homotopic to the trivial map.
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2.4. A conjecture of Mahowald

Theorem 2.19 has some immediate application in the context of two-cell complexes.
Let τ ∈ πk−1(S) and let C(τ) denote the cofiber of τ . Since the discussion takes
place in Sp (and not in the homotopy category hSp), it is important to give C(τ)
an explicit pointset model. In our category of spectra, the sphere spectrum S is
fibrant but not cofibrant, therefore τ may not be realized as a map from Σk−1S to
S. However, τ can be realized as a map

τ : Σk−1SS → S,

where SS is the cofibrant relacement of S. We specifically choose SS to be the
cofibrant replacement of [EKMM97, Chapter 2]. Moreover, we choose and fix non-
canonical and non-coherent isomorphisms

(SS ∧ . . . ∧ SS)
︸ ︷︷ ︸

n times

∼= SS

for all n > 0. What we gain is the isomorphism

(2.20) (ΣkSS)
∧n ∼= ΣknSS

for all k ≥ 0 and n > 0.

Notation 2.21. For efficiency of notations, we will denote ΣnSS by Sn
S
and CΣnSS

(the cone on ΣnSS) by Dn+1
S

.

We choose the pointset model of C(τ) to be the pushout in the diagram

(2.22) Sk−1
S

τ
//

��

S

��

Dk
S

// C(τ).

The ‘inclusion map’ from S → C(τ) serves as the unit map. With this model of C(τ)
and Equation 2.20, it can be easily seen that Kn

+ ∧ C(τ)∧n is related to Φn(C(τ))
via the pushout diagram

(2.23) S
n(k+1)−3
S

ι
//

��

Φn(C(τ))

��

D
n(k+1)−2
S ι̃

// Kn
+ ∧ (C(τ))∧n.

This discussion shows that σn(C(τ)) ≃ Σn(k+1)−3S. Applying Theorem 2.19, we
get:

Corollary 2.24. Let C(τ) denote the cofiber of τ ∈ πk−1(S). The obstruction
to extending an An−1-algebra structure on C(τ) to an An-structure is a class in
πn(k+1)−3(C(τ)).

Here are some straightforward applications of Corollary 2.24

Example 2.25. When p is odd, πi(Mp(i)) = 0 for 1 ≤ i ≤ 2p− 4. It follows that
Mp(i) admits Ap−1-structure for all i.
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Example 2.26. Oka [Oka84] showed that M2(i) admits an A3-structure for i ≥ 2.
Since π5(M2(i)) = 0, it follows that M2(i) admits A4-structure for i ≥ 4. This
gives us the best possible answer for M2(2) and M2(3) and is a part of the data in
Table 2.

One do not expect Mp(i) to admit anA∞-structure, perhaps because of the following
general conjecture for two-cell complexes which Mark Mahowald communicated to
the author during a private conversation.

Conjecture 2.27 (Mahowald). C(τ) admits an A∞-structure if and only if τ ≃ ∗.

2.5. Homotopy An-maps

An An-map f : X → Y between two objects in T op with An-structure, is a map
for which the diagram

Ki ×X×n X

Ki × Y ×n Y

µX
i

1×f×i f

µY
i

commutes for all 0 ≤ i ≤ n. A homotopy An-map is a map where we only require
the above diagrams to commute up to homotopy, however our choices of homotopy
must satisfy some coherence conditions. These coherences are best described in
using a system of polytopes {Jn : n ≥ 1} called multiplihedra.

J1 is simply a point. J2 is the unit interval [0, 1]. A homotopy A2-map consists of
f1 : X → Y which preserves the unit, a homotopy

f2 : J2 ×X×2 → Y

which parametrizes a homotopy

µY
2 ◦ (f ∧ f) ≃ f ◦ µX

2 .

