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Preface to the original

The three sections of this book represent courses of lectures which I delivered
at the University of Chicago in 1967, 1970 and 1971 respectively; and the three
sections are of slightly different characters. The 1967 lectures dealt with part
of Novikov’s work on complex cobordism while that work was still new—they
were prepared before I had access to a translation of Novikov’s full-length paper,
[Nov67a]. They were delivered as seminars to an audience assumed to be familiar
with algebraic topology. The 1970 lectures also assumed familiarity, but were a
longer series attempting a more complete exposition; I aimed to cover Quillen’s
work on formal groups and complex cobordism. Finally, the 1971 lectures were a
full-length ten-week course, aiming to begin at the beginning and cover many of
the things a graduate student needs to know in the area of stable homotopy and
generalised homology theories. They form two-thirds of the present book.

No attempt has been made to rewrite the three sections to impose uniformity,
whether of notation or of anything else. Each section has its own introduction,
where the reader may find more details of the topics considered. Each section
has its own system of references; in Part I the references are given where they
are needed; in Part II the references are collected at the end, with Part I as a
reference; in Part I the references are again at the end, with Part I as a reference.
However, the page numbers given in references to Part I refer—I hope—to pages
in the present book.

Although I have not tried to impose uniformity by rewriting, a certain unity
of theme is present. Among the notions with which familiarity is assumed near
the beginning of Part I, I note the following: spectra, products, and the derived
functor of the inverse limit. All these matters are treated in Part III- in sections
2–3, 9 and 8. Similarly, near the beginning of Part II, I assume it known that a
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spectrum determines a generalised homology theory and a generalised cohomology
theory; this is set out in Part 3, section III . Again, at the end of Part 1, section
2 the reader is referred to the literature for information on π∗(MU); they could
equally well go to Part 2, section II. Perhaps one should infer that in my choice
of material, methods and results for my later courses, I was influenced by the
applications I had already lectured on, as well as others I knew.

I am conscious of other places where the three parts of this book overlap,
but perhaps the reader can profit by analysing these overlaps for themself; and
certainly they should feel free to read the parts in an order reflecting his own
taste. I need hardly direct the expert; a newcomer to the subject would probably
do best to begin by taking what they need from the first ten sections of Part III.

I would like to express my thanks to my hosts in the University of Chicago,
and to R. Ming for taking the original notes of Part III.



Part I

S.P. Novikov’s Work on

Operations on Complex

Cobordism

13





1. Introduction

The work of S. P. Novikov which is in question was presented at the International
Congress of Mathematics, Moscow, 1966, in a half-hour lecture, in a seminar
and in private conversations. It has also been announced in the [Nov67b]. Some
of Novikov’s results have been obtained independently by F. S. Landweber (to
appear in the Transactions of the AMS).

The object of these seminar notes is to give an exposition of that part of
Novikov’s work which deals with operations of complex cobordism. I hope that
this will be useful, because I believe that the cohomology functor provided by
complex cobordism is now ripe for exploitation. I therefore aim to present the
material in sufficient detail, so that a reader who has a concrete application in
mind can make their own calculations. In particular, I will give certain formulae
which are not made explicit in the sources cited above.

These notes will not deal with any of the other topics which are mentioned in
the sources cited above. These include the following.

(i) Generalizations of the Adams spectral sequence in which ordinary cohomol-
ogy is replaced by generalized (extraordinary) cohomology.

(ii) Connections between these studies for complex cobordism Ω∗
U (X,Y ) and

the corresponding studies for complete K-theory K∗(X,Y )

(iii) The cohomology functor Ω∗
U (X,Y )⊗Z(p) (where Z(p) is the ring of rational

numbers a/b with b prime to p); and the splitting of this functor into direct
summands.

15



Chapter 1: Introduction
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2. Cobordism Groups

Let ξ be a U(n)-bundle over the CW-complex X. Let E and E0 be the total spaces
of the associated bundles whose fibers are respectively the unit disc E2n ⊂ Cn

and the unit sphere S2n−1 ⊂ Cn. Then the Thom complex is by definition the
quotient space E/E0; it is a CW-complex with base point. In particular, if we
take ξ to be the universal U(n)-bundle over BU(n), then the resulting Thom
complex M(ξ) is written MU(n).

Example 2.1. There is a homotopy equivalence MU(1) ∼ BU(1).

Proof. Since E is a bundle with contractible fibers, the projection p : E −→ BU(1)

and the zero cross-section s0 : BU(1) −→ E are mutually inverse equivalences.

Since S1 = U(1) and E0 is the total space of the universal U(1)-bundle over
BU(1), E0 is contractible, and the quotient map E −→ E/E0 is a homotopy
equivalence.

We have an obvious map Σ2MU(n)
in
−→ MU(n+ 1). In this way the sequence

of spaces
(MU(0),MU(1),MU(2), . . . ,MU(n), . . .)

and maps in becomes a spectrum. Associated with this spectrum we have a
cohomology functor, as in [Whi62]. The groups of this cohomology functor are
written ΩqU (X,Y ), and called complex cobordism groups. For other accounts, see
[Ati61], and [CF66].

We will generally suppose that this cohomology functor is defined on some
category of spectra or stable objects. This assumption can easily be removed,
if the reader wishes, at the cost of making some of the proof more complicated;

17



Chapter 2: Cobordism Groups

one would have to replace the appropriate spectra by sequences of complexes
approximating to them.

Next we wish to discuss the cup-products in this cohomology theory. We
therefore wish to introduce the product map

µ : MU∧MU −→ MU .

Here “∧” means the smash product, and we assume that MU∧MU can be
formed in our stable category. We further assume that MU∧MU has skeletons
(MU∧MU)q, in a suitable sense, so that we have a short exact sequence

0 −→ lim
q

1[Σ(MU∧MU)q,MU] −→ [MU∧MU,MU] −→ lim
q

0[(MU∧MU)q,MU] −→ 0

(Here lim0 means the inverse limit, lim1 means the first derived functor of
the inverse limit, and [X,Y ] means the group of stable homotopy classes of
maps from X to Y in our stable category.) In this exact sequence, the group
lim
q

1[Σ(MU∧MU)q,MU] is zero. (This follows from the facts that

Hr(MU∧MU) = 0 for r odd and πr(MU) = 0 for r odd—see below. Thus the
spectral sequence

H∗(MU∧MU, π∗(MU)) −→ [MU∧MU,MU]

has all its differentials zero.) It will therefore be sufficient to give an element of
lim
q

0[(MU∧MU)q,MU].

Now, we have a map

BU(n)× BU(m) −→ BU(n+m) ,

namely the classifying map for the Whitney sum of universal bundles over BU(n)

and BU(m). Over this map we have map

µn,m : MU(n) ∧MU(m) −→ MU(n+m) .

The map µn,m yield an element of lim
q

0[(MU∧MU)q,MU], and therefore they

18



Chapter 2: Cobordism Groups

yield a unique homotopy class of maps

µ : MU∧MU −→ MU .

The map µ is commutative and associative (up to homotopy).

Using the map µ, one introduces products in cobordism. More precisely, one
has a product

ΩqU (X)⊗ ΩrU (Y ) −→ Ωq+rU (X ∧ Y )

where X and Y are spectra, and therefore a similar product for the reduced groups
Ω̃∗
U where X and Y are spaces. For spaces we have also an external product

ΩqU (X,A)⊗ ΩrU (Y,B) −→ Ωq+rU (X × Y,A× Y ∪X ×B)

and an internal product

ΩqU (X,A)⊗ ΩrU (X,B) −→ Ωq+rU (X,A ∪B) .

The products satisfy the axioms which products should satisfy, that is, naturality,
associativity, anticommutativity, existence of a unit, and behavior with respect to
suspension or coboundary.

Next we must mention the Thom isomorphism. For each U(n)-bundle ξ over
X the classifying map for ξ induces a map

γ : M(ξ) −→ MU(n).

The map γ represents a canonical element g in Ω2n
U (E,E0). We define the Thom

isomorphism
φ : ΩqU (X) −→ Ωq+2n

U (E,E0)

by φ(x) ∈ (p∗x)g, as usual. (See [Dol62])

Only one thing remains before we have a fair grasp on the cohomology functor
ΩU ; we need to know the coefficient groups ΩqU (P ), where P is a point. In fact

19



Chapter 2: Cobordism Groups

Ω∗
U (P ) is a polynomial ring

Z[x1, x2, . . . , xi, . . .] ,

where xi ∈ Ω−2i
U (P ). A good grasp on Ω∗

U (P ) is provided by the following authors:
[Mil60]; [Sto65];[Hat66].

20



3. Homology

The Novikov operations are closely related to certain polynomials in the Conner-
Floyd Chern classes. (These classes may be found in [CF66] pp 48-52) It is
convenient to begin by introducing the corresponding polynomials in the ordinary
Chern classes.

The Whitney sum map BU(n) × BU(m) → BU(n +m) defines products in
H0(BU) defines products in H∗(BU). We have BU(1) = CP∞, so H∗(BU(1))

has a Z-base consisting of elements 1, x, x2, x3, . . ., where x ∈ H2(BU(1)) is the
generator. Take the dual base in H∗(BU(1)) and call it b0, b1, b2, b3, . . .. The
injection BU(1) → BU maps these elements into H∗(BU), where they can be
multiplied. H∗(BU) has a Z-base consisting of the monomials

bv10 , b
v2
1 , b

v3
2 . . . (b0 = 1) .

Take the dual base in H∗(BU) and call its elements cν ; here the index ν runs
through the sequences of integers

ν = (ν1, ν2, ν3, . . .)

in which all but a finite number of terms are zero. We have cν ∈ H2|ν|(BU), where

|ν| = ν1 + 2ν2 + 3ν3 + . . .

If we take ν = (i, 0, 0, . . .), we obtain the classical i-th Chern class ci.

We have thus given a base of H∗(BU) which is well related to the Whitney
sum map. This is obviously profitable in considering MU, because in H∗(MU) we
have a Whitney sum map but not a cup-product map.

21



Chapter 3: Homology

For later use, we describe H∗(MU), which is defined by

H2i(MU) = lim
n→∞

H2n+2i(MU(n)) .

The Whitney sum map MU(n) ∧ MU(m) → MU(n + m) defines products in
H∗(MU). The Thom isomorphism

φ : Hq(BU(n))→ Hq+2n(MU(n)) ,

passes to the limit and gives an isomorphism

φ : Hq(BU)→ Hq(MU) ,

and similarly for homology. In particular, we have a “Thom isomorphism”

φ : H∗(BU)→ H∗(MU) ,

which commutes with the products. Thus the ring H0(MU) is a polynomial
ring on generators b′1, b′2, b′2, b′3, . . ., corresponding to b1, b2, b3, . . . under the Thom
isomorphism. It is equivalent, of course, to describe these generators as follows:
take the generators bi ∈ H2i(BU(1)), take their images b′1 ∈ H2i+2(MU(1)) under
the Thom isomorphism, and apply the injections

H2i+2(MU(1))→ H2i(MU) .

Under the equivalence MU(1) ∼ BU(1), the class b′i ∈ H2i+2(MU(1)) corre-
sponds to bi+1 ∈ H2i+2(BU(1)).

22



4. The Conner-Floyd Chern Classes

[CF66] take a U(n)-bundle ξ over a CW-complex X and undertake to assign to it
characteristic classes which lie, not in the ordinary cohomology H∗(X), but in
Ω∗
U (X).

Theorem 4.1. To each ξ over X and each α = (α1, α2, α3, . . .) we can assign classes
cfα(ξ) ∈ Ω

2|α|
U (X), called the Conner-Floyd Chern classes, with the following

properties:

(i) cf0(ξ) = 1.

(ii) Naturality: cfα(g
∗ξ) = g∗cfα(ξ).

(iii) Whitney sum formula:

cfα(ξ ⊕ η) =
∑

β+γ=α

(cfβξ)(cfγη) .

(iv) Let ξ be a U(1)-bundle over X, classified by a map X f−→ BU(1), and let

the composite X f−→ BU(1) −→ MU(1) represent the element ω ∈ Ω2(X).
Then

cfα(ξ) =
∑

i≥0

(cα, bi)ω
i .

Explanation. In (iii), the addition of the sequences β and γ is done term-by-term;
that is, if

β = (β1, β2, β3, . . .) ,

γ = (γ1, γ2, γ3, . . .) ,
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Chapter 4: The Conner-Floyd Chern Classes

then
β + γ = (β1 + γ1, β2 + γ2, β3 + γ3, . . .) .

The multiplication of (cfβξ) and (cfγη) is done in the ring Ω∗
U (X).

In (iv), the map BU(1)→ MU(1) is the equivalence provided by Example 2.1.
The integer (cα, bi) is defined by the Kronecker pairing of H∗(BU) and H∗(BU)

to Z. The sum over i is illusory; a non-zero contribution can arise only for i = |α|.
The formula merely means that cfα(ξ) is ω|α| if α has the form (0, 0, 0, . . .) or
(0, 0, . . . , 0, 1, 0, . . .), and otherwise zero. The use of coefficients like (cα, bi) is
however convenient for doing algebra, and saves dividing cases.

Sketch proof of Theorem 4.1. The Grothendieck method for defining the ordi-
nary Chern classes work just as well in generalized cohomology, and defines
cf1, cf2, cf3, . . .. (See [CF66]). Of course, Conner and Floyd restrict their spaces
to be finite CW-complexes (although their arguments apply unchanged to finite-
dimensional CW-complexes.) It is therefore necesary to argue that

lim1

q
Ω∗
U ((BU(n))q) = 0 ,

so that cfi defines an element of Ω∗
U (BU(n)) (or of Ω∗

U (BU), if required). Therefore
cfi is defined on all U(n)-bundles, by naturality. The same means is employed to
extend the scope of conclusions (iii) and (iv) beyond the case considered by Conner
and Floyd. It works because the appropriate lim1 groups for BU(n)×BU(m) and
BU(1) are zero.

So far we have only considered the classes cf1, cf2, cf3, . . .. Now, each element
in H∗(BU) can be written as a unique polynomial in the ordinary Chern classes
c1, c2, c3, . . .; say

cα = Pα(c1, c2, c3, . . .) .

Define cfα to be the same polynomial in cf1, cf2, cf3, . . .; that is,

cfα = Pα(cf1, cf2, cf3, . . .) .

Of course, one of the advantages claimed for the treatment above is that it
avoids mentioning the algebra of symmetric polynomials. At the insistence of my
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Chapter 4: The Conner-Floyd Chern Classes

friends, I explain the connection of the Pα with the symmetric polynomials. Let
σ1, σ2, σ3, . . . be the elementary symmetric functions in a sufficiency of variables
x1, x2, . . . , xn; then

Pα(σ1, σ2, σ3, . . .) =
∑

xm1
1 xm2

2 . . . xmn
n ,

where the sum runs over n-tuples (m1,m2, . . . ,mn) such that α1 of the m’s are 1,
α2 of the m’s are 2, and so on, while the rest of the m’s are 0.

Both for practical calculation and conceptual work I recommend the study of
the dual rings H∗(BU) and H∗(BU) above the study of symmetric polynomials.

Now that we have defined the classes cfα, the Whitney sum formula (iii) is
deduced from the special case

cfk(ξ ⊕ η) =
∑

i+j=k

cfi(ξ) cfj(η)

by pure algebra, and similarly the behavior on line bundles (iv) is deduced by
algebra from the special case

cfi(ξ) =





1 i = 0

ω i = 1

0 i > 1 .
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Chapter 4: The Conner-Floyd Chern Classes
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5. The Novikov Operations

The basic analogy which Novikov follows is now: as the Steenrod squares are to
the Stiefel-Whitney classes, so the Novikov operations are to the Conner-Floyd
characteristic classes. This will be made precise in Theorem 5.1 (vii) below.

Theorem 5.1 (S.P. Novikov). For each α = (α1, α2, α3, . . .) there exists an operation

sα : Ω
q
U (X,Y ) −→ Ω

q+2|α|
U (X,Y )

with the following properties:

(i) s0 = 1, the identity operation.

(ii) sα is natural: sαf∗ = f∗sα.

(iii) sα is stable: sαδ = δsα.

(iv) sα is additive: sα(x+ y) = (sαx) + (sαy).

(v) Cartan formula:
sα(xy) =

∑

β+γ=α

(sβx)(sγy) .

(vi) Suppose that an element ω ∈ Ω2(X) is represented by a map X g−→ MU(1).
Then

sα(ω) =
∑

i

(cα, bi)ω
i+1 .
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Chapter 5: The Novikov Operations

(vii) Suppose that ξ is an U(n)-bundle over X, and consider the following diagram.

Ω2n
U (E,E0) Ω2n+2|α|(E,E0)

Ω0
U (X) Ω

2|α|
U (X)

sα

φ ∼= φ ∼=

(Here the pair E,E0 is as in § 2, and φ is the Thom isomorphism for Ω∗
U .)

Then we have
cfα(ξ) = φ−1sαφ1 .

Explanation. In (v), the addition of the sequences β and γ is done term-by-term.
The cup product xy may be taken in any one of the three senses explained above,
and then the cup product (sβx)(sγy) is to be taken in the same sense.

For the coefficients (cα, bi) in (vi), see the note on Theorem 4.1 (iv).

Sketch Proof. We take (vii) as our guide. We have a Thom isomorphism

φ : Ω∗
U (BU(n)) −→ Ω̃∗

U (MU(n))

Consider the elements φcfα ∈ Ω̃
2n+2|α|
U (MU(n)). They yield a unique element

sα ∈ Ω2|α|(MU) (the lim1 argument again). This element defines an operation on
the cohomology theory Ω∗

U .

Property (vii) results immediately from the definition, and properties (ii),
(iii) and (iv) are trivial. For example if x, y : X −→ MU are maps, and if
we represent sα by a map s : MU −→ Σ2aMU, then the maps s(x + y) and
(sx) + (sy) : X −→ Σ2aMU are homotopic, since we are working in a stable
category.

Properties (i), (v) and (vi) are deduced from the corresponding properties
(i), (iii) and (iv) of the Conner-Floyd classes (Theorem 4.1) by using appropriate
properties of the Thom isomorphism φ. For example: in proving (v), it is sufficient
to consider the case in which x and y are both the identity map i : MU −→ MU

so that xy is the product map µ : MU∧MU −→ MU. Using the lim1 argument
again, it is sufficient to consider the case in which x and y are generators for
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Chapter 5: The Novikov Operations

Ω̃2n
U (MU(n)), Ω̃2m

U (MU(m)). Now we use the fact that if ξ is a U(n) bundle over
X and η is a U(m)-bundle over Y the following diagram is commutative.

Ω̃p+2n
U (M(ξ))⊗ Ω̆q+2m(MU(η)) Ω̃p+q+2n+2m(M(ξ) ∧M(η))

Ω̃p+q+2n+2m(M(ξ × η))

ΩpU (X)⊗ ΩqU (Y ) Ωp+qU (X × Y )

product

product

φξ⊗φη

φξ×η

The application, of course, is with ξ the universal bundle over BU(η) and η

the universal bundle over BU(m).

For (vi) we need to know that for the universal U(1)-bundle over BU(1), the
homomorphism

Ω2i
U (BU(1)) −→ Ω̃2i+2

U (MU(1)) = Ω2i+2
U (MU(1)) i ≥ 0

carries ωi to ωi+1. (Here ω is the universal element in Ω2
U (BU(1)) or Ω2

U (MU(1)).)

Since sα is a homotopy class of maps

MU −→ Σ2|α| MU,

it induces a homomorphism

sα : Hq(MU) −→ Hq−2|α|(MU).

It is reasonable to ask for this homomorphism to be made explicit. Since we have
seen in §3 that H∗(MU) is a polynomial ring, it is reasonable to ask (i) how sα

acts on products, and (ii) how sα acts on the generators b′i. Set b′ =
∞∑

i=0

b′i; then

it is sufficient to know sα(b
′), since one can separate the components again.
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Chapter 5: The Novikov Operations

Theorem 5.2. (i) If x, y ∈ H∗(MU), then

sα(xy) =
∑

β+γ=α

(sβx)(sγy).

(ii) sα(b′) =
∑

i≥0

(cα, bi)(b
′)i+1.

Sketch Proof. Part (i). By Theorem 5.1(v), we have the commutative diagram.

MU∧MU MU

∨

β+γ=α

S2|β| MU∧S2|γ| MU S2|α| MU

µ

∑

β+γ=α

sβ ∧ sγ sα

µ

Pass to induced maps of homology.

Part (ii). Since the generators b′t come from MU(1), we can make use of
Theorem 5.1(vi). If ω is the canonical element of Ω2(MU(1)), we wish to compute
the effect on homology of the element ωi+1 ∈ Ω2i+2(MU(1)), that is, the effect of
the following composite map.

MU(1) MU(1) ∧MU(1) ∧ . . .MU(1) (i+ 1) factors

MU(i+ 1)

∆

µ

Now, the diagonal map

BU(1)
∆−→ BU(1)× BU(1)× . . .× BU(1)

induces a map of cohomology given by

∆∗(xu1 ⊗ xu2 ⊗ . . .⊗ xui+1) = xu1+u2+...+ui+1 ;
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therefore it induces a map of homology given by

∆∗bt =
∑

u1+u2+...+ui+1=t

bu1 ⊗ bu2 ⊗ . . .⊗ bui+1 .

The map of H̃∗ induced by

BU(1)
∆−→ BU(1) ∧ BU(1) ∧ . . .BU(1)

is given by the same formula, provided we now interpret b0 as 0. Next recall that
b′t in MU(1) corresponds to bt+1 in BU(1). We deduce that

∆∗b
′
t =

∑

u1+u2+...+ui+1=t−i
b′u1
⊗ b′u2

⊗ . . .⊗ b′ui+1

and
µ∗∆∗b

′
t =

∑

u1+u2+...+ui+1=t−i
b′u1

b′u2
. . . b′ui+1

.

Adding, we see that
µ∗∆∗b

′ = (b′)i+1.

By Theorem 5.1(vi), we have the following commutative diagram.

Σ2 MU

MU(1) Σ2|α|+2 MU

sαω

(cα,b|α|)ω
i+1

Pass to induced maps of homology.

Corollary 5.3. sα : H0(MU) −→ H2|α|(MU) is given by

sαφ1 = φcα.

Proof. By Theorem 5.1(ii),

sα(b
′
i) =




0 i < |α| (trivially)

(cα, bi)1 i = |α|.
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Using Theorem 5.1(i) we have

sα(b
′
i1b

′
i2 . . . b

′
ir ) =

∑

β1+β2+...+βr=α

(sβ1
b′i1)(sβ2

b′i2) . . . (sβr
b′ir ).

If we assume that i1 + i2 + . . . + ir = |α|, then the only terms which can
contribute to this sum are those with

|β1| = i1, |β2| = i2, . . . , |βr| = ir,

and we obtain ∑
(cβ1

, bi1)(cβ2
, bi2) . . . (cβr

, bir )1

where the sum runs over each such β1, β2, . . . , βr. This of course yields

(cα, bi1 , bi2 , . . . , bir )1.

We have shown that
sα(φx) = (cα, x)1

for x ∈ H2|α|(BU). Transposing to cohomology, we obtain

sαφ1 = φcα.
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6. The algebra of all operations

Next we need to consider a much more trivial sort of operation. Let x be a fixed
element in ΩpU (P ). Let X,Y be a pair, and let c : X −→ F be the constant map;
thus c∗(x) ∈ ΩpU (X). For each y ∈ ΩqU (X,Y ), we define

t(y) = (c∗x)y ∈ Ωp+qU (X,Y ).

This defines a cohomology operation

t : ΩqU (X,Y ) −→ Ωp+qU (X,Y ).

In fact, we can say that Ω∗
U (P ) acts on all out groups Ω∗

U (X,Y ), acting on the
left. Now suppose that we fix a dimension d (positive, negative, or zero), and for
each index α = (α1, α2, α3, . . . ) we choose an element

xα ∈ Ω
d−2|α|
U (P ).

(We do not require that all but a finite number of the xα are zero; they may all
be non-zero if they wish.) For each xα we have a corresponding operation

tα : Ω
q+2|α|
U (X,Y ) −→ Ωq+dU (X,Y ).

We now consider the infinite sum

∑

α

tαsα : Ω
q
U (X,Y ) −→ Ωq+dU (X,Y ).
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Chapter 6: The algebra of all operations

(Here we are assuming, as usual that X,Y is a CW-pair of finite homological
dimension.)

Theorem 6.1 (Novikov). (i) This sum converges, in the sense that all but a finite
number of the terms tαsα yield zero.

(ii) This sum defines a cohomology operation on Ω∗
U which is natural and

stable.
(iii) Every cohomology operation on Ω∗

U which is natural and stable can be
written in this form.

(iv) This way of writing a cohomology operation on Ω∗
U is unique; if

tαsα = 0: ΩqU (X,Y ) −→ Ωq+dU (X,Y )

for all X,Y and q, then xα = 0 for all α.

Sketch proof. Part (i) is trivial: the group Ωq+2α
U (X,Y ) is zero if |α| is large

compared with the homological dimension of the pair X,Y . Part (ii) is also
trivial.

For parts (iii) and (iv), consider the spectral sequence

H∗(MU,Ω∗
U (P )) =⇒ Ω∗

U (MU).

It follows from Corollary 5.3 that the elements sα ∈ Ω∗
U (MU) constitute an

Ω∗
U (P )-base for the E2 term of this spectral sequence.

There is alternative method of proving part (iv), as follows.

Remark 6.2 (Novikov). The operations
∑
α tαsα are distinguished by their values

on the classes

ω1ω2 . . . ωm ∈ Ω2m
U (CPn × CPn × · · · × CPn)

(where m and n run over all positive integers).

Sketch proof. It is easily seen that Ω2m
U (CPn×CPn×· · ·×CPn) is free over Ω∗

U (P ),
with an Ω∗

U (P )-base consisting of the monomials

ωi11 ω
i2
2 . . . ωimm
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Chapter 6: The algebra of all operations

with 0 ≤ ir ≤ n for all r; the remaining monomials are zero. We have

sα(ω1ω2 . . . ωm) =
∑

i1,i2,...,im

(cα, bi1bi2 . . . bim)ωi1+1
1 ωi2+1

2 . . . ωim+1
m .

This will of course be zero if α1 + α2 + α3 + · · · > m or if ai > 0 for any i with
i+ 1 > n; but the remaining elements sα(ω1ω2 . . . ωm) are linearly independent
over Ω∗

U (P ).

Note. With the foundations indicated above, the use of CP∞ instead of CPn gives
no trouble.

Next we need to know how to compute the composite of two operations
tαsα, t

′
βsβ . This breaks up into three problems.

(i) We need to write sαt′β in the form
∑
γ t

′′
γsγ . This reduces to computing

the action of sα of Ω∗
U (P ), for

sα((c
∗x)y) =

∑

β+γ=α

(sβc
∗x)(sγy) =

∑

β+γ=α

(c∗sβx)(sγy).

This writes the operation in the required form.

Now we have Ω∗
U (P ) = π∗(MU), and by Milnor (loct. cit.) the Hurewicz

homomorphism
π∗(MU) −→ H∗(MU)

is monomorphic. Therefore, in principal it is sufficient to know the action of sα
on H∗(MU), which has been given in Theorem 5.2.

We will return later to the action of sα on Ω∗
U (P ).

(ii) We need to compute the composite tαt′′γ . This is trivial; just multiply the
corresponding elements of Ω∗

U (P ).

(iii) We need to compute the composite sγsβ . This is done by the following
theorem.

Theorem 6.3. The set S of Z-linear combinations of the sα is closed under
composition. The ring S is a Hopf algebra over Z, whose dual S∗ is the polynomial

algebra on generators b′′1 , b′′2 , b′′3 , . . . , where (sα, b
′′
i ) = (cα, bi). Set b′′ =

∞∑

i=0

b′′i ,

35



Chapter 6: The algebra of all operations

where b′′0 = 1; then the diagonal in S∗ is given by

∆b′′ =
∑

i≥0

(b′′)i+1 ⊗ b′′i .

Explanation. By separating this formula into components we obtain the value of
∆b′′k ; this determines the diagonal on the whole of S∗, and hence determines the
product in S. The situation is similar to that arising in Milnor’s work on the dual
of the Steenrod Algebra.

Theorem 6.3 is due to Novikov, except that he does not give the explicit
formula for the diagonal in S∗.

Sketch proof. In Ω∗
U (CP

n × CPn × . . .CPn), sβ(ω1ω2 . . . ωm) is a Z-linear combi-
nation of monomials ωi11 ω

i2
2 . . . ωimm , and hence sα(sβ(ω1ω2 . . . ωm)) is a Z-linear

combination of monomials ωj11 ω
j2
2 . . . ωjmm . By the proof following Remark 6.2,

sαsβ is a Z-linear combination of operations sγ .

We next wish to calculate ∆b′′k , that is, to find sαsβ(ω) for each α, β, where ω
is the generator in Ω2(CP∞). We have

sβω =
∑

i

(sβ , b
′′
i )ω

i+1

and therefore

sαsβ =
∑

i,j1,j2,...,ji+1

(sα, b
′′
j1 , b

′′
j2 . . . b

′′
ji+1

)(sβ , b
′′
i )ω

i+j1+j2+···+ji+1+1.

We conclude that

∆b′′k =
∑

i+j1+j2+···+ji+1=k

b′′j1 , b
′′
j2 . . . b

′′
ji+1
⊗ b′′i .

Summing over b, we obtain the formula given.

Note. Now that we have introduced the dual Hopf algebra S∗, we can reformulate
Theorem 5.2. Recall that S acts on H∗(MU), acting on the left; therefore it acts
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Chapter 6: The algebra of all operations

on the right on H∗(MU); that is, we have a product map

MU: H∗(MU)⊗ S −→ H∗(MU).

Transposing again, we have a coproduct map

∆: H∗(MU) −→ H∗(MU)⊗ S∗.

This is related to the original action of S on H∗(MU) as follows: if

∆h =
∑

i

hi ⊗ s∗i

then
sh =

∑

i

hi(s
∗
i s)

for all s ∈ S. The map

∆: H∗(MU) −→ H∗(MU)⊗ S∗

may be described as follows.

Proposition 6.4. ∆ preserves products, and

∆b′ =
∑

i≥0

(b′)i+1 ⊗ b′′i .

This is a trivial reformulation of Theorem 5.2

The analogy between this formula and that in Theorem 6.3 should be noted.
At this point we possess a firm grasp of the algebra of operations on Ω∗

U .
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7. Scholium on Novikov’s Exposition

In Moscow, Novikov made a careful distinction, which is maintained in his Doklady
note, between sω : Ω∗

U (P ) −→ Ω∗
U (P ) and a certain homomorphism

σ∗
ω : Ω

∗
U (P ) −→ Ω∗

U (P ). It is necessary to observe that they coincide, and for this
purpose it is necessary to analyse Theorem 3 of Novikov’s Doklady note [Nov67b].

First observe that in Novikov’s Doklady note, MU and ΩU are different names
for the same thing, since both are defined to be Ω∗

U (P ) (p. 33 line 4 of Section II;
p. 35 line 8). Next recall that Novikov writes AU for the algebra of operations,
and observe that the isomorphism

HomAU (AU ,MU ) ΩU
∼=

which he has in mind is precisely the standard isomorphism θ given by

θ(h) = h(1).

Next consider Novikov’s map d : AU −→ AU . Since it is asserted to induce a map

d∗ : HomAU (AU ,MU ) HomAU (AU ,MU ),

it is implicit that d must be a map of left A-modules. Since it is asserted to satisfy
d(1) = sω, it must be given by

d(a) = asω.

Now consider the following diagram.
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Chapter 7: Scholium on Novikov’s Exposition

HomAU (AU ,MU ) HomAU (AU ,MU )

ΩU ΩU

θ

d∗

θ

x

It is trivial to check that it is commutative if we define x by x(y) = sωy. But
Novikov asserts that it is commutative if define x to be σ∗

ω. Therefore σ∗
ω(y) = sωy.
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8. Complex Manifolds

Next it is necessary to recall that a stable almost-complex manifold Mn defines an
element [Mn] of Ω−n

U (P ). If we are given such a stable almost-complex manifold
Mn, it is natural to ask for the value of sα[Mn]. It is especially reasonable to
ask this for manifolds CPn, since these manifolds are familiar and are known to
provide a set of generators for the polynomial ring Ω∗

U (P )⊗Q (where Q is the
ring of rational numbers).

Theorem 8.1. sα[CPn] = (cα, b
−n−1)[CPn−|α|] where b =

∞∑

i=0

bi.

Explanation. Since the element b is a formal series with first term 1, it is invertible.
The integer (cα, b−n−1) is the Kronecker product of an element in H2|α|(BU) and
an element in

∏
qHq(BU). This time we have used the algebra in §3 to write

down a coefficient which isn’t necessarily 0 or 1.

Theorem 8.1 is due to Novikov, except that he does not give the explicit
formula for the coefficient of [CPn−|α|].

Sketch proof. To preserve the character of the arguments, we will show how to
deduce this from Theorem 5.2 by pure algebra.

The letter χ will always mean the canonical anti-automorphism of the relevant
Hopf algebra. In CPn, the tangent bundle τ satisfies τ ⊕ 1 = (n+ 1)ξ, and so for
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the normal bundle ν we have

cα(ν) = (χcα)τ

= (χcα)((n+ 1)ξ)

=
∑

i1,i2,...,in+1

(χcα, bi1bi2 . . . bin+1)x
i1+i2+···+in+1

=
∑

i1,i2,...,in+1

(cα, χ(bi1bi2 . . . bin+1))x
i1+i2+···+in+1 .

The terms with i1 + i2 + · · ·+ in+1 = n give the normal characteristic numbers of
CPn. Therefore the class of [CPn] in H2n(MU) is

φ
∑

i1+i2+···+in+1=n

χ(bi1bi2 . . . bin+1
) = φχ(bn+1)n,

where the subscript n means the 2n-dimensional component. But since ∆b = b⊗b,
we have χb = b−1 and χ(bn+1) = b−n−1. We conclude that the class of [CPn] in
H2n(MU) is

((b′)−n−1)n.

Now by 5.2 (ii) we have the formula

sα(b
′) =

∑

i≥0

(cα, bi)(b
′)i+1.

From this we will deduce

sα(b
′)−1 =

∑

j≥0

(cα, χbj)(b
′)j−1. (8.2)
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It is easily to see that this checks; for it yields

sα(b
′ · (b′)−1) =

∑

β+γ=α
i≥0,j≥0

(cβ , bi)(cγ , χbj)(b
′)i+j

=
∑

i≥0,j≥0

(cα, bi · χbj)(b′)i+j

= (cα, b0)1,

as it should. But this manipulation allows one to prove the formula for sα((b′′)−1)d

by double induction over |α| and d, starting from the trivial cases |α| = 0 and
d = 0.

From (8.2) we deduce that

sα((b
′)−n−1)n =

∑

i1+i2+···+in+1=|α|
(cα, χ(bi1bi2 . . . bin+1

))((b′)|α|−n−1))n− |α|.

This is the class of [CPn−|α|] in H2n−2|α|(MU), up to a factor (cα, b
−n−1). Now

the result follows from the fact that the Hurewicz homomorphism

π∗(MU) −→ H∗(MU)

is monomorphic.

From a geometrical point of view the proof just given is uncouth and perverse;
Theorem 8.1 should be deduced from an elegant formula of Novikov. Before
starting this, we will recall some material from ordinary cohomology.

Let M,N be oriented manifolds of dimension m,n, and let f : M −→ N be a
continuous map. The “Umkehrunghomomorphismus” or “forward homomorphism”

f! : H
q(M) −→ Hn−m+q(N)
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is defined to be the following composite.

Hq(M) Hn−m+q(N)

Hm−q Hm−q(N)

d d

f∗

Here d is the Poincaré duality isomorphism.

A similar construction may be given in which H∗ is replaced by Ω∗
U , provided

that M and N are stably almost-complex manifolds and replace d by the Atiyah
duality isomorphism

D : ΩqU (M) −→ ΩUm−q(M).

Here ΩUm−q means complex bordism; see [Ati61], for real bordism and the corre-
sponding duality theorem.

We shall in fact only have to apply the homomorphism f! i the case when N
is a point P and f is the constant map c : M −→ P . It will make both the proof
and the exposition easier if we give an alternative definition of c!, which does not
require the introduction of bordism.

Suppose that we embed the manifold M in a high-dimensional sphere Sm+2p,
with unitary normal bundle ν. Define c! to be the following composite.

ΩqU (M) Ωq−mU (P )

Ωq+2p
U (E,E0)

Ωq+qpU (Sm+2p, C IntE) Ωq+qpU (Sm+2p, Dm+2p)

φ

∼=

φ

j∗

Here φ is the Thom isomorphism; E and E0 refer to the normal bundle ν of M ;
and C IntE is the complement of the interior of E. (If one wished one could
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replace Ωq+qpU (Sm+2p, C IntE) by Ωq+2p
U (Sm+2p, CM); ths would make it clearer

that this group is standing in for a bordism group of M , via Alexander duality
or S-duality.) Further, Dm+2p is a small disc contained in C IntE, and the
right-hand vertical arrow is the usual iterated suspension; this may be viewed as
the analogue of the left-hand column, with M replaced by P .

We will accept this composite as our definition of c!. If any reader who is
familiar with bordism prefers a different definition, we may leave it to them to
reconcile their definition with this one.

Now we come to Novikov’s formula. Take a stably almost complex manifold
Mm, representing an element [Mm] ∈ Ω−m

U (P ). Let ν be its stable normal bundle;
thus cfα(ν) ∈ Ω

2|α|
U (Mm) and c!cfα(ν) ∈ Ω2|α|−m(P ).

Theorem 8.3 (Novikov). sα[Mm] = c!cfα(ν).

This result follows easily from the definition of sα in §I.
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Part II

Quillen’s Work on Formal

Groups and Complex Cobordism
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0. Introduction

These notes derive from a series of lectures which I gave in Chicago in April 1970.
It is a pleasure to thank my hosts for an enjoyable and stimulating visit.

In §§1-8, I have tried to give a connected account, beginning from first principles
and working up to Milnor’s calculation of π∗(MU) (8.1) and Quillen’s theorem
that π∗(MU) is isomorphic to Lazard’s universal ring L (8.2). The structure of
L is obtained from first principles (7.1). This is done by relating the notion of a
formal group to the notion of a Hopf algebra. The material has been so arranged
that algebraists who are interested in the subject can obtain a fairly self-contained
account by reading §§1, 3, 5, 7.

The remaining sections deal with related matters, In [Ada69, Lecture 3], I
have shown that for suitable spectra E, E∗(E) can be given the structure of a
Hopf algebra analogous to the dual of the Steenrod algebra. The structure of this
Hopf algebra is described for the spectrum MU in §11, for the BU-spectrum in
§13, and for the Brown-Peterson spectrum in §16. Sections 15 and 16 are devoted
to Quillen’s work on the Brown-Peterson spectrum [JP66]. §14 is devoted to the
Hattori-Stong theorem.

51



Chapter 0: Introduction

52



1. Formal Groups

We may understand formal groups by an analogy. Let G be a real Lie group of
dimension 1. By choosing a chart, we may identify a neighbourhood of the unit
in G with a neighbourhood of zero in R1, so that the unit of G corresponds to
zero. The product in G is then given by a power-series:

µ(x, y) =
∑

i,j≥0

aijx
iyj . (1.1)

This power-series is convergent for small x and y and satisfies the following
conditions.

µ(x, 0) = x, µ(0, y) = y. (1.2)

µ(x, µ(y, z)) = µ(µ(x, y), z). (1.3)

Now let R be any commutative ring with unit. Then a “formal product”
(over R) is a formal power series of the form (1.1), but with coefficients aij in R,
satisfying (1.2) and (1.3).

We have two trivial examples.

µ(x, y) = x+ y, (1.4)

µ(x, y) = x+ y + xy. (1.5)

For example, suppose that we consider the Lie groups G of positive real
numbers under multiplication, and use the chart under which x ∈ R1 corresponds
to (1 + x) ∈ G; we obtain formula (1.5).

Let us return to the general case; there a few obvious comments. Condition
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(1.2) is equivalent to

ai0 =




1 i = 1

0 i ̸= 1

a0j =




1 j = 1

0 j ̸= 1

(1.6)

So we may write our formal power-series in the following form

µ(x, y) = x+ y +
∑

i,j≥0

aijx
iyj . (1.7)

Condition (1.3) involves substituting one formal power-series into another, but
this involves no difficulty since our formal power-series have their constant terms
zero.

We observe that so far we are only discussing the case of dimension 1. That is,
in the general case one would start from a Lie group of dimension 1, and proceed
by analogy.

Given a formal product µ, a formal inverse ι is a formal power-series

ιx =
∑

j≥1

a′jx
j (1.8)

(with coefficients a′j in our ring R) such that

µ(x, ιx) = 0, µ(ιx, x) = 0 (1.9)

Lemma 1.10. Given any formal product µ, there is a formal inverse ι, and it is
unique.

The proof is trivial.

We have two examples; with the “additive product” of (1.4) we have

ι(x) = −x,
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and with the “multiplicative product” of (1.5) we have

ι(x) = −x+ x2 − x3 + x4 . . . .

So far, a “formal product” is like a grin without a Cheshire cat behind it. A
“formal group” must, of course, be a group object in a suitable category; I take this
notion as known. If X is to be a group object in the category C, then Cartesian
products such as Xn must exist in C for n = 0, 1, 2, 3; and X must be provided
with structure maps in the category C, namely a product map m : X2 −→ X, a

unit map e : X0 −→ X and an inverse map i : X −→ X. These maps must satisfy
the obvious conditions. For example, consider the category of smooth manifolds
and smooth maps; a group in this category is a Lie group. Again, consider the
category of commutative maps and homomorphisms of rings, and let C be the
opposite category; with a little goodwill C may be regarded as the category of
affine algebraic varieties. A group in this category is an “algebraic group”.

Now consider the category in which the objects are filtered commutative
algebras over R, which are complete and Hausdorff for the filtration topology;
the morphisms are filtration-preserving homomorphisms. Let C be the opposite
category. The ring of formal power-series

R[[x1, x2, . . . , xn]],

with the obvious filtration, is an object in C. The objects R[[x1, x2, . . . , xn]] and
R[[y1, y2, . . . , ym]] have a Cartesian product in C, namely

R[[x1, x2, . . . , xn, y1, y2, . . . , ym]].

Let X be the object R[[x]] in C, then a map m : X2 −→ X in C is a filtration-
preserving homomorphism

m : R[[x]] −→ R[[x1, x2]];

such a map m is determined by giving m(x), which is a formal power-series
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µ(x1, x2) with zero constant term. It is now easy to check that each “formal
product” µ determines a structure map m which makes R[[x]] into a group object,
and conversely. (The unit map e : R[[x]] −→ R defined by e

(∑

i≥0

cix
i
)
= c0;

inverse maps come free of charge by Lemma 1.10). It is now clear how to proceed
in dimension n; we have to consider the object R[[x1, x2, . . . , xn]], and study
the ways of making it into a group-object in C. A “formal group”, then, is a
group-object in the category C, whose underlying object is R[[x1, x2, . . . , xn]].

We now revert to the case of dimension 1. Let θ : R −→ S be a homomorphism
of rings with unit. Then θ induces the map

θ∗ : R[[x1, x2]] −→ S[[x1, x2]]

which carries any formal product µ over R into a formal product θ∗µ over S.
However, this is not the definition of a homomorphism between formal groups.
Such a homomorphism is, of course, a map in our category, with the obvious
property. That is, if G is a formal group (R[[x]], µ) and H is a formal group
(R[[y]], ν), then a homomorphism θ : G −→ H is a formal power series

y = f(x) =
∑

i≥1

cix
i

(with coefficients ci in R) such that

ν(f(x1), f(x2)) = fµ(x1, x2).

The analogy with the case of a Lie group is obvious. If the coefficient c1 is
invertible in R, then f−1 exists, and f is an isomorphism.

In our applications we are interested only in the case of dimension 1, and
moreover only in commutative formal groups. That is, our formal products will
satisfy

µ(x, y) = µ(y, x), (1.11)

or equivalently
aij = aji. (1.12)
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Our applications arise in algebraic topology.

57



Chapter 1: Formal Groups

58



2. Examples from Algebraic Topology

In this section we will explain how examples of formal products arise in studying
generalized cohomology theories. According to [Whi62], generalized cohomology
theories are closely connected with stable homotopy theory and the study of
spectra. For convenience we will suppose that we are working in a suitable
category of spectra, such as that constructed by Boardman [Boa64]; [Boa65], so
that we can form smash-products of spectra. A ring-spectrum is a spectrum
E provided with a product map µ : E ∧ E −→ E. All our ring-spectra will be
associative and commutative up to homotopy, and will be provided with a map
i : S0 −→ E which acts as a unit up to homotopy. We shall suppose known the
work of G. W. Whitehead [Whi62], according to which a ring-spectrum determines
a generalized homology theory E∗ and a generalized cohomology theory E∗. These
theories admit all the usual products. The coefficient groups for these two theories
are given by

E−n(pt) = En(pt) = πn(E) = [Sn, E].

Initially we are interested in three examples. First, the Eilenberg-MacLane
spectrum for the group of integers. Since the corresponding homology and
cohomology theories are universally written H∗ and H∗, we will write H for this
spectrum. Secondly, the BU-spectrum; since the corresponding homology and
cohomology theories are called K-theory, and written K∗, K∗ (and since we have
just dispense with the use of K for the Eilenberg-Mac Lane spectrum) we will
write K for the BU-spectrum. (Note that we would anyway have to find different
notation for the BU-space and the BU-spectrum, since we have to distinguish
between them.) Thirdly, the Milnor spectrum [Mil60]; this is always written MU ;
the corresponding homology and cohomology theories are complex bordism and
complex cobordism.
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We do not need homology and cohomology with coefficients until §15; but it
seems best to deal with the matter now. Let G be an abelian group; then we can
construct a Moore spectrum M =M(G) so that

πr(M) = 0 for r < 0

π0(M) ∼= G

Hr(M) = 0 for r > 0

We define a “spectrum with coefficients” by

EG = E ∧M.

For example, HG is the Eilenberg-Maclane spectrum for the group G. The
homology and cohomology theories associated with EG are written EG∗, EG∗.

We will study spectra E which are provided with “orientations”, in the following
sense (which owes much to a seminar by A. Dold).

(2.1) There is given an element x ∈ Ẽ∗(CP∞) such that Ẽ∗(CP1) is a free module
over π∗(E) on the generator i∗x, where i : CP1 −→ CP∞ is the inclusion
map.

We know, of course that CP1 can be identified with S2 and that Ĕ∗(S2) is
free over π∗(E) on one generator γ, which lies in Ẽ2(S2), and is represented by
the unit map S0 −→ E; but we do not insist that i∗x is the generator, or even

that it lies in Ẽ2(S2). Our assumption says only that i∗x = uγ, where u is an
invertible element in π∗(E).

If we have more than one spectrum in sight, we write xE for the generator in
Ĕ∗(CP∞), and uE for u.

We make a blanket assumption that objects to be studied are pairs (E, xE);
any E which appears in what follows is supposed to be provided with a class xE .

Example. (2.2) E = H. We take xH ∈ H2(CP∞) to be the usual generator.

(2.3) E = K. We identify CP∞ with BU(1), we take ξ to be the universal line

60



Chapter 2: Examples from Algebraic Topology

bundle over BU(1), and we take

xK = ξ − 1 ∈ K̆0(CP∞).

Notes. It is justifiable to take xK in K̆0(CP∞) instead of K̃2(CP∞), because
it makes the “n-th Chern class in K-cohomology” lie in dimension 0 instead of
dimension 2n, so that it is more conveniently related to bundles and representation-
theory. Also we get a better formula at 2 below. The unit uK is the usual
generator in π2(K); this provides some justification for writing i∗x = uγ rather
than γ = ui∗x.

(2.4) E = MU. We have a canonical homotopy equivalence ω : CP∞ −→ MU(1).
In fact, MU(1) is a quotient space formed from a disc-bundle over BU(1) by
identifying to one point a subbundle whose fibers are circles. This subbundle
is the universal U(1)-bundle, so it is contractible, and the quotient map is a
homotopy equivalence. The disc-bundle is clearly equivalent to BU(1) under
the projection.

We take xMU ∈ MU2(CP∞) to be the class of ω.
Let us return to the general case. By using the projections of CP∞ × CP∞

onto its two factors, we obtain two elements

x1, x2 ∈ Ẽ∗(CP∞ × CP∞).

Lemma 2.5. (i) The spectral sequences

H∗(CPn;π∗(E)) ==⇒ E∗(CPn)

H∗(CP∞, π∗(E)) ==⇒ E∗(CP∞)

H∗(CPn × CPm;π∗(E)) ==⇒ E∗(CPn × CPm)

H∗(CP∞ × CP∞) ==⇒ E∗(CP∞ × CP∞)

Are trivial.

(ii) E∗(CPn) is the ring of polynomials π∗[E] modulo the ideal generated by
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xn+1.

E∗(CP∞) is the ring of formal power series π∗(E)[[x]].

E∗(CPn × CPm) is the ring of polynomials π∗(E)[x1, x2] modulo the ideal
generated by xn+1

1 and xm+1
2 .

E∗(CP∞) is the ring of formal power series π∗(E)[[x1, x2]].

Proof. Consider each spectral sequence of part (i); the relevant powers xi or xi1x
j
2

give a π∗(E)-base for the E2-term on which all differentials dr vanish. Since the
differentials dr are linear over π∗(E), they vanish on everything.

We know that CP∞ is an Eilenberg-Mac Lane space of type (Z, 2); in particular
it is an H-space, and its product map

m : CP∞ × CP∞ −→ CP∞

is unique up to homotopy. One way to describe m is to say that it is the classifying
map for the tensor product ξ1ξ2 of two line-bundles over CP∞ × CP∞; in other
words m∗ξ = ξ1ξ2.

In general, we can form m∗x, and by Lemma 2.5 it is a formal power-series in
two variables:

m∗x = µ(x1, x2) =
∑

i,j

aijx
i
1x
j
2 (aij ∈ π∗(E)). (2.6)

Lemma 2.7. This formal power-series is a commutative formal product, in the
sense of §1, over the ring π∗(E).

The proof is easy.
If we have more than one spectrum E in sight, we write µE for E and aEij for

the coefficients in π∗(E).

Example. (2.8) E = H. We have

m∗xH = xH1 + xH2 .

We get the “additive formal product” of (1.4).
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(2.9) E = K. We have
m∗ξ = ξ1ξ2,

that is,
m∗(1 + x) = (1 + x1)(1 + x2)

or
m∗x = x1 + x2 + x1x2.

We get the “multiplicative formal product” of (1.5).

(2.10) We see that there is a formal product defined over π∗(MU) with

aij ∈ π2(i+j−1)(MU).

In this way we get a lot of useful elements in π∗(MU).

(2.11) Let n : CP∞ −→ CP∞ be the map which classifies the line bundle ξ−1

inverse to ξ in the sense of the tensor-product. (Alternatively, n is the map
of classifying spaces induced by the homomorphism z 7→ z−1 = z : U(1) −→
U(1).) Then we have

n∗xMU =
∑

j≥0

a′j
(
xMU

)j
,

where
∑

j≥1

a′jx
j is the “formal inverse” corresponding to the formal product

µMU (see (1.8)–(1.10)).

Next a remark on naturality. Suppose given a homomorphism f : E −→ F

of ring-spectra. If xE is as above, then i∗xE = uEγE , so i∗(f∗xE) = (f∗uE)γE ;
here f∗uE is invertible in π∗(F ), so we can take f∗xE as a generator xF . With
this choice of generator we have aFij = f∗aEij , or in other words µF = f∗µE .

More usually, however, both E and F have given generators xE , xF . In this
case we have

f∗x
E =

∑

i≥1

ci
(
xF
)i
,
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where the ci are coefficients in π∗(F ) and

f∗u
E = c1u

F . (2.12)

Let us set ∑

i≥1

ci(x
F )i = g(xF );

then we have the following result.

Lemma 2.13. g(µF (xF1 , xF2 )) = (f∗µE)(g(xF1 ), g(x
F
2 )).

The proof is immediate, by naturality.

This lemma states that the power-series g is an isomorphism from the formal
group with product µF to the formal group with product f∗µE .

Example. (i) We will see in §4 that we have a map f : MU −→ H such that

f∗xMU = xH . Then f∗aij = 0 if i ≥ 1 and j ≥ 1.

(ii) We will see in §4 that we have a map g : MU −→ K such that g∗xMU =

u−1xK . Then g∗a11 = u and g∗(aij) = 0 if i > 1 or j > 1.

Many calculations which are familiar for ordinary homology and cohomology
can be carried over to E.

Lemma 2.14. (i) The spectral sequence

H∗(CPn;π∗(E)) ==⇒ E∗(CPn)

H∗(CP∞);π∗(E)) ==⇒ E∗(CP∞)

H∗(CPn × CPm;π∗(E)) ==⇒ E∗(CPn × CPm)

H∗(CP∞ × CP∞;π∗(E)) ==⇒ E∗(CP∞ × CP∞)

are trivial.

(ii) E∗(CPn) and E∗(CPn) are dual finitely-generated free modules over π∗(E).
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(iii) There is a unique element βn ∈ E∗(CPn) such that

⟨xi, βn⟩ =




1 i = n

0 i ̸= n.

We can then consider the image of βn in E∗(CPm) for m ≥ n and in
E∗(CP∞); these images we also write βm.

(iv) E∗(CPn) is free over π∗(E) on generators β0, β1, . . . , βn.

E∗(CP∞) is free over π∗(E) on generators β0, β1, . . . , βn, . . ..

E∗(CPn × CPm) is free over π∗(E) with a base containing the external
products βiβj for 0 ≤ i ≤ n, 0 ≤ j ≤ m.

E∗(CP∞ × CP∞) is free over π∗(E) with a base consisting of the external
products βiβj .

(v) The external product

E∗(CP∞)⊗π∗(E) E∗(CP∞) −→ E∗(CP∞ × CP∞)

is an isomorphism.

The proof of part (i) is easy, by considering the pairing of these spectral
sequences with those of 2.5(iv). (Compare [Ada69, p. 21], where however one is
arguing in the opposite direction) This leads immediately to parts (ii) and (iii).
We see that in part (i), the E2-term of each spectral sequence has a π∗(E)-base
consisting of the appropriate elements βi or βij . This leads to parts (iv) and (v).

If we have more than one spectrum E in sight, we write βEi for the generators
in E∗(CP∞). If we have a homomorphism f : E −→ F of ring-spectra, and if we

choose xF = f∗xE (as above), then we have βF∗ = f∗βEi . More usually, however,
both E and F have given generators xE , xF . In this case we have

f∗x
E =

∑

i≥1

ci
(
xF
)i

= g(xF ),

where the ci are coefficients in π∗(F ) and f∗uE = c1u
F , as above. In this case
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the appropriate move is to invert the power-series and get

xF = g−1(f∗x
E) =

∑

i

di(f∗x
E)i;

passing to powers, we get

(xF )j =
∑

i

dji (f∗x
E)i

for some coefficients dji ∈ π∗(E). Then we have

Lemma 2.15. f∗βEi =
∑

j

djiβ
F
j .

The proof is immediate, by exploiting the pairing between generalized homology
and cohomology.

Example.(2.16) We will see in §4 that we have a map f : MU −→ H such that

f∗xMU = xH . Thus we have f∗βMU
i = βHi .

(2.17) We will see in §4 that we have a map g : MU −→ K such that g∗xMU =

u−1xK . Thus we have g∗βMU
i = uiβ

K
i .

Corollary 2.18. The diagonal map

∆ : CP∞ −→ CP∞ × CP∞

gives E∗(CP∞) the structure of a coalgebra, whose coproduct map is given by

ψβk =
∑

i+j=k

βi ⊗ βj .

This follows immediately from (2.14). It suggests that we regard E∗(CP∞) as
a Hopf algebra, with product induced by

m : CP∞ × CP∞ −→ CP∞
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and coproduct as in (2.18). We note that if we do this we shall have

m∗(βi ⊗ βj) =
∑

k

akijβk,

where the sum runs over k ≤ i+ j; for by cellular approximation we can suppose
that m maps CPi ×CPj into CPi+j . Of course, the formulae which hold here can
be written down in the general abstract case, and we will now indicate this.
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3. Reformulation

In this section we will interpret a formal group over R as a group in the category
of coalgebras over R.

The results of the previous section suggest that the algebra of formal power
series R[[x]], which arose §1, is actually the dual of the object which should be
considered. Let F be an R-module which is free on generators β0, β1, .., βn, ....
We make F into a coalgebra over R by setting

ψβk =
∑

i+j=k

βi ⊗ βj . (3.1)

The dual of F , given by F ∗ = HomR(F,R), is then an algebra over R, and it can
be identified with R[[x]]; the pairing between R[[x]] and F is given by

〈∑

i≥0

cix
i, βn

〉
= cn. (3.2)

(Here the coefficients ci lie in R.)
The analogy with the case of a Lie group confirms that this procedure is

reasonable. Instead of looking at analytic functions
∑

i≥0

cix
i on G, we look at

differential operators, because functions are contravariant and differential operators
are covariant. More precisely, we interpret βn as the differential operator 1

n!
dn

dxn ,
evaluated at x = 0. The result of applying this operator to the analytic function∑

i≥0

cix
i is indeed cn. The coproduct in F corresponds to Leibniz’ formula

1

k!

dk

dxk
(fg) =

∑

i+j=k

( 1
i!

di

dxi

)( 1

j!

dj

dxj
g
)
.
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Since differential operators are covariant, it is reasonable that the product in G
should induce a product of differential operators.

To continue, let F be as above; then we can form F ⊗R F , and its dual,
HomR(F ⊗R F,R), may be identified with the algebra R[[x1, x2]]. The pairing
R[[x1, x2]] and F ⊗R F is given by

〈∑

i,j

cijx
i
1x
j
2, βp ⊗ βq

〉
= cpq. (3.3)

Each R-map
m∗ : F ⊗R F −→ F

induces a dual map
m∗ : R[[x]] −→ R[[x1, x2]].

This induces a 1-1 correspondence between mapsm∗ which are filtration-preserving
(in a suitable sense) and maps m∗ which are filtration-preserving; corresponding
maps are given by the following formulae.

m∗(βi ⊗ βj) =
∑

k≤i+j
akijβk (3.4)

m∗xk =
∑

i+j≥k
akijx

i
1x
j
2. (3.5)

(Here the coefficients akij lie in our ring R. The coefficients a1ij are the coefficients
aij of section II.) The map m∗ is a map of algebras if and only if the map m∗
is a map of coalgebras. It is now easy to check that the relevant conditions on
m∗ (such as associativity and commutativity) are equivalent to the corresponding
conditions on m∗. The map e : R[[x]] −→ R, which was introduced as a unit map
in §1 and defined by e

(∑

i≥0

cix
i
)
= c0, now has the alternative name β0; we take

β0; we take β0 as our unit in F .

It is clear, of course, that if m∗ is a map of algebras, then m∗xk is determined
by m∗x. So in this case, the coefficients akij are determined by the a1ij = aij . For
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example, we easily obtain the following formula.

ak1j = ka1,j+1−k. (3.6)

Exercise. Obtain a formula for ak22.

We conclude that there is a precise equivalence between group-object structures
on R[[x]] in the sense of §1, and suitable Hopf-algebra structures on F . A formal
group is therefore a group-object in a suitable category of coalgebras.
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4. Calculations in E-Homology and Cohomology

In this section we continue the programme of taking results which are familiar
for ordinary homology and cohomology, and carrying them over to E. First we
compute the E-homology of the spaces BU(n) and BU. The space BU is an
H-space; its product corresponds to addition in K-cohomology; in particular, we
have the following homotopy-commutative diagram, in which the upper arrow is
the Whitney sum map.

BU(n)× BU(m) BU(n+m)

BU× BU BU

This diagram gives rise to the following diagram of products.

E∗(BU(n))⊗π∗(E) E∗(BU(m)) E∗(BU(n+m))

E∗(BU)⊗π∗(E) E∗(BU) E∗(BU)

By using the injection BU(1) −→ BU, the classes βi ∈ E∗(CP∞) give classes in
E∗(BU); we write βi for these classes also. The element β0 acts as a unit for the
products.
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Lemma 4.1. (i) The spectral sequences

H∗(BU(n);π∗(E)) =⇒ E∗(BU(n))

H∗(BU;π∗(E)) =⇒ E∗(BU)

are trivial.

(ii) E∗(BU(n)) is free over π∗(E), with a base consisting of the monomials

βi1βi2 ...βir

such that i1 > 0, i2 > 0, ..., ir > 0, 0 ≤ r ≤ n. (The monomial with r = 0 is
interpreted as 1).

E∗(BU) is a polynomial algebra

π∗(E)[β1, β2, ..., βi, ...].

(iii) The coproduct in E∗(BU(n)) and E∗(BU) is given by

ψβk =
∑

i+j=k

βi ⊗ βj ,

where β0 = 1.

Proof. The proof of parts (i) and (ii) is easy, because the monomials

βi1βi2 ...βir

give a π∗(E)-base for the E2-term on which all differentials dr vanish. Since the
differentials are linear over π∗(E), they vanish on everything. Part (iii) comes
from (2.18).

We now introduce a general lemma.

Lemma 4.2. Let X be a space (or a spectrum provided that πr(X) = 0 for r < −N ,
some N). Suppose that H∗(X;π∗(E)) is free over π∗(E) and that the spectral
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sequence H∗(X;π∗(E)) =⇒ E∗(X) is trivial. Let F be a module-spectrum over
the ring-spectrum E. Then the spectral sequences

H∗(X;π∗(F )) =⇒ F∗(X)

H∗(X;π∗(F )) =⇒ F ∗(X)

are trivial, and the maps

E∗(X)⊗π∗(E) π∗(F ) −→ F∗(X)

F ∗(X) −→ Homπ∗(E)(E∗(X), π∗(F ))

are isomorphisms.

Proof. The proof is a routine exercise on pairings and spectral sequences (compare
[Ada69, p. 20, Proposition 17]).

In particular, if E is as in §2, the lemma applies to X = CP∞, BU(n) and BU.
We will also see that it applies to X = MU – see (4.5).

Although it is quite unnecessary for our main purposes, we pause to observe
that Chern classes behave as expected in E-cohomology.

Lemma 4.3. (i) E∗(BU) contains a unique element ci such that

〈
ci, (β1)

i
〉
= 1

and 〈
ci,m

〉
= 0

where m is any monomial βi11 β
i2
2 ...β

ir
r distinct from (β1)

i. We have c0 = 1.

(ii) The restriction of c1 to BU(1) is xE , the generator given in §2.

(iii) The restriction of ci to BU(n) is zero for i > n. (Otherwise, the image of ci
in E∗(BU(n)) will also be written ci.)
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(iv) E∗(BU(n)) is the ring of formal power-series

π∗(E)[[c1, c2, ..., cn]];

and E∗(BU) is the ring of formal power-series

π∗(E)[[c1, c2, ..., ci, ...]].

(v) We have
ψck =

∑

i+j=k

ci ⊗ cj .

Proof. The definition of ci in (i) is legitimate by (4.2) applied to X = BU, F = E.
We easily check that the unit 1 ∈ E∗(BU) plays the role laid down for c0. Part (ii)
is trivial; part (iii) follows easily from (4.1)(ii) plus (4.2) applied to X = BU(n).
We turn to part (iv).

Let m be a monomial

m = βi11 β
i2
2 ...β

ir
r in E∗(BU);

let the image of m under the iterated diagonal, which is determined by (4.1)(iii),
be ∑

α

m1α ⊗m2α ⊗ ...⊗msα.

Then 〈
cj1cj2 ...cjs ,m

〉
=
∑

α

〈
cj1 ,m1α

〉〈
cj2 ,m2α

〉
...
〈
cjs ,msα

〉
;

and this is a well-determined integer independent of the spectrum E. In particular
this integer is the same as in the case E = H. We conclude that in the spectral
sequence

H∗(BU(n);π∗(E)) =⇒ E∗(BU(n)), or

H∗(BU;π∗(E)) =⇒ E∗(BU)
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the E2 term has a π∗(E)-base consisting of the appropriate monomials

cj1cj2 ...cjs .

This leads to part (iv). Part (v) follows by duality from the definition in part
(i).

The classes ci are of course the generalized Chern classes in E-cohomology.
If required they may be constructed as characteristic classes for U(n)-bundles
over appropriate spaces by the method of Grothendieck, and then pulled back to
BU(n) and BU by limiting arguments. (Compare [Ada67, pp. 8-9]). In the case
E = MU we get the Conner-Floyd Chern classes.

If we have more than one spectrum in sight we write βEi , cEi . If we are given a
map f : E −→ F of ring-spectra, and choose xF = f∗xE , as in §2, then we have

cFi = f∗c
E
i .

The reader may carry over (2.15) to cohomology, but it is not necessary for our
purposes.

For the next lemma, we note that E∗(MU) is a ring, and that the "inclusion"
of MU(1) in MU induces a homomorphism

Ẽp(MU(1)) −→ Ep−2(MU).

Following the analogy of ordinary homology, we take the element

uEβEi+1 ∈ Ẽ∗(MU(1)) (i ≥ 0)

and write bEi for its image in E∗(MU). The factor uE (see §2) is introduced in
order to ensure that bE0 = 1 in E0(MU).

Suppose given a map f : E −→ F of ring-spectra. Then it is clear that
Lemma 2.15 carries over; with the notation (2.15), we have the following result.

f∗b
E
i = c1

∑

j

dj+1
i+1 b

F
j . (4.4)
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In particular, as soon as we obtain the canonical map f : MU −→ H, it will send
bMU
i to bHi ; as soon as we obtain the canonical map g : MU −→ K, it will send
bMU
i to uibKi , where u = uK ∈ π2(K).

With an eye to later applications (§15) we include a little spare generality in
the next two lemmas. Let R be a subring of the rational numbers Q; the reader
interested only in the immediate applications may take R = Z. We recall from §2
that MUR is the representing spectrum for complex bordism and cobordism with
coefficients in R.

