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Introduction
IN an expository article (1) I have indicated the deep connection
between the Bott periodicity theorem (on the homotopy of the unitary
groups) and the index of elliptio operators. It ia the purpose of this
paper to elaborate on this connection and in particular to show how
elliptio operators can be used to give a rather direct proof of the
periodicity theorem. As hinted at in (1) the merit of such a proof is
that it immediately extends to all the various generalizations of the
periodicity theorem. Thus we obtain the "Thorn isomorphism' theorem
together with its equivariant and real forms.

The equivariant case is particularly noteworthy because for this no
proof of the Thom isomorphism theorem is known (even when the base
space is a point) which does not use elliptio operators. In fact a main
purpose of this paper is to present the proof for the equivariant case.
This proof supersedes an earlier (unpublished) proof (7) wbioh, though
relying on elliptio operators, was more indirect than our present one.

Besides the fnnfJft.Tnpmt.nl use of elliptio operators there is another
novel feature of our treatment. This is that we exploit the multiplica-
tive structure of X-theory to produce a short-cut in the formal proof
of the periodicity theorem. The situation is briefly as follows. One has
the Bott map

whioh one wants to prove is an isomorphism. One first constructs (by
elliptio operators or otherwise) a map

and then has to show that a is a 2-sided inverse of /?. Now comes our
novel trick: by using formal properties of a and /} we show that

a£ = 1 => jSa = 1.

Thus we need only prove a/J = 1 and this is much the easier half.
The formal trick just described can be used to shorten substantially

the elementary proof of the periodicity theorem given in (5). In fact,
Quart. J. Matb. Oxford (3), 19 (1968), 113-10.
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M. F. ATIYAH
as we shall see, the proof of (5) is very closely connected with the proof
presented here. The precise relationship will be thoroughly explored
in §7 .

The layout of the paper is as follows. In § 1 we examine the formal
structure of the periodicity theorem and show that all that we need is
the construction of a map a: K~*(X) -> K(X) with certain simple formal
properties. It is in this section that we meet the formal trick mentioned
earlier. In § 2 we discuss the basic facts about indices of elliptic operators
and elliptic families. This discussion will not enter into the technical
analytic details which are by now fairly standard and for which further
references will be given. In § 3 we show how to construct the required
map a. by use of suitable elliptic families and we thus complete the proof
of the complex periodicity theorem. The various generalizations are
now treated similarly in §§ 4^6, with appropriate modifications and
refinements. In § 7 we describe a number of variants on our construction
of a and show how one of these leads essentially to the elementary proof
of (5). The reader who is interested in extracting the quickest elementary
proof of the ordinary complex periodicity theorem will find all that he
needs in § 1 and the end of § 7. Finally in § 8 we discuss the higher-
dimensional analogues of the various alternative methods sketched in
§ 7. We make a few brief remarks about the possibility of deriving an
elementary proof of the real and equivariant periodicity theorems—i.e.
a proof which does not use Hilbert space but only algebraio properties
of representations.

There is quite naturally a considerable overlap between this paper
and the paper (9) written jointly with I. M. Singer on the index theorem.
The main difference is that here the analysis is used to prove a theorem
in topology whereas in (9) the situation is reversed.

As far as equivariant ^-theory is concerned I should also point out
that this theory was worked out jointly with G. B. Segal in (7).

1. Formal structure of periodicity theorem
For a compact space X we have the Grothendieck group K(X) of

complex vector bundles on X [see for example (2)]. It is a commutative
ring with identity. For locally compact X we introduce K with compact
supports: R{X) = K e r { Z ( X + ) ^ K{+)}

where X+ = X U {-(-} is the one-point oompactification of X. Alterna-
tively K(X) can be defined by complexes of vector bundles 'acyclic at oo'
modulo a suitable equivalence relation [see (17) for details]. If we define
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ON BOTT PERIODICITY 115

K-*(X) = f (R«XI) then the tensor product of complexes turns
2 into an anti-commutative graded ring.

If V is a vector bundle over the compact space X then the exterior
algebra A*(F) defines in a natural manner a complex of vector bundles
on V acyclic at oo [cf. (2)]. The corresponding element of K(V) will be
denoted by Xv. In particular taking X = point, V = C, we have a basic
element Ac e K(C). Actually the usual convention is to take its dualf

as basic: b is called the Bott class. Multiplication (externally) by 6 then
defines a homomorphism

0: K(X)-*• K~*(X)
called the Bott homomorphism. The periodicity theorem.—which we
want to prove—is

THEOREM (1.1). fi:K(X) -*-K-*(X) is an isomorphism.

To prove the theorem we will, in later sections, construct a map
a: K~*(X) -*• K(X) whioh will be the 2-sided inverse of /?. For the moment
let us just assume that a iB definedf for all compact X and satisfies the
following axioms

(Al) a is functorial in X,
(A2) a is a i£(.Z)-module homomorphism,
(A3) <x{b) = 1.

In (A3) X = point, b e iT-2(point) is the Bott class and Z(point) ifl
identified with the integers in the usual way.

In a rather routine way we can now extend a in the following manner:

LEMMA (1.2). Let a satisfy axioms (Al), (A2), and (A3). Then a can be
extended to a functorial homomorphism a: K-*~\X) -*• K~*(X) which
commutes with right multiplication by elements of K~P{X).

Proof. We first extend a to locally compact X by the diagram

0 -• K~\X) -> K-*{X+) -> K

(the square commutes by (Al)). Replacing I b y R ' x I w e then get
a maP a: K^~\X) -*• K~*{X)

j" Passage to the dual bundle induces an involution * on K(X). In the present
case the dual also turns out to be the negative: 6* = —6.

t When necessary to make the space X explicit we •write a^.
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116 M. F. ATIYAH

which is clearly functorial. To examine its multiplicative properties we
observe first that (A2) can (using (Al)) be replaced by its 'external' form,
i.e. the oommutativity of the diagram

K-*(X) ® K(Y) - t K~*(XxY)

K(X)®K(Y)tK(XxY)
where X, Y are compact. To see this, note that all arrows are K(Y)-
module homomorphisms, so it is enough to show that

# ( « x ® 1)(« ® 1)) = «Xxr(fl« ® 1)) (« G K-\X), 1 e K(Y))

i.e. that ?r*ax(tt) = <XXXT{TT*U)

where IT:XXY ^-X is the projection. But this follows from the
functoriality (Al) of a. The commutativity of the corresponding
diagram for locally compact X, Y follows now by passage to X+, F+.
Replacing X, Y by R° X X, Rp x X and nning the diagonal map we get
a commutative diagram

