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1. Introduction. This paper will show that after localization at any given primep, the
infinite loop space structure on the space BSO is essentially unique. If the word
'localization' is replaced by 'completion', the result continues to hold; and both
results continue to hold if the space BSO is replaced by the space B8U.

In order to state this result formally, it is natural to suppose given a connected
Q-spectrum X whose Oth term Xo is equivalent to the localization or completion at p
of BG, where G = SO or SU according to the case. One should then state and prove
that this spectrum X is equivalent to some fixed spectrum Y. Provided we arrange for
Y to be an O-spectrum, this conclusion shows that there is an equivalence of infinite
loop spaces from Xo to the fixed infinite loop space Yo.

Our proof that X ~ Y falls into two parts. The first step determines the modp
cohomology of X as a module over the modp Steenrod algebra. The second step starts
from a knowledge of the mod p cohomology of X, and constructs an equivalence of
spectra X -> Y.

The second step is valid not only for the cases G = SO and G = SU, but also for the
cases G = 0 and G = U; but in the latter cases the first step is not vah'd in the form we
have discussed so far. That is, in these cases, we require information about Xo not only
as a space, but as an .ff-space.

We therefore begin formal work by considering the second step, and for this purpose
we first construct the ' obvious' fixed spectrum Y.

Let KR be the spectrum which represents classical (periodic) real K-theory; similarly
for Kc in the complex case. Let d be a fixed integer; let bg be the spectrum obtained
from KE or Kc by killing homotopy groups in degrees < d, while retaining the homo-
topy groups in degrees > d. The spectrum bg therefore represents (d — l)-connected
isT-theory (real or complex). The notation bg is chosen to reflect the usual notation for
connective isT-theory; one obtains bo and bso from KE by taking d = 1 and d = 2,
while one obtains bu and bsu from Kc by taking d = 2 and d = 4.

Let p be a fixed prime. Let A be either the ring Zp of j?-adic integers, or the ring Z(2))
of integers localized &tp (that is, the ring of fractions a/b with a, b integers and b prime
top). We can introduce coefficients A into any spectrum W by setting WA = MA A W,
where MA is a Moore spectrum for the group A. We take our fixed spectrum Y to be

Y = bgA=MAAbg.

So the spectrum Y represents (d— l)-connected K-theory with coefficients in A. We
write Fp for the field withp elements.
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THEOREM 1-1. Let X be a spectrum whose homotopy groups are finitely generated
modules over A, and bounded below. Suppose given an isomorphism

d:H*(X;Fp)*-H*(Y;Fp)

of modules over the modp Steenrod algebra. Then there exists an equivalence f: X-^-Y of
spectra such thatf* = 6.

If for simplicity we disregard the subsidiary hypotheses, this theorem shows that
the ' standard' spectrum Y is characterized by its cohomology.

Theorem 1-1 uses the assumption that certain groups are finitely generated modules
over A. It may be reassuring to remark that an abelian group can be made into a
finitely generated A-module in at most one way (see Lemma 5-3).

We now turn to the first step. Let us arrange for bgA to be an D-spectrum, and let
us define BOA, B80A, BUA and BSUA to be the Oth terms of the spectra boA, bsoA,
buA and bsuA. With this definition, Theorem 1 -2 can be understood without familiarity
with the theory of localization or completion. However, we state the facts. For any
spectrum W we have a map

W ~ S° A W = MZ A W ̂  MA A W,

where S° is the sphere-spectrum and the final map is induced by the injection Z -»• A.
In particular, we have a map bg -» bgA. If we arrange for both spectra to be Q-spectra
and pass to their Oth terms, we have a map of infinite loop-spaces BG -> BGA (for
G = O, SO, U, SU). If A = Z(j)), then this map displays BGA as the localization of BG in
the sense of Sullivan (13); if A = Z,p, it displays BGA as the completion of BG. In any
case, it is useful to note that the map BG -> BGA induces an isomorphism of mod̂ >
cohomology.

To state Theorem 1-2, we recall that the equivalence Xo ~ OXX determines an
iZ-space structure on Xo and a Pontryagin product in iZ*(X0; Fp).

THEOREM 1-2. Let X be a connected Q.-spectrum. Suppose given a homotopy-equivalence
of spaces Xo ~ Yo, where Yo = BOA, BSOA, BUA or BSUA according to the case. If
Yo = BOA andp = 2, assume further that the square x2 of the generator x in H^X^; F2) is
non-zero; if Yo = BUA, assume further that the pth power xp of the generator x in H2(X0; Fp)
is non-zero. Then there is an isomorphism of A-modules

d:H*(X;Fp)*-H*(Y;Fp).

COROLLARY 1*3. Under the hypotheses of Theorem 1-2, there is an equivalence of spectra
/ : X -> Y.

Proof. This follows by combining Theorems 1-1 and 1-2; it is only necessary to check
that under the hypotheses of Theorem 1-2, the homotopy groups nr(X) of X are finitely
generated modules over A. In fact, they are zero for r < 0, while for r >0we have

77r(X) S 7Tr(X0) ~ 7Tr(Y0) S 7Tr(Y) £ 7Tr(bg) <g) A.

We note that certain cases of Theorem 1-1 remain unused in Corollary 1-3, notably
the real cases with d = 0 or 4 mod 8. For example, one might seek to characterize the
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infinite loop space structure on Z x BO (subject to localization or completion at the
prime p, as usual); and it will become clear from our proof that this could be done by
specifying rather less than the n-fold loop structure for some definite value of n, which
indeed could be fairly small. However we leave such extensions of Theorem 1-2 to
those readers who may have a use for them.

We have a natural example of a spectrum X to which Corollary 1-3 applies. For 0 = 0,
SO, U or SU we can consider BO as the classifying space for ©-bundles of virtual
dimension 1; then the tensor product of bundles gives BO the structure of an .ff-space,
which we write BO®, Recent work of Segal and May (8,12) shows that this H-space is
the Oth term of a connected Q-spectrum, which we write bo 0 , bso s , bu0 or bsu®
according to the case. I t is then natural to write b g e for the spectrum we formerly
called bg, to show that there the .ff-space structure given to BG corresponds to the
Whitney sum of bundles.