We assume that for each integer d invertible in R, the groups π∗(E) have no
d-torsion. This assumption is certainly vacuous if R = Z.

Lemma 4.5. (i) The spectral sequences

H∗(MUR;π∗(E)) =⇒ E∗(MUR)

H∗(MUR ∧MUR;π∗(E)) =⇒ E∗(MUR ∧MUR)

are trivial, so that Lemma 4.2 applies.

(ii) E∗(MUR) is the polynomial ring

(π∗(E)⊗R)[b1, b2, ..., bn, ...].

Proof. For (i), in the case of MUR we note that the monomials in the bi form
a π∗(E) ⊗ R-base for the E2-term on which all differentials dr vanish. The
differentials dr are linear over π∗(E), and by using the assumption on π∗(E) we
see they are linear over R. So the differentials dr vanish on everything. Similarly
for MUR ∧MUR, using exterior products of such monomials. This proves (i) and
(ii).

For the next lemma, let R be again a subring of the rational numbers Q, and
let E be a ring-spectrum, with xE as in §2, such that

π∗(E) −→ π∗(E)⊗R

is iso. (For example we might have E = FR)
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Lemma 4.6. Suppose given a formal power-series

f
(
xE
)
=
∑

i≥0

di
(
xE
)i+1 ∈ Ẽ2(CP∞)

with uEd0 = 1. Then there is one and (up to homotopy) only one map of
ring-spectra

g : MUR −→ E

such that g∗xMU = f(xE).

Notes.

(i) By abuse of language, we have written xMU also for the image of xMU ∈
M̃U

2
(CP∞) in M̃UR

2
(CP∞)

(ii) The necessity of the condition uEd0 = 1 is shown by 2.12.

Proof. We check that the conditions of Lemma 4.2 apply to X = MUR, F = E.
We certainly have

H∗(MUR;π∗(E)) ∼= H∗(MU;π∗(E)⊗R) ∼= H∗(MU;π∗(E))

(by the assumption on E), so H∗(MUR;π∗(E)) is free over π∗(E).
Similarly

E∗(MUR) = (π∗(E)⊗R)[b1, b2, ..., bn, ...] = π∗(E)[b1, b2, ..., bn, ...].

If π∗(E) −→ π∗(E) ⊗ R is iso, then π∗(E) has no d-torsion for any integer d
invertible in R, and Lemma 4.5 shows that the spectral sequence

H∗(MUR;π∗(E)) =⇒ E∗(MUR)

is trivial. So Lemma 4.2 shows that there is a 1-1 correspondence between
homotopy classes of maps

g : MUR −→ E

and maps
θ : E∗(MUR) −→ π∗(E)
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which are linear over π∗(E), and of degree zero. Similarly for maps

h : MUR ∧MUR −→ E;

and this allows us to check whether a map g : MUR −→ E makes the following
diagram homotopy-commutative.

MUR ∧MUR E ∧ E

MUR E

g∧g

g

We find by diagram-chasing that for this, it is necessary and sufficient that the
map θ corresponding to g should be a map of algebras over π∗(E). Now the
condition

g∗x
MU =

∑

i≥0

di
(
xE
)i+1

is equivalent to
θ(bi) = uEdi (i ≥ 0).

Provided that uEd0 = 1, there is one and only one map θ of π∗(E)-algebras which
satisfies this condition. This proves Lemma 4.6.

Examples 4.7. There is one and only one map f : MU −→ H of ring-spectra such
that

f∗x
MU = xH .

This is of course a trivial example.

Examples 4.8. There is one and only one map g : MU −→ K of ring-spectra such
that

g∗x
MU =

(
uK
)−1

xK .

This map is, of course, the usual one, which provides a K-orientation for complex
bundles.

We can also use Lemma 4.6 to construct multiplicative cohomology operations
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from MU∗ to MU∗, following Novikov [Nov63].
We can also use Lemma 4.6 to obtain Hirzebruch’s theory of “multiplicative

sequences of polynomials” in the (ordinary) Chern classes. If we think for a
moment about the gradings in Hirzebruch’s formulae, we see that for this purpose
we need to take E to be a product of Eilenberg-MacLane spectra, having homotopy
groups

πr(E) =




Q for r even

0 for r odd

A suitable candidate is the spectrum H ∧K, which has the required properties.
Some readers may perhaps be used to thinking of “multiplicative sequences

of polynomials” as elements of the cohomology of the space BU (elements of
(H ∧K)∗(BU), in fact); and they may perhaps be surprised to see them treated
as maps of MU. On this point several comments are in order.

(a) Lemma 4.6 provides us with all the Thom classes we need, so we have a
Thom isomorphism

(H ∧K)∗(BU) ∼= (H ∧K)∗(MU).

(b) “Multiplicative sequences of polynomials” carry the Whitney sum in BU

into the product in cohomology. The Whitney sum in BU corresponds
to the product in MU, so it is more convenient to describe the behavior
on products by saying that we have a map of ring-spectra defined in the
spectrum MU.

(c) “Multiplicative sequences of polynomials” are intended for use on manifolds,
so that we actually require their values on elements of π∗(MU). For this
reason, their definition in terms of MU may be more transparent than their
expression in terms of ordinary Chern classes in BU. For example, consider
the map of ring-spectra

MU
g−→ K ∼= S0 ∧K −→ H ∧K,

where the map g : MU −→ K is that mentioned above.
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Exercise. Follow up these hints.

Lemma 4.6 shows that if we consider pairs (E, xE), as above, and such that
uE = 1, then among them the pair (MU, xMU) has a universal property; for any
other pair (E, xE), there is a map g : MU −→ E such that g∗xMU = xE . In
particular, for any such (E, xE) we have a homomorphism of rings g∗ : π∗(MU) −→
π∗(E) such that g∗µMU = µE (see §2); that is, g∗ carries the one formal product
into the other. We will see in the next section that there is a ring L, with
a formal product defined over it, which enjoys a similar universal property in
a purely algebraic setting. It is known that π∗(MU) is a polynomial algebra,
over Z, on generators of dimension 2, 4, 6, 8, .... The ring L can be made into
a graded ring, and it is known that it is then a polynomial algebra, over Z,
on generators of dimension 2, 4, 6, 8, .... Following Quillen, we regard these as
plausibility arguments, to introduce the theorem that the canonical map from L

to π∗(MU) is an isomorphism.
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5. Lazard’s Universal Ring

In this section we introduce Lazard’s universal ring. Following Fröhlich [Frö68],
we call this ring L (for Lazard).

Theorem 5.1. There is a commutative ring L with unit, and a commutative formal
product µL defined over L, such that for any commutative ring R with unit and
any commutative formal product µR defined over R there is one and only one
homomorphism θ : L −→ R such that

θ∗µ
L = µR.

Proof. We define L by generators and relations; that is, we define L as the quotient
of a polynomial ring F by an ideal I. Take formal symbols aij for i ≥ 1, j ≥ 1

and set
P = Z[a11, a12, a21, . . . , aij , . . .].

Form the formal power series

µ(x, y) = x+ y +
∑

i,j≥1

aijx
iyj (5.2)

and set
µ(x, µ(y, z))− µ(µ(x, y), z) =

∑

i,j,k

bijkx
iyjzk (5.3)

Then each coefficient bijk is a well-defined polynomial in the aij . Take I to be
the ideal in P generated by the elements bijk and aij − aji. It is trivial to check
that L = P/I has the required properties.

We note that we can make L into a graded ring if we wish. In fact, we assign
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to x, y and µ(x, y) the degree −2; then aij has degree 2(i+ j − 1), and bijk is a
homogeneous polynomial of degree 2(i+ j + k − 1). It follows that I is a graded
ideal and P/I is a graded ring.

We note the structure of L is in principle computable. For example,

L0
∼= Z, generated by 1

L2
∼= Z, generated by a11

L4
∼= Z⊕ Z, generated by a211 and a12

L6
∼= Z⊕ Z⊕ Z, generated by a311, a11, a12 and a22 − a13.

Exercise. Obtain the relation which allows one to write a22 and a31 in terms of
the relation given.

The structure of L will be described in more detail in our next algebraic
section, §7.

In order to obtain the structure of L, we use algebraic arguments which are
openly obtained by analogy with the situation in algebraic topology.
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6. More calculations in E-Homology

The element aij in π2(i+j−1)(MU) can be represented by a weakly almost-complex
manifold; we might well be asked to compute the (normal) characteristic numbers
of this manifold. It is equivalent to ask for the image of aij under the Hurewicz
homomorphism

π∗(MU) −→ H∗(MU).

It is the object of this section to this answer this question.

To do so we introduce the Boardman homomorphism, which is slightly more
general than the Hurewicz homomorphism. Let E be a (commutative) ring-
spectrum; then for any (space or spectrum) Y we can consider the map

Y ≃ S0 ∧ Y i∧1−→ E ∧ Y ;

composition with this map induces a homomorphism

[X,Y ]∗
B−→ [X,E ∧ Y ]∗.

We recover the Hurewicz homomorphism by setting X = S0, E = H.

The Boardman homomorphism is more or less guaranteed to be useful when
E = H, because of the following lemma.

Lemma 6.1. H ∧ Y is equivalent (though not canonically, in general) to a product
of Eilenberg-maclane spectra, whose homotopy groups are the groups

πn(H ∧ Y ) = Hn(Y ).
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It follows that
[X,H ∧ Y ]r ∼=

∏

n

Hn−r(X;Hn(Y ))

(not canonically); so the groups [X,E ∧ Y ]r are computable for E = H.

Proof. For each n, we can construct a Moore spectrum M(Gn, n) for the group
Gn = πn(H ∧ Y ) in dimension n, and construct a map

fn :M(Gn, n) −→ H ∧ Y

which induces an isomorphism

(fn)∗ : πn(M(Gn, n)) −→ πn(H ∧ Y ).

We can then construct the map

H ∧M(Gn, n)
1∧fn−−−→ H ∧H ∧ Y µ∧1−−→ H ∧ Y,

where H ∧ M(Gn, n) is an Eilenberg-Maclane spectrum for the group Gn in
dimension n. We can then form the map

∨

n

H ∧M(Gn, n) −→ H ∧ Y

whose n-th component is the map (µ ∧ 1)(1 ∧ fn) just constructed; we observe
that it is a homotopy equivalence by Whitehead’s Theorem (in the category of
spectra). Let

∏
nH ∧M(Gn, n) be the product in the categorical sense; then

there is a map ∨

n

H ∧M(Gn, n) −→
∏

n

H ∧M(Gn, n),

and this too is a homotopy equivalence by Whitehead’s Theorem. This proves
Lemma 6.1.

Returning to the general case, since E ∧ Y is at least a module-spectrum over
the ring-spectrum E, we may hope to obtain information about [X,E ∧ Y ]r =

(E ∧ Y )−r(X) from E∗(X); for example, we may have available a universal

86



Chapter 6: More calculations in E-Homology

coefficient theorem.

Lemma 6.2. We have the following commutative diagram.

[
X,Y

]
∗

[
X,E ∧ Y

]
∗

Homπ∗(E)(E∗(X), E∗(Y ))

α

B

p

Here α is defined by
α(f) = f∗ : E∗(X) −→ E∗(Y ),

while p is the homomorphism of the universal coefficient theorem, defined by

(p(h))(k) = ⟨h, k⟩ ∈ π∗(E ∧ Y )

In the last formula we have h ∈ (E ∧ Y )∗(X), k ∈ E∗(X), and the Kronecker
product < h, k > is defined using the obvious pairing of E ∧ Y and E to E ∧ Y .

The proof of the lemma from the definitions is easy diagram-chasing. The
lemma is of course mainly useful when p is an isomorphism; but since E ∧ Y is a
module-spectrum over E, Lemma 4.2 shows that p is an isomorphism when E is
as in §2, and X = CP∞,BU,MU, etc.

Let E be a ring-spectrum which satisfies the assumptions made in §2. Then
we can consider the following two maps.

E ≃ E ∧ S0 −→ E ∧MU

MU ≃ S0 ∧ E =⇒ E ∧MU.

Both are of course maps of ring-spectra. The generators xE and xMU will yield
two generators in (E ∧MU)∗(CP∞), and these generators may well be different.
In order to remember which is which, we call them xE and xMU also (abusing
notation to avoid complicating it). Our next task is to compare xE and xMU.
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Lemma 6.3. In (E ∧MU)∗(CP∞) we have

xMU =
∑

i≥0

(
uE
)−1

bEi
(
xE
)i+1

.

Note that the coefficients
(
uE
)−1

bEi lie in π∗(E ∧MU).

Proof. Apply Lemma 6.2 to the case X = CP∞, Y = MU. Since xMU is a reduced
class, so is BxMU. by definition, we have

(
αxMU

)(
uEβEi+1

)
= bEi .

But we also have
(
p
(
xE
)j)(

bEi
)
=




1 (i = j)

0 (i ̸= j)

The result follows by comparing these formulae, since p is an isomorphism.

In order to exploit this result, let g
(
xE
)

be the formal power-series

g
(
xE
)
=
∑

i≥0

(
uE
)−1

bEi
(
xE
)i+1

, (6.4)

with coefficients in π∗(E ∧MU), and let g−1 be the inverse power-series, so that

xE = g−1xMU.

Corollary 6.5. After applying the homomorphisms

π∗(E) −→ π∗(E ∧MU)

π∗(MU) −→ π∗(E ∧MU)

the formal products µE , µMU are related by

µMU
(
xMU
1 , xMU

2

)
= g
(
µE
(
g−1xMU

1 , g−1xMU
2

))
.

The proof is immediate from Lemma 2.13; or directly, the map
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m : CP∞×CP∞ −→ CP∞ yields an induced homomorphism m∗ which commutes
with products and limits, so that

m∗g
(
xE
)
= g
(
m∗xE

)
.

one just rewrites this equation.

Corollary 6.6. Take E = H. Then after applying the homomorphism π∗(MU) −→
π∗(H ∧MU) we have

µMU(x1, x2) = expH
(
logH x1 + logH x2

)
,

where
expH(x) =

∑

i≥0

bix
i+1,

bi ∈ H2i(MU) are the usual generators coming from H2i+2(MU(1)), and logH is
the formal power-series inverse to expH .

This is immediate from (6.5), using (2.9).

This corollary yields a method of calculating the image of aij inH2(i+j−1)(MU),
in terms of the usual base in H∗(MU). For example we have

a11 −→ 2b1

a12 −→ 3b2 − 2b21

a13 −→ 4b3 − 8b1b2 + 4b31

a22 −→ 6b3 − 6b1b2 + 2b31 etc.

Corollary 6.7. Take E = K. The after applying the homomorphism π∗(MU) −→
π∗(K ∧MU), we have

µMU(x1, x2) = g
(
g−1x1 + g−1x2 +

(
g−1x1

)(
g−1x2

))
,

where
g(x) =

∑

i≥0

u−1bix
i+1,
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u ∈ π2(K), bi ∈ K0(MU) are the generators defined above and g−1 is the formal
power-series inverse to g.

This is immediate from (6.5), using (2.9).
This corollary yields a method of calculating the image of aij inK2(i+j−1)(MU),

in terms of the base in K∗(MU). For example, we have

a11 −→ u(1 + 2b1)

a12 −→ u2(b1 + 3b2 − 2b21)

a13 −→ u3(2b2 − 2b11 + 4b3 − 8b1b2 + 4b31)

a22 −→ u3(b1 + 6b2 − 3b21 + 6b3 − 6b1b2 + 2b31) etc.

We can also use the same method to calculate the Hurewicz homomorphism

π∗(MU) −→ MU∗(MU).

For this purpose we need to distinguish between the two copies of MU.
We borrow the notation of [Ada69], and write

ηL, ηR : π∗(MU) −→ MU∗(MU)

for the homomorphisms induced by the maps

MU ≃ MU ∧ S0 1∧i−→ MU ∧MU

MU ≃ S0 ∧MU
i∧1−→ MU ∧MU.

The Hurewicz homomorphism is ηR. The usual action of π∗(MU) on MU∗(X),
which works for any X, is given for X = MU by ηL.

Corollary 6.8. The value of ηR on the generators aij is given by

µR(x1, x2) = gµL
(
g−1x1, g

−1x2
)

where
µR(x1, x2) =

∑

i,j

(ηRaij)x
i
1x
j
2,
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µL(x1, x2) =
∑

i,j

(ηLaij)x
i
1x
j
2,

g(x) =
∑

i≥0

bMU
i xi+1,

bMU
i ∈ MU2i(MU) is the generator described in §4, and g−1 is the power-series

inverse to g.

This corollary is strictly on the same footing as the preceding two.
This yields a method of calculating ηR(aij). For example, we find

ηR(a11) = 2b1 + a11

ηR(a12) = (2b2 − 2b21) + a11b1 + a12

ηR(a13) = (4b3 − 8b1b2 + 4b31) + a11(2b2 − 2b21) + a13

ηR(a22) = (6b3 − 6b1b2 + 2b31) + a11(6b2 − 3b21) + (2a12 + a211)b1 + a22.

From these formulae for the images of the aij under the Hurewicz homomorphism

π∗(MU) −→ MU∗(MU)

one can of course deduce the formulae for the images of the aij under the Hurewicz
homomorphisms

π∗(MU) −→ H∗(MU)

π∗(MU) −→ K∗(MU).

One just applies the maps MU −→ H, MU −→ K. In fact, the map MU −→ H

sends bMU
i to bHi , and sends aij to 0 for i ≥ 1, j ≥ 1. The map MU −→ K sends

bMU
i to uibKi , a11 to u, and aij to 0 if i > 1 or j > 1.
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7. The Structure of Lazard’s Universal Ring L

We propose to prove:

Theorem 7.1. The graded ring L is a polynomial algebra over Z on generators of
dimension 2, 4, 6, 8, . . ..

In order to prove this, we will use a faithful representation of L. Its construction
is suggested by the results of the last section. As a matter of pure algebra, we
define a (graded) commutative ring R by

R = Z[b1, b2, . . . , bn, . . .]

where bi is assigned degree 2i; b0 is interpreted as 1 if it arises. The generator bi
is to be distinguished from the generator βi in §3.

We define a formal power-series

exp(y) = R[[y]]

by
exp(y) =

∑

i≥0

biy
i+1. (7.2)

and we define log(x) to be the power-series inverse to exp so that

exp log(x) = x

log exp(y) = y
(7.3)

For later use, we make the log series more explicit. Let its coefficients be

mi ∈ Z[b1, b2, . . . , bn, . . .],
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so that
log x =

∑

i≥0

mix
i+1, (7.4)

If S is an inhomogeneous sum, let us write Si for the component of S of
dimension 2i. Then we have:

Proposition 7.5.

mn =
1

n+ 1

( ∞∑

i=0

bi

)−n−1

n

,

bn =
1

n+ 1

( ∞∑

i=0

mi

)−n−1

n

.

Example.

m1 = −b1,

m2 = 2b21 − b2
m3 = −5b31 + 5b1b2 − b3 etc.

Proof. If
ω =

∑

i≥−N
ciy

idy,

define resω to be c−1, the residue of ω at y = 0. This definition of the residue is
purely algebraic, and the property of the residue which we shall can be established
purely algebraically. Set

x =
∑

i≥0

biy
i+1

y =
∑

j≥0

miy
j+1.

Then
(∑

i≥0

bi

)−n−1

n

is the coefficient of yn in
(∑

i≥0

biy
i

)−n−1

, that is, the
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coefficient of y−1 in
(∑

i≥0

biy
i+1

)−n−1

. So we have

(∑

i≥0

bi

)−n−1

n

= res(x−n−1dy)

= res

(
x−n−1 dy

dx
dx

)

= res

[
x−n−1

(∑

j≥0

mj(j + 1)xj
)
dx

]

= (n+ 1)mn.

Of course, the relation between the coefficients bi and mi of the two inverse
series is symmetric.

In the future, whenever symbols bi and mi appear in various contexts, they
will be related as in (7.5).

Remark 7.6. Suppose that instead of Z we have in sight a ring U , that we replace
R by

U [b1, b2, . . . , bn, . . .],

and that we replace our series exp by

x = u−1
∑

I≥0

biy
i+1

where u is invertible in U . (An application is given in (6.3), (6.4).) Then we have

y =
∑

j≥0

mju
j+1xj+1,

by substituting ux for x in our previous work.

Let us return to formal groups. We define a formal product over R =
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Z[b1, b2, . . . , bn, . . .] by

µR(x1, x2) = exp
(
log x1 + log x2

)
. (7.7)

It is easy to check that this does define a formal product. We have simply taken
the additive formal product, (1.4), and made a change of variables; but the change
of variables is of a fairly general nature. The topologist who has read §6 knows
that this piece of pure algebra is read off H∗(MU); the algebraist doesn’t have to
worry.

According to §5, there is one and only one homomorphism

θ : L −→ R

which carries the formal product µL into µR. We propose to prove;

Theorem 7.8. The map θ is monomorphic.

This theorem shows that we have made the ring R big enough to provide a
faithful representation of L. The proof will require various intermediate results.

We first recall that the augmentation ideal of a connected graded ring A is
defined by

I =
∑

n>0

An.

The elements of I2 are often called “decomposable elements”. The “indecomposable
quotient” Q∗(A) is defined by

Q∗(A) = I/I2.

We can often use Q∗(A) to get a hold on A.

It is clear that Qm(L) and Qm(R) are both zero unless m = 2n, n > 0. In
this case we have Qm(R) ∼= Z, generated by the coset [bn].

Lemma 7.9. (i) log(x) =
∑

i≥0

mix
i+1, where m0 = 1 and mi ≡ −bi mod I2 for

i ≥ 1.

(ii) θ(aij) ≡ (i+j)!
i!j! bi+j−1 mod I2 for i ≥ 1, j ≥ 1.

96



Chapter 7: The Structure of Lazard’s Universal Ring L

(iii) The image of Q2n(θ) : Q2n(L) −→ Q2n(R) consists of the multiples of d[bn],
where

d =




p if n+ 1 = pf , p prime, f ≥ 1

1 otherwise.

Proof. Part (i) is immediate. Part (iii) follows from (7.7) by an easy calculation,
ignoring coefficients in I2. Since L is generated as a ring by the aij , Q2n(L) is
certainly generated as an abelian group by the aij with i + j = n + 1, i ≥ 1,
j ≥ 1. To prove part (iii) we need only show that the highest common factor of
the binomial coefficients

(i+ j)!

i!j!
(i+ j = n+ 1, i ≥ 1, j ≥ 1)

is the integer d defined in the enunciation.
It is well known and easy to see, that if n+1 = pf all these binomial coefficients

are divisible by p, and that if n+ 1 ̸= pf at least one of them is not divisible by
p. One has only to add that if n + 1 = pf , then the binomial coefficient with
i = λpf−1, j = µpf−1 is

p!

λ!u!
mod p2.

and it is divisible by p but not by p2.

Topologists will note that this calculation is exactly the same one as one which
Milnor made in the topological case. He was, of course, computing the image of

Q2n(π∗(MU)) −→ Q2n(H∗(MU)).

The “Milnor genus” may be regarded as the projection

H2n(MU) −→ Q2n(H∗(MU)),

and the “hypersurfaces of type (1, 1) in CPi × CPj” are related to the elements
aij ∈ π∗(MU) (see Corollary 10.9).

In order to obtain the structure of Q∗(L), we propose to consider formal groups
defined over graded rings S of a particular form. Given an abelian group A, and
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an integer n > 0, we can make Z⊕A into a graded ring so that

S0 = Z

S2n = A

Sr ̸= 0 for r ̸= 0, 2n.

Lemma 7.10. Among formal groups defined over such rings S, the obvious formal
group defined over Z⊕Q2n(L) is universal.

The proof is immediate; any homomorphism of rings

L −→ Z⊕A

factors to give the following diagram.

L Z⊕A

Z⊕Q2n(L)

We can now reformulate the main lemma used by Lazard and by Frohlich. Let
Tn be the image of Q2n(θ) : Q2n(L) −→ Q2n(R), described in (7.9).

Lemma 7.11 (After Lazard and Fröhlich). For any (commutative) formal group
defined over a ring Z⊕A, the homomorphism

Z⊕Q2n(L) −→ Z⊕A

factors through the quotient map

Z⊕Q2n(L) −→ Z⊕ Tn.

The main results of this section follows very easily from this lemma; but we
will defer the proofs until we have proved Lemma 7.11.

Proof. We recall the reformulation of §3. A formal group defined over Z⊕A is
a Hopf algebra structure on a certain coalgebra F ; the coalgebra F is free over
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Z⊕A on generators β0, β1, . . . , βi, . . ., and the coaction is given by

ψβk =
∑

i+j=k

βi ⊗ βj .

Inspecting the formulae in §3 again, we see that our rings are graded. F can be
graded so that βi has degree 2i.

In our case, part of the product structure is determined by the coproduct
structure; we must have

βiβj =
(i+ j)!

i!j!
βi+j +

∑

k=i+j−n>0

akijβk. (7.12)

Here the coefficients akij are coefficients in A, which have to be determined,
and we are interested in their values for k = 1. More precisely, let d be the highest
common factor of the binomial coefficients (i+j)!

i!j! over i+ j = n+ 1, i ≥ 1, j ≥ 1,
as in (7.9); we wish to show that

alij =
1

d

(i+ j)!

i!j!
a (7.13)

for some fixed element a ∈ A; for the required map φ from Tn to A will be
defined by φ(d[bn]) = a.

We emphasise that the product βiβj is known, from (7.12), if i+ j < n+ 1.
We now divide cases.

Case (i). A ∼= Z; let us write as if A = Z. We have

(β1)
n+1 = (n+ 1)!

(
βn+1 +

a

d
β1

)

for some a ∈ Q. When i+ j = n+ 1 we have

(i!βi)(j!βj) = (β1)
i(β1)

i = (β1)
n+1

= (i+ j)!

(
βi+j +

a

d
β1

)
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Comparing this with (7.9) we have

a1ij =
(i+ j)!

i!j!

a

d
.

Here a is a rational number such that
(i+ j)!

i!j!

a

d
is an integer for i+ j = n+ 1,

i ≥ 1, j ≥ 1. The highest common factor of the numbers
(i+ j)!

i!j!

1

d
is 1, so a is an

integer, and we have obtained the required result (7.13) in this case.

Case (ii). A ∼= Zp. Take i, j such that i+ j = n+ 1, i ≥ 1, j ≥ 1 and write

i = λ0 + λ1p+ λ2p
2 + . . .+ λrp

r,

j = µ0 + µ1p+ µ1p
2 + . . .+ µrp

r,

where 0 ≤ λi < p, 0 ≤ µi < p for each i. Then

βλ0
1 βλ1

p βλ2

p2 . . . β
λr
pr = c′βi

βµ0

1 βµ1
p βµ2

p2 . . . β
µr
pr = c′′βj

where the coefficients c′ and c′′ are non-zero mod p; in fact,

c′ = λ0!λ1!λ2! . . . λr! mod p

c′′ = µ0!µ1!µ2! · · ·µr! mod p.

Then we have

(i+ j)!

i!j!
βi+j + a1ijβ1 = βiβj =

1

c′c′′
βλ0+µ0

1 βλ1+µ1
p . . . βλr+µr

pr .

At this point we separate cases further. Case (a): Suppose that n+ 1 ̸= pf

and λi + µi ≥ p for some i. Then we have pi+1 ≤ n+ 1, and since n+ 1 ̸= pf we

actually have pi+1 < n + 1 so
(
βpi
)p

= 0 by (7.12) and a1ij = 0. Since
(i+ j)!

i!j!
is also 0 mod p, the required formula (7.13) will be true in the case whatever
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choice of a we make later.

Case (b). Suppose that n+ 1 = pf and λi + µi ≥ p for some i ≤ f − 2. Then

the same argument applies, except that we have to remark that
1

p

(i+ j)!

i!j!
is 0

mod p. (I am willing to assume the reader knows or can work out all the required
results on binomial coefficients)

Case (c). Suppose n+ 1 ̸= pf and λi + µi < p for all i. If we write

n+ 1 = ν0 + ν1p+ ν2p
2 + . . .+ νrp

r,

with 0 ≤ νi < p for each i, we must have

λi + µi = νi.

But we can set, once and for all,

βν01 β
ν1
p β

ν2
p2 . . . β

νr
pr = c(βn+1 + aβ1)

where the coefficient c is non-zero mod p; in fact,

c = ν0!ν1! . . . νr! mod p.

Then

a1ij =
c

c′c′′
a

=
(i+ j)!

i!j!
a.

So the required formula (7.13) holds if n+ 1 ̸= pf . This completes case (ii).

Case (iii). A ∼= Zpf . We first remark that a homomorphism of graded rings
Z⊕A −→ Z⊕A′ is equivalent to a homomorphism of abelian groups A −→ A′.
We proceed by induction over f , and assume the result true for f − 1. Suppose
given a homomorphism Q2n(L)

θ−→ Zpf ; and the form the following diagram.
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Q2n(L) Zpf

Tn Zp

θ

q q′

α

β

By case (ii) the homomorphism q′θ factors in the form αq. Since Tn is free,
we can factor α in the form q′β. Then q′(θ − βq) = 0, and so θ − βq maps into
Zpf−1. By the inductive hypothesis, θ − βq factors in the form γq. Therefore
θ = (β + γ)q. This completes the induction, and finishes case (iii).

Case (iv). A is any finitely-generated abelian group. Then A can be written
as a direct sum of groups Z and Zpf . The result follows from cases (i) and (iii).

Case (v). A is any abelian group. Let θ : Q2n(L) −→ A be a homomorphism.
Since Q2n(L) is finitely-generated, so is the image of θ. The result follows from
case (iv).

This completes the proof of Lemma 7.11.

Corollary 7.14. The quotient map

Q2n(θ) : Q2n(L) −→ Tn

of (7.9) and (7.11) is an isomorphism.

Proof. Of course, the quotient map is an epimorphism. Consider the following
diagram

Z⊕Q2n(L) Z⊕Q2n(L)

Z⊕ Tn

1

1⊕Q2n(θ)

By Lemma 7.11, the identity map of Q2n(L) factors through Q2n(θ). Therefore
Q2n(θ) is monomorphic.

We now prove Theorem 7.1 and 7.8. Choose in L2n an element tn which
projects to the generator of Tn. We immediately obtain a map

Z[t1, t2, . . . , tn, . . .]
α−→ L
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By Corollary 7.14, Q2n(α) is an isomorphism for each n, and therefore α is an
epimorphism. But it is obvious that the composite map

Z[t1, t2, . . . , tn, . . .]
α−→ L

θ−→ R = Z[b1, b2, . . . , bn, . . .]

is monomorphic, since θαtn is a non-zero multiple of bn, modulo decomposables.
Therefore α is an isomorphism and θ is a monomorphism. This proves (7.1) and
(7.8).

Corollary 7.15. Let µS be any formal product defined over a ring S containing the
rational numbers Q. Then the formal group with formal product µS is isomorphic
to the additive formula group (1.4).

Proof. We have a homomorphism θ : L −→ S carrying µL into µ. Since S ⊃ Q, θ
extends to give a homomorphism θ : L⊗Q −→ S. Let R be as above; then we
may identify L⊗Q with R⊗Q. Then the power-series

exp(y) =
∑

i≥0

(θbi)y
i+1

log(x) =
∑

i≥0

(θmi)x
i+1

give the required isomorphism.

Of course, this result is much easier than the proof we have given of it; and it
does not need the hypothesis that the formal product µL is commutative (as we
are always assuming.) We have given the result to stress that in what follows, log
and exp will always be as in the proof of (7.15).
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8. Quillen’s Theorem

By Theorem 5.1 we have a map

θ′ : L −→ π∗(MU).

The object of this section is to prove the following results.

Theorem 8.1 (Milnor). π∗(MU) is a polynomial algebra over Z on generators of
dimension 2, 4, 6, . . ..

Theorem 8.2 (Quillen). The map

θ′ : L −→ π∗(MU)

is an isomorphism.

Following Milnor, we base our calculation of π∗(MU) on the spectral sequence

Exts,tA (H∗(MU;Zp),Zp)
s

=⇒ πt−s(MU) (8.3)

Here A is the mod p Steenrod algebra.

Lemma 8.3. H∗(MU;Zp) is a free module over A/(AβA), where AβA is the
two-sided ideal generated by the Bokštein boundary β = βp.

This lemma is an absolutely standard consequence of the following facts. (i)
A/(AβA) acts freely on the Thom class u ∈ H0(MU;Zp). (ii) H∗(MU,Zp) is a
coalgebra over A/(AβA).

Unfortunately, we do not only need to know that H∗(MU;Zp) is free over
A/(AβA); we need to know about its base; or more precisely, we need the following
result.
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Lemma 8.4. HomA(H
∗(MU;Zp),Zp), which can be identified with the set of

primitive elements in the comodule H∗(MU;Zp) is a polynomial algebra on
generators of dimension 2n for n > 0, n ̸= pf − 1.

We prove (8.3) and (8.4) together, following Liulevicius. More precisely, let
A∗ be the dual of A/(AβA); it is a polynomial algebra

Zp[ξ1, ξ2, . . . , ξf , . . .]

with ξf of dimension 2(pf − 1). Let N∗ be a polynomial algebra

Zp[x1, x2, . . . , xp−2, xp, . . .]

with one generator xi of dimension 2i whenever i ̸= pf−1. Define a homomorphism

α : H∗(MU;Zp) −→ N∗

by

α(bi) =




xi i ̸= pf − 1

0 i = pf − 1.

Define a homomorphism from H∗(MU;Zp) to A∗ ⊗N∗ by

H∗(MU;Zp)
ψ−→ A∗ ⊗H∗(MU;Zp)

1⊗α−−−→ A∗ ⊗N∗,

where ψ is the coproduct map. Make A∗ ⊗N∗ into a comodule over A∗ by giving
it the coproduct map

A∗ ⊗N∗
ψ⊗1−−−→ A∗ ⊗ (A∗ ⊗N∗).

Then (1⊗ α)ψ is a homomorphism of rings and a homomorphism of comodules
over A∗.

Now, in BU(1) we have

ψβpf = ξf ⊗ β1 + ξpf−1 ⊗ βp + . . .+ 1⊗ βpf .
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So in MU we have

ψβpf−1 = ξf ⊗ 1 + ξpf−1 ⊗ bp−1 + . . .+ 1⊗ bpf−1.

We see that the map

Q((1⊗ α)ψ) : Q(H∗(MU;Zp)) −→ Q(A∗ ⊗N∗)

is given by

Q((1⊗ α)ψ)bi =




1⊗ xi mod I2 i ̸= pf − 1

ξf ⊗ 1 mod I2 i = pf − 1.

So Q((1 ⊗ α)ψ) is an isomorphism, and (1 ⊗ α)ψ is an epimorphism. By
counting dimensions, (1⊗ α)ψ must be an isomorphism.

Since the dual of A∗ ⊗ N∗ is free, we have proved (8.3). Since the set of
primitive elements in A∗ ⊗N∗ is precisely N∗, we have proved (8.4) too.

Corollary 8.5. In the spectral sequence (8.3), the E2-term

Exts,tA (H∗(MU;Zp),Zp)

is a polynomial algebra on generators xn, n = 0, 1, 2, 3, . . . of bidegree

s = 0, t = 2n, (n ̸= pf − 1)

s = 1, t = 2n+ 1, (n = pf − 1).

This follows from (8.3), (8.4) by standard methods; see [Mil60].

It follows from (8.5) that the spectral sequence (8.3) has non-zero groups only
in even dimensions; so the spectral sequence is trivial.

In order to deduce the required results on π∗(MU), we need a technical lemma
on the convergence of the spectral sequence (8.3).

Lemma 8.6. Suppose given a connected spectrum X, such that πr(X) is finitely
generated for each r and zero for r < 0. Suppose given integers m, e. Then there
exists s = s(m, e) such that any element in πm(X) of filtration ≥ s in the spectral
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sequence
Exts,tA (H∗(X;Zp),Zp)

s
=⇒ πt−s(X)

is divisible by pe in πn(X).

This may be proved by the method given in my original paper [Ada58].

Corollary 8.7.

Qm(π∗(MU))⊗ Zp =




Zp for m = 2n, n > 0

0 otherwise.

Proof. When m ≠ 2n (n > 0) the result is trivial, so we assume m = 2n, n > 0.
There are of course many ways of seeing that Q2n(π∗(MU))⊗ Zp has dimension
at least one over Zp; for example,

Q2n(π∗(MU))⊗Q ∼= Q2n(H∗(MU))⊗Q ∼= Q.

We need to prove Q2n(π∗(MU))⊗ Zp has dimension at most 1.

Let ti ∈ π2i(MU) be an element whose class in the E2-term is the generator xi
in (8.5). I claim that Q2n(π∗(MU))⊗ Zp is generated by the image of tn. In fact,
let y be any element in π2n(MU), and let s be as in (8.6), taking m = 2n, e = 1;
then (by induction over the filtration) we can find a polynomial q(t0, t1, . . . , tn)
such that y − q(t0, t1, . . . , tn) has filtration ≥ s, and so

y = q(t0, t1, . . . , tn) + pz.

Since π0(MU) = Z, the coefficient of tn (which a priori is a polynomial in t0)
must be an integer c. We deduce that

y = ctn mod In + pπ∗(MU),

where I =
∑

i≥0

πi(MU). That is, Q2n(π∗(MU))⊗ Zp is generated by the image of

tn. This proves (8.7).
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Corollary 8.8.

Qm(π∗(MU)) ∼=




Z for m = 2n, n > 0

0 otherwise.

Proof. Qm(π∗(MU)) is a finitely generated abelian group; use the structure theo-
rem for finitely generated abelian groups, plus (8.7).

We now consider the following diagram.

L π∗(MU)

Z[b1, b2, . . . , bn, . . .] H∗(MU)

θ′

θ h

Here θ has been carefully defined so that the diagram is commutative, as we
see by comparing (6.6) with (7.2), (7.7). The behaviour of θ has been studied in
§7.

Lemma 8.9. The image of

Q2n(h) : Q2n(π∗(MU)) −→ Q2n(H∗(MU))

is the same as the image of Q2n(θ) (which has described in (7.9)).

Proof. It is clear that ImQ2n(θ) ⊂ ImQ2n(h); we have to prove ImQ2n(h) ⊂
ImQ2n(θ). If n+ 1 ̸= pf there is nothing to prove. If n+ 1 = pf , consider the
canonical map

MU −→ H −→ HZp;

call it g. The induced homomorphism

q∗ : H∗(MU) −→ (HZp)∗(HZp)

clearly annihilates the image of π2n(MU). On the other hand, it carries bn into
the Milnor generator ξf in (HZp)∗(HZp) (since both come from MU(1) = BU(1)).
The class ξf remains non-zero when we pass to Q2n(HZp)∗(HZp) ∼= Zp. So the
image of Q2n(h) consists at most of the multiples of p[bn]. This proves (8.9).
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Exercise. See if you can refrain from translating this proof into cohomology.

We proceed to prove (8.1) and (8.2). Recall our diagram.

L π∗(MU)

Z[b1, b2, . . . , bn, . . .] H∗(MU)

θ′

θ h

It follows from (8.8) and (8.9) that

Q2n(h) : Q2n(π∗(MU)) −→ ImQ2n(θ)

is iso. Using (7.14), we see that

Q2n(θ
′) : Q2n(L) −→ Q2n(π∗(MU))

is iso. But by (7.8), the map θ = hθ′ is mono; so θ′ is mono, and θ is an
isomorphism. This proves (8.2), and (8.1) follows from (7.1).

Taking a last look at our diagram, we conclude that the homomorphism θ

studied in §7 was up, to isomorphism, the Hurewicz homomorphism

h : π∗(MU) −→ H∗(MU).

Corollary 8.10. The Hurewicz homomorphism

h : π∗(MU) −→ H∗(MU)

is a monomorphism.

Exercise. Deduce (8.1) directly from (8.5).
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In this section we will record various results which follow from the results in §8,
or supplement them, and are needed later.

Recall that the complex manifold CPn defines an element [CPn] ∈ π2n(MU).

Lemma 9.1. With the notation of §7, the image of [CPn] in H2n(MU) is (n+1)mn.

Proof. Algebraic topologists will instantly recognise the formula

( ∞∑

i=0

bi

)−n−1

n

of (7.5) as giving the normal Chern numbers of CPn.

We know from §8 that the map

π∗(MU) −→ π∗(MU)⊗Q

is an injection, and we may identify π∗(MU)⊗Q and H∗(MU)⊗Q. It is often
convenient to work in π∗(MU) ⊗ Q, and we now know that we lose nothing in
doing so. In what follows, then, we will regard mn = mH

n ∈ H2n(MU) as the
element [CPn]

n+1 of π∗(MU)⊗Q. If we do so, we have the following result.

Corollary 9.2 (Miščenko appendix 1 in [Nov63] ). The logarithmic series for the
formal product µMU may be written

logH xMU =
∑

n≥0

[CPn]
n+ 1

(
xMU

)n+1
.
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Lemma 9.3. Suppose that R ⊂ S are subrings of the rationals. Then a map

f : MUR −→ MUS

is determined up to homotopy by

f∗ : π∗(MUR) −→ π∗(MUS).

Proof. There are many variants possible; we argue as follows. Applying (4.1) as
in the proof of (8.1), we see that f is determined up to homotopy by

f∗ : MUR∗(MUR) −→ MUR∗(MUS∗).

Since π∗(MU) is torsion-free by 8.1, we see that the vertical arrows of the following
commutative diagram are monomorphisms.

MUR∗(MUR) MUR∗(MUS)

MUR∗(MUR)⊗Q MUR∗(MUS)⊗Q

π∗(MUQ)⊗ π∗(MUR) π∗(MUQ)⊗ π∗(MUS)

f∗

∼= ∼=
1⊗f∗

Next we go back to the work of (6.8). We now know that the Hurewicz
homomorphism

ηR : π∗(MU) −→ MU∗(MU)

is adequately described by giving

ηR ⊗ 1 : π∗(MU)⊗Q −→ MU∗(MU)⊗Q,

and this can be done by giving its effect on the generatorsmi = mH
i ∈ π2i(MU)⊗Q.

For this purpose we propose the following formula. We write Mj for the generator
mMU
j ∈ MU2j(MU), to distinguish it from mj = mH

j .

112



Chapter 9: Corollaries

Proposition 9.4.

∑

i≥0

(ηRmi)x
i+1 =

∑

i≥0

mi

(∑

j≥0

Mjx
j+1

)i+1

Proof. Consider again the two maps

ηL : MU ≃ MU ∧ S0 1∧i−−→ MU ∧MU

ηL : MU ≃ S0 ∧MU
i∧1−−→ MU ∧MU

of (6.8). Applying them to xMU, we obtain the two generators in (MU ∧
MU)2(CP∞); we call these generators xL and xR. (We no longer need L for
the Lazard ring) Applying Lemma 6.3, we find

xR =
∑

i≥0

bMU
i (xL)i+1. (9.5)

Passing to the inverse power-series, we find

xL =
∑

i≥0

mMU
i (xR)i+1 =

∑

j≥0

Mj(x
R)j+1 (9.6)

Now our log series are

xH = logL xL =
∑

i≥0

(ηLmi)(x
L)i+1

xH = logR xR =
∑

i≥0

(ηRmi)(x
R)i+1

So we obtain

∑

i≥0

(ηRmi)
(
xR
)i+1

=
∑

i≥0

(ηLmi)

(∑

j≥0

Mj(x
R)j+1

)i+1

.

This proves the proposition.
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10. Various Formulae in π∗(MU)

In this section we will derive various relations between different elements lying in
π∗(MU) or π∗(MU)⊗Q. In particular, we will give the relationship between the
coefficients aij and Milnor’s hypersurfaces of type (1, 1) in CPi × CPj (10.6).

To begin with we try to answer various questions that might arise in practical
calculations.

(i) To write the coefficients mi in the logH series in terms of the coefficients bi
in the expH series. See 7.5.

(ii) To write the coefficients bi in the expH series in terms of the coefficients mi

in the logH series. See 7.5.

(iii) To write the coefficients aij in terms of the bi or the mi, regarded as elements
of π∗(MU)⊗Q. See (6.6).

(iv) To write the bi or mi regarded as elements of π∗(MU)⊗Q, in terms of the
aij . The most convenient formula is the following.

Theorem 10.1.

[CPn] = (n+ 1)mn =

(∑

i≥0

ail

)−1

n

. (10.1)

Corollary 10.2. If n ≥ 1, we have [CPn] ≡ −an1 mod decomposibles in π∗(MU).

Proof of (10.1). Take the equation

log

(
x1 +

∑

i≥0, j>1

aijx
i
1x
j
2

)
= log x1 + log x2
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and equate the coefficients of x2. We obtain

(∑

n≥0

(n+ 1)mnx
n
1

)(∑

i≥0

ai1x
i
1

)
= 1

Following Lemma 9.1, it is plausible to observe that the injection in : CPn −→
CP∞ defines an element MU2n(CP∞), and to relate this element to those we have
already studied. The element [in] is not equal to βMU

n because the constant map
c : CP∞ −→ pt sends [in] to [CPn] and βMU

n to 0. The required relation will be
given in (10.5).

Lemma 10.3. If n ≥ 1, we have

xMU ∩ [in] = [in−1] in MU2(n−1)(CP∞).

This is the sort of result that should obviously be proved geometrically. How-
ever, since we are proceeding homologically and not assuming much familiarity
with the geometric approach, we check the result by applying the homomorphism

MU∗(CP∞) −→ (H ∧MU)∗(CP∞),

which we know to be monomorphic by 2.14, 8.10.

The image of [in] in (H ∧MU)2n(CP∞) is

∑

p+q=n

(
b

∞∑

k=0

bk

)−n−1

p

⊗ βq

where bk = bHk , βq = βHq . The image of xMU in (H ∧MU)2(CP∞)

∑

r

br
(
xH
)r+1

,

by (6.3). The cap product of these two classes is

∑

p+q=n
r

( ∞∑

k=0

bk

)−n−1

p

br ⊗ βq−r−1.
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Set q − r − 1 = s; we obtain

∑

p+r+s=n−1

( ∞∑

k=0

bk

)−n−1

p

br ⊗ βs =
∑

t+s=n−1

( ∞∑

k=0

bk

)−n

t

⊗ βs.

This is the same as the image of [in−1].

Corollary 10.4.
(
xMU

)r ∩ [in] =




[in−r] r ≤ n

0 r > n.

This follows immediately, by induction over r.

Corollary 10.5.
[in] =

∑

r+s=n

[CPr]βMU
s in MU2n(CP∞).

Proof. 〈
xMU, [in]

〉
= c∗

((
xMU

)s ∩ [in]
)
.

If s > n we obtain 0; if s ≤ n we obtain c∗[in−s] = [CPn−s].

We are now ready to explain the connection between the coefficients aij of 2
and Milnor’s hypersurfaces Hi,j of type (1, 1) in CPi × CPj .

Proposition 10.6.
[Hp,q] =

∑

r+u=p
s+v=q

ar,s[CPu][CPv].

(I understand this formula was also obtained by Boardman.)

Corollary 10.7. If p > 1 and q > 1, we have

[Hp,q] ≡ ap,q mod decomposibles in π∗(MU).

Proof of (10.6). The construction of Hp,q yields the following formula.

[Hp,q] = c∗
((
m∗xMU

)
∩ ([ip]× [iq])

)
.

Here c : CP∞ ×CP∞ −→ pt is the constant map, and m : CP∞ ×CP∞ −→ CP∞
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is the product map of §2; we have

m∗xMU ∈ MU2(CP∞ × CP∞)

and
[ip]× [iq] ∈ MU2(p+q)(CP∞ × CP∞).

This yields
[Hp,q] =

〈
m∗xMU, [ip]× [iq]

〉
.

But here we have

m∗xMU =
∑

r,s

ars
(
xMU
1

)r(
xMU
2

)s
,

[ip] =
∑

r+u=p

[CPu]βMU
r ,

[iq] =
∑

s+v=q

[CPv]βMU
s .

The result follows immediately.

Corollary 10.8. π∗(MU) is generated by the elements [CPn] for n ≥ 1 together
with the elements [Hp,q] for p > 1, q > 1.

Proof. By 8.2, π∗(MU) is generated by the aij ; but by (10.2) and (10.7) these
coincide with [CPn] and [Hp,q] modulo decomposibles.
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11. MU∗(MU)

It is shown in [Ada69, Lecture 3, pp. 56-76] that MU∗(MU) may be considered as
a Hopf algebra. We may think of MU∗(MU), the Novikov algebra of operations
on MU-cohomology, as analogous to the Steenrod algebra; if we do so, we should
think of MU∗(MU) as analogous to the dual of the Steenrod algebra, which was
studied by Milnor. [Mil58] There is only one point at which we need to take care in
generalizing from the classical case to the case of generalized homology; the Hopf
algebra MU∗(MU) = π∗(MU ∧MU) is a bimodule over the ring of coefficients
π∗(MU), because we can act either on the left hand factor of MU ∧MU or on the
right hand factor. On this point, see [Ada69, Lecture 3, pp. 59-60].

I would now advance the thesis that instead of considering MU∗(X) as a
(topologised) module over the (topologised) ring MU∗(MU), we should consider
MU∗(X) as a comodule with respect to the Hopf algebra MU∗(MU). For this
purpose I propose to record the structure of MU∗(MU) as a Hopf algebra. I would
like to regard this account as superseding, to a large extent, the account which I
gave in my earlier Chicago notes [Ada67].

At this point I pause to insert various remarks intended to make the spectrum
MU ∧MU seem more familiar. Some may like to think of it as the represented
spectrum for U× U-bordism; that is, we consider manifolds Mn, which are given
embedded in a sphere Sn+2p+2q, and whose normal bundle is given the structure
of a U(p) × U(q)-bundle – say as ν = ν1 ⊕ ν2. With this interpretation, some
of the structure maps to be considered are obvious ones. For example, we shall
consider a conjugation map or canonical anti-automorphism

c : MU∗(MU) −→ MU∗(MU);
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this is induced by the usual switch map

τ : MU ∧MU −→ MU ∧MU

which interchanges the two factors. The effect of c on Mn is to leave the manifold
alone and take the new ν1 to be the old ν2 and vice versa. We can easily construct
U × U -manifolds, for example, by taking CPn and taking the stable classes of ν1,
ν2 to be pξ, qξ, where p+ q = −(n+ 1). However, we will make no further use of
this approach.

I also remark that MU∧MU is homotopy-equivalent to a wedge-sum of suitable
suspensions of MU. This follows from the following lemma, plus (4.5).

Lemma 11.1. Let E be a ring-spectrum. In order that E ∧X be equivalent, as
a module-spectrum over E, to a wedge-sum

∨

α

E ∧ Sn(α), it is necessary and

sufficient that π∗(E ∧X) should be a free module over π∗(E).

Proof. π∗
(∨

α

E∧Sn(α)
)
∼=
∑

α

π∗(E∧Sn(α)) is indeed a free module over π∗(E).

So if E ∩X is equivalent, as a module-spectrum over E, to
∨

α

E ∧ Sn(α), then

π∗(E ∧X) is also free.
Conversely, assume that π∗(E ∧X) is free over π∗(E), with a base of elements

bα ∈ πn(α)(E ∧X). Represent bα by a map

fα : Sn(α) −→ E ∧X,

and consider the map

f :
∨

α

E ∧ Sn(α) −→ E ∧X,

whose α-th component is

E ∧ Sn(α) 1∧fα−−−→ E ∧ E ∧X µ∧1−−→ E ∧X.

Then f is clearly a map of module-spectra over E, and f induces an isomorphism
of homotopy groups; so f is a homotopy equivalence, by Whitehead’s theorem (in

120



Chapter 11: MU∗(MU)

the category of spectra.)

Let us return to the spectra of MU∗(MU). Recall from (4.5) that MU∗(MU)

is free as a left module over π∗(MU), with a base consisting of the monomials in
the generators bi = bMU

i ∈ MU2i(MU).
Recall also from [Ada69, p. 61] that the structure maps to be constructed are

as follows.

(i) A product map

φ : MU∗(MU)⊗MU∗(MU) −→ MU∗(MU).

This is the same product in MU∗(MU) that we have been using all along, and
we do not need to give any formulae for it, because MU∗(MU) is described
in terms of this product.

(ii) Two unit maps
ηL, ηR : π∗(MU) −→ MU∗(MU).

These are induced by the maps

MU ≃ MU ∧ S0 1∧i−−→ MU ∧MU,

MU ≃ S0 ∧MU
i∧1−−→ MU ∧MU

respectively. They are introduced so that left multiplication by a ∈ π∗(MU)

is multiplication by ηL(a), and right multiplication by a ∈ π∗(MU) is
multiplication by ηR(a). The map ηL sends a ∈ π∗(MU) to a.1, and we do
not need to give any other formula for it.

The map νR is essentially the Hurewicz homomorphism

π∗(MU) −→ MU∗(MU).

It figures in the next result; to motivate it, we recall that one should describe
the action of cohomology operations h ∈ MU∗(MU) on the ring of coefficients
π∗(MU); compare [Ada67, p. 19, Theorem 8.1, p. 23]
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Proposition 11.2. Let E be as in [Ada69, Lecture 3], and let h ∈ E∗(E). Then
the effect of the cohomology operation h on the element λ ∈ π∗(E) is given by

hλ = ⟨h, ηRλ⟩.

This may be proved either directly from the definitions by diagram-chasing or
by substituting X = S0, ψλ = (νLλ)⊗ 1 in [Ada69, Proposition 2, p. 75].

We return to listing the structure maps to be considered.

(iii) A counit map
ε : MU∗(MU) −→ π∗(MU).

This is induced by the product map

µ : MU ∧MU −→ MU.

(iv) A canonical anti-automorphism, or conjugation map

c : MU∗(MU) −→ MU∗(MU).

This is induced by the switch map

τ : MU ∧MU −→ MU ∧MU,

as remarked above.

(v) A diagonal or coproduct map

ψ : MU∗(MU) −→ MU∗(MU)⊗π∗(MU) MU∗(MU).

The maps which have not been discussed already are given by the following
result.

Theorem 11.3. (i) The homomorphism ηL is calculated in §6 and §9.

(ii) The map ε is a map of algebras which are bimodules over π∗(MU); it satisfies

ε(1) = 1
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ε(bi) = 0 for i ≥ 1.

(iii) The map c is a map of rings; it satisfies




c(ηLa) = ηRa

c(ηRa) = ηLa
(a ∈ π∗(MU))

and c(bi) = mi, where bi and mi are related as in (7.5).

(iv) The coproduct map ψ is a map of bimodules over π∗(MU). It is given by

ψbk =
∑

i+j=k

(∑

h≥0

bh

)j+1

i

⊗ bj .

(Compare [Ada67, p. 20, Theorem 6.3])

Proof. We begin with (ii). The formal properties of ε are given in [Ada69]. Instead
of saying ε is induced by µ : MU ∧MU −→ MU, we may proceed as follows. Let

x ∈ MU∗(MU), let 1 ∈ MU0(MU) be the class of the identity map 1 : MU −→ MU,
and let ⟨1, x⟩ ∈ π ∗ (MU) be their Kronecker product; then

ε(x) = ⟨1, x⟩.

Applying the naturality of the Kronecker product to the map MU −→ MU,
we find that

⟨1, bi⟩ =
〈
xMU, βi+1

〉

= 0 for i > 0.

We turn to part (iii) of (11.3). The formal properties of c are given in [Ada69].
By (9.5) we have

xR =
∑

i≥0

bMU
i

(
xL
)i+1

.
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Applying c, we find
xL =

∑

i≥0

(cbMU
i )

(
xR
)i+1

.

So cbi = mMU
i .

We turn to part (iv) of (11.3). The formal properties of ψ are given in [Ada69].
We begin by determining the coproduct map

ψ : MU∗(CP∞) −→ MU∗(MU)⊗π∗(MU) MU∗(CP∞).

By definition, this coproduct map is the following composite.

MU∗(CP∞) (MU ∧MU)(CP∞)

MU∗(MU)⊗π∗(MU) MU∗(CP∞)

∼=

Here the first factor can be described by adopting the notation of the proof of
(9.4); it maps βi ∈ MU2i(CP∞) into βLi ∈ (MU∧MU)2i(CP∞). The isomorphism
maps the element 1 ⊗ βi in the tensor-product into βRi ∈ (MU ∧MU)2i(CP∞).
By (9.5) we have

xR =
∑

i≥0

bMU
i

(
xL
)i+1

and therefore

(xR)j =
∑

k

(∑

i≥0

bMU
i

)j

k

(
xL
)j+k

.

Dualizing, we find

βLi =
∑

0≤j≤i

(∑

k

bMU
k

)j

i−j
⊗ βRj ;

that is

ψβi =
∑

0≤j≤i

(∑

k

bMU
k

)j

i−j
⊗ βj . (11.4)
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(Note that this formula determines the coaction map

ψ : MU∗(BU) −→ MU∗(MU)⊗π∗(MU) MU∗(BU)

for the space BU) Transferring (11.4) to MU by the “inclusion” CP∞ = MU(1) −→
MU, we find

ψbi−1 =
∑

0≤j−1≤i−1

(∑

ℓ≥0

bℓ

)j

i−j
⊗ bj−1,

which is equivalent to the result given. This completes the proof of (11.3).

Notes. Consider the subalgebra

S∗ = Z[b1, b2, · · · , bn, · · · ]

(compare [Ada67, p. 20, Theorem 6.3].) The product map φ, diagonal map ψ and
conjugation c all carry this subalgebra to itself, the counit restricts to give a map

ε : S∗ −→ Z

such that ε(1) = 1, ε(bi) = 0 for i ≥ 1. We conclude that the restriction of c to
this subalgebra must coincide with the conjugation it would have if considered in
its own right as a Hopf algebra over Z.
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12. Behaviour of the Bott map

We recall that in the spectrum K, every even term is the space BU, and the maps
between them are all the same; each is the map

B : S2 ∧ BU −→ BU

adjoint to the Bott equivalence

B′ : BU ≃ Ω2
0 BU.

(Here Ω2
0 means the complement of the base-point in the double loop space Ω2.)

In order to compute E∗(BU), it is therefore desirable to compute

B∗ : Ẽn(BU) −→ Ẽn+2(BU)

This will be done in (12.5), (12.6).

We first describe the primitive elements in E∗(BU).

We have seen that

E∗(BU) = π∗(E)[β1, β2, . . . , βn, . . . , ]

with coproduct
ψβk =

∑

i+j=k

βi ⊗ βj

As usual, we define the Newton polynomial Qkn so that

xk1 + xk2 + · · ·+ xkn = Qkn(σ1, σ2, . . . , σk)
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where σi is the i-th elementary symmetric function of x1, x2, . . . , xn. Qkn is
independent of n for n ≥ k, and then we write Qk for Qkn.

We define elements sk ∈ E∗(BU) for k ≥ 1 by

sk = Qk(β1, β2, . . . , βk).

Examples.

s1 = β1

s2 = β2
1 − 2β2

s3 = β3
1 − 3β1β2 + 3β3

Proposition 12.1. The primitive elements in E∗(BU) form a free module over
π∗(E), with a base consisting of the elements s1, s2, s3, . . . .

The proof goes precisely as in ordinary homology.

We need two formulas about the si.

sn − β1sn−1 + β2sn−2 + · · ·+ (−1)n−1βn−1s1 + (−1)nnβn = 0. (12.2)

This is well-known.

( ∞∑

n=1

(−1)n−1sn

)
=

( ∞∑

s=1

sβs

)( ∞∑

t=0

βt

)−1

. (12.3)

Proof. Write (12.2) in the form

(−1)n−1sn + b1(−1)n−2sn−1 + · · ·+ bn−1s1 = nbn

and add over n ≥ 1; we find

( ∞∑

n=1

(−1)n−1sn

)( ∞∑

t=0

βt

)
=

∞∑

s=1

sβs

This yields (12.3).
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We next consider the tensor product map. We recall that the map

BU(n)× BU(m) −→ BU(nm)

which classifies the ordinary tensor product of bundles does not behave well under
the inclusion of BU(n) in BU(n+ 1); it is necessary to consider the product on
reduced K-theory defined by the “tensor product of virtual bundles of virtual
dimension zero”; this is represented by a map

t : BU ∧ BU −→ BU.

We calculate
t∗ : Ẽ∗(BU)⊗ Ẽ∗(BU) −→ Ẽ∗(BU)

at least on the elements βi ⊗ βj .

Proposition 12.4. If i > 0, j > 0 we have

t∗(βi ⊗ βj) =
∑

p≤i
q≤j

k≤p+q

akpqβk

( ∞∑

l=0

βl

)−1

i−p

( ∞∑

l=0

βl

)−1

j−q

Proof. The restriction of t to BU(1) ∧ BU(1) corresponds to the element

(ζ1 − 1)(ζ2 − 1) = ζ1ζ2 − ζ1 − ζ2 + 1

in BU0(BU(1)× BU(1)). We therefore introduce the following maps.

BU(1)× BU(1)
m−→ BU(1) −→ BU, corresponding to ζ1ζ2

BU(1)× BU(1)
π1−→ BU(1) −→ BU, corresponding to ζ1

BU(1)× BU(1)
π2−→ BU(1) −→ BU, corresponding to ζ2

BU(1)× BU(1)
c−→ BU(1) −→ BU, corresponding to 1

Here, π1 is projection onto the first factor, π2 is projection onto the second factor,
and c is the constant map. The required element of BU0(BU(1)× BU(1)) can be
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represented in the following form.

(BU(1)× BU(1)) (BU(1)× BU(1))4

BU4

BU4 BU

∆

f

g

µ

Here ∆ is the iterated diagonal map; f is the map whose four components are
the four maps given above; g is a map whose four components represent 1, -1, -1
and 1; and µ is the iterated product map.

We have

∆∗(βi ⊗ βj) =
∑

i1+i2+i3+i4=i
j1+j2+j3+j4=j

βi1 ⊗ βj1 ⊗ βi2 ⊗ βj2 ⊗ βi3 ⊗ βj3 ⊗ βi4 ⊗ βj4

m∗(βi1 ⊗ βj1) =
∑

k≤i1+j1
aki1j1βk

(π1)∗(βi2 ⊗ βj2) =




βi2 (j2 = 0)

0 (j2 > 0)

(π2)∗(βi3 ⊗ βj3) =




βj3 (i3 = 0)

0 (i3 > 0)

c∗(βi4 ⊗ βj4) =




1 (i4 = j4 = 0)

0 (otherwise)

and

(−1)∗
( ∞∑

l=0

βl

)
=

( ∞∑

l=0

βl

)−1
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So we obtain

t∗(βi ⊗ βj) =
∑

i1+i2=i
j1+j3=j
k≤i1+j1

aki1j1bk

( ∞∑

l=0

βl

)−1

i2

( ∞∑

l=0

βl

)−1

j3

This proves (12.4).

Proposition 12.5. The map

B∗ : Ẽn(BU) 7→ Ẽn+2(BU)

annihilates decomposable elements.

Proof. We have the following commutative diagram.

Ẽn(BU) ≃ Ẽn+2(S
2 ∧ BU)

Ẽn(Ω
2
0BU) Ẽn+2(BU)

B′
∗

σ2

B∗

Here the bottom horizontal map σ2 is the appropriate double suspension, and it is
well-known that it annihilates products, providing the products in Ẽn+2(S

2 ∧BU)

are those induced by the loop-space product; the proof for ordinary homology
goes over. But BU is an H-space, so the loop-space product µΩ on Ω2

0(BU) is
homotopic to the product µH induced from the H-space product in BU. Now the
periodicity isomorphism

B̃U
0
(X) ∼= B̃U(S2 ∧X)

is an isomorphism of additive groups; this says that under B′ : BU −→ Ω2
0BU

the H-space product in BU corresponds to the product µH in Ω2
0BU. So σ2β′

∗
annihilates elements which are decomposable in the usual sense.
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Proposition 12.6. If j > 0 we have

B∗(βj) =
∑

r+t=j+1
t>0

uEa1r (−1)t−1st

≡
∑

r+t=j+1
t>0

uEa1r tβt mod decomposables.

Proof. The second line follows from the first by (12.2), so we need only prove the
first.

Recall that β1 is not the canonical generator in Ẽ∗(S2); the latter is given by
uEβ1 ∈ Ẽ2(S

2). Since the Bott map B is the restriction of t to S2 ∧BU, we have

B∗(βj) = t∗(u
Eβ1 ⊗ βj) for j > 0.

We apply (12.4), and find that the sum in (12.4) can be divided into two parts,
one with p = 1 and one with p = 0. In the latter, we use the fact that

ak0q =




1 if k = q

0 if k ̸= q

We find

B∗(βj) = uE
∑

q+s=j
k

ak1qβk

( ∞∑

l=0

βl

)−1

s

+ uE
∑

q+s=j

βq(−β1)
( ∞∑

l=0

βl

)−1

s

.

The second sum is zero unless j = 0, so we can forget it. In the first sum, we have

ak1q = ka1 q+1−k

by (3.6). Writing r for q + 1− k, we find

B∗(βj) = uE
∑

r+s+k=j+1

a1r(kβk)

( ∞∑

l=0

βl

)−1

s
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Using (12.3), we find

B∗(βj) = uE
∑

r+t=j+1
t>0

a1r(−1)t−1st

This proves (12.6).
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13. K∗(K)

In this section we compute the Hopf algebra K∗(K). The results represent joint
work with Mr. A.S. Harris.

We recall from [AB64] that π∗(K) is the ring of finite Laurent series Z[u, u−1],
where u ∈ π2(K) is the element introduced in §2. By (4.1), K∗(BU) is torsion-free.
Passing to the limit along the BU-spectrum K, we see that K∗(K) is torsion-free.
Therefore the map

K∗(K) −→ K∗(K)⊗Q

is a monomorphism. ButK∗(K)⊗Q is the ring of finite Laurent series Q[u, u−1, v, v−1],
where we have written u for ηLu, v for ηRu. We propose to describe K∗(K) as
a subring of Q[u, u−1, v, v−1]. It is sufficient to describe K0(K) as a subring of
K0(K)⊗Q = Q[u−1v, uv−1], but we will work in full generality.