The two natural restriction of f2 to J2 × X via the unit map of X must be the
constant homotopy at f1. J3 is a hexagon. To extend a homotopy A2-map to a
homotopy A3-map, one must provide a map

f3 : J3 → Func(X×3, Y )

which is compatible with predefined maps f1 and f2. In general, the compatibility
criteria arises from the fact that the maps {fr : 1 ≤ r ≤ n − 1} along with the
maps

{µX
r , µY

r : 0 ≤ r ≤ n− 1}

determine the map ∂fn defined on ∂Jn. On the boundary of Jn there are two
disjoint cells homeomorphic to Kn, one of which supports the map (f×n1 ) ◦ µY

n and
the other supports f1 ◦ µX

n . Therefore, the map fn in some sense is a ‘homotopy
with additional coherence conditions’ between these two maps.

Multiplihedra and their connection to homotopy An-maps were first considered
by Stasheff [Sta63]. Boardman and Vogt [BV73] expressed the full combinatorial
descriptions of these multiplihedra using the language of colored operads and metric
trees. [DF08, For08, IM89] are among prominent articles in the literature containing
detailed descriptions of multiplihedra.
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(f(x1)f(x2))f(x3)− −f(x1)(f(x2)f(x3))

f(x1)f(x2)f(x3)

f2(x1, x2)f(x3)

f(x1x2)f(x3)−

f2(x1x2, x3)

f((x1x2)x3)−

f(x1x2x3)

−f(x1(x2x3))

f2(x1, x2x3)

−f(x1)f(x2x3)

f(x1)f2(x2, x3)

Figure 2.4. The polytope J3

2.6. An obstruction theory for homotopy An-maps

Stasheff developed an obstruction theory for homotopy An-maps in the category
of T op, by constructing what is called a truncated bar complex for An-algebras. It
was using these techniques, Stasheff [Sta70][Theorem 7.4] proved that S7 does not
admit a homotopy associative multiplication. We partially adopt [Ang09][§ 4] in
our description of the Stasheff’s bar construction.

As a warm up, we briefly recall the construction of a bar complex for a strictly
associative monoid in T op. A strictly associative monoid is an object H ∈ T op
with a unit map ι : ∗ → H and a multiplication map

µ : H×H → H

which is compatible with the unit map, i.e. µ ◦ (ι× 1H) = 1H = µ ◦ (1H × ι), and is
strictly associative, i.e. µ ◦ (µ× 1H) = µ ◦ (1H×µ). A left H-module M is an object
in T op with a map

m : H×M −→ M

which satisfies the usual conditions. Similarly, a right H-module M is an object in
T op with a map

n : N×H −→ N

satisfying the usual conditions. Let ∆ be the category of finite, nonempty, totally
ordered sets with order preserving maps as morphisms. Let sk(∆) denote the
skeleton category of ∆. Objects of sk(∆) are finite ordinals. We denote the ordinal
n+1 by [n] or {0 < · · · < n}. Given a strictly associative monoid H, a left H-module
M and right H-module N, we can define a functor

B(M,H,N) : sk(∆)op −→ T op

which sends [n] 7→ M×Hn ×N. On the other hand, we have a functor

|∆| : sk(∆) → T op

such that [n] 7→ ∆n, where ∆n is the geometric n-simplex. The two sided bar-
complex B(M,H,N) is the coend of the functor B(M,H,N) × |∆| or equivalently
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the quotient space

B(M,H,N) =
∐

n≥0

∆n × (M×Hn ×N)/ ∼

where ∼ is the usual identification expressed in terms of face and degeneracy maps.
We define

BH = B(∗,H, ∗)

as the bar complex of H.

