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Introduction

In an expository article (1) I have indicated the deep connection
between the Bott periodicity theorem (on the homotopy of the unitary
groups) and the index of elliptic operators. It is the purpose of this
paper to elaborate on this connection and in partioular to show how
elliptic operators can be used to give a rather direct proof of the
periodicity theorem. As hinted at in (1) the merit of such a proof is
that it immediately extends to all the various generalizations of the
periodicity theorem. Thus we obtain the ‘Thom isomorphism’ theorem
together with its equivariant and real forms.

The equivariant case is particularly noteworthy because for this no
proof of the Thom isomorphism theorem is known (even when the base
spaoe is & point) which does not use elliptic operators. In fact a main
purpose of this paper is to present the proof for the equivariant case.
This proof supersedes an earlier (unpublished) proof (7) which, though
relying on elliptic operators, was more indirect than our present one.

Besides the fundamental use of elliptic operators there is another
novel feature of our treatment. This is that we exploit the multiplica-
tive structure of K-theory to produce a short-cut in the formal proof
of the periodicity theorem. The situation is briefly as follows. One has

the Bott map B: K(X) > K-} X)
which one wants to prove is an isomorphism. One first constructs (by
elliptic operators or otherwise) a map

a: K-3(X) - K(X)

and then has to show that « is a 2-sided inverse of 8. Now comes our
novel trick: by using formal properties of « and 8 we show that

of=1=Ba=1.
Thus we need only prove «f = 1 and this is much the easier half.
The formal trick just described can be used to shorten substantially
the elementary proof of the periodicity theorem given in (5). In fact,
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114 M. F. ATIYAH

as we shall see, the proof of (5) is very closely connected with the proof
presented here. The precise relationship will be thoroughly explored
in § 7.

The layout of the paper is as follows. In § 1 we examine the formal
structure of the periodicity theorem and show that all that we need is
the construction of a map a: K-*(X) -» K(X) with certain simple formal
properties. It is in this section that we meet the formal trick mentioned
earlier. In§ 2 we discuss the basic facts about indices of elliptic operators
and elliptic families. This discussion will not enter into the technical
analytic details which are by now fairly standard and for which further
references will be given. In § 3 we show how to construct the required
map « by use of suitable elliptic families and we thus complete the proof
of the complex periodicity theorem. The various generalizations are
now treated similarly in § 4-6, with appropriate modifications and
refinements. In§ 7 we desoribe a number of variants on our construction
of « and show how one of these leads essentially to the elementary proof
of (5). The reader who is interested in extracting the quickest elementary
proof of the ordinary complex periodicity theorem will find all that he
needs in § 1 and the end of § 7. Finally in § 8 we discuss the higher-
dimensional analogues of the various alternative methods sketched in
§7. We make a few brief remarks about the possibility of deriving an
elementary proof of the real and equivariant periodicity theorems—i.e.
a proof which does not use Hilbert space but only algebraic properties
of representations.

There is quite naturally a considerable overlap between this paper
and the paper (9) written jointly with I. M. Singer on the index theorem.
The main difference is that here the analysis is used to prove a theorem
in topology whereas in (9) the situation is reversed.

As far as equivariant K-theory is concerned I should also point out
that this theory was worked out jointly with G. B. Segal in (7).

1. Formal structure of periodicity theorem

For a compact space X we have the Grothendieck group K(X) of
complex vector bundles on X [see for example (2)]. It is a commutative
ring with identity. For locally compact X we introduce K with compact

supports: K(X) = Ker{E(X+) - K(+)}
where X+ = X U {4} is the one-point compactification of X. Alterna-

tively K (X) can be defined by complexes of vector bundles ‘acyclic at o0’
modulo a suitable equivalence relation [see (17) for details]. If we define
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ON BOTT PERIODICITY 115

K—9(X) = K(R9x X) then the tensor product of complexes turns
> K—4(X) into an anti-commutative graded ring.

a0
If V is a vector bundle over the compact space X then the exterior

algebra A*(V) defines in a natural manner a complex of vector bundles
on ¥ acyclic at oo [cf. (2)]. The corresponding element of K (V) will be
denoted by Ap. In particular taking X = point, ¥ = C, we have a basic
element Ag € K(G). Actually the usual convention is to take its dualt
b= At e K(C) = E(R?)
a8 basic: b is called the Bott class. Multiplication (externally) by b then
defines a homomorphism
B: K(X) -+ K-¥X)

called the Bott homomorphism. The periodicity theorem—which we
want to prove—is

TreorEM (1.1). B: K(X) > K-*X) 18 an ssomorphism.

To prove the theorem we will, in later sections, construct a map
a: K-%X) - K(X)which will be the 2-sided inverse of 8. For the moment
let us just assume that « is definedt for all compaot X and satisfies the
following axioms

(Al) «is functorial in X,

(A2) «is a K(X)-module homomorphism,

(A3) a(b) = 1.
In (A3) X = point, b € K—%(point) is the Bott class and K(point) is
identified with the integers in the usual way.

In a rather routine way we can now extend « in the following manner:

Lemma (1.2). Let « satisfy azioms (Al), (A2), and (A3). Then acanbe
extended to a functorial homomorphism o: K—9-3X)—> K—4(X) which
commudtes with right multiplication by elements of K-P(X).

Proof. We first extend « to locally compact X by the diagram

0> K-4X) > K-3X+) > K-¥+)
Yo o
0> K(X) » EK(Xt)> K(+)
(the square commutes by (Al)). Replacing X by R?X X we then get
& mep a: K—-%X) > K4(X)

1+ Passage to the dual bundle induces an involution * on K(X). In the present
case the dual also turns out to be the negative: b* = —b.
1t When necessary to make the space X explicit we write ay.
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116 M. F. ATIYAH

which is clearly functorial. To examine its multiplicative properties we
observe first that (A2) can (using (A1)) be replaced by its ‘external’ form,
i.e. the commutativity of the diagram

K-%X) @ K(¥) > E-4XxT)
#“x@l " qtaxxr
K(X)® K(Y) > K(XxY)
where X, Y are compact. To ses this, note that all arrows are K(Y)-
module homomorphisms, so it is enough to show that

Hlax @ 1)u® 1)) = axxp($(r ® 1)) (veK-¥X), 1€ K(¥))
i.e. th.&t W‘ax(u) = axxy(‘n"u’)
where m: X XY —+ X is the projection. But this follows from the
functoriality (Al) of a. The commutativity of the ocorresponding
diagram for locally compact X, Y follows now by passage to X+, Y+,
Replacing X, Y by R?X X, R? X X and using the diagonal map we get
& commutative diagram
K1%X)® K7(X) > K473 X)
Ja®1 Ja
K=4(X) @ K-?(X) > K<-?(X)
or x(ry) = afz)y as required.