We first observe that the operation ψk was originally introduced as an unstable

operation; to make it a stable operation we need to introduce coefficients Z
[1
k

]
.

(Here Z
[1
k

]
is the ring of rational numbers of the form n/km.) Crudely speaking,

we cannot define a map of spectra K −→ K by taking each component map to
be ψk : BU 7→ BU, because the following diagram does not commute.

S2 ∧ BU BU

S2 ∧ BU BU

B

1∧ψk

B

ψk

We have to take the (2n)-th component of our map to be

1

kn
ψk : BU 7→ BUZ

(1
k

)
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Here the space BUZ
[1
k

]
is constructed by taking the spectrum KZ

[1
k

]
repre-

senting K-theory with coefficients in Z
[1
k

]
(see [Ada67]), converting it into an

Ω-spectrum, and taking the (2n)-th space of this Ω-spectrum.

For any element h ∈ K∗(K), we can form

⟨ψk, h⟩ ∈ π∗(K)⊗ Z
[1
k

]
(k ̸= 0).

But if we identify h with a finite Laurent series f(u, v), as above, then we have

⟨ψk, h⟩ = f(u, ku). (13.1)

Corollary 13.2. A necessary condition that a finite Laurent series f(u, v) lie in
the image of K∗(K) is

f(u, ku) ∈ π∗(K)⊗ Z
[1
k

]
for k ̸= 0. (13.3)

Theorem 13.4. (i) K∗(K) may be identified with the set of finite Laurent series
f(u, v) which satisfy (13.3).

(ii) The product in K∗(K) is the product of Laurent series.

(iii) The unit maps are given by

ηL(u) = u

ηR(u) = v.

(iv) The counit map is given by

ε(u) = u

ε(v) = u

ε(u−1v) = 1

ε(uv−1) = 1.
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(v) The conjugation map is given by

c(u) = v

c(v) = u

c(u−1v) = uv−1

c(uv−1) = u−1v.

(vi) The coproduct map is given by

ψ(u) = u⊗ 1

ψ(v) = 1⊗ v

ψ(u−1v) = u−1v ⊗ u−1v

ψ(uv−1) = uv−1 ⊗ uv−1.

The proof of (13.4) will be built up in stages.

Lemma 13.5. The Bott map

B∗ : K̃n(BU) 7→ K̃n+2(BU)

annihilates decomposables, and is given by

B∗βj = u((j + 1)βj + jβj) mod decomposables.

Proof. Immediate from (12.5) and (12.6); the values of the coefficients a1r come
from (2.6).

We observe that the generator in π2n(BU) gives an element in K2n(BU); we
write the latter element wn (noting that the multiplication involved is in the sense
of the tensor-product map t : BU∧BU 7→ BU, and is not to be confused with our
usual multiplication, which comes from the Whitney sum map BU× BU 7→ BU.)
If we regard BU as the 2m-th term of the spectrum K, then the image of wn in
K2(n−m)(BU) is vn−m (assuming n ≥ 1).
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Lemma 13.6. In K2n(BU)⊗Q we have

βn =
u−1w(u−1w − 1) . . . (u−1w − n+ 1)

1 · 2 · . . . · n

modulo decomposables in the sense of Whitney sum, where the product is taken
in the sense of the tensor-product.

Proof. By induction over n; for n = 1 we have β1 = u−1w. Suppose the result
true for n. Since B∗wr = wr+1, we have

B∗(βn) =
u−1w(u−1w − 1) . . . (u−1w − n+ 1)w

1 · 2 · . . . · n

By (13.5), we have

βn+1 =
1

n+ 1
(u−1B∗βn − nβn) mod decomposables

=
u−1w(u−1w − 1) . . . (u−1w − n+ 1)(u−1w − n)

1 · 2 · . . . · n · (n+ 1)

This completes the induction and proves (13.6).

Lemma 13.7. The image of K∗(K) in K∗(K)⊗Q is generated over Z[u, u−1, v, v−1]

by the elements

u−1v(u−1v − 1) . . . (u−1v − n+ 1)

1 · 2 · . . . · n
(n = 1, 2, 3, . . .)

Proof. Immediate, since it is generated over Z[u, u−1] by the images of the elements
βn in the 2m-th term of the spectrum K (n = 1, 2, 3, . . . ;m = 0, 1, 2, . . .)

Lemma 13.8. A polynomial f(x) ∈ Q(x) can be written as an integral linear
combination of the binomial polynomials

x(x− 1) . . . (x− n+ 1)

1 · 2 · . . . · n
(n = 0, 1, 2, . . . )

if and only if it takes integer values for x = 1, 2, 3, . . . .

The proof is a piece of standard algebra, which can be left to the reader.
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Proof of Theorem 13.4. The substantial part is part (i). First, take an element
of K∗(K); its image in K∗(K)⊗Q is a finite Laurent series of the type described
in (13.7), and f(u, ku) ∈ Z[u, u−1, 1/k] by (13.8).

Conversely, take a finite Laurent series f(u, v) which satisfies (13.3); without
loss of generality we may assume that f is homogenous, say f(u, v) = udg(u−1v),

where g(k) ∈ Z
[1
k

]
for k = 1, 2, 3, . . . . The power to which z−1 occurs in g(z)

is bounded, say by N. Also g(z) contains only a finite number of coefficients in
Q; their denominators contain only a finite number of prime factors p, and each
prime p occurs to a power which is bounded, say by M (independent of p). Then

h(z) = zN+Mg(z)

has the property that h(k) ∈ Z for k = 1, 2, 3, . . . . In fact, each prime p dividing
k cannot occur in the denominator of h(k), by construction; nor can any other
prime, by assumption. By Lemma 13.8, h(u−1v) is an integral linear combination
of binomial polynomials

u−1v(u−1v − 1) . . . (u−1v − n+ 1)

1 · 2 · . . . · n
(n ≥ 0).

So f(u, v) = ud(uv−1)N+Mh(u−1v) is a linear combination over Z[u, u−1, v−1] of
these polynomials. We do not need the polynomial for n = 0 (namely 1) since
it is a multiple over Z[u, v−1] of the polynomial for n = 1 (namely u−1v). By
Lemma 13.7, f(u, v) lies in the (13.4)(i).

The remaining parts of (13.4) are easy. It is only necessary to comment on
one point. In (vi), the fact that ψ is a map of bimodules gives

ψ(u−1v) = u−1 ⊗ v;

but in K∗(K)⊗π∗(K) K∗(K) we have

u−1 ⊗ v = u−1v ⊗ u−1v

since the tensor product is taken over π∗(K) and v = ηRu. Similarly for ψ(uv−1).
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14. The Hattori-Stong theorem

In this section I will present a slight reformulation of the result of Hattori and Stong.
(Stong proved it first, but his name creeps to the back for reasons of euphony–it
brings a phrase or sentence to such a resounding end.) This reformulation has
been used by L. Smith [Smi].

Recall from [Ada69, Lecture 3] that for suitable spectra E, such as E = K,
E∗(X) is a comodule over the Hopf algebra E∗(E). We say that an element in
a comodule is primitive if ψx = 1 ⊗ x; we write PE∗(X) for the subgroup of
primitive elements in E∗(X). One can see directly from the definition of ψ that
the Hurewicz homomorphism in E-homology,

h : π∗(X) −→ E∗(X)

maps into PE∗(X).

Theorem 14.1 (after Stong [Sto65] and Hattori [Hat66]). The Hurewicz homomor-
phism in K-homology gives an isomorphism

h : π∗(MU) ∼= PK∗(MU).

Remark. As soon as one knows that π∗(MU) is torsion-free, it is easy to show
that the Hurewicz homomorphism is a monomorphism. For example, consider the
following commutative diagram.
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π∗(MU) K∗(MU)

π∗(MU)⊗Q K∗(MU)⊗Q

h

h⊗1

We have K∗(MU) ⊗ Q ∼= π∗(K) ⊗ π∗(MU) ⊗ Q; so the bottom horizontal map
and the left-hand vertical map are both monomorphisms.

The essential content of the theorem, then, is that it identifies the images of h.

Proof of 14.1. For lack of time in writing out these notes to work out a direct
proof, I will deduce this result from the formulation given by Hattori. (After
all, Hattori’s proof is very elegant.) Hattori proves precisely that if x ∈ K∗(MU

and nx ∈ Im(h) for some integer n ̸= 0, then x ∈ Im(h). It is rather easy to
see that any primitive in K∗(MU) ⊗ Q lies in the image of h ⊗ 1. So suppose
x ∈ PK∗(MU); then by preceding sentence, x lies in Im(h⊗ 1); that is, for some
integer n ̸= 0 we have nx ∈ Im(h). So by Hattori’s form of the result, x ∈ Im(h),
This proves (14.1).

Exercise. Deduce Hattori’s form of the result from (14.1).
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15. Quillen’s Idempotent Cohomology Operations

Suppose given a spectrum E and an abelian group G. It may happen that when
we form the spectrum EG, as in §2, it splits as a sum or product. Examples
are given in [Ada69, Lecture 4]. In such cases, it is highly desirable to have a
splitting which is canonical and doesn’t depend on any choices, I have developed
this point in [Ada69, Lecture 4]. In particular, I have made the rather obvious
point that one should look for canonical idempotent cohomology operations, that
is, idempotent maps ε : EG −→ EG.

An important special case is that in which E = MU and G = Z(p), the integers
localized at p (that is, the ring of rational numbers n/m with m prime to p.) In
this case the possibility of splitting MUZ(p) was proved by Brown and Peterson
[JP66], and again by Novikov [Nov63]; but both methods involved choice.

Quillien has succeeded in giving canonical idempotents ε : MUZ(p) −→ MUZ(p)

(one for each p). This is profitable in two ways. Firstly, it means that we no longer
have to construct the Brown-Peterson spectrum by synthesis, building it up from
its homotopy groups and k-invariants; we can construct it by taking MUZ(p) and
splitting off the piece we want. Secondly, we obtain a very precise hold on the
Brown-Peterson spectrum, and can obtain information about it by passing to the
quotient from MUZ(p). This process yields good, explicit formulae.

Theorem 15.1. Let d > 1 be an integer, and let R ⊂ Q be a subring of the rationals
containing d−1. Then there is a unique map of ring-spectra

e = ed : MUR→ MUR

satisfying the following conditions.

1. e is idempotent: e2 = e.
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2. e has the following effect on π∗(MUR).

e[CPn] =




0 n ≡ −1 (mod d)

[CPn] n ̸≡ −1 (mod d)

Two such idempotents ed, ed commute

Theorem 15.2 (BD, Quillen [Qui69]). Let p be a prime. Then there is a unique
map of ring-spectra

ε = εp : MUZ(p) → MUZ(p)

satisfying the following conditions.

1. ε is idempotent: ε2 = ε.

2. ε has the following effect on π∗(MUZ(p)).

ε[CPn] =




0 n = pf − 1 for some f

[CPn] else

Proof of (15.2) from (15.1). Take

ε =
∏

q

eq

where the product ranges over all primes q ̸= p, observing that the product is
convergent in the filtration topology on MUZ∗

(p)(MUZ(p)), which is complete and
Hausdorff.

We turn to consider the proof of (15.1). We know from Lemma (15.2) that so
long as π∗(E) −→ π∗(E)⊗R is iso (which is certainly true for E = MUR), maps
of ring-spectra g : MUR −→ E are in (l − 1) correspondence with power-series

g∗
(
xMU

)
= f

(
eE
)
=
∑

i≥0

di
(
xE
)i+1

with uEd0 = 1, di ∈ π∗(E). Assume for simplicity that uE = 1, which is the
case in the applications. All we have to do is pick the right power-series. Let us
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consider how the choice of f will affect

g∗ : π∗(MUR) −→ π∗(E).

Let us take the primitive elements

logMU xMU =
∑

i≥0

mi

(
xMU

)i+1
,mi =

[CPi]
i+ 1

∈ π∗(MU)⊗Q

logE xE =
∑

i≥0

ni
(
xE
)i+1

, say ni ∈ π∗(E)⊗Q, n0 = 1.

Let us define the logMU series by

mog xMU =
∑

i≥0

(g∗mi)
(
xMU

)i+1
,

so that it serves to store the coefficients g∗mi. Let expE be the series inverse to
logE

Proposition 15.3. The elements g∗mi ∈ π∗(E)⊗Q are given by

mog(fxE) = logE(xE)

or equivalently
mog z = logE(f−1z).

For our applications we need to know how to construct f given the coefficients
g∗mi, and the appropriate formula is as follows.

Corollary 15.4. f−1z = expE mogz.

Proof of (15.3), (15.4). The element

logMU xMU =
∑

i≥0

mi

(
xMU

)i+1
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is primitive. Therefore

g∗ log
MU xMU =

∑

i≥0

(g∗mi)
(
fxPE

)i+1
= mog

(
fxE

)

is primitive. But the primitive elements in ẼQ
∗
(CP∞) form a free module over

π∗(EQ), with one generator logE xE; and we check that mog(fxE) has first term
xE; so

mog(fxE) = logE xE.

This proves (15.3) and (15.4).

Next suppose given a formal product µ, over a ring R, and consider formal
power-series, with zero constant term, over R. We can make these formal power-
series into an abelian group by defining

σ +µ τ = µ(σ, τ).

Subtraction in this abelian group will be written −µ. If our ring R also contains
d−1, we can divide by d in this abelian group; we write

σ =
(1
d

)
µ
τ

for the solution of

τ = σ +µ σ +µ + · · ·+µ σ (d summands)

If our ring R contains Q, we can write

σ +µ τ = exp(log σ + log τ)

where exp and log are as in §7.

Proof of (15.1). Our proposal is to take

mogz = log z − 1

d
(log ζ1z + log ζ2z + · · ·+ log ζdz). (15.5)
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Here ζ1, ζ2, . . . , ζd are the complex d-th roots of 1, and

log z =
∑

i≥0

miz
i+1,mi =

[CPi]
i+ 1

as it should be for MU or MUR. It is easy to see that this power-series (15.5) has
the coefficients g∗(mi) given in (15.1)(ii). A priori the coefficients of mogz lie in
π∗(MU)⊗Q[exp 2πi/d].

Applying exp to (15.5), we get

f−1z = zµ

(1
d

)
µ
(ζ1z +µ ζ2z +µ + · · ·+µ ζdz). (15.6)

For any ζ1, ζ2, . . . , ζd we can consider

ζ1z +µ ζ2z +µ + · · ·+µ ζdz

as a formal power-series with coefficients in

π∗(MU)× Z[ζ1, ζ2, . . . , ζd].

The coefficients are clearly polynomials symmetric in ζ1, ζ2, . . . , ζd so we can write
them in terms of the elementary symmetric functions σ1, σ2, . . . , σd. When we
substitute for

ζ1, ζ2, . . . , ζd

the complex d-th roots of 1, we have

σ1 = 0, . . . , σd−1 = 0, σd = (−1)d−1.

We obtain a power-series with coefficients in π∗(MU).

So (15.6) shows that f−1z, and hence fz, has coefficients in π∗(MU)⊗ Z
[1
d

]
.

This proves the existence of a map e : MUR −→ MUR of ring-spectra satisfying
(15.1)(ii).

The fact that ed is idempotent follows from the fact that its effect on π∗(MUR)

is obviously idempotent, by Lemma 9.3. The fact that two such idempotents
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ed, dδ commute is proved in the same way.
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16. The Brown-Peterson spectrum

In this section we introduce the Brown-Peterson spectrum, and discuss its prop-
erties. In particular, we prove the homology analogue of Quillen’s result on the
algebra BP∗(BP) of cohomology operations.

We keep a prime p fixed throughout. For any X, consider

ε∗ : MUZ∗
(p)(X) −→ MUZ∗

(p)(X),

where ε = εp as in §15. The image of ε∗ is a natural direct summand of
MUZ∗

(p)(X), so it is a functor turning cofibrations into exact sequences. It also
satisfies the wedge axiom, so (by Brown’s theorem in the category of spectra) it is
a representable functor. We write BP for its representing spectrum, after Brown
and Peterson §7. The map ε is a map of ring-spectra, so the image of ε∗ is a
cohomology functor with (external) products. Therefore BP is a ring spectrum.
We have canonical maps of ring-spectra which make up the following commutative
diagram.

MUZ(p) MUZ(p)

BP

ε

π ι

We have πι = 1 : BP −→ BP.
If we were to follow Quillen’s line [Qui69], we would now copy the work of

II, taking E = BP, to construct a whole family of cohomology operations from
MUZ(p) to BP, and prove that they factor through the canonical projections
π : MUZ(p) −→ BP.

To construct the different operations of the family, Quillen introduces into his

149



Chapter 16: The Brown-Peterson spectrum

work formal variables t1, t2, . . . , tn, . . . and constructs an operation

rt : MUZ(p) −→ BP(Z[t1, t2, . . . , tn, . . .]).

He then takes the components of this operation; for any sequence α = (α1, α2, . . . , αn, . . .)

such that αi = 0 for all but a finite number of i, he takes the operation rα to be
the coefficient of tα1

1 tα2
2 . . . tαn

n in rt.

It would not really give us any trouble to afflict BP with coefficients Z[t1, t2, . . . , tn, . . .];
we could construct a Moore space M for the graded ring Z[t1, t2, . . . , tn, . . .] by
taking a wedge of spheres of suitable dimensions, and giving it a suitable product;
and then we could form BP ∧M . But since we are only trying to explain the
direction of Quillen’s work, we won’t labor these details.

We give BP a class xBP by using the canonical maps MU −→ MUZ(p)
π−→ BP.

The log function for BP is obtained by naturality from that for MU. Let us recall
that

mi =
[CPi]
i+ 1

∈ π∗(MU)⊗Q,

and that π : MUZ(p) −→ BP annihilates mi unless i = pf − 1. Let us write

mp−1,mp2−1,mp3−1, etc.

for the images of these surviving generators in π∗(BP)⊗Q. Then we have

logBP x = x+mp−1x
p +mp2−1x

p2 +mp3−1x
p3 . . .

In our present language, Quillen’s method is to construct rt by taking its
modified log series to be (Note how one can read off the effect on rt on π∗(BQ)⊗Q
from this display.) The reason that the coefficients in the display are introduced is
that they represent the cheapest way to get the corresponding formal power-series
defined over π∗(BP); for we have

f−1z = expBP mogz

= z +µ t1z
p +µ t2z

p2 +µ t3z
p3 +µ . . . .
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Here µ means µBP, the formal product defined over π∗(BP).
From our present point of view, Quillen’s formal variables ti are crying to be

located in BP∗(BP). That is: for any element

u ∈ Hom∗
Z(Z[t1, t2, . . .], π∗(BP))

(say assigning the value uα to tα1
1 tα2

2 . . . tαn
n ) Quillen constructs a cohomology

operation ∑

α

uαrα.

He then obtains each operation once and once only [Qui69, Theorem 5(i)], so
he is asserting

BP∗(BP) = Hom∗
Z(Z[t1, t2, . . .], π∗(BP))

= Homπ∗(BP)(BP∗(BP), π∗(BP)).

We therefore try to copy Quillen’s work in homology.

Theorem 16.1. (i) There is a unique system of classes

ti ∈ BP2(pi−1)(BP)

such that t0 = 1 and in BPQ∗(BP) we have

ηR(mpk−1) =
∑

i+j=k

mpi−1(tj)
pi .

(ii) We have
BP∗(BP) = π∗(BP)[t1, t2, . . .].

(This describes the product map φ and the map ηL, or the structure as a
left module over π∗(BP); the map ηR, or the structure as a right module
over π∗(BP), is given by (i).)

(iii) The counit map is given by
ε(1) = 1
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ε(ti) = 0 for i > 0.

(iv) The conjugation is given by the following inductive formula.

∑

h+i+j=k

mph−1(ti)
ph(ctj)

ph+i

= mpk−1.

(v) The coproduct is given by the following inductive formula.

∑

i+j=k

mpi−1(ψtj)
pi =

∑

h+i+j=k

mph−1(t
i)p

h

⊗ (tj)
ph+i

.

The formula in part (i) restates that in Quillen’s Theorem 5(iii) [Qui69], and
the formula in part (v) restates that in Quillen’s Theorem 5(iv) [Qui69].

As for the formulae that are claimed as “inductive”, we note that (iv) does
indeed contain the leading term ctk (take h = 0, i = 0) and otherwise contains
terms in ctj with j < k; and similarly, (v) contains the leading term ψtk (take
i = 0) and otherwise contains terms in ψtj with j < k.

Proof of (16.1). We first prove the uniqueness of clause of part (i). The formula

ηR(mpk−1) =
∑

i+j=k

mpi−1(tj)
pi

contains the leading term tk (take i = 0) and otherwise contains terms in tj with
j < k; so by induction, it determines the image of tk in BPQ∗(BP). But the map

BP∗(BP) −→ BPQ∗(BP)

is monomorphic, so the formula of part (i) characterises the tk.
The essential part is the existence clause of part (i). We first recall the following

equation from the proof of (9.4):

∑

i

ηR(mi)(x
R)i+1 =

∑

i

mi

(∑

j≥0

Mj(x
R)j+1

)i+1

. (16.2)

Here
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mi =
[CPi]
i+ 1

∈ π2i(MU)⊗Q

ηR(mi) ∈ MU2i(MU)⊗Q

Mj ∈ MU2i(MU) is as in Proposition 9.4,

and the equation takes place in (MU ∧MUQ)∗(CP∞). To this equation we
apply the homomorphism induced by the map π ∧ π : MU ∧MU −→ BP ∧ BP.
If, for the moment, we write Bj for the image of Mj in BP2i(BP), we obtain the
following equation in (BP ∧ BPQ)∗(CP∞).

∑

i

ηR(mpf−1)(x
R)p

f

=
∑

f

(mpf−1)
(∑

j≥0

Nj(x
R)j+1

)pf−1

. (16.3)

Use the equation of (16.1)(i), namely

ηRm

pk−1
=
∑

i+j=k

mpi−1(tj)
pi

to define tk (inductively) as an element of BPQ∗(BP). Substituting in (16.3) we
get

∑

i,j

mpi−1(tj)
pi(xR)p

i+j

=
∑

f

(mpf−1)
(∑

j≥0

Nj(x
R)j+1)

)pf
.

That is, ∑

i

logBP(tj(x
R)p

j

) = logBP
(∑

j≥0

Nj(x
R)j+1

)
.

Apply expBP. We get

xR +µ t1(x
R)p +µ t2(x

R)p
2

+µ t3(x
R)p

3

. . . =
∑

j≥0

Nj(x
R)j+1. (16.4)

Here µ means µBP, the formal product defined over π∗(BP).

Suppose, as an inductive hypotheses we have shown that ti ∈ BP∗(BP) for
i > k. (The induction starts, since t0 = 1) Extract from (16.4) the coefficient of
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(xR)p
k

. We obtain
tk + f(t1, t2, . . . , tk−1) = Npk−1 (16.5)

Here Npk−1 lies in BP∗(BP); and f(t1, t2, . . . , tk−1) is a polynomial in
t1, t2, . . . , tk−1, with coefficients in π∗(BP), so it lies in BP∗(BP) by the inductive
hypothesis. Therefore tk lies in BP∗(BP). This completes the induction, and
proves part (i).

We notice that (16.5) answers the obvious question: how do the homology
generators in MU∗(MU) map into BP∗(BP)? That is, the image Nj of Mj in
BP∗(BP) is the coefficient of (xR)j+1 in the left hand side of (16.4), and this
coefficient is a definite polynomial in t1, t2, . . ..

We turn to part (ii). It is clear that BP∗(BP) is the image under (π ∧ π)∗
of MU∗(MU); so it is generated, over π∗(BP), by the classes Nj . Using the last
paragraph, this means that it is generated by the classes tk. Similarly, H∗(BP) is
the image under π∗ of H∗(MU), and so it is

Z(p)[mp−1,mp2−1,mp3−1, . . .].

Consider the spectral sequence

H∗(BP;π∗(BP)) =⇒ BP∗(BP).

It is trivial, because it is a direct summand of the corresponding sequence for
MUZ∗

(p)(MUZ(p)); and in the E2-term, tk is equal to mpk−1 modulo decomposibles,
by (16.5). Therefore

BP∗(BP) = π∗(BP)[t1, t2, . . .].

This proves part (ii).

We turn to part (iii). It is one of the formal properties of the counit that
ε1 = 1. Suppose, as an inductive hypothesis, that we have proved εti = 0 for
0 < i < k. Apply the counit ε to the formula in (16.1)(i). Using the fact that
εηR = 1, and the inductive hypothesis, we find that

mpk−1 = mpk−1 + εtk.

154



Chapter 16: The Brown-Peterson spectrum

We turn to part (iv). Apply the conjugation map c to the formula in (16.1)(i).
Since cηR = ηL and cηL = ηR, we obtain the following result.

mpk−1 =
∑

f+j=k

(ηRmpf−1)(ctj)
pi .

Substituting for ηRmpf−1 from (16.1)(i), we find

mpk−1 =
∑

h+i+j=k

mph−1(ti)
ph(ctj)

ph+i

.

This proves part (iv).
We turn to part (v). Take the formula in (16.1)(i), and apply the coproduct

map ψ. Taking the right-hand side first, we have

∑

i+j=k

mpi−1(ψtj)
pi = 1⊗ ηR(mph−1).

Substituting for ηR(mph−1) from (16.1)(i), we have

∑

i+j=k

mpi−1(ψtj)
pi = 1⊗

∑

t+j=k

mpf−1(tj)
pf .

Since the tensor product is taken over π∗(BP), acting on the left of the right-hand
factor and on the right of the left-hand factor, this gives

∑

i+j=k

mpi−1(ψtj)
pi =

∑

f+j=k

(ηRm

pf−1
)⊗ (tj)

pf .

Substituting for ηRm

pf−1
from (16.1)(i), we find

∑

i+j=k

mpi−1(ψtj)
pi =

∑

h+i+j=k

mph−1(ti)
ph ⊗ (tj)

ph+i

.

This proves part (v), and the completes the proof of Theorem 16.1.
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17. KO∗(KO) (Added May 1970)

The results of §13 carry over to real K-theory. The material which follows
represents joint work with R. M. Switzer.

We write KO for the BO-spectrum. The groups KO4n(KO) are torsion-free,
so the map

KO4n(KO) −→ KO4n(KO)⊗Q

is a monomorphism. By means of the complexification map

KO −→ K

we can identify
∑
nKO4n(KO)⊗Q with a subalgebra of K⋆(K)⊗Q, namely (with

the notation of §13) Q[u2, u−2, v2, v−2].

Theorem 17.1. The map

∑

n

KO4n(KO) −→ K⋆(K)⊗Q

gives an isomorphism between
∑
nKO4n(KO) and the set of finite Laurent series

f(u, v) which satisfy the following conditions.

(17.2) f(−u, v) = f(u, v), f(u,−v) = f(u, v).

(17.3) For any pair of non-zero integers h, k we have

f(ht, kt) ∈ Z[t4, t−4, 2t2, 1
hk ].

Notes.(17.4) It is clear from the above that any f in the image of
∑
nKO4n(KO)

satisfies (17.2).
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(17.5) By using the operation Ψk, as in §13, one easily proves that such an f

satisfies (17.3).

(17.6) Condition (17.3) has been written with two integers h, k in order to emphasize
that it is invariant under the switch map τ : KO∧KO −→ KO∧KO, which
interchanges u and v. It would actually be sufficient to use the special case
of (17.3) in which h = 1. Similarly, in §13 we could replace (13.3) by

f(ht, kt) ∈ Z[t, t−1, 1
hk ].

The proof of Theorem 17.1 is similar to that in §13.
Since KO∗(X) is a left module over π∗(KO), we have a product map

πm(KO)⊗Z KO0(KO) −→ KOm(KO).

Theorem 17.7. This map

πm(KO)⊗Z KO0(KO) −→ KOm(KO).

is an isomorphism.

Thus we have

KOm(KO) ∼=




Z2 ⊗Z KO0(KO) (m ≡ 1, 2 mod 8)

0 (m ≡ 3, 5, 6, 7 mod 8)

At the risk of laboring the obvious, we make the following result explicit.

Proposition 17.8. An element of KO0(KO) lies in the kernel of

KO0(KO) −→ Z2 ⊗Z KO0(KO)

if and only if the corresponding Laurent series f(u, v) satisties the following
condition.

(17.9) For any pair of odd integers h, k we have

f(h, k) ∈ 2Z[ 1
hk ].
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By (17.1), this is the condition for 1
2f to lie in the image of KO0(KO).

Proposition 17.10. The generator g ∈ π1(KO) satisfies

ηL(g) = ηR(g).

This is immediate, since g lies in the image of

i∗ : π1(S
0) −→ π1(KO).
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Stable Homotopy and

Generalised Homology
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1. Introduction

These notes, prepared by R. Ming, are based on a course I gave at the University
of Chicago in the spring of 1971. I propose to construct a stable homotopy
category equivalent to Boardman’s, but whose construction will be accessible to
those without a specialized knowledge of category theory. I will then formulate
a number of classical topics in this framework, and finally present some new
applications.

First I will have to explain the meaning of the word stable in algebraic topology.
We say that some phenomenon is stable, if it can occur in any dimension, or
in any sufficiently large dimension, and if it occurs in essentially the same way
independent of dimension, provided perhaps that the dimension is sufficiently
large.

Example 1. We consider the homotopy groups of spheres, πn+r(Sn). We have the
suspension homomorphism.

E : πn+r(S
n) −→ πn+r+1(S

n+1).

The Freudenthal suspension theorem says that this homomorphism is an isomor-
phism for n > r + 1. For example, πn+1(S

n) is isomorphic to Z2 for n > 2. The
groups πn+r(Sn) (n > r + 1) are called the stable homotopy groups of spheres.

More generally, let X and Y be two CW-complexes with base-point. When we
mention a CW-complex with base-point, we will always assume that the base-point
is a 0-cell. By [X,Y ] we will mean the set of homotopy classes of maps from X

to Y ; here maps and homotopies are required to preserve the base-point. The
product W ×X of two CW-complexes will always be taken with the CW-topology.
The smash-product W ∧X of two CW-complexes with base-point is defined, as
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usual, by
W ∧X =W ×X/W ∨X.

The suspension ΣX of a CW-complex with base-point is to be the reduced
suspension, either S1 ∧X or X ∧ S1, whichever suits our sign conventions better
when we come to use it. Of course the two are homeomorphic. If f : X → Y

is a map between CW-complexes with base-point, its suspension Σf is to be
1 ∧ f : S1 ∧ X → S1 ∧ Y (or f ∧ 1: X ∧ S1 → Y ∧ S1). Suspension defines a
function

S : [X,Y ] −→ [ΣX,ΣY ].

Theorem 1.1. Suppose that Y is (n−1)-connected. Then S is onto if dimX ≤ 2n−1
and is a 1-1 correspondence if dimX < 2n− 1. ([Spa66, p. 458]).

Under these circumstances we call an element of [X,Y ] a stable homotopy
class of maps.

Example 2. We consider the notion of a cohomology operation. Such an operation
is a natural transformation

φ : Hn(X,Y ;π) −→ Hm(X,Y ;G).

Here n,m, π andG are fixed. In other words, φ is a function defined onHn(X,Y ;π)

and taking values inHm(X,Y ;G), subject to one axiom only: if f : X,Y → X ′, Y ′,
and h ∈ Hn(X ′, Y ′;π) then φ(f∗h) = f∗(φh).

By contrast, a stable cohomology operation is a collection of cohomology
operations, say

φn : H
n(X,Y ;π) −→ Hn+d(X,Y ;G).

Here n runs over Z, while d, π and G are fixed. Each φn is required to be a
natural, as above. But also we require that the following diagram be commutative
for each n.

Hn(Y,Z;π) Hn+1(X,Y ;π)

Hn+d(Y,Z;G) Hn+d+1(X,Y ;G)

δ

φn φn+1

δ

That is, we require φ to commute with δ as well as f∗.
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For an example, take π = G = Z2, and let φn be the Steenrod square Sqd.

So a stable cohomology operation is something which can be applied in any
dimension. Given a cohomology operation

φ : Hn(X,Y ;π) −→ Hm(X,Y ;G)

it need not appear as the n-th term of any stable cohomology operation.

(For more on cohomology operations, see for example [MT68],[SE62] and
[Spa66, p. 429-403])

To do algebraic topology, it is rather important to be able to distinguish
between unstable problems, which arise in some definite dimension, and stable
problems, which arise in any sufficiently large dimension. We have actually come
quite a long way since Eilenberg said, “We can distinguish between two cases –
the stable case and the interesting case.” Sometimes we solve an unstable problem
first and use the result to solve a stable problem. For example, one might begin
by proving π3(S2) ∼= Z (unstable) and then go on to deduce that πn+1(S

n) ∼= Z2

for n > 2 (stable). More usually, however, we face some geometrical problem
which looks like an unstable problem, but we reduce it to a stable problem and
solve the stable problem.

For example, we might consider the problem, “Is Sn−1 an H-space?” Examples:
for n = 4, S3 is an H-space; for n = 6, S5 is not. This problem is unstable.
However, one way to solve this problem is to reduce it to the following one.
“Assuming m ≥ n, is there a complex X = Sm ∪ em+n in which

Sqn : Hm(X;Z2) −→ Hm+n(X;Z2)

is nonzero?” The problem is stable; for a given n the answer is independent of
m, provided m ≥ n. But this problem is equivalent to the former one. Another
case arises in cobordism theory. Here, for example, one might take compact
oriented smooth manifolds, of dimension n, without boundary, and classify them
under a certain equivalence relation to get a group Ωn. The problem would be
to find the structure of Ωn. The problem as stated is not yet in the form of a
homotopy problem, but it appears to be unstable – there is one problem for each
n. However, René Thom reduced the problem to a homotopy problem, and found
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it was a problem of stable homotopy theory. More precisely, he introduced the
Thom complex MSO(n), and he gave an important construction which yields an
isomorphism

Ωr ∼= πn+r(MSO(n)) (n > r + 1)

The computation of πn+r(MSO(n)) is a stable problem, which was begun by
Thom, continued by Milnor and completed by Wall. A suitable reference on
cobordism is Stong [Sto68].

Now of course to solve stable problems, or to compute groups such as [X,Y ] or
πn+r(MSO(n)), we need computable invariants. In the first instance this means
homology and cohomology, but we could certainly agree to go as far as generalized
homology and cohomology theories. I will suppose it is known that a generalized
homology or cohomology theory is a functor K∗ or K∗ that satisfies the first six
axioms of [ES52], but not necessarily the seventh, the dimension axiom. I will
suppose it is known that the material of Eilenberg-Steenrod Chapter 1 carries
over to this situation. For example, if X is a space with base-point one can define
reduced groups K̃∗(X), K̃∗(X); and one can define a suspension isomorphism

K̃n(X) ∼= K̃n+1(ΣX)

K̃n(X) ∼= K̃n+1(ΣX).

This already tells us that the study of generalized homology and cohomology
is part of stable homotopy theory. At least, what I said is true if you consider
K̃∗(X) or K̃∗(X) as an additive group; if you started to use products, or unstable
cohomology operations, you would get outside the realm of stable homotopy
theory.

To go on with Eilenberg-Steenrod Chapter 1, we have the Mayer-Vietoris
sequences

· · · K∗(U ∩ V ) K∗(U)⊕K∗(V ) K∗(U ∪ V ) · · ·

· · · K∗(U ∪ V ) K∗(U)⊕K∗(V ) K∗(U ∩ V ) · · ·
.

Also, we have the Atiyah-Hirzebruch spectral sequence, which was really invented
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by G.W. Whitehead but not published by him:

H∗(X;K∗(pt.)) =⇒ K∗(X)

H∗(X;K∗(pt.)) =⇒ K∗(X).

This spectral sequence replaces the Eilenberg-Steenrod uniqueness theorem when
we go from the ordinary to the generalized case. The Atiyah-Hirzebruch spectral
sequence emphasizes that before computing, we need to know the coefficient
groups K∗(pt.) and K∗(pt.).

At this point I should give some motivation for the topics to be considered.
One of these we will treat in some detail is that of products; they may not be part
of stable homotopy theory, but they have numerous applications. For example,
suppose we wanted to take the classical results on duality in manifolds, and carry
them over to the generalized case. We would proceed like this.

“Let X be a topological manifold; I don’t care whether it is compact or not,
but let us assume it has no boundary.” (If it starts with a boundary I add an open
collar, which doesn’t change the homology and gives a non-compact manifold
without boundary.) “Suppose that X is orientable with respect to E, where E
is a ring-spectrum. Let K, L be a compact pair in X, and assume that F is
a module-spectrum over E. Then a certain homomorphism (which has to be
described) is an isomorphism

Fr(CL, CK) −→ F̆n−r(K,L),

where n is the dimension of the orientation class.” (The homology on the left is
the singular homology associated with F , the cohomology on the right is of the
C̆ech type.)

Theorems of this sort were introduced by G.W. Whitehead in his well-known
paper on generalized homology theories [Whi56], but unfortunately he did not
go as far as the result I have stated. To prove this result follows a simple recipe:
take the treatment in Spanier and do it all over again, with ordinary homology
replaced by generalized homology.

For this purpose, of course, one needs products, as in the ordinary case. Indeed,

169



Chapter 1: Introduction

the duality map is defined by a product. There are four basic external products:
an external product in homology, an external product in cohomology, and two
slant products. From this one gets two internal products, the cup product and
cap product. There is also the Kronecker product, which can be obtained as a
special case of either slant product or the cap product.

Of course one needs to know the formal properties of the products, For example,
the four external products satisfy eight associativity formulae. I do not know
of a good source in print where they are collected and numbered 1 to 8. Again,
when you prove the duality theorem for manifolds, you need to know that the
duality homomorphism commutes (up to sign) with boundary maps. So you need
to know the properties of the products with respect to the boundary maps. Again
I know of no good source in print; Eilenberg-Steenrod volume II is not out yet.

Once you have all the material about duality in manifolds, you can have a
certain amount of fun. For example, there is a formula for computing the index of
a compact oriented manifold. It says that you take a certain characteristic class
of the tangent bundle T and evaluate it on the fundamental homology class. Now,
you may think I mean Hirzebruch’s formula in ordinary homology, but I don’t; I
mean the analogue in complex K-theory. If M is an almost-complex manifold,
it has a fundamental class [M ]K in K-homology, and it’s tangent bundle T has
a characteristic class ρ2(T ) in K-cohomology, and we can form their Kronecker
product ⟨ρ2(T ), [M ]K⟩. Then we have

Index(X) = ⟨ρ2(T ), [M ]K⟩.

In ordinary cohomology, one uses not only products, but also cohomology
operations. For example, suppose X and Y are finite complexes, and that we
want to study the stable groups

lim
n→∞

[Σn+rX,ΣnY ].

There is a recipe that goes as follows. Form H̃∗(X;Zp) and H̃∗(Y ;Zp) and
consider them as modules over the mod p Steenrod algebra A, that is, the algebra
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of stable operations on mod p cohomology. Form

Ext∗∗A
(
H̃∗(Y ;Zp), H̃∗(X;Zp)

)
.

Then there is a spectral sequence with this E2-term and converging to the stable
group above, at least if one ignores q-torsion for q prime to p. People seem to call
this the Adams spectral sequence, so I suppose I had better do so too. This was
the way Milnor computed π∗(MU).

At one time I used to make that the point that one ought to take this spectral
sequence and replace mod p cohomology by a generalized cohomology theory; but
the first person to do so successfully was Novikokv, who took complex cobordism,
MU∗. In these notes I have developed the spectral sequeence in sufficient generality
so as to include spectral sequences constructed from a number of commonly used
theories, using homology instead of cohomology for reasons which will become
apparent in §16.

Recently Anderson has been considering the Adams spectral sequence (for
computing stable homotopy groups of spheres) based on bu, the connective BU-
spectrum, and Mahowald has proved various results, including one on the image
of the J-homomorphism, by considering a similar construction based on bo, the
connective BO-spectrum. I have reproved some of their results. The calculations
to be given here give a sample application of the Adams spectral sequence, as well
as giving some of the information needed to use these spectral sequences based
on bu and bo.
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2. Spectra

The notion of a spectrum is due to Lima [Lim58]. It is generally supposed that G.
W. Whitehead also had something to do with it, but the latter takes a modest
attitude about that.

By definition, a spectrum E is a sequence of spaces En with basepoint, provided
with structure maps, either

εn : ΣEn −→ En+1

or
ε′n : En −→ ΩEn+1

Of course giving a map εn is equivalent to giving a map ε′n, as Σ and Ω are adjoint.
There is one other variant; if we choose to work with connected spaces, then En
will automatically map into Ω0En+1, where Ω0 is the component of the base-point
in Ω; we might prefer to write

ε′n : En −→ Ω0En+1

The index n may run over the integers or over {0, 1, 2, 3, . . .}.
Examples will appear in a moment.
The notion of a spectrum is very natural if one starts from cohomology theory.

Let K∗ be a generalized cohomology theory, defined on CW pairs. We have

Kn(X) = Kn(X,pt.) +Kn(pt.),

and so define K̃n(X) = Kn(X,pt.). We assume that K∗ satisfies the wedge axiom
of Milnor and Brown. More precisely, let Xα (α ∈ A) be CW-complexes with
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base-point, and let iα : Xα −→
∨
αXα be the inclusion of one summand in the

wedge-sum. This induces

i∗α : K̃n

(∨

α

Xα

)
−→ Kn(Xα).

Let
θ : K̃n

(∨

α

Xα

)
−→

∏

α∈A
K̃n(Xα)

be the homomorphism with components i∗α. We assume that θ is an isomorphism
(for all choices of {Xα} and n.)

We can now apply the representability theorem of E. H. Brown [Bro61]. We
see that there exist connected CW-complexes En with base-point and natural
equivalences

K̃n(X) ∼= [X,En].

(Here X runs over connected CW-complexes with base-point.) So we obtain a
collection of spaces En (n ∈ Z). However, a cohomology theory does not consist
only of functors Kn; they are connected by coboundary maps. If we divert
attention from the relative groups Kn(X,Y ) to reduced groups K̃n(X), we should
divert attention from the coboundary maps δ to the suspension isomorphisms

Σ : K̃n(X)
∼=−→ K̃n+1(ΣX).

Here ΣX is considered as the union of two cones CX and C ′X over the same
copy of X. The suspension isomorphism is defined as

Kn(X,pt.) Kn+1(CX,X)

Kn+1(ΣX,C ′X)

Kn+1(ΣX,pt.)

∼= excision

∼= (C′X contractible)

δ
∼=

Σ

The map δ is the coboundary for the exact sequence of the triple (CX,X,pt.). The
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vertical isomorphism is also induced by the collapsing map (CX,X) −→ (ΣX,pt.).

We now observe that we have the following natural equivalences, at least if X
is connected.

[X,En] ∼= K̃n(X) ∼= K̃n+1(ΣX)

∼= [ΣX,En+1] ∼= [X,Ω0En+1].

This natural equivalence must be induced by a weak equivalence

ε′n : En −→ Ω0En+1.

So our sequence of spaces becomes a spectrum.

It is usual to make the following definition. A spectrum E is an Ω-spectrum
(resp. Ω0-spectrum) if ε′n : En −→ ΩE′

n+1 (resp. Ω0E
′
n+1) is a weak equivalence

for each n. So we have constructed an Ω0-spectrum.

These consideration also show us how to construct a CW-complex Fn (with
base-point) and a natural equivalence [X,Fn] ∼= K̃n(X) valid whether X is
connected or not. In fact, we have only to take Fn weakly equivalent to ΩEn+1.
Then we have

K̃n(X) ∼= K̃n+1(ΣX) ∼= [ΣX,En+1]

∼= [X,ΩEn+1] ∼= [X,Fn+1].

As before, we have the following natural equivalences.

[X,Fn] ∼= K̃n(X) ∼= K̃n+1(ΣX)

∼= [ΣX,Fn+1] ∼= [X,ΩFn+1].

This time we conclude that this natural equivalence must be induced by a weak
homotopy equivalence

φn : Fn −→ ΩFn+1.

We have constructed an Ω-spectrum.

Example 2.1. Take K∗ to be ordinary cohomology; Kn(X,Y ) = Hn(X,Y ;π).
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The corresponding spectrum E is the Eilenberg-MacLane spectrum for the group
π; the nth space is the Eilenberg-MacLane space of type (π, n). That is, we have

πr(En) = [Sr, En] ∼= H̃n(Sr;π) =




π (r = n)

0 (r ̸= n).

Example 2.2. Take K∗ to be complex K-theory. The corresponding spectrum
is called the BU-spectrum . Each even term E2n is the space BU, or Z × BU,
depending on whether you choose to work with connected spaces or not. Each
odd term E2n+1 is the space U.

Similarly, we can take K∗ to be real K-theory. The corresponding spectrum
is called the BO-spectrum. Every eighth term E8n is the space BO, or Z× BO,
depending on whether you choose to work with connected spaces or not. Each
term E8n+4 is the space BSp.

Of course, not all spectra are Ω-spectra.

Example 2.3. Given a CW-complex X, let En =




ΣnX (n ≥ 0)

pt (n < 0)
with the

obvious maps. We might define a spectrum F to be a suspension spectrum or
Σ-spectrum if

φn : ΣFn −→ Fn+1

is a weak homotopy equivalence for n sufficiently large. Then this spectrum
E would be an Σ-spectrum, but usually not an Ω-spectrum. E is called the
suspension spectrum of X. In particular, the sphere spectrum S is the suspension
spectrum of S0; it has nth term Sn for n ≥ 0.

Example 2.4. Let MO(n) be the Thom complex of the universal n-plane bundle ξn
over BO(n). Then the Whitney sum ξn⊕ 1 admits a bundle map to ξn+1. (Here 1

means the trivial line bundle.) The Thom complex of ξn⊕1 is MO(n)∧S1 and the
Thom complex of ξn+1 is MO(n+1); so we get a map MO(n)∧S1 −→ MO(n+1).

The Thom spectrum MO is the spectrum in which the nth space is MO(n) and
the maps are the ones just indicated.

Similar remarks apply to the Thom spectra MSO, MSpin, MU, MSU and
MSp. However, MU(n) is the 2nth term of the spectrum MU, the (2n+1)th term
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being MU(n) ∧ S1 (because in the complex case we have M(1) = S2.) Similarly
for MSU. For MSp, the term E4n+ε is MSp(n) ∧ Sε for ε = 0, 1, 2, 3.

These spectra arise in cobordism theory, as I said before.

We now define the homotopy groups of a spectrum. These are really stable
homotopy groups. We have the following homomorphisms.

πn+r(En) −→ πn+r+1(ΣEn+1)
(εn)∗−−−→ πn+r+1(En+1)

We define the stable homotopy groups:

πr(E) = lim
n→∞

πn+r(En);

here the homomorphisms of the direct system are those displayed above.

If E is an Ω-spectrum or an Ω0-spectrum, then the homomorphism

πn+r(En) −→ πn+r+1(En+1)

is an isomorphism for n+ r ≥ 1; the direct limit is attained, and we have

πr(E) = πn+r(En) for n+ r ≥ 1.

Thus, in Example 2.1, the Eilenberg-MacLane spectrum, we have

πr(E) =




π (r = 0)

0 (r ̸= 0)

In Example 2.2, the BU-spectrum, we have

πr(E) =




Z (r even)

0 (r odd)

by the Bott periodicity theorem. For the BO-spectrum we have

r = 0 1 2 3 4 5 6 7 8 mod 8
πr(E) = Z Z2 Z2 0 Z 0 0 0 Z
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by Bott periodicity again.

In Example 2.3 we have

En =




ΣnX (n ≥ 0)

pt. (n < 0)

so that
πr(E) = lim

n→∞
πn+r(Σ

nX).

The limit is attained for n > r + 1. The homotopy groups of E are the stable
homotopy groups of X.

In Example 2.4 the homotopy groups of the spectrum MO are precisely those
which arise in Thom’s work, namely

πr(MO) = lim
n→∞

πn+r(MO(n)).

The limit is attained for n > r + 1. Similarly for other Thom spectra.

In general, there is no reason why the limit lim
n→∞

πn+r(En) should be attained.
Exercise: Construct a counterexample.

Similarly, of course, we can define relative homotopy groups. To do so we
need subobjects. Let X be a spectrum; then a subspectrum A of X consists of
subspaces An ⊆ Xn such that the structure map ξn : ΣXn −→ Xn+1 maps ΣAn

into An+1. Of course we take ξn|ΣAn as the structure map αn for A. And if we
think in terms of maps ξ′n : Xn → ΩXn+1, we ask that ξ′n maps An into ΩAn+1.

In fact we want to define not only relative homotopy groups, but also boundary
homomorphisms. For this purpose we want the exact homotopy sequences of the
pairs (Xn, An) and (Xn+1, An+1) to fit into the following commutative diagram.

. . . πn+r(An) πn+r(Xn) πn+r(Xn, An) πn+r−1(An) . . .

. . . πn+r+1(An+1) πn+r+1(Xn+1) πn+r+1(Xn+1, An+1) πn+r(An+1) . . .

∂

∂

But here we must be careful of the signs. If ∂Em = Sm−1, then with the usual
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conventions,

∂(S1 ∧ Em) = −S1 ∧ ∂Em and ∂(Em ∧ S1) = Sm−1 ∧ S1.

So at this point we prefer to interpret ΣXn as Xn ∧ S1, as is done in Puppe’s
paper on stable homotopy theory. With this convention, the ladder diagram
commutes; we can define

πr(X,A) = lim
n→∞

πn+r(Xn, An)

and we obtain our exact homotopy sequence

. . . −→ π∗(A) −→ π∗(X) −→ π∗(X,A) −→ π∗(A) −→ . . . .

We have seen how to associate a spectrum to a generalized cohomology theory.
The converse is also possible: with any spectrum E we can associate a generalized
homology theory and a generalized cohomology theory. This is due to G. W.
Whitehead, in a celebrated paper [Whi56]. I’ll get back to this later. If we
have a spectrum E, it is very convenient to write E∗ and E∗ for this associated
homology and cohomology theories. I will also reverse this. Ordinary homology
and cohomology (with Z coefficients) are always written H∗, H∗; therefore, H will
mean the Eilenberg-MacLane spectrum for the group Z. (For coefficients in the
group G, we write HG.) This frees the letter K for other uses. Classical complex
K-theory is always written K∗ ; therefore, K will mean the BU-spectrum. This
is fine, because I would anyway need notation to distinguish the space BU from
the BU-spectrum. Similarly, we write KO for the BO-spectrum.

The coefficient groups of the theories E∗, E∗ will be given by

Er(pt) = E−r(pt) = πr(E).

I take it that in Chicago I need not make propaganda for taking spectra as the
objects of a category. For one thing only, I would like to define the E-cohomology
of the spectrum X, in dimension 0, to be

E0(X) = [X,E]0,
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the set of morphisms from X to E in our category. (Morphisms will correspond
to homotopy classes of maps.) In fact I would like to go further and construct a
graded category, so that we can define

Er(X) = [X,E]−r

(morphisms which lower dimension by r).

Next I must explain why one would want to introduce smash products of
spectra. First, we would like to define the E-homology of the spectrum X to be

Er(X) = πr(E ∧X) = [S,E ∧X]r.

Secondly, we would like to introduce products, for example, cup-products in
cohomology. In order to define cup-products in ordinary cohomology, say

Hn(X;A)⊗Hm(X;B) −→ Hn+m(X;C)

we need a pairing A ⊗ B −→ C. George Whitehead wanted to introduce cup-
products in generalized cohomology

En(X)⊗ Fm(X) −→ Gn+m(X)

and he found he needed a pairing of spectra from E and F to G. Now it would
be very nice if a pairing of spectra were just a morphism

µ : E ∧ F −→ G

in our category. Thirdly, for example, we might want to restate a result of R.
Wood in the form KO ∧ CP2 ≃ K.

When we come to undertake a complicated piece of work, the convenience of
having available smash products of spectra is so great that I, for one, would hate
to do without it.

Now let me get on and define my category.

I say E is a CW-spectrum if
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(i) the terms En are CW-complexes with base-point, and

(ii) each map εn : ΣEn −→ En+1 is an isomorphism from ΣEn to a sub-complex
of En+1.

Notes. (i) There is no essential loss of generality in restricting to CW-spectra.
(See the exercise after 3.12 or the discussion of the telescope functor in §4.)

(ii) An isomorphism between CW-complexes is a homeomorphism h such that
h and h−1 are cellular. The CW structure on ΣEn is the obvious one on
En ∧ S1, where S1 is regarded as a CW-complex with one 0-cell and one
1-cell. Thus ΣEn has a base-point and one cell Scα for each cell cα of En
other than the base-point.

(iii) It would be possible to identify ΣEn with its image under εn and so suppose
ΣEn ⊂ En+1. Sometimes it may be convenient to speak in this way. On
the whole, it seems best to leave the definition as I’ve given it.

The ideas which come next are introduced to help in defining the morphisms
of our category.

A subspectrum A of a CW-spectrum E will be a subspectrum as defined above,
with the added condition that An ⊂ Xn be a subcomplex for each n.

Let E be a CW-spectrum, E′ a subspectrum of E. We say E′ is cofinal in E
(Boardman says dense) if for each n and each finite sub-complex K ⊂ En there
is an m (depending on n and K) such that ΣmK maps into E′

m+n under the
obvious map

ΣmEn
Σm−1εn−−−−−→ Σm−1En+1 −→ . . . −→ ΣEm+n−1

εm+n−1−−−−−→ Em+n.

The essential point if that each cell in each En gets into E′ after enough suspensions.
I said that m depends on n and K, but there is no need to suppose that it does
so in any particular way.

The construction of our category is in several steps. In particular, we will
distinguish between “functions”, “maps” and “morphisms”.

A function f from one spectrum E to another F , and of degree r, is a
sequence of maps fn : En −→ Fn−r such that the following diagrams are strictly
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commutative for each n.

ΣEn En+1

ΣFn−r Fn−r+1

εn

fn+1ΣFn

φn−r

or equivalently
En ΩEn+1

Fn−r ΩFn−r+1

ε′n

Ωfn+1fn

φ′
n−r

Notes.

(i) The diagrams are to be strictly commutative. If we allowed the diagrams to be
commutative up to homotopy, then to make any further construction we would
need to know what the homotopies were, so we would have to take the homotopies
as part of the given structure of a function. It seems better to proceed as I said.

(ii) Composition of functions is done in the obvious way, and we have identity
functions.

(iii) If E′ is a subspectrum of E, the injection i of E′ in E is a function in good
standing. Restriction of functions from E to E′ is the same as composition with i.

(iv) For graded functions, it is convenient if n runs over Z.

(v) The details of the grading are cooked up so that in the end we get πr(F ) =
[S, F ]r.

If E is a CW-spectrum and F is an Ω-spectrum, then the functions from E to
F are usable as they stand. But it is convenient to deal with spectra which are
not Ω-spectra, and then there are examples to show that there are not enough
functions to do what we want.

For one example, consider the Hopf map S3 η−→ S2. We would like to have a
corresponding function S −→ S of degree 1. But there are no candidates for the

maps S1 −→ S0, or S2 −→ S1 required to make a function.
For another example, take two spectra with

En = Sn+3 ∨ Sn+7 ∨ Sn+11 ∨ . . .

Fn = Sn.

We would like to have a function from E to F whose component from Sn+4k−1

to Sn is a generator for the image of J in the stable (4k − 1)-stem. But there is
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no single value of n for which all the requisite maps exist as maps into Sn; we
have to concede that for the different cells of E the maps come into existence for
different values of n.

So we need the following construction. Let E be a CW-spectrum and F a
spectrum. Take all cofinal subspectra E′ ⊂ E and all functions f ′ : E′ −→ F .
Say that two functions f ′ : E′ −→ F and f ′′ : E′′ −→ F are equivalent if there is
a cofinal subspectrum E′′′ contained in E′ and E′′ such that the restrictions of f ′

and f ′′ to E′′′ coincide. (Check that this is an equivalence relation.)

Definition. A map from E to F is an equivalence class of such functions.

This amounts to saying that if you have a cell c in En, a map need not be
defined on it at once; you can wait till Em+n before defining the map on Σmc.
The slogan is, “cells now – maps later.”

Notes. (i) In order to prove that the relation is an equivalence relation, we use
the following lemma.

Lemma 2.5. If E′ and E′′ are cofinal subspectra of E, then so is E′ ∩ E′′.

The proof is trivial.

(ii) It would amount to the same to say that two functions f ′ : E′ −→ F ,
f ′′ : E′′ −→ F are equivalent if their restrictions to E′ ∩ E′′ coincide. This
comes from the following fact: if g, h : K −→ L are maps of CW-complexes
with base-point, and Σg = Σh, then g = h.

Let E, F , G be spectra, of which E and F are CW-spectra. Then we define
composition of maps by composition of representatives, choosing representatives
for which composition is defined. For this purpose we need the following lemma.

Lemma 2.6. (i) Let f : E −→ F be a function, and F ′ a cofinal subspectrum
of F . Then there is a cofinal subspectrum E′ of E such that f maps E′ into
F ′.

(ii) If E′ is a cofinal subspectrum of E, and E′′ is a cofinal subspectrum of E′,
then E′′ is a cofinal subspectrum of E.

The proof is trivial.

183



Chapter 2: Spectra

Restriction of maps is done by composition with the inclusion map, which is
the class of the inclusion function.

We can piece maps together in the usual way. Let E be a CW-spectrum, and
U , V subspectra of E.

Lemma 2.7. Let u : U −→ F , v : V −→ F be maps whose restrictions to U ∩ V
are equal. Then there exists one and only one map w : U ∩ V −→ F whose
restrictions to U and V are u and v respectively.

The proof is easy.
A morphism in our category will be a homotopy class of maps, and a “homotopy”

will be a map of a cylinder, just as in ordinary topology. So we begin by defining
cylinders. Let I+ be the union of the unit interval and a disjoint base-point. If E
is a spectrum, we define the cylinder spectrum Cyl(E) to have terms

(Cyl(E))n = I+ ∧ En

and maps
(I+ ∧ En) ∧ S1 1∧εn−−−→ I+ ∧ En+1.

The cylinder spectrum is a functor: a map f : E −→ F induces a map Cyl(f) :

Cyl(E) −→ Cyl(F ) in the obvious way. We have obvious injection functions

i0, i1 : E −→ Cyl(E),

corresponding to the two ends of the cylinder. These are natural for maps of E.
The other properties of the cylinder are as usual, and they are too obvious to list.

We say that two maps
f0, f1 : E −→ F

are homotopic if there is a map

h : Cyl(E) −→ F

such that f0 = hi0, f1 = hi1.
Homotopy is an equivalence relation. If E, F are spectra, with E a CW-

spectrum, we write [E,F ]r for the set of homotopy classes of maps with degree r
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from E to F . Composition passes to homotopy classes, as in the usual case.

The category in which we propose to work is as follows. The objects are the
CW-spectra. The morphisms of degree r are homotopy classes of maps of degree
r.

Notes. (i) Let X be a CW-spectrum consisting of Xn, n ∈ Z. Define X ′ by

X ′
n =




Xn (n ≥ 0)

pt. (n < 0)
. Then X ′ is cofinal in X, and therefore equivalent

to X in our category. For this reason it doesn’t really make any difference
whether we consider spectra indexed with n ∈ Z or with n ∈ {0, 1, 2, . . .}.

(ii) Since we have our objects and maps open to direct inspection, we have
no trouble elaborating these definitions. For example, suppose given a
CW-spectrum X with a subspectrum A, and another spectrum Y with a
subspectrum B. Then I have no trouble in defining

[X,A;Y,B].

To define maps f : X,A −→ Y,B we consider functions f ′ : X ′, A′ −→ Y,B

where X ′ is cofinal in X, A′ ⊂ X ′ and A′ is cofinal in A. Two such,
f ′ : X ′, A′ −→ Y,B and f ′′ : X ′′, A′′ −→ Y,B are defined to be equivalent
if there exist X ′′′, A′′′ such that f ′′|X ′′′, A′′′ = f ′′|X ′′′, A′′′. A map
f : X,A −→ Y,B is an equivalence class of such functions. I can define
homotopies

Cyl(X), Cyl(A) −→ Y,B

and the elements of [X,A;Y,B] are homotopy classes of maps.

As long as we deal entirely with CW-spectra we can restrict attention to
functions whose components fn : En −→ Fn−r are cellular maps. A construction
in these terms leads to the same sets [E,F ]r. The proof is left as an exercise.

In order to validate our category we give one small result. Let K be a finite
CW-complex, and let E be its suspension spectrum, so that En = ΣnK for n ≥ 0.
Let F be any spectrum.
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Proposition 2.8. We have

[E,F ]r = lim
n→∞

[Σn+rK,Fn].

In particular,
[S, F ]r = πr(F ).

Proof. For any map f : Σn+rK −→ Fn we can define a corresponding map
between spectra by taking its component on En+r to be f : Sn+rK −→ Fn; the
higher components are then forced. In fact, they are

Σm+n+rK
Σmf−−−→ Σmfn −→ Fm+n.

Suppose two maps f : Sn+rK −→ Fn, g : Σm+rK −→ Fn give the same element
of the direct limit. Then for some p, the maps

Σp+rK
Σp−nf−−−−→ Σp−nFn −→ Fp

Σp+rK
Σp−mg−−−−→ Σp−mFm −→ Fp

are homotopic. This homotopy yields a homotopy between the corresponding
maps of spectra. This shows we have a function

lim
n→∞

[Σn+rK,Fn]
θ−→ [E,F ]r.

Now every map from E to F arises in the way we have mentioned: this shows θ
is onto. Also every homotopy arises in the way we have mentioned: this shows
that θ is a 1-1 correspondence.
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We want to show that CW-spectra can be manipulated very much like CW-
complexes. The standard way to make constructions for CW-complexes is by
induction over the cells. Now we can define "stable cells" for CW-spectra, Let Cn
be the set of cells in En other than the base-point. Then we get a function

Cn −→ Cn+1 by cα 7→ εn(Σcα)

This function is an injection. Let C be the direct limit

lim
n→∞

Cn;

an element of C may be called a “stable cell.” Unwrapping the definition, a stable
cell is an equivalence class of cells: for each n such an equivalence class contains
at most one cell in En. Take two cells, cα in En . and cβ in Em and suppose
without loss of generality n ≤ m; then cα and cβ are equivalent if

Cn Cn+1 . . . Cm

maps cα into cβ .

Example. E′ ⊂ E is cofinal if and only if C ′ −→ C is a bijection.

I said that the standard way to make constructions for CW-complexes is
by induction over the cells, It is usual to order the cells of a CW-complex by
dimension: first we take the cells of dimension 0, then the cells of dimension 1,
and so on. For a CW-spectrum we can order the stable cells by “stable dimension”,
but this ordering is not inductive in general, because we can have stable cells of
arbitrarily large negative stable dimension. Nevertheless we can perform inductive
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proofs, because each stable cell is attached to only a finite number of predecessors.

More formally, we have:

Lemma 3.1. let E be a CW-spectrum, and G a subspectrum of E which is not
cofinal. Then E has a subspectrum F such that E ⊃ F ⊃ G and F contains just
one more stable cell than G.

Proof. G is not cofinal, so there exists a stable cell c in E not in G. It has a
representative cα,which is contained in a finite subcomplex K ⊂ En. So there
exist finite subcomplexes K containing representatives for stable cells in E not
in G. Among such K, choose one with fewest cells. Let K = L ∪ e, where e is a
top-dimensional cell of K. Then L fails to satisfy the conditions, for it has fewer
cells than K. So all the stable cells in L represent stable cells in G. Then there
exists m such that ΣmL gives a finite subcomplex of Gm+n Form F by adjoining
Σre to Gn+r for r > m.

We illustrate the use of this lemma by proving the homotopy extension theorem,
Actually we prove something slightly more general.

Lemma 3.2. Let X,A be a pair of CW-spectra, and Y,B a pair of spectra
such that π∗(Y,B) = 0. Suppose given a map f : X −→ Y and a homotopy
h : Cyl(A) −→ Y from f |A to a map g : A −→ B. Then the homotopy can be
extended over Cyl(X) so as to deform f to a map X −→ B.

The homotopy extension theorem is a special case when B = Y .

Proof. Work at the level of functions. Suppose f is represented by a function
f ′ : X ′ −→ Y , and h by a function h′ : Cyl(A′) −→ Y , where X ′ ⊃ A′, X ′

is cofinal in X and A′ is cofinal in A. We make our induction using Zorn’s
Lemma. The objects to be ordered are pairs (U, k′) where A′ ⊂ U ⊂ X ′ and
k′ : Cyl(U) −→ Y is a function which deforms f ′|U to a function into B. The
set of such pairs is non-empty since (A′, h′) qualifies; and it is clearly inductive.
So we can choose a maximal element (U, k′). I claim the maximal element has
U cofinal in X ′. If not, then by lemma 3.1 we can find U ⊂ V ⊂ X ′ where V
contains just one more stable cell than U , say Vn = Un ∪ em. Then the maps

f ′n|0∧e : 0 ∧ e −→ Yn−r
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k′n|I+∧∂e : I
+ ∧ ∂e, 1 ∧ ∂e −→ Yn−r, Bn−r

define an element of πm(Yn−r, Bn−r). Now π∗(Y,B) = 0, so that this element
vanishes after sufficiently many suspensions.So on passing to Vn+p = Un+p∪em+p,
we can extend k′n+p to a map

k′′n+p : I
+ ∧ e, 1 ∧ e −→ Yp+n−r, Bp+n−r..

Then define k′′n+q for q > p by suspension. This extension of k′ shows that (U, k′)

is not maximal, a contradiction. This contradiction shows that U is cofinal in X ′,
i.e., U is cofinal in X. This gives the required map of Cyl(X).

A generalized version of Lemma 3.2 works when the inclusion B −→ Y is
replaced by a general function.

Lemma 3.2′. Let X,A be a pair of CW-spectra and ∅ : B −→ Y a function of
spectra such that ∅∗ : π∗(B) −→ π∗(Y ) is an isomorphism. Suppose given maps
f : X −→ Y and g : A −→ B and a homotopy h : Cyl(A) −→ Y from f |A to ∅g.
Then we can extend g over X and h over Cyl(X) so that h becomes a homotopy
from f to ∅g : X −→ Y .