COROLLARY 1-4. After localization at any prime p, the spectra bso e and bso® become
equivalent; similarly for bsue and bsue.

This follows immediately from Corollary 1-3.
The corresponding statement clearly fails for bu, and for bo at the prime 2, because

the Pontryagin products in B V ® and BO® do not behave as described in the assumptions
of Theorem 1-2, and these assumptions are (of course) necessary, as well as sufficient,
for the conclusion X ~ Y.

Without localization the statement also fails, although this is harder to see.
Another application of Corollary 1-3 arises as follows. According to Boardman and

Vogt (5) the spaces F/PL and .F/Top are infinite loop spaces; and according to Sullivan
((13), p. 24) the spaces F/PL and i^/Top become equivalent to BO upon localization
at any odd prime p.

We add some historical remarks. Peterson (11) has proved that at any odd prime p,
BS0@ and BSO® are equivalent as two-fold loop spaces. Atiyah and Segal(4) have
established an algebraic isomorphism

KSOO* => (l+KSOO)*
of p-adic completions. Sullivan (14) has observed that at a regular (odd) prime p,
a suitable characteristic class pk induces an equivalence of 27-spaces from B80@ to
BSO®. The second author (10) computed the Dyer-Lashof operations in H^BSO; Fp)
which arise from the infinite loop space structures © and ®; he found that the resulting
homology algebras are isomorphic (by an isomorphism very different from the identity).
These facts, together with insights of J. P. May, led to the formulation of Corollary 1-4
as a conjecture.

We next attempt to prove this conjecture, in collaboration with J.P.May, by
applying May's machinery (7) to specific maps constructed by representation theory.
I t turns out, however, that in this special case i t is better to exploit the special good
properties of the spaces BSO and BSU, rather than to rely on machinery which by ita
nature is adapted to the difficulties of the general case.

After our result was proved, it provided an essential input for the interesting work
of Madsen, Snaith and Tornehave(6). In this connexion we note that the methods of
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the present paper can be pushed further, so as to yield an explicit description of [Y, Y],
the ring of endomorphisms of the standard spectrum Y = bgA. However, we omit this
from the present paper.

The remainder of this paper is organized as follows. In section 2 we take the 'first
step', and prove Theorem 1-2. I t remains to prove Theorem 1-1. In order to construct
a map / : X -> Y of spectra such tha t /* = d, we use the Adams spectral sequence for
computing the group [X, Y] of maps from X to Y. For this purpose we have to compute
the relevant Ext groups

Ext^*(i7*(Y; Fp), H*(X; F,)).

This will be done in section 4; it depends on some structure theory for modules over
small subalgebras of A, and this will be given in section 3. At this stage we face a
difficulty, for the spectra X and Y certainly do not satisfy any standard set of condi-
tions known to be sufficient for the convergence of the Adams spectral sequence. In
section 5 we will overcome this difficulty and prove Theorem 1 • 1.

We would like to thank J.P.May for many conversations and numerous letters;
although his name does not appear at the head of this paper, he should be considered as
a prime mover in this area. In particular, we owe to him the suggestion that we should
cover the^-complete case; and for the adaptation of our proof to this case, we have in
the end (after considering a variant of our own) preferred to follow his suggestions.

2. Cohomology of X. In this section we will determine H*(X; Fp), where X is as in
Theorem 1-2; in particular, Xo ~ BGA, where G = 0, SO, U or SU according to the
case.

PROPOSITION 2-1. If Q = SU, then

H*(X; ¥p) ~
r = 2

We pause to explain the notation. We write A for the mod^> Steenrod algebra. We
have Qo = fip and Qx = PXPP — fipP1, as usual; if p = 2 we interpret Q1 as

The graded module T,M is defined by regrading M so that an element of degree 8 in M
appears as an element of degree 8+1 in "ZM; for example, 22r^4 is a free module on one
generator of degree 2r.

PROPOSITION 2-2. IfO= U, then

H*(X; Fp) ~ P® WiAKAQ

PROPOSITION 2-3. If G — 0 or SO andp > 2, then

i(p-D
fir*(X;F,)s ©

8 = 1

PROPOSITION 2-4. IfG = SO andp = 2, then

H*(X; Fp) S
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PROPOSITION 2-5. IfO = O andp = 2, then

H*(X; Fp) ~ I.(AI(ASq*)).

Theorem 1-2 will follow from these propositions, since they all apply to Y as well as
they do to X. The proofs of these propositions all follow the same pattern. We know the
homotopy groups of X; in fact, we are given 7rr(X) = 0 for r < 0, and for r ^ O w e have

nr(X) ~ nr(X0) ~ nr(Y0) ~ nT(BG) ® A.

We may now filter X by considering its Postnikov system. By applying H*( ; Fp) to
this Postnikov system, we obtain a spectral sequence for computing H*(X.; F ,̂), as
in (l). The Ex term of this spectral sequence consists of the cohomology of those
Eilenberg-MacLane spectra which appear in the Postnikov system. Thus for every
homotopy group irr(BG) isomorphic to Z we obtain in our Ex term a module H,r{AIA/3p);
and in the case#> = 2, for every homotopy group nr(BG) isomorphic to Z/(2) we obtain
in our Ex term a module Y?A. (Of course homotopy groups isomorphic to Z/(2) arise
only for G = 0 and G = SO.) We note explicitly that what we have said applies just
as well to the ^-complete case A = Zp as to the jp-local case A = Z(py

To proceed further we need to know something about the differentials in our spectral
sequence; this means that we need to know something about the ^-invariants of the
spectrum X. We begin with the simplest case, G — SU.

LEMMA 2-6. (a) The Ic-invariant k2p+3 of the space BSUA is non-zero,
(b) If G = SU, and X is as above, then the k-invariant k2p+z of the spectrum X is

non-zero.