Remark. Since > K—4(X) is an anti-commutative ring there is no
need to stipulate right multiplication in the lemma. Our reason for
doing so is that in subsequent more general situations the anti-
commutativity is not available. For the same reason let us consider
formally the automorphism 6 of K—+4(X) = K(R?xR#%x X) obtained by
switching the two copies of R3. Then if z, y € K-% X) we have

b(zy) = y=. (1.3)

Now the maps R2XR?->R2?xR? given by (u,v) > (v,—u) and
(%,v) - (—v,u) are connected to the identity (by rotation through
+%7) and so induce the identity on K—4(X). Hence, if z = £ denotes
the involution of K-%(X) induced by 4 » —u onR?, we deduce from (1.3)
2y = §x = yZ. (1.4)

Of course, in our present situation, the map (u,v) > (4, —v) is also
conneoted to the identity so that x = Z. This, however, uses theinternal
rotations of R® which we wish to avoid because they do not commute
with the full group 0(2) of symmetries of R?, and the situation will be
even worse when R? is replaced by R**. The only rotations used in
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ON BOTT PERIODICITY 117

establishing (1.4), on the other hand, arose from the fact that R2x R?
was the product of two copies of the same (linear) space: these rotations
will clearly commute with the symmetries of R% and similarly for R*".
Thus (1.4) will generalize later on whereas the proof that z = Z will not:
in fact the equality z = Z ultimately gets proved gimultaneously with
the periodicity theorem (see the proof of (1.5)).

We now come to the formal argument showing that an « satisfying
the axioms will yield Theorem (1.1).

ProrosrTION (1.5). Suppose there exists an o satisfying axioms (Al),
(A2), and (A3). Then Theorem (1.1) holds and « 8 the inverse of B.

Proof. It is enough to prove (1.1) for compact X-—the locally compact
case follows by compactification as usual. Now (Al), (A2), and (A3)

imply at once a(bz) = a(b)z = z
for z € K(X). By (1.2), (1.4), and (A3) we have

a(y)b = o(yb) = a(bf) = o(b)f = §,
for y e K-3(X). Thus we have

ofz = z, Bay = §.
Since y > § i an automorphism these equations imply that 8 and « are
isomorphisms, inverses of each other, and that y - § must be the
identity.

Remark. Roughly speaking, and ignoring the involution y +- ¢, the
essence of (1.5) is the following. The axioms trivially imply that of = 1.
On the other hand they also imply that, in the diagram,

K(X) 2 K-%X) > E~4(X)

Bx = off as endomorphisms of K-3(X). Thus we also have fa = 1. In
other words the identity Bx = 1 for X is a consequence of af =1
for R¥x X.

In § 3 we shall construct an « satisfying the axioms. In fact & number
of alternative constructions are possible—as we shall see in § 7—and it
is partly for this reason that we have chosen to axiomatize the formal
situation. It is also a help, when we come to the generalizations in
§§ 4-6, to have the formal aspects divorced from the differential analysis
involved in the construction of a.
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118 M. F. ATIYAH

2. Index of elliptic families

In this section we shall review some relevant facts about elliptic
differential operators. A general reference here is (15). For families
of elliptic operators the details of what we need can be found in (18)
ort (16).

Let M be a compact smooth manifold, E, F two smooth vector
bundles over M and let d: (E) - D(F) be a linear elliptic differential
operator (2(X) denotes the space of smooth sections of E). Then d is a
Fredholm operator, i.e. it has closed range and

dim Kerd < oo, dim Cokerd < co.
The index is defined by
indexd = dim Kerd — dim Cokerd.
It has the important property of being invariant under perturbation
of d, and in particular depends only on the highest order terms of d.

Suppose now that Q is another smooth vector bundle over M. If Q

were trivial then d would extend in an obvious way to an elliptic operator
de: D(E® Q) > D(F ] Q)

If @ is not trivial we can construct extensions d,, locally and then piece
these together by partitions of unity. The resulting operator is not
unique but its highest order terms are and so any two choices for dg
have the same index. Thus

Q@ —indexd,
is well defined and extends by linearity to give a homomorphism

EM)~>Z

which will be denoted by index,. Actually K here refers to the category
of smooth vector bundles but the usual kind of approximation implies
that this is isomorphic to the ordinary K of continuous vector bundles.

We want now to consider families of operators. Thus let X be a
compact space and let £ be a family of vector bundles over M para-
metrized by X. This really means that X is a vector bundle over M X X
which is smooth in the M-direction: we shall not give the precise details
here. If F is another such family then a family d of differential operators
from K to F is a family d.: D(E,) > D(F.)

with suitable continuity in z (£, denotes the restriction of K to M X {z}).
If all the d_ are elliptic (of the same order) we shall say that d is an
elliptic family. It can be provedt [cf. (18) or (16)] that an elliptic family

1 See also: Atiyah and Singer, ‘The index of elliptic operators IV’, Ann. of
Math. (to appear).
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ON BOTT PERIODICITY 119

has an index € K(X). If dim Kerd, is constant then the family Kerd,
forms a vector bundle Kerd over X, similarly for Cokerd and we have

indexd = Kerd — Cokerd € K(X).

In the general case we have to modify d in some way before this definition
makes sense. The simplest is perhaps the method adopted in (18) in
which d is regarded as a homomorphism of bundlest (of Fréchet spaces)

over X d: D(E) > D(F).

One shows that there is a trivial finite-dimensional vector bundle P
over X and a bundle map $: P > D(F)

8o that T = d+¢:D(E) ® P - D(F)

is an epimorphism.} This implies that Ker T, is of constant dimension
so that Ker T is a vector bundle. It is easy to verify that

Ker T—P e K(X)

does not depend on the choice of P, ¢ and so we can take it as our
definition of index d. An alternative method using Hilbert space is
developed in (16).