The proof is similar to that of 3.2, except that we order triples (U, k′, g′) where
g′ : U −→ B and k′il = ∅g′. The element

k′n|I+∧∂e : I
+ ∧ ∂e −→ Yn−r

can be patched together with a contracting homotopy for f |∂e to define an element
of πm(∅n−r), say k′′n, which under the hypotheses must vanish on passing to ∅p+n−r
for some p.

Lemma 3.3. Suppose that π∗(Y ) = 0, and X,A is a pair of CW-spectra. Then
any map f : A −→ Y can be extended over X.

Proof. Exercise. Either copy the proof of 3.2 or else quote the result of 3.2.

Theorem 3.4. Let f : E −→ F be a function between spectra such that f∗ :
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π∗(E) −→ π∗(F ) is an isomorphism. Then for any CW-spectrum X,

f∗ : [X,E]∗ −→ [X,F ]∗

is a (1-1) correspondence.

I emphasize that E and F are not assumed to be CW-spectra. By analogy
with the case of CW-complexes, a function f : E −→ F between spectra such

that [X,E]∗
f∗−→ [X,F ]∗ correspondence for all CW-spectra X would be called a

weak equivalence.

Proof. (First argument). Without loss of generality we can suppose that f is an
inclusion; for if not, replace F by the spectrum M in which Mn is the mapping
cylinder of fn, Then π∗(F,E) = 0 by the exact sequence. Now we see that f∗ is
an epimorphism by applying lemma 3.2, taking the pair X mod A to be X mod
pt. Similarly, we see that f∗ is a monomorphism by applying lemma 3.2, taking
the pair X mod A to be Cyl(X) mod its ends.

(Second argument). Instead of using the mapping cylinder spectrum, use
Lemma 3.2′ in the above argument.

Corollary 3.5 (Compare the theorem of J.H.C. Whitehead.). Let f : E −→ F be
a morphism between CW-spectra such that:

f∗ : π∗(E) −→ π∗(F )

is an isomorphism. Then f is an equivalence in our category.

The deduction of 3.5 from 3.4 is a triviality, valid in any category.

Example. Let f : E −→ F be a function such that fn : En −→ Fn is a homotopy
equivalence for each n. Then f is an equivalence in our category.

Exercise. Use (3.5) to show that any CW-spectrum Y is equivalent in our category
to an Ω0-spectrum.

Hint. Construct a functor Tn from CW-complexes to spectra by

(TnX)r =




Σr−nX r ≥ n

pt. r < n
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Form the set of morphisms in our category

[TnX,Y ]0,

and check that it is a representable functor, represented say by Zn. Observe that
the Zn give the components of an Ω0-spectrum Z; construct a function Y −→ Z

and apply 3.5.

Now I must reveal that we would really like a relative form of the theorem of
J.H.C. Whitehead. If X is a spectrum, let Cone(X) be the spectrum whose nth

term is I ∧Xn, with maps

(I ∧Xn) ∧ S1 I ∧Xn+1
1∧εn (We take the base-point in I to be 0.)

We have an obvious inclusion function i : X −→ Cone(X) (use the end of the
cone).

Theorem 3.6. Let f : E,A −→ F,B be a function between pairs of spectra such
that

f∗ : π∗(E,A) −→ π∗(F,B)

is an isomorphism. Then for any CW-spectrum X,

f∗ : [Cone(X), X;E,A]∗ −→ [Cone(X), X;F,B]∗

is a 1-1 correspondence.

Proof Sketch. Construct a new spectrum R (for relative) with Rn = L(En, An)

(the space of paths in En starting at the base-point and finishing in An) and
structure maps ρn given by

L(En, An) L(En+1Ω, An+1Ω) ∼= (L(En+1, An+1))Ω
Lε′n

where the Ω is written on the right to keep the "loops" coordinates out of the way
of the path coordinate. Similarly, construct S (not, for the moment, the sphere
spectrum) with Sn = L(Fn, Bn). Then f induces a function of spectra R −→ S,
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inducing an isomorphism of absolute homotopy groups. By theorem 3.4,

[X,R]∗ −→ [X,S]⋆

is a 1-1 correspondence. Unwrapping this, it says

f∗ : [Cone(X), X;E,A]∗ −→ [Cone(X), X;F,B]∗

is a 1-1 correspondence.

This application shows why I specified that E and F in 3.4 need not be
CW-spectra.

Now for any spectrum X, we will define Susp(X) so that its nth term is
S1 ∧Xn and its structure maps are

(S1 ∧Xn) ∧ S1 S1 ∧Xn+1
1∧ξn

.

Susp is obviously a functor.

Theorem 3.7. Susp : [X,Y ]∗ −→ [Susp(X),Susp(Y )]∗ is a 1− 1 correspondence.

This theorem assures us that in some sense we did succeed in getting into a
stable situation.

Proof. We have the following commutative diagram.

[X,Y ]∗ [Cone(X), X; Susp(Y ), Y ]∗

[Susp(X),Susp(Y )]∗ [Cone(X), X; Susp(Y ),pt.]∗

Susp

Cone

j∗

j∗

Now the map Cone is clearly injective (since restriction gives an inverse for it)
and surjective (by Lemma 3.3). Also j∗ is clearly a 1-1 correspondence. The proof
will be complete as soon as we show that j∗ is a 1-1 correspondence, by quoting
Theorem 3.6 and proving:

Lemma 3.8. j∗ : π∗(Cone(Y ), Y ) −→ π∗(Susp(Y ),pt.) is a 1-1 correspondence.

Consider the following commutative diagram:
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πn+r+1(I ∧ Yn, Yn) πn+r(Yn)

πn+r+1(Yn ∧ S1) πn+r+1(S
1 ∧ Yn)

πn+r+2(I ∧ Yn+1, Yn+1) πn+r+1(Yn+1) πn+r+2(S
1 ∧ Y ∧ S1)

πn+r+2(Yn+1 ∧ S1) πn+r+2(S
1 ∧ Yn)

∼=
∂

j∗

(ηn)∗

(−1)n+rτ∗

∼=
∂

j∗

(1∧ηn)∗
(−1)n+r+1τ∗

π∗(Cone(Y ), Y ) is the direct limit of the left-hand column, and the diagram
shows it is isomorphic to lim

n→∞
πn+r(Yn). π∗(Susp(Y ),pt.) is the direct limit of

the right-hand column, and the diagram shows that it ig isomorphic to the direct
limit of the system in which the groups are πn+r+1(Yn ∧ S1) and the maps are
the vertical arrows in the center column. But the center column shows that these
two direct limits are the same, This proves Lemma 3.8, which proves Theorem
3.7.

Now we can remark that [Susp(X), Z] is obviously a group, because in Susp(X)

we have a spare suspension coordinate out in front to manipulate. And for the
same reason, [Susp2(X), Z] is an abelian group. But now we can give [X,Y ]

the structure of an abelian group, because [X,Y ] is in 1-1 correspondence with
[Susp2(X),Susp2(Y )], and we pull back the group structure on that. So now our
sets of morphisms [X,Y ] are abelian groups, and it’s easy to see that composition
is bilinear.

Actually there is a unique way to give each set of morphisms [X,Y ] the
structure of an abelian group so that composition is bilinear; this is standard once
I’ve said the usual categorical things about sums and products.

Well, now I would like to say that I have an additive category. The existence of
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a trivial object is easy: we take the spectrum En = pt. for all n. Then [X,pt.] = 0

and [pt., X] = 0.

I claim this category has arbitrary sums (= coproducts). In fact, given spectra
Xα for α ∈ A, we form X =

∨
αXα by Xn =

∨
(Xα)n with the obvious structure

maps.

Xn ∧ S1 = (
∨
α(Xα)n) ∧ S1 =

∨
α(Xα) ∧ S1

∨
α(Xα)n+1

∨
α ξαn

This obviously has the required property:

[∨

α

Xα, Y

]
∼=−→
∏

α

[Xα, Y ]

Now I must talk about cofiberings. Suppose given a map f : X −→ Y between
CW-spectra. It is represented by a function f ′ : X ′ −→ Y , where X ′ is a cofinal
subspectrum. Without loss of generality I can suppose f ′ is cellular, i.e., f ′n is a
cellular map of CW-complexes for each n. We form the mapping cone Y ∪f ′ CX

as follows: its nth terms is Yn∪f ′
n
(I ∧X ′

n) and the structure maps are the obvious
ones. If we replace X ′ by a smaller cofinal subspectrum X ′′, we get Y ∪f ′′ CX ′′

which is smaller than Y ∪f ′ CX ′, but cofinal in it, and so equivalent. So the
construct depends essentially only on the map f , and we can write it Y ∪f CX.
If we vary f by a homotopy, Y ∪f0 CX and Y ∪f1 CX are equivalent, but the
equivalence depends on the choice of homotopy.

Let X be a CW-spectrum, A a subspectrum. I will say A is a closed if for
every finite subcomplex K ⊂ Xn, ΣmK ⊂ Am+n implies K ⊂ An. That is, if a
cell gets into A later, I put it into A to start with. It is equivalent to saying that
A ⊂ B ⊂ X, A cofinal in B implies that A = B.

Suppose that i : X −→ Y is the inclusion of a closed subspectrum. Then we

can form Y/X, with the nth term Yn/Xn. In this case there is a map

r : Y ∪i CX −→ Y/X

with components
Yn ∪in CXn −→ Yn/Xn

The map r is an equivalence, by corollary 3.5.
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Let’s return to the general case. We have morphisms

X
f−→ Y

i−→ Y ∪f CX

Proposition 3.9. For each Z the sequence

[X,Z]
f∗
←− [Y, Z]

i∗←− [Y ∪f CX,Z]

is exact

The proof is the same as for CW-complexes, and is trivial, because homotopies
were defined in terms of maps of cylinders.

The sequence X f−→ Y
i−→ Y ∪f CX, or anything equivalent to it, is called a

cofibre sequence or Puppe sequence . We can extend cofiberings to the right, by
taking

X
f−→ Y

i−→ Y ∪f CX −→ (Y ∪f CX) ∪i CY

The last spectrum is equivalent to (Y ∪f CX)/Y = Susp(X). If we continue the
sequence further, we get

X Y Y ∪f CX Susp(X) Susp(Y )
f i j −Susp(f)

as for CW-complexes. It follows that the exact sequence of Proposition 3.9 can
also be extended to the right.

Proposition 3.10. The sequence

[W,X]
f∗−→ [W,Y ]

i∗−→ [W,Y ∪f CX]

is exact.

In other words, in our category cofiberings are the same as fibering.

Proof. Since if ∼ 0, i⋆f⋆ = 0. Suppose given g : W −→ Y such that ig ∼ 0.
Then we can construct the following diagram of cofiberings.
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X Y Y ∪f CX Susp(X) Susp(Y )

W W CW Susp(W ) Susp(W )

f i j −Susp(f)

1 i j −1

g h k Susp(g)

(The homotopy ig ∼ 0 gives us h, and the rest follows automatically.)
Now by Theorem 3.7 we have k = Susp(ℓ) for some ℓ ∈ [W,X], and

(−Susp(f)) (Susp(ℓ)) ≃ (Susp(g)) (−1)

i.e.,
Susp(fℓ) ≃ Susp(g)

so using Theorem 3.7 again, we have fℓ ≃ g. This proves Proposition 3.10.

Proposition 3.11. Finite sums are products.

In fact,
X −→ X ∨ Y −→ Y

is clearly a cofibering, because (X ∨ Y ) ∪ CX ≃ Y . So by 3.10

[W,X] −→ [W,X ∨ Y ] −→ [W,Y ]

is exact; but it is clearly split short exact, so

[W,X ∨ Y ] ∼= [W,X]⊕ [W,Y ]

and X ∨ Y is also the product X and Y .
Now I know that my category in an additive category.

Theorem 3.12. The Representability Theorem of E.H. Brown is valid in the
category of CW-spectra and morphisms of degree 0.

The proof is as usual, but arrange the induction right.

Exercise. Use 3.12 to show that any spectrum Y is weakly equivalent to a CW-
spectrum. (Consider the functor [X,Y ]0.)
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Proposition 3.13. The stable category has arbitrary products.

Proof. The functor of X given by

∏

α

[X,Yα]0

satisfies the data of Brown’s theorem, so it is representable, Now we see that this
representing object works for maps of degree r as well.

Note next that for any collection of Xα we have a morphism

∨

α

Xα −→
∏

α

Xα

Namely, for each α and β I have to give a component which is a map Xα −→ Xβ ;
I take it to be 1 if α = β, 0 if α ̸= β.

Proposition 3.14. (This form is due to Boardman). Suppose that for each n,
πn(Xα) = 0 for all but a finite number of α. Then the map

∨

α

Xα −→
∏

α

Xα

is an equivalence.

Proof. First note that

πn(X1 ∨X2) ∼= πn(X1)⊕ πn(X2)

under the obvious maps. (see 3.11)

Exercise. Prove this directly from the definitions of π∗ and X1 ∨X2.

By induction, we have

πn(X1 ∨ · · · ∨Xm) ∼=
m∑

i=1

πn(Xi)
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for finite wedges. Now we have

πn

(∨

α

Xα

)
=
∑

α

πn(Xα)

by passing to direct limits. Also

πn

(∏

α

Xα

)
=
∏

α

πn(Xα), by definition.

Now the data was chosen precisely so that
∑

α

πn(Xα) −→
∏

α

πn(Xα) is an

isomorphism. Therefore
∨

α

Xα −→
∏

α

Xα is an equivalence, by 3.5.

Remark. If we use the direct proof that

πn(X1 ∨X2) ∼= πn(X1)⊕ πn(X2)

this gives a proof that finite sums are products, independently of 3.7, but depending
on Brown’s theorem. This can be used, in a way which is familiar to categorists,
to define an addition in the sets [X,Y ]; this way of introducing the addition is
independent of 3.7. Of course you have to show that the addition makes the
sets [X,Y ] into abelian groups; the main point is to establish the existence of
inverses. I recommend making use of an argument which is standard for H-spaces,
as follows. Since X ∨X is both a sum and product, you can make a map

X ∨X −→ X ∨X

with components

[
1 1

0 1

]
. Check that it satisfies the hypotheses of 3.5, so it has

an inverse. The inverse has the form

[
1 ν

0 1

]
. But you know the inverse of

[
1 1

0 1

]

is

[
1 −1
0 1

]
; so you use ν for inversion and it works.
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4. Smash products

In this section we will construct smash products of spectra. More precisely, we
will construct from any two CW-spectra X and Y a CW-spectrum X ∧ Y , so as
to have the properties stated in the following theorem, among other properties.

Theorem 4.1. (a) X∧Y is a functor of two variables, with arguments and values
in the (graded) stable homotopy category.

(b) The smash-product is associative, commutative, and has the sphere-spectrum
S as a unit, up to coherent natural equivalences.

We explain that statement (a) is to be taken in the graded sense. That is, if

f ∈ [X,X ′]r, g ∈ [Y, Y ′]s

then
f ∧ g ∈ [X ∧ Y,X ′ ∧ Y ′]r+s,

and besides 1 ∧ 1 = 1, we have

(f ∧ g)(h ∧ k) = (−1)bc(fh) ∧ (gk)

if f ∈ [X ′, X ′′]a, h ∈ [X,X ′]b, g ∈ [Y ′, Y ′′]c, k ∈ [Y, Y ′]d.

We explain statement (b). It claims that there are the following equivalences
in our category.
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a = a(X,Y, Z): (X ∧ Y ) ∧ Z X ∧ (Y ∧ Z)

c = C(X,Y ): X ∧ Y Y ∧X

l = l(Y ): S ∧ Y Y

r = r(X): X ∧ S X

They are all of degree 0. They are all natural as X, Y , and Z vary over the
stable category; in the case of c this means that the diagram

X ∧ Y X ∧ Y

X ′ ∧ Y ′ Y ′ ∧X ′

c

f∧g g∧f
c

is commutative up to a sign (−1)pq, if f ∈ [X,X ′]p, g ∈ [Y, Y ′]q. The other
naturality conditions are the obvious ones and don’t involve signs. The equivalences
make the following diagrams commute in our category. (If one thinks in terms of
representative maps, one says that these diagrams are homotopy-commutative.)

(i)

(W ∧X) ∧ (Y ∧ Z)

((W ∧X) ∧ Y ) ∧ Z W ∧ (X ∧ (Y ∧ Z))

(W ∧ (X ∧ Y )) ∧ Z W ∧ ((X ∧ Y ) ∧ Z)

a2a1

a3∧1

a4

1∧a5
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Here

a1 = a(W ∧X,Y, Z) a4 = a(W,X ∧ Y,Z)

a2 = a(W,X, Y ∧ Z) a5 = a(X,Y, Z)

a3 = a(W,X, Y ).

(ii)
Y ∧X

X ∧ Y X ∧ Y

c1

1

c2

Here

c1 = c(X,Y )

c2 = c(Y,X).

(ii)

(Y ∧X) ∧ Z

(X ∧ Y ) ∧ Z Y ∧ (X ∧ Z)

X ∧ (Y ∧ Z) Y ∧ (Z ∧X)

(Y ∧ Z) ∧X

ac∧1

a 1∧c

c a

Here the morphisms can be made more precise, as in (i) and (ii)

(iv)
(S ∧ Y ) ∧ Z S ∧ (Y ∧ Z)

Y ∧ Z

a

l l∧1
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(v)
(X ∧ S) ∧ Z X ∧ (S ∧ Z)

X ∧ Z

a

1∧l r∧1

(vi)
(X ∧ Y ) ∧ S X ∧ (Y ∧ S)

X ∧ Y

a

1∧r r

(vii)

S ∧ Y Y ∧ S X ∧ S S ∧X

Y X

c

l r

c

r l

(These are equivalent, in view of (iii))

(viii)

S ∧ S S ∧ S

c

1

It follows from these properties that every other diagram constructed from a, c,
ℓ, and r which you might conceivably wish to prove commutative, is commutative;
see MacLane [Mac63].

The properties stated in this theorem are not intended to be a complete
list. We also want our smash-products to be compatible with those which we
already have for CW-complexes. We can take it as a guiding idea that if X is a
CW-spectrum with terms Xn, and Y is a CW-spectrum with terms Ym, then we
want X ∧ Y to be the thing to which Xn ∧ Ym tends as n and m tend to infinity.
It is therefore tempting to define a product spectrum P so that

Pp = Xn(p) ∧ Ym(p),
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where n(p) and m(p) are fixed functions such that n(p) + m(p) = p, while
n(p)→∞ and m(p)→∞. This approach gives the “handicrafted smash products”
(in later versions, “naive smash products”) of Boardman. Of course, there are
many different ways of choosing the function n(p) and m(p), and these give rise
to different “handicrafted smash products”; it is obviously desirable to prove that
these different products are related by natural equivalences. For later work it is
also desirable to have a notation more convenient than that of functions n(p) and
m(p); it is for this purpose that we introduce the details which follow next.

Let A be an ordered set, isomorphic to the ordered set {0, 1, 2, 3, . . .}. (The
reason that we do not take A to be the ordered set {0, 1, 2, 3, . . .} is that we will
later want to take A to be a subset of {0, 1, 2, 3, . . .}.) Let B be a subset of A;
then we define a corresponding function

β : A −→ {0, 1, 2, 3, . . .}

as follows: β(a) is the number of elements b ∈ B such that b < a. Then β is
monotonic, and β|B is an order-preserving isomorphism between B and some
initial segment of {0, 1, 2, 3, . . .}. The notation β emphasizes the dependence of β
on B rather than on A; this is legitimate, for if we have B ⊂ A ⊂ A′, then the
function βA defined on A is the restriction to A of the function βA′ defined in A′.

Next suppose given a partition of A into two subsets B and C, so that
A = B ∪ C, B ∩ C = ∅. A suitable illustration is obtained by taking

A = {0, 1, 2, 3, . . .}

B = {0, 2, 4, 6, . . .}

C = {1, 3, 5, 7, . . .}

but there are many other equally suitable choices. Then we define a smash-product
functor which assigns to any two CW-spectra X and Y a CW-spectrum X ∧BC Y .
It is convenient to display only B and C in the notation, but of course the product
depends on the ordering of B ∪ C.
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The terms of the product spectrum

P = X ∧BC Y

are given by
Pα(a) = Xβ(a) ∧ Yγ(a).

Note that α is an isomorphism from the ordered set A = B ∪ C to {0, 1, 2, 3, . . .}
and β, γ are monotonic functions from A = B ∪ C to the set {0, 1, 2, 3, . . .} such
that β(a) + γ(a) = α(a).

The maps of the product spectrum are defined as follows. We have

Pα(a) ∧ S1 −→ Xβ(a) ∧ Yγ(a) ∧ S1.

Here it is convenient to regard S1 as R1 compactified by adding a point at infinity,
which becomes the base-point. This allows us to define a map of degree −1 from
S1 to S1 by t 7→ −t.

If a ∈ B, then
Pα(a)+1 = Xβ(a)+1 ∧ Yγ(a)

and we define the map

πα(a) : SPα(a) −→ Pα(a)+1

by

πα(a)(x ∧ y ∧ t) = ξβ(a)
(
x ∧ (−1)γ(a)t

)
∧ y

If a ∈ C, then
Pα(a)+1 = Xβ(a) ∧ Yγ(a)+1

and we define the map

πα(a)(x ∧ y ∧ t) = x ∧ ηγ(a)(y ∧ t).
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Here
x ∈ Xβ(a), y ∈ Yγ(a), t ∈ S1,

and
ξβ(a) : Xβ(a) ∧ S1 −→ Xβ(a), ηγ(a) : Yγ(a) ∧ S1 −→ Yα(a)+1

are the appropriate maps from the spectra X, Y . The sign (−1)γ(a) is introduced,
of course, because we have moved S1 across Yγ(a).

It is clear that P = X ∧BC Y is functorial for functions of X and Y of degree
0. Next we point out that we have no assumed that the sets B and C are infinite.
In the obvious applications they are infinite, so that β(a) −→∞ and γ(a) −→∞;
but it is convenient to allow B and C to be finite. For example, let S1 be the
suspension spectrum of S1; then S1 ∧∅,A Y = Susp(Y ). If B is infinite, and X ′ is
a cofinal subspectrum of X, then X ′ ∧BC Y is a cofinal subspectrum X ∧BC Y .
So in this case X ∧BC Y is natural for maps of Y of degree 0. Next we observe
that (Cyl(X)) ∧BC Y and X ∧BC (Cyl(Y )) can be identified with Cyl(X ∧BC Y ).
It follows that the homotopy class of f ∧BC g depends only on the homotopy class
of f (if B is infinite) or g (if C is infinite).

We propose to construct X ∧ Y to have the properties stated in the following
theorem.

Theorem 4.2. For each choice of B, C there is a morphism

eqBC : X ∧BC Y −→ X ∧ Y (of degree 0)

with the following properties.

(i) If B is infinite and f : X −→ X ′ is a morphism of degree 0, then the following
diagram is commutative.

X ∧BC Y X ∧ Y

X ′ ∧BC Y X ′ ∧ Y

eqBC

f∧BC1 f∧1

eqBC

(ii) If C is infinite and g : Y −→ Y ′ is a morphism of degree 0, then the following
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diagram is commutative.

X ∧BC Y X ∧ Y

X ∧BC Y ′ X ∧ Y ′

eqBC

1∧BCg 1∧g
eqBC

(iii) The morphism eqBC : : X ∧BC Y −→ X ∧ Y is an equivalence if any one of
the following conditions is satisfied.

(a) B and C are infinite.

(b) B is finite, say with d elements, and ξr : ΣXr −→ Xr+1 is an isomor-
phism for r ≥ d.

(c) C is finite, say with d elements, and ηr : ΣYr −→ Yr+1 is an isomor-
phism for r ≥ d.

Let me show how Theorem 4.2 will help to prove Theorem 4.1(b). Consider
first the associativity. The point is that the “handicrafted smash products” are
actually associative if you pick the right product at each point. More precisely,
take a set A and partition it into three disjoint subsets B, C, and D, such that
B ∪ C and C ∪D are infinite. Let X, Y , and Z be CW-spectra. Then we can
form the spectra

(X ∧BC Y ) ∧B∪C,D Z and X ∧B,C∪D (Y ∧CD Z).

(Now one begins to see the purpose for which the notation was designed.) These
two spectra are actually the same spectrum. For the terms of each are given by

Pα(a) = Xβ(a) ∧ Yγ(a) ∧ Zδ(a).

The maps of each are described in the same way as before. We have

ΣPα(a) = Xβ(a) ∧ Yγ(a) ∧ Zδ(a) ∧ S1.

If a ∈ B, then
Pα(a)+1 = Zβ(a)+1 ∧ Yγ(a) ∧ Zδ(a)
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and we have

πα(a)(x ∧ y ∧ z ∧ t) = ξβ(a)
(
x ∧ (−1)γ(a)+δ(a)t

)
∧ y ∧ z

If a ∈ C then
Pα(a)+1 = Xβ(a) ∧ Yγ(a)+1 ∧ Zδ(a)

and we have

πα(a)(x ∧ y ∧ z ∧ t) = x ∧ ηγ(a)
(
y ∧ (−1)δ(a)t

)
∧ z

If a ∈ D then
Pα(a)+1 = Xβ(a) ∧ Yγ(a) ∧ Zδ(a)+!

and we have
πα(a)(x ∧ y ∧ z ∧ t) = x ∧ y ∧ ζδ(a)(z ∧ t)

Here, of course, we have x ∈ Xβ(a), y ∈ Yγ(a), z ∈ Zδ(a), t ∈ S1 and ξβ(a), ηγ(a), ζδ(a)
are the appropriate maps of the spectra X,Y, Z. We will arroung our construction
to thave the following property.

Theorem 4.3. The equivalence

a = a(X,Y, Z) : (X ∧ Y ) ∧ Z −→ X ∧ (Y ∧ Z)

makes the following diagram commutative for each choice of B,C,D

(X ∧ Y ) ∧ Z X ∧ (Y ∧ Z)

(X ∧ Y ) ∧B∪C,D Z (X ∧BC Y ) ∧ Z X ∧ (Y ∧C,D Z) X ∧B,C∪D (Y ∧ Z)

(X ∧BC Y ) ∧B∪C,D Z X ∧B,C ∪D(Y ∧CD Z)

a

eqB∪C,D

eqBC∧1

1∧eqCD

eqB,C∪D

1
eqB∪C,D

B,C 1

eqB∪C,D

eqB,C∪D

1∧B,C∪DeqCD

Note that the squares are commutative by the naturality of eq; we can apply
4.2(i) and (ii) since B ∪ C and C ∪D are infinite.

Let us now show how to check the commutativity of diagram (i) in Theorem
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4.1(b) (the pentagon diagram). Then by Theorems 4.2 and 4.3,all we have to do
is check the following diagram is commutative.

(W ∧BC X) ∧B∪C,D∪E (Y ∧DE Z)

((W ∧BC X) ∧B∪C,D Y ) ∧B∪C∪D,E Z W ∧B,C∪D∪E (X ∧C,D∪E (Y ∧DE Z))

(W ∧B,C∪D (X ∧CD Y )) ∧B∪C∪D,E Z W ∧B,C∪D∪E ((X ∧CD Y ) ∧C∪D,E Z)

1 1

1

1

1

This diagram is commutative as a diagram of functions before we pass to homotopy
classes.

Similarly, the “handicrafted smash products” are commutative if you pick the
right product at each point. It is tempting to partition A as B ∪ C, and consider
X ∧BC Y and Y ∧CB X. Corresponding terms of these spectra are isomorphic; it
is tempting to define

cα(a) : Xβ(a) ∧ Yγ(a) −→ Yγ(a) ∧Xβ(a)

by
cα(a)(x ∧ y) = y ∧ x

However, these components do not give a function between spectra, because the
relevant diagrams do not commute. We should have inserted a sign (−1)β(a)γ(a),
and we do not have a spare suspension coordinate to reverse. The answer is easy;
we need only consider partitions A = B∪C such that β(a)γ(a) is always even.This
amounts to the following condition, Elements number 0 and 1 in A must be either
two elements of B, or else two elements of C. Similarly for elements number 2

and 3, and similarly for elements number 2r and 2r + 1 for each r.
Now that we realize we can restrict the choice of partition in this way, we see

that it is easy and useful to go further. In fact, we now introduce the following
restriction on the partition A = B ∪ C.

Condition 4.4. Elements number 0, 1, 2, and 3 in A are either four elements of B,
or else four elements of C; similarly for elements number 4, 5, 6 and 7 in A, and
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similarly for elements number 4r, 4e+ 1, 4r + 2 and 4r + 3 for each r.

With this restriction, we define an isomorphism

c = cBC : X ∧BC Y −→ Y ∧CB X

in the manner suggested:
cn(x ∧ y) = y ∧ x

This is clearly natural for functions of X and Y . it is also natural for maps of X
if B is infinite; similarly for Y if C is infinite.

We will arrange our constructions to have the following property.

Theorem 4.5. The equivalence c = c(X,Y ) : X ∧Y −→ Y ∧X makes the following
diagram commutative for each choice of B,C satisfying 4.4

X ∧ Y Y ∧X

X ∧BC Y Y ∧CB X

c

eqBC

cBC

eqCB

Let us now show how to check the commutativity of diagram (iii) in Theorem
4.1(b) (the hexagon diagram). Take a set A and partition it into three infinite
subsets B,C and D satisfying the obvious analogue of condition 4.4. Then by
Theorems 4.24.34.5, all we have to do is to check that the following diagram is
commutative.

(Y ∧C,B X) ∧C∪B,D Z

(X ∧BC Y ) ∧B∪C,D Z Y ∧C,B∪D (X ∧B,D Z)

X ∧B,C∪D (Y ∧C,D Z) Y ∧C,D∪B (Z ∧D,B X)

(Y ∧C,D Z) ∧C∪D,B Z

c 1

1∧C,D∪Bc

1

1

c∧B∪C,D1

This diagram is commutative as a diagram of functions.
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Similarly, suppose we wish to check the commutativity of diagram (ii) in
Theorem 4.1(b). By theorems 4.2 and 4.5, all we have to do is check that the
following diagram is commutative.

Y ∧CB X

X ∧BC Y X ∧BC Y

cBCCBC

1

This diagram, too, is commutative as a diagram of functions.

Similarly, the “handicrafted smash products" have S as a unit if you pick the
right product at each point. More precisely, suppose we partition A as ∅ ∪A.This
is a legitimate partition satisfying the condition 4.4; this was the reason that
we allowed the set B to be finite.We can form the spectrum S ∧∅A Y and it is
isomorphic to Y ; the obvious isomorphism has as its components the isomorphisms
S0 ∧ Yn ∼= Yn. This isomorphism is natural for morphisms of degree 0. We can
now define

l : S ∧ Y −→ Y

to be the composite

S ∧ Y S ∧∅A Y ∼= Yeq∅,A

Here eq∅A is an equivalence by 4.2(iii)(b). Similarly, we can form the spectrum
X∧A∅S, and it is isomorphic to X; the obvious isomoprhism has as its components
the isomorphisms Xn ∧ S0 ∼= Xn. As before, this isomorphism is natural for
morphisms of degree 0. We now define

r : X ∧ S −→ X

to be the composite

X ∧ S X ∧A∅ S ∼= XeqA,∅

Here eqA∅ is an equivalence by 4.2(iii)(c).

To check the commutativity of diagrams (iv), (v), (vi) and (vii) in Theorem

210



Chapter 4: Smash products

4.1(b), we have only to check that the following diagrams are commutative.

(S ∧∅B Y ) ∧BC Z S ∧∅,B∪C (Y ∧BC Z)

Y ∧BC Z
∼=

1

∼=∧BC1

(X ∧B∅ S) ∧BC Z X ∧BC (S ∧∅C Z)

X ∧BC Z
1∧BC

∼=

1

∼=∧BC1

(X ∧BC Y ) ∧B∪C,∅ S X ∧BC (Y ∧C∅ S)

X ∧BC Y
1∧BC

∼=∼=

S ∧∅A Y Y ∧A∅ S

Y

∼=∼=

c

X ∧A∅ S S ∧∅A X

X

∼=∼=

c

These diagrams are all commutative as diagrams of functions.

Finally, we comment on part (viii) of Theorem 4.1(b). If you believe any of
these results you must believe that S ∧ S is equivalent to S. So [S ∧ S, S ∧ S]0 ∼=
[S, S]0 = Z. So all we have to do is check that c : S ∧ S −→ S ∧ S has degree 1;
but we shall make our constructions to have the obvious effect on orientations.

We now turn to the constructions necessary to prove Theorems 4.1, 4.2, 4.3
and 4.5. First we give a simple construction which is used in proving Theorem
4.2; this is the telescope functor. If fn : Xn −→ Yn is a sequence of maps of
CW-complexes, we can form the iterated mapping cylinder, or telescope. If the are
taken to be cellular, the telescope is a CW-complex. We apply this construction
to the terms of a Spectrum of certain form, Let X be a spectrum consisting of
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CW-complexes Xn with base-point and cellular maps ξn : Xn ∧ S1 −→ Xn+1; we

need not even assume that ξn is an isomorphism from Xn ∧S1 to a subcomplex of
Xn+1; the telescope functor Tel will convert a spectrum X which does not have
this property into one which does.

We take the half-line i ≥ 0 and divide it into 0-cells [i] and 1-cells [i, i + 1]

for i = 0, 1, 2, . . . . We define the nth term of Tel(X) as a quotient space of the
following wedge-sum

( n−1∨

i=0

[i, i+ 1]+ ∧Xi ∧ Sn−i
)
∨
( n∨

i=0

[i]+ ∧Xi ∧ Sn−i
)

Here it is convenient to regard Sm as Rm compactified by adding point at infinity,
which becomes the base-point. In this way the isomorphism Rm × Rn −→ Rm+n

gives an isomorphism Sm ∧ Sn −→ Sm+n which is convenient for later use. The
following identifications are to be made. Identify the point

i ∧ x ∧ t ∈ [i, i+ 1]+ ∧Xi ∧ Sn−i

with the point
i ∧ x ∧ t ∈ [i]+ ∧Xi ∧ Sn−i

Identify the point

(i+ 1) ∧ x ∧ t ∧ u ∈ [i]+ ∧Xi ∧ Sn−i−1

with
(i+ 1) ∧ ξi(x ∧ t) ∧ u ∈ [i]+ ∧Xi ∧ Sn−i−1

We give Tel(X)n the obvious structure as a CW-complex.

The nth map of the spectrum Tel(X) is obtained by passing to quotients from
the obvious isomorphism of

{( n∨

i=0

[i]+ ∧Xi ∧ Sn−i
)
∨
( n−1∨

i=0

[i, i+ 1]+ ∧Xi ∧ Sn−i
)}
∧ S1
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with ( n∨

i=0

[i]+ ∧Xi ∧ Sn−i+1

)
∨
( n−1∨

i=0

[i, i+ 1]+ ∧Xi ∧ Sn−i+1

)
.

There is an obvious homotopy equivalence rn : Tel(X)n −→ Xn (collapse

the telescope to its right-hand end [n]+ ∧Xn ∧ S0). These equivalences give the
components of a function r : Tel(X) −→ X. This function is a weak equivalence,
by 3.4.

We pause to observe that this construction is functorial. It is clear that a
function f : X −→ Y induces Tel(f) : Tel(X) −→ Tel(Y ). If X ′ is a subspectrum
of X,then Tel(X ′) is a subspectrum of Tel(X). Unfortunately, if X is a CW-
spectrum and X ′ is cofinal in X, it does not follow that Tel(X ′) is cofinal in
Tel(X). So we avoid saying that a map of X induces a map of Tel(X). However,
the injection Tel(X ′) −→ Tel(X) is a homotopy equivalence, as we see using
Theorem 3.5. Morever, we can identify Tel(Cyl(X)) with Cyl(Tel(X)). It follows
that a homotopy class of maps of X induces a homotopy class of maps of Tel(X).
We can now remark that r is a natural transformation, These facts are, of course,
fairly trivial, but we need to cite this passage later; it is for this reason that I
have avoided a short cut–one could define Tel on morphisms by requiring that r
be natural.

We propose to arrange for Theorem 4.2 to be true by constructing X ∧ Y
so that it contains a copy of Tel(X ∧BC Y ) for each choice of B and C. The
morphism

eqBC : X ∧BC Y −→ X ∧ Y

Will be defined as the following composite:

X ∧BC Y
r←− Tel(X ∧BC Y ) −→ X ∧ Y

The construction of X ∧ Y (call it P ) is as a "double telescope": That is, just
as the parts of Tel(X) corresponded to the cells of a cell-decomposition of the
half-line i ≥ 0, so here we make a similar use of the quarter-plane i ≥ 0, j ≥ 0. We
divide the half-line i ≥ 0 with 0-cells [i] and 1-cells [i, i+ 1], i = 0, 1, 2, . . . . We
divide the half-line j ≥ 0 similarly, and we divide the quarter plane i ≥ 0, j ≥ 0

into the products of these cells. Thus we have four cells eij with bottom left-hand
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corner at (i, j):

the 0-cell [i]× [j]

the 1-cells [i, i+ 1]× [j] and [i]× [j, j + 1]

the 2-cell [i, i+ 1]× [j, j + 1]

To construct Pn we use those cells eij which lie entirely in the part of the
quarter-plane given by x+ y ≤ n. The condition for this is

i+ j + dim(eij) ≤ n

Let us start from ∨

i+j≤n
([i]× [j])+ ∧Xi ∧ Yj ∧ Sn−i−j

and attach ∨
e+ij ∧Xi ∧ Yj ∧ S1 ∧ Sn−i−j

where eij runs over the 1-cells [i, i+1]× [j] and [i]× [j, j+1] such that i+j+1 ≤ n.
The identifications are obvious. The point

(i, j) ∧ x ∧ y ∧ s ∧ t in e+ij ∧Xi ∧ Yj ∧ S1 ∧ Sn−i−j−1

is to be identified with

(i, j) ∧ x ∧ y ∧ (s ∧ t) in ([i]× [j])+ ∧Xi ∧ Yj ∧ Sn−i−j

The point

(i+ 1, j) ∧ x ∧ y ∧ s ∧ t in ([i+ 1]× [j])+ ∧Xi ∧ Yj ∧ S1 ∧ Sn−i−j−1

is to be identified with

(i+ 1, j) ∧ ξi
(
x ∧ (−1)js

)
∧ y ∧ t in ([i+ 1]× [j])+ ∧Xi+1 ∧ Yj ∧ Sn−i−j−1
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The point

(i, j + 1) ∧ x ∧ y ∧ s ∧ t in ([i]× [j, j + 1])+ ∧Xi ∧ Yj ∧ S1 ∧ Sn−i−j−1

is to be identified with

(i, j + 1) ∧ x ∧ ηj(y ∧ s) ∧ t in ([i]× [j + 1])+ ∧Xi ∧ Yj+1 ∧ Sn−i−j−1

Consider now a cell e = [i, i+ 1]× [j, j + 1] such that i+ j + 2 ≤ n. We have
just described the subcomplex of Pn corresponding to ∂e. Morever, it contains a
family of subspaces Xi ∧ Yj ∧ S2 ∧ Sn−i−j−2, parametrized by the points of ∂e.
Unfortunately, this family is not a proudct family, at least, not in a completely
trivial way. Lets start from the point

(i, j) ∧ x ∧ y ∧ s ∧ t ∧ u in ([i]× [j])+ ∧Xi ∧ Yj ∧ S1 ∧ S1 ∧ Sn−i−j−1

if we first increase i and then increase j, we get first to
(i+1, j)∧ξi

(
x∧(−1)js

)
∧y∧t∧u and then to (i+1, j+1)∧ξi(x∧(−1)js)∧ηj(y∧t)∧u.

If we first increase j and then increase i, we get first to (i, j+1)∧x∧ηj(y∧s)∧t∧u
and then to (i+ 1, j + 1) ∧ ξi

(
x ∧ (−1)j+1t

)
∧ ηj(y ∧ s) ∧ u. If I wanted to turn

the first formula into the second I would have to substitute s for t, −t for s.

We conclude, then, that the family of subspaces we have considered is best
described as

Xi ∧ Yj ∧M(τ) ∧ Sn−i−j−2

Here M(τ) is the Thom complex of a certain 2-plane bundle τ over ∂e; more
precisely, τ is obtained from I × R2 by identifying the two ends under the

homeomoprhism

(
0 −1
1 0

)
, So τ is an SO(2)-bundle over ∂e = S1; it can be

extended to a bundle over e. Of course there are different ways of extending τ
to a bundle over e, since π1(SO(2)) = Z. But τ is essentially independent of
n,i,j,X and Y ; this follows from the description given above; or else one can use
coordinates to write down explicit isomorphisms which increase i by 1 or j by
1. (The isomorphisms start from the identity map of R2 over [i]× [j], and each
suspension coordinate is either preserved or reversed according to the demands
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of the signs.) All that is essential is that we choose an extension of τ that is
similarly independent of n, i, j,X and Y . For example, with the description of τ
given above, we can trivialize τ by using a geodesic path of Lent π/2 of SO(2).

We take the part of Pn corresponding of e = eij to be

Xi ∧ Yj ∧M(τ) ∧ Sn−i−j−2

where τ now refers to the bundle as extended over eij . The identification with
the part of Pn already constructed is automatic.

This completes the construction of Pn = (X ∧ Y )n. The structure maps are
obvious.

To summarize, we have constructed (X ∧ Y )n as a quotient space of

∨
Xi ∧ Yj ∧M(τd) ∧ Sn−i−j−d

Here the sum runs over cells eij such that i+ j + dim(eij) ≤ n, and d = dim(eij),
and τd is a suitabled-plane bundle over eij . (For d = 0 and d = 1, τd was introduced
as an explicitly trivialized bundle.) The identifications are obvious: we regard
Xi ∧ S1 as embedded in Xi+1,

Xi ∧ S1 ∧ Yj ∧M(τ) ∧ Sn−i−j−d

as
Xi ∧ Yj ∧M(1⊕ τ) ∧ Sn−i−j−d

The discussion of the functoriality of X ∧ Y goes exactly as for the telescope
functor. More precisely, suppose X ′ is cofinal in X, and we are given a function
f : X ′ −→ Z Then X ′ ∧ Y is not cofinal in X ∧ Y , but we have the following
functions.

X ∧ Y Z ∧ Y

X ′ ∧ Y

i∧1
f∧1

When we pass to morphisms, i′ ∧ 1 is an equivalence, by 3.5, so we obtain a
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morphism from X ∧Y to Z ∧Y . Since cylinders work right, we conclude that this
morphism depends only on the homotopy class of f . It is clear how one embeds
Tel(X ∧BC Y in X ∧ Y . The functions βα−1, γα−1 give a function

{0, 1, 2, 3 . . . } −→ {0, 1, 2, 3 . . . } × {0, 1, 2, 3 . . . }

In other words, they give the corners of a stepwise path in the quarter-plane
i ≥ 0, j ≥ 0. We extend it to a function θ : {k ≥ 0} −→ {i ≥ 0} × {j ≥ 0} so that
if a ∈ B,

θ[α(a), α(a) + 1] ⊂ [β(a), β(a) + 1]× [γ(a)]

and if a ∈ C,
θ[α(a), α(a) + 1] ⊂ [β(a)]× [γ(a), γ(a)]

The choice of θ is immaterial; two choices are homotopic through maps θ satisfying
the same restrictions.

A typical part of Tel(X ∧BC Y ) is

[k, k + 1]+ ∧Xi ∧ Yj ∧ S1 ∧ Sn−k−1

where i = βα−1k, j = γα−1k. We take the point

t ∧ x ∧ y ∧ u ∧ v

and map it to

θ(t) ∧ x ∧ y ∧ u ∧ v in e+ij ∧Xi ∧ Yj ∧ S1 ∧ Sn−i−j−1

where eij is the appropriate 1-cell. Similarly for [k]+ ∧Xi ∧ Yj ∧ Sn−k.
It is clear that changing the choice of θ only changes the resulting function

Tel(X ∧BC Y ) −→ X ∧ Y

by a homotopy. For any choice of θ, the function Tel(X ∧BC Y ) −→ X ∧ Y is
natural for functions of X and Y of degree 0. From this, one has no difficulty in
obtaining the naturality properties of eqBC in Theorem 4.2.
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We now prove Theorem 4.2(iii). First we consider case (a). So we suppose
that B and C are infinite. We define a subspectrum Q of P as follows. Let
Qα(a) be the subcomplexes of Pα(a) corresponding to the cells eij in the part
of the quarter-plane given by i′ ≤ β(a), j′ ≤ γ(a). Qα(a) admits a deformation
retraction on Xβ(a)∧Yγ(a), and Tel(X∧BC Y )α(a) admits a deformation retraction
on Xβ(a) ∧ Yγ(a). Hence, in the diagram

Tel(X ∧BC Y )

Xβ(a) ∧ Yγ(a) Qα(a)

∼=

∼=

the two inclusions marked induce isomorphisms of homotopy groups, so the third
one does also; passing to direct limits and applying 3.5, the inclusion

Tel(X ∧BC Y ) −→ Q

is an equivalence.
It remains to consider cases (b) and (c), which are similar. Let us consider

case (b), so that B is finite with d members, and

ξr : ΣXr −→ Xr+1

is an isomorphism for r ≥ d. We now make a small change in the definition
of Qα(a) for "a" such that β(a) ≥ d. For such a, we define Qα(a) to be the
subcomplex of Pα(a) corresponding to the cells eij in the part of the quarter-plane
given by i′+j′ ≤ α(a), j′ ≤ γ(a). Then Qα(a) still admits a deformation retraction
onto Xβ(a) ∧ Yγ(a), since the relevant map

Xd ∧ Yj ∧ Sn−d −→ Xd+e ∧ Yj ∧ Sn−d−e (e ≥ 0)

is an isomorphism. Also Q is cofinal in P , so the proof carries over. We now turn
to the proof of Theorem 4.5.

Lemma 4.6. There is a spectrum Q with homotopy equivalences i0 : X ∧ Y −→
Q, i1 : Y ∧X −→ Q so that the following diagram is commutative for each choice
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of B and C satisfying condition 4.4

Q

X ∧ Y Y ∧X

Tel(X ∧BC Y ) Tel(Y ∧CB X)

X ∧BC Y Y ∧CB X
cBC

i0 i1

This will certainly prove Theorem 4.5; we have only to define c to be i−1
1 i0.

Note that we do not have to discuss the naturality of i−1
1 i0; it follows from that

of the other morphisms in 4.6.

To construct Q, we begin by taking a copy of X ∧Y and a copy of Y ∧X. The
remainder of the construction will be indexed ever the product of the quarter-plane
i ≥ 0, j ≥ 0 and the interval I. The endpoint 0 of I will correspond to X ∧ Y and
the endpoint 1 of I will correspond to Y ∧X.

First we observe that we can make the following cells:

([i]× [j]× I)+ = ([i]× [j])+ ∧ I+ (i or j even)

([i, i+ 1]× [j]× I)+ (j even)

([i]× [j, j + 1]× I)+ (i even)

The nth term of the construction consists in taking the appropriate part of
(X ∧ Y )n ∧ I+, identifying the end 0 of the cylinder with the appropriate part of
(X ∧ Y )n, attaching the end 1 of the cylinder to the appropriate part of (Y ∧X),
by the following map: the point

(t, s) ∧ x ∧ y ∧ u ∧ v in e+ij ∧Xi ∧ Yj ∧ Sd ∧ Sn−i−j−d

is to be identified with

(s, t) ∧ x ∧ y ∧ u ∧ v in e+ji ∧ Yj ∧Xi ∧ Sd ∧ Sn−i−j−d
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These identifications are consistent.
Consider now a cell e = [2i, 2i+ 2]× [2j, 2j + 2]× I. We have just described

the part of Qn corresponding to the boundary ∂e of e. Moreover, it contains a
subcomplex of the following form:

X2i ∧ Y2j ∧M(τ ′) ∧ Sn−2i−2j−4.

Here τ ′ is a certain 4-plane bundle over ∂e. This 4-plane bundle depends only on
the permutations and signs in our construction and on the extension τ chosen in
the construction of X ∧Y ; it does not depend on the n, i, j,X or Y . It is classified
by an element

α ∈ π1(SO) = Z2

Suppose now that we consider the four cells, like the cell e just considered,
which make up the cell

e′ = [4i, 4i+ 4]× [4j + 4j]× I

Call them e1, e2, e3 and e4. The part of Q so far constructed, corresponding to
these cells, has a subcomplex of the form

Sn−4i−4j−8 ∧M(τ ′′) ∧X4i ∧X4j .

Here M(τ ′′) is the Thom complex of a certain 8-plane bundle over
∂e1 ⌣ ∂e2 ⌣ ∂e3 ⌣ ∂e4. Over each ∂ei it restricts to the whitney sum of the
previous bundle τ ′ and a trivial 4-plane bundle. Therefore the restriction of τ ′′ to
∂e′ is classified by 4α = 0. Therefore τ ′′ = 0 can be extended over e′.

From the previous construction, we now retain only X ∧ Y, Y ∧X, and the
parts of the cylinder (X∧Y )n∧I+ with i divisible by 4 or j divisible by 4. We now
add X4i ∧Y4j ∧M(τ ′′)∧Sn−4i−4j−8 for each i, j, and n such that n ≥ 4i+4j+8.
This completes the construction of Q.

The injections of X ∧ Y and Y ∧X into Q are clearly homotopy equivalences,
by 3.5. It is also clear that the diagram of Lemma 4.6 is commutative, because
the relevant part of the cylinder Cyl(X ∧ Y ) was put in for that purpose.

This completes the proof of Lemma 4.6 and, therefore, of Theorem 4.5.

220



Chapter 4: Smash products

We now turn to the proof of Theorem 4.3. The constructions (X ∧ Y ) ∧ Z
and X ∧ (Y ∧ Z) are “quadruple telescopes”, indexed by a cell-decomposition of
the positive cone in 4-space. We arrange to replace (X ∧ Y ) ∧ Z by an equivalent
construction P ′ and X ∧ (Y ∧ Z) by an equivalent construction P ′′, so that both
P ′ and P ′′ are “triple telescopes”, indexed by a cell-decomposition of the positive
cone in 3-space. It will then be apparent that P ′ and P ′′ are equivalent. More
formally, we have the following lemma.

Lemma 4.7. There is a spectrum P ′ and a homotopy equivalence i′ : P ′ −→
(X ∧ Y ) ∧ Z (both independent of B, C and D) such that the following diagram
is commutative for each choice of B, C and D.

(X ∧BC Y ) ∧ Z (Tel(X ∧BC Y )) ∧ Z (X ∧ Y ) ∧ Z

Tel((X ∧BC Y ) ∧B∪C,D Z) P ′

(X ∧BC Y ) ∧B∪C,D Z

i∧1r∧1

r

i

k′
j′

i′

Similarly for X ∧ (Y ∧ Z) with i′, j′, k′ and P ′ replaced by i′′, j′′, k′′ and P ′′.
Moreover, there is a homotopy equivalence P ′ e−→ P ′′ such that the following
diagram is commutative.

P ′ P ′′

Tel((X ∧BC Y ) ∧B∪C,D Z) Tel(X ∧B,C∪D (Y ∧CD Z))

e

k′ k′′

Proof. By definition, the nth term of (X ∧ Y ) ∧ Z is a union

⋃

hk

(X ∧ Y )h ∧ Zk ∧M(τδ) ∧ Sn−h−k−δ

where the union extends over cells ehk such that

h+ k + dim ehk ≤ n,
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δ = dim ehk and τδ is a δ-plane bundle. That is, it is a union

⋃

eij ,ehk

Xi ∧ Yj ∧M(τd) ∧ Sh−i−j−d ∧ Zk ∧M(τδ) ∧ Sn−h−k−δ

where eij runs over cells with

i+ j + dim eij ≤ h,

d = dim(eij) and τd is a d-plane bundle. We arrange this as

⋃

eik,ehk

Xi ∧ Yj ∧ Zk ∧M(τd ⊕ τδ) ∧ Sh−i−j−d ∧ Sn−h−k−δ.

Thus the construction is indexed over a cell-decomposition of the positive cone
i ≥ 0, j ≥ 0, h ≥ 0, k ≥ 0 in 4-space. Call this cone C4. Let C3 be the positive
cone i ≥ 0, j ≥ 0, k ≥ 0 in 3-space, and divide C3 into cells in the obvious way,
so that the cells are r-cubes of side 1 for r = 0, 1, 2, 3.

We construct P ′ by giving a suitable cellular map θ from C3 to C4 by “pulling
back” the bundles and complexes we have associated with the parts of C4. Actually
we construct θ to preserve the k-coordinate, so it is only necessary to construct a
map φ from the positive cone i ≥ 0, j ≥ 0 to the positive cone i ≥ 0, j ≥ 0, h ≥ 0.

Our idea in defining θ and φ is to only use the cells eij × ehk such that

i+ j + dim eij = h;

firstly because the other parts of (X ∧Y )∧Z are redundant, and secondly because
by keeping Sh−i−j−d = S0 we avoid suspension coordinates in the wrong place.

We first indicate into which subcomplexes the cells are to be mapped
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φ([i]× [j]) = [i]× [j]× [i+ j]

φ([i, i+ 1]× [j]) ⊂ ([i]× [j]× [i+ j, i+ j + 1])

∪ ([i, i+ 1]× [j]× [i+ j + 1])

φ([i]× [j, j + 1]) ⊂ ([i]× [j]× [i+ j + 1])

∪ ([i]× [j, j + 1]× [i+ j + 1])

φ([i, i+ 1]× [j, j + 1]) ⊂ ([i]× [j]× [i+ j, i+ j + 1])

∪ ([i, i+ 1] ∪ [j]× [i+ j + 1, i+ j + 2])

∪ ([i]× [j, j + 1]× [i+ j + 1, i+ j + 2])

∪ ([i, i+ 1]× [j, j + 1]× [i+ j + 2]).

In each case the proposed subcomplex is contractible, so the construction of φ
is possible and unique up to homotopy. In each case, the image of φ must be the
whole subcomplex given, so we can refer to the subcomplex as φ(eij). Similarly
for θ(eijk).

We next note that for each cell eijk such that i+ j + k + dim(eijk) ≤ n, the
part of ((X ∧ Y )∧Z)n associated with θ(eijk) contains a subcomplex of the form

Xi ∧ Yj ∧ Zk ∧M(τd) ∧ Sn−i−j−k−d,

where d = dim(eijk) and τd is a d-plane bundle over θ(eijk). We decompose the
corresponding part of P ′ to be

Xi ∧ Yj ∧ Zk ∧M(θ∗τd) ∧ Sn−i−j−k−d,

where θ∗τd is the induced bundle over eijk. The map i′ on this part of P ′ is induced
by the map of bundles θ∗τd −→ τd over the map θ of spaces. The identifications
to be made assembling P ′ are automatic; one just pulls back the identification of
(X ∧ Y ) ∧ Z.

We make the structure of P ′ more explicit. Corresponding to the 0-cells eijk
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we have ∨

i+j+k≤n
Xi ∧ Yj ∧ Zk ∧ ([i]× [j]× [k])+ ∧ Sn−i−j−k.

Corresponding to 1-cells we have

∨

i+j+k+1≤n
e+ijk ∧Xi ∧ Yj ∧ Zk ∧ S1 ∧ Sn−i−j−k−1.

Here the attaching maps are the obvious ones, involving the obvious signs.

For each 2-cell e = eijk, the bundle θ∗τ over e is exactly as described in the
construction of X ∧ Y .

For each 3-cell e = eijk, there is only one bundle over e extending the given
bundle θ∗τ over ∂e, since π3(BSO(3)) = π2(SO(3)) = 0. So we need not worry
which bundle arises.

On the other hand, the description of P ′′ is exactly the same as the description
we have just given for P ′. This provides the map e : P ′ −→ P ′′.

The map
k′ : Tel((X ∧BC Y ) ∧B∪C,D Z) −→ P ′

is basically obvious. The functions βα−1, γα−1 and δα−1 give a function θ′ :

{0, 1, 2, 3, . . .} → {0, 1, 2, 3, . . .}3. We extend it to a function θ′′ mapping each cell
of C1 (the positive half-line with our usual cell structure) into the obvious cell of C3.
Now we construct the map k′ as we constructed the map Tel(X∧BC Y ) −→ X∧Y .

We now observe that the function

i′k′ : Tel((X ∧BC Y ) ∧B∪C,D Z) −→ (X × Y ) ∧ Z

actually maps into {Tel(X ∧BC Y )} ∧ Z; this defines the function

j′ : (Tel(X ∧BC Y )) ∧B∪C,D Z −→ (Tel(X ∧BC Y )) ∧ Z.

The function (r ∧ 1)j′ satisfies the definition for i. (Some of the cylinders spend
some of their time stationary and the rest hurrying to make up for it, but this is
allowed)

This completes the proof of Lemma 4.7, which completes the proof of 4.3,
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which completes the proof of Theorem 4.1 so far as it refers to maps of degree
0.

We now propose to go back and recover the properties of our constructions
with respect to maps of non-zero degree.

First we introduce the sphere-spectra of different stable dimensions. Let us
define the spectrum Si by

(Si)n =




Sn+1 n+ i ≥ 0

pt. n+ i < 0.

Proposition 4.8. We have an equivalence Si ∧Sj e−→ Si+j such that the following
diagrams are commutative.

(Si ∧ Sj) ∧ Sk Si ∧ (Sj ∧ Sk)

Si+j ∧ Sk Si ∧ Sj+k

Si+j+k

a

e∧1 1∧e

e e

Si ∧ Sj Sj ∧ Si

Si+j Sj+i

e

c

e

(−1)ij

S0 ∧ Sj Sj

e

ℓ

Si ∧ S0 Si

e

r

Proof. (i) Any handicrafted smash-product of Si and Sj gives a spectrum that
has the same terms as Si+j from some point onwards. We just take care to
pick an equivalence that is orientation-preserving.
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(ii) [Si, Sj ] = limn→∞[Sn+i, Sn+i] = Z; so to check the commutativity of
any such diagram, we have only to check the degree of a map. We have
been careful to make all our constructions so as to do the right thing on
orientations.

Proposition 4.9. We have the equivalences

γr : X −→ Sr ∧X (of degree r)

with the following properties.

(i) γr is natural for maps of X of degree 0. (This is all we can ask, because we
have not yet made Sr ∧X functorial for maps of non-zero degree.),

(ii) γ0 = ℓ−1,

(iii) The following diagram is commutative for each r and s.

Sr+s ∧X (Sr ∧ Ss) ∧X

Sr ∧ (Ss ∧X)

X Ss ∧X

a

e∧1

γr+s

γs

γr

Proof. Clearly if we take γ0 = ℓ−1, it is natural for maps of X of degree 0.
Consider now

S0 ∧1,{2,3,...} X and S1 ∧∅,{1,2,3,...} X.

On the left, the nth term is S1 ∧ Xn−1; on the right, the (n − 1)-st term is
S1 ∧Xn−1. The structure maps are the same in both cases. So the identity maps
S1 ∧Xn−1 −→ S1 ∧Xn−1 give the components of an equivalence of degree +1

S0 ∧X −→ S1 ∧X.

It is clearly natural for maps of X of degree 0. Composing with ℓ−1, we obtain
an equivalence γ1.
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Note that at this point I have essentially picked up the Puppe Desuspension
Theorem, without the restrictive hypotheses.

Now I define γs for all other values of s by induction upwards and downwards
over s, making the following diagram commutative.

S1+s ∧X (S1 ∧ Ss) ∧X

S1 ∧ (Ss ∧X)

X Ss ∧X

a

e∧1

γ1+s

γs

γ1

One has to check that this is consistent for s = 0. Note also that γ1+s or γs,
whichever is being defined, is natural for maps of X of degree 0, because all the
ingredients of its definition are so.

We now prove the commutativity of the diagram

Sr+s ∧X (Sr ∧ Ss) ∧X

Sr ∧ (Ss ∧X)

X Ss ∧X

e∧1

a

γs

γr+s

γr

by induction upwards and downwards over r. Here we start from the cases
r = 0 (which is a trivial verification) and r = 1 (which holds by the construction
of γs). The inductive step is diagram-chasing.

We are now ready to replace our original graded category by one which appears
slightly different. In the new category, the objects are CW-spectra just as before;
but the morphisms of degree r are given by

[Sr ∧X,Y ]0

in the old category. Composition is done as follows. Suppose given

Sr ∧X f−→ Y, Ss ∧ Y f−→ Z
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of degree 0; take their composite to be

Ss+r ∧X e∧1←−− (Ss ∧ Sr) ∧X a−→ Ss ∧ (Sr ∧X)
1∧f−−→ Ss ∧ Y g−→ Z.

One has to check that composition is associative, and that ℓ : S0 ∧X −→ X is an
identity map. This is easy.

Proposition 4.10. The new graded category is isomorphic to the old, under the
isomorphism sending

Sr ∧X f−→ Y (in the new category)

to
X

γr−→ Sr ∧X f−→ Y (in the old category).

Proof. Since γr is an equivalence in the old category, it is clear that this gives
a 1-1 correspondence between [Sr ∧ X,Y ]0 (that is, the set of morphisms of
degree r in the old category). It remains only to check that this one-to-one
correspondence preserves composition and identity maps. But this is immediate
from the properties of γr in Proposition 4.9.

If you want to see what you are doing with maps of degree r, I really recommend
considering them as maps Sr ∧X −→ Y of degree 0. In particular, it is easy to
see how to make X ∧ Y functorial on the new category. More precisely, suppose
given morphisms in the new category

Sr ∧X f−→ X ′, Ss ∧ Y g−→ Y ′.

Then we define their smash-product to be

Sr+s ∧X ∧ Y e∧1∧1←−−−− Sr ∧ Ss ∧X ∧ Y 1∧c∧1−−−−→ Sr ∧X ∧ Ss ∧ Y f∧g−−→ X ′ ∧ Y ′.

To prove that this has all the properties mentioned in Theorem 4.1 is now a
routine exercise of diagram-chasing. At the same time, we check that we have not
altered the definition of f ∧ g if f and g happen to be of degree 0.

This completes the proof of Theorem 4.1.
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Exercise. Show that the naturality of γr with respect to maps of degree s is as
follows: the diagram

X Sr ∧X

(−1)rs

Y Sr ∧ Y

γr

f 1∧f

γr

is commutative up to a sign of (−1)rs if f ∈ [X,Y ]s.

Proposition 4.11. The smash-product is distributive over the wedge-sum. Let
X =

∨
αXα; let iα : Xα −→ X be a typical inclusion. Then the morphism

∨

α

(Xα ∧ Y )
{iα∧1}−−−−→

(∨

α

Xα

)
∧ Y

is an equivalence.

Proof. Use a suitable handicrafted smash-product.

Proposition 4.12. Let X f−→ Y
i−→ Z be a cofibering (it is sufficient to consider

morphisms of degree zero). Then

W ∧X 1∧f−−→W × Y 1∧i−−→W ∧ Z

is also a cofibering.

Proof. It suffices to check for the case in which f : X −→ Y is the inclusion of a
closed subspectrum, i : Y −→ Z is the projection Y −→ Y/X and

∧
=
∧
BC .
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5. Spanier-Whitehead Duality

Suppose I have a compact subset X ⊂ Sn, say X ≠ ∅, X ̸= Sn. Then I know that
the homology of the complement CX of X is determined by the cohomology of X.
This is given by the Alexander duality theorem:

˜̌Hr(X) ∼= Ȟr(X,pt.) ∼= Hn−r(Cpt., CX) ∼= Hn−r−1(CX,pt.) ∼= Ȟn−r−1(CX).

However, the homotopy type of CX is clearly not determined by X; it depends
on the embedding. For example, take X = S1, n = 3; we can embed S1 in S3 as
a knotted circle or an unknotted circle, and make π1(CX) different in the two
cases. It would be reasonable to ask the following question. Suppose X is a good
subset, i.e., a finite simplical complex linearly embedded in ∂σn+1. (We make
this assumption to avoid pathologies.) How far does X determine anything about
CX beyond its bare homology groups?

It was proved by Spanier and Whitehead that X does determine the stable
homotopy type of CX; even the stable homotopy type of X suffices to do this.
This may easily be seen as follows. First, suppose that I take X ⊂ Sn. Now
embed Sn as an equatorial sphere in Sn+1, and embed the suspension of ΣX of
X in Sn+1 by joining to the two poles. Then the complement of ΣX in Sn+1 is
homotopy-equivalent to the complement of X in Sn. So if somebody gives me
X ⊂ Sn, Y ⊂ Sm and a homotopy equivalence f : ΣpX −→ ΣqY , I may as well
embed ΣpX in Sn+p and ΣqY in Sm+q, because I can do so without changing
the complements. So without loss of generality I can suppose I have X ′ ⊂ Sn

′
,

Y ′ ⊂ Sm′
and a homotopy equivalence f : X ′ −→ Y ′. I can even suppose that f

is PL.
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Now suppose we take X ′ ⊂ Sn
′

and embed Sn
′

as an equatorial sphere in
Sn

′+1 without changing X ′. Then the complement of X ′ suspends; more precisely,
the complement of X ′ in Sn

′+1 is the suspension of that in Sn
′
. So now consider

Sn
′ ∗ Sm′

. In this sphere we can embed the mapping-cylinder M of f ′. In this
sphere we have

Sm
′+n′+1 −X = Σm

′+1(Sn
′
−X)

Sm
′+n′+1 − Y = Σn

′+1(Sm
′
− Y )

and two maps

Sm
′+n′+1 −X Sm

′+n′+1 −M Sm
′+n′+1 − Y.f g

But the injections

X M Y

induce isomorphisms of cohomology. The Alexander duality isomorphism is natural
for inclusion maps, and therefore f and g induce isomorphisms of homology. But
now I can suspend further if necessary to make everything simply-connected. So
f and g are stable homotopy equivalences, and we have proved the result.

With a little more attention to detail we can show that the passage from X to
the stable homotopy type of its complement in a sphere is essentially functorial; a
map f : X −→ Y induces a stable class of maps f∗ : CY −→ CX. The functor is
contravariant, as we would expect.