Proof. The ^-invariant k2i+1 of the spectrum X gives by suspension the ^-invariant
k2i+1 of the space Xo, that is, oiBSUA. So it is clear that part (a) of the lemma implies
part (6). I t is also clear that the ^-invariant k2i+1 of the spectrum X is zero for i < p, for
it lies in a zero group. So the ^-invariant kii+1 of Xo or BSUA is zero for i ^ p.

We now introduce notation following(l); if W is a space, then W(m, ...,n) will mean
that term in the Postnikov system of W whose homotopy groups nr are the same as
those of W for m ^ r < n, and zero for other values of r. We write EM(n, n) for an
Eilenberg-MacLane space of type (IT, n).

If the ^-invariant k2p+s of BSUA were zero, we would have

BSUA(±,...,2p + 2)~ XEM(A,2r);
r=2

so the operation Qx = P^-^P1 would be non-zero on H\BSUA(<k,..., 2p + 2); Fp),
and hence on H\B8UA; Fp). This is a contradiction; the operation Q1 is zero on
H*(BSU; Fp) since BSU is torsion-free, and hence it is zero on H*(BSUA; Fp). This
contradiction shows that the ^-invariant k2p+s of BSUA is non-zero, and proves the
lemma.

Proof of Proposition 2-1. Suppose G = SU, and consider the spectral sequence
mentioned above for computing H*(X; Fp). The differentials are .4-module maps, and
they are necessarily zero until we come to d2p_2, which must be given on each module
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) by some multiple of a t-^aQ^ We claim that this multiple is non-zero. For
the lowest differential

d2p_a: X*P+*(A[App) -> W(AlApp)

this is equivalent to Lemma 2-6(6), which we have just proved. For the other dif-
ferentials we argue as follows. Let us use notation W(m, ...,n) for spectra analogous to
that which we have used for spaces. Consider the spectrum X(2£ + 4, ...,oo). Its Oth
term X(2t + 4,..., oo)0 is equivalent to the Oth term of Y(2t + 4 oo); for we have

Y(2t + 4,..., co)0 ~ Y0(2t + 4,..., oo),

where the right-hand sides are constructed from the equivalent spaces Xo and Yo, by
the method of killing homotopy groups as applied to spaces. A fortiori, the (— 2i)th
term X(2£ + 4,..., oo)_2t is equivalent to the corresponding term Y(2t + 4,..., oo)_2t. But
by the Bott periodicity theorem the spectrum bsu(2£ + 4, ...,oo) is equivalent, after
reindexing its terms, to bsu; this conclusion persists after we introduce coefficients A;
therefore Y(2t + 4,..., oo)_2t is equivalent to BSUA. So the work we have already done
determines the lowest differential for X(2£ + 4,..., oo), which gives the differential

forX.
Now, the sequence

in which every map is given by a i-> aQv is exact. The simplest way to see this is as
follows. Let B be the exterior algebra generated by Qo = ftp and Q-^; then the sequence

in which every-map is given by bv-*bQt, is exact. The previous sequence comes from
this by applying the functor A ® B, and this functor preserves exactness since A is free
as a right module over B.

It follows that the spectral sequence we are studying becomes trivial after the
differential d2p_2, and we find

H*(K; Fp) s 0 J^iAHAQ^AQj)).

This completesthe proof of Proposition 2-1.
We turn to the case O = U.

LEMMA 2-7. If G = U, and X is as in Theorem 1-2, then the k-invariant k2p+1 of the
spectrum X is non-zero.

Proof. If this ^-invariant were zero, then we would have an equivalence of spectra

X(2,...,2p)~XEM(A,2r)
r - l



Uniqueness of BSO 481

(where 'EM{n,n) means an Eilenberg-MacLane spectrum of type (n, n)). This would
yield an equivalence of If-spaces

X0(2,...,2p)~ XEM(A,2r).

But if x is the generator in Hi{EM(A, 2); Fp) then we have xp = 0, and this contradicts
the assumption in Theorem 1-2. This contradiction shows that k2p+1 #= 0 and proves
the lemma.

Proof of Proposition 2-2. We use the same spectral sequence as before. The lowest
differential

d2p_2: J^A/Afip -> IPA/Aft,

is a non-zero multiple of a\-+aQx, by Lemma 2-7. The remaining differentials are
determined by what we have already done, for the spectrum X(4,..., oo) has Oth term
equivalent to BSUA. The rest of the proof goes as for Proposition 2-1.

Proof of Proposition 2-3. If p is odd then on introducing coefficients A we have
boA ~ bsoA, so that BOA ~ BS0A; thus the two cases are equivalent. We use the same
spectral sequence as before. I t behaves like that used in proving Propositions 2-1 and
2-2, except that we now have homotopy groups A in degrees is instead of in degrees 2r.
As for the differential ^2/,_2, we now dispose of the relevant information about the
space BSUA (in any case, the information about BSU was already on record in (l)).
We obtain the corresponding information about BSOA by naturality, using either the
map BS0A -»• BSUA or the map BSUA -> B80A. The information about the space Xo

implies the required information about the spectrum X. The rest of the proof goes as
for Propositions 2-1 and 2-2.

We turn to the case G = SO, p = 2.

LEMMA 2-8. Let n be a positive integer divisible by 4. Then the k-invariant kn+1 of the
space BSOA is non-zero.

We actually need only the cases n = 4 and n = 8; but the proof is the same in general.

Proof. For brevity, we write W for BS0A. Suppose (for a contradiction) that kn+1 = 0.
Then we have

..,n)~ W(0,...,n-l)xEM(A,n).

Suppose also that the indecomposable quotient of H*(W(0, ...,n— 1); F2) in degree n
has dimension 8 over F2. Then (by the Runneth formula) the indecomposable quotient
of H*( W(0,..., n); F2) in degree n has dimension 8 + 1 over F2, and the same conclusion
holds for W. But the indecomposable quotient ofH*(BSO; F2) in degree n has dimen-
sion 1 over F2; so we infer that 8 = 0, and all elements of Hn(W(0, ...,n— 1); F2) are
decomposable.