K-*{X)

or <x(xy) = a(x)y as required-

J2et7iorA:. Since 2 •^~fl(-^) i8 a11 anti-commutative ring there is no
need to stipulate right multiplication in the lemma. Our reason for
doing so is that in subsequent more general situations the anti-
commutativity is not available. For the same reason let us consider
formally the automorphism 0 of K~*(X) = Z(R«xR' X X) obtained by
switching the two copies of Rs. Then if x, y e K~%(X) we have

6(xy) = yx. (1.3)

Now the maps R 2 xR s ->R s xR 2 given by («, v) h> (v, — u) and
(u,v) h*-(—v, u) are connected to the identity (by rotation through
± Jir) and so induce the identity on K-*{X). Hence, if x i->- £ denotes
the involution of K-*(X) induced by « \-*~ — u on Rs, we deduce from (1.3)

xy = yx = yx. (1.4)

Of course, in our present situation, the map [u, v) H> (tt, — v) is also
connected to the identity so that x = x. This, however, uses the internal
rotations of R9 whioh we wish to avoid because they do not commute
with the full group 0(2) of symmetries of R2, and the situation will be
even worse when R1 is replaced by R2n. The only rotations used in
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ON BOTT PERIODICITY 117

establishing (1.4), on the other hand, arose from the fact that R2xR*
was the product of two copies of the same (linear) space: these rotations
will clearly commute with the symmetries of Rs and similarly for Rtn.
Thus (1.4) will generalize later on whereas the proof that x = x will not:
in fact the equality x = x ultimately gets proved simultaneously with
the periodicity theorem (see the proof of (1.5)).

We now come to the formal argument showing that an a. satisfying
the axioms will yield Theorem (1.1).

PROPOSITION (1.5). Suppose there exists an a satisfying axioms (Al),
(A2), and (A3). Then, Theorem (1.1) holds and a is the inverse of p.

Proof. I t is enough to prove (1.1) for compact X—the locally compact
case follows by oompactincation as usual. Now (Al), (A2), and (A3)
imply at once , . . ,.,

r J <x(ox) = a(b)x = x
for x e K(X). By (1.2), (1.4), and (A3) we have

<x(y)b = oc(yb) = a(b$) = «(&)? = y,

for y e K-*(X). Thus we have

ofix = x, /3ai/ = §.

Since y \-> y is an automorphism these equations imply that j3 and a are
isomorphisms, inverses of each other, and that y \->-y must be the
identity.

Remark. Roughly speaking, and ignoring the involution y !-»• y, the
essence of (1.5) is the following. The axioms trivially imply that aj3 = 1.
On the other hand they also imply that, in the diagram,

K{X) £ K~*(X) J : K~*(X)
a a

fia. = a£ as endomorphisms of K~*(X). Thus we also have j3a = 1. In
other words the identity /?a = 1 for X is a consequence of a/3 = 1
for R » x X

In § 3 we shall construct an a satisfying the axioms. In fact a number
of alternative constructions are possible—as we shall see in § 7—and it
is partly for this reason that we have chosen to axiomatize the formal
situation. I t is also a help, when we come to the generalizations in
§§ 4-6, to have the formal aspects divorced from the differential analysis
involved in the construction of ot.
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118 M. F. ATIYAH

2. Index of elliptic families
In this section we shall review some relevant facts about elliptic

differential operators. A general reference here is (15). For families
of elliptic operators the details of what we need can be found in (18)
orf (16).

Let M be a compact smooth manifold, E, F two smooth vector
bundles over M and let d: S>{E) -*• 3){F) be a linear elliptic differential
operator (&(E) denotes the Bpace of smooth seotions of E). Then d is a
Fredholm operator, i.e. it has closed range and

dimKeri < oo, dim Cokerd < oo.
The index is defined by

indexd = dimKerd — dim Cokerd.
It has the important property of being invariant under perturbation
of d, and in particular depends only on the highest order terms of d.

Suppose now that Q is another smooth vector bundle over M. If Q
were trivial then d would extend in an obvious way to an elliptic operator

dQ:3)(E ® Q) -> 9(F <g> Q).
If Q is not trivial we can construot extensions dQ locally and then piece
these together by partitions of unity. The resulting operator is not
unique but its highest order terms are and so any two choices for d0

have the same index. Thus
Q i->- index dQ

is well defined and extends by linearity to give a homomorphism
K(M) -+ Z

which will be denoted by index^. Actually K here refers to the category
of smooth vector bundles but the usual kind of approximation implies
that this is isomorphio to the ordinary K of continuous vector bundles.

We want now to consider families of operators. Thus let X be a
compact space and let E he & family of vector bundles over M para-
metrized by X. This really means that E is a vector bundle over MxX
which is smooth in the M-direction: we shall not give the precise details
here. If F is another such family then a family d of differential operators
from E to F is a family dx: 2)(EX)-+2>(FX)

with suitable continuity in x (Ex denotes the restriction of E to M X {a:}).
If all the dx are elliptic (of the Bame order) we shall say that d is an
elliptic family. It can be provedt [cf. (18) or (16)] that an elliptic family

t See also: Atiyah and Singer, The index of elliptic operators IV, i n n . of
Math, (to appear).
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ON BOTT PERIODICITY 119

has an index e K(X). If dim Ker dz is oonstant then the family ~Kerdx

formB a vector bundle Kerd over X, similarly for Cokerd and we have

index d = Kerd — Cokerd e K(X).

In the general case we have to modify d in some way before this definition
makes sense. The simplest is perhaps the method adopted in (18) in
which d is regarded as a homomorphism of bundles'!" (of Fr6chet spaces)

One shows that there is a trivial finite-dimensional vector bundle P
over X and a bundle map

so that T = d+<f>: ®(E) ®P-+2>(F)

is an epimorphism.J This implies that KerTx is of oonstant dimension
so that Ker T is a vector bundle. It is easy to verify that

KetT-PeK(X)

does not depend on the choice of P, <f> and so we can take it as our
definition of index d. An alternative method using Hilbert space is
developed in (16).