The next step was taken by Spanier, and it was to eliminate the embedding
in Sn. More precisely, suppose I have two finite simplical complexes K and L

embedded in Sn so as to be disjoint. I am really interested in the case when
the inclusion L −→ CK, K → CL are homotopy equivalences, but this is not
necessary for the construction. Run a PL path from some point in K to some
point in L; without loss of generality we can suppose the first point is the only
point where it meets K, and the last point is the only point where it meets L.
Without loss of generality we can suppose these points are vertices and take them
as base-points in K and L, writing bpt. for either. Take some point in the middle
of the path as the point at ∞. Then we have an embedding of K and L in Rn.
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Define a map
µ : K × L −→ Sn−1

by

µ(k, l) =
k − l
∥k − l∥

.

The maps u|K × bpt. and µ|bpt.× L are null homotopic, so we get a map

µ : K ∧ L −→ Sn−1.

Spanier’s essential step was to realize that everything could be said in terms
of this map µ. To begin with, he considered maps µ : K ∧ L −→ Sn−1 whose
homological behaviour was such as you would expect. In order to explain what
you would expect, I need slant products, which I have not done yet.

So we use the framework we already have. Let X be a CW-spectrum. Then
we can form

[W ∧X,S]0.

With X fixed this is a contravariant functor of W , and it satisfies the axioms
of E.H. Brown. So it is representable; there is a spectrum X∗ and a natural
isomorphism

[W ∧X,S]0 [W,X∗]0 .T

Taking W = X∗ and 1: X∗ −→ X∗ on the right, we see that there is a map

e : X∗ ∧X −→ S.

Using the fact that T is natural, we see that T carries

f : W −→ X∗

into

W ∧X X∗ ∧X S.
f∧1 e
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Of course, this prescription defines

T : [W,X∗]r −→ [W ∧X,S]r,

and by applying the canonical isomorphism to a different choice of W we see that

T : [W,X∗]r −→ [W ∧X,S]r

is an isomorphism also.
We think of this as being like duality for vector-spaces over a field K. In that

case we have

V ∗ = HomK(V,K);

there is a canonical evaluation map

e : V ∗ ⊗ V −→ K;

and there is a 1-1 correspondence

HomK(U ⊗ V,K) HomK(U,HomK(V,K)).
T

The dual X∗ is a contravariant functor of X. For if we take a map g : X −→ Y ,
it induces a natural transformation

[W ∧X,S]0 [W ∧ Y, S]0

[W,X∗]0 [W,Y ∗]0

(1∧g)∗

and this natural transformation must be induced by a unique map

g∗ : Y ∗ −→ X∗.

(We go through the usual argument of substituting W = Y ∗ and 1: Y ∗ −→ Y ∗ on
the right.) In terms of maps e, the relation between g and g∗ is that the following
diagram commutes.
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Y ∗ ∧X Y ∗ ∧ Y

X∗ ∧X S

g∗∧1

1∧g

eY

eX

Let Z be a third spectrum; we can make a map

[W,Z ∧X∗]r [W ∧X,Z]r
T

as follows. Given

W Z ∧X∗f

we take

W ∧X Z ∧X∗ ∧X Z.
f∧1 1∧e

T is clearly a natural transformation if we vary Z.

Remark 5.1. T is an isomorphism if Z is the spectrum Sn. (The case n = 0 has
already been considered, and changing n just changes the degrees.)

Remark 5.2. Suppose given a cofibering

Z1 Z2 Z3 Z4 Z5.

If T is an isomorphism for Z1, Z2, Z4 and Z5, then it is an isomorphism for Z3.

Proof. Use the five lemma.

[W,Z1 ∧X∗]r [W,Z2 ∧X∗]r [W,Z3 ∧X∗]r [W,Z4 ∧X∗]r [W,Z5 ∧X∗]r

[W ∧X,Z1]r [W ∧X,Z2]r [W ∧X,Z3]r [W ∧X,Z4]r [W ∧X,Z5]r

Remark 5.3. T is an isomorphism if Z is any finite spectrum. This is immediate
by induction, using 5.1 and 5.2.

Proposition 5.4. If W and X are finite spectra, then

T : [W,Z ∧X∗]r −→ [W ∧X,Z]r

is an isomorphism for any spectrum Z.
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Proof. Pass to direct limits from the case of finite spectra.

Lemma 5.5. If X is a finite spectrum, then X∗ is equivalent to a finite spectrum.

The proof is postponed until section 6, for a reason which will appear. 1

Proposition 5.6. Let X be a finite spectrum, Y any spectrum. Then we have an
equivalence (X ∧ Y )∗

h−→ X∗ ∧ Y ∗ which makes the following diagram commute.

(X ∧ Y )∗ ∧X ∧ Y S

X∗ ∧ Y ∗ ∧X ∧ Y X∗ ∧X ∧ Y ∗ ∧ Y.

h∧1

eX∧Y

1∧c∧1

eX∧eY

Proof. By 5.5 we can assume that X∗ is a finite spectrum. By 5.3,

[W,X∗ ∧ Y ∗]r [W ∧ Y,X∗]r
TY

is an isomorphism for any spectrum W , and so is

[W ∧ Y,X∗]r [W ∧ Y ∧X,S]r
TX

by the original property of X∗ applied to the spectrum W ∧Y . This state of affairs
reveals X∗ ∧ Y ∗ as the dual of Y ∧X with TY ∧X = TXTY . Writing this equation
in terms of maps e, we obtain the diagram given by a little diagram-chasing.

I should perhaps emphasize that I have only done what I need later. In
particular, I have not proved that S-duality converts a cofibering of finite spectra
into another cofibering. This is true, but it needs a slightly more precise argument,
given in Spanier’s exercises. Also, I have only talked about maps into X∗ or
Z ∧X∗. Once we have the result on cofiberings we can talk about maps from X∗,
at least when X is a finite spectrum, and so prove X∗∗ ≃ X.

1The proof is linked: 6
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Suppose given a spectrum E. Then we define the E-homology and E-cohomology
of other spectra X as follows.

1. En(X) = [S,E ∧X]n

2. En(X) = [X,E]−n

In order to convince ourselves these functors do deserve the name of generalized
homology and cohomology, let’s list their trivial properties.

Proposition 6.1. 1. E∗(X) is a covariant functor of two variables E, X in our
category, and with values in the category of graded abelian groups.

(Note: A morphism f : X −→ Y of degree r induces f∗ : En(X) −→
En+r(Y ), etc.)

The same is true for E∗(X), except that it is covariant in E and contravariant
in X.

2. If we vary E or X along a cofibering, we obtain an exact sequence, That is,
if

X
f−→ Y

g−→ Z

is a cofiber sequence, then

En(X)
f∗−→ En(Y )

g∗−→ En(Z)

and
En(X)

f∗
←− En(Y )

g∗←− En(Z)
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are exact; if E i−→ F
j−→ G is a cofiber sequence, then

En(X)
i∗−→ Fn(X)

j∗−→ Gn(X)

and
En(X)

i∗−→ Fn(X)
j∗−→ Gn(X)

are exact.

3. There are natural isomorphisms

En(X) ∼= En+1(S
1 ∧X)

En(X) ∼= En+1(S1 ∧X)

4.

En(S) = E−n(S) = πn(E)

The proofs are mostly easy, Part (ii) uses 4.12, 3.9 and 3.10. Part (iii) uses 4.9–
the fact that we have an equivalence X −→ S1 ∧X of degree 1. These statements
give the analogues for a theory defined on spectra of the Eilenberg-Steenrod
axioms.

Once we have defined homology and cohomology of spectra, of course we can
define homology and cohomology of CW-complexes, That is, if L is a CW-complex,
we define Ẽn(L) to be En applied to the suspension spectrum of the complex L,
and similarly for Ẽn. The theory on complexes satisfies the same axioms.

For example, let Hπ be an Eilenberg-MacLane spectrum with a single non-
vanishing homotopy group π in dimension 0; then (Hπ)∗ is a homology theory
defined on spectra with a single non-vanishing coefficient group, π in dimension 0.
Apply (Hπ)∗ to the suspension spectrum of a complex L; it must coincide with
the ordinary homology theory of L. If one happens to have seen the ordinary
homology groups of a spectrum defined before, then (Hπ)∗ is the same thing, as
we see by passing to limits.

Theorem 6.2. (G. W. Whitehead). En(X) ∼= Xn(E)
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Proof. E ∧X c−→ X ∧ E is an equivalence, so

[S,E ∧X]n ∼= [S,X ∧ E]n

Corollary 6.3. (Hπ)n(HG) ∼= (HG)n(Hπ).

This was found empirically by Cartan, but it is non-trivial to prove directly.
G.W. Whitehead’s discovery of the proof just given was probably an important
step in his thinking about the connection between spectra and homology theories.

Proposition 6.4. if X is a finite spectrum, En(X∗) ∼= E−n(X)

Proof. [S,E ∧X∗]n
T−→ [X,E]n is an isomorphism by 5.3.

This shows that generalized homology and cohomology behave correctly under
S-duality.

Proof of 5.5. that is, if X is a finite spectrum, then X∗ is equivalent to a finite
spectrum.

Let X be a finite spectrum. Then [S,X∗]n
∼= [X,S]n, and the right-hand side is

zero if n is negative with sufficiently large absolute value. But Hn(X
∗) = H−n(X),

which is finitely generated in each dimension and zero outside a finite range of
dimensions. Therefore X∗ is equivalent to a finite spectrum.

Remark 6.5. Every generalized homology or cohomology theory defined on the
category of CW-complexes arises by G.W. Whitehead’s construction from some
spectrum E.

In order to have a proper statement, it is necessary to spell out the assumptions
we make on the homology or cohomology of infinite complexes, In the case of
homology we assume that

lim
→
a

Ẽn(Lα) −→ Ẽn(L)
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is an isomorphism, where Lα, runs over the finite subcomplexes of L, In the case
of cohomology we assume the Wedge Axiom of Milnor and Brown, that is

Ẽn
(∨

a

Lα

)
−→

∏

α

Ẽn(Lα)

is an isomorphism.

I propose to omit the proof of Remark 6.5. In the case of cohomology the
results is fairly easily deduced from E. H. Brown’s theorem in G the category of
CW-complexes, and this was done in G. W. Whitehead’s original paper [Whi62].
The argument is essentially that given in section 2. In the case of homology we
first obtain a homology theory on spectra in an obvious way. One then converts
one’s homology theory into a cohomology theory defined only on finite spectra,
by the definition

E−n(X) = En(X
∗)

(So one only needs the homology theory on finite spectra, in which case it is
trivial to define it.) One then has a contravariant functor defined on finite spectra
or finite complexes, and we have the task of representing it. I have proved the
required result [Ada71].

We now consider generalized homology and cohomology groups with coefficients.
Let G be an abelian group. We can take a resolution

0 −→ R
i−→ F −→ G −→ 0

by free Z-modules (a subgroup of a free abelian group is free). Take
∨
α∈A S,∨

β∈B S such that

π0

( ∨

α∈A
S

)
= R

π0

( ∨

β∈B
S

)
= F
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Take a map f :
∨
α∈A S −→

∨
β∈B S inducing i. Form

M =

( ∨

β∈B
S

)⋃

f

C

( ∨

α∈A
S

)
;

this is a Moore spectrum of type G. That is we have

πr(M) = 0 for r < 0

π0(M) = H0(M) = G

Hr(M) = 0 for r > 0

Now for any spectrum E, we define the corresponding spectrum with coefficients
in G by

EG = E ∧M

Example 6.6. SG means S ∧M = M , so a Moore spectrum of type G may be
written SG.

Proposition 6.7. 1. There exists an exact sequence

0 −→ πn(E)⊗G −→ (EG)n(X) −→ TorZ1 (πn−1(E)) −→ 0

(This need not split, e.g., take E = KO, G = Z2.)

2. More generally, there exists exact sequences

0 −→ En(X)⊗G −→ (EG)n(X) −→ TorZ1 (En−1(X), G) −→ 0

and (if X is a finite spectrum or G is finitely generated)

0 −→ En(E)⊗G −→ (EG)n(X) −→ TorZ1
(
En+1(X), G

)
−→ 0
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Proof.
∨
α S −→

∨
β S −→M is cofibering, hence the top row of

E ∧ (
∨
α S) E ∧

(∨
β S
)

E ∧M

∨
αE

∨
β E

≃≃

is a cofibering. Similarly

E ∧ (
∨
α S) ∧X E ∧

(∨
β S
)
∧X E ∧M ∧X

∨
αE ∧X

∨
β E ∧X

≃≃

is a cofibering. Therefore we get exact sequences

πn (
∨
αE) πn

(∨
β E
)

πn(E ∧M)

R⊗ πn(E) F ⊗ πn(E)

∼=
i⊗1

∼=

and more generally,

[S,
∨
αE ∧X]n [S,

∨
β E ∧X]n [S,E ∧M ∧X]n

R⊗ [S,E ∧X]n F ⊗ [S,E ∧X]n

∼= ∼=
i⊗1

[X,
∨
αE]−n [X,

∨
β E]−n [X,E ∧M ]−n

R⊗ [X,E]−n F ⊗ [X,E]−n

∼= ∼=
i⊗1

To pet the isomorphisms in the last case we assume either that X is a finite
spectrum or that α and β run over finite sets, which we can arrange if G is finitely
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generated. Now the cokernel and kernel of i⊗ l are, according to the case

G⊗ πn(E) and TorZ1 (G, πn(E))

G⊗ En(X) and TorZ1 (G,En(X))

G⊗ En(X) and TorZ1 (G,E
n(X))

Example 6.8. If H means an Eilenberg-Mac Lane spectrum of type Z, then HZ
does indeed mean the Eilenberg-MacLane spectrum of type G.

Proof. The Tor term is zero in

0 −→ Z⊗G −→ π∗(HG) −→ Tor1Z(Z, G) −→ 0

Proposition 6.9. If G is torsion-free, then

π∗(E)⊗G −→ π∗(EG)

and
E∗(X)⊗G −→ (EG)∗(X)

are isomorphisms, and if X is finite or G finitely generated,

E∗(X)⊗G −→ (EG)∗(X)

is an isomorphism.

Proof.

TorZ1 (π∗(E), G) = 0

TorZ1 (E∗(X), G) = 0

TorZ1 (E
∗(X), G) = 0
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Example 6.10. take G = Q, and take a map i : S −→ H representing a generator of
π0(H) = Z, Then i induces an equivalence SQ ≃−→ HQ, i.e., the Moore spectrum
for Q is the same as the Eilenberg-MacLane spectrum.

Proof. In the diagram

πn(S)⊗Q πn(SQ)

πn(H)⊗Q πn(HQ)

i∗⊗1

the top and bottom rows are isomorphism by 6.9. But by theorem of Serre, πn(S)⊗
Q = 0 for n ̸= 0; and for n = 0, i∗ : π0(S) −→ π0(H) is an isomorphism.

Example 6.11. The map i : S −→ H induces

π∗(X)⊗Q −→ H∗(X)⊗Q

that is, rational stable homotopy is the same as rational homology.

Proof. π∗(X) = S∗(X). Again by 6.9 the top and bottom rows of the following
diagram are isomorphisms.

S∗(X)⊗Q SQ∗(X)

H∗(X)⊗Q HQ∗(X)

By the previous example SQ −→ HQ is an equivalence, so the right-hand arrow
is an isomorphism.

Now we give a checklist of the standard spectra corresponding to the usual
generalized homology and cohomology theories.

(i) HG, the Eilenberg-MacLane spectrum for the group G, so that

πn(HG) =




G n = 0

0 n ̸= 0
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The theories (HG)∗, (GH)∗ are ordinary homology and cohomology with
coefficients in G.

For greater interest, let G∗ be a graded group, and define
H(G∗) =

∨
nH(Gn, n) ∼=

∏
nH(Gn, n); the second map is an equivalence

by 3.14 Then by the first form

H(G∗)r(X) =
∑

n

Hr−n(X;Gn)

and by the second

H(G∗)
r(X) =

∑

n

Hr+n(X;Gn)

(ii) S, the sphere spectrum. The corresponding homology and cohomology
theories are stable homotopy and stable cohomotopy. With all due respect
to anyone who is interested in them, the coefficient groups πn(S) are a mess.
There is a lot of detailed information known about them, but I won’t try to
summarize it.

(iii) K, the classical BU-spectrum. This is an Ω- or Ω0-spectrum; each even
term is space BU or Z× BU; each odd term is the space U.

The corresponding homology and cohomology theories are complex K-
homology and K-cohomology. In fact it is rather easy to see that for a
finite-dimensional CW-complex X, [X,Z × BU] agrees with the Atiyah-
Hirzebruch definition of K(X) or K̃(X) in terms of complex vector-bundles
over X. (Here we have to take K̃(X) if [X,Z×BU] means homotopy classes
of maps preserving the base-point, or K(X) if we work without base-points.)
This shows that our definition of K∗(X) agrees with the Atiyah-Hirzebruch
definition if X is a finite-dimensional CW-complex. For infinite dimensional
complexes our K∗(X) is the variant called “representable K-theor”, i.e., we
take [X,Z× BU] as the definition.
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The coefficient groups are given by the Bott periodicity theorem:

πn(K) =




Z (n is even)

0 (n is odd)

We have a map K ≃ S ∧K i∧1−−→ H ∧K −→ H (π∗(K)⊗Q). This map is
universal Chern character.

(iv) K-theory with coefficients. Suppose we are willing to localize Z at the prime
p; i.e., let Z(p) be the ring of fractions a/b with b prime to p. Then we can
form KZ(p). It splits as the sum or product of (p − 1) similar spectra E.
The typical one has

πn(E) =




Z(p) (n ≡ 0 (mod 2(p− 1))

0 otherwise

Of course you may just want to split K into the sum or product of d similar
Spectra, so that a typical one has

πn(E) =




R (n ≡ 0 (mod 2(p− 1))

0 otherwise

where R is a subring of Q. In this case one need only invert those primes
p such that p ̸≡ 1 (mod d). For example, for d = 2 take R = Z[1/2]. See
[Ada69].

(v) Connective K-theory. bu is a spectrum having a map bu −→ K such that

πr(bu) −→ πr(K) is an isomorphism for r ≥ 0, and

πr(bu) = 0 for r < 0

We may take the 0th term of bu to be Z× BU and the second term to be
BU. If X is a complex, we have

bu0(X) = K0(X)
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but the groups bun(X) and Kn(X) are different in general for n > 0.

(vi) Similarly, one can consider connective K-theory with coefficients.

(vii) KO, the classical BO-spectrum. This is an Ω- or Ω0-spectrum; every term
E8r is the space BO or Z × BO; every term E8r+4 is the space BSp or
Z × BSp, The other terms are the ones which com in Bott’s periodicity
theorem for the real case:

O,O/U,U/Sp,BSp,Sp/U,U/O,BO

The corresponding homology and cohomology theories are real K-homology
and real K-cohomology. In fact (as for the complex case) for a finite-
dimensional CW-complex X, [X,Z×BO] agrees with the Atiyah-Hirzebruch
definition of KO(X) or K̃O(X) in terms of real vector-bundles over X. So
our definition of KO∗(X) agrees with Atiyah and Hirzebruch if X is a
finite-dimensional CW-complex.

The coefficient groups are given by the Bott periodicity theorem:

n ≡ 0 1 2 3 4 5 6 7 8 (mod 8)

πn(KO) = Z Z2 Z2 0 Z 0 0 0 Z.

(viii) KO-theory with coefficients. The quickest thing to say is that by a theorem
of Reg Wood, KO ∧

(
S0 ∪η e2

)
≃ K. Here S0 ∪η e2 means the suspension

spectrum whose second term is CP2. The attaching map η is stable of
order 2. So SZ[1/2] η∧1−−→ SZ[1/2] factors through

(
S0 ∪2 e1

)
Z[1/2], which

is contractible. So

KZ[1/2] ≃ KO ∧
(
S0 ∪η e1

)
Z[1/2]

≃ KO ∧
(
S0
∨
S2

)
Z[1/2]

≃ KOZ[1/2]
(
S0
∨
S2

)

So the two summands into which KZ[1/2] splits are actually copies of
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KOZ[1/2], it follows that if you introduce a ring of coefficients containing
1/2, K cannot be distinguished from two copies of KO. Of course this is
classical, by a more direct proof.

(ix) Connective real K-theory. bo is a spectrum having a map bo −→ KO with
properties like those of bu −→ K

(x) KSC, the self-conjugate K-theory of Anderson and Green, The quickest way
to say it is this. To each bundle ξ we have its complex conjugate ξ which
has the same underlying space but a new C-module structure on each fiber;
the mew action of z is the old action of z. Stably, this is induced by a map
Z× BU

t−→ Z× BU. We can define a map of spectra T : K −→ K which
has components t in dimensions divisible by 4, and −t in dimensions of the
form 4r + 2. Now take KSC to be the fiber of

K
1−τ−−→ K

You can read its homotopy groups off from the exact sequence of this fibering:
we have

n ≡ 0 1 2 3 4 (mod 4)

πn(KO) = Z Z2 0 Z Z.

(xi) MO, the Thom spectrum of the group O . The corresponding theories are
unoriented bordism and cobordism. To connect our definition of MO∗(X)

with a geometrical definition in terms of manifolds one has to make use of a
transversality theorem at some point; see e.g [CF66].

We have
MO ≃ H (π∗(MO))

π∗(MO) is a polynomial algebra over Z2, with one generator in every di-
mension d > 0 such that d+ 1 is not a power of 2, The decomposition of
MO as a wedge of copies of HZ2, shows that the theories MO∗ and MO∗

are not very powerful, but they are good for studying unoriented manifolds.
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(xii) MSO. The corresponding theories are oriented bordism and cobordism. We
have1

MSO(2) ≃ H
(
π∗(MSO(2))

)

π∗(MSO(2)) is a direct sum of copies of Z and Z2. It is known but somewhat
complicated to describe.

(xiii) MU. The corresponding theories are complex bordism and cobordism.
π∗(MU) is a polynomial algebra over Z with generators of dimension
2, 4, 6, 8 . . . There is a very good map MU −→ K due to Atiyah-Hirzebrach,
Conner-Floyd [AH59], [CF66]. The theories MU∗, MU∗ are powerful.

(xiv) MU with coefficients. If one takes MUZ(p) , it splits as a sum of suspensions of
similar spectra. A typical one is BP, the Brown-Peterson spectrum. π∗(BP)
is a polynomial algebra over Z(p), on generators of dimension 2(pf − 1) for
f = 1, 2, . . .

(xv) MSpin, MSU, MSp. π∗(MSpin) and π∗(MSU) are known but π∗(MSp) is
not yet known.

For a general reference on bordism and cobordism, I suggest Stong [Sto68].
We now consider the elementary additive properties of generalized homology

and cohomology theories.
Recall that I had my theories E∗, E∗ defined on spectra, and then I defined

them on CW-complexes with base-point by saying

Ẽ∗(L) = E∗(L)

Ẽ∗(L) = E∗(L)

where L is the suspension spectrum of L. I should say how one defines relative
groups E∗(X,A), E∗(X,A). This is well enough known. One defines K/A to be
the quotient complex in which A is identified to a new point, which becomes the
base-point. In particular, X/∅ = X ∪ pt., also written X+. Alternatively, one
constructs the unreduced cone CA and forms X ∪ CA, taking the base-point at

1Adam’s originally just had MSO as the Eilenberg-Maclane spectrum, however this is only
true after localizing at 2.
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the vertex. This happens to be the same as the reduced cone X+ ∪ CA+. Then
one has a map X ∪ CA r−→ X/A, which is a homotopy equivalence. Then one
defines

E∗(X,A) = Ẽ∗(X ∪ CA) = Ẽ∗(X/A)

using the isomorphism r∗ to identify the last two groups. Similarly,

E∗(X,A) = Ẽ∗(X ∪ CA) = Ẽ∗(X/A)

Note that E∗(X,pt.) = Ẽ∗(X), as it should be, similarly for E∗(X,pt.) = Ẽ∗(X).

The induced homomorphism are obvious: a map f : X,A −→ Y,B induces

X ∪ CA Y ∪ CB

X/A Y/B

rr

and we take the induces homomorphisms of Ẽ∗ or Ẽ∗

Excision is now obvious. Suppose a CW-complex is the union of two subcom-
plexes U , V . Then

U/U ∩ V −→ U ∪ V/V

is actually a homeomorphism, so it surely induces an isomorphism of Ẽ. and Ẽ∗.
Homotopy is equally obvious, Now we would like to have boundary maps and
exactness. Given an inclusion X −→ Y , we have a cofibering

X+ i−→ Y + j−→ Y +/X+ ≃ Y + ∪ CX+ −→ ΣX+ Σi−→ ΣY + −→ . . .

So applying Ẽn we have the following exact sequence

En(X) En(Y ) En(Y,X) Ẽn(ΣX
+) Ẽn(ΣY

+) . . .

Ẽn−1(X
+) Ẽn−1(Y

+)

En−1(X) En−1(Y )

i∗ Σi∗

∼= ∼=

i∗

i∗

j∗

∂

250



Chapter 6: Homology and Cohomology

If define ∂ to be the composite indicated, the sequence will be exact, So in order
to fix the boundary map and have it natural I simply want to make some quite
explicit choice of isomorphism Ẽn(X

+) ∼= Ẽn+1(S
1 ∧X+).

Let’s recall that almost the last thing I did in Section 4 was to make the
smash-product a functor of maps of degrees other than zero. So I look at the
sphere-spectrum

S = (S0, S1, S2, . . . )

and the S1-spectrum
S = (S1, S2, S3, . . . )

and I make a map from one to the other by taking the identity map from Sn,
the nth component of S, to Sn, the (n− 1)-st component of S1. This gives me a
morphism of degree 1, say σ : S −→ S. (This is actually γ1 for the spectrum S, but
you are allowed to have forgotten about γ1 by now.) σ is clearly an equivalence.
Since I have smash-products of morphisms of nonzero degree, I am entitled to
form

X ≃ S ∧X τ∧1−−→ S1 ∧X

This is an equivalence too. (Of course, the smash-product of morphisms of nonzero
degree was defined in terms of the maps γr. and if you go back to the definition
and unwrap it, you find that this is just the map γ1 for the spectrum X.) I now
say that this map

X
σ∧1−−→ S1 ∧X

is the one to be used in inducing

En(X)
∼=−→ En+1(S

1 ∧X)

En(X)←− En+1(S1 ∧X)

This gets my suspension isomorphism in a form convenient for later work, and
makes the boundary and coboundary quite precise.

Now we would like to assure ourselves that all the contents of Eilenberg-
Steenrod, Chapter I, go through. But we can also put the question in this form:
is there anything in Ellenberg-Steenrod Chapter I which can’t be derived from
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our constructions? The grand conclusion should be that the homology groups of
sphere are the right thing, and we already know that

Ẽ = [Sn, E]r

∼= [S0, E]r−n

∼= πr−n(E)

The only problem is to compute π∗(E) for a given E, So what about the other
things in Eilenberg-Steenrod Chapter I? One very useful thing is the exact sequence
of a triple. Suppose we have CW-complexes X ⊃ Y ⊃ Z. We would like to know
that the following sequence is exact.

En(Y,Z)
i∗−→ En(X,Z)

j∗−→ En(X,Y )
∆−→ En−1(Y,Z) −→ . . .

Here ∆ is the composite

En(X,Y )
δ−→ En−1(Y )

j∗−→ En−1(Y, Z)

No special proof is needed. We know that the following is a cofibering:

Y +/Z+ −→ X+/Z+ −→ X+/Y + −→ Σ(Y +/Z+) −→ Σ(X+/Y +)

Therefore I know that I have an exact sequence

En(Y,Z)
i∗−→ En(X,Z)

j∗−→ En(X,Y )
∂−→ En−1(Y,Z)

i∗−→ En−1(X,Z)

provided that ∂ is induced by the top line of the following commutative diagram.

X+/Y + (X+/Z+) ∪ C(Y +/Z+) Σ(Y +/Z+)

X+ ∪ CY + ΣY +

jr
≃

q≃

j

qr

The rest of the diagram shows that δ is the same as ∆.
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There is however a moral to be drawn. We know how to display the various
groups and homomorphisms involved here in a sine wave diagram

E∗(Z) E∗(X) E∗(X,Y ) E∗(Y,Z)

E∗(Y ) E∗(X,Z) E∗(Y ) E∗(X,Z)

E∗(Y,Z) E∗(Z) E∗(X)

δ

δ

∆

δ

It is useful to know that we can obtain this whole diagram from a diagram of
cofiberings.

Lemma 6.12. Suppose given a commutative diagram

Z X

Y

h

gf

of CW-complexes with base-point. Then there exists following commutative
diagram of cofiber sequence.

Z X X ∪g CY Σ(Y ∪f CZ)

Y X ∪h CZ ΣY Σ(X ∪h CZ)

Y ∪f CZ ΣZ ΣX

f g i
f ′

j

Si

i g′
j

Σf Σg Σi

Σg′

h
i j

j

Σh

Here g′ is induced from g, etc. If the original diagram is only homotopy-
commutative, then by choosing a homotopy you can reduce to the case in which
it is commutative,

This is sometimes known as Verdier’s axiom. The proof is elementary. One
way to say it is this: you can assume without loss of generality that f and g

are inclusions, and then I have told you everything necessary already. Since the
constructions are elementary, they commute with suspensions on the right and
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carry over to spectra. So the corresponding lemma is true for spectra. In a fully
Bourbakized treatment this lemma would go in Section III.

The next thing we would like to know is the Mayer-Vietoris sequence, This
needs no special proof either. Suppose that we have a CW-complex which is
the union of two subcomplexes U and V . We wish to know the relationship of
E∗(U ∪ V ), E∗(U), E∗(V ), E∗(U ∩ V ). We may replace these by E∗(Σ(U ∪ V )+),
etc. So we take Σ(U ∩ V )+ and Σ(U+ ∨ V +) and make a map from one to the
other by taking i1-i2, where i1 : (U ∩ V )+ −→ U+ and i2 : (U ∩ V )+ −→ V + are
the inclusions. Now let me form the cofiber sequence

Σ(U∩V )+ −→ Σ(U+∨V +) −→ Σ(U+∨V +)∪i1−i2CΣ(U∩V )+ −→ Σ2(U∩V )+ −→ . . .

The third term is the same as

ΣU+ ∨ ΣV + ∪ Cyl(Σ(U ∩ V )+)

where the (reduced) cylinder is attached by i1 to SU+ and i2 to SV +. But this
is clearly has the same homotopy type as Σ(U ∪ V )+. So we get a cofibering

Σ(U ∩ V )+
i1−i2−−−→ Σ(U+ ∨ V +) −→ Σ(U ∪ V )+ −→ Σ2(U ∩ V )+ −→ . . .

Here the third map can be written either as

Σ(U ∪ V )+ −→ Σ(U ∪ V/V )
∼=←− Σ(U/U ∩ V ) −→ Σ2(U ∩ V )+

or as minus

Σ(U ∪ V )+ −→ Σ(U ∪ V/U)
∼=←− Σ(V/U ∩ V ) −→ Σ2(U ∩ V )+

So we get the following long exact sequence

En(U ∩V )
i1∗,−i2∗−−−−−→ En(U)⊕En(V )

j1∗,j2∗−−−−→ En(U ∪V )
∆−→ En−1(U ∩V ) −→ . . .
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Here the boundary is given by

En(U ∪ V ) −→ En(U ∪ V, V )
∼=←− En(U,U ∩ V )

∂−→ En−1(U ∩ V )

or minus

En(U ∪ V ) −→ En(U ∪ V,U)
∼=←− En(V,U ∩ V )

∂−→ En−1(U ∩ V )

We proceed similarly in cohomology.
Of course this construction also carries over to spectra. In fact for spectra

we need not bother about writing the suspension, because up to equivalence
everything is a suspension. We obtain:

Lemma 6.13. Suppose a CW-spectrum is the union of two closed subspectra U ,
V . Then there is a cofibering

U ∩ V (i1,−i2)−−−−−→ U ∨ V (j1,j2)−−−−→ U ∪ V −→ Susp(U ∩ V ) −→ . . .

in which the third morphism is

U ∪ V −→ U ∪ V/V
∼=←− U/U ∩ V −→ Susp(U ∩ V )

or minus
U ∪ V −→ U ∪ V/U

∼=←− V/U ∩ V −→ Susp(U ∩ V )

We may call this the Mayer-Vietoris cofibering.
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7. The Atiyah-Hirzebruch Spectral Sequence

In this section we study the machine which plays the same role in the study
of generalized homology theories as the Eilenberg-Steenrod uniqueness theorem
plays for ordinary homology theories. Let us suppose for convenience that X is a
finite-dimensional CW-complex.

Theorem. For each CW-spectrum F there exist spectral sequences

Hp(X;πq(F )) Fp+q(X)

Hp(X;πq(F )) F p+q(X).

p

p

These spectral sequences were probably first invented by G.W. Whitehead,
but he got them just after he wrote the paper [Whi56] in which they ought to
have appeared. They then became a folk-theorem and were eventually published
by Atiyah and Hirzebruch, who needed them for the case F = K.

It is probably desirable to give the first part of the construction in greater gen-
erality. Suppose I have a CW-complex X with a finite filtration by subcomplexes,

∅ = X−1 ⊂ X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xn = X.

To get the Atiyah-Hirzebruch spectral sequence you take Xr = Xr, the r-skeleton;
but other choices of filtration are possible, and sometimes useful. If we then
apply a functor F∗ or F ∗ to all the available pairs and triples, we get a maze of
interlocking exact sequences. The spectral sequence helps us find out way through
this maze and to distill out the essential information.

There are two ways to present the distillation. The first is due to Massey, and
it is the method of exact couples. We observe that we have an exact sequence,
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which we write in a triangle like this.

F∗(Xp−1) F∗(Xp)

F∗(Xp, Xp−1)

i∗

j∗∂

If we add over p, we obtain

∑
p F∗(Xp−1)

∑
p F∗(Xp)

∑
p F∗(Xp, Xp−1)

i∗

j∗∂

Here we interpret F∗(Xp) as 0 for p < 0 and as F∗(X) for p ≥ n. Now we
have a triangle of the following form.

A A

C

i∗

j∗∂

Massey called such a triangle an exact couple, and he showed that from such
an exact couple you could obtain a derived exact couple

A A

C

For example you define d1 = j∗∂ : C −→ C and define C ′ = Kerd1/Imd1.

Iterating this procedure, you obtain at C ′, C ′′, C ′′′, etc. all the terms of the
spectral sequence. A suitable reference is Massey [Mas52].

The second method probably goes back to Eilenberg, and it is essentially
equivalent; it consists simply of writing down explicit definitions of the desired
groups and homomorphisms. For example, we define

258



Chapter 7: The Atiyah-Hirzebruch Spectral Sequence

Zrp,q = Ker{Fp+q(Xp, Xp−1)
∂−→ Fp+q−1(Xp−1, Xp−r)}

= Im{Fp+q(Xp, Xp−r)
j∗−→ Fp+q(Xp, Xp−1)},

Brp,q = Im{Fp+q+1(Xp+r−1, Xp)
∂−→ Fp+q(Xp, Xp−1)}

= Ker{Fp+q(Xp, Xp−1)
i∗−→ Fp+q(Xp+r−1, Xp−1)},

check Brp,q ⊂ Zrp,q and define

Erp,q = Zrp,q/B
r
p,q.

We define the boundary maps dr by passing to the quotient from boundary maps
∂ in an appropriate way. We prove Kerdr/Imdr ∼= Er+1

p,q by diagram-chasing. For
r sufficiently large groups Zrp,q, Brp,q and Erp,q become independent of r, and may
be written Z∞

p,q, B
∞
p,q and E∞

p,q.

We filter the groups Fm(X) by taking the images of the maps

Fm(Xp) Fm(X);

the image of Fm(Xn) is the whole of Fm(X), the image of Fm(X−1) is zero,
and the quotients of the successive filtration subgroups are isomorphic to the
groups E∞

p,q for p+ q = m, as one sees with a little diagram-chasing.

So one gets a spectral sequence with

E1
p,q = Fp+q(Xp, Xp−1) Fp+q(X).p

A similar construction works in cohomology.

Now we revert to the case in which we take the skeleton filtration on X, so
that Xr = Xr and X = Xn. Then we have
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E1
p,q = Fp+q(X

p, Xp−1)

= F̃p+q(X
p/Xp−1)

= F̃p+q

(∨

α

Sp
)

=
∑

α

πq(F )

= Cp(X;πq(F )), the cellular chains of X with coefficients in πq(F ).

Now we need to know that we have the following commutative diagram.

E1
p,q

∼= Cp(X;πq(F ))

E1
p−1,q

∼= Cp−1(X;πq(F ))

d1 ∂

If so, then we have E2
p,q
∼= Hp(X;πq(F )). For this purpose there are two

alternative methods of proceeding.

(i) Suppose we know that πp(Sp) = Z. Then we argue that we simply have to
find one component of our map ∂, say

∑
α πq(F )

∑
β πq(F )

πq(F ) πq(F )

pβiα

One sees by diagram-chasing that this is the homomorphism of F̃p+q−1(S
p−1)

induced by the following map.

Sp−1 Xp−1 Xp−1/Xp−2 =
∨
β S

p−1 Sp−1

Here the first map is the attaching map for the cell indexed by α, and the
last is the projection to that indexed by β. This composite map has to have
a degree ν, and the homomorphism of F̃p+q−1(S

p−1) which it induces is
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multiplication by ν. But then ν is also the incidence number between the
cells epα and ep−1

β which figures in the definition of

∂ : Cp(X;G) Cp−1(X;G).

(ii) If you deny me the knowledge that πp(Sp) = Z, then I have to begin by
assuming that X is a finite simplicial complex. In this case

∂ : Cp(X;G) Cp−1(X;G)

is given by a combinatorial formula. I arrange the proof that

Fp+q(X
p, Xp−1) ∼= Cp(X;πq(F ))

with slightly more care and diagram-chasing, so as to incorporate a proof that
the isomorphism takes d1 onto the boundary ∂ given by the combinatorial
formula. This is essentially as in Eilenberg-Steenrod, where they prove the
uniqueness theorem. It issues in the result that when X is a finite simplicial
complex, you can take the H in

Hp(X;πq(F )) Fp+q(X)p

to mean finite simplicial homology. Of course this form of the result is
the one which includes the Eilenberg-Steenrod uniqueness theorem: for a
finite simplicial complex, any ordinary homology theory agrees with finite
simplicial homology with the same coefficients.

Example. Take F = K, the classical BU-spectrum, and X = CPn. We have

Hp(X;π−q(K)) =




Z p even, 0 ≤ p ≤ 2n, q even

0 otherwise.

The E2-term is illustrated as follows.
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Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

· · ·

· · ·

· · ·

q

p

Since the terms with either grading odd are zero, the spectral sequence collapses,
and

K2m(CPn) =
n∑

0

Z.

The Atiyah-Hirzebruch spectral sequence works for infinite complexes, but we
need the discussion of limits in the following section.

The spectral sequence also works for spectra X, provided they are bounded
below, i.e., there exists ν such that πr(X) = 0 for r < ν. For spectra which are
not bounded below you can still formally set up the spectral sequence, but the
convergence is so bad that the spectral sequence is unusable in practice.
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Let I be a partially ordered set of indices α. We assume I is directed, that is,
for any α, β there is a γ with α < γ and β < γ. An inverse system G of abelian
groups indexed over I consists of abelian groups Gα (one for each α ∈ I) and
homomorphisms gαβ : Gα ←− Gβ (one for each pair of indices α < β in I). Such
inverse systems form the objects of a category; a morphism θ : G −→ H in this
category is a list {θα} of homomorphisms θα : Gα → Hα such that θαgαβ = hαβθα

whenever α < β. We define lim←−G to be the subgroup of
∏
αGα consisting of

lists {xα}, xα ∈ Gα, which satisfy xα = gαβxβ for all α < β. The functor lim←− is
representable in this category; for let Z be the integers, and let Z be the inverse
system in which Zα = Z and zαβ = 1; then Hom(Z, G) ∼= lim←−G. Moreover, this
category has enough injectives. In fact, let I be an injective abelian group; let Iγ
be the inverse system in which

Gα =




I if γ ≤ α

0 otherwise
, gαβ =




1 if γ ≤ α

0 otherwise

Then Iγ is injective, and we get enough injectives by taking products of objects
like Iγ . We can therefore do homological algebra; in particular, we have the
functors

lim←−
iG = Exti(Z, G)

We have lim←−
0G = lim←−G.

Frequently we have I = {1, 2, 3, ...}. In this case we have an alternative construc-
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tion of lim←−
i. Given G, define a cochain complex C by

C0 = C1 =

∞∏

i

Gn, Cr = 0 for r > 1

δ{xn} = {xn − gn,n+1xn+1} for {xn} ∈ C0

Let Hi be the ith cohomology group of C. Then it is immediate that H0 = lim←−G.
To show that Hi ∼= lim←−

iG, it is sufficient to make the following remarks.

1. Let
0 −→ G′ i−→ G

j−→ G′′ −→ 0

be an exact sequence in the category of inverse systems, that is

0 −→ G′
α

iα−→ Gα
jα−→ G′′

α −→ 0

is exact for each α. Then we obtain an exact sequence of chain complexes

0 −→ C ′ −→ C −→ C ′′ −→ 0,

and hence an exact cohomology sequence

0 −→ H ′0 −→ H0 −→ H ′′0 −→ H ′1 −→ H1 −→ H ′′1 −→ 0.

2. We have constructed enough injectives with the property that all their
maps gαβ are epi. If all the maps gαβ are epi, it follows that H1 is zero. So H1

vanishes on enough injectives.

It follows that lim←−
iG ∼= Hi, and in particular lim←−

iG = 0 for i ≥ 2, assuming
I = {1, 2, 3, ...}. For a general I we would not have this.

Exercise. Let I = {1, 2, 3, ...}, and let G be an inverse system in which the maps
gn.m are mono; thus we may regard G1 as a topological group, topologized by
giving the decreasing sequence of subgroups Im g1n. Then lim←−

0G = 0 if and only
if G1 is Hausdorff; lim←−

1G = 0 if and only if G1 is complete. (Here we use words so
that "complete" does not imply "Hausdorff"; it means that each Cauchy sequence
has a limit, perhaps not unique.)
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Exercise. Let I = {1, 2, 3, ...}. We say that G satisfies the Mittag-Leffler condition
if for each n, there exists m such that Im gnp = Im gnm for p ≥ m; that is, Im gnp

converges. Show that if G satisfies the Mittag-Leffler condition then lim←−
1G = 0.1

The cochain complex used above is due to Milnor [Mil62]. He made the
following use of it. Let E∗ be a generalized cohomology theory satisfying the
wedge axiom; this axiom says that the canonical map

Ẽ∗
(∨

α

Xα

)
−→

∏

α

Ẽ∗(Xα)

is an isomorphism. (One can use E∗ instead of Ẽ∗ if one uses the disjoint union
instead of the wedge.) Suppose given an increasing sequence of CW-pairs (Xn, An)

and set
X =

⋃

n

Xn, A =
⋃

n

An

.

Proposition 8.1 (Milnor). There is an exact sequence

0 −→ lim←−
n

1Eq−1(Xn, An) −→ Eq(X,A) −→ lim←−
n

0Eq(Xn, An) −→ 0

Proof sketch. First consider the absolute case. Replace X by the telescope⋃
n[n, n+1]×Xn. Set U =

⋃
n[2n, 2n+1]×X2n, V =

⋃
n[2n+1, 2n+2]×X2n+1, so

that U consists of the even-numbered cylinders, V of the odd-numbered cylinders.
Using the wedge axiom, show that the part

Eq(U)⊕ Eq(V ) −→ Eq(U ∩ V )

of the Mayer-Vietoris sequence coincides, up to isomorphism, with the cochain
complex

∞∏

1

Eq(Xn) −→
∞∏

1

Eq(Xn)

considered above. When you have a sound proof for the absolute case, relativize

1It was believed at the time (because of a false proof) that in any abelian category, lim1

dissapears on Mittag-Leffler sequences. However in [Nee02] a counterexample was found.
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it.

Proposition 8.1 is evidently valid for spectra as well as spaces.
Sketch of applications. It may happen that we wish to construct a morphism

f : X −→ E, and can construct morphisms fn : Xn −→ E where {Xn} is an
increasing sequence of subspectra whose union is X. Suppose that fn|Xn−1

= fn−1.
Then 8.1 assures us that there is a morphism f : X −→ E whose restriction to
each Xn is fn. (In fact, so much is easy to prove directly by using the homotopy
extension property.) However, it is difficult to check that morphisms constructed
in this way have any good properties, unless one has a uniqueness statement; one
needs to know that f is determined by giving f |Xn

for all n. By 8.1, it is sufficient
to prove that lim←−

1[Xn, E]1 = 0.
For some applications it is important to know how inverse limits work in

spectral sequences. Suppose, for example, that we take a generalized cohomology
theory E∗ satisfying the wedge axiom and a CW-complex X containing an
increasing sequence of subcomplexes

∅ = X−1 ⊂ X0 ⊂ X1 ⊂ ... ⊂ Xn ⊂ ... ⊂ X.

Suppose also that lim←−
0E∗(X,Xn), lim←−

1E∗(X,Xn) = 0. (For example, we might
have X =

⋃
nXn). Applying E∗, we obtain a half-plane spectral sequence whose

term Ep,q is Ep+q(Xp, Xp−1). In what sense does this spectral sequence converge?
We may be interested in three conditions.

1. Observe that Ep,qr+1 −→ Ep,qr is mono for r > p. So we can ask that the map
Ep,q∞ −→ lim←−

r

Ep,qr should be iso.

2. Similarly, we can ask that lim←−
r

1Ep,qr = 0.

3. Let F p,q be the filtration quotients of Ep+q(X), so that we have exact
sequences

0 −→ Ep,q∞ −→ F p,q −→ F p−1,q+1 −→ 0

and F−1,q = 0. We can ask that the map En(X) −→ lim←−
0F p,n−p should be iso.

Theorem 8.2. Condition (ii) is equivalent to (i) plus (iii).
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In practice we verify condition (ii) (see exercise 8). We then use 8.2 to deduce
that conditions (i) and (iii) hold.

We can also generalize 8.1. For convenience I consider the absolute case. Let
X be any CW-complex which is the union of a directed set of subcomplexes Xα.
Then we have a spectral sequence

lim←−
α

pEq(Xα) =⇒
p
Ep+q(X)

This spectral sequence is convergent in the sense that 8.2 holds.
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9. Products

There are four external products we need: an external product in homology, an
external product in cohomology and two slant products. Perhaps I should give
some motivation for the slant products. The first thing to say is that I need one
of them for the duality theorems. The second is to point to the case of ordinary
homology. There the Eilenberg-Zilber theorem gives one chain equivalences

C∗(X)⊗ C∗(Y )
µ−→ C∗(X × Y )

∆−→ C∗(X)⊗ C∗(Y ).

So if we have a cycle u in X and a cycle v in Y ,then µ gives us a cycle µ(u⊗ v)
on X × Y , whence the external homology product

H∗(X)⊗H∗(Y )
µ∗−→ H∗(X × Y ).

Also we can dualize ∆ : if u is a cocycle in X and v is a cocycle in Y , then
∆∗(u⊗ v) is a cocycle in X × Y , whence the external product in cohomology

H∗(X)⊗H∗(Y )
∆∗
−−→ H∗(X × Y )

But you could also consider µ(x ⊗ y) as a function of x with y fixed, and then
dualize it, so as to get

C∗(X × Y ) −→ C∗(X) depending on y,

that is,
C∗(X × Y )⊗ C∗(Y ) −→ C∗(X),
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whence
H∗(X × Y )⊗H∗(Y ) −→ H∗(X).

Similarly, if we had a cocycle C∗(X)
u−→ Z, we could form

C∗(X × Y )
∆−→ C∗(X)⊗ C∗(Y )

u⊗1−−−→ C∗(Y ),

and so get
H∗(X)⊗H∗(X × Y ) −→ H∗(Y ).

If anything, these products are even more obvious with spectra. Suppose I want
to define products in generalized theories, say

E∗(X)⊗ F ∗(Y ) −→ G∗(X ∧ Y )

where X and Y are spectra, or

Ẽ∗(X)⊗ F̃ ∗(Y ) −→ G̃∗(X ∧ Y )

where X and Y are complexes with base-point. Then I should assume given a
pairing, i.e., a map µ : E ∧ F −→ G of spectra. But then I might as well consider
the case G = E ∧ F , because everything follows from it by naturality.

(i) The external product in cohomology is a map

Ep(X)⊗ F q(Y ) −→ (E ∧ F )p+q(X ∧ Y )

defined as follows. If

f ∈ Ep(X) = [X,E]−p, g ∈ F q(Y ) = [Y, F ]−q

then
f ∧ g ∈ [X ∧ Y,E ∧ F ]−p−q = (E ∧ F )p+q(X ∧ Y ).

The result is written f ⊼ g to distinguish it from the external product in
homology.
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(ii) The external product in homology is a map

Ep(X)⊗ Fq(Y ) −→ (E ∧ F )p+q(X ∧ Y ).

To define it, suppose

f ∈ Ep(X) = [S,E ∧X]p, g ∈ Fq(Y ) = [S, F ∧ Y ]q,

and form
S

f∧g−−→ E ∧X ∧ F ∧ Y 1∧c∧1−−−−→ E ∧ F ∧X ∧ Y.

This gives
f∧g ∈ (E ∧ F )p+q(X ∧ Y ),

the external product in homology.

In order to see the slant products, one way is to suppose X and Y are finite
complexes. Suppose given an element of E∗(X ∧ Y ), represented by a map

S
f−→ E ∧ (X ∧ Y )∗ = E ∧X∗ ∧ Y ∗,

and suppose given an element of F∗(Y ), represented by a map

S
g−→ F ∧ Y.

Then we can form

S
f∧g−−→ E∧ (X∗∧Y ∗)∧F ∧Y 1∧c∧1−−−−→ E∧F ∧ (X∗∧Y ∗)∧Y 1∧1∧1∧e−−−−−−→ E∧F ∧X∗;

this gives an element of (E ∧ F )∗(X). Similarly, suppose given an element of
E∗(X), represented by a map

S
f−→ E ∧X∗,

and an element of F∗(X ∧ Y ), represented by a map

S
g−→ F ∧X ∧ Y.
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Then we get

S
f∧g−−→ E ∧X∗ ∧ F ∧X ∧ Y 1∧c∧1∧1−−−−−−→ E ∧ F ∧X∗ ∧X ∧ Y 1∧1∧e∧1−−−−−−→ E ∧ F ∧ Y ;

this gives an element of (E ∧ F )∗(Y ).
It follows from §III that these constructions are equivalent to the following

ones, which work whether X and Y are finite or not.

(i) The first slant product is a map

Ep(X ∧ Y )⊗ Fq(Y ) −→ (E ∧ F )p−q(X).

If f : X ∧Y −→ E represents an element of Ep(X ∧Y ) and g : S −→ F ∧Y
represents an element of Fq(Y ), we form

X
1∧g−−→ X ∧ F ∧ Y 1∧c−−→ X ∧ Y ∧ F f∧1−−→ E ∧ F.

The result is written f/g.

(ii) The second slant product

Ep(X)⊗ Fq(X ∧ Y ) −→ (E ∧ F )−p+q(Y )

is defined by taking

X
f−→ E and S g−→ F ∧X ∧ Y

and forming

S
g−→ F ∧X ∧ Y c∧1−−→ X ∧ F ∧ Y f∧1∧1−−−−→ E ∧ F ∧ Y.

This result is written f\g.

Notes. The following conventions are useful.

(i) Fractions have the same variance as the numerator, and the opposite variance
of the denominator.
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(ii) Pay strict attention to the order of writing things on the page.

(a) Keep the cohomology variables (which are like functions) on the left of
the homology variables. (which are like arguments) That way both f/g
and f\g means composites in which you first apply g and afterwards
apply f .

(b) If you have a class in E∗(X ∧ Y ) and want to “divide off” a homology
class on one factor, by (a) you put the homology class on the right,
so let it be a class in F∗(Y ) rather than F∗(X). If you have a class in
F∗(X ∧ Y ) and you want to divide it into a cohomology class on one
factor, then by (a) you want to put the cohomology class on the left,
so let it be a class in E∗(X) rather than E∗(Y )

Of course, once we have the external products for spectra, we get them for
CW-complexes with base-point by specializing to suspension spectra. We then
get them for relative groups by turning the handle. Note that if X,A and Y,B

are pairs, then

X/A ∧ Y/B = X × Y/(A× Y ∪X ×B)

So for the relative groups we have the following products

Ep(X,A)⊗ F q(Y,B)
×−→ (E ∧ F )p+q(X × Y,A× Y ∪X ×B),

Ep(X,A)⊗ Fq(Y,B)
×
−→ (E ∧ F )p+q(X × Y,A× Y ∪X ×B),

Ep(X × Y,A× Y ∪X ×B)⊗ Fq(Y,B)
/−→ (E ∧ F )p−q(X,A),

Ep(X,A)⊗ Fq(X × Y,A× Y ∪X ×B)
\−→ (E ∧ F )−p+q(Y,B).

These products have various properties, of which we consider first naturality. I will
do this in the case of spectra, because there we have to provide for maps of degree
r. But first we need a remark about induced homomorphisms in cohomology. Let
f : X −→ Y be a morphism of degree −p, and let g : Y −→ E be a morphism of
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degree −q, i.e., an element of Eq(Y ). Then the obvious thing to do is define

f∗ : Eq(Y ) −→ Ep+q(X)

by:
(g)f∗ = gf.

But we usually write f∗ on the left, and so we take care to introduce the proper
sign:

f∗(g) = (−1)pqgf

For the next proposition assume for parts (i) to (iv) that we have the morphisms

f : X −→ X ′ and g : Y −→ Y ′

Proposition 9.1. (i) If u ∈ E∗(X ′), v ∈ F ∗(Y ′), then

(u ⊼ v)(f ∧ g)∗ = (−1)|f ||v|uf∗ ⊼ vg∗

or equivalently

(f ∧ g)∗(u ⊼ v) = (−1)|g||u|(f∗u) ⊼ (g∗v).

(ii) If u ∈ E∗(X), v ∈ F∗(Y ), then

(f ∧ g)∗(u∧v) = (−1)|g||u|(f∗u)∧(g∗v).

(iii) If u ∈ E∗(X ′ ∧ Y ′), v ∈ F∗(Y ), then

(u(f ∧ g)∗)/v = (−1)|f |(|g|+|v|)(u/g∗v)f
∗

or equivalently

((f ∧ g)∗u)/v = (−1)|g||u|f∗(u/g∗v).
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(iv) If u ∈ E∗(X ′), v ∈ F∗(X ∧ Y ), then

u\(f ∧ v)∗v = (−1)|g|(|u|+|f |)g∗((uf
∗)\v)

or equivalently

u\(f ∧ g)∗v = (−1)|g||u|+|g||f |+|f ||u|g∗((f
∗u)\v).

(v) With respect to morphisms E and F , all the naturality statements are the
same. Suppose given morphisms e : E −→ E′, f : F −→ F ′. Then

(e ∧ f)∗(u v) = (−1)|f ||u|(e∗u) (f∗v),

where the absence of a product symbol indicates that any of the four products
may be used.

The proofs are elementary diagram-chasing.

Proposition 9.2. All these products are biadditive.

We have two commutativity statements.

Proposition 9.3. (i) Suppose u ∈ Ep(X), v ∈ F q(Y ). Then

v ⊼ u = (−1)pqc∗c∗(u ⊼ v).

(ii) Suppose u ∈ Ep(X), v ∈ Fq(Y ). Then

v∧u = (−1)pq(c ∧ c)∗(u∧v).

Of course, if we are going to apply maps µ : E∧F −→ G and µ′ : F ∧E −→ G

such that:

E ∧ F

G

F ∧ E

c

µ

µ′
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is a commutative diagram, then this absorbs the effect of c : E ∧ F −→ F ∧ E.

We have eight associativity statements. The first statement is obvious: suppose

u ∈ Ep(X), v ∈ F q(Y ), w ∈ Gr(Z).

Then we have

(u ⊼ v) ⊼ w = u ⊼ (v ⊼ w) ∈ (E ∧ F ∧G)p+q+r(X ∧ Y ∧ Z).

If we were using pairings of spectra, we would suppose that they made the following
diagram commutative.

E ∧ F ∧G H ∧G

E ∧K L

λ∧1

l∧µ

π

ν

(Here, of course, H,K and L are some spectra fitting into such a diagram.)
Then we would obtain

(u ⊼ v) ⊼ w = u ⊼ (v ⊼ w) ∈ Lp+q+r(X ∧ Y ∧ Z).

The associativity law for the external homology product is entirely similar. With
our conventions, the other six appear as very natural rules for manipulating
fractions. For example, suppose

x ∈ E∗(X), v ∈ F ∗(Y ∧ Z), z ∈ G∗(Z).

Then x ⊼ v ∈ (E ∧ F )∗(X ∧ Y ∧ Z), (x ⊼ v)/z ∈ (E ∧ F ∧G)∗(X ∧ Y ).

On the other hand, v/z ∈ (F ∧G)∗(Y ), x⊼ (v/z) ∈ (E ∧F ∧G)∗(X ∧ Y ). We
have (x ⊼ v)/z = x ⊼ (v/z).

Theorem 9.4. (i) If x ∈ Ep(X), y ∈ F q(Y ), z ∈ Gr(Z) then

(x ⊼ y) ⊼ z = x ⊼ (y ⊼ z) ∈ (E ∧ F ∧G)p+q+r(X ∧ Y ∧ Z).
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(ii) If x ∈ Ep(X), u ∈ F q(Y ∧ Z), z ∈ Gr(Z) then

x ⊼ (u/z) = (x ⊼ u)/z ∈ (E ∧ F ∧G)p+q−r(X ∧ Y ).

(iii) If v ∈ Ep(X ∧ Z), y ∈ F q(Y ), u ∈ Gr(Y ∧ Z) then

v/(y\u) = [(1 ∧ c)∗(v ⊼ y)]/u ∈ (E ∧ F ∧G)p+q−r(X).

(iv) If t ∈ Ep(X ∧ Y ∧ Z), z ∈ Fq(Z), y ∈ Gr(Y ) then

(t/z)/y = t/(c∗(z∧y)) ∈ (E ∧ F ∧G)p−q−r(X).

(v) If y ∈ Ep(Y ), x ∈ F q(X), t ∈ Gr(X ∧ Y ∧ Z) then

y\(x\t) = (c∗(y ⊼ x))\t ∈ (E ∧ F ∧G)−p−q+r(Z).

(vi) If w ∈ Ep(X ∧ Y ), y ∈ Fq(Y ), v ∈ Gr(X ∧ Z) then

(w/y)\v = w\[(c ∧ 1)∗(y∧v)] ∈ (E ∧ F ∧G)−p+q+r(Z).

(vii) If x ∈ Ep(X), w ∈ Fq(X ∧ Y ), z ∈ Gr(Z) then

(x\w)∧z = x\(x∧z) ∈ (E ∧ F ∧G)−p+q+r(Y ∧ Z).

(viii) If x ∈ Ep(X), y ∈ Fq(Y ), z ∈ Gr(Z) then

(x∧y)∧z = x∧(y∧z) ∈ (E ∧ F ∧G)p+q+r(X ∧ Y ∧ Z).

The proofs, as usual, are done by diagram-chasing.
Now we recall the sphere spectrum S acts as a unit for the smash-product. It

follows that we can identify
Ep(S) = [S,E]p

with
E−p(S) = [S,E]p.
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Proposition 9.5. Suppose s is of this sort, say s ∈ [S,E]∗, and y ∈ F∗(Y ). Then

s\y = s ⊼ y ∈ (E ∧ F )∗(Y ).

Suppose t is of this sort, say t ∈ [S, F ]∗, and x ∈ E∗(X). Then

x/t = x ⊼ t ∈ (E ∧ F )∗(X).

Suppose the result is of this sort, say x ∈ E∗(X), y ∈ F∗(X). Then

x\y = x/y ∈ [S,E ∧ F ]∗.

The proof is diagram-chasing. The third case gives the Kronecker product
⟨x, y⟩. The explicit definition is as follows. Suppose given X x−→ E, S y−→ F ∧X.
Form

S
y−→ F ∧X c−→ X ∧ F x∧1−−→ E ∧ F.

The naturality properties of the Kronecker product are obvious and well known.

Proposition 9.6. Suppose given f : X −→ X ′ (of any degree), x ∈ E∗(X ′),
y ∈ F∗(X). Then

⟨x′f∗, y⟩ = ⟨x′, f∗y⟩,

or equivalently
⟨f∗x′, y⟩ = (−1)|f ||x

′|⟨x′, f∗y⟩.

We know that in the classical case the two slant products are obtained from
the two more usual products by dualizing; in other words, they are related to
them by the Kronecker product. We now state this for the generalised case.

Proposition 9.7. (i) Suppose u ∈ Ep(X ∧ Y ), y ∈ Fq(Y ), x ∈ Gr(X). Then

⟨u/y, x⟩ = ⟨u, c∗(y∧x)⟩ ∈ [S,E ∧ F ∧G]−p+q+r.

(ii) Suppose y ∈ Ep(Y ), x ∈ Gq(X), u ∈ Gr(X ∧ Y ). Then

⟨y, x\u⟩ = ⟨c∗(y ⊼ x), u⟩ ∈ [S,E ∧ F ∧G]−p+q+r.
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Proof. ⟨u/y, x⟩ may be viewed as either (u/y)/x or (u/y)\x. So part (i) follows
by substituting into the appropriate associativity relation, number (iv) or (vi) on
the list. Similarly for part (ii), using (v) or (iii).

These formulae are useful as a heuristic guide. For example, suppose you know
some formula for the product y ⊼ x, and want to know the corresponding formula
for the product x\u. I really have in mind something like a coboundary formula,
but I haven’t yet done quite enough to use this case as an illustration, so let me
consider a naturality formula. It’s rather trivial, but it will do as an illustration of
the method. Suppose y ∈ Ep(Y ), x ∈ F q(X), u ∈ Gp+q(X ′ ∧ Y ′), g : Y ′ −→ Y ,
f : X ′ −→ X. We write down:

⟨(y ⊼ x)(g ∧ f)∗, c∗u⟩ = (−1)|x||g|⟨yg∗ ⊼ xf∗xf∗, c∗u⟩

(−1)|f ||g|⟨y ⊼ x, c∗(f ∧ g)∗u⟩ (−1)|x||g|⟨yg∗, xf∗\u⟩

(−1)|f ||g|⟨y, x\(f ∧ g)∗u⟩ (−1)|x||g|⟨y, g∗(xf∗\u)⟩.

If we knew that pairing with y were non-singlular, we would have

(−1)|f ||g|x\(f ∧ g)∗u = (−1)|x||g|g∗((xf∗)\u).

But this argument is indeed a valid proof, because we can take

y = 1 ∈ Y 0(Y ).

Proposition 9.8. Suppose x∗ ∈ Ep(X), y∗ ∈ F q(Y ), x∗ ∈ Gr(X), y∗ ∈ Hs(Y ).
Then

⟨x∗ ⊼ y∗, x∗ ⊼ y∗⟩ = (−1)qr(1 ∧ c ∧ 1)∗⟨x∗, x∗⟩⟨y∗, y∗⟩.

Here 1 ∧ c ∧ 1 : E ∧G ∧ F ∧H −→ E ∧ F ∧G ∧H.

Proof. Apply 9.7, commutativity, and associativity law (ii) or (vii).
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Now we would like to write down the properties of our products for boundary
and coboundary maps, One of them is immediate, that for the Kronecker product.
We simply observe that the boundary or coboundary is induced by a map

X/A −→ A(of degree -1);

we have a naturality formula for the Kronecker product valid for morphisms of
any degree, so we get the following formula.

If a ∈ EP (A), u ∈ Fq(X,A) then ⟨a, ∂u⟩ = ⟨aδ, u⟩ = (−1)p⟨δa, u⟩, where we
make the same sign conventions as before about f∗a.

In order to see what to expect in the other cases, let’s go back to the classical
case, and suppose given

u ∈ C∗(X), ∂u ∈ C∗(A), v ∈ C∗(Y ), ∂v ∈ C∗(B).

Then we expect to have

∂(uv) = (∂u)v + (−1)|u|u(∂v) ∈ C∗(A× Y ∪X ×B).

However the separate terms (∂u)v and u(∂v) do not define elements of H∗(A×
Y ∪X ×B), so we have to work instead in

H∗(A× Y ∪X ×B,A×B) = H∗(A× Y,A×B)⊕H∗(X ×B,A×B).

Here (∂u)v defines an element in the first summand and u(∂v) in the second.

Additional motivation can be obtained if we consider the possibility of argu-
ments using the five lemma. We have the exact sequence

Ep(A) −→ Ep(X) −→ Ep(X,A) −→ Ep−1(A).

If we tensor it with Fq(Y,B) we get the left-hand column of the following diagram,
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Ep(A)⊗ Fq(Y,B) (E ∧ F )p+q(A× Y,A×B)

(E ∧ F )p+q(A× Y ∪X ×B,X ×B)

Ep(X)⊗ Fq(Y,B) (E ∧ F )p+q(X × Y,X ×B)

Ep(X,A)⊗ Fq(Y,B) (E ∧ F )p+q(X × Y,A× Y ∪X ×B)

(E ∧ F )p+q−1(A× Y ∪X ×B,X ×B)

Ep−1(A)⊗ Fq(Y,B) (E ∧ F )p+q−1(A× Y,A×B)

×

∼=

×

×

∂⊗1

∂

×
∼=

I

p

IIp

The oblique isomorphisms identify the second column with the exact sequence
of a triple. The section of the diagram labeled I is commutative by the naturality
of x , and we would like to know that the section labeled II is also commutative.
So we wish to obtain commutative diagrams of the following form.