Since we have
W(0 n) ~ W(0,...,n-l)xEM(A,n)

we can calculate Hn{ W(0, ...,n); F2) by the Runneth formula; we can calculate Sq1 on
it by the Cartan formula; and using the fact that Sq1 annihilates Hn(EM{A, n); F2), it

31 PSP 80
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follows that the image of

consists entirely of decomposable elements. Therefore the same conclusion holds in W.
But this contradicts the known relation

Sq^ = wn+1

between the Stiefel-Whitney classes in H*(BSO; F2). This contradiction proves the
lemma.

Proof of Proposition 2-4. We use the same spectral sequence as before. We need to
know the first differentials, and we claim that they are as follows.

\a\-*aSq'

(2-9)

1

JPA/ASq1

I?A.

In fact, for dimensional reasons, each differential must be a multiple of the one shown;
we have to check that the multiple is non-zero.

In the cases where the differential is given by Sq2, the result is easy; for composition
with the essential map „„, t Om

y. o T —>• o
gives a homomorphism

which is non-zero if m = 0 or 1 mod 8 and m ^ 8; so the same conclusion holds in the
space Xo and in the spectrum X.

Next we take the final differential

This is zero if and only if the first ^-invariant k5 of the spectrum X is zero. But if this
^-invariant were zero, then the ^-invariant fc5 of the space Xo would be zero, contra-
dicting Lemma 2-8.

Note that in this argument it is essential to use cohomology with coefficients in
Z(2) or Z2 (as we have implicitly done by using k5) rather than coefficients F2; for in the



Uniqueness of B80 483
Postnikov system of Xo, Sq3 annihilates H2(EM(Z/(2), 2); F2). The same remark
applies to the next argument.

Next we take the penultimate differential

This is related to the second ^-invariant k9 of the spectrum X; here k9 lies in

More precisely, consider the following exact sequence.

H9(X(2); A) - i l> H9(X(2,.... 4); A) J l * #9(X(4); A).

The differential in question is zero if and only if i*k9 = 0. If so, then k9 lies in Imj*; in
other words, k9 is a linear combination of

82Sq*b and S28qiSq2b.

(Here S2: H
m( ; F2) -> #m+1( ; A) is the Bockstein boundary, and b e#2(X(2,..., 4); F2)

is the fundamental class.) But we will prove that both these classes suspend to zero in
H9(X0(2 4); A). To begin with, the fundamental class in H2(X0(2,..., 4); F2) can be
identified with the Stiefel-Whitney class w2eH2{X0; F2) ^ H2(BS0; F2), and of course
Sq6 annihilates it for dimensional reasons. To continue, we argue that

and that the element Sq2w2 = (w2)
2 in it is the reduction of a class in

H*(X0(2,...,4);A)~H*(X0;A).

In fact, in BSO the first Pontryagin class Px reduces to (w2)
2; so it is sufficient to take

the class corresponding to Px under the isomorphism

H^BSO; A) <- H*(B80A; A).

(In the^j-local case the fact that this map is an isomorphism in general is well known;
in the ^-complete case it is perhaps shortest to establish this particular case ad hoc,
as is easily done, rather than set up general theory.) In any case, the element
SqiSqhv2 = {wz)

i in HB(X0(2,..., 4); F2) is also the reduction of a class denned over A,
and S^Sq^Sqho^ = 0.

So the hypothesis that the penultimate differential is zero implies that the
^-invariant k9 of the space Xo ~ BS0A is zero. This contradicts Lemma 2-8.

For the higher differentials we argue as before. Consider the spectrum X(8£ + 2,... , oo).
Its Oth term X0(8t + 2,..., oo) is already equivalent to the Oth term Y0(8t + 2,..., oo) of
Y(8( + 2, ...,oo). A fortiori, its ( — 8t)th term X(8£ + 2, ...,oo)_8t is equivalent to the
corresponding term Y(8i + 2,... , oo)_8t. By the Bott periodicity theorem the spectrum
bso(8t + 2, ...,oo) is equivalent, after reindexing its terms, to bso; this conclusion
persists after we introduce coefficients A; therefore Y(8< + 2, ...,oo)_8t is equivalent to

31-2



484 J . F . ADAMS AND S. B. PBIDDY

BSOA. So the work we have already done gives the last two differentials for

this gives the differentials

for X. This completes the proof that the differentials are as shown in (2-9).
Now the sequence (2-9) is exact. To prove it we argue as before. Let B be the sub-

algebra of A generated by Sq1 and Sq2; then it is elementary to check that the following
sequence is exact.

J61-+6S31

I
The sequence (2-9) is obtained from this by applying the functor A®B, and this
functor preserves exactness since A is free as a right module over B.

We conclude that the spectral sequence becomes trivial after the differentials shown
in (2-9), and

This completes the proof of Proposition 2-4.
We turn to the final case G = 0,p = 2.

LEMMA 2-10. / / G = 0, p = 2 and X is as in Theorem 1-2, then the Ic-invariant k3 of the
spectrum X is non-zero.

Proof. This is parallel to the proof of Lemma 2-7. If this ^-invariant were zero, then
we would have an equivalence of spectra

X(l, 2) ~ EM(Z/(2), 1) x EM(Z/(2), 2).

This would yield an equivalence of H-spaces

X0(l, 2) ~ EM(Z/(2), 1) x EM(Z/(2), 2).

But if a; is the generator in H1(EM(Z/(2), 1); F2) then we have x2 = 0, and this contra-
dicts the assumption in Theorem 1-2. This contradiction shows that k3 4= 0 and proves
the lemma.
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Proof of Proposition 2-5. We use the same spectral sequence as before. This time,

however, we claim that the first differentials are as follows.

-LA

In fact, the lowest differential d^lPA -» "LA is determined by Lemma 2-10, and all the
higher ones are determined by our previous work, since X(2,..., oo) is a spectrum whose
Oth term is BSOA. The rest of the proof goes as for Proposition 2-4.