The index of an elliptic family is a homotopy invariant and so depends
only on the highest order terms. Thus if Q is a family of vector bundles
over M (parametrized also by X) then, just as before, we can form d0

which will be an elliptic family from E (gi Q to F ® Q and index
d0 e K(X) will be independent of choices made. Then

Q I-* index dQ

extends by linearity to give a homomorphism

indexd: K(M x I ) - > K(X).

Actually K(M x X) should stand for the Grothendieck group of bundles
smooth in the M-direction, but the usual kind of approximation shows
that this coincides with the ordinary Grothendieck group.

If Q is a family of trivial bundles over M, i.e. if Q is a bundle on
MxX induced from a bundle Qo on X then there is an obvious choice
for dQ and (when dim Ker dx is constant) we clearly have

Kerd0 ^ Kerd ® Qo,

Cokerd0 ^ Cokerd ® Q&

t S(E) stands for the bundle over X whose fibre at x e X is 9(EX).
% Locally the existence of P followB from standard Bemi-eontinuity properties

of Coker d. We then use a partition of unity to construct a global P .
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120 M. F. ATIYAH

so that index dQ = (index d) <g> Qo. In fact the definition of index dQ in
the general case shows that this formula always holds. Thus

index*: K(M x!)-»- K(X) (2.1)
is a K(X) -module homomorphism.

If Y is another compact space and f:Y -+X a continuous map we
can consider the induced family f*(d) of elliptic operators parametrized
by Y. The definition of index,, shows that it is functorial, that is we
have a commutative diagram

K(MxX) m d e^> K(X)

dxf)*

X(M X Y) md6Xr"°> K(Y).

In particular if X is a point (so that M X X — M and d is just an elliptio
operator on M) we can consider the constant family f*{d) parametrized
by any compact space Y, f:Y -»• point being the constant map. By a
slight abuse of notation we shall omit the symbol /* and write

index,,: K(M x Y) -+ K(Y)
instead of index^,^.

Summarizing we may state our results in the form of a proposition:

PROPOSITION (2.2). Let d be an elliptic differential operator on a com-
pact manifold M. For any smooth vector bundle Q on M let dQ be an
extension of d to Q (i.e. symbolically a(dQ) = a{d) ® IdQ). Then

Q i-»- index dQ

defines a homomorphism
indexd: K{M) -+ Z.

Moreover there is a functorial extension of this to compact spaces X, so that

for each X indexd:K{Mxl)^ K(X)

is a K(X)-module Tiomomorphism.

This proposition is the key result on indices of operators which we
need. What remains is to choose appropriately the manifold M and
the operator d for the various applications.

In fact we shall choose very classical operators on spheres andprojec-
tive spaces and, as we shall show in § 7 and § 8, it is possible in these
cases to define index^ in a number of alternative ways. One variation
in particular (method (2)) uses only the definition of the index of an
(abstract) family of Fredhohn operators (on a fixed Hilbert space) as
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ON BOTT PERIODICITY 121

developed in the Appendix to (2). It is therefore not essential to use
the index of more general families of elliptic operators asin(16)or(18),
but we have presented things in this context because it seems concep-
tually clearer.

Remark. This proposition extends quite straightforwardly to Kg-
theory, provided we use a C-invariant operator d, and to iT-K-theory,
provided we use a Real operator d. These extensions are covered by
the treatment in (18) and we shall use them in the later sections.

3. Proof of periodicity

We shall apply Proposition (2.2) with M being the complex protective
lineP^C) and d being the d operator from functions to forms of type (0,1):

. dfj.f^ldz.

For any holomorphio vector bundle Q over PX(C) the operator 3 has a
natural extension 50 and it is well known [of. (10)] that

Cokera0 ^

where E°, H1 denote the oohomology groups of the sheaf (P(Q) of germs
of holomorphio sections of Q. Now for Q = 1 the trivial line-bundle
we have H°^C, W = 0,

while for the dualf H~x of the standard line bundle H over Pl we have

E° = H1 = 0.

Thus for the homomorphism

indexj: K^) -> Z

we have indexj(l—H-1) = 1. (3.1)

We now identify P1 with the 2-sphere S2 and so with the one-point
oompactification of R*. Thus we have the exact sequence

0 -> ̂ (R8) -• Z(P^ -X Z -> 0,

where e is the augmentation. The elements 1—H and 1— H~l are in
the kernel of e and hence are elements of K(R2). In fact \—H is the
element denoted in § 1 by Ac and so

t Standard notation for cohomology and for Hopf bundles leads to an unfortu-
nate, but unavoidable, clash of notation involving H.
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122 M. F. ATIYAH

Thus equation (3.1) asserts that
index8(6) = 1. (3.2)

Returning to § 1, we recall (Proposition (1.5)) that to prove the
periodicity theorem we have only to define a homomorphism

for compact X satisfying axioms (Al), (A2), (A3). We are now in a
position to construct this a. We define a as the composition

K~\X) = K(R}xX)-^K(StxX)^^XK(X).
The functoriality (Al) and ^(XJ-module property (A2) follow from
(2.2), and (A3) is just equation (3.2). The periodicity theorem (1.1) is
therefore proved.

4. Equivariant case
Let O be a compact Lie group, X a compact O-space, then we have

the group KG(X) [see (17)]—the Grothendieck group of O-vector
bundles over X. Let F be a complex G-module, then, just as in § 1,
the exterior algebra A*(F) defines an element

\ v e Ka(V).
If 1 denotes the trivial 1-dimensional C-module then the protective
spaoe P ( F © 1) is a oompactification of F and so we have a natural
homomorphism

, Kg{y)

Now A*(F), regarded as a complex of vector bundles over F, has a
natural extension to P(V ® 1) [see (2) 100] and this shows that

;(Ar) = 2(-l)<^<A<(F), ' (4.1)
where H denotes the standard line-bundle on P(V © 1). Taking duals
W 6 g e t j(Xv) = 2 (_1)«S-W(F»). (4-2)

We are now in a position to formulate the main theorem of equivariant
iT-theory:

THEOEEM (4.3). For any compact O-space X and any complex Q-moduU
V, multiplication by Xv induces an isomorphism

Remark. Sinoe products are compatible with duality (a i-> a*) it
follows of course that we can replace A* by Xv in this theorem. In fact
Xr and Xv differ by a unit of Ka(X) and it is not hard to show that

AF (n = dim V). (4.4)
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ON BOTT PERIODICITY 123

To prove the theorem we proceed on the same formal lines as in § 1.
Proposition (1.5) extends to the present more general situation—simply
replace R* by V throughout—so that we have only to construct a map

d:Ko(VxX)-+Ko(X)
which is functorial in (compact) X, a iT^X)-module homomorphism and
satisfies the analogue of (A3), namely

a(A£) = 1 e R(G), (4.5)

where R(O) = KG{point) is the representation ring of O.
To construct a we consider the Dolbeault complex on the projectdve

spaoe P(V © 1). Using a G-invariant hermitian metric we construct
the elliptic operator D _ g+g«,. Q + ^ Q -

where Q+ denotes the direct sum of all forms of type (0, 2k) and Cl~ the
direct sum of forms of type (0,2/fc+l). For details concerning this
construction we refer to (15) 325. For any holomorphic O-vector bundle
Q on P ( F © 1), D has a natural extension DQ and we have natural
(G-module) isomorphisms:

CokerZ>Q ^
Jt>o

Thus indexDg = J (—1)<#*(P, 0(O) e .8(0).