The index of an elliptic family is & homotopy invariant and so depends
only on the highest order terms. Thus if @ is a family of vector bundles
over M (parametrized also by X) then, just as before, we can form dg,
which will be an elliptic family from E® Q to F ® @ and index
dg € K(X) will be independent of choices made. Then

Q —indexd,
extends by linearity to give a homomorphism
indexz: K(M x X) - K(X).
Actually K(M x X) should stand for the Grothendieck group of bundles
smooth in the M-direction, but the usual kind of approximation shows
that this coincides with the ordinary Grothendieck group.
If Q is a family of trivial bundles over M, i.e. if @ is a bundle on

M x X induced from a bundle ¢, on X then there is an obvious choice
for d; and (when dim Kerd, is constant) we clearly have

Kerdgy o~ Kerd @ @,,
Cokerdy =~ Cokerd ® @,

t+ 9(X) stands for the bundle over X whose fibre at z € X is P(X;).
1 Locally the existence of P follows from standard semi-continuity properties
of Cokerd. We then use a partition of unity to construct a global P.
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120 M. F. ATIYAH

so that indexd, = (indexd) ® Q,- In fact the definition of indexdy in
the general case shows that this formula always holds. Thus

index;: K(M X X) - K(X) (2.1)
is a K(X)-module homomorphism.

If Y is another compact space and f:Y - X a continuous map we
can consider the induced family f*(d) of elliptic operators parametrized
by Y. The definition of index; shows that it is functorial, that is we
bhave a commutative diagram

K(M x X)—2%, g(x)
(1xn* J*

KM xT) 22, g (7).

In particular if X is a point (so that M X X = M and d is just an elliptio
operator on M) we can consider the constant family f*(d) parametrized
by any compact space Y, f:Y -» point being the constant map. By a
slight abuse of notation we shall omit the symbol f* and write
index;: (M xY) > K(Y)
instead of index (.
Summarizing we may state our results in the form of a proposition:

PROPOSITION (2.2). Let d be an elliptic differential operator on a com-
pact manifold M. For any smooth vector bundle Q on M let dgy be an
extension of d to @ (i.e. symbolically o(dg) = o(d) @ Idy). Then

@ + indexd,
defines a homomorphism
index;: K(M) - Z.
Moreover there i3 a funclorial extension of this to compact spaces X, so that
Jor each X index,: K(M x X) > K(X)
18 @ K(X)-module homomorphism.

This proposition is the key result on indices of operators which we
need. What remains is to choose appropriately the manifold M and
the operator d for the various applications.

In fact we shall choose very classical operators on spheres and projec-
tive spaces and, a8 we shall show in § 7 and § 8, it is possible in these
cases to define index, in & number of alternative ways. One variation
in particular (method (2)) uses only the definition of the index of an

(abstract) family of Fredholm operators (on a fixed Hilbert space) as-
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ON BOTT PERIODICITY 121

developed in the Appendix to (2). It is therefore not essential to use
the index of more general families of elliptic operators as in (16) or (18),
but we have presented things in this context because it seems concep-
tually clearer.

Remark. This proposition extends quite straightforwardly to Kg-
theory, provided we use a G-invariant operator d, and to K R-theory,
provided we use a Real operator d. These extensions are covered by
the treatment in (18) and we shall use them in the later sections.

3. Proof of periodicity
We shall apply Proposition (2.2) with M being the complex projective
line P,(C) and d being the  operator from functions to forms of type (0, 1):
of .-
e = dz.
For any holomorphic vector bundle @ over P,(C) the operator 3 has a
natural extension d, and it is well known [cf. (10)] that
Kerd, =~ HP, 0(Q)),
Cokerdg o HY(F,, 0(Q),

where H°, H' denote the cohomology groups of the sheaf @(Q) of germs
of holomorphic sections of Q. Now for @ = 1 the trivial line-bundle

we have H® ~ C, H =0,
while for the dualt H-? of the standard line bundle H over P, we have
HO =5 Hl == 0.
Thus for the homomorphism
index;: K(F) > Z
we have indexz(1—H-1) = 1. (3.1)

We now identify P, with the 2-sphere S? and so with the one-point
compactification of R®. Thus we have the exact sequence
0> KR > K(P)>Z >0,
where ¢ is the augmentation. The elements 1—H and 1—H-! are in

the kernel of ¢ and hence are elements of K(R?). In fact 1—H is the
element denoted in § 1 by A¢ and so

1-H-1'=1—H* = )§ = b.

+ Standard notation for cohomology and for Hopf bundles leads to an unfortu-
nate, but unavoidable, clash of notation involving H.
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122 M. F. ATIYAH
Thus equation (3.1) asserts that

index;(b) = 1. (3.2)

Returning to § 1, we recall (Proposition (1.5)) that to prove the

periodicity theorem we have only to define & homomorphism

aw K3X)»X
for compact X satisfying axioms (Al), (A2), (A3). We are now in &
position to construct this «. We define « as the composition

K-3X) = KR¥x X) > K(S*x X) 222 g(x).

The functoriality (Al) and K(X)-module property (A2) follow from
(2.2), and (A3) is just equation (3.2). The periodicity theorem (1.1) is
therefore proved.
4. Equivariant case

Let G be a compact Lie group, X a compact G-space, then we have
the group Ky(X) [see (17)}—the Grothendieck group of G-vector
bundles over X. Let V be a complex @-module, then, just as in § 1,
the exterior algebra A*(V) defines an element

Ap € Ki(V).
If 1 denotes the trivial 1-dimensional G-module then the projective
space P(V @ 1) is a compactification of ¥V and so we have a natural
homomorphism . g y) , kYPT @ 1)
Now A*(V), regarded as a complex of vector bundles over V, has a
natural extension to P(V @ 1) [see (2) 100] and this shows that
JRp) = I (= 1)HX(V), ’ (4.1)

where H denotes the standard line-bundle on P(V @ 1). Taking duals
we get J0B) = 3 (—1E-X. (4.2)

We are now in a position to formulate the main theorem of equivariant
K-theory:

THEOREM (4.3). For any compaci Q-space X and any complex G-module
V, multiplication by A} induces an ssomorphism
Remark. Since products are compatible with duality (a +> a*) it

follows of course that we can replace A} by A, in this theorem. In fact
A% and Ap differ by a unit of K,(X) and it is not hard to show that

$ = (—1"(NP) My (n=dim7P). (4.4)
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ON BOTT PERIODICITY 123

To prove the theorem we proceed on the same formal lines as in § 1.
Proposition (1.5) extends to the present more general situation—simply
replace R?* by ¥ throughout—so that we have only to construct a map

d: KV x X) » Kg(X)
which is functorial in (compact) X, a K(X)-module homomorphism and
satisfies the analogue of (A3), namely

x(Ay) = 1€ R(@), (4.5)
where R(Q) = K,(point) is the representation ring of G.