Ep(X,A)⊗ Fq(Y,B) Ep−1(A)⊗ Fq(Y,B)

(E ∧ F )p+q−1(A× Y,A×B)

(E ∧ F )p+q(X × Y,A× Y ∪X ×B) (E ∧ F )p+q−1(A× Y ∪X ×B,X ×B)

Ep(X,A)⊗ Fq(Y,B) (Ep(X,A)⊗ Fq−1(B)

(E ∧ F )p+q−1(X ×B,A×B)

(E ∧ F )p+q(X × Y,A× Y ∪X ×B) (E ∧ F )p+q−1(A× Y ∪X ×B,A× Y )

×

∂⊗1

×

∼=
∂

×

1⊗∂

×

∼=
∂

Here we need a convention about signs. If θ : G → G′ and φ : H → H ′ are
homomorphisms of graded groups, their tensor product is defined by

(θ ⊗ φ)(g ⊗ h) = (−1)|φ||g|θg ⊗ φh.

In particular, 1⊗ ∂ is defined by (1⊗ ∂)(uθv) = (−1)|u|u⊗ ∂v.

281



Chapter 9: Products

Of course we propose to obtain our commutative diagrams by applying the
results we already have to geometrical diagrams.

Lemma 9.9. The following diagrams are commutative.

(i)

A∧Y ∪X∧B
X∧B

X∧Y
X∧B

X∧Y
A∧Y ∪X∧B

A∧Y ∪X∧B
X∧B

A∧Y
A∧B

X
A ∧

Y
B A ∧ Y

B

J

∼=

∼=

j∧1

(ii)

A∧Y ∪X∧B
A∧Y

X∧Y
A∧B

X∧Y
A∧Y ∪X∧B

A∧Y ∪X∧B
A∧Y

X∧B
A∧B

X
A ∧

Y
B

X
B ∧B

J′

∼=

∼=

1∧j′
∼=

Notes. The diagrams are valid as they stand for spectra. The maps J, j, J ′, j′

are the appropriate maps from the cofibre sequences, and they have degree
−1. They may be replaced by maps of degree zero into the appropriate terms
S(A∧Y ∪X∧B

X∧B ), S(A∧Y
A∧B ), etc, except that 1 ∧ j′ in (ii) has to be replaced by

X

A
∧ Y
B

1∧j′−−−→ X

A
∧ S1 ∧B c∧1−−→ S1 ∧ X

A
∧B.

With this interpretation the diagrams are valid if X,Y, etc. are CW-complexes.
For the case of spectra, the two ways of writing the diagrams are equivalent,
because we have the canonical equivalence Z ∼ S1 ∧ Z of degree 1.

It is sufficient to prove the commutativity of one of the diagrams, say the
first; the other then follows by applying c (and checking that J corresponds to
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J ′). But it is trivial to check the first diagram for CW-complexes by constructing
the appropriate maps of (X ∪CA) ∧ (Y ∪CB). The construction commutes with
suspension on the right, and so passes to CW-spectra.

We now get the following eight commutative diagrams by applying Proposition
9.1 to the diagrams in Lemma 9.9. The morphisms J, j and sign conventions are
as above.

Theorem 9.10. The following diagrams are commutative.

Ep(A)⊗ F q(YB ) Ep+1(XA )⊗ F q(YB )

(E ∧ F )p+q(A ∧ Y
B ) (E ∧ F )p+q+1(XA ∧

Y
B )

(E ∧ F )p+q(A∧Y ∪X∧B
A∧B ) (E ∧ F )p+q+1( X∧Y

A∧Y ∪X∧B )

⊼

j∗⊗1

⊼

∼=

J∗

Ep(XA )⊗ F q(B) Ep(XA )⊗ F q+1(YB )

(E ∧ F )p+q(XA ∧B) (E ∧ F )p+q+1(XA ∧
Y
B )

(E ∧ F )p+q(A∧Y ∪X∧B
A∧Y ) (E ∧ F )p+q+1( X∧Y

A∧Y ∪X∧B )

⊼

1⊗j∗

⊼

∼=

J∗

Ep(A∧Y ∪X∧B
X∧B )⊗ Fq

(
Y
B

)
Ep+1( X∧Y

A∧Y ∪X∧B )⊗ Fq(YB )

Ep(A ∧ Y
B )⊗ Fq(YB ) Ep+1(XA ∧

Y
B )⊗ Fq(YB )

(E ∧ F )p−q(A) (E ∧ F )p−q+1(XA )

∼=⊗1

J∗⊗1

/ /

j∗

283



Chapter 9: Products

Ep(A∧Y ∪X∧B
A∧Y )⊗ Fq(YB ) Ep+1( X∧Y

A∧Y ∪X∧B )⊗ Fq(YB )

Ep(XA ∧B)⊗ Fq(YB ) Ep+1(XA ∧
Y
B )⊗ Fq(YB )

Ep(XA ∧B)⊗ Fq−1(B) (E ∧ F )p−q+1(XA )

∼=⊗1

J∗⊗1

1⊗j∗ /

/

Ep(A)⊗ Fq( A∧Y
A∧Y ∪X∧B ) Ep(A)⊗ Fq−1(

A∧Y ∪X∧B
X∧B )

Ep(A)⊗ Fq(XA ∧
Y
B ) Ep(A)⊗ Fq−1(A ∧ Y

B )

Ep+1(XA )⊗ Fq(XA ∧
Y
B ) (E ∧ F )−p+q−1(

Y
B )

1⊗J∗

j∗⊗1 \

1⊗∼=

\

Ep(XA )⊗ Fq( X∧Y
A∧Y ∪X∧B ) Ep(XA )⊗ Fq−1(

A∧Y ∪X∧B
A∧Y )

Ep(XA )⊗ Fq(XA ∧
Y
B ) Ep(XA )⊗ Fq−1(

X
A ) ∧B

(E ∧ F )−p+q(YB ) (E ∧ F )−p+q−1(B)

1⊗J∗

\ \

1⊗∼=

j∗

Ep(XA )⊗ Fq(YB ) Ep−1(A)⊗ Fq(YB )

(E ∧ F )p+q(XA ∧
Y
B ) (E ∧ F )p+q−1(A ∧ Y

B )

(E ∧ F )p+q( X∧Y
A∧Y ∪∧B ) (E ∧ F )p+q−1(

A∧Y ∪X∧B
A∧Y )

∧

j1⊗1

∧

∼=
J∗
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Ep(XA )⊗ Fq(YB ) Ep(
X
A )⊗ Fq−1(B)

(E ∧ F )p+q(XA ∧
Y
B ) (E ∧ F )p+q−1(

X
A ∧B)

(E ∧ F )p+q( X∧Y
A∧Y ∪X∧B ) (E ∧ F )p+q−1(

A∧Y ∪X∧B
A∧Y )

∧

1⊗j∗

∧

∼=
J∗

By an immediate translation, we obtain commutative diagrams for the bound-
ary and coboundary in relative groups of pairs.

Theorem 9.11. The following diagrams are commutative.

Ep(A)⊗ F q(Y,B) Ep+1(X,A)⊗ F q(Y,B)

(E ∧ F )p+q(A× Y,A×B)

(E ∧ F )p+q(A× Y ∪X ×B,X ×B) (E ∧ F )p+q+1(X × Y,A× Y ∪X ×B)

X̄

δ⊗1

X̄

∼=
δ

Ep(X,A)⊗ F q(B) Ep(X,A)⊗ F q+1(Y,B)

(E ∧ F )p+q(X ×B,A×B)

(E ∧ F )p+q(A× Y ∪X ×B,A× Y ) (E ∧ F )p+q+1(X × Y,A× Y ∪X ×B)

X̄

1⊗δ

X̄

∼=
δ

Ep(A× Y ∪X ×B,X ×B)⊗ Fq(Y,B) Ep+1(X × Y,A× Y ∪X ×B)⊗ Fq(Y,B)

Ep(A× Y,A×B)⊗ Fq(Y,B)

(E ∧ F )p−q(A) (E ∧ F )p−q+1(X,A)

∼=⊗1

δ⊗1

/

\

δ
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Ep(A× Y ∪X ×B,A× Y )⊗ Fq(Y,B) Ep+1(X × Y,A× Y ∪X ×B)⊗ Fq(Y,B)

Ep(X ×B,A×B)⊗ Fq(Y,B)

Ep(X ×B,A×B)⊗ Fq−1B (E ∧ F )p−q+1(X,A)

∼=⊗1

δ⊗1

/

1⊗∂
/

Ep(A)⊗ Fq(X × Y,A× Y ∪X ×B) Ep(A)⊗ Fq−1(A× Y ∪X ×B,X ×B)

Ep(A)⊗ Fq−1(A× Y,A×B)

Ep+1(X,A)⊗ Fq(X × Y,A× Y ∪X ×B) (E ∧ F )−p+q−1(Y,B)

δ⊗1

1⊗∂

1⊗∼=

\
\

Ep(X,A)⊗ Fq(X × Y,A× Y ∪X ×B) Ep(X,A)⊗ Fq−1(A× Y ∪X ×B,A× Y )

Ep(X,A)⊗ Fq−1(X ×B,A×B)

(E ∧ F )−p+q(Y,B) (E ∧ F )−p+q−1(B)

\

1⊗∂

1⊗∼=

\
∂

Ep(X,A)⊗ Fq(Y,B) Ep−1(A)⊗ Fq(Y,B)

(E ∧ F )p+q−1(A× Y,A×B)

(E ∧ F )p+q(X × Y,A× Y ∪X ×B) (E ∧ F )p+q−1(A× Y ∪X ×B,X ×B)

X

∂⊗1

X

∼=
∂

Ep(X,A)⊗ Fq(Y,B) Ep(X,A)⊗ Fq−1(B)

(E ∧ F )p+q−1(X ×B,A×B)

(E ∧ F )p+q(X × Y,A× Y ∪X ×B) (E ∧ F )p+q−1(A× Y ∪X ×B,A× Y )

X

1⊗∂

X

∼=
∂

Unfortunately, we need still more diagrams. Let’s return to our original
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formula in the classical case,

∂(uv) = (∂u)v + (−1)|u|u(∂v).

We have written a relation between ∂(uv) and (∂u)v by working in a group where
we can ignore u(∂v), and a relation between ∂(uv) and u(∂v) by working in a
group where we can ignore (∂u)v. It remains to write a relation between

(∂u)v and u(∂v)

by working in a group where we can ignore ∂(uv). And in this case the answer is
obvious. We have to say that the following diagram commutes up to a sign −1.

Hp(X,A)⊗Hq(Y,B)

Hp−1(A)⊗Hq(Y,B) Hp(X,A)⊗Hq−1(B)

(−1)

Hp+q−1(A× Y,A×B) Hp+q−1(X ×B,A×B)

Hp+q−1(X × Y,A×B)

∂⊗1 1⊗∂

× ×

We can easily prove such a result for the generalised case. Consider the
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following diagram.

Ep(X,A)⊗ F q(Y,B)

Ep−1(A)⊗ Eq(Y,B) Ep(X,A)⊗ Fq−1(B)

(E ∧ F )p+q(X × Y,A× Y ∪X ×B)

(E ∧ F )p+q−1(A× Y ∪X ×B,X ×B) (E ∧ F )p+q−1(A× Y ∪X ×B,A× Y )

(E ∧ F )p+q−1(A× Y ∪X ×B,A×B)

(E ∧ F )p+q−1(A× Y,A×B) (E ∧ F )p+q−1(X ×B,A×B)

(E ∧ F )p+q−1(X × Y,A×B)

∂⊗1 1⊗∂

×

× ×
∂1

∂ ∂

i∗

∼= ∼=

The diagram displays

(E ∧ F )p+q−1(A× Y ∪X ×B,A×B)

as the direct sum

(E ∧ F )p+q−1(A× Y,A×B)⊕ (E ∧ F )p+q−1(X ×B,A×B).

The composite i∗∂1 is zero, so the two paths from (E∧F )p+q(X×Y,A×Y ∪X×B)

to (E ∧ F )p+q−1(X × Y,A × B) around the outside of the lower hexagon gives
maps whose sum is zero. This is the Eilenberg-Steenrod hexagon lemma. Of
course, we know the result geometrically by 6.13. Now fill in the rest of the
diagram by 9.11.

Proceeding in this way for the four products we obtain four more diagrams
listed in the following theorem.
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Theorem 9.12. (i) The following diagram is commutative up to a sign −1.

Ep(A)⊗ F q(B)

Ep+1(X,A)⊗ F q(B) Ep(A)⊗ F q+1(B)

(E ∧ F )p+q−1(X ×B,A×B) (−1) (E ∧ F )p+q−1(A× Y,A×B)

(E ∧ F )p+q−1(A× Y ∪X ×B,X ×B) (E ∧ F )p+q−1(A× Y ∪X ×B,X ×B)

(E ∧ F )p+q−1(A× Y ∪X ×B)

δ⊗1 1⊗δ

× ×

∼= ∼=

(ii)

Ep(A× Y,A×B)⊗ Fq(Y,B) (E ∧ F )p−q(A)

Ep(X × Y,A×B)

Ep(X ×B,A×B)⊗ Fq−1(B) (E ∧ F )p−q+1(X,A)

∂

/

δ

j∗

i∗

/

If u ∈ Ep(X × Y,A×B) and y ∈ Fq(Y,B), then

δ((i∗u)/y) = (−1)p+1(j∗u)/(∂y).

(iii)
(E ∧ F )−p+q(Y,B) Ep(A)⊗ Fq(A× Y,A×B) Fq(A× Y ∪X ×B,X ×B)

Fq(A× Y,X ∪B)

(E ∧ F )−p+q−1(B) Ep+1(X,A)⊗ Fq(X ×B,A×B) Fq(A× Y ∪X ×B,A× Y )

∂

\ ∼=

δ

θ

φ

\ ∼=

If a ∈ Ep(A) and u ∈ Fq(A× Y ∪X ×B) then

∂(a\(θu)) = −(δa)\(φu).
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(iv) The following diagram is commutative up to a sign −1.
Ep(X,A)⊗ Fq(Y,B)

Ep−1(A)⊗ Fq(Y,B) Ep(X,A)⊗ Fq−1(B)

(−1)

(E ∧ F )p+q−1(A× Y,A×B) (E ∧ F )p+q−1(X ×B,A×B)

(E ∧ F )p+q−1(X × Y,A×B)

∂⊗1 1⊗∂

× ×

Internal Products

Following the idea of Lefschetz, these products are introduced by considering
the diagonal map

∆ : X −→ X ×X.

Here X is a CW-complex. Given u ∈ Ep(X,A), v ∈ F q(Y,B), we have defined

u×v ∈ (E ∧ F )p+q(X ×X,A×X ∪X ×B)

and we can define

u ∪ v = ∆∗(u×v) ∈ (E ∧ F )p+q(X,A ∪B).

Similarly, given u ∈ Ep(X,A), v ∈ Fq(X,A ∪B), we can form

∆∗v ∈ Fq(X ×X,A×X ∪X ×B)

and define
u ∩ v = u\∆∗v ∈ (E ∧ F )−p+q(X,B).

Conversely, the × and \ products can be recovered from ∪ and ∩. Let p1 :

X × Y −→ X, p2 : X × Y −→ Y be the projections on the two factors.

Proposition 9.13. If u ∈ Ep(X,A), v ∈ F q(Y,B) then

u×v = (p∗1u) ∪ (p∗2u) ∈ (E ∧ F )p+q(X × Y,A× Y ∪X ×B).

290



Chapter 9: Products

If u ∈ Ep(X,A) and v ∈ Fq(X × Y,A× Y ∪X ×B) then

u\v = p2∗((p
∗
1u) ∩ v) ∈ (E ∧ F )−p+q(Y,B).

The proof is immediate, by naturality.
Since we can recover the Kronecker product from either slant product, we can

recover it from the cap product.

Proposition 9.14. If u ∈ Ep(X,A), v ∈ Fq(X,A) then

⟨u, v⟩ = ε∗(u ∩ v) ∈ π−p+q(E ∩ F ),

where ε : X −→ pt. is the constant map.

All the properties of the internal products can be deduced from those of the
external ones, by naturality. The list of associativity properties, however, will
look less symmetrical than in the case of the external products.
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10. Duality in Manifolds

In the classical case, to have a duality theorem relatingHr(M ;A) andHm−r(M ;A)

we need to assume M is orientable, and then we can take A to be any abelian
group. Otherwise, we can suppose that M is non-orientable; then either we must
use twisted coefficients, or we must suppose that A is a module over Z2. The point
is that an orientable manifold has classes in Z-homology and cohomology which
enter into the statements and the proofs; and even a non-orientable manifold has
such classes if we use homology and cohomology with coefficients in Z2.

To generalise this situation, G.W. Whitehead introduced the notion of a ring-
spectrum and a module-spectrum. The idea is that if M is orientable with respect
to E∗ and E∗, where E is a ring-spectrum, then the duality theorem will hold for
F∗ and F ∗, where F is any module-spectrum over E.

Example. To illustrate the situation above, take

E = H, F = HA for any abelian group A;

or
E = HZ2, F = HA for any Z2-module A.

A spectrum E is said to be a ring-spectrum if it has given maps µ : E∧E −→ E,
η : S −→ E of degree 0 such that the following diagrams commute.

E ∧ E ∧ E E ∧ E S ∧ E E ∧ E

E E

E ∧ E E E ∧ S E ∧ E

1∧µ

µ∧1

µ

η∧1

µ

1

µ 1∧η
µ
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Let E is a ring-spectrum. We say a spectrum F is a module-spectrum over E
if it has given a map ν : E ∧F −→ F of degree 0 such that the following diagrams
commute.

E ∧ E ∧ F E ∧ F S ∧ F E ∧ E

E ∧ F F F F

1∧ν

µ∧1

ν

η∧1

∼= ν

ν 1

A ring-spectrum E is said to be commutative if the following diagram com-
mutes.

E ∧ E E

E ∧ E

µ

c
µ

If E is a ring-spectrum, we can use the product map µ : E∧E −→ E to obtain
products with values in E∗ or E∗ instead of (E ∧ E)∗ or (E ∧ E)∗. For example,
we obtain a cup-product

Ep(X,A)⊗ Eq(X,B) −→ Ep+q(X,A ⌣ B).

Similarly for an action map ν : E ∧ E −→ F .

Practically all the examples of spectra which I have mentioned are, in fact,
ring-spectra. I will only illustrate the case E = H. We have

πr(H ∧H) = Hr(H) =




0 (r < 0)

Z (r = 0)

so that by the Hurewicz theorem,

H0(H ∧H) = Z.
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Alternatively, by the Kunneth theorem

H0(H ∧H) ∼= H0(H)⊗H0(H) ∼= Z⊗ Z ∼= Z.

By the universal coefficient theorem,

H0(H ∧H) = Hom(Z,Z) = Z.

Therefore I can take a map ν : H∧H −→ H realizing the product map Z⊗Z −→ Z
of π0.

Alternatively, realize H ∧H with no stable cells of dimension d < 0. Map the
cells of dimension 0 in the indicated way, and similarly for the cells of dimension
1. Now the map extends over the higher stable cells of H ∧H, because the higher
homotopy groups of H are zero. For the same reason, the map is unique up to
homotopy.

For similar reasons, if R is a ring then HR is a ring-spectrum; if M is an
R-module then HM is a module-spectrum over HR.

So far our generalised homology and cohomology theories have been defined
on CW-pairs X,A. Now we would like to extend them to other categories of pairs.

We begin with the singular extension of E∗ and E∗. Take any pair X,A and
let X ′, A′ be a weakly equivalent CW-pair. Define the singular E-homology and
E-cohomology groups of X,A to be

Ep(X,A) = Ep(X
′, A′),

Ep(X,A) = Ep(X ′, A′).

The result is independent of the choice of X ′, A′, up to a canonical isomorphism.

All the properties of Ep and Ep carry over very well, except for excision.
Here one has to be careful. Let U ∪ V be a space which comes as the union of
two subspaces U and V intersecting in U ∩ V . Then we can certainly take a
CW-complex W ′ equipped with a weak equivalence

W ′ w−→ U ∩ V,

295



Chapter 10: Duality in Manifolds

and we can enlarge W ′ on the one hand to a CW-complex U ′ admitting a weak
equivalence

U ′ u−→ U

extending w, and on the other hand to a CW-complex V ′ admitting a weak
equivalence

V ′ v−→ V

also extending w. Then we can put them together to get

U ′ ∪W ′ V ′ −→ U ∪ V.

But this map is not a weak equivalence in general. For example, take subsets of
the real numbers; let U = Q, V = R − Q; then W ′ will be empty, U ′ will be a
countable discrete space, and U ′ ∪W ′ V ′ will be an uncountable discrete space,
which is not weakly equivalent to R.

However, if we assume that IntU ∪ IntV = U ∪ V , then U ′ ∪W ′ V ′ −→ U ∪ V
is a weak equivalence, and all is well. So the excision axiom holds with this extra
hypothesis, which is actually the standard one for ordinary (singular) homology
and cohomology.

I must also comment on the behaviour of singular homology for limits. Let
X,Y be a pair containing a directed family of subpairs Xα, Yα. Then we can form

lim−→
α

Ep(Xα, Yα) −→ Ep(X,Y ).

Proposition 10.1. In order that this map be an isomorphism, it is sufficient that
for any compact pair K,L ⊂ X,Y we can find an α such that Xα, Yα ⊃ K,L.

The proof is easy.

Now I want to define a Čech-type cohomology theory for compact pairs K,L
which happen to come embedded in some topological manifold M , possibly not
compact, possibly with boundary. The definition is as follows. Let U, V run over
open pairs in M with U ⊃ K,V ⊃ L. These form a directed set; if Ui ⊃ K,
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Vi ⊃ L for i = 1, 2 then U1 ∩ U2 ⊃ K, V1 ∩ V2 ⊃ L. So I define

Ě∗(K,L) = lim−→
(U,V )

E∗(U, V ).

(The notation E∗, when applied to an arbitrary topological pair X,A will mean
singular E-cohomology). Of course we will always have a map

E∗(U, V ) −→ E∗(K,L);

this passes to the limit, and gives us a map

Ě∗(K,L) −→ E∗(K,L).

In general this map need not be an isomorphism. However, there are cases when
it is.

Example (i). Suppose that M is a compact topological manifold, possibly with
boundary. Then

Ě∗(M) −→ E∗(M)

is an isomorphism.

In fact, the pair M, ∅ qualified as an open pair containing the compact pair
M, ∅, and is terminal.

Example (ii). Suppose K is a point x. Then

Ě∗(x) −→ E∗(x)

is an isomorphism.

In fact, any point x lies in a coordinate neighbourhood, so we can choose a
cofinal system of open pairs Uα, ∅ ⊃ x, ∅ with Uα contractible. Then

E∗(Uα) −→ E∗(x)

is an isomorphism for all α.
Next I would like to know that Ě∗(K,L) is a topological invariant of the pair
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(K,L), and does not depend on the embedding in M .

Lemma 10.2 (i). Suppose given compact pairsK1, L1 ⊂M1 andK2, L2 ⊂ U2, V2 ⊂
M2, where U2, V2 is an open pair, and a continuous map

f : K1, L1 −→ K2, L2.

Then f can be extended so as to map some open pair U1, V1 ⊃ K1, L1 in M1 to
U2, V2.

(ii) Suppose given a homotopy

h : I ×K1, I × L1 −→ K2, L2,

and extensions f0 of h0, f1 of h1 which map (possibly different) open pairs U0, V 0

and U1, V 1 into an open pair U2, V2 ⊃ K2, L2. Then there exists an open pair
pair U, V with K1, L1 ⊂ U, V ⊂ U0 ∩ U1, V 0 ∩ V 1 and a homotopy

h : I × U, I × V −→ U2, V2

extending f0|U,V , f1|U,V and h.

Proof. Standard but repeated use of compactness, plus the Tietze extension
theorem; we rely heavily on the fact that M2 is a manifold.

Corollary 10.3. A map f : K1, L1 −→ K2, L2 induces f∗ : Ě∗(K2, L2) −→ Ě∗(K1, L1)

depending only on the homotopy class of f , and satisfying 1∗ = 1, (fg)∗ = g∗f∗.

The exactness properties of Ě∗ are fine, since direct limits preserve exactness.

Example. Let M,∂M be a pair consisting of a compact topological manifold with
boundary and its boundary. Then

Ě∗(M,∂M) −→ E∗(M,∂M)

is an isomorphism.

Proof. Consider the following commutative diagram.
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. . . Ě∗(M,∂M) Ě∗(M) Ě∗(∂M) E∗(M,∂M) . . .

. . . E∗(M,∂M) E∗(M) E∗(∂M) E∗(M,∂M) . . .

∼= ∼=

δ

δ

The rows are exact, and the two arrows marked are isomorphisms by a previous
example. The result follows by the 5-lemma.

N.B. This way of saying things relies on the previous proof that Ě∗(∂M) is
independent of the embedding of ∂M in M , but it does not need the construction
of a collar for ∂M inside M .

The excision properties of Ě∗ are excellent, because Ě∗ was defined using only
open pairs in M .

Proposition 10.4. If U, V are any compact sets in M , then

Ě∗(U ∪ V, V ) −→ Ě∗(U,U ∩ V )

is an isomorphism.

This follows from the definitions by a bit of general topology (compact Haus-
dorff spaces again.)

I also have to comment on the behaviour of Ě∗ for limits.

Proposition 10.5. Let Kα, Lα be a downward-directed set of compact pairs in M ,
with intersection K,L. Then

lim−→
α

Ě∗(Kα, Lα) −→ Ě∗(K,L)

is an isomorphism.

Again, this is easy modulo a bit of general topology. One must show that
given any open pair U, V ⊃ K,L there is an α with Kα, Lα ⊂ U, V .

Experience in Manchester and Cambridge suggests I had better give some
exposition about orientations. Suppose E p−→ B is an n-plane bundle and E0 is
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the complement of the zero cross-section. Then for each point x ∈ B, I have the
fibre Ex = p−1x; let E0

x = Ex ∩ E0. I can form

Hn(Ex, E
0
x)
∼= Z

Hn(Ex, E
0
x)
∼= Z.

Now since E p−→ B is a bundle, locally it is a product; and if x and y are close

together we can easily tell which element in Hn(Ex, E
0
x) corresponds to which in

Hn(Ey, E
0
y). That is, we get a bundle over B, with fibre Z, and with structure

group Z2 acting on Z by n 7→ −n. A similar situation occurs in cohomology.

One may say that the original n-plane bundle was orientable if the Z-bundle⋃
xHn(Ex, E

0
x) is trivial. The definition may be given equally well in terms of

homology or cohomology; we have

Hn(Ex, E
0
x) = Hom(Hn(Ex, E

0
x),Z),

so the two bundles are trivial or non-trivial together.

If we are given orientations consistently on each fibre, that amounts to saying
there is a continuous section

λ : B −→
⋃

x

Hn(Ex, E
0
x)

which assigns to each point x ∈ B a generator

λ(x) ∈ Hn(Ex, E
0
x)
∼= Z.

The same goes to cohomology. But I would like a statement more global than
that. In this case it is clear that cohomology rather than homology is required.
Suppose, for example, that B had an infinity of path-components; then a singular
homology class could only have a non-zero component in a finite number of them,
but this difficulty does not arise in cohomology. We can ask if there is an element

ω ∈ Hn(E,E0)
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such that for each x ∈ B, the induced homomorphism

i∗x : H
n(E,E0) −→ Hn(Ex, E

0
x)

has i∗xω = λ(x) for any given section λ.

Now in ordinary homology, the answer is yes: if you are given a section λ,
there exists a cohomology class ω such that i∗x = λ(x) for each x, and ω is unique.
However, the proof makes essential use of the dimension axiom. For a generalised
cohomology theory the corresponding result is not true. There is an n-plane
bundle E −→ B and a section λ : B −→

⋃
xKO

n(Ex, E
0
x) such that there exists

no w ∈ KOn(E,E0) with i∗xω = λ(x) for all x; in another such example the
required ω exists but is not unique.

It seems best to choose our definitions so as to avoid the difficulty. First
I consider the meaning to be assigned to the word “generator.” Let F be a
ring-spectrum; then F∗(Rn,Rn − 0) = F̃ ∗(Sn) and F ∗(Rn,Rn − 0) = F̃ ∗(Sn) are
modules over π∗(F ). In fact each is a free module on one generator, because we
have canonical classes

γn ∈ Fn(Rn,Rn − 0), γn ∈ Fn(Rn − 0).

I will say that φ ∈ F ∗(Rn,Rn − 0) is a generator if {φ} is a π∗(F )-base for
F ∗(Rn,Rn − 0). φ is a generator if and only if φ = uγn, where u is a unit in
π∗(F ). φ need not lie in Fn(Rn,Rn − 0), because we may have units of non-zero
degree in π∗(F ); e.g., this occurs if F = K.

The property which I need of generators is the following. Let G be a module-
spectrum over F . Then the map

G∗(Rn,Rn − 0) −→ π∗(G)

given by
y 7→ ⟨φ, y⟩

is an isomorphism. In fact it is trivially so if φ = γn, and the general case differs
only by a unit in π∗(F ).
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We say ω ∈ F ∗(E,E0) is an orientation for E if

i∗xω ∈ F ∗(Ex, E
0
x)

is a generator for each x ∈ B.

Of course, the question of constructing an orientation for a vector-bundle, or
of constructing orientations for some class of bundles, is non-trivial. However it
can be done in several cases which are important in the applications. For example,
complex n-plane bundles can be oriented over K∗ or MU∗; Spin bundles can be
oriented over KO∗; and so on. I will not give the constructions here.

We have defined orientations as they apply to n-plane bundles; but we want
the notion as well for topological manifolds, which might not have a tangent
bundle in the same sense as smooth manifolds. But it is well known what one
substitutes for the tangent bundle. That is, one replaces E by M ×M , where
M is a topological manifold, say without boundary. One replaces E0 by the
complement of the diagonal, M ×M −∆. One replaces the fibres Ex by the fibres
x×M of the projection p1 : M ×M −→M . One replaces E0

x by x×M − x× x.
Since M is a topological manifold without boundary, x has a neighbourhood U in
M which is homeomorphic to a neighbourhood of 0 in Rn, by a homeomorphism
mapping x onto 0. Then F ∗(M,M − x) ∼= F ∗(U,U − x) by excision and so is
isomorphic to F ∗(Rn,Rn − 0).

By an orientation over F ∗ for the tangent bundle of a topological manifold
M , we will therefore mean a class ω ∈ F ∗(M ×M,M ×M −∆) such that

i∗xω ∈ F ∗(x×M,x×M − x× x)

is a generator for each x.

If M happens to have a boundary, there are two things we can do. The first
starts from the observation that for a smooth manifold M , the tangent bundle to
M contains over ∂M tangent vectors which point out, as well as tangent vectors
which point in. To copy this in the topological case, one adds an open collar on
the boundary; that is, one forms

M ′ =M ∪ [0, 1)× ∂M.
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This is a topological manifold without boundary, and it has a fully satisfactory
topological tangent bundle, and one can ask for an orientation.

The other thing we can do is to use the same form of words as before, and ask
for a class

F ∗(M ×M,M ×M −∆)

but only demand that i∗xω be a generator for x ∈M − ∂M .

Evidently the first sort of orientation restricts to the second, but I will not go
into the relations between them.

Having completed the discussion of bundles, we go back to using E for a
ring-spectrum.

Suppose given an orientation class

ω ∈ Ed(M ×M,M ×M −∆),

where E is a ring-spectrum. Let F be the module-spectrum over E. We define a
duality map, which ultimately will be a map of the following form. Let K,L be a
compact pair in M . Then M −L,M −K is an open pair in M . The duality map
will be a homomorphism

D : Fp(M − L,M −K) −→ F̌ d−p(K,L)

where the left-hand side, as before, indicates singular F -homology.

We will define the map D in a number of steps. Let U, V ⊃ K,L be an open
pair and V ′, U ′ another open pair with U ∩ U ′ = ∅, V ∩ V ′ = ∅. Then we have

U × U ′ ⊂M ×M −∆

V × V ′ ⊂M ×M −∆.

Therefore we can form

i∗ω ∈ Ed(U × V ′, U × U ′ ∪ V × V ′).
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So given x ∈ Fp(V ′, U ′) we can form

D(x) = (i∗ω)/x ∈ F d−p(U, V ).

I claim D is natural for inclusion maps. First, suppose U ′′ ⊂ U , V ′′ ⊂ V .
Then surely U ′′ ∩ U ′ = ∅, V ′′ ∩ V ′ = ∅. The following diagram commutes.

Fp(V
′, U ′′)

F d−p(U, V ) F d−p(U ′′, V ′′)

Next suppose V ′′′, U ′′′ ⊂ V ′, U ′. Again U ′′′ ∩ U ′ = ∅, V ′′′ ∩ V = ∅. The
following diagram commutes.

Fp(V
′′′, U ′′′) Fp(V

′, U ′)

F d−p(U, V )

Both facts are immediate from 9.1.

Again, I claim that D commutes with boundary maps, up to a suitable sign.
More precisely, suppose we have

U ⊃ V ⊃W U ′ ⊂ V ′ ⊂W ′

with U ∩ U ′ = ∅, V ∩ V ′ = ∅, W ∩W ′ = ∅. Then the diagram

Fp(W
′, V ′) Fp−1(V

′, U ′)

(−1)d+1

F d−p(V,W ) F d−p+1(U, V )

∂

D D

δ
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commutes up to the sign (−1)d+1. For we can easily reduce it to the case
W = ∅, U ′ = ∅, by the following diagram.

Fp(W
′, V ′) Fp−1(V

′, ∅) Fp−1(V
′, U ′)

F d−p(V,W ) F d−p(V, ∅) F d−p+1(U, V )

∂

δ

Now since ω ∈ Ed(U ×W ′, V × V ′) and by 9.12(ii) we have

δ((i∗ω)/x) = (−1)d+1(j∗ω)/∂x.

Now we can start to pass to limits. Let us take a compact pair K,L ⊂ M

and consider the complementary open pair M − L,M −K. We vary V ′, U ′ over
open pairs contained in M − L,M − K, of course arranging that U ∩ U ′ = ∅,
V ∩ V ′ = ∅. Now F̌ ∗(K,L) = lim−→F ∗(U, V ), so with a class in F̌ ∗(U, V ) for any
U, V we get an image in F̌ ∗(K,L). Now I claim that for any x ∈ Fp(V ′, U ′), its
image in F̌ d−p(K,L) is independent of the choice of pair U, V , provided, of course,
that there exists a pair U, V ⊃ K,L with U ∩ U ′ = ∅, V ∩ V ′ = ∅. And this is
immediate, by the following diagram.

Fp(V
′, U ′)

Fd−p(U, V ) Fd−p(U ′′, V ′′)

Fd−p(U ∩ U ′′, V ∩ V ′′)

So now we have a well-defined function

D : Fp(V
′, U ′) −→ F̌ d−p(K,L).

(In fact, if V ′′′, U ′′′ ⊂ V ′, U ′ and there exists a pair U, V with U∩U ′ = ∅, V ∩V ′ = ∅,
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then the following diagram commutes.)

Fp(V
′′′, U ′′′) Fp(V

′, U ′)

F d−p(U, V )

But I claim we have

lim−→
(V ′,U ′)

Fp(V
′, U ′) −→ Fp(M − L,M −K).

For this we need only check, by general topology, that the available pairs (V ′, U ′)

satisfy 10.10.

At this stage, then, we have a transformation

D : Fp(M − L,M −K) −→ F̌ d−p(K,L)

which is natural in the sense that it commutes with the homomorphisms induced
by inclusion maps, and, up to a sign (−1)d+1, with the boundary maps.

Theorem 10.6. D is an isomorphism if K ∩ ∂M ⊂ L.

We build up the proof by stages. We always assume our pairs K,L have
K ∩ ∂M ⊂ L.

Remark 10.7. D is an isomorphism if K is a point x, and L = ∅.

Proof. Our assumption is x ∩ ∂M ⊂ L = ∅, so x ̸∈ ∂M . I claim the following
diagram is commutative.

Fp(M,M − x) F̆ d−p(x)

F d−p(x)

g

D

∼=

Here g(y) = ⟨i∗xω, y⟩. Our assumption is that i∗xω is a generator, so the Kronecker
product with it is an isomorphism.
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The commutativity of the diagram follows easily from naturality. We can
begin by supposing that we start from a class in Fp(M,M − x) which comes from
y ∈ Fp(M,M −B), where B is a small closed ball in a coordinate neighbourhood.
(This uses 10.1.) If we apply D and the map into F d−p(x), we obtain

j∗((i∗ω)/y),

where j : x −→ IntB is the injection. We have

j∗((i∗ω/y) = ((j × 1)∗i∗ω)/y = i∗xω/y = ⟨i∗xω, y⟩.

Remark 10.8. Suppose K is a rectilinear simplex in a coordinate neighborhood
and L is one face of K (which may be K but must not be ∅). Then D is an
isomorphism between groups which are zero.

Note: coordinate transformations are supposed to map ∂M into a linear
subspace of Rn, e.g., Rn−1

Proof. (i) F̌ ∗(K,L) = 0. In fact, we can even show this without appealing to
the homotopy invariance of F̌ ∗; just surround K,L by a confinal system of open
convex neighborhoods U, V , for which F ∗(U, V ) = 0.

(ii) Also F∗(M −L,M −K) = 0. This is seen geometrically; see the accompa-
nying figure. We can write K as the join K = L ∗K ′. If K ′ = ∅,K = L then the
result is trivially true. Since K ′ ∩ ∂M = ∅, we can draw a slightly larger simplex
K ′′ slightly farther away from L so that L ∗K ′′ is n-dimensional and contains
L ∗K ′, while L ∗K ′ ∩ ∂(L ∗K ′′) = L. Then (L ∗K ′′)− L is homeomorphic to
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L× (0, 1]×K ′′ ∪K ′′:

K ′′

L

K

K ′

Now clearly L ∗ K ′′ − L ∗ K ′ −→ L ∗ K ′′ − L is a homotopy equivalence, by
maps and homotopies keeping ∂(L ∗K ′′)− L fixed throughout. These maps and
homotopies extend over M by keeping everything fixed outside L ∗K ′′.

Remark 10.9. Suppose K is a rectilinear simplex in a coordinate neighborhood
and L = ∅. Then D is an isomorphism.

Proof. Since L = ∅, we have K ∩ ∂M = ∅. Let x be one vertex of K. Then we
have the following commutative diagram.

0 = Fp(M − x,M −K) Fp(M,M −K) Fp(M,M − x) Fp−1(M − x,M −K) = 0

0 = F̆ d−p(K,x) F̆ d−p(K) F̆ d−p(x) F̆ d−p+1(K,x) = 0

∼=

The four groups marked zero are so by 10.8. The map marked as an isomorphism
is so by 10.7.

Remark 10.10. SupposeK1, L1 andK2, L2 are compact pairs inM withK1∩∂M ⊂
L1, K2 ∩ ∂M ⊂ L2, and K1 ∩L2 = L1 ∩K2. If D is an isomorphism for (K1, L1),
(K2, L2) and (K1 ∩K2, L1 ∩L2), then it is an isomorphism for (K1 ∪K2, L1 ∪L2).

Proof. Consider the diagram of Mayer-Vietoris sequences on the following page.
The Mayer-Vietoris sequences are slightly more general than those considered
in Eilenberg and Steenrod but none the worse for that. The second row works
because K1∩L2 = L1∩K2; this is the condition that the Mayer-Vietoris sequence
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may be replaced by one in which the subspaces remain fixed (namely at L1 ∪ L2).
The first row works for the dual reason that

(M −K1) ∪ (M − L2) = (M − L1) ∪ (M −K2);

this is the condition that the Mayer-Vietoris sequence may be replaced by one
in which the subapces remain fixed (namely at (M − L1) ∪ (M − L2)) and the
subspaces vary. We have the excision necessary for the first row because all the
subspaces are open, and for the second because excision always holds for Čech
F -cohomology on compact spaces.

The result follows from the five lemma.

Remark 10.11. Suppose K,L is a finite simplicial pair linearly embedded in a
coordinate neighborhood. Then D is an isomorphism.

Proof. By barycentric subdivision we can suppose that for each simplex σ of K,
σ ∩ L is either 0 or 1 faces of σ. For such pairs we argue by induction over the
number of simplices in K. If this number is zero the result is trivial; if this number
is one it is true by 10.8 and 10.9. The inductive step is immediate from 10.10.
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Remark 10.12. Suppose K,L is any compact pair in a single coordinate neigh-
bourhood. Then D is an isomorphism.

Proof. Pass to direct limits from finite simplicial neighbourhoods U, V .

Proof of Theorem 10.6. Each point of K is in the interior of a compact neigh-
bourhood. Hence, K can be covered by finitely many such subsets. Now argue by
induction on the number of such subsets; if the number is one, 10.12 gives us the
result; the inductive step is immediate from 10.10.

Corollary 10.13 (Poincaré duality). Let M be a compact topological manifold
without boundary, oriented over E∗. Then we have an isomorphism

D : Fp(M) −→ F d−p(M)

which may be given by
D(y) = ω/y.

Now we observe that we can make E∗(M) act on F∗(M) via the cap product,
and on F ∗(M) via the cup product. We could like to know that D is a map of
modules, up to sign, provided that E is a commutative ring-spectrum. Actually
this is not quite good enough for what follows; in any case, it helps to keep the
details in order if we assume our spectra are distinct as long as we can. So I
suppose given two module-spectra G,G′ over E, and a pairing µ : F ∧G −→ G′,
where F is not necessarily a module-spectrum over E. I also assume the pairing
is right-linear over E, in the sense that the following diagram is commutative.

E ∧ F ∧G E ∧G′ G′

F ∧ E ∧G F ∧G G′

1∧µ

c∧1

ν

1

1∧ν µ

Example. Take E and F to be E; take G and G′ to be F ; and assume E is a
commutative ring-spectrum.

Proposition 10.14. If u ∈ F p(M), the following diagram is commutative up to a

311



Chapter 10: Duality in Manifolds

sign (−1)dp.
Gq(M) G′

−p+q(M)

(−1)dp

Gd−q(M) G′d+p−q(M)

u⌢

D D

u⌣

That is, D(u ⌢ v) = (−1)dpu ⌣ (Dv), v ∈ Gq(M).

Proof.
D(u ⌢ v) = ω/(u ⌢ v)

u ⌣ (Dv) = u ⌣ (ω/v)

using the pairings from the first and second rows of the diagram. Now we want
the following associativity formulae.

Lemma 10.15. If

ω ∈ Ed(X × Y,A× Y ⌣ X ×B), u ∈ F p(Y,C), v ∈ Gq(Y,B ⌣ C)

then
ω/(u ⌢ v) = (ω ⌣ p∗2u)/v ∈ (E ∧ F ∧G)d+p−q(X,A).

If
u ∈ F p(X,A), ω ∈ Ed(X × Y,B × Y ∪X × C), v ∈ Gq(Y,C)

then
u ⌣ (ω/v) = (p∗1u ⌣ ω)/v ∈ (F ∧ E ∧G)p+d−q(X,A ∪B).

The proof is immediate from the associativity formulae we have, by naturality.
This gives

D(u ⌢ v) = (ω ⌣ p∗2u)/v

u ⌣ (Dv) = p∗1u ⌣ ω)/v

where we are still using the pairing from the second row of the diagram for the
second formula. However, because the diagram of pairings is commutative we can
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write
u ⌣ (Dv) = (−1)dp(ω ⌣ p∗1u)/v

using the pairing from the top row of the diagram. Now it is sufficient to prove

ω ⌣ p∗1u = ω ⌣ p∗2.

Consider the maps
p1 : M ×M −→M

p2 : M ×M −→M.

They have the same restriction to ∆; a fortiori they are homeomorphic on ∆. By
10.2(ii) there is an open neighbourhood U of ∆ in M and a homotopy h : U −→M

between p1|U and p2|U . Hence, if we apply

i∗ : F p(M ×M) −→ F p(U),

we have
i∗p∗1u = i∗p∗2u ∈ F p(U).

But by excision,

(E ∧ F )d+p(M ×M,M ×M −∆) −→ (E ∧ F )d+p(U,U −∆)

is an isomorphism. The classes

ω ⌣ p∗1, ω ⌣ p∗2u

restrict to
(i∗ω)⌣ (i∗p∗1u), (i

∗ω)⌣ (i∗p∗2ω),

that is, they restrict to the same thing. Therefore they were already equal in

(E ∧ F )d+p(M ×M,M ×M −∆).

This proves 10.14.
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Applying 10.13 to the case F = E, we see that there is a class [M ] ∈ Ed(M)

such that
D([M ]) = 1 ∈ E0(M).

This is called the fundamental class of M (corresponding to the given orientation).
The usual way to present the Poincaré duality isomorphism is to say that it is

the isomorphism
F p(M) −→ Fd−p(M)

given by x 7→ x ⌢ [M ]. Of course the pairing being considered is

F ∧ E c−→ E ∧ F ν−→ F.

Proposition 10.16. This homomorphism is the inverse of D, up to a sign (−1)dp;
it is therefore an isomorphism.

Proof. In 10.14, take E and G to be E; take F and G′ to be F . The resulting
diagram is commutative even without the assumption that E is a commutative
ring-spectrum. Then

D(u ⌢ [M ]) = (−1)dpu ⌣ D([M ]) = (−1)dpu.

The relative version of Poincaré duality is called Leftschetz duality. It asserts
that we have the following diagram, commutative up to sign.

Fp(∂M) Fp(M) Fp(M,∂M) Fp−1(∂M) . . .

± ± ±

F d−1−p(∂M) F d−p(M,∂M) F d−p(M) F d−p(∂M) . . .

∼= ∼=

δ

∼= ∼=

δ

I will omit the proof. It involves the relation between an orientation on M

and one on ∂M , and also manipulation of collars.
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11. Applications in K-Theory

The material presented so far may have seemed rather theoretical. But topologists
also like to do sums and see how things work out in concrete cases, so I ought
to show you some examples. I choose to present some examples from complex
K-theory.

First we recall some facts we need about complex K-theory. This has a
geometric interpretation; a complex vector-bundle ξ over X represents an element
of K0(X). (See section III.) Similarly, a formal linear combination of bundles,
such as ξ − η, gives an element of K0(X). The Whitney sum of bundles gives
addition in K0(X); the tensor product of bundles gives multiplication in K0(X).

We need to know the K-cohomology of a few simple spaces. Over BU(1) =

CP∞ we have the universal U(1)-bundle, which gives a linear bundle, i.e., a
complex vector bundle with fibres of dimension 1. Call this line bundle ξ. Define
x = ξ − 1 ∈ K̃0(CP∞). Use the same symbol x for the restriction of this class to
CPn.

Proposition 11.1 (Atiyah and Todd). K∗(CPn) is free over π∗(K) with a base
consisting of 1, x, x2, ..., xn(xn+1 = 0).
K∗(CP∞) = π∗(K)[[x]].

We need a cohomology operation in K-theory.

Proposition 11.2. There exists a function ψ2 : K0(X) −→ K0(X) such that

1. Ψ2 is natural,

2. Ψ2 is a homomorphism of rings, and

3. if η is a line bundle, then Ψ2(η) = η2
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Now I have said something about orientations for particular vector-bundles. If
we construct orientations for a whole class of vector-bundles, we would like them
to have various properties. First, the orientations should be natural for maps
of vector-bundles. Secondly, we would like good behaviour on Whitney sums.
Suppose given two bundles ξ′, ξ′′ over X; form their Whitney sum ξ = ξ′ ⊕ ξ′′.
Let the total spaces be E, E′, E′′ and the complements of the zero cross-sections
E0, E

′
0, E

′′
0 respectively. Then we have maps p′ : E −→ E′, p′′ : E −→ E′′; over

each x ∈ X one projects the sum of two fibres onto either summand. Then

E0 = ((p′)−1E′
0) ∪ ((p′′)−1E′′

0 ).

Let ω ∈ F ∗(E,E0), ω′ ∈ F ∗(E′, E′
0), ω′′ ∈ F ∗(E′′, E′′

0 ) be the three orientations.
We would like them to satisfy

ω = ((p′)∗ω′)⌣ ((p′′)∗ω′′).

Thirdly, we have a normalisation axiom. Consider the canonical line bundle ξ over
BU(1). I claim its Thom complex MU(1) is equivalent to BU(1). In fact, we have
to consider the associated pair of bundles with fibres D2 and S1. But S1 ∼= U(1);
the associated S1-bundle is the universal S1-bundle, so it is contractible. Thus,
when we form a Thom complex by collapsing it to a point, we do not change
anything. But D2 is contractible and the associated D2-bundle is equivalent to
BU(1). Hence, MU(1) ∼= BU(1).

Proposition 11.3. There is an orientation ω for each complex vector-bundle ξ
which satisfies the following axioms.

1. Naturality.

2. The axiom on Whitney sums.

3. Normalization; for the universal bundle, ω ∈ K̃0(MU(1)) corresponds under
the equivalence to x ∈ K̃0(BU(1)).

Now we can construct various characteristic classes. The easiest is the Euler
class. Suppose we have an orientation ω in F -cohomology for some class of bundles;
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let ζ : X −→ E be the zero cross-section. We define the Euler class of ξ by

χF (ξ) = ζ∗ω.

Its formal properties are: naturality (if ω is natural):

χF (ξ
′ + ξ′′) = χF (ξ

′)χF (ξ
′′),

(if ω satisfies the axiom on Whitney sums); and normalisation (if ω satisfies the
normalisation axiom). For example, in the case of complex K-theory we have

K(η) = η − 1 where η is a line bundle.

Proposition 11.4. Suppose the bundle in question is the tangent bundle τ of a
compact smooth manifold Mn, orientable for ordinary homology. Then

χF (τ) = f∗i∗ω

Here i∗ω is the restriction of the orientation ω to one fibre, so that it lies in

F̃ ∗(Rn,Rn − 0) ∼= F̃ ∗(Sn),

and f : Mn −→ Sn is a map of degree χ(M), this being the ordinary Euler
characteristic for M .

Proof. By a result going back to Hopf, we can construct on M a field γ of tangent
vectors with non-degenerate singularities, so that the number of singularities, when
counted with appropriate signs, is χ(M). But now the zero section ζ :M −→ E(τ)

is homotopic to a section λ, which crosses the zero-section transversely a total
ξ(M) times. So ζ∗ω = λ∗ω. But here the contribution comes from many small
discs, each of which constributes ±i∗ω.

Given an orientation, we can also construct a Thom isomorphism. This allows
us to copy Thom’s treatment of the Stiefel-Whitney classes. We consider the
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following diagram.

K0(E,E0) K0(E,E0)

K0(X) K0(X)

φK φK

Ψ2

We define
ρ2(ξ) = φ−1

K Ψ2φK(1)

Proposition 11.5. ρ2(ξ) ∈ K0(X) is a characteristic class with the following
properties.

1. Naturality

2. ρ2(ξ ⊕ η) = ρ2(ξ)ρ2(η)

3. If η is a line bundle,
2(η) = 1 + η.

Proposition 11.6. ρ2 extends to a function

ρ2 : K0(X) −→ K0

(
X;Z

[
1

2

])

We need the denominators because ρ2(1) = 2, so ρ2(−1) = 1
2 .

Now we are ready to study the following problem. In terms of our knowledge
of K∗(CPn), what is the fundamental class in K∗(CPn)? If we look at our account
of duality, it appears we should ask a prior question. Take CPn×CPn and embed
CPn in the diagonal ∆. We have an orientation

ω ∈ K0(CPn × CPn,CPn × CPn −∆).

What is its image in K0(CPn × CPn)? Of course we require our answer in terms
of the base we know in K∗(CPn × CPn).
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Proposition 11.7. K∗(CPn × CPn) is free over π∗(K) with a base consisting of
the products xi1x

j
2 for 0 ≤ i ≤ n, 0 ≤ j ≤ n, (xn+1

1 = 0, xn+1
2 = 0). Here x1 and

x2 are generators for the two factors – see 11.1.

The difficulty is that the construction of ω refers to a tubular neighbourhood
of the diagonal, and it is not clear how to relate that to the whole of M ×M .

Lemma 11.8. Consider

j∗ : K∗(CPn × CPn,CP× CPn −∆) −→ K∗(CPn × CPn).

Of k ∈ Im j∗, then x1k = x2k.

See the proof of 10.14.

Lemma 11.9. The subgroups of elements k ∈ K0(CPn × CPn) such that (x1 −
x2)k = 0 has a Z-base p0, p1, ..., pn, where

pr =
∑

i+j=n+r

xi1x
j
2

The proof is a trivial calculation.

Lemma 11.10. We have

j∗ω = 1 · p0 + a1p1 + a2p2 + ...+ anpn, ai ∈ Z

Proof. By Lemmas 11.8 and 11.9 we have

j∗ω =
∑

i

aipi.

Now consider the restriction of j∗ to the diagonal. p0 restricts to (n+ 1)xn; pi
restricts to 0 for i > 0. But j∗ω restricts to the Euler class; χ(CPn) = (n+ 1),
and the orientation was chosen so that 1∗i∗ω = xn. So a0 = 1.

Lemma 11.11. j∗ω satisfies

Ψ2(j∗ω) = (ρ2τ)(j
∗ω)

where ρ2(τ) = 1
2 (2 + x)n+1.
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Proof. The first equation is immediate from the definition of ρ2. For the second

τ + 1 = (n+ 1)ξ,

ρ2(ξ) = 1 + ξ = 2 + x,

ρ2(1) = 2;

so
ρ2(τ) =

1

2
(2 + x)n+1.

Lemma 11.12. j∗ω is uniquely determined by 11.10 and 11.11.

Proof. Suppose as an inductive hypothesis that a1, ..., ai−1 are determined. Then

Ψ2(aipi) = 2n+iaipi + T1,

where T1 is a sum of terms in pi+1, ..., pn; so

Ψ2(j∗ω) = T2 + 2n+iaipi + T3,

where T2 is a sum of known terms and T3 is a sum of terms in Pi+1, ..., pn.

Similarly, (ρ2τ)(j∗ω) is the sum of known terms, terms in pi+1, ..., pn and the
term 2naipi. So we can find ai by equating the coefficients of pi.

Lemma 11.13. We have

2(1 + x)Ψ2(p0) = (2 + x)n+1p0.

Proof. Calculating in K0(CP∞ × CP∞) we have

(x1 − x2)p0 = xn+1
1 − xn+1

2 ,

therefore
Ψ2(x1 − x2)Ψ2p0 = Ψ2xn+1

1 −Ψ2xn+1
2 ,
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i.e.,

(2x1 + x21 − 2x2 − x22)Ψ2p0 = (2xj + x21)
n+1 − (2x2 + x22)

n+1

=
∑

i+j=n+1

(n+ 1)!

i!j!
2i(xn+1+j

1 − xn+1+j
2 ).

Dividing by x1 − x2, which is not a zero-divisor in K0(CP∞ × CP∞), we have

(2 + x1 + x2)Ψ
2p0 =

∑

i+j=n+1

(n+ 1)!

i!j!
2ipj .

Now restricting to K0(CPn × CP∞), we get

2(1 + x)Ψ2p0 =
∑

i+j=n+1

(n+ 1)!

i!j!
2ixjp0 = (2 + x)n+1p0.

This proves 11.13

It follows that

Ψ2((1 + x)p0) = (1 + x)2Ψ2p0 =
1

2
(2 + x)n+1(1 + x)p0.

We conclude that the solution to our problem is:

Theorem 11.14.

j∗ω = (1 + x)p0 =
∑

i+j=n

xi1x
j
2 +

∑

i+j=n+1

xi1x
j
2.

As a corollary, we obtain the relation between the fundamental class [CPn]K
in K-homology and our base {xi}.

Theorem 11.15.
〈
xi, [CPn]K

〉
= (−1)n−i.

Proof. Suppose we choose a base {bj} in K0(CPn) such that
〈
xi, bj

〉
= δij . Then

xi1x
j
2/bk = xi1⟨x

j
2, bk⟩ = xi1δjk.
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Thus

j∗ω/bn =1 + x1,

j∗ω/bn−1 =x1 + x21,

...

j∗ω/b1 =xn−1
1 + xn1 ,

j∗ω/b0 =xn1 .

We require the class [CPn]K such that j∗ω/[CPn]K = 1. Clearly the answer is

[CPn]K = bn − bn−1 + bn−2 − bn−3 + ...+ (−1)nb0.

This proves the result.

Theorem 11.16. If M is a weakly almost complex manifold then

Index(M) = ⟨ρ2(τ), [M ]K⟩ .

Proof. The index is a homomorphism of rings from the cobordism ring of weakly
almost complex manifolds, that is, π∗(MU). It is therefore sufficient to prove the
result for a set of generators of the Q-algebra π∗(MU) ⊗ Q. But the complex
projective spaces CPn are such generators. For CPn we have

ρ2(τ) =
1

2
(2 + x)n+1.
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So
〈
ρ2(τ), [CPn]K

〈
=

〈
1

2
(2 + x)n+1, [CPn]K

〉

=
1

2

∑

i+j=n+1

(n+ 1)!

i!j!
2i
〈
xj , [CPn]K

〉

=
1

2

[ ∑

i+j=n+1

(
(n+ 1)!

i!j!
2i(−1)n−j

)
+ 1

]

=
1

2

[
(−1)n(2− 1)n+1 + 1

]

=
1

2
[1 + (−1)n]

=




1 (n ≡ 0 (2))

0 (n ≡ 1 (2))

= Im(CPn).
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12. The Steenrod Algebra and its Dual

One knows that in order to perform calculations in ordinary cohomology, it is
very useful to have operations like Steenrod squares.

In the general case, let E be a spectrum. Then to every element of E∗(E) we
can associate a natural transformation E∗(X) −→ E∗(X) defined for all spectra
X. Namely, given

X
f−→ E and E g−→ E,

we form X
gf−→ E. This gives a 1− 1 correspondence between elements of E∗(E)

and such natural transformations (consider the case X = E).

Now E∗(E) is of course a group; addition in it corresponds to adding operations

(g1 + g2)f = (g1f) + (g2f).

But E∗(E) is in fact a ring; multiplication in it corresponds to composing opera-
tions,

(g1g2)f = g1(g2f)

Example. Suppose given a prime p; take E = HZp. Then A∗ = (HZp)∗(HZp)
is the mod p Steenrod algebra, the algebra of stable cohomology operations on
ordinary chomology with Zp coefficients. That it is an algebra over Zp is clear
from the fact that it contains Zp.

It is a fact that A∗ is generated by the Steenrod operations. If p = 2 these are
Steenrod squares

Sqi : Hn(X,Y ;Z2) −→ Hn+i(X,Y ;Z2)
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If p > 2 these are the Steenrod powers

P k : Hn(X,Y ;Zp) −→ Hn+2k(p−1)(X,Y ;Zp)

together with the Bockstein boundary

βp : H
n(X,Y ;Zp) −→ Hn+1(X,Y ;Zp)

The fact that A∗ is generated by the Steenrod operations is not obvious, and
should not be taken as a definition; it comes from the calculation of (HZp)∗(HZp)
which is due to Serre for p = 2, and to Cartan for p > 2.

Actually A∗ has more structure than just the structure of an algebra. Before
going into this, I want to comment on the work of Milnor [Mil58]. Milnor showed
that it is also good to look at the dual of the Steenrod algebra,

A∗ = (HZp)∗(HZp).

Here A∗ and A∗ are dual graded vector spaces over Zp. Of course, if we did not
know that A∗ is finite-dimensional over Zp in each degree we would only say

An = HomZp
(An,Zp);

but of course we do know it.
Now HZp is a ring-spectrum; we have a map

µ : HZp ∧HZp −→ HZp

So we get

A∗ ⊗A∗ = (HZp)∗(HZp)⊗ (HZp)∗(HZp)
∧−→ (HZp)∗(HZp ∧HZp)
µ∗−→ (HZp)∗(HZp) = A∗.

So A∗ also is an algebra.
The dual of the product map φ : A∗ ⊗ A∗ −→ A∗ is of course a coproduct

326



Chapter 12: The Steenrod Algebra and its Dual

map ψ = φ∗ : A∗ −→ A∗ ⊗A∗. The interpretation of this coproduct is as follows.
Suppose

ψ(a) =
∑

i

a′i ⊗ a′′i

Then
a(x ⊼ y) =

∑

i

(−1)|a
′′
i ||x|(a′ix) ⊼ (a′′i y) (Cartan formula).

There exists one and only one element
∑
i

a′i⊗ a′′i such that this formula is true for

all x and y. Of course the formula is then true for x×̄y and x ⌣ y. For example,

Sqk(xy) =
∑

i+j=k

(Sqix)(Sqiy)

so that
ψSqk =

∑

i+j=k

Sqi ⊗ Sqj .

It can easily be shown that in this way A∗ becomes a Hopf algebra. Dually, A∗
becomes a Hopf coalgebra; its coproduct is the dual of the composition product
in A∗.

More generally, let X be a space such that (HZp)∗(X) is finite-dimensional
in each degree. Then (HZp)∗(X) is a module over A∗. The action is given by a
map:

A∗ ⊗ (HZp)∗(X) −→ (HZp)∗(X).

The dual of this map is a coaction map:

(HZp)∗(X) −→ A∗ ⊗ (HZp)∗(X).

Thus (HZp)∗(X) becomes a comodule over the coalgebra A∗. The assumption
that (HZp)∗(X) is locally finite-dimensional is in fact unnecessary, since the
coaction map can be defined directly, as will be done below in a more general
setting.

It turns out that the structure of A∗ is very much easier to describe than the
structure of A∗. One reason is that the product in A∗ is commutative, whereas
that in A∗ is not (Sq1Sq2 ̸= Sq2Sq1).
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We give a description for the case p = 2. We start from RP∞, which is an
Eilenberg-MacLane space of type (Z2, 1). We have (HZ2)

∗
(RP∞) = Z2[x], a

polynomial algebra on one generator x of dimension 1 (the fundamental class).
We may take in (HZ2)∗(RP∞) a base of elements bi ∈ (HZ2)i(RP

∞) such that

⟨xi, bj⟩ = δij .

Since RP∞ is term 1 in the HZ2 spectrum, bj yields some element in
(HZ2)j−1(HZ2) = Aj−1. It can easily be shown that this element is zero unless j
is a power of 2. We define ξn to be the image of b2n in A2n−1. The element ξ0
turns out to be the unit 1 ∈ A0.

Theorem 12.1 (Serre-Milnor). If p = 2,

A∗ = Z2[ξ1, ξ2, . . . ].

The proof is non-trivial, and is omitted here.
The construction of ξi yields the following description of ξi as a linear function

on A∗.

Proposition 12.2. The action of a ∈ A∗ on (HZ2)
1
(RP∞) is given by

ax =
∑

i≥0

⟨a, ξi⟩x2
i

.

For x is a morphism and the suspension spectrum of RP∞ to HZ2 of degree
−1, and

⟨ax, bj⟩ = ⟨x∗a, bj⟩ = ⟨a, x∗bj⟩ =




0 if j ̸= 2r for some r

⟨a, ξr⟩ if j = 2r
.

From this it is rather easy to work out the effect of a on x2, x4, etc. We get:

Proposition 12.3.
a
(
x2

i
)
=
∑

j≥0

⟨a, ξ2
i

j ⟩x2
i+j

It now becomes easy to work out the effect of a composite ba on x, which gives
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us ⟨ba, ξi⟩ and therefore ψξi.

Proposition 12.4.
ψξk =

∑

i+j=k

ξ2
i

j ⊗ ξi

We would now like to carry over some of this work to generalised homology
theories. Let E be a ring-spectrum with multiplication µ. Then obviously the
appropriate generalisation of A∗ is E∗(E). It turns out that this works quite well
even in various cases where E∗(E) works horribly badly. However, one needs an
assumption and one must give a warning. The warning is that in the classical case
A∗ is an algebra over Zp, but in the generalised case E∗(E) is a bimodule over
π∗(E). There are two actions of π∗(E) on E∗(E), and one has to remember that
they are different. The left action π∗(E)⊗E∗(E) −→ E∗(E) is obtained by using
the morphism E ∧ E ∧ E µ∧1−→ E ∧ E; the right action E∗(E)⊗ π∗(E) −→ E∗(E)

is obtained by using the morphism E ∧ E ∧ E 1∧µ−→ E ∧ E.
The assumption we have to make is that E∗(E) is flat as a right module over

π∗(E). I say “as a right module”, but if E is commutative, which is the usual case
it is equivalent to say that E∗(E) is flat as a left module; this is seen by using
c : E ∧ E −→ E ∧ E to interchange the two sides.

The assumption is satisfied for the following cases:
E = KO,K,MO,MU,MSp, S, and HZp. See [Ada69], Lemma 28, p. 45.

With this assumption, we have the following lemma. Consider the morphism

(E ∧ E) ∧ (E ∧X)
1∧µ∧1−−−−→ E ∧ E ∧X.

It induces a product map

E∗(E)⊗π∗(E) E∗(X) −→ [S,E ∧ E ∧X]∗

Lemma 12.5. The product map is an isomorphism.

Proof. 1. If X = SP , the result is trivial.

2. If we have a cofibering:

X1 −→ X2 −→ X3 −→ X4 −→ X5
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and the result is true for X1, X2, X4, and X5, then it is true for X3 (by the
5-lemma).

3. The result is true if X is any finite spectrum, by induction on the number
of cells, using (i) and (ii).

4. The result is true if X is any spectrum, by passing to direct limits.

We can now define the coaction map we want. Consider the morphism

E ∧X ≃ E ∧ S ∧X 1∧i∧1−−−−→ E ∧ E ∧X.

This induces
E∗(X)

(1∧i∧1)∗−−−−−−→ [S,E ∧ E ∧X]∗.

Composing this with the inverse of the isomorphism in Lemma 12.5, we obtain a
homomorphism

ψX : E∗(X) −→ E∗(E)⊗π∗(E) E∗(X).

Specialising to the case X = E, we obtain the homomorphism:

ψE : E∗(X) −→ E∗(E)⊗π∗(E) E∗(E).

We also define a counit map

ε : E∗(E) −→ π∗(E),

which is simply the homomorphism induced by the product morphism

µ : E ∧ E −→ E.

Theorem 12.6. 1. E∗(E) is a coalgebra with ψE as a coproduct map and ε as
a counit map.