Now for the powers of the standard bundle H one has [cf. (11) (18.2.1)

and (18.2.2)]: ^ p > 0{H^)) = 0 (1 < r < n)

for all i (n = dim V = dim P(V © 1)), and

H'iP, <P) = 0 for t Ss 1

^ C for » = 0.
Hence, by (4.2), we have

indexDQ = 1 for Q = j(X*). (4.6)

Finally, then, we define the required map a as the composition

Ka(VxX) i Ka{P(V © 1) XX) - ^ 3 - Ka(X).
The functoriality and module properties follow from the Zg-version
of (2.2), and (4.5) follows from (4.6). This completes the proof of
Theorem (4.3).

Suppose now that O = U(n), V = C* and that X is a free G-space
with X/O = T. Then

s K(7), KO(VX X) g* K(E),
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124 M. F. ATIYAH

where E = (VxX)jO is the vector bundle over Y associated to the
prinoipa! bundle X. Moreover the element AF e Ka(VxX) corresponds
by the above isomorphism with the element Xs e K(E), Hence as a
special case of the equivariant periodicity theorem we get the Thom
isomorphism theorem:

THBOKBM (4.7). Let E be a complex vector bundle over the compact
space Y. Then multiplication by XB induces an isomorphism

X(Y) -+ X(E).

More generally if H is another group and Y is an 5-space with E an
.ff-veotor bundle then we apply (4.3) with O = U(n)xH. In this case
we have [see (17) (2.1)]:

Ka(X) ^ KB(Y), Ka{VXl)S XB(E),

and so exactly as above we get:

THBOBEM (4.8). Let E be an H-vector bundle over the compact H-space Y.
Then multiplication by XB induces an isomorphism

KH(Y) -> KS(E).

Remark. The reasoning above (due to G. B. Segal) shows that, once
one has passed to equivariant theory, the periodicity theorem in the
form (4.3) really includes the apparent generalization of the Thom
isomorphism theorem.

Taking X = point in (4.3) and using the exact sequence for the pair
B{V), S(V)—the unit ball and sphere of V—we obtain (as in (2) (2.7.6))
a formula for Kg(S(V)). This gives essentially the Theorem stated
without proof in (1), § 3. The details will be developed elsewhere.

Besides its application to the periodioity theorem (4.3) the Dolbeault
complex of protective space can also be used to establish the 'splitting
principle' for JT0-theory as we shall now explain. Just as above,
replacing P(V © 1) by P(V), the elliptio operator D associated, to the
Dolbeault complex defines a functorial JTo(X)-homomorphism

index,,: K^P(V) x I ) - > Ka(X).

Since for the sheaf 0 on P(V) we have

E°(P(V), 0) e* C, E*{P(V), (P) = 0 (q > 1)

it follows that index£>(l) = 1 e Ka(X).
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ON BOTT PERIODICITY 123
This implies

PROPOSITION (4.8). If X is a Ospace and V a complex Q-module
then the Ko{X)-homomorphism

Ko(X)-+Ko(P(V)xX)

has a functorial left inverse. In particular it is injective.

Suppose in particular we take

F=O, O=U(n)xH,

where H acts trivially on C1*. Since P(Gn) = U(n)l(U{n—1) x C7(l)) we

and the homomorphism of (4.8) becomes just the map

induced by the inclusion U(n—l)x 17(1) ->• U(n). By iteration this
finally gives

PBOPOSTTIOIT (4.9). Let j : T -> E7 be the inclusion of the maximal torus
in the unitary group U = U(n). For any compact U-space X let

j*:Kv(X)-+KT(X)
be the map induced by j . Then there is a functorial homomorphism of
ZviD-fnotoka: h:^(X)-,Kn(X)

which is a left inverse of j * . In particular j * is injective.

Remarks. (1) We have obtained j * by iterating the construction
of (4.8) using protective spaces. However we can equally well define it
at one go by using the Dolbeault complex of the flag manifold U/T.
The important point is that the sheaf oohomology of TJ\T—like that
of any rational variety—has the same properties as for projective space.
Thus, more generally, we can replace U in (4.9) by any compact connected
Lie group: it being well known that OjT has the structure of a homo-
geneous rational algebraic variety.

(2) Proposition (4.9) amounts to a 'splitting principle' because it
enables us, in many problems, to pass from the unitary group to the
torus. The first proof of equivariant periodicity, given in (7), was on
these lines, and other applications, mmilftr to those in (2), have been
given in (17). A particularly striking application of a rather different
kind will be given in (8).

(3) An alternative approach to (4.8) and (4.9) is to use the isomorphism
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126 M. F. ATIYAH

where S1 = {A e C; |A| = 1} acts on 8(V) c V by scalar multiplication.
We can now calculate XOxSi{8(V)) using (4.8) as indicated above, and
we obtain in fact the complete structure of KJ^P(Vj), showing that it
is a free module of finite rank (= dim V) over R(0) with canonical
generators. This approach will be developed on a future occasion.

5. Real case
In (3)f we introduoed a functor KR{X) defined for spaces with

involution (also called real spaces). To avoid possible confusion with
the ordinary use of real (e.g. for vector spaces or vector bundles) we
shall write Real (with a capital R) for the category with involution.
Thus a Real vector space is a complex vector space which is the com-
plexification of a real vector space. In this section we shall show how
to extend the results of § 4 to KR.