3. Structure theory for modules. In this section we will record some of the structure
theory of modules over small subalgebras of the Steenrod algebra. The results are
originally due to the first author.

Let B be a connected graded Hopf algebra of finite dimension over the ground field k.
We have in mind the following two examples.

(3*1) B = E\x,y\, the exterior algebra over k on two primitive generators x and y of
distinct degrees. In our applications, k is Fp, and B is the subalgebra of the modp
Steenrod algebra generated by x = Qo and y = Qv

(3-2) B = Alt the subalgebra of the mod 2 Steenrod algebra generated by Sq1 and Sq2.
We must now explain that we actually want to discuss stable structure theory rather

than structure theory. Let L, M be (say) left i?-modules, and let/0, fx: L^- M be
JS-hnear maps; for definiteness we may consider only maps which preserve the grading
(leaving maps which change the grading to be introduced later by considering
HomB(2t.L, M) or HomB(L, S'Jf)). We say that / 0 and/x are homotopic if /„ —fr factors
through a free module F. (If L is finitely generated we may take F to be finitely
generated, for /„— fx must map into a finitely generated free submodule of F.) This
notion of homotopy corresponds both to projective and to injective homotopy, which
in general are distinct. Homotopy is an equivalence relation, for if/0 —fx factors through
F and/,.— /2 factors through F', then fo—f2 factors through F© F'. Composition of
maps passes to homotopy classes, so we get a category of homotopy classes. Two
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modules L, M are stably equivalent if they are equivalent in the category of homotopy
classes; Lemma 3-4 will show that this term has its usual meaning. We are in fact
interested in the classification of modules rather than maps, so we fix on the adjective
'stable'; we speak of 'stable classes of maps' rather than 'homotopy classes', and
write' S homB (L, M)' for the group of stable classes of maps from L to M. The following
results may be taken as justifying these definitions for our purposes.

LEMMA 3-3. (a) For s > 0, Ext^ (L, M) is a bifunctor on the category of stable maps.

(b) Let 0^L'—L>L^L"->0

be an exact sequence in which L is free; then

Extjj (L",M) ~ ShomB (L't M).

(c) Let 0->M'-+M —U M" -> O

be an exact sequence in which M is free; then

Extk (L, M') ~ ShomB (L, M").

LEMMA 3-4. L and M are stably equivalent if and only if we have L ® F £ M © <?
for some free modules F and G, which may be taken finitely generated if L and M are so.

Proof of Lemma 3-3. (a) If F is free, then Ext# (F, M) — 0 for s > 0 because F is
projective, and Ext^ (L, F) = 0 for s > 0 because (under our hypotheses) F is injective.

(6) We have the following exact sequence.

0 <- Ext^ (Ln, M) t- HomB (U, M) ^— Homs (L, M).

Here the image of i* certainly consists of maps L' -> M which factor through L, which
is free, so this image maps to zero in S ho nig (L', M). Conversely, if we have a composite

with F free, then since F is injective the map j factors through i:L'-+L, and kj lies
in the image ofi*. We thus obtain an isomorphism

(L", M) ~ ShomB (L1, M).

(c) The proof of (c) is precisely dual to the proof of (b).

Proof of Lemma 3-4. If L® F ^ M ®G then L and M are stably equivalent,
trivially. We have to prove the converse. Take a map/:L -> M whose stable class is a
stable equivalence. By adding t o l a suitable free module F we can suppose that / is
epi (and here we can suppose that F is finitely generated if M is so). Let K be the kernel
of/; then for any module N we have an exact sequence

... <- Exts
B

+1 (M, N) <- Ext|, (K, N) <- ExtB (L, N) JL- Ext^ (M, N) <- ...

in which/* is iso for s > 0 by Lemma 3-3 (a). Thus Ext^ (K, N) = 0 for s > 0, and this
for every module N; so K is projective. Hence K is free (note that under our strong
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assumptions on B this follows without assuming K bounded above or below). Since K
is free it is injective, and so L ^ M © K. Here K is finitely generated if L is so. This
proves the lemma.

Various constructions on modules are functorial in the sense that they carry stable
maps into stable maps. First, obviously, we have the direct sum L © M. Secondly we
have the tensor product L® M; since B is a Hopf algebra, we can make B act on
L ®k M in the usual way; that is, if

we define b(l ®m) = £ ( - lyWH'J ® b'-m
i

(where \l\ means the degree of I, as usual). In order to see that the tensor product of
maps passes to stable classes, we have to remark that if F is free, then L® F and
F ® M are free. Thirdly, we have the vector-space dual M* — Homfe (M, k). This is
graded so that . . „. ., , *, , ,
° \(m*,m)\ = \m*\ + \m\,
where k is graded so that all of k is in degree 0. In other words, an element m* is of
degree d if it annihilates all homogeneous elements m except perhaps those of degree
— d. The obvious way to make M* a ^-module is to make it a right i?-module, so that

(m*b, m) = <m*, 6m>.

However, we are willing to assume that B has a conjugation map c, and then we can
make M* into a left .B-module by setting

bm* = ( - l)iwi"'*i m*(cb).

In order to see that the duals of maps pass to stable classes, we have to remark that if
F is free, then (under our hypotheses on B) F* is free.

The module k (graded so that all of k is in degree 0) is a unit for the tensor product.
We call a module 'invertible' if its stable equivalence class is invertible (under the
tensor product). Such invertible stable equivalence classes form a group, and we will
calculate this group when B is as in (3-1) and (3-2); or more precisely, we will calculate
the group of invertible classes which can be represented by finitely generated
.B-modules. First we need to characterize such J3-modules, and for this purpose we
need invariants of modules.

We can associate to a module M over the exterior algebra E[x, y] the homology

groups H(M; x) = Kevx/Imx, H(M; y) = Kevy/Imy.

We can also use these homology groups when B = Ax, by taking x = Sq1,

These homology groups are functorial on the category of stable maps, for we have

H(F; z) = 0 when F is free and z = x or y.