2. E∗(X) is a comodule over E∗(E) with ψX as the coaction map.
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3. If E = HZp, then ψX , ψE , and ε become the structure maps classically
considered.

To give a complete proof of 12.6, one has to introduce a few more structure
maps, which is very easy, and check their properties by diagram chasing. See
[Ada69] chapter 3.
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13. A Universal Coefficient Theorem

The theme for the next part of the course is the following. Let E be a fixed
ring-spectrum. Suppose given E∗(X) and E∗(Y ); what can be said about [X,Y ]∗?
In other words, given homological information, what can we say about homotopy?

I propose to treat this problem under a restrictive hypothesis; that is, I
will assume that E∗(X) is projective over π∗(E). I do know how to avoid this
hypothesis, but it involves extra work; one has to resolve both X and Y and
mix the resolutions geometrically. The present hypothesis is sufficient for the
applications to be given here. To see that the hypothesis is reasonable, consider
two examples.

Example. (i) Let X = S. Initially most people need to compute stable ho-
motopy, that is, [S, Y ]∗. Of course E∗(S) is projective over π∗(E) for any
ring-spectrum E; in fact it is free on one generator.

(ii) Let E = HZp. In this case π∗(E) is the field Zp, so any module over it is
projective; in particular, (HZp)∗(X) is projective over Zp for any X.

All the same, the correct level of generality will probably turn out to be the
maximum level, so ultimately we will probably want to go beyond the case in
which E∗(X) is projective over π∗(E).

To handle even this case, we need some results of the general type of universal
coefficient theorems. The reader interested only in the case X = S may without
loss omit this section.

In the situation of the universal coefficient theorem, E is the ring-spectrum
and F is a module-spectrum over E. E∗(X) is given and the aim is to find
information about F∗(X) and F ∗(X).
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Lemma 13.1. Let E be a ring-spectrum, F a module-spectrum over E and X any
spectrum. If E∗(X) = 0, then F∗(X) = 0 and F ∗(X) = 0.

Proof. E∗(X) = 0 is equivalent to π∗(E ∧X) = 0, i.e., E ∧X is contractible. Now
any morphism

S
f−→ F ∧X

can be factored as

S ∧ F ∧X E ∧ F ∧X

S F ∧X

i∧1∧1

ν∧11∧f

f

and of course E ∧ F ∧X ∼= F ∧ (E ∧X), so it is contractible; hence f = 0.
Similarly, any morphism X

f−→ F can be factored as

E ∧X E ∧ F

X F

1∧f

νi∧1

f

so f = 0.

Now observe that for any element x∗ ∈ F ∗(X) we get a homomorphism

E∗(X) −→ π∗(F ).

One way to say it is that this map is

x∗ 7→ ⟨x∗, x∗⟩

where we use the pairing

F ∧ E c−→ E ∧ F ν−→ F.
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Another way to say it is that if X x∗
−→ F , we form

E∗(X)
(x∗)∗−−−→ E∗(F )

ν∗−→ π∗(F ).

In any case, we get a homomorphism

F ∗(X) −→ Homπ∗(E)(E∗(X), π∗(F )).

We will be interested in spectra X which satisfy the following condition.

Condition 13.2. F ∗(X) −→ Hom∗
π∗(E)(E∗(X), π∗(F )) is an isomorphism for all

module-spectra F over E.

Condition 13.3. E is the direct limit of finite spectra Eα for which E∗(DEα) is
projective over π∗(E) and DEα satisfies 13.2.

Here DEα means the S-dual of Eα.

Proposition 13.4. Condition 13.3 is satisfied by the following spectra E:

S,HZp,MO,MU,MSp,K,KO

For the moment I postpone the proof of this proposition; it will be outlined
below. Evidently one needs a lemma to say that DEα satisfies 13.2, but one can
impose very a restrictive condition on DEα.

The result we want is as follows.

Proposition 13.5. Suppose E satisfies Condition 13.3 (e.g., E may be one of the
examples listed in 13.4). Suppose E∗(X) is projective over π∗(E). Then 13.2
holds, i.e.,

F ∗(X) −→ Hom∗
π∗(E)(E∗(X), π∗(F ))

is an isomorphism for all module-spectra F over E.

This is a special case of a more general result.

Theorem 13.6. Suppose E satisfies Condition 13.3. Then there is a spectral
sequence

Extp,∗π∗(E)(E∗(X), π∗(F )) =⇒
p

F ∗(X)
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whose edge-homomorphism is the homomorphism

F ∗(X) −→ Hom∗
π∗(E)(E∗(X), π∗(F ))

considered above, and convergent in the sense that Theorem 8.2 holds.

Proof of 13.5 from 13.6

Proof. If E∗(X) is projective over π∗(E), then

Extp,∗π∗(E)(E∗(X), π∗(E))

is zero for p > 0. Hence, the spectral sequence collapses to its edge-homomorphism.
Note that we have enough convergence; condition (ii) of Theorem 8.2 is trivially
satisfied, so (i) and (iii) of 8.2 hold.

We now prove intermediate results necessary to prove Theorem 13.6.
The force of Condition 13.3 is that it allows us to make resolutions of the sort

used by Atiyah in his paper on a Künneth theorem for K-theory. Recall that E is
the direct limit of finite spectra Eα. The injection Eα −→ E corresponds to a
cohomology class iα ∈ E0(Eα) or to a homology class gα ∈ E0(DEα).

Lemma 13.7. For any spectrum X and any class e ∈ Ep(X) there is an Eα and a
morphism f : DEα −→ X of degree p such that e = f∗(gα).

Proof. Take a class e ∈ Ep(X). There there is a finite subspectrum X ′ i
⊂ X and

a class e′ ∈ Ep(X ′) such that i∗(E′) = e. We may interpret e′ as a morphism
DX ′ −→ E of degree p; here I need the fact (not proven in §III) that D2Y ∼= Y .
By assumption, this morphism factors through some Eα, so that

DX ′ E

Eα

φ iα

and φ∗iα = e′ considered as an element of E−p(DX ′). Dualising back,

(Dφ)∗gα = e′ ∈ Ep(X ′).
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Take f to be

DEα X ′ X
Dφ i .

Lemma 13.8. For any spectrum X there exists a spectrum of the form

W =
∨

β

Sp(β) ∧DEα(β)

and a morphism g : W −→ X (of degree 0) such that

g∗ : E∗(W ) −→ E∗(X)

is an epimorphism.

Proof. Immediate from 13.7, by allowing the class e in 13.7 to run over a set of
generators for E∗(X).

Note that W =
∨
β S

p(β) ∧DEα(β) inherits from its factors the properties that
E∗(W ) is projective and 13.2 holds, that is

F ∗(W ) −→ Hom∗
π∗(E)(E∗(W ), π∗(F ))

is an isomorphism for all module-spectra F over E.
Proof of 13.6 We will construct a resolution of the following form, with the

properties listed below.

X = X0 X1 X2 X3 . . .

W0 W1 W2 . . .

x1 x2x0

(i) The triangles

Xr Xr+1

Wr

xr
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are cofibre triangles.

(ii) For each r,
(xr)∗ : E∗(Xr) −→ E∗(Xr+1)

is zero.

(iii) For each r, E∗(Wr) is projective over π∗(E).

(iv) For each r, the map

F ∗(Wr) −→ Hom∗
π∗(E)(E∗(Wr), π∗(F ))

is an isomorphism.

Let X0 = X. Assume Xr is constructed. By 13.8, there exists a spectrum Wr

and a morphism
gr : Wr −→ Xr

as described in 13.8. Form a cofibering

Wr
gr−→ Xr −→ Xr+1 −→Wr

where the last morphism has degree −1. Without any essential loss of generality
we may suppose by using a telescope that X0 ⊂ X1 ⊂ X2 ⊂ . . . ; let X∞ be their
union. Since

E∗(Wr) −→ E∗(Xr)

is an epimorphism
E∗(Xr) −→ E∗(Xr+1)

is zero. Therefore
E∗(X∞) = Lim

−→
r

E∗(Xr) = 0

By Lemma 13.1, we have F ∗(X∞) = 0.

By applying F ∗, we get a spectral sequence, convergent in the sense that
Theorem 8.2 holds. It is convergent to F ∗(X∞, X0) ∼= F ∗(X0) and has E1-term

Ep,∗1 = F ∗(Wp).
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Now we have arranged that

F ∗(Wr) = Hom∗
π∗(E)(E∗(Wr), π∗(F ))

and
0←− E∗(X)←− E∗(W0)←− E∗(W1)←− E∗(W2) . . .

is a resolution of E∗(X) by projective modules over π∗(E). Moreover, the boundary
d1 in the spectral sequence is that induced by the boundary in this resolution.
Therefore

Ep,∗2 = Extp,∗π∗(E)(E∗(X), π∗(F )),

as claimed.

It can be checked that the edge-homomorphism is the obvious map.

Now we start work on the proof of Proposition 13.4. We need the following
lemma:

Lemma 13.9. Suppose

(i) X is a finite spectrum,

(ii) the spectral sequence

H∗(X;π∗(E)) −→ E∗(X)

is trivial, i.e., it’s differentials are zero, and

(iii) for each p, Hp(X;π∗(E)) is projective as a left module over π∗(E).

Then E∗(X) is projective and X satisfies Condition 13.2, i.e.,

F ∗(X) −→ Hom∗
π∗(E)(E∗(X), π∗(F ))

is an isomorphism for all module-spectra F over E.

(The condition that X is finite is not essential, but is satisfied in the applica-
tions.)

In order to apply Lemma 13.9 to DEα, we simply have to check that
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(i) the spectral sequence

H∗(Eα;π∗(E)) −→ E∗(Eα)

is trivial, and

(ii) for each p, Hp(Eα;π∗(E)) is projective over π∗(E).

Proof. (from [Ada69], Lecture 1, Prop 17). Let Erp,q(0) and Ep,qr (2) be respectively
the spectral sequences

H∗(X;π∗(E)) =⇒ E∗(X)

H∗(X;π∗(F )) =⇒ F ∗(X).

It follows immediately from the assumptions on the spectral sequence E∗
∗∗(0) that

E∗(X) is projective.
The Kronecker product yields a homomorphism

Ep,∗r (2) −→ Homπ∗(E)(E
r
p∗(0), π∗(F )).

This homomorphism sends dr into (dr)
∗. (This assertion needs detailed proof

from the definitions of the spectral sequences, but it can be done using only
formal properties of the product and the fact that Hom is left exact.) Because of
the assumption that the spectral sequence E∗

∗∗(0) is trivial, which is used here.
the groups Homπ∗(E)(E

r
p∗(0), π∗(F )), equipped with the boundaries (dr)

∗ (which
happened to be zero) form a (trivial) spectral sequence Ep,qr (4). We now have a
map of spectral sequences

Ep,qr (2) −→ Ep,qr (4).

For r = 2 it becomes the obvious map

Hp(X;π∗(F )) −→ Hom∗
π∗(E)(Hp(X;π∗(E)), π∗(F )).

Since we are assuming Hp(X;π∗(E)) is projective over π∗(E), a theorem on
ordinary homology shows that for r = 2 the map is an isomorphism. Therefore it
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is an isomorphism for all r, and the spectral sequence Ep,qr (2) is trivial. Since X
is a finite spectrum, it is easy to deduce that the map

Ep,∗∞ (2) −→ Hom∗
π∗(E)(E

∞
p,∗(0), π∗(F ))

is an isomorphism, because the limit is attained for some finite value of r.
Let us now introduce notation for the filtration quotient groups, say

Gp∗(0) = Im(E∗(X
p) −→ E∗(X))

Gp∗(2) = Coim(F ∗(X) −→ F ∗(Xp)).

The Kronnecker product yields a homomorphism

Gp∗(2) −→ Hom∗
π∗(E)(Gp∗(0), π∗(F )).

(Again, the verification uses formal properties of the product and the fact that
Hom is left exact.) Consider the following diagram.

0 0

Ep∗∞ (2) Hom∗
π∗(E)(E

∞
p∗(0), π∗(F ))

Gp∗(2) Hom∗
π∗(E)(Gp∗(0), π∗(F ))

Gp−1∗(2) Hom∗
π∗(E)(Gp−1∗(0), π∗(F ))

0 0

The second column is exact because E∞
p∗(0) is projective. Induction over p, using

the short five lemma, now shows that

Gp∗(2) −→ Hom∗
π∗(E)(Gp∗(0), π∗(F ))

is an isomorphism. Since X is a finite spectrum, in a finite number of steps we
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obtain the result that

F ∗(X) −→ Homπ∗(E)(E∗(X), π∗(F ))

is an isomorphism.

We now sketch the proof of 13.4 (See [Ada69]. pp. 29-30)

(i) E = S, the sphere spectrum. Take Eα = S; then 13.3 may be verified
directly.

(ii) E = HZp. The hypotheses of 13.9 are satisfied by X, and it is sufficient to
let Eα run over any system of finite spectra whose limit is HZp.

(iii) E = MO. It is well known that

MO ∼=
∨

i

Sn(i)HZ2
∼=
∏

i

Sn(i)HZ2.

The hypotheses of 13.9 are satisfied by any X, and it is sufficient to let Eα
run over any system of finite spectra whose limit is MO.

(iv) E = MU. We have Hp(MU;πq(MU)) = 0 unless p and q are even. Therefore
the spectral sequence

H∗(MU;π∗(MU)) =⇒ MU∗(MU)

is trivial. Again, Hp(MU;π∗(MU)) is free over π∗(MU). It is sufficient to
let Eα run overt a system of finite spectra which approximate MU in the
sense that

i∗ : Hp(Eα) −→ Hp(MU)

is an isomorphism for p ≤ n, while Hp(Eα) = 0 for p > n.

(v) E = MSp. A simple adaptation of the method of S.P. Novikov [Nov67b]
[Nov67a] from the unitary to the symplectic case shows that the spectral
sequence

H∗(MSp;π∗(MSp)) =⇒ MSp∗(MSp)
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is trivial. Again, Hp(MSp;π∗(MSp)) is free over π∗(MSp). The rest of the
argument is as in (iv).

(vi) E = K. Recall that in the spectrum K every even term is the space BU.
We have

Hp(BU;πq(K)) = 0 unless p and q are even.

Therefore the spectral sequence

H∗(BU;π∗(K) =⇒ K∗(BU)

is trivial. Again, Hp(BU;π∗(K)) is free over π∗(K). It is sufficient to let
Eα run over a system of finite spectra which approximate, as in (iv) the
difference space BU of the spectrum K.

(vii) E = KO. Recall that in the spectrum KO, every eighth term is the space
BSp. I claim that the spectral sequence

H∗(BSp;π∗(KO)) =⇒ KO∗(BSp)

is trivial. In fact, for each class h ∈ H8p(BSp(m)) we can construct a real
representation of Sp(m) whose Chern character begins with h; for each class
h ∈ H8p+4(BSp(m)) we can construct a sympletctic representation of Sp(m)

whose Chern character begins with h. The rest of the argument is as for
(vi).
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14. A Category of Fractions

We recall that our general object in these sections is to answer the following
question. Suppose given E∗(X) and E∗(Y ). What can we say about [X,Y ]∗?

Now it is clear that we cannot say everything. For example, suppose E = HZ2;
given (HZ2)∗(X) and (HZ2)∗(Y ) there is no hope of finding out anything about
the odd torsion in [X,Y ]∗.

More generally, we will say that a morphism f : X −→ X ′ is an E-equivalent
if the induced homomorphism

f : E∗(X) −→ E∗(X
′)

is an isomorphism. This can happen without f being an equivalence; for example,
take E = HZ2, X = HZ3, X ′ = pt. Then it is clear that methods based on
E-cohomology cannot tell X and X ′ apart.

It therefore seems best to introduce a new category in which one does not
attempt to tell X and X ′ apart. In technical terms I have to start from the stable
category and define a category of fractions.

(Added later.) I owe to A.K. Bousfield the remark that the procedure below
involves very serious set-theoretical difficulties. Therefore it will be best to
interpret this section not as a set of theorems, but as a programme, that is, as a
guide to what one might wish to prove.

Let C be the stable category already constructed.

Theorem 14.1. There exists a category F , called the category of fractions, and a
functor

T : C −→ F

with the following properties.
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(i) if e : X −→ Y is an E-equivalence in C, then T (e) is an actual equivalence

in F , i.e., it has an inverse T (e)−1.

(ii) T is an universal with respect this property; given a category C and a functor
U : C −→ G such that e an E-equivalence implies U(e) is an equivalence in
G, then there exists one and only functor V : F −→ G such that U = V T .

C G

F

T

U
V

(iii) The objects of F are the same as the objects of C, and T is the identity on
objects.

(iv) Every morphism in F from X to Y can be written T (e)−1T (f), where
f : X −→ Y ′ and e : Y −→ Y ′ are in C and e is an E-equivalence.

Y ′

X Y

f
e

We have T (e1)−1T(f1) = T (e2)
−1T (f2) in F if and only if there exists a

diagram of the following form in C.
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Y1

X Y Y ′

Y2

f1

f2

e1 e′1

e′2e2

(v) Every morphism in F from X to Y can be written T (f)T (e)−1, where
f : X ′ −→ Y and e : X ′ −→ X are in C and e is an E-equivalence.

X

Y

X ′

e

f

We have T (f1)T (e1)−1 = T (f2)T (e2)
−1 in F if and only if there exists a

diagram of the following form in C.

X1

X ′ X Y

X2

e′1

e′2

e1

e2

f1

f2

If one takes only parts (i), (ii), and (iii) the theorem is almost empty; such
a category of fractions exists under negligible assumptions. (Added later: un-
fortunately there is no reason why the result should be a small category.) Our
object, of course, is construct F in such a way that we obtain a good hold on it.
Parts (iv) and (v) essentially describe two ways of constructing F . We shall write
[X,Y ]

E
∗ to mean the morphisms from X to Y in category F . Beside constructing

F , we must also give results calculating [X,Y ]
E
∗ in various cases which arise in

the applications. When we construct the Adams spectral sequence, based on the
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homology theory E∗ we will try to prove that it converges to [X,Y ]
E
∗ .

Before proving 14.1, I will finish stating some results which help to show what
F is.

We propose to get a hold on [X,Y ]
E by showing that if we keep Y fixed

and vary X, then we get a functor of X which is representable in C. Then we
give means for recognizing the representing object, and finally we construct the
representing object in an elementary way in special cases.

Proposition 14.2. The following conditions on Y are equivalent.

(i) f : [X,Y ]∗ −→ [X,Y ]
E
∗ is an isomorphism for all X.

(ii) if E∗(X) = 0, then [X,Y ]∗ = 0.

if these equivalent conditions hold, we say that Y is E-complete. This term can
be justified by inspecting the special case E = HZP , which will be considered
later.

As an example, we give:

Corollary 14.3. If Y is an E-module spectrum, then Y is E-complete and

T : [X,Y ]∗ −→ [X,Y ]
E
∗ is an isomorphism.

Proof. (From 14.2). Condition (ii) of 14.2 holds by 13.1.

Theorem 14.4. (i) For any spectrum Y there is an E-equivalence e : Y −→ Z

such that Z is E-complete.

(ii) Such an E-equivalence is universal. That is, given any other E-equivalence
e′ : Y −→ Z ′, there exists a unique f : Z ′ −→ Z such that fe′ = e.

Z ′

Y

Z

e′

e

f
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(iii) Therefore, Z is unique up to canonical equivalence.

(iv) For such a Z we have an isomorphism

[X,Z]∗ −→ [X,Y ]E∗ .

given by f 7→ T (e)−1T (f).

Notes. (iii) follows immediately from (ii). Since Z is defined up to canonical
equivalence by Y , we may write it as a function of Y ; we choose the notation
Z = Y E , so that [

X,Y E
]
∗ = [X,Y ]

E
∗ .

We will call Y E the E-completion of Y . Again, the term can be justified by
considering the special case E = HZp. Note that (Y E)E = Y E , so that the term
“completion” is justified.
We say that X is connective if there exists n0 ∈ Z such that πr(X) = 0 for r < n0.

Proposition 14.5. Suppose that E is a commutative ring-spectrum and πr(E) = 0

for r < 0; suppose also that Y is connective. Then [X,Y ]
E
∗ depends only on the

ring π0(E).

For example, [X,Y ]
E
∗ is the same whether E = MUQp or E = buQp. The

idea is that under these hypotheses, the difference between [X,Y ]
E
∗ and [X,Y ]∗

is essentially arithmetical.
For the next result, we assume that E is a commutative ring-spectrum, that

πr(E) = 0 for r < 0, and Y is connective.

Theorem 14.6. (i) Suppose π0(E) is a subring R of the rationals. Then

Y E = Y R.

(ii) Suppose π0(E) = Zm and πr(Y ) is finitely generated for all r. Then,

Y E = Y Im,

where Im is the ring of m-adic integers, lim←−
r

Zmr .
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(iii) Suppose π0(E) = Zm and the identity morphism 1: Y −→ Y satisfies
me · 1 = 0. Then

Y E = Y.

Example. (ia) Suppose π0(E) = Z, then Y E = Y and T : [X,Y ]∗ −→ [X,Y ]
E
∗

is an isomorphism.

(ib) Suppose π0(E) is a subring R of the rationals and X is a finite spectrum.
Then

[X,Y ]
E
∗ = [X,Y Im]∗ = [X,Y ]∗ ⊗R by 6.9

(iia) Suppose π0(E) = Zm, πr(Y ) is finitely generated for all r and X is a finite
spectrum. Then

[X,Y ]
E
∗ = [X,Y Im]∗ = [X,Y ]∗ ⊗ Im by 6.9

(iib) Take m to be a prime p, and take X = Y = S. Then

[S, S]
E
r =





0 (r < 0)

1p (r = 0)

the p-component of of [S, S]r if r > 0.

It is very plausible that the classical Adams spectral sequence should converge
to these groups.

Warnings. (i) We have assumed that πr(E) = 0 for r < 0. If we do not
have this, the relationship between [X,Y ]∗ and [X,Y ]

E
∗ may be much more

distant. For example, take E = K; it can be shown that [S, S]
K
r ≠ 0 for

infinitely many negative values of r.

(ii) Consider parts (ii) and (iii) of the theorem, in which π0(E) = Zm. Results
of the form given do require some assumption on Y beyond the fact it is
connective. For example, take Y = S(Q/Z) It can be shown that

[S, Y ]1 = 0 and so [S, Y ]1 ⊗ Im = 0, but [S, Y ]
E
I = Im.
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If one takes m to be a prime p and checks the behavior of the classical
Adams spectral sequence based on E = HZp, one sees that it converges
to [S, Y ]

E
1 , as indeed it must do by the theorem so be proved in the next

section. So something which was previously a counterexample can now be
used as evidence to support the theory.

The proof of Theorem 14.1 requires two lemmas.

Lemma 14.7. (i) Suppose given a diagram

X X ′

Y

f

e

in which e is an E-equivalence. Then we can complete it to a commutative
diagram

X X ′

Y Y ′

e

f

e′

g

in which e′ is an E-equivalence. If f is also an E-equivalence, so is g.

(ii) Suppose given a diagram

X ′

Y Y ′g

e′

in which e′ is an E-equivalence. Then we can complete it to a commutative
diagram
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X X ′

Y Y ′

e

f

e′

g

in which e is an E-equivalence. If g is also an E-equivalence, so is f.

Proof. (i) Let W be the fibre of X −→ X ′, and let Y ′ be the cofibre of W −→ Y .
The morphism e′ is an E-equivalence by the five lemma.

(ii) Part (ii) is similar.

Lemma 14.8. (i) Suppose given

X ′ e−→ X
f

⇒
g
Y

Where e′ is an E-equivalence and fe=ge. Then we can construct

X
f

⇒
g
Y

e′−→ Y ′

with e′ an E-equivalence and e′f = e′g.

(ii) Suppose given

X
f

⇒
g
Y

e′−→ Y ′

Where e′ is an E-equivalence and e’f=e’g. Then we can construct

X ′ e−→ X
f

⇒
g
Y

with e an E-equivalence and fe = ge.

Proof. The proof is a manipulation with cofibering using Veridier’s axiom 6.12
and is left as an exercise.
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Now, to contrusct F, let the object of F be the same as the objects of C. To
define morphism in F, say [X,Y ]

E , one makes a preliminary construction. Fix Y,
and consider the category in which the objects are E-equivalences. Y e′−→ Y ′ and
morphisms are diagrams of the following form.

Y ′

Y

Y ′′

e′

e′′

Then 14.7 and 14.8 say that we get a directed category in the sense of Grothendieck.
That is, given two objects A and B, there exists

A

C;

B

given two morphisms A
f

⇒
g
B, there exists A

f

⇒
g
B

h−→ C where hf = hg.

We define [X,Y ]
E
∗ = lim

−→
[X,Y ′]∗, where the direct limit takes place over this

desired category. An element of lim
−→

[X,Y ′] is an equivalence class of diagrams

Y ′

X Y

f ′
e′

in which e′ is an E-equivalence. Two such diagrams are equivalent if and only if
there exists a diagram of the following form.
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Y1

X Y Y ′

Y2

f1

f2

e1 e′1

e′2e2

This is essentially the construction presented in (iv). To check that this is an
equivalence relation one uses 14.7 (i).

To define composition in the category, suppose given the two diagrams shown
below with undotted arrows.

Z ′′

Y ′ Y ′

X Y Z

f1
e1

f2
e2

Add the dotted arrows by 14.7 i. We get a diagram representing a morphism
from X to Z in the new category. We check that the equivalence class of this
diagram depends only on the equivalence classes of the factors, not on the choice
of parallelogram (use 14.7 (i), 14.8 (i)).

We check the associativity law and the existence of identity morphisms. We
now have a category F . We define T : C −→ F as follows: if f : X −→ Y , let
T (f) be the class of the following diagram.

Y

X Y

f
1
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One checks that this is a functor, It is now almost trivial to verify properties
(i)-(iv)) of the theorem.

On the other hand, precisely the dual construction works using 14.7 (ii) and
14.8 (ii) to show that one can construct F so as to have properties (i)-(iii) and
(v). But of course F is characterized by (i)-(iii), so it must have both properties
(iv) and (v).

Now we turn to Proposition 14.2. First, suppose E∗(X) = 0. Then it is clear
that the morphism pt. −→ X is cofinal among E-equivalences. e′ : X ′ −→ X.

So we have [X,Y ]∗ = 0. If we assume that T : [X,Y ]∗ −→ [X,Y ]
E
∗ = 0 is an

isomorphism, then clearly we deduce that [X,Y ]∗ = 0. So condition (i) of 14.2
implies condition (ii). The proof that(ii) implies (i) will be given together with
the proof of part of Theorem 14.4 to be considered below. This requires three
lemmas, numbered 14.9, 14.10, and 14.11.

Lemma 14.9. Let A −→ B −→ C be a cofibering. Then

[A, Y ]
E
∗ ←− [B, Y ]

E
∗ ←− [C, Y ]

E
∗

and
[X,A]

E
∗ −→ [X,B]

E
∗ −→ [X,C]

E
∗

are exact.

Proof. For any Y ′, the sequence

[A, Y ′]←− [B, Y ′]∗ ←− [C, Y ′]∗

is exact. The given sequence is obtained from such sequences by passing to a
direct limit. But direct limits over a directed category preserve exactness. The
same form of argument holds for the second sequence, using the fact that we can
also define [X,Y ]

E
∗ by taking a direct limit of [X ′, Y ]∗ as we vary X ′.

Lemma 14.10. The canonical map

[∨

α

Xα, Y

]E

∗
−→

∏

a

[Xα, Y ]E∗
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is an isomorphism.

Proof. (i) Suppose given an element in
∏
a [Xa, Y ]

E
; each of its components is

represented by a diagram

Xα Y

X ′
α

eα

fα

Then we can form the diagram

∨
αXα Y

∨
αX

′
α

∨
α eα

{fα}

This gives an element of [
∨
αXα, Y ]

E
∗ which maps the required way.

(ii) Suppose given an element of [
∨
αXα, Y ]

E
∗ , say represented by

∨
αXα Y

W ′

e
f

Suppose it restricts to zero in each [Xα, Y ]
E
∗ . This says that for each

α we have a commutative diagram of the following form;
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Xα

∨
αXα Y

Xα W ′

X ′
α

1

eα

iα

jα

f
e

and moreover, fjα = 0. Then consider the following diagram.

∨
αXα Y

W ′

∨
αX

′
α

∨
α eα

e

{jα}

f

This shows that the diagram

∨
αXα Y

W ′

e f

gives the zero element of [
∨
αXα, Y ]

E
∗ .

Now we start the proof of 14.4. Consider [X,Y ]
E
∗ . Hold Y fixed and vary X.

By 14.9 and 14.10, we have the data for E. H. Brown’s Theorem, and we deduce
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that [X,Y ]
E
∗ is a representable functor of X. That is, there is a spectrum Z and

a natural transformation

U : [X,Y ]∗
∼=−→ [X,Y ]

E
∗

Here Z satisfies condition (ii) of 14.2. For suppose E∗(X) = 0; then [X,Y ]
E
∗ = 0,

as we have remarked; so [X,Y ]∗ = 0, since U is an isomorphism.

Now consider 1 ∈ [Z,Z] and U(1) ∈ [Z, Y ]
E . the latter is represented by this

diagram

Y ′

Z Y

u

e′

Extend this to a cofibre sequence

Y ′

Z Y

X

f

u

e′

Then by naturality U(f) = f∗U(1) = 0. Since U is a monomorphism, f = 0.
Therefore the morphism Z

u−→ Y ′ is equivalent to the injection Z −→ Z∨Susp(X);

we can replace the representative for U(1) by the following diagram.
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Z ∨ Susp(X)

Z Y

i e′′

Now consider 1 ∈ [Y, Y ]
E
∗ ; there exists ϵ : Y −→ Z such that U(ϵ) = 1 ∈

[Y, Y ]
E . That is, we have the following commutative diagram.

Z ∨ Susp(X)

Z

Y Y Y ′′

Y

1

1 e2

ϵ

i

e′′

e1

We conclude that i∗ : E∗(Z) −→ E∗(Z ∨ Susp(X)) is an epimorphism. There-
fore E∗(Z ∨ Susp(X)) = 0. Hence, i∗ : E∗(Z) −→ E∗(Z ∨ Susp(X)) and
ϵ∗ : E∗(Y ) −→ E∗(Z) are isomorphisms.

Since we now know that ϵ : Y −→ Z is an E-equivalence, we allow ourselves
to change its name to e : Y −→ Z. We have proved that any spectrum Y admits
an E-equivalence e : Y −→ Z, where E∗(X) = 0 implies [X,Y ]∗ = 0.

We will now forget everything about Z except these two properties.

Lemma 14.11. Suppose e : Y −→ Z is an E-equivalence, and E∗(X) = 0 implies
[X,Y ]∗ = 0. Then 14.4 (ii) and (iv) hold.

This will complete the proof of Proposition 14.2; for we take e : Y −→ Z to
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be 1: Y −→ Y , and deduce that

T : [X,Y ]∗ −→ [X,Y ]
E
∗

is an isomorphism. Moreover, it will obviously complete the proof of 14.4.

Proof. We have to show that e : Y −→ Z is universal. Suppose given an E-
equivalence e′ : Y −→ Z ′. Then up to equivalence we have Z ′ = Y ∪gCA for
some g : A −→ Y ; and here E∗(A) = 0, by the exact sequence of the cofibering

A −→ Y
e′−→ Z ′.

A

Z ′

Y Z (j has degree -1).

A

g

e′

j

e

Then eg = 0 by the assumed property of Z, so e extends over Y ∪gCA and
there is a map f : Z ′ −→ Z with fe′ = e. Also f is unique, because two choices
differ by an element of j∗ [A,Z]∗, and [A,Z]∗ = 0 by the assumed property of Z.

This shows that e : Y −→ Z is universal. Then clearly the single object

Y
e−→ Z is cofinal in the directed category used to construct [X,Y ]

E
∗ so we have

an isomorphism
[X,Y ]∗ −→ [X,Y ]

E
∗

given by assigning to a morphism f : X −→ Z the class of the diagram
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Z

X Y

f
e

i.e., the element T (e)−1T (f) ∈ [X,Y ]
E
∗ . This completes the proof of 14.2, 14.3,

and 14.4.

Now we start working toward the proof of 14.5.

Lemma 14.12. Suppose πr(E) = 0 for r < 0. Suppose a morphism f : X −→ Y

induces an isomorphism E∗(X) −→ E∗(Y ). Then it induces an isomorphism
H∗(X ′;π0(E)) −→ H∗(Y ;π0(E)).

Proof. First a remark. Let E be any spectrum, not necessarily a ring-spectrum,
and not necessarily connective; then I claim

H ∧ E ≃
∨

i

Si ∧HGi,

Where Gi = Hi(E). In fact, for each i we can construct a Moore spectrum SiGi;

then we can construct a morphism

SiGi
ai−→ H ∧ E

inducing the identity map

Gi = πi(S
iGi) −→ πi(H ∧ E) = Gi.

Now we can form

H ∧ (SiGi)
1∧ai−−−→ H ∧H ∧ E µ∧1−−→ H ∧ E.
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Finally we form ∨

i

H ∧ (SiGi)
{(µ∧1)(1∧ai)}−−−−−−−−−→ H ∧ E.

This induces an isomorphism of homotopy groups, so it is an equivalence by the
theorem of J. H. C. Whitehead.

Now we return to the lemma. From the cofibering X f−→ Y −→ Z. Then
we have E∗(Z) = 0 and it is sufficient to deduce that H∗(Z;π0(E)) = 0. Since
π∗(E ∧ Z) = 0, E ∧ Z is contractible. Therefore H ∧ E ∧ Z is contractible. Now
πr(E) = 0 for r < 0, so by the Hurewicz theorem G0 = H0(E) = π0(E). We have
just shown that HG0 is a direct summand in H ∧E, so (HG0)∧Z is contractible;
that is H∗(Z;π0(E)) = 0. This proves the lemma.

Lemma 14.13. Suppose E is a commutative ring-spectrum and πr(E) = 0 for
r < 0. Suppose X and Y are connective and f : X −→ Y induces an isomorphism
H∗(X;π0(E)) −→ H∗(Y, π0(E)). Then it induces an isomorphism E∗(X) −→
E∗(Y ).

Proof. As before, we form the cofibering X f−→ Y −→ Z. Then Z is connective;
we have H∗(Z;π0(E)), and it is sufficient to prove E∗(Z) = 0.

Since π0(E) is a commutative ring and πr(E) is a module over π0(E), we have
the universal coefficient theorem in the form of the spectral sequence

Torπ0(E)
p∗ (H∗(Z;π0(E)), πr(E)) =⇒

p
H∗(Z;πr(E)).

This is a quarter-plan spectral sequence convergent in the naive sense. We see
that H∗(Z;π0(E)) = 0. We now consider the Atiyah-Hirzebruch spectral sequence

Hp(Z;πq(E)) =⇒
p

Ep+q(Z).

This is a quarter-plane spectral sequence convergent in the naive sense. We
conclude that E∗(Z) = 0.

Warnings. This condition that X and Y are connective cannot be omitted (take
E = bu, X = pt., Y = BUZp or vice versa).
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Proof of 14.5. recall that we wish to show that if E is a commutative ring spectrum
and πr(E) = 0 for r < 0, then for any connective spectrum Y, [X,Y ]

E
∗ depends only

on π0(E). More precisely, we show that [X,Y ]
E
∗ = [X,Y ]

E′

∗ , where E = Hπ0(E).

(i) By 14.12, we have that any morphism f : Y −→ Y ′ which induces an
isomorphism in E-homology also induces an isomorphism in E′-homology.

(ii) Consider the directed category used in the construction of [X,Y ]
E′

∗ . I claim
that morphism f : Y −→ Y ′ which induce an isomorphism in E-homology
are cofinal in those which induce an isomorphism in E′-homology. Once this
is proved, 14.5 follows. We need a lemma.

Lemma 14.14. Let Y be a connective spectrum. X any spectrum. Then any
morphism f : X −→ Y factors as

X Y

X ′

Where X ′ is connective and Hr(X
′)




≃ Hr(X) (r ≥ N)

= 0 (r < N)
for some N ∈ Z de-

pending only on Y .

Proof. Let N be such that πr(Y ) = 0 for r < N + 1. Then we can factor f
through X/XN−1; this spectrum is connective. However, it need not have the
desired properties in homology. We have

Hr(X/X
N−1) ∼= Hr(X) (r > N)

Hr(X/X
N−1) = 0 (r < N)

and in dimension N we have an exact sequence

0 −→ HN (X) −→ HN (X/XN−1) −→ F −→ 0,
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where F is free since it is a subgroup of HN−1(X
N−1). By the Hurewicz theorem,

we have
πN (X/XN−1) ∼= HN (X/XN−1).

Choose a set of elements
θα ∈ πN (X/XN−1)

which project to a base of F, and form

X ′ = X/XN−1 ∪θα CSN .

X ′ is connective, and X/XN−1 −→ Y factors through x′. We have

Hr(X
′)




∼= Hr(X) (r ≥ N)

= 0 (r < N).

Returning to (ii) above, suppose f : Y −→ Y ′ induces an isomorphism in E′-
homology. Form a cofibre sequence

A −→ Y
f−→ Y ′ −→ . . .

Here Hr(A;π0(E)) = 0, and so by the ordinary universal coefficient theorem.

Hr(A)⊗Z π0(E) = 0, TorZ1 (Hr(A), π0(E)) = 0.

By 14.14, we can factor A −→ Y in the form

A Y,

B

364



Chapter 14: A Category of Fractions

Where B is connective and

Hr(A)
∼=−→ Hr(B) for r ≥ N

Hr(B) = 0 for r < N.

Then
Hr(B)⊗Z π0(E) = 0,TorZ1 (Hr(A), π0(E)) = 0

and so
Hr(B;π0(E)) = 0

for all r. Now we can form the following diagram of cofiberings.

A Y Y ′ . . .

B Y Y ′′ . . .

1

f

Here Y ′′ is connective, and Y −→ Y ′′ is an E′-equivalence, so it is an E-equivalence
by 14.13 proof of (iii) above, and so completes the proof of 14.5

Now we turn to Theorem 14.6. We have to take Y R, or Y Im, or Y , according
to the case, and show it satisfies the conditions in 14.4. We have already shown
that it will be sufficient to check 14.4 (i), that is to say that these spectra are
E-equivalent to Y , under the hypotheses given for each case, and E-complete.

Consider the first condition. In case (i), suppose π0(E) is a subring R of the
rationals Q. Consider the product

ΣR ∧ Σ(R/Z).

By the Künneth theorem we have

H∗(ΣR ∧ Σ(R/Z)) = 0;
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for R ⊗Z (R/Z) = 0,TorZ1(R,R/Z) = 0, The spectrum is connective, so ΣR ∧
Σ(R/Z) is contractible by the theorem of J. H. C. Whitehead.

Now we have a cofibering

Y −→ Y R −→ Y ∧ Σ(R/Z).

Here we have

HR∗(Y ∧ Σ(R/Z)) = π∗(H ∧ ΣR ∧ Y ∧ Σ(R/Z)) = 0,

for H ∧ ΣR ∧ Y ∧ Σ(R/Z) is contractible. So

(HR)∗(Y ) −→ (HR)∗(Y R)

is an isomorphism.

We proceed similiarly for case (ii), starting from the fact that ΣZm ∧Σ(Im/Z)
is contractible.

In case (iii) it is trivial that Y 1−→ Y is an E-equivalence.

Now we have to check the other condition of 14.4, namely that E∗(X) = 0

implies [X,Y R]∗ = 0, or [X,Y Im]∗ = 0, or [X,Y ]∗ = 0 according to the case.

First suppose that we are in case (i), so that π0(E) = R. Suppose that
f : X −→ Y R is a map, and suppose I have already deformed it until all the stable
n-cells map to the base-point. (The induction starts, because Y R is connective.)
I wish to keep it is fixed on the (n− 1)-cells and deform it until the n-cells and
(n+ 1)-cells map to the base point.

There is an obstruction, and it lies in Hn+1(X;πn+1(Y R)). But R is a
principal ideal ring, and πn+1(Y R) is a module over R, so the ordinary universal
coefficient theorem applies; we know H∗(X;R) = 0, so we can deduce

Hn+1(X;πn+1(Y R)) = 0

So I can deform f as required. I continue by induction and conclude that f = 0.

This shows that [X,Y R]∗ = 0.

Evidently the obstruction-theory argument will work just as well in case (ii),
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provided we prove that

Hn+1(X;πn+1(Y Im)) = 0.

Here we have πn+1(Y Im) = πn+1(Y ) ⊗ Im by 6.9, and πn+1(Y ) is a finitely-
generated group. And in this case we start by knowing that

H∗(X;Zm) = 0.

The exact sequence 0 −→ Z m−→ Z −→ Zm −→ 0 induces a long exact sequence in

homology; it follows that H∗(X)
m−→ H∗(X) is an isomorphism, hence H∗(X)

mt

−−→
H∗(X) is an isomorphism. Now consider

HomZ(Hr(X),Zmt), Ext1Z(Hr(X),Zmt).

On the one hand multiplication by mt is an isomorphism; on the other hand it
is zero. Hence the group must be zero. So by the ordinary universal coefficient
theorem,

Hr(X;Zmt) = 0.

Now we have an exact sequence

0 −→ lim←−
1(H∗(X;Zmt)) −→ H∗(X; Im) −→ lim←−

0(H∗(X;Zmt)) −→ 0

Hence we have H∗(X; Im) = 0. Finally, let G be any finitely-generated abelian
group. We have a resolution

0 −→ F1 −→ F0 −→ G −→ 0

with F0 and F1 finitely-generated free. Therefore we have an exact sequence

0 −→
r∏

1

Im −→
s∏

1

Im −→ Im ⊗G −→ 0.

367



Chapter 14: A Category of Fractions

This yields an exact cohomology sequence, from which we conclude that

H∗(X; Im ⊗G) = 0.

We conclude that
Hn+1(X;πn+1(Y Im)) = 0.

the obstruction-theory argument works, and

[X,Y Im]∗ = 0.

Finally we consider case (iii). Let f : X −→ Y be a morphism. By Lemma 14.14,
we can factor f as

X Y

X ′

f

where X ′ is connective; Hr(X
′) ∼= Hr(X), r ≥ N, and Hr(X

′) = 0 for r < N , for
some N ∈ Z.

As above,
m : H∗(X) −→ H∗(X)

is an isomorphism; clearly the same is true for X ′. Since X ′ is connective, the
theorem of J. H. C. Whitehead shows that m : X ′ −→ X ′ is an equivalence; so it

has an inverse m−1. Consider the following diagram

X ′ X ′ Y

X ′ Y

1

(m−1)e
me

f ′

me

f ′
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Since me · 1Y : Y −→ Y is the zero morphism, we conclude f ′ = 0. Thus
[X ′, Y ]∗ = 0. This completes the proof of 14.6.

Now we have some short lemmas, which will be needed in the next section

Lemma 14.15. Suppose

A B

C

is a cofibre triangle and two of A,B,C are E-complete.; then so is the third.

Proof. Suppose E∗(X) ≃ 0. We have an exact sequence

[X,A]∗ −→ [X,B]∗ −→ [X,C]∗ −→ [X,A]∗ −→ . . .

Two out of ever three groups are zero, so the third must be zero also.

Lemma 14.16. If f : X −→ X ′ and g : Y −→ Y ′ are E-equivalences, so is

f ∧ g : X ∧ Y −→ X ′ ∧ Y ′.

This lemma says that smash products pass to the category of fractions.

Proof. We are given that E∧X 1∧f−−→ E∧X ′ and E∧Y 1∧g−−→ E∧Y ′ are equivalences.
Then

E ∧X ∧ Y ′ 1∧f∧1−−−−→ E ∧X ′ ∧ Y ′

and
E ∧X ∧ Y 1∧1∧g−−−−→ E ∧X ∧ Y ′

are equivalences; hence so is their composite; that is,

X ∧ Y f∧g−−→ X ′ ∧ Y ′

is an E-equivalence.
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Now we introduce some arithmetical considerations. Let E be a commutative
ring-spectrum such that πr(E) = 0 for r < 0, and let θ : Z −→ π0(E) be the unique
homomorphism of rings. Let S ⊂ Z be the set of n such that θ(n) is invertible in
π0(E). Then S is multiplicatively closed. Let R ⊂ Q be the localization of Z at
S, i.e., the set of fractions n/m with m ∈ S. Then there exists a unique extension
of θ to

θ : R −→ π0(E).

Proposition 14.17. If Y is E-complete, then πr(Y ) is an R-module. More generally,
[X,Y ]r is an R-module for any X.

Proof. Let m ∈ S; then m gives a morphism Y −→ Y , which must be an E-
equivalence, since the induced map E∗(Y ) −→ E∗(Y ) is multiplication by m,

which is an invertible element of π0(E). So in [Y, Y ]
E
0 the morphism m has an

inverse. Therefore the canonical map

φ : Z −→ [Y, Y ]
E
0

extends to give
φ : R −→ [Y, Y ]

E
0 .

So R acts on [X,Y ]
E
∗ for any X. If Y is E-complete, we have [X,Y ]

E
∗ = [X,Y ]∗.
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15. The Adams spectral sequence

Suppose given a ring-spectrum E and two spectra X,Y such that E∗(X) is
projective over π∗(E). Our object in this section is to prove the following theorem.

Theorem 15.1. Assume that X, Y and E satisfy the assumptions listed below.
Then

(i) there exists a spectral sequence with the properties which follow

(ii) its E2 term is given by

Ep,∗2 = Extp∗E∗(E)(E∗(X), E∗(Y )), and

(iii) the spectral sequence converges to [X,Y ]E∗ in the sense that a suitable
analogue of Theorem 8.2 holds. More precisely, it may be obtained by
applying the functor [X,−]E∗ to a decreasing filtration

Y ≃ Y0 ⊃ Y1 ⊃ Y2 ⊃ Y3 ⊃ . . . ⊃ Yp ⊃ . . .

such that
lim←−
p

0[X,Yp]
E
∗ = U

lim←−
p

1[X,Yp]
E
∗ = U

Notes. In (ii), Ext means Ext of comodules over the coalgebra E∗(E). The rules
for its calculation will be explained in due course.

List of assumptions. For part (i), none; no extra data is needed to construct
the spectral sequence.
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For part (ii), two assumptions

(a) Either X = S, or E satisfies 13.3.

(b) E∗(E) is flat as a right module over π∗(E).

Both are satisfied for E = S,HZp,MO,MU,MSp,K,KO.
Of course the spectral sequence may be usable even if (ii) does not apply, if

we can calculate the E1 or E2 term some other way.
For part (iii), three assumptions.

(a) Y is connective; that is, there exists n0 ∈ Z such that πr(Y ) = 0 for r < n0.

(b) πr(E) = 0 for r < 0, and

µ∗ : π0(E)⊗Z π0(E) −→ π0(E)

is an isomorphism. (Examples: π0(E) = Zm; π0(E) is a subring of the
rationals)

Before proceeding, we observe that H∗(E) is a ring, so Hr(E) is a module
over H0(E) = π0(E). Let the subring R of the rationals Q be as in 14.17, so that
we have a homomorphism θ : R −→ π0(E); thus Hr(E) becomes an R-module.

(c) Hr(E) is finitely-generated over R for all r.

Example. E = S,H,HZp,MO,MU,MSp,bu,bo satisfy (b) and (c); indeed Hr(E)

is finitely generated over Z. However, we might also wish to introduce suitable
coefficients. For example, we might prefer some account of the Brown-Peterson
spectrum in which π0(E) is Z(p), the integers localised at p. Then R = Z(p), and
the groups Hr(E) are finitely-generated over R but not over Z.

The basic construction is very easy. We start with Y0 = Y . Suppose Yp has
been constructed. Let Wp = E ∧ Yp. Then we can form the morphism

Yp ≃ S ∧ Yp
i∧1−−→ E ∧ Yp =Wp

Construct a cofibering

Yp+1 −→ Yp −→Wp −→ Yp+1
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where Wp −→ Yp+1 has degree −1. This completes the induction and constructs
the following diagram:

Y = Y0 Y1 Y2 Y3 Y4 . . .

W0 W1 W2 W3

If we wish we may use a telescope construction to replace Y0 by an equivalent
spectrum so that the morphisms actually become inclusons

Y0 ⊃ Y1 ⊃ Y2 ⊃ Y3 ⊃ . . . ;

but this is not necessary.

Suppose we now apply the functor [X,−]E∗ . Using 14.9 we get a spectral
sequence, and this is the spectral sequence required.

We can also write the specra Yp,Wp slightly differently. Let us form the
cofibering

Ē −→ S
i−→ E −→ Ē . . .

where E −→ Ē has degree −1. Let

Ēp = Ē ∧ Ē ∧ . . . ∧ Ē (p factors).

Smashing with Ēp ∧ Y , we obtain a cofibering

Ēp+1 ∧ Y −→ Ēp ∧ Y −→ E ∧ Ēp ∧ Y −→ Ēp+1 ∧ Y

where again the last morphism shown has degree −1. So we may take

Yp = Ēp ∧ Y, Wp = E ∧ Ēp ∧ Y.

This makes it trivial that a morphism f : Y −→ Y ′ induces morphisms of the
whole construction, and induces a homomorphism from the spectral sequence for
Y to that for Y ′.
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Suppose now that f : Y −→ Y ′ is an E-equivalence. Then all the induced
morphisms Yp −→ Y ′

p , Wp −→ W ′
p are also E-equivalences (by 14.16) and

induce isomorphisms of [X,−]E∗ . Thus an E-equivalence f : Y −→ Y ′ induces an
isomorphism of the whole spectral sequence.

It follows that we may suppose without loss of generality that Y is E-complete;
for if not, replace it by its E-completion Y E .

If Y is E-complete, then we easily see by induction over p that Yp is E-complete;
for Wp is E-complete since it is an E-module spectrum, and we use 14.15. So in
this case everything in the construction is E-complete, and we could have used
[X,−]∗ instead of [X,−]E∗ .

Now I had better proceed to part (ii) of the theorem, the calculation of the
E2 term. I ought to begin by recalling some facts from algebra, or perhaps from
"coalgebra".

Let A be an algebra with multiplication µ over a ground-ring R, and let N be
an R-module. Then we can construct A⊗R N , and it is an A-module with action
map

A⊗R (A⊗R N)
µ⊗1−−−→ A⊗R N.

The most usual case is that in which N is R-free; then A ⊗R N is A-free. In
general A ⊗R N is called an extended module, and it possesses the following
important property, which generalises the characteristic property of a free module.
Let M be an A-module with action map γ. Then we have an isomorphism

HomA(A⊗R N,M)
θ−→ HomR(N,M).

It is given as follows. Suppose given

A⊗R N
f−→M ;

then θf is
N ∼= R⊗R N

η⊗1−−→ A⊗R N
f−→M
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where η is the unit map R −→ A. Suppose given N g−→M ; then θ−1g is

A⊗R N
1⊗g−−→ A⊗RM

γ−→M

In particular, if N is projective over R, then A⊗R N is projective over A.

We also have the dual situation. Let C be a coalgebra with diagonal ψ over
a ground-ring R. I emphasize that R is allowed to act differently on the two
sides of C. Let N be an R-module. Then we can construct C ⊗R N , and it is a
C-comodule with coaction map

C ⊗R N
ψ⊗1−−−→ C ⊗R (C ⊗R N).

It is called an extended comodule. It has the following property. Let M be a
C-comodule with coaction map γ. Then we have an isomorphism

HomC(M,C ⊗R N)
θ−→ HomR(M,N).

It is given as follows. Suppose given

M
f−→ C ⊗R N ;

then θf is
M

f−→ C ⊗R N
ε⊗1−−→ R⊗R N ∼= N,

where ε is the augmentation C −→ R. Suppose given M g−→ N ; then θ−1g is

N
γ−→ C ⊗R N

1⊗g−−→ C ⊗R N.

In particular, if N is injective over R, then C ⊗R N is injective over C.

There is a prescription of homological algebra for computing Ext∗∗C (L,M)

where L and M are comodules over the coalgebra C. However, it does not demand
that we resolve M by absolute injectives. So long as L is projective over R it
will be sufficient if we resolve M by relative injectives. More precisely, if L is
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projective over R we have to make a resolution

0 −→M −→M0 −→M1 −→M2 . . .

where each Mi is an extended comodule. Then we form

HomC(L,M0) −→ HomC(L,M1) −→ HomC(L,M2) −→ . . .

and the cohomology groups of this cochain complex are

Ext∗∗C (L,M).

With this in mind, let us return to consider our geometrical situation. We
have

Wp = E ∧ Yp.

So of course we have

E∗(Wp) = E∗(E ∧ Yp) ∼= E∗(E)⊗π∗(E) E∗(Yp);

this is by Lemma 12.5. It is rather trivial to check that this isomorphism throws
the coaction map ψWp

onto ψE ⊗ 1; so E∗(E ∧ Yp) is an extended comodule.

Again, consider our cofibering

Yp −→ E ∧ Yp −→ Yp+1

where E ∧ Yp −→ Yp+1 has degree −1. When we smash with E we have

E ∧ Yp
µ∧1

⇒
1∧i

E ∧ E ∧ Yp −→ E ∧ Yp+1 −→ . . . .

But µ ∧ 1 is a left inverse for 1 ∧ i, so we have the following short exact sequence,

376



Chapter 15: The Adams spectral sequence

split as a sequence of modules over π∗(E)

0 −→ E∗(Yp) −→ E∗(E ∧ Yp) −→ E∗(Yp+1) −→ 0

∥

E∗(Wp)

Hence the sequence

0 −→ E∗(Y ) −→ E∗(W0) −→ E∗(W1) −→ E∗(W2) −→ . . .

is indeed a resolution of E∗(Y ) by extended comodules over E∗(E).

Now I recall that the E1 term of our spectral sequence is given by

Ep∗1 = [X,Wp]
E
∗

= [X,E ∧ Yp]E∗
= [X,E ∧ Yp]∗ (since E ∧ Yp is E-complete).

The boundary d1 is induced by the morphism

Wp −→ Yp+1 −→Wp+1

where Wp −→ Yp+1 has degree −1. We have the following commutative diagram.

[X,E ∧ Yp] Hom∗
E∗(E)(E∗(X), E∗(E ∧ Yp))

Hom∗
π∗(E)(E∗(X), E∗(Yp))

θ ∼=

α

β

Here α(f) = f∗. The isomorphism θ comes because E∗(E ∧ Yp) is an extended
comodule. The spectrum E ∧ Yp is a module-spectrum over E, and β is precisely
the map which is asserted to be an isomorphism by 13.5, if we have the data for
that, or trivially X = S. We conclude that α is an isomorphism.

Now we have the following commutative diagram, in which the horizontal
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maps are induced by the morphisms Wp −→ Wp+1 (of degree −1), and Hom is
HomE∗(E).

[X,Wp−1]∗ [X,Wp]∗ [X,Wp+1]∗

Hom(E∗(X), E∗(Wp−1)) Hom(E∗(X), E∗(Wp)) Hom(E∗(X), E∗(Wp+1))

d1 d1

∼= ∼= ∼=

The cohomology goups of the top row are Ep∗2 and those of the bottom row
are

Extp∗E∗(E)(E∗(X), E∗(Y )).

This proves part (ii) of 15.1.

We now start work on part (iii). I recall we have assumed that

π0(E)⊗Z π0(E)
µ∗−→ π0(E)

is an isomorphism. I claim it follows that for any module M over π0(E),

π0(E)⊗Z M
ν−→M

is an isomorphism. In fact, this follows from the following commutative diagram.

π0(E)⊗Z π0(E)⊗π0(E) M π0(E)⊗Z M

π0(E)⊗π0(E) M M

∼=
1⊗ν

u⊗1 ∼=

ν

∼=

ν

Now I undertake to prove by induction over p that πr(E ∧ Ēp) = 0 for r < 0.
This is surely true for p = 0, by assumption. Suppose it is true for p, and consider
the following cofibering

E ∧ S ∧ Ēp E ∧ E ∧ Ēp E ∧ Ēp+11∧i∧1

Here E ∧E ∧ Ēp −→ E ∧ Ēp+1 has degree −1. As we have already remarked,
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we have a left inverse for 1 ∧ i ∧ 1, given by µ ∧ 1 : E ∧ E ∧ Ēp −→ E ∧ Ēp.
So the exact homotopy sequence of this cofibering is split short exact. By the
inductive hypothesis and the Künneth theorem, the first non-zero homotopy group
of E ∧ E ∧ Ēp is

π0(E ∧ E ∧ Ēp) = π0(E)⊗Z π0(E ∧ Ēp).

Therefore πr(E ∧ Ēp+1) = 0 for r < −1 and π−1(E ∧ Ēp+1) is isomorphic to the
kernel of

π0(E)⊗Z π0(E ∧ Ēp) −→ π0(E ∧ Ēp)

But this map is an isomorphism by the remarks above, so its kernel is zero, and
πr(E ∧ Ēp+1) = 0 for r < 0. This completes the induction.

We have also assumed πr(Y ) = 0 for r < n0. Since we may take Wp =

E ∧ Ēp ∧ Y , we have πr(Wp) = 0 for r < n0.

Now I undertake to prove by induction over p that πr(Yp) = 0 for r <

n0 − 1.This is immediate, from the following exact sequence.

. . . −→ πr+1(Wp) −→ πr(Yp+1) −→ πr(Yp) −→ . . .

So at this stage we have established a uniform bound n0 − 1 such that πr(Yp) = 0

for r < n0 − 1.

Next we need to construct a spectrum Y∞, the E-homotopy inverse limit of the
Yp. The construction is easy. First we observe that we can assume without loss
of generality that Y is E-complete, and therefore that all the Yp are E-complete.
This requires a word of justification; we have to see that when we replace Y by
Y E , we do not sacrifice the property that Y is connective. Recall that by the
proof of 14.5, we can find a uniform bound ν and a cofinal set of E-equivalences
e : Y −→ Y ′ such that πr(Y ′) = 0 for r < ν. This shows that [S, Y ]Er = 0 for
r < ν and πr(Y ′) = 0 for r < ν.

Assume then that all Yp are E-complete.Then we can form the categorical

product
∞∏

i=0

Yi in C, and it is E-complete; for if E∗(W ) = 0, and f :W −→
∞∏

i=0

Yi

is a map, then all the components pif : W −→ Yi are zero, and so f is zero.
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It follows that
∞∏

i=0

Yi is the categorical product not only in C, but also in the

category of fractions F .

Now we construct a map f :

∞∏

i=0

Yi −→
∞∏

i=0

Yi; the ith component of f is to be

the difference of two maps, that is

( ∞∏

i=0

Yi

)
pi−→ Yi

minus ( ∞∏

i=0

Yi

)
Yi+1 Yi

pi+1

We define Y∞ so that we have the following cofibre sequence.

Y∞ −→
( ∞∏

i=0

Yi

)
f−→
( ∞∏

i=0

Yi

)
−→ Y∞

It follows from 14.15 that Y∞ is E-complete. Apllying [X,−]E∗ , we see that for
any X we have the following short exact sequence.

0 −→ lim←−
i

1[X,Yi]
E
r −→ [X,Y∞]Er −→ lim←−

i

0[X,Yi]
E
r −→ 0

Theorem 15.2. let R be a subring of the rationals Q. Suppose Yα, E are spectra
such that

(i) πr(Yα) = 0 for r < n1, for some n1 independent of α.

(ii) πr(Yα) = 0 is an R-module for all r, α.

(iii) πr(E) = 0 for r < n2, for some n2 ∈ Z, and

(iv) Hr(E) is a finitely generated R-module for all r

Then the canonical morphism

E ∧
(∏

α

Yα

)
−→

∏

α

(E ∧ Yα)
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Is an equivalence.

The canonical morphism is of course the one with components

E ∧
(∏

α

Yα

)
E ∧ Yα

1∧pα

It can be shown by examples that the behaviour of ∧ with respect to
∏

is in
general very bad; one cannot hope for a much stronger theorem.

Now 14.17 shows that πr(Yi) is an R module, where R is as in 14.17. So 15.2
applies and shows that

E ∧
( ∞∏

i=0

Yi

)
−→

∞∏

i=0

(E ∧ Yi)

is an equivalence. This shows that

E∗

( ∞∏

i=0

Yi

)
= π∗

(
E ∧

( ∞∏

i=0

Yi

))
∼= π∗

( ∞∏

i=0

(E ∧ Yi)
)
∼=

∞∏

i=0

E∗(Yi)

under the obvious homomoprhism. It follows that we have the following short
exact sequence.

0 −→ lim←−
i

1E∗(Yi) −→ E∗(Y∞) −→ lim←−
i

0E∗(Yi) −→ 0

But by the construction the maps E∗(Yi+1) −→ E∗(Yi) are zero. it follows

immediately that lim←−i
0E∗(Yi) = 0 (see section 8, exercise 8.) Therefore E∗(Y∞) =

0. It follows that [X,Y∞]E∗ = 0. Using the exact sequence above, we have

lim←−
i

0E∗(Yi) = 0

lim←−
i

1E∗(Yi) = 0

This is proved in 15.1 (iii). It remains to prove Theorem 15.2

Lemma 15.3. Suppose that R is a subring of the rationals, the Gα are R-modules
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and F is a finitely-generated R-module. Then

F ⊗R
(∏

α

Gα

)
−→

∏

α

(F ⊗R Gα)

and
TorR1

(
F,
∏

α

Gα

)
−→

∏

α

TorR1 (F,Gα)

Are isomorphisms

Proof. R is a principal ideal ring. Take a resolution of F of the form

0 −→
n∑

1

R
d−→

m∑

1

R −→ F −→ 0

Form the following diagram

0 TorR1

(
F,
∏

α

Gα

) ( n∑

1

R

)
⊗
∏

α

Gα

( m∑

1

R

)
⊗
∏

α

Gα F ⊗
∏

α

Gα 0

n∏

1

∏

α

Gα

m∏

1

∏

α

Gα

∏

α

n∏

1

Gα
∏

α

m∏

1

Gα

0
∏

α

TorR1
(
F,Gα

) ∏

α

(( n∑

1

R

)
⊗Gα

) ∏

α

(( m∑

1

R

)
⊗Gα

) ∏

α

(F ⊗Gα) 0

d⊗1

∏
α(d⊗1)

The result follows.

Lemma 15.4. Suppose that R is a subring of the rationals, E is such that Hr(E)

is a finitely-generated R-module for all R, and the Gα are R-modules. Then

Hn

(
E;
∏

α

Gα

)
−→

∏

α

Hn(E;Gα)

is an isomorphism
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Proof. First observe that since R is torsion-free, the ordinary universal coefficient
theorem gives Hr(E;R) ∼= Hr(E)⊗Z R; sand since R⊗Z R

R−→ is isomorphism,
and Hr(E) is an R-module, the arguement given in 15.1 (iii) (applied to R rather
than π0(E)) shows that Hr(E)⊗Z R −→ Hr(E) is an isomorphism. So Hr(E;R)

is finitely-generated over R. Now consider the following diagram:

0 Hn(E;R)⊗R
∏

α

Gα Hn

(
E;
∏

α

Gα

)
TorR1

(
Hn−1(E;R);

∏

α

Gα

)
0

0
∏

α

Hn(E;R)⊗R Gα
∏

α

Hn(E;Gα)
∏

α

TorR1
(
Hn−1(E;R);Gα

)
0

∼= ∼=

The two vertical arrows marked are isomorphisms by 15.3. The rows are exact by
the ordinary universal coefficient theorem. THe result follows by the short five
lemma.

Corollary 15.5. (of Lemma 15.4). Theorem 15.2 is true in the special case in
which the Yα are all Eilenberg-MacLance spectra with homotopy groups in the
same dimension q.

Proof. Let Gα be the R module πq(Yα). Then
∏

α

Yα is an Eilenberg-MacLance

spectrum with homotopy group
∏

α

Gα in dimension q. We have the following

commutative diagram:

πr

(
E ∧

∏

α

Yα

)
πr

(∏

α

E ∧ Yα
)

Hr−q

(
E;
∏

α

Gα

) ∏

α

Hr−q(E;Gα)

∼= ∼=

By 15.4 the lower horizontal arrow is an isomorphism. The result follows immedi-
ately from the theorem of J.H.C. Whitehead.
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Lemma 15.6. Suppose Aα −→ Bα −→ Cα −→ Aα −→ Bα is is a cofibering for
each α, where Cα −→ Aα has degree −1. Then

∏

α

Aα −→
∏

α

Bα −→
∏

α

Cα −→
∏

α

Aα −→
∏

α

Bα

is a cofibering.