For an An-algebra H in T op, a right Ak H-module M , is an object in T op with
maps

fr : Kr+1 ×M×H×r → M

for 1 ≤ r ≤ k, satisfying the usual compatibility conditions with the higher order
multiplication of H . Similarly, a left Ak H-module N is an object in T op with
maps

gr : K
r+1 ×H×r ×N → M

for 0 ≤ r ≤ k, satisfying similar compatibility conditions. The two-sided bar
construction described above does not make sense because B(M,H,N) fails to be a
functor when the multiplication is not strictly associative. However, this issue can
be resolved. Roughly speaking, the idea is to inflate the morphism classes between
two objects in sk(∆)op to accommodate An-structures. More precisely, we enrich
the category sk(∆)op over T op using the operad A∞ by setting the morphism class
between [l] and [k] as the topological space

⊔

f :[l]→[k]

K[f ],

where K[f ] =
∏

i∈[k] K
f−1(i). Denote the resultant category by ∆op

∞ .

For an A∞-algebra H, it is straightforward to verify that

B∞(M,H,N) : ∆op
∞ → T op

sending [n] 7→ (M×Hn ×N) is indeed a functor. For brevity, let us denote (∆op
∞)op

by ∆∞. There is also a canonical functor

|K| : ∆∞ → T op

where [n] → Kn+2.

Definition 2.28. For an A∞-algebra H, a right A∞ H-module M and a left A∞
H-module N, the two-sided bar complex B(M,H,N) is the coend

B(M,H,N) =

∫ ∆∞

B∞(M,H,N)× |K|.

Definition 2.29. For an A∞-algebra H, the bar complex of H is the topological
space

BH = B(∗,H, ∗)

Remark 2.30. We intentionally used the same notation for the two sided bar-
complex B(M,H,N), when H is a strictly associative monoid and when H is a
A∞-algebra. This is because a strictly associative monoid in T op is automatically
an A∞-algebra and the two different bar constructions yield the same space up to
homotopy.
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For an An-algebra H where n < ∞, one can only construct a truncated version of
the bar complex, called the n-truncated bar complex, simply by replacing ∆∞ by
∆≤n, the full subcategory of ∆∞ with objects [k] for 0 ≤ k ≤ n, in the discussion
above.

For an An-algebra H, a right An H-module M and a left An H-module N let

Bn(M,H,N) : ∆op
n → T op

be the functor that sends [k] → M×Hk ×N. We also have a functor

|Kn| : ∆≤n → T op

such that [k] 7→ Kk+2.

Definition 2.31. For an An-algebra H, a right An H-module M and a left An

H-module N, the two-sided bar complex B(M,H,N) is the coend

Bn(M,H,N) =

∫ ∆≤n

Bn(M,H,N)× |Kn|.

The space Bn(M,H,N) is a quotient of the space
∐

0≤k≤n

Kk+2 ×M×Hk ×N.

Definition 2.32. For an An-algebra H the bar complex of H is the topological
space

BnH = Bn(∗,H, ∗)

Example 2.33. S1 admits a strict associative multiplication when viewed as units
in C. The n-truncated bar complex BnS

1 is homotopy equivalent to the projective
space CPn.

Example 2.34. S3 admits a strict associative multiplication when viewed as units
in quaternion H. The n-truncated bar complex BnS

3 is homotopy equivalent to the
projective space HPn.

Example 2.35. S7 admits a multiplication when viewed as units in octonions O.
However, S7 cannot support an homotopy associative multiplication. If it does, then
we can construct B3S

7 ∼= OP3, and its cohomology ring is the truncated polynomial
ring

H∗(OP3;Z/3) ∼= Z/3[u8]/(u
4
8),

where u8 is a generator in degree 8. By axioms of Steenrod operation P4(u8) must
equal u3

8. However, Adem relation P4 = P1P3 and the fact that

P3(u8) ∈ H20(OP3;Z/3) = 0,

imply P4(u8) must equal zero, which is a contradiction.

In this paper we make use of the following result of Stasheff, and a rigidification
theorem of Boardman and Vogt thereafter.

Theorem 2.36 (Stasheff). A map f : X → Y , where X and Y are strictly asso-
ciative monoids in T op, extends to a unital homotopy An-map if and only if the
map Σf : ΣX → ΣY extends to a map

Bnf : BnX → BnY
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where BnX and BnY are n-truncated bar complexes of X and Y respectively.