(We keep z as a letter which stands for x or y.) We have

H(L ®M;z)^ H(L; z) © H(M; z),

H(L ® M; z) ~ E{L; z) ® H(M; z)
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(by the Kiinneth formula) and

H{M*; z) ~ (H(M; z))*.

So these homology groups commute with the three constructions considered above.

LEMMA 3-5. Assume B = E[x, y]orB = Ax. (a) If M is invertible, then H(M; x) and
H(M; y) are of dimension 1 over k.

(b) Suppose H(M; x) and H(M; y) are of dimension 1 over k, and M is finitely
generated; then M is invertible, and its inverse is M*.

I t can be shown by examples that in clause (b), the assumption that M is finitely
generated cannot be omitted.

Proof. First suppose that M is invertible; say M ® N ~ k. Then by the remarks
a b ° V e > H(M; z) ® H(N; z) ~ k,

so that H(M; z) has dimension 1 over k.
Conversely, assume that M is finitely generated, and H(M; x) and H(M; y) are of

dimension 1 over k. Consider the evaluation map

by construction, it is a map of .B-modules. We see from the Kiinneth formula that it
induces an isomorphism of H( ; x) and an isomorphism of H( ; y). Therefore

M* ® M ~ k,

by the theorem of Adams and MargolisO) (see theorem 4-2, and note that the proof
given remains valid when A is replaced by B). This proves the lemma.

From this point up to and including (3-11) all 5-modules are assumed to be finitely
generated.

We now give examples of invertible modules.
(i) We define 2 to be the module which is k in degree 1 and zero in other degrees. Its

inverse S - 1 is the module which is k in degree — 1 and zero in other degrees. Thus
multiplying a module M by S simply regrades it; this is consistent with our use of the
notation SJf in section 2.

(ii) We define / to be the augmentation ideal of B. Then, we claim, H(I; z) has
dimension 1 over k for z = x and for z — y; this follows immediately from the exact
homology sequence which one obtains from the short exact sequence

0^I->B-+k-+0.

Thus / is invertible by Lemma 3-5, provided B = E[x, y] or B = Av

A proof that / is invertible for more general B is given in (2), pp. 343-44.
(iii) When B = Ax, we define J to be the module H,~2(B/B8qs). I t has a base over F2

indicated by the nodes in the following diagram. This module J satisfies the criteria
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of Lemma 3-5; so it is invertible. Moreover, we have J* ^ J; so J will serve as J~x and
we have J2 ~ 1.

For the rest of this section we reserve the letters / and J for the modules just defined.

THEOREM 3-6. If B = E\x, y], as in (3-1), then the group of invertible stable equivalence
classes isZ(£)Z, generated by 2 and I.

THEOREM 3-7. If B = Av as in (3-2), then the group of invertible stable equivalence
classes is Z © Z © Z/(2), generated by £, / and J.

Proof of Theorems 3*6 and 3-7. First we will prove that in Theorem 3-6, the stable
equivalence classes Ea / 6 are all distinct. In fact, H(LaP; x) is k in degree a+b \x\ = c,
say, and zero in other degrees; while H(LaIb; y) is k in degree a + b \y\ = d, say, and
zero in other degrees. Since \x\ #= \y\, c and d determine a and b.

Next we will prove that in Theorem 3-7, the stable equivalence classes S°/6JC (with
c = 0 or 1 mod 2) are all distinct. In fact, the homology groups of 1iaIbJc determine
a and 6, as above; we need one more invariant to determine c. The simplest is to con-
sider dimfc M mod 8, where k = F2. Using Lemma 3-4, we see that this is an invariant
of the stable class of M; it sends the tensor-product of classes to the product of integers
mod 8; and we have ,. /v,. . , o

dimfc (2) = 1 mod 8,
dimfc (/) = — 1 mod 8,
dimfc (J) = 5 mod 8.

So this invariant gives us c (and the residue class of b mod 2).
I t remains to show that every invertible stable class has the form S a / 5 or ~LaIbJc,

as the case may be.
First we assume B = E[x,y], as in Theorem 3-6. Without loss of generality we may

assume that |a;| < \y\. Let M be an invertible module. Multiplying by some power of S,
we may assume without loss of generality that H(M; x) is k in degree 0. Let g0 be a
cycle representing the generator, so that xg0 = 0 but g0 $ Im x. Consider yg0. We have
xyg0 = — yxg0 = 0, so ygQ eKer x; since H{M; x) is zero in this degree, we conclude that
yg0 = xgx for some gv Consider ygx; we have

*yg\ = -yxgi = -yyg0 = °-
Continuing in this way by induction, we find a sequence of elements

0o>6rl>9r2>-">Srn>---
such that xg0 = 0 and ygi = xgi+l for all i.

Now M is finitely generated over B, so we must have gn+1 = 0 for some n. Thus ygn = 0.
As a first case, we consider the possibility that gn represents a generator of H(M; y).

In this case, let L(n) be the module presented by generators l0> llt l2, • • •, ln and relations

xl0 = 0, ylt = xl{+1, yln = 0.
L(n):
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We have constructed a map L(n) ->• M (given by lf \-* gt) which induces an isomorphism
of H(; x) and H(;y);soM~ L{n) by the theorem of Adams and Margolis. We will show

L(n) ~ (

The obvious minimal resolution of L{n) over B gives an exact sequence

0 -> I,ML(n+ 1) -> F -+ L(n) -+ 0

with F free. On the other hand, by taking the sequence

0 -> / ->£ -> 1c -> 0

and tensoring with L(n), we get

0 -> / <g) L(n) -+B® L(n) -> L(n) -> 0,

and here B ® L(n) is free. By Schanuel's Lemma, we get

By induction over n, starting with L(0) ~ k, we see

L(n) ~ (£-I*I/)».