First we introduce the equivariant form of KR. Thus let X be a
Real space, O a Real Lie group and let X be a Real (?-space. This
means O has an involutory automorphism g !-»• g and that ~gx = gx.
A Real O-vector bundle over X means a complex O-vector bundle E
with a compatible Real structure, so that E is both a Real vector bundle
and a Real G-spaoe. The Grothendieck group of Real G-vector bundles
over X is denoted by KRa(X).

If V is a Real C-module then the exterior algebra of V defines as
usual an element Xr e KRa(V) and we can formulate:

THBOBEM (5.1). For any Real compact O-space X and any Real 0-
modvle V multiplication by A* induces an isomorphism

Proof. The proof proceeds exactly as in § 4 for the complex case and
we shall simply mention those points which require special comment.
In the first place, as observed in § 2, one has to extend Proposition (2.2)
to Real operators (in the sense of (3)). Thus a Real elliptio differential
operator d o n a Real manifold M defines functorially a homomorphism

KRa(M x X) -)- KRa(X).

Next we have to observe that if V is a Real ©-module P(V © 1) is
a Real (7-spaoe and the Dolbeault complex is a Real elliptic complex.
The involution on P(F© 1) can be regarded as an isomorphism of the
complex manifold P with the complex conjugate manifold P and so

f (3) is also reprinted aa part of (2).
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ON BOTT PERIODICITY 127

maps the Dolbeault oomplex of P isomorphically onto that of P. Thus,
choosing a Real ©-invariant hermitian metric on P, the operator
D = d+d* of § 4 is Real.

As in § 4 we can also use the Real elliptic operator D to define a left
inverse for

KRg(p{V) x z ) >

where V is a Real module for the Real group 0. Since T (the standard
maximal torus of U(n)) and the other intermediate groups used in the
proof of (4.9) are all Real subgroups of U(n) the proof applies also in
Xi2-theory to give

PBOPOSTTXON (5.2). Let j:T-+U be the inclusion of the. standard
maximal torus in U «= U(n), and let X be a Real U-space. Then

has a functorial left inverse

which is a homomorphism of KRn(X)-modules.

Remarks. (1) This proposition, whioh will be used crucially in (8),
is one of the justifications for ZiJ-theory—as opposed to ZO-theory.
The point is that the analogue of (5.2) for KO (i.e. when U and T are
taken with trivial involutions) is false.

(2) Again, as in § 4, j+ can be defined directly using the flag manifold
UjT—whioh is a Real algebraic variety. For a general compact con-
nected lie group O the same methods will apply provided the involution
on 0 fixes a rim-rim n.1 torus T and interchanges positive and negative
roots.

6. Spinor case
So far the theorems we have proved have compared K(X) and K{ V X X)

with V a oomplex vector Bpaoe. We want now to consider the case when
V is real and for this it ia necessary to introduce the Spinor groups.
A suitable referenoe for the material we need is (6) and (4), § 8.

When V is a real vector space (or C-module) the appropriate oom-
pactification for our purposes is not the protective space but the one-
point compactification F+, namely the sphere. The elliptio differential
operator on the sphere whioh we need is the Dirao operator [cf. (15) 92
or (4) § 8 for details]. More precisely, m^rrming dim V = 0 mod 8 the
total Spin bundle 8 of the sphere decomposes into two halves

8 = 8+ © 8-
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128 M. F. ATIYAH

and the total Dirac operator maps 8+ to 8~ and 8~ to 8+. Moreover
in these dimensions all the bundles and the operator are real We shall
be interested in the operator D from 8+ to 8~ which is the restriction
of the total Dirac operator. Since the Dirao operator is self-adjoint its
restriction from 8~ to 8+ is D*. If we regard 7+ as the homogeneous
space Spin(8n-f-l)/Spin(8n) then D is a homogeneous operator. Thus
if V is a Spin G-module, meaning that the action on V factors through
a given homomorphism O -*• Spin(8n), then D is a (?-invariant real
elliptic operator. Henoe, by the real version of (2.2), it will induce a
homomorphism

index^: KOa(V+ x l ) - ^ KO^X).
The next stage in our programme is to find an element

u eKOa(V)cKOo(V+)
withf index^u = 1 e RO(O) = K©^(point).
If we use the Riemannian connection on the sphere to extend the Dirao
operator to act on 8 ® 8, then it is not hard to Bhow that we obtain
the operator d-\-d* acting on the exterior differential forms. Thus the
kernel of this extended Dirao operator coincides with the spaoe of
harmonio forms on the sphere and so with its cohomology. Henoe we
can compute index^ 8 + and indexj, 8- in terms of the oohomology of
the sphere. To avoid the work involved in identifying d-\-d* with the
extension of D we can however appeal to a general principle, explained
in (10), according to which the index e B(O) of a homogeneous elliptio
operator on a homogeneous spaoe O/H depends only on (the difference
of) the homogeneous bundles (i.e. 5-modules) where the operator acts
and not on the operator itself. Now by explicit character computations
[see (4) §§ 6 and 8] we have the following identities in SO(Spin(8n)):

where A+, A~ are the two J-Spin representations, A* are the exterior
powers of BBn and Alp, A ?̂ are the two irreducible components of A1*
given by the eigenvalues of * (the duality operator). Prom these it
follows by the principle explained above that

indeij, 8+—indexo 8~ = Euler characteristdo of V+ = 2,
indexx>£++mdexZ)/3- = Hirzebruch signature^ of F+ = 0.

t B0{O) stands for the Grotheadieck group of real G-modulee: it is a subgroup
oflHQ).

X See (4), j 6 for the elliptio operator whose index is the Hirzebruch signature.
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ON BOTT PERIODICITY 129

Note that the connected group Spin(8n) acts trivially on the oohomology
of F+ and so the Euler characteristic) is equal to 2 as an element of
RO Spin(8n) and hence of RO{O). By subtraction we now obtainf

indeiX)5+= 1 e RO(O).
Returning to the original Dirac operator we consider the effect of the

anti-podal map on the sphere. This is compatible with the Dirao
operator (and with the action of Spin(8n)) but it interchanges S+ and
8~. It therefore induces a module isomorphism

showing thatj index^ 1 = 0 e BO(O).
Hence the required element u e KOg{V) can be obtained by subtract-

ing from 8+ the trivial bundle with fibre 5+ (the fibre of S+ at oo). Thus
u is just the element given by the graded Clifford module M associated
to A = A+ © A- in the manner of (6), § 11. Note that, since O acts
through Spin(8n), it acts on M compatibly with its Clifford structure.
This element u plays a fundamental role in JTO-theory, as explained
in (6), and to give it aname we shall call it the Bott class of the module F.