Proof. Construct a cofibering

∏

α

Aα −→
∏

α

Bα −→ D −→
∏

α

Aα −→
∏

α

Bα

So we can construct the following diagram:

∏

α

Aα
∏

α

Bα D
∏

α

Aα
∏

α

Bα

Aα Bα Cα Aα Bα

pα pα pα pα

So we can construct the following diagrams:

∏

α

Aα
∏

α

Bα D
∏

α

Aα
∏

α

Bα

∏

α

Aα
∏

α

Bα
∏

α

Cα
∏

α

Aα
∏

α

Bα

1 1 1 1

Now the five lemma shows that the map D −→
∏

α

Cα induces an isomorphism of

homotopy, and the theorem of J,H.C. Whitehead shows that it is an equivalence.
Since the upper line of the diagram is a cofibering, it follows that the lower line is
a cofibering. This proves 15.6
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Proof of Theorem 15.2. We wish to show that

πr

(
E ∧

∏

α

Yα

)
−→ πr

(∏

α

E ∧ Yα
)

is an isomorphism.and we do this by induction over r − n1 − n2. The result is
trivial if r − n1 − n2 < 0. Supppose as an inductive hypothesis that the result is
true for smaller values of r − n1 − n2. We can construct a cofibering

Kα −→Wα −→ Yα −→ Kα −→Wα

In which Kα −→ Wα has degree −1, πr(Wα) = 0 for r < n1 + 1 and Kα is an
Eilenberg-Maclane spectrum for the R-module πn1

(Yα) in dimension n1. Using
(15.6), we see that

E ∧
∏

α

Kα −→ E ∧
∏

α

Wα −→ E ∧
∏

α

Yα −→ E ∧
∏

α

Kα −→ E ∧
∏

α

Wα

and

∏

α

(E ∧Kα) −→
∏

α

(E ∧Wα) −→
∏

α

(E ∧ Yα) −→
∏

α

(E ∧Kα) −→
∏

α

(E ∧Wα)

are also cofiberings. Now consider the following diagram:
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πr+1

(
E ∧

∏

α

Kα

)
πr+1

(∏

α

(
E ∧Kα

))

πr

(
E ∧

∏

α

Wα

)
πr

(∏

α

(
E ∧Wα

))

πr

(
E ∧

∏

α

Yα

)
πr

(∏

α

(
E ∧ Yα

))

πr

(
E ∧

∏

α

Kα

)
πr

(∏

α

(
E ∧Kα

))

πr−1

(
E ∧

∏

α

Wα

)
πr−1

(∏

α

(
E ∧Wα

))

1

2

3

4

5

Maps 1 and 4 are isomorphisms by (15.5); maps 2 and 5 are isomorphisms by
the inductive hypothesis. So map 3 is an isomorphism by the five lemma. This
completes the induction and proves Theorem 15.2
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I would like to present some applications of the spectral sequence of § 15, in
which we can do the algebra without too much trouble. For this purpose I will
consider the calculation of π∗(bu ∧X), for various spectra X. Of course. I am
really interested in π∗(bo ∧X); however, it seems best if I do things for the most
elementary case, which is the case bu, but undertake to use only methods which
extend to the case bo. For a similar reason I will consider mostly the prime 2,
but I will try to say only things which can also be said for the prime p.

If we apply the spectral sequence of § 15 to compute π∗(bu ∧X), using say
E = HZ2, we obtain a spectral sequence of the following form.

Exts,tA∗(Z2, (HZ2)∗(bu ∧X)) =⇒
s

[S,bu ∧X]HZ2
t−s .

However, in this case the Ext group simplifies very greatly. To explain how it sim-
plifies, recall that in A∗ we have a base consisting of the monomials ξr11 ξ

r2
2 . . . ξrnn .

The dual base in A is written Sqr1r2...rn . This is consitent because Sqr0...0 is
Steenrod’s Sqr.In particular, Sq01 is the element of this dual base corresponding
to the monomial ξ2. We have Sq01 = Sq1Sq2 + Sq2Sq1. The elements Sq1 and
Sq01 generate an exterior subalgebra of A; we write B for this exterior subalgebra.
It is Hopf subalgebra. The algebra B is of course dual to a quotient B∗ of A∗,
namely the quotient of A∗ by the ideal generated by ξ21 , ξ22 , ξ3 . . . , ξn, . . . . Just as
we can consider (HZ2)

∗(X) as a module over B, we can consider (HZ2)
∗(X) as

a co-module over B∗.

For the case of an odd prime, the analogues of Sq1 and Sq01 are the Milnor
elementsQ0 andQ1. These are the elements of the Milnor base for A corresponding
to τ0 and τ1 in A∗. We have Q0 = βp, Q1 = P 1βp − βpP 1. B is then the exterior
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subalgebra of A generated by Q0 and Q1; B∗ is a quotient of A∗ and is an exterior
algebra generated by τ0 and τ1.

Proposition 16.1. Assume X is connective. Then we have a spectral sequence

Exts,tB∗(Z2, (HZ2)∗(bu ∧X)) =⇒
s

[S, bu ∧X]HZ2
t−s .

For the case of an odd prime we should take the precaution of splitting buQp
into (p− 1) similar summands and using only one of them on the right hand side.

I will finish stating the results I need before I start to prove anything.

In order to use this spectral sequence to the best advantage we have to know
something about the structure-theory of comodules over B∗. As long as our
comodules are locally finite-dimensional we may as well dualise and consider
the structure-theory of modules over B. Even if our comodules are not locally
finite-dimensional, we can consider a B∗-comodule M as a B-module by the
following construction: if

Ψm =
∑

1

b′i ⊗m′′
i , b∗ ∈ B,

set
b∗m =

∑

i

⟨cb∗, b′i⟩m′′
i

where c is the canonical anti-automorphism of B.

The structure-theory works perfectly well for modules over the exterior algebra
K[x, y] on two generators x and y of distinct dimension. Here K is supposed to
be a field; for some theorems one wants K to be a finite field, but not for anything
in these lectures. We assume that the degrees of x and y are odd unless K has
characteristic 2; in other words we want K[x, y] to be a Hopf algebra, with x and
y primitive.

Some of the ideas of the structure-theory work for a finite-dimensional Hopf
algebra A, more general than K[x, y]. Let M and N be left A-modules. We
say they are stable isomorphic if there exists free modules F and G such that
M ⊕ F ∼= N ⊕G. This is an equivalence relation. For s > 0 the groups
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Exts,tA (M,K)

depends only on the stable isomorphic class of M ; this is one reason why it is
often sufficient to know only the stable isomorphism class of M .

We can form the sum and the tensor product of two modules. Here we give
M ⊕N the diagonal action, using the fact that A is a hopf algebra. The sum and
product pass to stable isomorphism classes. The product has a unit, namely the
module 1 and K in degree 0.

We say that a stable class P is invertible if there is a stable class Q such that
PQ ≃ 1 .

We define Σ to be the module with K in degree 1. Σ is clearly invertible; its
inverse is the module Σ−1 with K in degree −1.

We define I to be the augmentation ideal of A.

Lemma 16.2. If A is a connected finite-dimensional Hopf algebra, then I is
invertible.

We now return to the case A = K[x, y]. We observe that a module M has two
very useful invariants:

H∗(M ;x) = Kerx/Imx

H∗(M ; y) = Ker y/Im y

These are defined on stable isomorphic classes, and send sums to sums, products
to products. The latter follows from the Künneth theorem.

Theorem 16.3. Let M be a finite-dimensional module over K[x, y] such that
H∗(M ;x) and H∗(M ; y) both have dimension 1 over K. Then

(i) M is invertible

(ii) the stable class of M is ΣaIb for unique a, b ∈ Z.

Noitce how one proves uniqueness. We have

H∗(Σ
aIb;x) =




K in degree a+ b|x| = c, say

0 otherwise
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H∗(Σ
aIb; y) =




K in degree a+ b|y| = d, say

0 otherwise

since |x| ≠ |y|, c and d determine a and b.

If we use Proposition 16.1 to compute π∗(bu∧X) we need to know (HZ2)∗(X)

as a comodule over B∗, or equivalently, (HZ2)∗(X) as a module over B. In
particular, if we want to compute π∗(bu ∧ bu ∧ · · · ∧ bu ) (n+ 1 factors), we need
this information for X = bu ∧ bu ∧ . . . bu (n factors).

Proposition 16.4.

(i) The stable class of (HZ2)
∗(bu), as a module over B, is

(1 + Σ2)(1 + Σ3I) . . . (1 + Σ2r+1I2
r−1) . . .

(ii) Let (bu)n = bu ∧ bu ∧ · · · ∧ bu(n factors). Then the stable class of
(HZ2)∗((bu)n) as a module over B is

(1 + Σ2)n(1 + Σ3I)n(1 + Σ5I3)n . . .

Of course part (ii) follows immediately from part (i).

For the next section, we need one last fact about bu. Recall that π2(bu) ∼= Z;
let t ∈ π2(bu) be the generator. The homotopy ring π∗(bu) is the polynomial
ring Z[t]. We may identify t ∈ π2(bu) with its image in H2(bu) or HQ2(bu).

The homology ring HQ∗(bu) is the polynomial ring Q[T ]. We define a numerical
function m(r) by

m(r) =
∏

p

p[
r

p−1 ].

Here p runs over prime numbers, and [x] means the integral part of x. For
example,

if r = 1 2 3 4.

m(r) = 2 12 24 720.

Proposition 16.5. The image of H∗(bu) in HQ∗(bu) is the Z-submodule generated
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by the elements
tr

m(r)
, r = 0, 1, 2, . . . .

This completes the statement of results. Now I turn to the proofs. Let A once
more denote the mod 2 Steenrod algebra.

Proposition 16.6. As an A-module, we have

(HZ2)
∗(bu) ∼= A/A(Sq1 +ASq01) = A⊗B Z2.

For the case of an odd prime, we either write

(HZp)∗(bu) ∼=
p−1∑

1

A/(AQ0 +AQ1),

or we split buQp into (p− 1) similar summands and take one of them.
For the case of bo, we have

(HZ2)
∗(bu) ∼= A/(ASq1 +ASq2)

Proof of 16.6. First we obtain information on the first k-invariant 2 of bu, which
lies in H3(H), which is Z2 generated by δ2Sq

2. The k-invariant must be 0 or
δ2Sq

2. We wish to find out which; and of course we do it by looking at the terms
in the bu-spectrum. For each term in the bu-spectrum, the first k-invariant is
given by the same stable operation. We choose to look at the third term of the
bu-spectrum, which happens to be the first place where we can get the required
information, The third term of the bu-spectrum is the space SU . Now δ2Sq

2 ̸= 0

in H6(H, 3) but H6(SU) = 0 We conclude that the first k-invariant of bu is δ2Sq2

rather than 0.
Now the Bott periodicity theorem gives us the following cofibering,

S2 ∧ bu
i−→ bu

j−→ H

This leads to a long exact sequence

←− (HZ2)
n(bu)

j←− (HZ2)
n(H)

k←− (HZ2)
n(S3 ∧ bu)←− . . .
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Let f0 be the fundamental class in (HZ2)
0(H); then we have (HZ2)

∗(H) ∼=
A/ASq1, under the map which takes a to af0. The class j∗f0 is the fundamental
class in (HZ2)

0(bu);therefore we obtain a fundamental class f3 in (HZ2)
n(S3∧bu).

The information on the k-invariant says that

k∗f3 = β2Sq
2f0 = Sq01f0

since (Sq2Sq1f0 = 0). Thus Sq1(j∗f0) = 0 and Sq01(j∗f0) = 0. So certainly we
get a homomorphism

A/(ASq1 +ASq01) −→ (HZ2)
∗(bu)

defined by
a 7→ a(j∗f0).

We recall that Sq1 and Sq01 generate the exterior subalgebra B ⊂ A, and A is
free as a right module over B. So we have the following short exact sequence.

0←− A/(ASq1 +ASq01)←− A/(ASq1)←− A/(ASq1 +ASq01)←− 0

Here the map on the right takes

cls x←− cls xSq01.

Indeed, we have the following diagram.

. . . [A/(ASq1 +ASq01)]n [A/(ASq1)]n [A/(ASq1 +ASq01)]n−3 . . .

. . . (HZ2)
n(bu) (HZ2)

n(H) (HZ2)
n(S3 ∧ bu) . . .

0 0

Suppose as an inductive hypothesis that

[A/(ASq1 +ASq01)]r −→ (HZ2)
r(bu)

is an isomorphism for r < n. Then for (HZ2)
n(S3 ∧ bu) the same thing holds for
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r < n+ 3. Now the five lemma shows that

[A/(ASq1 +ASq01)]r −→ (HZ2)
r(bu)

is an isomorphism for r = n. This completes the induction and proves in 16.6

Proof of 16.1. We have a spectral sequence

Exts,tB∗(Z2, (HZ2)∗(bu ∧X)) =⇒
s

[S,bu ∧X]HZ2
t−s .

Suppose to begin with that (HZ2)∗(bu ∧X) is locally finite-dimensional over Z2.
Then Ext of comodules over A∗ is the same as Ext of modules over A:

Exts,tB∗(Z2, (HZ2)∗(bu ∧X)) ∼= Exts,tB∗((HZ2)
∗(bu ∧X),Z2).

The latter is the classical way of writing the E2 term. Now of course the Künneth
theorem gives us an isormorphism

(HZ2)
∗(bu ∧X) ∼= (HZ2)

∗(bu)⊗Z2 (HZ2)
∗(X).

This is an isomorphism of A−modules, provided we make A act on the right-hand
side by the diagonal action:

a(u⊗ v) =
∑

i

(a′iu)⊗ (a′′i v)

where
Ψa =

∑

i

a′i ⊗ a′′i .

(The isomorphism is A-linear by the Cartan formula.) By 16.6 this gives

(HZ2)
∗(bu ∧X) = (A⊗B Z2)⊗ (HZ2)

∗(X)

where the right-hand side is again furnished with the diagonal action. On the
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other hand, if M is an S-module, then A acts on A⊗M by the left action

a′(a⊗m) = a′a⊗m

and on (A⊗B Z2)⊗M by the diagonal action. We have an isomorphism

A⊗B M −→ (A⊗B Z2)⊗M

given by
a⊗m 7→

∑

i

a′i ⊗ a′′im.

So we find
(HZ2)

∗(bu ∧X) ∼= A⊗B (HZ2)
∗(X).

Now by a change-of-rings theorem we have

Exts,tA ((HZ2)
∗(bu ∧X),Z2)

∼= Exts,tA (A⊗B (HZ2)
∗(X),Z2)

∼= Exts,tA ((HZ2)
∗(X),Z2)

Finally, the assumption of local finite-dimensionality is unnecessary, provided
we dualise the argument and work in homology the whole time, Using the cor-
responding lemmas for comodules and the "cotheorem" to the change-of-rings
theorem, we find

Exts,tA (Z2, (HZ2)∗(bu ∧X)) ∼= Exts,tA (Z2, (HZ2)∗(X)).

This proves 16.1.

The structure-theory for modules I defer for the moment, so the next thing
is to prove 16.4, assuming the results of the structure-theory. I need one more
result not yet stated.

Lemma 16.7 (Adams and Margolis). Let M and N be modules over K[x, y] which
are connective (bounded below), i.e., there exists n0 ∈ Z such that Mr = 0 and
Nr = 0 for r < n0. Alternatively, let M and N be bounded above, i.e., Mr and
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Nr are zeroes for r greater than some n0 Let f : M 7→ N be a map of modules
such that

f∗ : H∗(M ;x) 7→ H∗(N ;x)

and
f∗ : H∗(M ; y) 7→ H∗(N ; y)

are isomorphism. Then M and N are stably isomorphic

Now we continue to study bu. in 16.6 we said that by using the morphism

bu
f0j−−→ HZ2 we can regard (HZ2)

∗(bu) as a quotient of HZ∗
2(HZ2) = A. Dually,

we can regard (HZ2)∗(bu) as a subobject of HZ∗
2(HZ2) = A∗. In fact, for

calculation it is usually convenient to apply the canonical anti-automorphism of
A∗; in other words instead of looking at the morphism

HZ2 ∧ bu
1∧f0j−−−−→ HZ2 ∧HZ2,

and taking the induced map of homotopy we look at

bu ∧HZ2
f0j∧1−−−−→ HZ2 ∧HZ2,

and take the induced map of homotopy

Lemma 16.8. (f0j)∗ identifies π∗(bu∧HZ2) with the subalgebra of A∗ generated
by

ξ21 , ξ
2
2 , ξ3, ξ4, . . .

This is immediately equivalent to 16.6;Im(f0j ∧ 1)∗ is the annihilator of Sq1A+

Sq01A. Similarly, one would identify π∗(bu ∧ HZ2) with the subalgebra of A∗
generated by ξ41 , ξ22 , ξ3, ξ4, . . .

In order to prove 16.4, on the structure of (HZ2)
∗(bu) as a B-module, an

obvious move is to compute the homology of (HZ2)
∗(bu) for the boundaries

Sq1 and Sq01 (acting on the left). It is equivalent to compute the homology of
(HZ2)

∗(bu) for the boundaries Sq1 and Sq01 (acting on the right); these boundaries
may be calculated as follows.
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Regard (HZ2)
∗(bu) as a subalgebra of A∗; let

Ψa =
∑

i

a′i ⊗ a′′i ;

then
aSq1 =

∑

i

a′i⟨Sq
1, a′′i ⟩

aSq01 =
∑

i

a′i⟨Sq
01, a′′i ⟩

These boundaries are derivations,

Lemma 16.9. (i) The homology for Sq1 is a polynomial algebra of one generator
ξ21 .

(ii) The homology for Sq01 is an exterior algebra on generators
ξ21 , ξ

2
2 , ξ

2
3 , . . .

Proof. (i) Decompose π∗(bu∧HZ2) as the tensor product of the following chain
complexes.

(1) 1, ξ21 , ξ
4
1 , ξ

6
1 , ξ

8
1 , . . . ,

(r) 1, ξ2r ←− ξr+1, ξ
4
r ←− ξ2rξr+1, ξ

6
r ←− ξ4rξr+1, . . . .

(r ≥ 2)

Each chain complex (r) has homology Zr generated by [Ada69]. By the
Künneth theorem, the homology of the tensor-product is the homology of (1).A
similar proof works for (ii).

Proof of 16.4. We show that π∗(bu∧HZ2) contains a finite-dimensional submod-
ule Mr such that H(Mr; Sq

1) is Z2, generated by ξ2
r

1 , and H(Mr; Sq
01) is Z2,

generated by ξ2r . It is sufficient to indicate the first few modules

1. ξ21
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2.
ξ22 ξ41

ξ3

Sq1

Sq01

3.

ξ23 ξ42 ξ22ξ
4
1 ξ81

ξ4 ξ22ξ3 ξ41ξ3

Since π∗(bu ∧HZ2) is an algebra over B, we obtain a map

(1 +M1)(1 +M2) · · · 7→ π∗(bu ∧HZ2)

which induces an isomoprhism of H(−; Sq1) and H(−; Sq01), so that the two sides
are stably isomoprhic by 16.7. Dualising, we obtain the stable class of (HZ2)

∗(bu)

as
(1 +M∗

1 )(1 +M∗
2 ) . . . (1 +M∗

r ) . . .

Here M∗
r satisfied the hypothesis of Theorem 16.3, which allows one to express it

in the form ΣaIb.This proves 16.4

All this work carries over to bo.
We now turn to the proof of 16.5. This is done essentially by the Bockstein

spectral sequence, although I will not assure any knowledge of that, We recall
that the Bockstein boundary

β2 : (HZ2)n(bu) 7→ (HZ2)n−1(bu)

is the boundary Sq1 of 16.9

proof of 16.5. We seperate the primes p. Let Qp be the localisation of Z at p,
that is the subring of fractions a/b with b prime to p. We wish to prove that
the image of (HQp)∗(bu) in (HQ)∗(bu) is the Qp-subalgebra generated by t and
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tp−1/p. Of course I give the proof for the case p = 2;the case of an odd prime is
similar.

The spectrum bu has a (stable) cell-decomposition of the form

bu = S0 ∪η e2 ∪ . . .

where η is the generator for the stable 1-stem, and the cells omitted have (stable)
dimension ≥ 4, It follows that the Hurewicz homomorphism

Z ∼= π2(bu) 7→ H2(bu) ∼= Z

is multiplication by 2 ; that is, H2(bu) is generated by t/2 = T , say. It follows
immediately that the image of H∗(bu) 7→ (HQ)∗(bu) contains T r = (t/2)r. We
wish to prove a result in the opposite direction.

The image of H2r(bu) 7→ (HQ)2r(bu) is a finitely-generated abelian group,
and since it is non-zero, it is isomorphic to Z; let h ∈ H2r(bu) map to a generator.
Let us write h, T for the images of h, T in (HZ2)∗(bu). Then we have

β2h = 0.

By 16.9, (Kerβ2/Imβ2)2r is generate by ξ2r1 . So we have

h = λξ2r1 + β2k

where λ ∈ Z and k ∈ (HZ2)2r+1(bu). That is

h = λT
r
+ δ2k,

where δ2 = (HZ2)2r+1(bu) 7→ H2r(bu)is the integral Bockstien . This gives

h = λT r + λ2k + 2L

where L ∈ H2r(bu). For the images in (HQ)2r(bu) we have

h = λ(t/2)r + 2µh
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where µ ∈ Z; that is,

h =
λ

1− 2µ
(t/2)r

where λ
1−2µ ∈ Q2. This proves the result for the prime 2.

Now we turn to the structure theory.

Proof of 16.2. Recall that A is a connected finite-dimensional Hopf algebra. So if
M is an A-module, we can make its dual M∗ = Hom∗

K(M,K) into an A-module.
Also A∗ is free on one generator.Recall also that I is the augmentation ideal of A,
so that we have the following exact sequence.

0 −→ I −→ A −→ 1 −→ 0

Dualising, we have the following exact sequence.

0 −→ 1 −→ A∗ −→ I∗ −→ 0

Tensoring the first sequence with I∗, We have

0 −→ I ⊗ I∗ −→ A⊗ I∗ −→ I∗ −→ 0.

Here A∗ and A∗ ⊗ I∗ are free. By Schanuel’s lemma, we have

(I ⊗ I∗) +A∗ ∼= 1 + (A⊗ I∗),

SO I ⊗ I∗ is stably isomorphic to 1, and I is invertible. This proves 16.2

To prove 16.3(i) I need 16.7 the lemma of Adams and Margolis.

First one proves a special case.

Lemma 16.10. Let M be a module over K[x, y] which is connective, i.e., bounded
below; alternatively, let M be bounded above. Assume H∗(M ;x) = 0, H∗(M ; y) =

0. Then M is free.
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Proof of 16.10. Since H∗(M ;x) = 0 we have a short exact sequence

0 −→M/xM
i
−→M

j

−→M/xM −→ 0

in which i([m]) = xm and j is the quotient map . This leads to a long exact
sequence of homology for the boundary y, namely

Hr(M ; y) −→ Hr(M/xM ; y) −→ Hr+|y|−|x|(M/xM ; y) −→ Hr+|y|(M ; y).

since H∗(M ; y) = 0 we have

Hr(M/xM ; y) = Hr+|y|−|x|(M/xM ; y).

Since M is bounded either below or above, we have Hr(M/xM ; y) = 0 either for
r < n0 or for r > n1. Since |y| − |x| ≠ 0, we can use the isomorphism

Hr(M/xM ; y) ∼= Hr+|y|−|x|(M/xM ; y)

to prove by induction over r that

Hr(M/xM ; y) = 0

for all r.

It is immediate that M/xM is free over K[y]. That is, let bα be elements in
M whose images form a K-base in

M/xM

y(M/xM)
;

then the images of bα, ybα form a K-base in M/xM . It follows that the elements
bα, ybα, xbα, xybα form a K-base in M. This proves 16.10.

Proof of 16.7. Let f : M −→ N be a map of modules, say bounded below such
that

f∗ : H∗(M ;x) −→ H∗(N ;x)
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and
f∗ : H∗(M ; y) −→ H∗(N ; y)

are isomorphisms. By adding to M a free module F bounded below, we can extend
f to f ′ = (f, g) : M ⊕ F 7→ N which is onto and also induces and isomorphism
of H∗(−;x), H∗(−; y). Consider Ker f ′; this is bounded below, and by the exact
homology sequence we have H∗(Ker f ′;x) = 0, H∗(Ker f ′; y) = 0. So Ker f ′ is
free by 16.10. But over K[x, y] the free modules are injective so we have

M ⊕ F ∼= N ⊕Ker f ′

and M is stably isomorphic to N . This proves 16.7

Proof of 16.3(i). Let M be a finite-dimensional module over K[x, y] such that
H∗(M ;x) and H∗(M ; y) have dimension 1 over K. Then the same holds for
M∗. Consider the evaluation map M∗ ⊗M −→ 1. This is a map of modules
over K[x, y], and (using the Künneth theorem). it induces an isomorphism of
H∗(−;x), H∗(−; y),. by 16.7, M∗ ⊗ M and 1 are stably isomorphic; so M is
invertible. This proves 16.3 (i).

To prove 16.3(ii) we need some more structure theory. First we put in
evidence several examples of graded modules over K[x, y]. The first is called the
lightning-flash. It has generators gi in dimesion (|y| − |x|)i (i ∈ Z) and relations
ygi = xgi+1.

−∞ . . . • • • . . . +∞

• • • •

p y x y
x

y
x

We can bring the lightning-flash to an end on the left either by taking the
submodule generated by the gi for i ≥ ν or by taking a quotient module, factoring
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out the gi for i < ν.

• • • •

• • • . . . +∞

• • •

• • • . . . +∞

yx

x

y

In the latter case xgν = ygν−1 = 0. Similarly, we can bring the lightning-flash to
an end on the right, either by taking the submodule generated by the gi for i ≤ ν,
or by taking a quotient module, factoring out the gi for i > ν.

−∞ • • • • • •

• • •

−∞ • • • • •

• • •

y
x

y
x

In the latter case xgν = ygν+1 = 0

If we want finite-dimensional modules, we can end the lightning - flash two
ways on the left and two ways on the right, giving four sorts of module, Of course,
for modules of one sort we can alter the length, , e.g.,

• • • • • . . .

• • • • or • • •

y

x

Also we might alter the grading, e.g., we might put the generator g0 in degree 1

instead of degree 0.
We add these four sorts of modules the free modules on the generator.

Theorem 16.11. Let M be a module over K[x, y] which is finite-dimensional over
K. Then M is a (finite) direct sum of modules of these fives types.

First step. Suppose xy ̸= 0. Then M is the direct sum of some module N and
a free module on one generator.

Proof. Take m0 ∈ Mr such that xym0 ̸= 0. Then there is a linear functional
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θ :Mr+|x|+|y| −→ K such that θ(xym0) = 1. Let F be free on one generator f of
degree r. Define maps of modules

F
α−→M

β−→ F

by α(f) = m0,

β(m) =





θ(m)xyf m ∈Mr+|x|+|y|

θ(xm)yf m ∈Mr+|y|

−θ(ym)xf m ∈Mr+|x|

θ(xym)f m ∈Mr

0 otherwise

.

This shows M ∼= (Ker β)⊕ F .

Second step. M ∼= N ⊕ F , where F is free and N is annihilated by xy.

Proof. Choose a K-base for xyM . Let mα be elements in M such that the
elements xymα are the chosen K-base in xyM . Either proceed as in the first step,
or remark that this gives an injection F −→M and F is injective.

In what follows, then, we can assume that M is annihilated by xy, and we
have the prove that M is a (finite) direct sum of modules of the four types.

By a base for a graded module, we mean a K-base of homogeneous elements.

We will say that a base {bα} for M is good if it satisfies the following conditions.

(i) For each vector bα in the base, xbα is either zero or a vector in the base;
and xbα = xbβ ̸= 0 implies α = β.

(ii) For each vector bα in the base, ybα is either zero or a vector in the base;
and ybα = ybβ ̸= 0 implies α = β.

Lemma 16.12. If xyM = 0 and M has a good base, then the conclusion of
Theorem 16.11 follows.
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Proof. Suppose M has a good base {bα}. Take the indices α as the vertices of a
graph. It is a finite graph, since we are assuming M finite-dimensional over K.
For each relation xbα = bβ introduce one directed edge marked “x” and running
from α to β. For each relation ybα = bβ introduce one directed edge marked “y”
and running from α to β. Divide the graph into connected components. It is
clear that a vector cannot have edges arriving and departing, since xx, xy, yx and
yy act as a zero on M . By the definition of a “good base”, a vector cannot have
more than two edges arriving (one x and one y), and of course it cannot have
more than two edges departing (one x and one y). The connected components of
the graph are therefore zigzags. (A zigzag cannot join up into a closed polygon,
because we assume deg x ̸= deg y.) Each connected component of the graph gives
a submodule of M , which is one of the 4 types describes above; and M is their
direct sum. This proves 16.12.

We define the indecomposible quotient Q(M) of M by Q(M) =M/(xM+yM).
Over K we can, if we wish, choose a direct sum splitting

M = Q(M)⊕ (xM + yM).

Both x and y map xM + yM to 0, since we assume xyM = 0; they also map
Q(M) to (xM + yM).

Let V be a finite-dimensional vector space over K, and let

0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Vn = V

be a filtration of V by a finite increasing sequence of vector subspaces. We say
that a K-base {bα} for V is adapted to the filtration if, for every i, those bα which
lie in Vi form a base for Vi.

Lemma 16.13. Let M be a module over K[x, y] such that (i) xyM = 0 and
(ii) Q(M)r = 0 for r < a and for r > c. Then there are filtrations of yMr for
c− δ < r ≤ c with the following property. For each r in the range c− δ < r ≤ c
let {brα} be a base of yMr which is adapted to the filtration; then the set of
elements brα can be extended to a good base of M .

Notes. It is assumed that deg y > deg x, and δ has been written for deg y − deg x.

404



Chapter 16: Applications to π∗(bu ∧X); Modules over K[x, y]

Notes. In the range c − δ < r ≤ c we have xMr+δ = 0, and therefore yMr =

xMr+δ+yMr. So the vector space being filtered is the whole of the decomposable
subspace of M in the dimension concerned.

Corollary 16.14. If M is as in 16.13, it has a good base.

Proof. Any filtered vector space

0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Vn = V

has at least one adapted base; for one begins by choosing a base for V1, then
extends it to a base V2, and so on by induction. So 16.13 provides a good base
for M .

Proof of 16.13. The proof is essentially by induction over c− a; the result is true
if c < a, then if M = 0.

Choose a direct sum splitting M = Q(M) ⊕ (xM + yM). Let N be the
submodule of M generated by Q(M)r for a ≤ r < c. The relations between N

and M are as follows. We have Q(N)r = Q(M)r except for r = c, in which case
Q(N)c = 0. Thus we have xNr = xMr except for r = c; that is,

(xN + yN)r = (xM + yM)r

except for r = c+ d and r = c+ e, where d = deg x and e = deg y. In the first
case we have

yNc−δ = xNc + yNc−δ ⊂ xMc + yMc−δ,

and in the second case we have

0 = xNx+δ + yNc ⊂ xMc+δ + yMc = yMc.

We assume, as our inductive hypothesis, that the lemma is true for N . Then
there are filtrations of yNr for c− δ ≤ r < c which have the property stated in
the lemma. In particular, let the filtration of yNc−δ = yMc−δ be

0 = V0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Vn = yMc−δ.
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Adjoin to it the further subgroup

Vn+1 = xMc + yMc−δ.

We have a map x : Q(M)c −→ xMc + yMc−δ; so we can filter the vector space
Q(M)c by the counterimages

0 ⊂ x−1V0 ⊂ x−1V1 ⊂ . . . ⊂ x−1Vn ⊂ x−1Vn+1 = Q(M)c = 0.

We also have a map a map y : Q(M)c −→ yMc. We filter yMc by taking the
images

0 ⊂ yx−1V0 ⊂ yx−1V1 ⊂ . . . ⊂ yx−1Vn ⊂ yx−1Vn+1 = yMc.

We now have filtrations on yMr for c− δ < r ≤ c; those for c− δ < r < c arise
from the inductive hypothesis, and that for r = c has already been constructed.
Suppose given bases {brα} in yMr for c − δ < r ≤ c, adapted to the filtrations.
We leave the bases as they are for c− δ < r < c, and start work on the base {bcα}
for yMc.

In Q(M)c we may choose elements b′α such that yb′α = bcα and b′α ∈ x−1Vm if
and only if bcα ∈ yx−1Vm. We may also choose elements b′′β in Q(M)c forming a
base adapted to the following filtration.

0 ⊂ Ker y ∩ x−1V0 ⊂ Ker y ∩ x−1V1 ⊂ . . . ⊂ Ker y ∩ x−1Vn ⊂ Ker y ∩ x−1Vn+1

The elements b′α and b′′β together form a base of Q(M)c adapted to the filtration

0 ⊂ x−1V0 ⊂ x−1V1 ⊂ . . . ⊂ x−1Vn ⊂ x−1Vn+1 = Q(M)c = 0.

From among the elements b′α and b′′β , let us for the moment omit those which lie
in x−1V0 = Ker x and those which do not lie in x−1Vn. Then the remaining xb′α
and xb′′β form a base of yNc−δ compatible with its filtration. By the inductive
hypothesis, the bases in yNr for c − δ ≤ r < c from part of a good base for N .
We now adjoin to this base for N the elements b′α and b′′β in Q(M)c, the elements
yb′α = bcα in yMc, and the elements xb′α, xb′′β for which b′α, b′′β do not lie in x−1Vn.
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We obtain a good base for M , containing the given elements brα. This completes
the induction and proves 16.13.

This therefore completes the proof of 16.14. Theorem 16.11 follows from 16.14
and 16.12, so this completes the proof of 16.11.

Proof of 16.3(ii). Let M be a finite-dimensional module over K[x, y] such that
H∗(M ;x) and H∗(M ; y) both have dimension 1 over K. Then by 16.11 it is a sum
of modules of the type considered above. By inspecting H∗(M ;x) and H∗(M ; y),
it can have only one summand which is not free, and this summand can only lie
in two out of the four types. By the same argument applied to ΣaIb, each such
summand is stably equivalent to ΣaIb.
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17. Structure of π∗(bu ∧ bu)

Mahowald and others have been using methods which rely essentially on a calcu-
lation of π∗(bo ∧ bo ∧ · · · ∧ bo), where we take (n+ 1) factors bo. I would like
to give an introduction to this calculation; it seems best if I do things for the
most elementary case, which is the case of bu, but undertake to use only methods
which extend to the case bo. For similar reasons I will mostly consider the case
of the two factors bu ∧ bu; the case of (n + 1) factors is similar. Again, I will
consider mostly the prime 2, but try to make only statements which can also be
made for the prime p.

Some things can be said for a fairly general connective spectrum X. My
standing hypotheses on X will be as follows. First, assume that for each r, Hr(X)

is a finitely generated group. This may be unnecessary for some purposes, but
it is convenient. Secondly, for each prime p, consider (HZp)∗(X) as a module
over B = Zp[Q0,Q1], and assume that its stable class is

⊕
iΣ

a(i,p)Ib(i,p), where
b(i, p) ≥ 0 and a(i, p) + b(i, p) ≡ 0 mod 2.

Example. Let X = bu ∧ · · · ∧ bu (n factors). We have checked the condition at
the prime 2 by 16.4. We have not checked the condition at the prime p > 2,
but I believe it holds. In any case, the results at the prime 2 follow from the
assumptions at the prime 2.

Our assumptions on X have obvious consequences for the homology of X with
integral coefficients.

Lemma 17.1. (i) H∗(X) is a direct sum of groups Z2 and Zp, and groups Z in
even degree.

(ii) The same holds for H∗(bu ∧X).

Proof. (i) The argument is essentially by the Bockstein spectral sequence, but
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we do not need to assume any knowledge of that. By assumption, Hr(X)

is finitely-generated abelian group; so it is a direct sum of groups Zpf and
Z. A group Zpf with f ≥ 2 will introduce into Kerβp/Imβp two groups Zp
in consecutive degrees, which is impossible; we have assumed Kerβp/Imβp

has one summand Zp in each degree a(i, p) + b(i, p), and that a(i, p) + b(i, p)
is always even. A group Z in degree r will introduce into Kerβp/Imβp a
group Zp in degree r, which is possible only if r is even.

(ii) The spectrum bu ∧X satisfies the assumptions made on X. Of course we
propose to obtain essential information on π∗(bu ∧ X) from the spectral
sequence 16.1. The two results which we obtain this way are as follows.

Proposition 17.2. Assume that X is as above.

(i) The Hurewicz homomorphism

h : π∗(bu ∧X) −→ H∗(bu ∧X)

is a monomorphism.

(ii) The Hurewicz homomorphism

h : π∗(K ∧X) −→ H∗(K ∧X)

is a monomorphism.

(iii) The homomorphism

π∗(K ∧X) −→ π∗(K ∧X)⊗Q

is a monomorphism.

Part (ii) follows immediately from part (i), by passing to direct limits.
Part (iii) follows from part (ii); we have H∗(K) ∼= H∗(K)⊗Q, and therefore

H∗(K ∧X) ∼= H∗(K ∧X)⊗Q.
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Given this proposition, one obviously tries to get a hold on π∗(K ∧ X) by
describing its image in π∗(K ∧X)⊗Q. It is also very reasonable to try to get a
hold on π∗(bu ∧X) by describing its image in π∗(bu ∧X)⊗Q; the kernel of

π∗(bu ∧X) −→ π∗(bu ∧X)⊗Q

may contain elements of order p, but no elements of order p2; this follows of course
from 17.1 and 17.2. The p-torsion subgroup of π∗(bu∧X) maps monomorphically
to (HZp)∗(X).

We shall also need another result. Consider the following diagram.

π∗(bu ∧X) H∗(bu ∧X)

π∗(K ∧X) H∗(K ∧X) π∗(K ∧X)⊗Q

Theorem 17.3. Let X be as above. Suppose an element h ∈ H∗(K ∧X) lies both
in the image of H∗(bu ∧X) and in the image of π∗(K ∧X). Then it lies in the
image of π∗(bu ∧X).

The usefulness of this result will appear later.

I said it was reasonable to try to get a hold on π∗(K ∧X) by describing its
image in π∗(K ∧X)⊗Q. In the case X = bu we see that π∗(bu ∧ bu)⊗Q is the
polynomial algebra Q[u, v], where u ∈ π2(bu) and v ∈ π2(bu) are the generators
for the two factors. Similarly, we have

π∗(K ∧ bu)⊗Q = Q[u, u−1, v]

We wish to describe the images of the maps

π∗(K ∧ bu) −→ π∗(K ∧ bu)⊗Q = Q[u, u−1, v]

π∗(bu ∧ bu) −→ π∗(bu ∧ bu)⊗Q = Q[u, v]

Theorem 17.4. In order that a finite Laurent series f(u, v) ∈ Q[u, u−1, v] lie in
the image of π∗(K ∧ bu), it is necessary and sufficient that it satisfy the following
condition.
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Condition (1): for all k ̸= 0, l ̸= 0 in Z we have

f(kt, lt) ∈ Z[t, t−1, k−1, l−1]

Theorem 17.5. In order that a polynomial f(u, v) ∈ Q[u, v] lie in the image
of π∗(bu ∧ bu), it is necessary and sufficient that it satisfy the following two
conditions.

Condition (1): as in 17.4

Condition (2): it lies in the subgroup additively generated by the monomials

ui

m(i)

vj

m(j)

Here m(r) =
∏
p p

[ r
p−1 ], as in section 16. Of course, the subgroup specified is

actually a subring.

It is very easy to prove that the conditions given in 17.4 and 17.5 are necessary,
so I will do that now.

proof that Condition (1) is necessary. Consider the following commutative dia-
gram.

π∗(K ∧ bu) π∗(K ∧ bu)⊗Q Q[u, u−1, v]

π∗(K ∧ bu)⊗ Z[k−1, l−1] π∗(K ∧ bu)⊗Q

π∗(K)⊗ Z[k−1, l−1] π∗(K)⊗Q

Z[t, t−1, k−1, l−1] Q[t, t−1]

Ψk⊗Ψl Ψk⊗Ψl

µ µ

The right-hand vertical arrow carries f(u, v) into f(kt, lt). This proves that
Condition (1) is necessary.

proof that Condition (2) is necessary. Consider the following commutative dia-
gram.
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π∗(bu ∧ bu) π∗(bu ∧ bu)⊗Q

H∗(bu ∧ bu) H∗(bu ∧ bu)⊗Q
Here H∗(bu ∧ bu) is described by the Künneth theorem, and the terms

TorZ1 (Hi(bu), Hj(bu)) map to zero in H∗(bu∧bu)⊗Q, so the image of H∗(bu∧bu)
in H∗(bu ∧ bu)⊗Q is the same as the image of H∗(bu)⊗H∗(bu). By 16.5, this
is the subgroup additively generated by the monomials

ui

m(i)

vj

m(j)

This proves that Condition (2) is necessary.

Proof of 17.5 from 17.3 and 17.4. Suppose a polynomial f(u, v) satisfies Condi-
tions (1) and (2). Consider f as an element of Q[u, u−1, v] = π∗(K ∧ bu)⊗Q =

H∗(K ∧ bu). According to the proof we have just given, Condition (2) ensures
that f lies in the image of H∗(bu ∧ bu). By 17.4, Condition (1) ensures that
f lies in the image of π∗(K ∧ bu). Now 17.3 shows that it lies in the image of
π∗(bu ∧ bu). This proves 17.5.

Remark. When we replace bu by bo, we replace Q[u, v] by Q[u2, v2] and Q[u, u−1, v]

by Q[u2, u−2, v2]; that is, we only use functions which are even in both variables.
We also replace the ring Z[t, t−1, k−1, l−1] by π∗(KO) ⊗ Z[k−1, l−1]; since we
only need the components of degree congruent to 0 mod 4, this is essentially
Z[2t2, t4, t−4, k−1, l−1]. Condition (2) is unchanged.

In order to do calculations it is often desirable to know exactly what functions
do satisfy the condition given. In such calculations it is usually convenient to
separate the primes and consider the images of

π∗(K ∧ bu)⊗ Z(p) −→ π∗(K ∧ bu)⊗Q

π∗(bu ∧ bu)⊗Q −→ π∗(bu ∧ bu)⊗Q

Of course, I consider the prime 2. The analogue of Condition (1) reads as
follows.
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(1’) For each pair of odd integers k, ℓ, f(kt, ℓt) ∈ Z(2)[t, t
−1]. The analogue of

Condition (2) reads as follows.

(2’) f(u, v) ∈ Z(2)[u/2, v/2].

Proposition 17.6. (i) The subring of finite Laurent series which satisfy (1’) is
free over Z(2)[u, u

−1] on generators

1,
v − u
3− 1

,
(v − u)(v − 3u)

(5− 1)(5− 3)
,
(v − u)(v − 3u)(v − 5u)

(7− 1)(7− 3)(7− 5)
. . .

(ii) The subring of polynomials which satisfy (1’) and (2’) is free over Z(2) on
the following generators.

u4,
u4(v − u)

2
,
u4(v − u)(v − 3u)

23
,
u4(v − u) . . . (v − 5u)

24
,
u4(v − u) . . . (v − 7u)

27
. . .

u3,
u3(v − u)

2
,
u3(v − u)(v − 3u)

23
,
u3(v − u) . . . (v − 5u)

24
,
u3(v − u) . . . (v − 7u)

27
. . .

u2,
u2(v − u)

2
,
u2(v − u)(v − 3u)

23
,
u2(v − u) . . . (v − 5u)

24
,
u2(v − u) . . . (v − 7u)

26
. . .

u,
u(v − u)

2
,
u(v − u)(v − 3u)

23
,
u(v − u) . . . (v − 5u)

24
,
u(v − u) . . . (v − 7u)

25
. . .

1,
v − u
2

,
(v − u)(v − 3u)

22
,
(v − u)(v − 3u)(v − 5u)

23
,
(v − u)(v − 3u)(v − 5u)(v − 7u)

24
, . . .

The principle in part (ii) is that one takes each product (v−u)(v−3u) . . . (v−
(2n+ 1)u), multiplies it by ui, and then divides by the greatest power of 2 which
will still leave it satisfying (1’) and (2’). The greatest power of 2 which leaves it
satisfying (1’) is read from (1), and is the 2-primary factor of 2n(n!). The greatest
power of 2 which leaves it satisfying (2’) is 2n+i.

Remark. For an odd prime p we replace the arithmetic progression 1, 3, 5, 7 . . .

of 17.6 by the sequence of positive integers prime to p. Alternatively, if one
takes the precaution of splitting buZ(p) into (p− 1) similar summands and taking
one of them, one replaces (v − u)(v − 3u)(v − 5u) . . . by (vp−1 − up−1)(vp−1 −
(p+ 1)up−1)(vp−1 − (2p+ 1)up−1) . . .. When one replaces bu by bo, one replaces
(v − u)(v − 3u)(v − 5u) . . . by (v2 − 12u2)(v2 − 32u2)(v2 − 52u2) . . ..
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The proof of 17.6 is straight algebra, and will be given later.

We begin the proof of these results with a simple result on the homology of
X, essentially comparable with 17.1.

Lemma 17.7. Let X be as in 17.1–17.3, and let {ci} be any Z2-base for the subquo-
tient Kerβ2/Imβ2 of (HZ2)2r(X) (e.g. arising from our assumed decomposition
(HZ2)

∗(X) ∼=
⊕

Σa(i,2)Ib(i,2).) Let hi ∈ H2r(X) be any element whose image
in (HZ2)2r(X) is ci. Then the elements hi yields a Z(2)-base for the image of
(HZ(2))2r(X) in (HQ)2r(X).

Proof. Let kj be a Z-base for H2r(X) mod torsion; then in H2r(X) mod torsion
we can write h =

∑

j

aijkj where aij ∈ Z. When we pass to (HZ2)2r(X), both

the hi and the kj yields Z2-base for Kerβ2/Imβ2. So the hi and kj are equal in
number, and det(aij) is odd. The result follows.

Next I recall some results of homological algebra over K[x, y]. Consider the
following short exact sequences.

0 −→ Σ|x| x−→ K[x, y]

yK[x, y]
−→ 1 −→ 0

0 −→ Σ|y| y−→ K[x, y]

xK[x, y]
−→ 1 −→ 0

They represent elements
ξ ∈ Ext

1,|x|
K[x,y](K,K),

η ∈ Ext
1,|y|
K[x,y](K,K).

Lemma 17.8. Ext∗∗K[x,y](K,K) is a polynomial algebra of K[ξ, η].

This is a completely standard calculation.

Lemma 17.9. We have an epimorphism

Exts,tK[x,y](I ⊕M,K) −→ Exts+1,t
K[x,y](M,K)

which is an isomorphism for s > 0.
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This is trivial, since we have an exact sequence

0 −→ I ⊗M −→ A⊗M −→M −→ 0

with A⊗M free.
Now observe that as a matter of formal algebra, I can construct a free module

over K[ξ, η] on various generators, where I may assign bidegrees to the generators
at will. In particular, given M as a locally-finite sum M ∼=

⊕

i

Σa(i)Ib(i) with

b(i) ≥ 0, I take F to be a free module over K with generators ai of bidegrees
s = −b(i), t = a(i).

Lemma 17.10. In degrees s ≥ 0 we have an epimorphism

Ext∗∗K[x,y](M,Z2) −→ F

which is an isomorphism in degrees s > 0.

The case of one factor ΣaIb follows immediately from 17.8 and 17.9; the factor
Σa causes a trivial shift in the t-grading. Then one passes to sums.

Now I specialise to the case p = 2, K[x, y] = B, a(i) = a(i, 2), b(i) = b(i, 2).
Then Lemma 17.10 computes for us the E2-term of the spectral sequence 16.1,
which converges to π∗(bu ∧X) at the prime 2.

Lemma 17.11. (i) There is a homomorphism Es,tr −→ Es+t,t+1
r of the spectral

sequence 16.1 which for r = 2 is multiplication by ξ and for r = ∞ is
obtained by passing to quotients from multiplication by 2 in π∗(bu ∧X).

(ii) There is a homomorphism Es,tr −→ Es+1,t+3
r of the spectral sequence 16.1

which for r = 2 is multiplication by η and for r =∞ is obtained by passing
to quotients from multiplication by the generator t ∈ π2(bu) in π∗(bu ∧X).

For an odd prime we use tp−1 in part (ii). For bu we use the generator π8(bo),
and replace η by the generator in Ext4,12K[x,y](Z2,Z2).

Part (i) is absolutely standard. For part (ii), consider the morphism S2∧bu −→
bu which corresponds to multiplication by the generator π8(bu), consider its effect
on the spectral sequence 15.1, and chase that effect through the change-of-rings
theorem.
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Lemma 17.12. Let X be as in 17.1–17.3. Then the spectral sequence of 16.1 has
all its differentials zero.

Proof. From 17.10 and our assumption that a(i)+ b(i) ≡ 0 mod 2, it follows that
Es,t2 = 0 for s > 0 and t− s ≡ 1 mod 2; therefore the same holds for Es,tr . So it
is sufficient to consider dr(e), where e ∈ Es,tr and s = 0, t− s ≡ 1 mod 2.

We suppose, as an inductive hypothesis, that dm = 0 for m < r so that

Es,tr
∼= Es,t2

∼= Exts,tB ((HZ2)∗(X),Z2).

Argument (i).
ξdr(e) = dr(ξe) = 0,

but multiplication by ξ is a monomorphism on Exts for s > 0, therefore on Es,tr ,
so dr(e) = 0.

Argument (ii).
ηdr(e) = dr(ηe) = 0,

but multiplication by η is a monomorphism on Exts for s > 0, therefore on Es,tr ,
so dr(e) = 0.

This completes the induction, and proves 17.12.

Remark. Argument (ii) becomes better than argument (i) when we replace bu by
bo.

Proof of 17.2 (i). Let α ∈ π∗(bu∧X) be an element in the kernel of the Hurewicz
homomorphism. Then certainly α maps to zero in (HZp)∗(bu ∧X), i.e., α has
filtration at least 1 in the spectral sequence 16.1, and similarly for odd primes
p. Also α maps to zero in (HQ)∗(bu ∧X) ∼= π∗(bu ∧X) ⊗ Q, so α is a torsion
element. But by 17.10, 17.1 and 17.12 multiplication by 2 induces a monomorphism
Es,t∞ −→ Es+1,t+1

∞ for s > 0, i.e., multiplication by 2 is a monomorphism on the
subgroup of elements of filtration at least 1; and similarly for odd primes p.
Therefore α = 0. This proves 17.2 (i).

Remark. If we tried to compute bu∗(X), by using the Atiyah-Hirzeburch spectral
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sequence
H∗(X;π∗(bu)) ==⇒ bu∗(X)

we would encounter non-trival extensions; it would not be obvious how multiplica-
tion by 2 acts in bu∗(X).

In order to prove 17.3, we pursue the proof of 17.2 a bit further. Let Y be a
connective spectrum; then we may filter π∗(Y ) by the filtration subgroups Fs of
15.1 (with E = HZ2). Also we may filter H∗(Y ) by the groups F ′

s = 2sH∗(Y ).

Lemma 17.13. (i) The Hurewicz homomorphism

h : π∗(Y ) −→ H∗(Y )

maps Fs into F ′
s.

(ii) h−1F ′
1 = F1.

Proof of (i). Let Ys be as in §15, α ∈ π∗(Ys). Suppose as an inductive hypothesis
that in Ys−τ we have h(α) = 2σkσ for some kσ ∈ π∗(Ys−σ). The map

Ys−σ −→ Ys−σ−1

induces the zero homomorphism (HZ2)∗(Ys−σ) −→ (HZ2)∗(Ys−σ−1), so kσ maps
to zero in (HZ2)∗(Ys−σ−1), and in H∗(Ys−σ−1) we have kσ = 2kσ+1, h(α) =

2σ+1kσ+1. This completes the induction and shows that in H∗(Y ) = H∗(Y0) we
have h(α) = 2sks.

Proof of (ii). Suppose h(α) ∈ F ′
1. Then α maps to zero in (HZ2)∗(Y ), so α ∈ F1.

This proves 17.13.

Lemma 17.14. Take Y = bu ∧X, where X is as above. Then

(i) Es∗∞ = Fs/Fs+1
h−→ F ′

s/F
′
s+1 is a monomorphism for all s.

(ii) Fs = h−1F ′
s; in other words, the filtration in π∗(bu∧X) is obtained exactly

by pulling back the filtration in H∗(bu ∧X).
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Proof. First we show that (ii) follows from (i). Suppose (i) true, and let α ∈
π∗(bu ∧ X), hα = F ′

s. Suppose, as an inductive hypothesis, that α ∈ Fσ for
some σ < s. Consider Fσ/Fσ+1

h−→ F ′
σ/F

′
σ+1. We are assuming that this

homomorphism is a monomorphism; it maps α to zero, so α ∈ Fσ+1. This
completes the induction, and shows that if hα ∈ F ′

s, then α ∈ Fs. This proves
part (ii).

We note part (i) is true for s = 0, by 17.13(ii). It is therefore sufficient
to prove it for s ≥ 1. It will now do no harm to replace F ′

s by the image of
2s(HZ(2))∗(bu ∧X) in (HQ)∗(bu ∧X); for this does not alter F ′

s/F
′
s+1 for s ≥ 1,

for 17.1.

We now divide the proof into three parts. First we exhibit a base for Fs/Fs+1;
secondly, we exhibit a base for F ′

s/F
′
s+1; thirdly we show that with respect to

these bases h is given by a non-singular triangular matrix.

The base for Fs/Fs+1 is easy; if s ≥ 1, then Es∗∞ has a Z2-base consisting of
the elements ξmiηnigi with mi + ni = s+ b(i), by 17.10 and 17.12. We turn to
the base for F ′

s/F
′
s+1.

Take an element γi ∈ π∗(bu∧X) representing ξbigi. We can consider its image
in H∗(bu ∧X); we can see that there is an element hi ∈ H∗(X) such that the
images of γi in (HQ)∗(bu ∧X) and (HZ2)∗(bu ∧X) both have the form

h(γi) = 1⊗ hi mod lower terms

where “lower terms” means terms

bj ⊗ xj

with
bj ∈ (HQ)∗(bu) or (HZ2)∗(bu), deg bj > 0,

xj ∈ (HQ)∗(X) or (HZ2)∗(X), |xj | < |hi|.

Now by construction, the image of hi in (HZ2)∗(X) is the ith basis element
for Kerβ2/Imβ2. By 17.7, the elements hi form a Z(2)-base for the image of
(HZ(2))∗(X) in (HQ)∗(X). Let t/2 be the generator for H2(bu), as above. Then
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F ′
s/F

′
s+1 has a Z2-base consisting of the elements

2s(t/2)νhi (ν ≥ 0).

I claim that if mi + ni = s+ b(i), then the image of ξmiηnigi in F ′
s/F

′
s+1 is

2s(t/2)nihi mod lower terms.

Here “lower terms” means terms 2s(t/2)νhj with ν > ni, deg hj < deg hi. By
construction, γi represents ξb(i)gi, and its image in (HQ)∗(bu ∧ X) is hi mod
lower terms of filtration ≥ 0. So 2mitbiγi represents ξb(i)+miνnigi, and its image
in (HQ)∗(bu ∧ X) is 2mi+ni(t/2)nihi mod lower terms of filtration ≥ ni +mI .
Now multiplication by ξ or 2 is a monomorphism on Fs/Fs+1, and on F ′

s/F
′
s+1.

So the image of ξmiηnigi is 2s(t/2)nihi mod lower terms of filtration ≥ s. This
proves 17.14.

Corollary 17.15. (of the proof): Suppose α ∈ π∗(bu∧X)⊗Z(2) has filtration ≥ q
and its image in (HQ)∗(bu ∧X) lies in

∑

i≥q
(HQ)2i(bu)⊗ (HQ)∗(X). Then the

class of α in E∗∗
∞ can be divided by ηq.

Proof. The result is empty for q = 0, so we may assume q ≥!. Then the class of α
in Es∗∞ is a linear combination of the basis elements

ξmiηnigi.

I claim that every element appearing with a non-zero coefficient has ni ≥ q. For
let the highest term appearing be

∑
λiξ

miηνgi

where not all the λi are zero; then in (HQ)∗(bu ∧X), α maps to

∑

i

λi2s(t/2)νhi

mod 2s+1(HQ)∗(bu ∧X) and lower terms, and hence ν ≥ q.
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Since α has a filtration ≥ q, each term

ξmiηnigi

which appears has mi + ni ≥ b(i) + q, and there is an element of Es−q∗∞ mapping
onto ξmiηni−qgi. Therefore the class of α in Es∗∞ can be divided by νq. This
proves 17.15.

Lemma 17.16. Let α ∈ π∗(bu ∧X)⊗ Z(2), and suppose

(i) α has filtration ≥ q,

(ii) the image of α in (HQ)∗(bu ∧X) lies in

∑

i≥q
(HQ)2i(bu)⊗ (HQ)∗(X).

Then α = tqβ for some β ∈ π∗(bu ∧X)⊗ Z(2).

Proof. Conisder the subgroup of α which satisfy (ii), modulo the subgroup
tqπ∗(bu ∧X)⊗ Z(2). The quotient is evidently finite in each degree, for when we
tensor with Q the result is zero. In particular, for each degree there is a filtration
s such that all elements of filtration ≥ s in π∗(bu∧X)⊗Z(2) which satisfy (ii) lie
in tqπ∗(bu ∧X)⊗ Z(2). Now we argue by downward induction over the filtration
of α. Suppose the result is true for elements α′ of filtration > σ, and α has
filtration σ ≥ q. Then by 17.15 the class of α in Eσ∗∞ can be divided by ηq; that is,
α = α′+ tqβ′′, where α′ has filtration ≥ σ+1 and β′′ ∈ π∗(bu∧X)⊗Z(2). Here α′

also satisfies (ii), so by the inductive hypothesis, α′ = tqβ′. Then α = tq(β′ + β′′).
This complets the induction and proves 17.16.

Proof of 17.3. Suppose an element h ∈ H∗(K ∧ X) lies both in the image of
H∗(bu ∧X) and in the image of π∗(K ∧X). Then it comes from an element

α ∈ π∗(K(−2n, . . . ,∞) ∧X)

for some sufficiently large value of n. The image of α in H∗(K ∧X) lies in the
image of H∗(bu ∧ X). Now H∗(K(−2n, . . . ,∞ ∧ Z) −→ H∗(K ∧ X) is not a
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monomorphism, but the image of

H∗(K(−2n, . . . ,∞) ∧X) −→ H∗(K(−2n− 2, . . . ,∞) ∧X)

does map monomorphically to H∗(K ∧ X). So by replacing 2n with 2n + 2 if
necessary, we may assume that the image of α in H∗(K(−2n, . . . ,∞) ∧X) lies in
the image of H∗(bu ∧X).

Now K(−2n, . . . ,∞) ≃ S−2n ∧ bu. By 17.14, the element
α ∈ π∗(K(−2n, . . . ,∞) ∧X) has filtration ≥ n. Also its image in
(HQ)∗(K(−2n, . . . ,∞)∧X) lies in the image of HQ∗(bu∧X). Now 17.16 applies
to show that α = tnβ, that is, α lies in the image of π∗(bu ∧ X) ⊗ Z(2). We
proceed similarly for the odd primes. Therefore α lies in the image of π∗(bu∧X).
This proves 17.3.

To prove 17.4, we give means independent of the Adams spectral sequence for
constructing elements in π∗(K ∧ bu). Consider CP∞. We have a canonical map
from CP∞ to bu, which we can consider as term 2 of the bu-spectrum. We get
an element x ∈ bu2(CP∞). Then the Atiyah-Hirzebruch spectral sequence shows
that bu∗(CP∞) is free over π∗(bu) on generators βi ∈ bu2i(CP∞) such that

⟨xi, βj⟩ = δij .

Consider again the canonical map from CP∞ to bu, considered as term 2 of the
bu spectrum. Applying this to βi+1 we obtain an element

bi ∈ bu2i(bu).

For more detail see [Qui69].

Lemma 17.17 (Adams, Harris and Switzer). The image of bn in π2n(bu∧ bu)⊗Q
is

(v − u)(v − 2u) . . . (v − nu)
(n+ 1)!

The proof is essentially that of [Qui69], Lemma 13.6, except for changes of
detail.
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Proof of 17.4. Separating components, we can assume that f is homogeneous,
say of degree d. On multiplying f(u, v) by a sufficiently high power of u, we can
ensure that

g(u, v) = uNf(u, v)

is a polynomial which has the following property:

g(k, 1) ∈ Z for allk ∈ Z.

The argument is essentially given in [Qui69], p.102, but add one more power of u
to take care of the case k = 0. Then it is elementary that g(u, v) can be written
as Z-linear combination of the polynomials

u(u− v)(u− 2v) . . . (u− nv)
(n+ 1)!

vd+N−n−1.

Take Lemma 17.5 and apply c : bu ∧ bu −→ bu ∧ bu; we see that

(u− v)(u− 2v) . . . (u− nv)
(n+ 1)!

lies in the image of π∗(bu ∧ bu). Clearly also u and vd+N−n−1 lie in the image of
π∗(bu ∧ bu). Therefore g(u, v) lies in the image of π∗(bu ∧ bu). Dividing by uN ,
we see that f(u, v) lies in the image of π∗(K ∧ bu). This completes the proof of
17.4, which therefore completes the proof of 17.5.

Proof of 17.6(i). First I claim the given polynomials do satisfy (1’). Consider the
special case ℓ = 1. Let f be the given product of degree n; then

f((2k + 1)t, t) = tn
(2k)(2k − 2)(2k − 4) . . . (2k − 2n+ 2)

(2n)(2n− 2)(2n− 4) . . . 2

= tn
k(K − 1)(k − 2) . . . (k − n+ 1)

1 · 2 · 3 · . . . · n

which lie in Z[t]. Now consider f(kt, ℓt) with k and ℓ odd. The denominator
of f contains only a finite number of powers of 2, say 2m, so we may solve ℓλ = 1

mod 2m; then λn(f(kt, ℓt)) = f(kλt, ℓλt) = f(kλt) mod Z(2)[t], so this lies in
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Z(2)[t] by the special case λ = 1. Hence f(kt, ℓt) lies in Z(2)[t] and f satisfies (1’).

It is now clear that Z(2)[u, u
−1]-linear combination of the given polynomials

also satisfy (1’).

Conversely, let f(u, v) ∈ Q[u, u−1, v] satisfy (1’). We wish to write it as
a Z(2)[u, u

−1]-linear combination of the given polynomials. By separating ho-
mogeneous components, it is sufficient to consider the case in which f(u, v) is
homogeneous, say of degree n. Then we may write f(u, v) as a Q-linear combina-
tion

f(U, v) = λ0u
n + λ1u

n−1 v − u
3− 1

+ λ2u
n−2 (V − u)(v − 3u)

(5− 1)(5− 3)
. . . .

Suppose as an inductive hypothesis that λ0, λ1, . . ., λr−1 lie in Z(2). Then the
sum of the remaining terms

g(u, v) = λru
n−r (v − u) . . . (v − (2r − 1)u)

((2r + 1)− 1) . . . ((2r + 1)− (2r − 1))
+ . . . .

satisfies (1’). We may find λr by substituting v = (2r + 1)t, u = t; we see that

g((2r + 1)t, t) = λrt
r.

and λr ∈ Z(2). This completes the induction and proves 17.6(i).

Proof of 17.6(ii). We first observe that the given polynomials do satisfy (1’) and
(2’), and so do Z(2)-linear combinations of them.

Conversely, let f(u, v) ∈ Q[u, v] satisfy (1’) and (2’), we wish to write it as a
Z(2)-linear combination of the given polynomials. By separating homogeneous
components, it is sufficient to consider the case in which f(u, v) is homogeneous,
say of degree n. Then we may write f(U, v) as a Q-linear combination

f(U, v) =
λ0
2q0

un +
λ1
2q1

un−1(v − u) + λ2

2Z(2)
un−2(v − u)(v − 3u) + . . . ,

where λr ∈ Z(2). Here 2qr divides r!2r by part (i); we wish to prove it also divides
2n. Suppose, as an inductive hypothesis, that this is true for r′ > r. Then the
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sum of the remaining terms

g(u, v) =
λ0
2q0

un + . . .+
λr
2qr

un−r(v − u) . . . (v − (2r − 1)u)

also satisfies (1’) and (2’). But now
λr
2qr

is the coefficient of un−rvr, so qr ≤ n.
This completes the induction, and proves 17.6(ii).
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Ω-spectrum, 175
Ω0-spectrum, 175

lim 1, 263
Čech-type cohomology theory, 296

Base of a graded module, 403
BO spectrum, 176
bo/Connective real K-theory, 248
bpt., 232
bu/Connective K-theory, 246

closed subspectrum, 194
cofibre sequence, 195
commutative ring-spectrum, 294
connective, 349
CW-spectrum, 180

exact couple, 258
extended module, 374

function (between spectra), 181
fundemental class, 314

generator of ring-spectrum, 301

H/Eilenberg-Maclane spectrum, 176

Internal products, 290

K/BU-spectrum, 59, 176
Kronecker product, 278
KSC/Self-conjugate K theory, 248

map (between spectra), 183
homotopic maps, 184

Module-spectrum, 294
Moore spectrum, 241
morphism (of spectra), 184
MU/Milnor spectrum, 59

orientation, 302
Orientation for tangent bundle, 302

Poincaré duality, 311
primitive element of a comodule, 141
Puppe sequence, 195

ring-spectrum, 293

spectrum, 173
stable cells, 187
stable homotopy groups, 177
stable phenomenon, 165
Steenrod algebra mod p, 325
subspectrum, 178

cofinal subspectrum, 181
dense subspectrum, 181
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of a CW-spectrum, 181
suspension spectrum (Σ-spectrum), 176
suspension spectrum (S-spectrum)

sphere spectrum, 176

Telescope functor, 212
Thom Spectrum MO, 176
Thom Spectrum MSO, 177
Thom Spectrum MSpin, 177
Thom Spectrum MSU, 177
Thom Spectrum MU, 177
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J. F. Adams, the founder of stable homotopy theory, gave a
lecture series at the University of Chicago in 1967, 1970, and
1971, the well-written notes of which are published in this classic
in algebraic topology. The three series focused on Novikov’s work
on operations in complex cobordism, Quillen’s work on formal
groups and complex cobordism, and stable homotopy and
generalized homology. Adams’s exposition of the first two topics
played a vital role in setting the stage for modern work on
periodicity phenomena in stable homotopy theory. His exposition
on the third topic occupies the bulk of the book and gives his
definitive treatment of the Adams spectral sequence along with
many detailed examples and calculations in KU-theory that help
give a feel for the subject.

J. F. Adams (1930-1989) was born in
Woolwich, London. He received his Ph.D. from
the University of Cambridge in 1956. His thesis,
written under the supervision of Shaun Wylie,
was titled On spectral sequences and
self-obstruction invariants.

Adams was a pioneer in the field of stable
homotopy theory. The Adams spectral sequence
is one of the most important computational
tools in the field. He used this to classify the
division algebras over R. He also invented
Adams operations in K-theory, and used it to
solve the famous vector fields on spheres
problem.
Adams received a lot of awards for his work. To
list a few: the Sylvester Medal of the Royal
Society of London in 1982, the 1963 junior
Berwick Prize and the 1974 Senior Whitehead
Prize from The London Mathematical Society

(Sources: U.Chicago press, MacTutor History of
Mathematics Archive; Mathematics Genealogy
Project)
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