To construct « we consider the Dolbeault complex on the projective
space P(V d1). Using a G-invariant hermitian metric we construct
the elliptioc operator D = 34+5%:Q+ > Q-
where Q+ denotes the direct sum of all forms of type (0, 2k) and Q- the
direct sum of forms of type (0,2k-+1). For details concerning this
construction we refer to (15) 325. For any holomorphic G-vestor bundle

@ on P(V @ 1), D has a natural extension D, and we have natural
(G-module) isomorphisms:

Ker Dg = 3 H™(P, 0(qQ)),
Coker D, gkgoﬂ 241 P, 0(Q)).

Thus indexD, = 3 (—1):H¥ P, 0(Q)) € R(G).
Now for the powers of the standard bundle H one has [cf. (11) (18.2.1)
and (18.2.2)]: H{P,0H") =0 (1<r<n)
for all4 (n = dim V = dim P(V & 1)), and
HYP,0)=0 fori>1
~C fors=0.
Hence, by (4.2), we have
indexDy =1 for Q@ = j(Ap). (4.6)
Finally, then, we define the required map « as the composition

Eg(VPxX) > Ef(P(V @ 1)x X) =28 K y(X).
The functoriality and module properties follow from the K,-version
of (2.2), and (4.5) follows from (4.68). This completes the proof of
Theorem (4.3).
Suppose now that G = U(n), V = C* and that X is a free G-space
with X/G =Y. Then '

KyX) = K(Y), Kg(VxX)x~=K(E),
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124 M. F. ATIYAH

where £ = (V x X)/@ is the vector bundle over Y associated to the
principal bundle X. Moreover the element A;, € K5(V X X) corresponds
by the above isomorphism with the element Ay € K(E). Hence as a
special case of the equivariant periodicity theorem we get the Thom
1somorphiem theorem:

THEOREM (4.7). Let E be a complex vector bundle over the compact
space Y. Then multiplication by Mg induces an isomorphism

E(Y) > K(E).

More generally if H is another group and Y is an H-space with £ an
H-vector bundle then we apply (4.3) with @ = U(n)xX H. In this case
we have [see (17) (2.1)]:

K(X) =~ Kg(Y), KoV X X) =~ Kg(E),

and so exactly as above we get:

THEOREM (4.8). Let E be an H-vector bundle over the compact H-space Y.
Then multiplication by Ag induces an tsomorphism

Kg(Y) > Eg(E).

Remark. The reasoning above (due to G. B. Segal) shows that, once
one has passed to equivariant theory, the periodicity theorem in the
form (4.3) really includes the apparent generalization of the Thom
isomorphism theorem.

Taking X = point in (4.3) and using the exact sequence for the pair
B(V), S(V)—the unit ball and sphere of ¥—we obtain (as in (2) (2.7.6))
a formula for Kg(S(V)). This gives essentially the Theorem stated
without proof in (1), § 3. The details will be developed elsewhere.

Besides its application to the periodicity theorem (4.3) the Dolbeault
complex of projective space can also be used to establish the ‘splitting
principle’ for K-theory as we shall now explain. Just as above,
replacing P(V & 1) by P(V), the elliptic operator D associated to the
Dolbeault complex defines a functorial K4(X)-homomorphism

indexp: Ky P(V) X X) > K4(X).
Sinoce for the sheaf @ on P(V) we have
HY(P(V), 0) = C, He(P(V),0)=0 (g=>1)
it follows that indexp(1) = 1 € Kg(X).
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ON BOTT PERIODICITY 125
This implies
Prorosrrion (4.8). If X 18 a G-space and V a complez G-module
then the K,(X)-homomorphism
Ky(X) > KA P(V)X X)
has a funciorial left inverse. In particular # 18 injective.
Suppose in particular we take
V =Cn, G = U(n)xH,
where H acts trivially on G*. Since P(C*) = U(n)/(U(n—1)x U(1)) we
ha
v EA{P(C*) % X) = Epn-pxvweal(X)
and the homomorphism of (4.8) becomes just the map

Eomxa(X) > KEpen-nxvwxa(X)
induced by the inclusion U(n—1)x U(1) > U(n). By iteration this
finally gives

ProrosrrioN (4.9). Let 5: T — U be the inclusion of the maximal torus
in the unitary group U = U(n). For any compact U-space X let

j*: Kg(X) > Kp(X)
be the map induced by j. Then there 18 a funciorial homomorphism of
X)-modules: ,
Ho(X)modules ju: Eg(X) > Eg(X)
which 13 a left snverse of j*. In particular j* 18 snjective.

Remarks. (1) We have obtained j, by iterating the construction
of (4.8) using projective spaces. However we can equally well define it
at one go by using the Dolbeault complex of the flag manifold U/T.
The important point, is that the sheaf cohomology of U/T—like that
of any rational variety—has the same properties as for projective space.
Thus, more generally, we can replace U in (4.9) by any compact connected
Lie group: it being well known that G/T has the structure of & homo-
geneous rational algebraic variety.

(2) Proposition (4.9) amounts to a ‘splitting principle’ because it
enables us, in many problems, to pass from the unitary group to the
torus. The first proof of equivariant periodicity, given in (7), was on
these lines, and other applications, similar to those in (2), have been
given in (17). A particularly striking application of a rather different
kind will be given in (8).

(3) Analternative approach to (4.8) and (4.9) is to use the isomorphism

Ko P(V)) =¢ Kaxs(S(V))
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where §* = {Ae C; [A| = 1} acts on 8(V) c ¥V by scalar multiplication.
We can now caloulate K, s(S(V)) using (4.8) as indicated above, and
we obtain in fact the complete structure of K4 P(V)), showing that it
is a free module of finite rank (= dim V) over R(@) with canonical
generators. This approach will be developed on a future occasion.

5. Real case

In (3)t we introduced a functor KR(X) defined for spaces with
involution (also called real spaces). To avoid possible confusion with
the ordinary use of real (e.g. for vector spaces or vector bundles) we
shall write Real (with a capital R) for the category with involution.
Thus a Real vector space is a complex vector space which is the com-
plexification of a real vector space. In this section we shall show how
to extend the results of § 4 to KR.