Work of Boardman and Vogt [BV73, Chapter 4] provides a technique to replace
a homotopy An-map (unital or nonunital) by an An-map in the homotopy cat-
egory of An-algebras. Given a topological operad O, they make two important
constructions,

• an endofunctor W from the category of topological operads to itself such
that there is a natural map of operads

w : WO → O

which is a weak equivalence, and,

• a functor U : T op[O] → T op[O], where T op[O] is the category of O-
algebras in T op, such that there is a natural map

u : X → UX

which is a weak equivalence and can be extended to a ‘homotopy O-map’
(see Remark 2.38). This map is called the universal homotopy O-map.

These constructions conspire to give us the following theorem, which is essentially
a special case of [BV73, Theorem 4.23(c)].

Theorem 2.37. Let X and Y be An-algebras and u : X → UX be the universal
homotopy An-map. Then for any homotopy An-map f : X → Y has a unique
factorization

X
f

//

u ≃

��

Y

UX
h

// Y

such that h is a WAn-map.

The terminologies used in [BV73] are significantly different from the ones used in
this paper. This can be a potential source of confusion. Hence, in the following
remark, we provide a dictionary between the language in [BV73] and the language
used in this paper.

Remark 2.38. In [BV73] authors study K-colored topological algebraic theories
B for a finite set K called colors [BV73, Definition 2.3]. For any K colored theory
B, they define B-spaces, B-homomorphisms, homotopy B-homomorphisms (which
they abbreviated to B-maps [BV73, Definition 4.1]) and homotopy homogeneous
B-homomorphisms (which they abbreviated to hB-maps [BV73, Definition 4.2]).
An operad B in our language is a topological algebraic theory with one color (i.e.
K = {∗}) in their language, a B-algebra in our language is a B-space in their
language and a B-map in our language is a B-homomorphism in their language. If
we were to define a homotopy B-map between two B-algebras in our language, it
would have been equivalent to the definition of homotopy homogeneous B-map, i.e.
an hB-map in their language. Specifically, when B = An, ‘homotopy An-map’ is an
hAn-map in the language used in [BV73]. This can be deduced from the discussions
in [BV73, Chapter 1.3] and [BV73, Example 2.56].
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3. Moore spectra as Thom spectra

The goal of this section is to obtain the Moore spectrum Mp(i) as a Thom spectrum
associated to a p-adic spherical bundle. We begin with a nontechnical description
of a general construction of Thom spectra following [ABG+14], avoiding the hard
technical work of [ABG+14] and presenting only the gist.

To begin with, we would like to point out that the right adjoint of the S[ ] : T op →
Sp is not the ‘zeroth space’ functor as one would expect because of our choice
of Sp. However, if the category (T op, ∗,×) is replaced with the category of ∗-
modules (M, ∗,×L) (which is Quillen equivalent to T op), then the right adjoint is
naturally weakly equivalent to the zeroth space functor. The [EKMM97] category
of S-module admits a loop-suspension adjunction

(3.1) S[ ] : M −→←− Sp : Ω∞.

A detailed exposition can be found in [ABG+14, Section 3.1]. A detailed discussion
can be found in [Lin13] (also see [ABG+14, Section 3]).

For a ring spectrum R, define GL1(R) to be the pullback

GL1(R) //

��

Ω∞R

��

π0(R)
× // π0(R).

In other words, GL1(R) is the collection of components of Ω∞R that correspond
to the units of π0(R). Similarly, for any subgroup H of π0(R)

×, define H(R) as the
pullback

H(R) //

��

Ω∞R

��

H // π0(R).