We now have all the necessary data to proceed formally aa in the
preceding seotions and prove

THBOKKM (6.1). Let X be a compact O-space, V a real Spin O-modtde
of dimension 8n,andletu e KOg(V) be the Bott class of V. Then multiplica-
tion by u induces an isomorphism

K0o(X)^K0a{VxX).
Remarks. Taking V trivial of dimension 8 ft>n'« gives the mod 8

periodicity of K0o. Also taking 0 = Spin(8n) it gives the Thorn
isomorphism theorem on the lines explained in § 4, for Spin(8n) -bundles
[cf. (6) (12.3) (i)].

We want now to obtain the Real version of this theorem. We suppose
therefore that 0 is a Real group, that X is a Real G-space and that V
with trivial involution is a Real (?-space (O acting linearly). As before
we assume dim V = 8n. Furthermore we assume that V is a Real
Spin* ©-module, i.e. the action of 0 on V factors through a Real homo-
morphism Q _^ sPin<=(8»),

where Spine(8») = Spin(8n.) xZ l U{\)

•f An alternative •way to derive this equation is to apply the fixed-point
formula of (4): we leave this amiming exercise to the reader.

X In fact by a result of Lichnerowicz [see (14)] there are no harmonics spinors
on the sphere so that KerD = KBTD* = 0.

MM.2.1B K
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130 M. P. ATIYAH

is the group defined in (6), § 3 and the involution on it is induced by
complex conjugation of ?7(1). A graded Real module for the Clifford
algebra C8n ®R C then defines a Real representation for Spinc(8n). Thus,
corresponding to the real representation A of Spin(8n) there is a Real
representation Ae = A <g>R C of Spine(8n). This defines a Real vector
bundle 8° over the sphere

F+ = Spinc(8n+1)/Spinc(8»).

In fact 8" = 8 (g>R G and it decomposes into 8% and £ 1 . The (complexi-
fied) Dirac operator acts on 8" as a Real operator and its restriction D
from 8% to S°_ is also ReaL Since D is compatible with the action of 0
it induces as before a homomorphism

index^:KRa{V+y.X) -> KBa(X).
Now the graded Real Clifford module Mc associated to Ae defines,

by the construction of (6), § 11, an element u e KBa{V+)—called again
the Bott class. The calculations made before show that

index^u = 1 e KBo{pom.t).
Hence we obtain

THEOBEM (6.2). Let 0 be a Real group, X a Real Ospace, O -*• Spin°(8n)
a Real homomorphism. Let V denote R8n with induced G-action and trivial
involution and let us KBO(V) be the Bott class of V. Then multiplication
by u induces an isomorphism

KRa(X)-+KRa(VxX).
Remarks. (1) Taking all involutions trivial we recover (6.1).
(2) Taking X = T x <Ŝ ° where 8^° denotes ae in (3) § 3 the anti-podal

0-sphere (acted on trivially by (?) we have as in (3) (3.3)
KRaiX) a* Kg(F), KRa(VxX) « I # x 7 ) .

Now take O = Spine(8n) and we deduce the Thorn isomorphism for K
for Spinc(8n)-bundles [cf. (6), (12.3) (ii)]. Note that the restriction to
8n dimensions is not significant because, by the periodicity theorem (1.1),
we can alter dimensions by even integers.

We have now oomputed KBa(VxX) in the two extreme cases
(i) V with complex structure,

(ii) F with trivial involution.
In fact we can combine these together in one further generalization.
Following (3) § 4 we let Cliff RP* denote the Clifford algebra (over R)

of the quadratic form — (> y\ -\- > af) with the involution induced by

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/article/19/1/113/1570047 by U
niversity of R

ochester, EG
 M

iner Library user on 24 O
ctober 2024



ON BOTT PERIODICITY 131

(y, x) h> (—y,x). We form the complexification Cliff BPA X R C and
extend the involution by conjugation on C. The group of units of this
algebra contains the group Spine(j3+g) and, with the induced involution,
we denote it by Spinc(p, q). On the lines of (3) and (6) it is not difficult
to show [of. also (13)] that, if p = gmod8, the representation Ac of
Spine(p+gi) has a Real structure compatible with the Real structure of
Spinc(p, q). This implies that the bundles S^, Si. over (iJ"-«)+ are Real
and that the Dirac operator from 8°+ to 8L is also Real. Thus finally
we get

THBOBKM (6.3). Let 0 -»- Spine(p, q) be a Beat homomorphism with
p = qmod8 and let u sKB^B"- 9 ) be the Bott class. Then, for any real
Ospace X, multiplication by u induces an isomorphism

KBa(X) -+KRa(B™xX).

(6.2) is, of course, the special case of (6.3) with p = 0. On the other
hand we can take p = q and observe that the homomorphism

I: U(p) -> Spi

of (6), § 5 is actually a Real homomorphism

As in (6) (5.11) one can then show that this homomorphism is com-
patible with the basic modules used to define the Bott classes. This
shows that (5.1) is also a special case of (6.3). Thus Theorem (6.3) is the
most general of its type.

7. Comparison with elementary proof

In this section we shall examine the proof of periodicity given in § 3,
discuss a number of variants of it and show how it is related to the
elementary proof given in (5). Since our aim will be purely explanatory
we shall only indicate proofs and many technical points will be passed
over.

We return to the situation of § 3 where we used the d operator on Px

to define the crucial homomorphism

index,: K(P1 xX)-*-X.

There are in fact two other methods of constructing this homomorphism
which amount to minor variations on the same theme. We still use the
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132 M. F. ATIYAH
basic notion of the index of an elliptic family but the d operator is
replaced by

(1) a boundary value problem for the disc,
or (2) a singular integral operator on the circle.

Both of these are very classical and we shall now briefly describe them.

Alternative (1)

We take the differential operator in the diso \z\ ̂  1

(u,v)

With the boundary condition u—v = <f>. More formally we oonsider
the operator T denned by

M -(£.£.<—> I «•).
where u | S1 denotes the boundary value of u. Then, whether considered
on C00 functions or in suitable Hilbert spaces, T is a Fredholm operator
[(12) Chapter X]. In fact it is clear that Ker T consists of the constants
while Coker T — 0 so that

index T = 1.

Except that we have identified the interior and exterior of the unit disc
by z »-• z -1 it is clear that T is just the 'transmission operator' corre-
sponding to d on Px.