First we introduce the equivariant form of KR. Thus let X be a
Real space, @ a Real Lie group and let X be a Real G-space. This
means G has an involutory automorphism g > § and that gz = §z.
A Real G-vector bundle over X means a complex G-vector bundle
with a compatible Real structure, so that X is both a Real vector bundle
and a Real G-space. The Grothendieck group of Real G-vector bundles
over X is denoted by KR (X).

If ¥V is a Real G-module then the exterior algebra of ¥ defines as
usual an element A, € K Ry(V) and we can formulate:

THEOREM (5.1). For any Real compact G-space X and any Real G-
module V multiplication by A} tnduces an tsomorphism

KRy(V)—~ KRV x X).

Proof. The proof proceeds exactly as in § 4 for the complex case and
we shall simply mention those points which require special comment.
In the first place, as observed in § 2, one has to extend Proposition (2.2)
to Real operators (in the sense of (3)). Thus a Real elliptioc differential
operator d on a Real manifold M defines functorially a homomorphism

ERy(M x X) -~ ERy(X).

Next we have to observe that if ¥V is a Real G-module P(V @ 1) is
a Real G-space and the Dolbeault complex is a Real elliptic complex.
The involution on P(V @ 1) can be regarded as an isomorphism of the
complex manifold P with the complex conjugate manifold P and so

1 (3) is also reprinted as part of (2).
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maps the Dolbeault complex of P isomorphically onto that of P. Thus,
choosing & Real G-invariant hermitian metric on P, the operator
D =3+43* of §4 is Real.

As in § 4 we can also use the Real elliptic operator D to define a left
inverse for ERHX) > ERAP(V)x X),
where ¥ is a Real module for the Real group G. Since T' (the standard
maximal torus of U(n)) and the other intermediate groups used in the
proof of (4.9) are all Real subgroups of U(n) the proof applies also in
K R-theory to give

ProprosrrioN (5.2). Let j: T — U be the inclusion of the standard
mazimal torus in U = U(n), and let X be a Real U-space. Then

j*: ERy(X) > KRy(X)
has a functorial left inverse

ju: ERy(X) + K Ry(X)
which ts a homomorphism of K Ry (X)-modules.

Remarks. (1) This proposition, which will be used crucially in (8),
is one of the justifications for K R-theory—as opposed to KO-theory.
The point is that the analogue of (5.2) for KO (i.e. when U and T are
taken with trivial involutions) is false.

(2) Again, a8 in § 4, j, can be defined directly using the flag manifold
U|T—which is a Real algebraic variety. For a general compact con-
nected Lie group G the same methods will apply provided the involution
on @ fixes a maximal torus T' and interchanges positive and negative
roots.

6. Spinor case

So far the theorems we have proved have compared K (X)) and K (¥ X X)
with ¥ a complex vector space. We want now to consider the case when
V is real and for this it i8 neoessary to introduce the Spinor groups.
A suitable referenoce for the material we need is (6) and (4), § 8.

When V is a real vector space (or G-module) the appropriate com-
pactification for our purposes is not the projective space but the one-
point compaoctification ¥+, namely the sphere. The elliptic differential
operator on the sphere which we need is the Dirac operator [cf. (15) 92
or (4) § 8 for details]. More precisely, assuming dim ¥ = 0 mod 8 the
total Spin bundle 8 of the sphere decornposes into two halves

8= 8+@ 8-
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and the total Dirac operator maps S+ to 8- and 8- to 8+. Moreover
in these dimensions all the bundles and the operator are real. We shall
be interested in the operator D from S+ to 8- which is the restriction
of the total Dirac operator. Since the Dirac operator is self-adjoint its
restriction from 8- to 8+ is D*. If we regard 7+ as the homogeneous
space Spin(8n--1)/Spin(8n) then D is & homogeneous operator. Thus
if V is a Spin G-module, meaning that the action on ¥ factors through
a given homomorphism @ — Spin(8n), then D is a G-invariant real
elliptic operator. Hence, by the real version of (2.2), it will induce a
homomorphism
index;: KOg(V+X X) - KOg4X).
The next stage in our programme is to find an element
u e KOV)c KOLVH*)

witht index,u = 1 € RO(@) = KO g(point).

If we use the Riemannian connection on the sphere to extend the Dirac
operator to act on 8 @ S, then it is not hard to show that we obtain
the operator d4d* acting on the exterior differential forms. Thus the
kernel of this extended Dirac operator ooincides with the space of
harmonic forms on the sphere and so with its cohomology. Henoe we
can compute index, S+ and index;, 8- in terms of the cohomology of
the sphere. To avoid the work involved in identifying d+d* with the
extension of D we can however appeal to a general principle, explained
in (10), according to which the index € B(G) of a homogeneous elliptic
operator on a homogeneous space G/H depends only on (the difference
of) the homogeneous bundles (i.e. H-modules) where the operator acts
and not on the operator itself. Now by explicit character computations
[see (4) §§ 6 and 8] we have the following identities in RO(Spin(8n)):

(A+—A-) = 3 (—1)AY,
(A++A-)A+—A-) = AP—A",
where A+, A- are the two }-Spin representations, At are the exterior
powers of R® and A%, A** are the two irreducible components of At*
given by the eigenvalues of * (the duality operator). From these it
follows by the principle explained above that
indexy, 8+—index;, 8- = Euler characteristio of V+ = 2,
indexy, S+-+index, 8- = Hirzebruch signature} of ¥+ = 0.
1 RO(Q) stands for the Grothendieck group of real G-modules: it is a subgroup

of R(G).
1 See (4), § 6 for the elliptic operator whoses index is the Hirzebruch signature.
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Note that the connected group Spin(8n) acts trivially on the cohomology

of ¥+ and so the Euler characteristic is equal to 2 as an element of

RO Spin(8n) and hence of RO(@). By subtraction we now obtaint
indexp, 8+ = 1 € RO(Q).

Returning to the original Dirac operator we consider the effect of the
anti-podal map on the sphere. This is compatible with the Dirao
operator (and with the action of Spin(8n)) but it interchanges S+ and
8-. It therefore induces a module isomorphism

Ker D ~ Ker D*,
showing that} index; 1 = 0 € RO(Q).

Henoe the required element « € KO 4(V) can be obtained by subtract-
ing from 8+ the trivial bundle with fibre S, (the fibre of S+ atoo). Thus
u is just the element given by the graded Clifford module M associated
to A = A+@ A- in the manner of (6), § 11. Note that, aince G acts
through Spin(8r), it acts on M compatibly with its Clifford structure.
This element « plays a fundamental role in KO-theory, as explained
in (6), and to give it a name we shall call it the Bott class of the module V.