When H is the trivial subgroup, H(R) is denoted by SL1(R) in the literature. If R is
an A∞-ring spectrum (over the linear isometry operad), then H(R) is a group-like
monoid in M. Therefore, one can perform the two-sided bar-construction

(3.2) BH(R) = B×L
(∗,H(R)c, ∗),

where H(R)c denotes the cofibrant replacement of H(R). BH(R) is the ‘classifying
space’ for the principal H(R)c-bundle. If R is an E∞-ring spectrum then H(R) is a
grouplike commutative monoid and is represented by a spectrum, call it h(R).

Notation 3.3. The conventional notations for h(R) when H = π0(R)
× and H = {1}

are gl1(R) and sl1(R), respectively. We will adhere to the conventional notations
for these special cases.

Now, we explain the construction of the Thom spectrum associated to a map in
M

f : X → BH(R).
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Let P be the associated principal H(R)c-bundle and P′ be its cofibrant replacement
as a right H(R)c-module. The spectrum S[P′] admits a right S[H(R)c]-module
structure. On the other hand, there is a natural map

γ : S[H(R)c] −→ S[H(R)] −→ R

which makes R into a left S[H(R)c]-module. The Thom spectrum associated to the
map f : X → BH(R) is the derived smash product

M(f) := S[P ′] ∧
S[H(R)c]

R.

The construction of Thom spectra is a functor

(3.4) M : M /BH(R) SpR,

where SpR is the category of R-modules.

Notation 3.5. To distinguish stable homotopy groups from the unstable ones, we
denote the n-th unstable homotopy group functor by

πu
n : T op∗ → Groups.

The functor πu
n can be extended to M∗ via the Quillen adjunction, where M∗

denotes the based category of ∗-modules.

Note that πu
0 (H(R))

∼= H by construction and loop-suspension adjunction im-
plies

πu
n(H(R))

∼= πu
n(Ω

∞R) ∼= πn(R)

for n ≥ 1. Therefore π1(BH(R)) = H and there is an isomorphism

Θ : πu
n(BH(R))

∼=
−→ πn−1(R).

Understanding the construction of the isomorphism Θ is crucial in the proof of
Lemma 3.8.

By adapting Steenrod’s classification theorem in our settings we get

πu
n(BH(R))

∼= PrinH(R)c(S
n),

where PrinH(R)c(S
n) denotes the isomorphism classes of principal H(R)c-bundles

over a cofibrant n-sphere in M. Let Dn
+ and Dn

− be the northern and the southern
hemispheres respectively of the n-sphere

Sn = Dn
+ ∪Sn−1 Dn

−.

Fix a basepoint x0 of Sn on the equator. Let P(f) denote the principal H(R)c

bundle P over Sn associated to a map

f : Sn → BH(R)

The restriction of P(f) to Dn
+ and Dn

−, are trivial bundles as the base spaces are
contractible. Thus P(f) is the pushout in the diagram

(3.6) Sn−1 ×L H(R)c
τ

//

i

��

Dn
+ ×L H(R)c

��

Dn
− ×L H(R)c // P(f)
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where i(x, g) = (x, g), τ(x, g) = (x, θf (x)g) and θf : Sn−1 → H(R)c is the clutching
function defined on the equator sending

(3.7) x0 7→ 1H(R)c .

Assigning each principal bundle over Sn its clutching function produces the iso-
morphism Θ.

Lemma 3.8. Let α ∈ πn−1(R), fα : Sn → BH(R) so that [fα] = Θ−1(α) ∈
πu
n(BH(R)) and M(f) denote the corresponding Thom spectrum. Let αR denote the

map

αR : Σn−1R R ∧R R.

Then

M(f) ≃

{
C(αR) when n ≥ 2,

C(1R − αR) when n = 1.

M(f) associated to a map f : Sn → BH(R), where [f ] = Θ−1(α) ∈ πn(BH(R))

Proof. Since [fα] = Θ−1(α), the clutching function θfα must belong to the class of

α ∈ πu
n−1(H(R)c).

Now we apply the functor S[ ] ∧
S[H(R)c]

R to the diagram in (3.6). When n ≥ 2, we

get M(fα) as the pushout

Σn−1R

0

��

αR
// R

��

R // M(fα).