As a second case, we consider the possibility that gn represents the zero class in
H(M; y). In this case there is an element Aw_16ilf such that gn = yhn_x. Replacing
9n-i by 9n-i — 9n-i +

 x^n-i> w e recover our original situation with n replaced by n — 1.
We may continue this process by induction downwards over n. Either at some stage

we encounter the 'first case' and prove that M ~ Sa/6 for some b > 0, or else the
induction continues right down to n = 0. There is no objection to replacing g0 by
g'n = go + xho, for that does not alter its class in H(M; x). We may thus suppose that
xg0 = 0, yg0 = 0 and (unless M ~ k ~ E°/°) that g0 = yh_v

Suppose now that we have constructed h_x, h_2,..., h_n with

y\ = xhi+1, yh_x = g0.

- + 1 It-2

Consider xh_n. If n = 1 we have

yxh_x = —xyh_x = — xg0 = 0;
otherwise we have

yxh_n = -xyh_n - -xxh_n+1 = 0.

As a first case, we consider the possibility that xh_n represents a generator of H(M; y).
In this case we can proceed precisely as before, but the module we map to M is now
L(n)*, and we obtain

M ~ L(n)* a (Si*'/-1)".

As a second case, we consider the possibility that xh_n represents the zero element
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in H(M; y). In this case there is an element h_n_1 in M such that yh_n_1 = *A_n, and
the induction continues. Either at some stage we encounter the 'first case' and prove
that M ~ 1,aIb for some b < 0, or else the induction constructs hn for all n. Now M is
finitely generated over B, so we must have h_n_1 = 0 for some n. Then xh_n = 0. Since
H(M; x) is zero in this degree, we conclude that h_n = xk_n for some k_n. Then if
n > 1, we may replace h_n+1 by h'_n+1 = h_n+1 + yk_n; we have xhLn+1 = 0, and we
continue the induction. This induction finally proves that

contradicting the choice of g0. Therefore the ' first case' must have arisen at some stage,
and we have M ~ S a / 6 for some a, b. This proves Theorem 3-6.

Next we assume B = Ax, as in Theorem 3-7. We will prove that every invertible class
is of the form 1iaIbJc. If M is an invertible module over B = Ax, then by neglecting
some of its structure we obtain an invertible module over B' = ElSq1, Sq01]. The
module S over A1 yields the module £ ' over B'; the module / over Ax yields the
module / ' © 2 2 £ ' over B'. Assume that over B' we have M ~ (S')° (/')6- Take a
.B-module N in the stable class Y*~aI~bM; then over B' we have N ~ k, and we have
to prove that over Ax we have either N ~ k or N ~ J.

We work simultaneously on N and N*. Since we know the stable class of N over B',
it follows that we can find in N an element g of degree 0 such that Sqxg = 0, S^g = 0
and g is simultaneously a generator for H(N; Sq1) and H(N; Sq01). Similarly, in N* we
can find an element g* of degree 0 such that Sqxg* = 0, Sq0^* = 0 and g* is simul-
taneously a generator for H(N*; Sq1) and H(N*; Sq01). We must have (g*, g} = 1.

First suppose that g is indecomposable, so that g^Sq1N + Sq2N. Then we can find
a map of graded F2-modules d:N^-k which annihilates Sq^ + Sq2N and maps gto 1.
Then 6 is an J^-map from N to k which induces an isomorphism of H( ; Sq1) and
H( ; /Sfg01), BO N ~ k. Similarly, if g* is indecomposable we find N* ~ k and N ~ k.

The only remaining possibility is to suppose

g =
g* = 8q1n*+Sq*m*

for suitable elements w, m, %*, m*. Then

= Sq'-g + Sq'-Sq^ = 0,
= 0.

So m defines an ^41-map J -»- N, and m* defines an -4x-map J -> i^*, or equivalently
N -> J* ~ J. Also we have

, Sq*m) = <?

= <0*> 9) + <«*,
= 1.

This shows that the composite J ->• iV -> J is the identity; so 2\f contains J as a direct
summand. Let the complementary direct summand be P ; then H(P; Sq1) — 0,
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H(P; Sq01) = 0 and so P is free. Thus N ~ J. This proves that every invertible class
over Ax is of the form Y,aIbJc, and completes the proof of Theorem 3-7.

We now turn to the application of these results in computing groups l£xtB(L, M).

LEMMA 3-8. If s > 0 and N is invertible, then

~Ext8
B(L,M) z ShomB(IS®L®N,M®N).

Proof. If we take the exact sequence

0 -»I -> B -> k -+ 0

and tensor with L, we get an exact sequence

0-+I®L-+B®L^L-+0

in which B ® L is free. So by the classical exact sequence we get

Ext% (L, M) £ ExtfJ-1 (7 ® L, M)

for s > 1, and by induction over s we get

Ext|j (L,M)z Ext^ (7s-1 ®L,M).

But now using Lemma 3-3 (6) we get

Ext^ (7s"1 ® L, M) ~ S homB (7s ® L, M).

And if N is invertible we clearly have an isomorphism

ShomB(Is®L,M)^ Sh.omB{I»®L®

This proves the lemma.
The effect of this lemma is that we can read off the groups Extjg (L, M) for all

invertible L and M from comparatively few tables. In the case B = E[x, y] it is
sufficient to tabulate

in the case B = Ax it is sufficient to tabulate

-Shom^(7s,S*) and Sh.omB{I*J ,Yt).

In the case B = E\x, y\ we label the table as if the degrees of x and y are 1 and 2p — l,
as in the applications.

Table 3-9. ASfhomjE[a;>I/](7
8,St)
I. b h

2 k k -
q z. T. u

-6p + 5 -4p + 3 -2p+l 0 2p-2 4p-4
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In each table, groups not indicated are zero; in Tables 3-10 and 3-11, k means F2. In
each quadrant of each table, the obvious periodicity continues.

These tables are the result of simple and obvious calculations.
The observations above become applicable because certain modules which arise in

the applications can be written as sums of invertible modules. At this point we have to
consider modules which are not finitely generated over B, so we relax that assumption.
We can now form infinite sums of modules; infinite sums pass to stable classes, because
an infinite sum of free modules is free.