We now have all the necessary data to prooeed formally as in the

preoceding sections and prove

TEEOBREM (6.1). Let X be a compact G-space, V a real Spin G-module
of dvmension 8n,andlet u € KO y(V) be the Bott classof V. Then multiplica-
tion by u induces an isomorphism

KOg(X) > KOgV x X).

Remarks. Taking V trivial of dimension 8 this gives the mod 8
periodicity of KO, Also taking G = Spin(8n) it gives the Thom
isomorphism theorem on the lines explained in § 4, for Spin(8n)-bundles
[ef. (6) (12.3) (i)].

‘We want now to obtain the Real version of this theorem. We suppose
therefore that @ is a Real group, that X is a Real G-space and that ¥V
with trivial involution is a Real G-space (G acting linearly). As before
we assume dim ¥V = 8n. Furthermore we assume that V is a Real
Spin® G-module, i.e. the action of G on ¥ factors through a Real homo-
morphism G — Spin®(8n),
where Spin®(8n) = Spin(8n) X 5, U(1)

1 An alternative way to derive this equation is to apply the fixed-point
formula of (4): we leave this amusing exercise to the reader.

1 In fact by a result of Lichnerowicz [see (14)] there are no harmonic spinors
on the sphere so that Ker D = Ker D* = 0.

8085 .2.19 X
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is the group defined in (6), § 3 and the involution on it is induced by
complex conjugation of U(1). A graded Real module for the Clifford
algebra Cy, ®gr G then defines a Real representation for Spin¢(8n). Thus,
corresponding to the real representation A of Spin(8n) there is a Real
representation A¢ = A ®@g C of Spin®(8n). This defines a Real vector
bundle 8° over the sphere

V+ = Spin°(8n4-1)/Spin(8n).
In fact 8¢ = 8 ®@g C and it decomposes into 89, and S . The (complexi-
fied) Dirac operator acts on S¢ as a Real operator and its restriction D
from 8¢, to S° is also Real. Since D is compatible with the action of G
it induces as before a homomorphism

indexy: KRg(V+X X) -+ KRy(X).
Now the graded Real Clifford module M¢ associated to A° defines,
by the construction of (6), § 11, an element u € K R4(V +)—called again
the Bott class. The calculations made before show that

indexpu = 1 € K R (point).
Hence we obtain

THROREM (6.2). Let G bea Real group, X a Real G-space, G - Spin®(8n)
a Real homomorphism. Let V denote R®™ with induced Q-action and trivial
snvolution and let u € K Ry(V) be the Bott class of V. Then multiplication
by u tnduces an tsomorphism

KRyX)—> KRy(V xX).

Remarks. (1) Taking all involutions trivial we recover (6.1).

(2) Taking X = Y x 8¥? where 81° denotes as in (3) § 3 the anti-podal
0-sphere (acted on trivially by @) we have as in (3) (3.3)

KRHX) =~ KAY), KERH(VXX)e KAV XY).

Now take @ = Spin°(8n) and we deduce the Thom isomorphism for K
for Spin®(8n)-bundles [cf. (6), (12.3) (ii)]. Note that the restriction to
8n dimensions is not significant because, by the periodicity theorem (1.1),
we can alter dimensions by even integers.

We have now computed KR y(V X X) in the two extreme cases

(1) V with complex structure,

(ii) V with trivial involution,
In fact we can combine these together in one further generalization.
Following (3) § 4 we let ClLiff R*# denote the Clifford algebra (over R)

of the quadratic form —(i vi + i :c,’) with the involution induced by
1 1
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(y,z) > (—y,z). We form the complexification Clff RPAxgC and
extend the involution by conjugation on C. The group of units of this
algebra contains the group Spin®(p+¢) and, with the induced involution,
we denote it by Spin®(p, ¢). On the lines of (3) and (6) it is not difficult
to show [cf. also (13)] that, if » = gmod 8, the representation A® of
Spin°(p+¢) has a Real structure compatible with the Real structure of
Spin°(p, ¢). This implies that the bundles 8¢, 8¢ over (R*4)+ are Real
and that the Dirac operator from 89 to 8¢ is also Real. Thus finally
we get

TaEOBEM (6.3). Let G -> Spin®(p,q) be a Real homomorphism with
p = qmod 8 and let u € K R(RP4) be the Bott class. Then, for any real
G-space X, multiplication by u induces an 1somorphism

KRyX) > KRy RrPAx X).

(8.2) is, of course, the special case of (6.3) with p = 0. On the other
hand we can take p = ¢ and observe that the homomorphism

1: U(p) - Spin°(2p)
of (6), § 56 is actually a Real homomorphism

U(p) - Spin°(p, p)-

As in (6) (5.11) one can then show that this homomorphism is com-
patible with the basic modules used to define the Bott classes. This
shows that (56.1) is also a special case of (6.3). Thus Theorem (6.3) is the
most general of its type.

7. Comparison with elementary proof

In this section we shall examine the proof of periodicity given in § 3,
discuss & number of variants of it and show how it is related to the
elementary proof given in (5). Since our aim will be purely explanatory
we shall only indicate proofs and many technical points will be passed
over.

We return to the situation of § 3 where we used the & operator on P,
to define the crucial homomorphism

indexz: K(P, x X) > X.

There are in fact two other methods of constructing this homomorphism
which amount to minor variations on the same theme. We still use the
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basic notion of the index of an elliptic family but the & operator is
replaced by
(1) a boundary value problem for the disc,
or (2) a singular integral operator on the circle.
Both of these are very classical and we shall now briefly describe them.

Alternative (1)
We take the differential operator in the disc |z} <1
(%, ) > ou o
’ oz’ dz)

With the boundary condition u—v = ¢. More formally we oconsider
the operator 7' defined by
ou ov
T(u, 0) = (5’5’ (u—v) |Sl),
where u | S denotes the boundary value of 4. Then, whether considered
on C* functions or in suitable Hilbert spaces, T is a Fredholm operator
[(12) Chapter X]. In fact it is clear that Ker T consists of the constants
while Coker T' = 0 so that
index T = 1.

Except that we have identified the interior and exterior of the unit disc
by z > z-1 it is clear that 7' is just the ‘transmission operator’ corre-
sponding to @ on F,.