Now consider the case when n = 1. Because the basepoint maps to the unit
component of H(R) (see (3.7)), we get M(fα) as the pushout of the diagram

R

1R

��

αR
// R

��

R // M(fα).

The result follows from the above diagrams. �

The p-completion of the sphere spectrum Ŝp is an E∞-ring spectrum. The funda-

mental group of BGL1(Ŝp) is

Ẑ
×

p
∼=

{
Z/(p− 1)× Ẑp when p is an odd prime

Z/2× Ẑ2 when p = 2.

Let

f̂p,i : S
1 BGL1(Ŝp)

denote a map representing the class 1+ piu ∈ Ẑ
×

p , where u is a unit. The following
result is a straightforward consequence of Lemma 3.8

Corollary 3.9. The Thom spectrum M(f̂p,i) is homotopy equivalent to Mp(i), the
i-th Moore spectrum at the prime p.
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4. Proof of the Main Theorem 1.3

Realizing the Moore spectrum Mp(i) as a Thom spectrum has a distinct advantage.

Note that the domain and the codomain of the associated map f̂p,i are A∞-spaces,
in fact both are E∞-spaces. It is a consequence of a theorem, originally due to Lewis

[LMSM86, § IX], that if f̂p,i is an An-map then Mp(i) admits an An-structure.

Theorem 4.1 (Lewis). Let X ∈ T op be an An-algebra and admits an An-map

f : X → BGL1(Ŝp)

then the Thom spectrum M(f) inherits a unital An-structure.

Here is a brief explanation of the proof of Theorem 4.1. The fact that f is an
An-map means that we have a commutative diagram

Ki ×X×i
Ki×f×i

//

µi

��

Ki × BGL1(Ŝp)

��

X
f

// BGL1(Ŝp)

for 0 ≤ i ≤ n. The Thom spectrum associated to the map µi ◦ (Ki × f×i) is
Ki

+ ∧M(f)∧i. Since the construction of Thom spectrum is functorial (3.4), we get
a map

µi : K
i
+ ∧M(f)∧i M(f)

for 0 ≤ i ≤ n . It can be shown that the maps µi for 0 ≤ i ≤ n induce an An-algebra
structure on M(f).

Remark 4.2. Lewis showed that the Thom spectrum associated to an O-map

f : X → SL1(S)

where O is any topological operad, admits an O-algebra structure. Lewis worked
in the Lewis-May-Steinberger [LMSM86] category of spectra. In [ABG+14], the
authors generalized Lewis’ result in the [EKMM97] category of S-modules, where
they replace SL1(S) with general grouplike objects such as SL1(R) and GL1(R)
for arbitrary E∞-ring spectrum R, but restrict themselves to E∞-structures only.
However, combining the work of Lewis in [LMSM86, § IX] and [ABG+14] one can
obtain Theorem 4.1.

Corollary 4.3. Mp(i) admits an An-algebra structure if there exists a map

f̂p,i : S1 BGL1(Ŝp)

in the homotopy class 1 + piu ∈ π1(BGL1(Ŝp)) ∼= Ẑ
×

p (where u ∈ Ẑ
×

p ) which can be
extended to an An-map.

Stashef’s work Theorem 2.36, along with Boardman and Vogt’s rigidification result

Theorem 2.37, implies that f̂p,i can be extended to an An-map if and only if Σf̂p,i
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extends to a map f̂
(n)
p,i so that the diagram

(4.4)

ΣS1 ΣBGL1(Ŝp) B2 GL1(Ŝp)

CPn Bn(BGL1(Ŝp))

f̂p,i ι1

f̂
(n)
p,i

ιn

commutes. Note that the exists of f̂
(n)
p,i is equivalent to solving the lifting prob-

lem

(4.5)

ΣS1 B2 GL1(Ŝp)

CPn

ι1◦f̂p,i

f̃
(n)
p,i

in the homotopy category of M∗. If f̃
(n)
p,i exists and (4.5) commutes up to homo-

topy, then CW-approximation theorem implies that there exists f̂
(n)
p,i so that (4.4)

commutes up to homotopy. Choosing the map ΣS1 →֒ CPn to be a cofibration and
using homotopy extension property one can make sure that (4.4) commutes on the
nose.