In dealing with the 5 operator in § 3 it waa important to extend it
to an operator ds on a smooth vector bundle E on P r Now E can always
be constructed by taking two vector spaces E°, E™ and a smooth map

unique up to homotopy [(2) § 2.2]. For the operator I7 it is more con-
venient to define its extension Ts by

where u, v are vector-valued functions with values in E°, E1" respectively
and/, u | S1 denotes the function S1 -*• E" given by

zy+f(z)u(z) (|2| = 1).

By approximation we can, if we wish, assume / is a polynomial in z, z.
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ON BOTT PERIODICITY 133

Then E is a holomorphic vector bundlej" on Plt 5 has its natural exten-
sion and it is easy to see that

K e r ^ = H°(Plt 0{E)) ^ Ker Tf.
Passing to ad joints one also gets

Coker^ ^ H^(Plt 0(E)) ^ Coker2>
so that indexj = index2}. (7.1)
Just as in § 3 we can define Tf for families parametrized by X and BO
obtain a homomorphism

indexj, :If^xl) ->K(X).
The proof of (7.1) also extends to families and shows that indexj, is the
same homomorphism as indexj.

Alternative (2)
Let E° be a vector space and let

/ : S1 -> Aut(J2°)
be a smooth map. Then we introduce an operator Af, acting on the
space of functions S1 -> E°, by

A,(zne) = zn/(z)e (* > 0)
= zne (n < 0)

(here znf{z)e denotes of course the function z h> znf(z)e, for \z\ = 1 and
e e 22°). This is well known to be an elliptic pseudo-differential operator
[(9), § 8] and so index Af is well defined.

The operator Af is intimately connected with the boundary value
problems discussed above. Consider the operator Sf defined by

This is an elliptic problem with a pseudo-differential boundary condi-
tion and it is the composition of Ta with the map

(u, v, w) H* (u, v, Afw)
(where / denotes the identity automorphism of i?0).

SinoeJ index T^ = 0 we have
index 5y =

•f In fact E has a natural holomorphio struoture even if/ is only differentiable
[see H. Rohil BuU. Amur. Math. Soe. 68 (1962), 126-60].

J This corresponds to the fact, used in § 3, that
index Bg-i = 0.
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134 M. F. ATIYAH

On the other hand it is dear that

and by considering adjoints we get
Coker 8fg* ^

Thus, finally, we have
index Af = index Sf = index T^. (7.2)

Just as with d and 7} so we can extend Af to families parametrized
by X. Since every bundle over P^xX can be constructed from a family

° f m a P 8 f : &
it follows that / H- index Af defines a homomorphism

index^: K(PX x l ) ^ K(X).
The proof of (7.2) extends to families and shows that

index -̂E1) = indexy^-1^). (7.3)
We shall now discuss the relative advantages and disadvantages of the

three alternative methods—the use of d we shall refer to as method (0).
It is fairly clear that methods (0) and (1) are very close. Method (1)

has the advantage that we need only work with trivial bundles so that
some of the technical complications of families of operators are avoided,
but on the other hand we need the analysis of boundary value problems
which is more delicate.

Method (2) has one drawback, as it stands, and that is we have to
take the bundles E° and Ew to be equal. This precludes a generalization
to the equivariant case. On the other hand (2) has many advantages.
It is very much the simplest to define technically. In fact/ i-»- Af defines
at once a map a ; aQL{Nt C) -

where £2 denotes the space of smoothf maps
f:&^GL(N,C) (/(!) = 1),

HN is the Hilbert space of Z^-functions S1 -*• G", and ^(HN) denotes the
spaoe of Fredholm operators on HN. If we topologize Q by sup|[/|| (i.e. as
a subspaoe of the continuous loop-space) then a is continuous and
induces, for any compact X,

where [X, Y~\ denotes the set of homotopy classes X -*• T. By (2),
Appendix, we have the map

index: [X, ^-•-K"(X)
f In fact we could take all continuous maps.
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ON BOTT PERIODICITY 135

(which is actually an isomorphism [(2) (Al)]). From this, and letting
N become large, ax gives at once the required map

K-*(X) -> K{X).

Moreover, if we restrict (by approximation) to maps / which are given
by finite Laurent series in z, it becomes possible to define index At

purely algebraically, without resorting to analysis in Hilbert space.
This brings us essentially back to the elementary proof of (5) where
the analysis has been banished from the scene. As this point is of some
interest we shall explain it in detail.

We suppose then that
f:Xx8l-+GL(N,C)

k

is a map of the form f(x, z) = 2 °n(x)zn>
n--k

where each an is a continuous map X -*• OL(N, C). We want an
algebraic definition of index ̂ e K(X). According to the method of
(2), Appendix, for defining the index of a family of Fredholm operators
in Hilbert space H we must first choose a closed subspace V c H of
finite co-dimension and meeting the kernels of all the operators in 0 only.
For our family Af there is an obvious choice for V, namely the space
spanned by the vectors zHt with u e CN and n ^ 0 or n > i (i.e. we
exclude the powers z, z*,..., zk). It is clear that

V n K e r ^ , = 0 for all x e X

because the positive and negative powers of z are now kept apart. It
follows that the spaces H{Ajt(V) are of constant dimension and form
a vector bundle over X which we denote by HjA^V). According to (2),
Appendix, we define index Af e K{X) by

index Af = lcN—HjA/y).

We shall now try to express HjAj{V) in purely algebraic terms. If we
introduce the polynomial p defined by

p{x,z) = zkf{x,z)

we have an obvious isomorphism

Now Ap-i:H -*• H is clearly a left inverse of Ap so that
HIAP(H) a* Ker^ - i .

But the kernel of A^i consists of vectors (u, v) with p~^u-\-v = 0
(u involving powers z* with n > 0 and v involving powers with n ^ 0)
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136 M. F. ATIYAH

and this equation implies that u is a polynomial. Thus Ker^i^-, is
isomorphio to the space of those polynomials u (with values in G") for
which Px^v n a s n o positive powers in its Laurent expansion. Suppose
now we regard px as a module homomorphismf

q»]*-*q«]"
and consider the ookemel Mp^ This is a C[z]-module annihilated by
d = d e t ^ . Since d(z) ^ 0 on \z\ = 1 we can decompose it as d = d+d~,
where d+(z) = 0 has all its roots inside \z\ = 1 while d'(z) = 0 has its
roots outside \z\ = 1. The module M^ can then be decomposed
naturally as J£ . = Jf+© Jf^

where M^ is annihilated by d+ and M^ by d~. From the description
of Ker.4p-i given above it follows that we have a natural isomorphism

Hence finally we get a purely algebraic definition for index Af, namely
index Af=kN-M+ (7.4)

where M£ is the bundle with fibres £
The formula (7.4) is exactly the one which ooours in the elementary

proof of (5). The quickest elementary proof of the complex periodicity
theorem is therefore obtained by using Laurent maps/as in (5), defining
index .4^ as in (7.4), and then appealing to the formal axiomatic reasoning
of §1.