In dealing with the 3 operator in § 3 it was important to extend it

to an operator 95 on a smooth vector bundle E on P,. Now E can always
be constructed by taking two vector spaces E°, £ and a smooth map

f: 81 > Iso(E®, E%),

unique up to homotopy [(2) § 2.2]. For the operator 7' it is more con-
venient to define its extension 7T, by

THu,v) = (%-_‘,%,f.u | S1—v | Sl),

where u, v are vector-valued functions with values in E°, E* respectively
and f.u | S denotes the function S* - E* given by

z = f(2)u(z) (2] =1).

By approximation we can, if we wish, assume f is a polynomial in z, z.
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Then E is a holomorphic vector bundle} on P,  has its natural exten-
sion and it is easy to see that

Kerdg = H(P,, O(E)) 2 Ker T},
Passing to adjoints one also gets
Cokerdg o H(F,, 0(E)) = Coker T,
80 that indexdy = index T}, (7.1)
Just as in § 3 we can define T} for families parametrized by X and so
obtain a homomorphism
index,: K(P, X X) - K(X).
The proof of (7.1) also extends to families and shows that index, is the
same homomorphism as index;.
Alternative (2)
Let E° be a vector space and let
J: St - Aut(H")

be a smooth map. Then we introduce an operator 4,, acting on the
space of functions S! -» E°, by

Agze) = 2™f(2)e (n>0)
= z"e (n<<0)
(here z7f(z) e denotes of course the function z > 2*f(z)e, for |z2| = 1 and
¢ € E°). This is well known to be an elliptic psendo-differential operator
[(9), § 8] and so index 4, is well defined.
The operator 4, is intimately connected with the boundary value
problems discussed above. Consider the operator S, defined by
ou ov
S, ) = (52:,3-2, Az | Sl—vIS'l)).
This is an elliptic problem with a pseudo-differential boundary condi-
tion and it is the composition of T,; with the map
(u, v, w) > (4, v, 4,w)
(where I denotes the identity automorphism of EY).
Sinoe} index 7,; = 0 we have
index S, = index 4,.
t In fact E has a natural holomorphic structure even if f is only differentiable
[see H. Rohrl, Bull. Amer. Math. Soc. 68 (1962), 125-60].
1 This corresponds to the fact, used in § 3, that
index aﬂ‘l = 0.
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On the other hand it is clear that
KerS, = Ker T,
and by considering adjoints we get
Coker §; o~ CokerT,,.
Thus, finally, we have
index 4, = index S, = index T,. (7.2)

Just as with 3 and 7} so we can extend 4, to families parametrized
by X. Since every bundle over P, X X can be constructed from a family
of maps Jz: S > Aut(ED)
it follows that f > index 4, defines & homomorphism

index,: K(P, X X) > K(X).
The proof of (7.2) extends to families and shows that
index,(E) = index, (H1E). (7.3)

We shall now discuss the relative advantages and disadvantages of the
three alternative methods—the use of & we shall refer to as method (0).

It is fairly clear that methods (0) and (1) are very close. Method (1)
has the advantage that we need only work with trivial bundles so that
some of the technical complications of families of operators are avoided,
but on the other hand we need the analysis of boundary value problems
which is more delicate.

Method (2) has one drawback, as it stands, and that is we have to
take the bundles E° and E~ to be equal. This precludes a generalization
to the equivariant case. On the other hand (2) has many advantages.
It is very much the simplest to define technically. In fact f > A, defines
at once a map «:QGL(N, C) - F(Hy),
where Q denotes the space of smooth{ maps

8> G@LN,C) (f(1)=1),
H,, is the Hilbert space of L®-functions §* - C¥, and # (Hy) denotes the
space of Fredholm operators on Hy. If we topologize Q by sup||f]|| (i.e. as
a subspace of the continuous loop-space) then « is continuous and
induces, for any compact X,

ax![X,QGL{N,C)] » [ X, #],
where [X, Y] denotes the set of homotopy classes X - Y. By (2),
Appendix, we have the map

index: [ X, #] > K(X)
t+ In fact we could take all continuous maps.
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(which is actually an isomorphism [(2) (Al)]). From this, and letting
N become large, oy gives at once the required map
K-3X) > K(X).
Moreover, if we restrict (by approximation) to maps f which are given
by finite Laurent series in z, it becomes possible to define index 4,
purely algebraically, without resorting to analysis in Hilbert space.
This brings us essentially back to the elementary proof of (5) where
the analysis has been banished from the scene. As this point is of some
interest we shall explain it in detail.
We suppose then that
[ Xx 8- GL{N,C)

k
is & map of the form flz,2) = 3 a,(z)z™,

where each a, i8 a continuous map X » GL(N,C). We want an
algebraic definition of index 4, e K(X). According to the method of
(2), Appendix, for defining the index of a family of Fredholm operators
in Hilbert space H we must first choose a closed subspace V c H of
finite co-dimension and meeting the kernels of all the operators in 0 only.
For our family A4, there is an obvious choice for ¥, namely the space
spanned by the vectors zru with ueC¥ and n < 0 or n > k (i.e. we
exclude the powers z, 23,..., zF). It is clear that

VNnKerd, =0 forallzeX

because the positive and negative powers of z are now kept apart. It
follows that the spaces H/A, (V) are of constant dimension and form
a vector bundle over X which we denote by H/A (V). According to (2),
Appendix, we define index 4, € K(X) by
index A, = kN—H|ALV).
We shall now try to express H/A{V) in purely algebraic terms. If we
introduce the polynomial p defined by
p(z,2) = Zkf(z, z)

we have an obvious isomorphism

H|A(V) ~ H|A,(H).
Now A,-.: H - H is clearly a left inverse of 4, so that

H|A (H) >~ Ker4,-..
But the kernel of 4., consists of vectors (u, v) with p7luto =10
(v involving powers z* with » > 0 and v involving powers with n < 0)
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and this equation implies that u is a polynomial. Thus Ker 4, is
isomorphic to the space of those polynomials u (with values in C¥) for
which p;1u has no positive powers in its Laurent expansion. Suppose
now we regard p, as a module homomorphism#
Clz¥ - C[z}¥

and consider the cokernel M, . This is a C[z]-module annihilated by

= det p,. Since d(z) # 0 on |z|] = 1 we can decompose it asd = d+d -,
where d+(z) = 0 has all its roots inside |z] = 1 while d-(z) = 0 has its
roots outside |z|] = 1. The module M, can then be decomposed
naturally as M, = M} O M;,

where M7 is annihilated by d+ and M, by d-. From the description
of Ker 4. given above it follows that we have a natural isomorphism

KerA, .~ M7,
Hence finally we get a purely algebraic definition for index 4, namely
index A, = kN— M} (7.4)

" where M. 2 i8 the bundle with fibres M.