Since, GL1(Ŝp) is an infinite loop space, a lift in (4.5) is equivalent to the stable
lifting

(4.6)

S gl1(Ŝp)

Σ−2CPn

1+piu

f
(n)
p,i

in the homotopy category of Sp, which can be studied using the Atiyah-Hirzebruch
spectral sequence (AHSS)

(4.7) Es,t
2 := Hs(Σ−2CPn;πt(gl1(Ŝp))) ⇒ [Σ−2CPn, gl1(Ŝp)]t−s

Note that 1 + p is the generator of the subgroup Ẑp ⊂ π0(gl1(Ŝp)) and

pi · (1 + p) = (1 + p)p
i

=

{
1 + piu if p is an odd prime

1 + 2i+1u when p = 2

where u is a unit. If pi · (1 + p) ∈ E0,0 survives the AHSS, then we can conclude
that Mp(i) admits an An-algebra structure when p is odd and M2(i) admits an
An-algebra structure when p = 2. Since the cohomology of CPn

H∗(CPn;Z) ∼= Z[x2]/(x
n+1
2 )

is zero in odd dimensions and Z in even dimension upto 2n, the target of the
dr-differentials

dr : E0,0
r Er,r−1

r

is zero when r is odd and the finite torsion group

πr−1(gl1(Ŝp))
∼= πr−1(Ŝp)

when r is even. This, and and the fact that (4.7) only has finitely many differentials
can be used to estimate the value of i for which pi · (1 + p) survives the spectral
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sequence. We will improve this estimate and conclude the proof Main Theorem 1.3
through the following lemma.

Lemma 4.8. In the AHSS (4.7), pi ·(1+p) ∈ E0,0 is a permanent cycle if i > op(n)
where op(n) is the function defined in Main Theorem 1.3.

Proof. Differentials in AHSS are Z-linear, therefore we have

(4.9) d2r(p · x) = p · d2r(x).

Also an AHSS H∗(X ;π∗(Y )) ⇒ [X,Y ]∗ is natural in the variable X . Since multi-
plication by p map on Σ−2CPn induces multiplication by pr+1 on Hr(Σ−2CPn;Z)
we also have

(4.10) d2r(p · x) = pr+1 · d2r(x).

Combining (4.9) and (4.10), we get

d2r(p · x− pr+1 · x) = p(1− pr) · d2r(x) = 0

Since, 1 − pr is a unit in Ẑp, d2r(p · x) = p · d2r(x) = 0. Thus, if x supports a
d2r-differential then p · x is a d2r-cycle. The result follows from a simple inductive
argument. �

One could hope to improve Main Theorem 1.3, if the map 1 + piu factors through
an infinite-loop space map

(4.11) J : ĩm(J) → GL1(Ŝp)

where ĩm(J) is the infinite loop space associated to a hypothetical connective ‘image

of J’ spectrum whose zeroth homotopy group is Ẑ
×

p . The zeroth homotopy group

of the classical image of J spectrum is Z/2 ∼= π0(S)
× and it is known that the

associated infinite-loop space splits of the unit component of the integral sphere
after completing at an odd prime. Whether we can construct this hypothetical
‘image of J’ spectrum and whether there exists an infinite loop space map J (as in
(4.11)) is the subject of study in the joint work [BK] with N.Kitchloo. We expect
the answers to be affirmative, and hence, we end this paper with the following
conjecture.

Conjecture 4.12. For an odd prime p, the obstructions to A∞-structure on Mp(i)
lies in the image of J-part (the chromatic layer 1) of the homotopy groups of Mp(i).
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