The algebraic method, obtained as we have just explained, by approxi-
mation from method (2) we shall refer to as method (2A). It has one
important advantage over method (2), namely it does extend to the
(one-dimensional) equivariant case, as is clear in (5). The reason for this
is that approximation enables us to separate the positive and negative
powers of z. Whereas in method (2) we need the identity operator on
negative powers (and so require E° = 2?00), in (2A) we ignore the negative
powers and define our operators only on the positive powers. Of course
the same effect can be achieved, independently of approximation, by
replacing the operator Af by the operator J

given by t* (-»- Pfu, where P is the projection H -*• H+, and H+ is the
closed subspaoe of H involving only positive powers of z.

t To fit with the Hilbert space it would be better to make p act on rC[r]ff

but this makes no essential difference to the modules.
X This is a discrete (matrix) analogue of the Wiener-Hopf operator.
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8. Higher-dimensional case
In the preceding section we discussed only the complex one-dimen-

sional periodicity. In this section we shall give briefly a similar discussion
of the more general higher-dimensional cases of §§ 4—6. For simplicity
we shall restrict ourselves to the Spin(8n)-case of § 6. This is typical of
the other cases.

The basic operator of § 6 is the Dirao operator on S*" from 8+ to 8~
(S± denoting the two halves of the Spin bundle over S8*). Just as in § 7
we can replace this by a boundary value problem on the unit ball B6*
inf R8n or by pseudo-differential operators on tf8"-1.

Method (1)
We consider the total Dirao operator D of R8n. If A = A+ © A~ is

the Spin representation of Spin 8n and if u, v denote functions on R8n

with values in A+, A~ respectively, then the Dirao operator switches
factors: (u, v) h> {Dv, Du). On the boundary JS8"-1, of the unit ball B8*,
Clifford multiplication can be used to identify A+ with A". We can
therefore consider the boundary condition

u{x)-v(x) = <f>(x) {x e S*"-1)

for the Dirao operator. This is very similar to the boundary value
problem of § 7 except that here our problem has index 0 instead of
index 1: it corresponds more to the operator Tt than to the operator T.

More generally let / : /S8*-1 -> ISO(J0°, E") (8.1)

be a smooth map and define the operator Tf by

T/u, v) = (Dv, DuJ.u | SBn-1—v | /S8*-1),

where u, v are functions on B*n with values in A+ (g> E° and A~ <g> 22°°
respectively. One can show that T} is coercive and so gives a Fredholm
operator. Moreover taking JE/° = A+, E" = A~ and / to be given by
Clifford multiplication one can show that index 2} = 1.

Method (2)
We consider now the (real) Hilbert space H of L1 sections of the Spin

bundle of fif8*-1. This decomposes naturally as

H = H+ © H~, (8.2)

where 5 * consists of those u which are boundary values of hannonio
sections of A± over -B8* (harmonic means satisfying Du = 0). Let P

| We could also take B8" with the curved metrio, i.e. the upper hemisphere.
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138 M. F. ATIYAH

denote the projection H -*• E+: it is a pseudo-differential operator on
£Bn-i p o r any m a p / as in (8.1) we consider the operator

Bf: H+ <g> E° ̂  H+ <8> E"

given by B#u) = (P ® /)/u,

where 7 is the identity on iff". Then Bf e &R the space of real Fredholm
operators and f t-> Bf induces a map

Q^-WLiN, B) -> PR

and so a homomorphism

KO-*n(X)

Both methods (1) and (2) apply as they stand to the equivariant case.
Moreover it is clear that in method (2) we can approximate / by finite
sums 2 / p where p runs over the irreducible representations of Spin(8&)
(we decompose H under the action of Spin(8&)). Since the decomposition
(8.2) is compatible with the action of Spm(8i), and can presumably be
described purely algebraically, it Beems plausible that Bf can be defined
purely algebraically (when/is a finite sum ]£/„)• Further examination
of the representation theory of Spin( 8k) might then lead to an elementary
proof of periodicity in full generality, but this remains an open question.
In connection with (8.2) one might conjecture, in analogy with the
complex case of § 7, that H+ and H~ are respectively the positive
(negative) spaces of the Dirac operator on 86*-1 (recall that the Dirao
operator is self-adjoint).

In conclusion we should point out that there is a somewhat different
way of denning the baetio homomorphism

from the ones discussed so far. To explain this let us recall [of. (9)] that
an elliptic operator P on a compact manifold M defines, via its symbol
cr(P), an element [cr(P)] 6 K(TM), where TM denotes the tangent bundle
of M, and that index P depends only on [CT(P)]. Thus the index is
essentially a homomorphism

index: K{TM)-+Z. (8.3)

In § 2 our approach was to pick a basdo element [a(d)] eK(TM) corre-
sponding to the operator d and to define a homomorphism

indexd:K(M)-+Z (8.4)
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ON BOTT PERIODICITY 139

by indexd(a) = index(a. [a(d)]), where a. [a[d)] is the module multiplica-
tion of K(M) on K(TM). In some ways it is more natural to work with
(8.3) rather than (8.4). Extending (8.3) to families and taking M to be
the sphere Sk we obtain a homomorphism

K(TRkxX) -+ K(TS"xX) -• K(X).

Since TR* = R24, this is a homomorphism of the right type for the
formal proof of periodicity and it can be used for this purpose. This
method is the one closest to the remarks in (1) and also to the general
theory of the index in (9). Its drawback is that it only gives the general-
ized periodicity

for G-modules F which are of the form

V g* TW
for some real C-module W.

When k = 1 this method is essentially the same as method (2) of § 7—
modulo a conforms! transformation taking the unit circle to the real axis.
When k > 1, however, these two methods are quite different; one involves
operators on S2*-1 and the other operators on Sk.
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