The formula (7.4) is exactly the one which oocurs in the elementary
proof of (5). The quickest elementary proof of the complex periodicity
theorem is therefore obtained by using Laurent maps f as in (5), defining
index A, asin (7.4), and then appealing to the formal axiomatic reasoning
of § 1.

The algebraic method, obtained as we have just explained, by approxi-
mation from method (2) we shall refer to as method (24). It has one
important advantage over method (2), namely it does extend to the
(one-dimensional) equivariant case, as is clear in (5). The reason for this
is that approximation enables us to separate the positive and negative
powers of 2. Whereas in method (2) we need the identity operator on
negative powers (and so require E° = £*), in (24) we ignore the negative
powers and define our operators only on the positive powers. Of course
the same effect can be achieved, independently of approximation, by
replacing the operator 4, by the operator}

By H+—~> H+

given by u > Pfu, where P is the projection H - H+, and H+ is the
closed subspace of H involving only positive powers of z.
t To fit with the Hilbert space it would be better to make p act on zC[z}¥F

but this makes no essential difference to the modules.
1 This is a discrete (matrix) analogue of the Wiener—Hopf operator.

¥20Z 4840100 ¢ uo Jasn Aleiqi Jaully H3 ‘481seyooy Jo Ausiealun Aq L700LSL/EL L/L/6L /8101 yyewlb/woo dnoolwspede//:sdiy woll pepeojumod



ON BOTT PERIODICITY 187

8. Higher-dimensional case

In the preceding section we discussed only the complex one-dimen-
sional periodicity. In thissection we shall give briefly a similar disoussion
of the more general higher-dimensional cases of § 4—6. For simplicity
we shall restrict ourselves to the Spin(8n)-case of § 6. This is typical of
the other cases.

The basic operator of § 6 is the Dirac operator on 8% from S+ to S~
(8% denoting the two halves of the Spin bundle over S®). Just agin § 7
we can replace this by a boundary value problem on the unit ball B%»
int R®» or by pseudo-differential operators on S%»-1,

Method (1)

We consider the total Dirac operator D of R8*». If A =A+@ A-is
the Spin representation of Spin 8n and if u, v denote functions on R
with values in A+, A~ respectively, then the Dirac operator switches
factors: (u,v) o (Dv, Du). On the boundary S®#-1, of the unit ball B»,
Clifford multiplication can be used to identify A+ with A-. We can
therefore consider the boundary condition

u(z)—v(z) = $(z) (ze )
for the Dirac operator. This is very similar to the boundary value
problem of §7 except that here our problem has index 0 instead of
index 1: it corresponds more to the operator 7}, than to the operator T'.

More generally let  f: S8*~1 - Iso(E°, E®) (8.1)
be & smooth map and define the operator 7}, by
Tyu,v) = (Dv, Du,f.u | SPr-1—yp | Stn-1),

where u, v are functions on B with values in A+ ® E°® and A- ® E®
respectively. One can show that 7} is coercive and so gives a Fredholm
operator. Moreover taking E° = A+, £° = A- and f to be given by
Clifford multiplication one can show that index 7, = 1.

Method (2)
'We consider now the (real) Hilbert space H of L* sections of the Spin
bundle of S8*-1, This decomposes naturally as

H—H+@H-, (8.2)

where H* consists of those ¥ which are boundary values of harmonio
sections of A+ over B®* (harmonic means satisfying Du = 0). Let P

1 We could also take B** with the curved metrio, i.e, the upper hemisphere.
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denote the projection H — H+: it is a pseudo-differential operator on
S§én-1, For any map f a8 in (8.1) we consider the operator

B;:H+® E°* > H+® E*
given by Biu) = (P ® I)fu,

where I is the identity on E®. Then B, € # R the space of real Fredholm
operators and f - B, induces a map

Q-1GI(N,R) > FR
and g0 a homomorphism
KO0-#(X) > KO(X).

Both methods (1) and (2) apply as they stand to the equivariant case.
Moreover it is clear that in method (2) we can approximate f by finite
sums ) f, where p runs over the irreducible representations of Spin(8k)
(we decompose H under the action of Spin(8k)). Since the decomposition
(8.2) is compatible with the action of Spin(8k), and can presumably be
described purely algebraically, it seems plausible that B, can be defined
purely algebraically (when f is a finite sum 3 f,). Further examination
of the representation theory of Spin(8k) might then lead to an elementary
proof of periodicity in full generality, but this remains an open question.
In connection with (8.2) one might conjecture, in analogy with the
complex case of § 7, that H+ and H- are respectively the positive
(negative) spaces of the Dirac operator on S8*-! (recall that the Dirac
operator is self-adjoint).

In conclusion we should point out that there is a somewhat different
way of defining the basic homomorphism

E(R%x X) > K(X)

from the ones discussed so far. To explain this let us recall [cf. (9)] that
an elliptic operator P on a compact manifold M defines, via its symbol
o(P), an element [o(P)] € K(T M), where T'M denotes the tangent bundle
of M, and that index P depends only on [o(P)]. Thus the index is
essentially a homomorphism

index: K(TM) » Z. (8.3)

In § 2 our approach was to pick a basic element [o(d)] € K(T'M) corre-
sponding to the operator d and to define a homomorphism

index;: K(M) » Z (8.4)
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ON BOTT PERIODICITY 139
by index,(a) = index(a.[o(d)]), where a.[o(d)] is the module multiplica-
tion of K(M) on K(T'M). In some ways it is more natural to work with
(8.3) rather than (8.4). Extending (8.3) to families and taking M to be
the sphere S* we obtain a homomorphism

K(TR*x X) - K(TS*x X) -~ K(X).

Since TR* = R, this is a homomorphism of the right type for the
formal proof of periodicity and it can be used for this purpose. This
method is the one closest to the remarks in (1) and also to the general
theory of the index in (9). Its drawback is that it only gives the general-

for G-modules V which are of the form
VeTW

for some real G-module W.

When k = 1 this method is essentially the same as method (2) of § 7—
modulo a conformal transformation taking the unit circle to the real axis.
When k > 1, however, these two methods are quite different; one involves
operators on S**-1 and the other operators on S.
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