PROPOSITION 3-12. Let B = E[Q0, Q^, as in (3-1). Then the stable class of

is n ( r
r=0

where Kr is the invertible class Sa(r)/6(r) with

• »
r—

PROPOSITION 3-13. Takep = 2, and let B = Alt as in (3-2). Then the stable class of

is (1+ S3/J) (1+ 25/3) (1 +S9/7)... (1 +S2r+1/2r-1)....
In each proposition the infinite product is to be interpreted by expanding it as an

infinite sum; for example, in Proposition 3-13 it means

Proposition 3-13 is a reformulation by the first author of a lemma of Mahowald.
Proof of Proposition 3-12. We propose to proceed in the dual, and calculate the stable

class of (A/(AQ0 + AQJ)*. According to our principles, we should give this dual space
the structure of a left i?-module, letting b act by the dual of the map a\-*(cb)a on
A/(AQ0 + AQj). However, by using the conjugation c of A we can throw A/(AQ0+AQt)
onto A/(Q0A + QiA), and use the map a'h-*a'b on AI(Q0A + QXA). This is convenient
for purposes of calculation. In fact, assuming p odd, the dual A* of A is the tensor
product of an exterior algebra E[TQ, T1; T2, ...] and a polynomial algebra F^f ,̂ £2, £3,...].
The dual of the quotient A/(Q0A + Q±A) is the subalgebra

We must calculate its homology for the boundaries obtained by dualizing the maps
at-*aQ0 and a\-*aQ1 of AftQgA + QiA).

Under the first boundary our complex may be expressed as a tensor product of chain
complexes. Here the first factor is the polynomial algebra Fpf^J, with the zero
boundary; while the rth factor for r ^ 2 has a base of monomials

Tr& and g (»=0,1,2,...)
with the boundary fi fM -{

~S "* fo t
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Thus for r ^ 2 the homology of the rth factor is ¥p, generated by 1 in degree 0. We
conclude that the homology of the tensor product is a polynomial algebra on one
generator £1#

Under the second boundary our complex may also be expressed as a tensor product
of chain complexes. This time the rth factor has a base of monomials Tr+1£* and
i\ (i = 0,1, 2,...) with the boundary

We conclude that the homology of the tensor product is a truncated algebra, given by
generators gx, £2,... and relations gf = 0, g£ = 0,....

We now seek appropriate J?-modules to map into A/(Q0A + QlA)*, so that eventually
we may obtain a map inducing isomorphisms of H( ; Qo) and H( ; QJ, and so apply the
theorem of Adams and Margolis to deduce that we have a stable equivalence of
-B-modules.

We take Lo to be the submodule generated by g r Wo take Lx to be the following
submodule. t?

Qyr

Suppose now, as an inductive hypothesis, that we have constructed Lr and mapped it
to (A/(Q0A + Q-^A))*, so that Lr contains a submodule L'r which maps isomorphically
to the .B-submodule which has the &-base £r+1. Then using the algebra structure of
(A/{Q0A + QiA))*, we can map the tensor power (Lr)*> to (AI(Q0A + QXA))* so that the
submodule (L'r)v maps isomorphically to the .B-submodule which has the fc-base £,f+1.
We now construct Lr+1 by adjoining to (Lr)

p the following submodule.

(Of course we identify (L'r)
v with the part of this new submodule which has the fc-base

££+!•) We take L'r+1 to be the part of the new submodule which has the fc-base £r+2- This
completes the induction.

The result of this induction is] that H(Lr; Qo) has dimension 1 over Fp, and its
generator maps to the homology class of £f, while H(Lr; QJ has dimension 1 over F^,,
and its generator maps to the homology class of £r+1.

By using the algebra structure of (A/(Q0A + Q1A))*, we can now construct a map

r=0
this map induces an isomorphism of H( ; Qo) and H( ; Qt), and is therefore a stable
equivalence by the theorem of Adams and Margolis. Moreover, as we have said,
(A/(Q0A + QiA))* is isomorphic to (A/(AQ0 + AQX))* with its correct structure as a
^-module.
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Now, the infinite product

r=0

represents an infinite sum which is locally finite, and duality commutes with locally
finite sums. Moreover, the modules Lr are invertible by Lemma 3*5; so all the sum-
mands in the infinite sum are invertible; but for an invertible module M we have
M* ~ M~x. Therefore we can write the dual formula in the form

A/AQo+AQ,- fi
r=0

° r a S A l A Q t + A Q i - I K r

if we set KT = L~x. Finally, by calculating the invariant given in the proof of Theorem
3-6, we see that Kr = L*1 ~ S«W/W where

a(r) + b(r) = 2(p-l)pr,

The proof is valid for p = 2 if suitably interpreted (interpret Tt as gi+1 and gt as £?).
Alternatively, the result for p = 2 is given in (2), p. 335, line 1. This completes the
proof of Proposition 3-12.

Proof of Proposition 3-13. This is wholly parallel to the proof of Proposition 3-12.
Again, we proceed in the dual and calculate the stable class of (AKASq^+ASq2))*.
We use the conjugation map c to throw A/(ASq1+ASq2) on AfrSq^A + Sq2A). The dual
A* of A is the polynomial algebra T2[^1} £2> •••> £n> •••]> a n ( i *n e dual of the quotient
A^Sq^A+Sq^A) is the subalgebra F2[gf,£f, £3, £4, ...,£n> •••]• We must calculate its
homology for the boundary obtained by dualizing the maps a i-> aSq1 and a H-> aSq01 of

Under the first boundary we get a tensor product of chain complexes, where the
first factor is the polynomial algebra F2[£f] with the zero boundary, and the rth
factor for r ^ 2hasabaseofmonomials£;?iand£^£r+1 (i = 0,1,2,...) with the boundary

We conclude that the homology of the tensor product is a polynomial algebra on one
generator f J.

Under the second boundary our complex may also be expressed as a tensor product
of chain complexes. This time the first factor has a base of monomials £*f and gj*^
(i = 0,1,2,...) with boundary

the rfch factor for r ^ 2 has a base of monomials Ql and £^£,+2 with boundary
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We conclude that the homology of our tensor product is an exterior algebra on
generators £!,£!,£!>••••

We now (again) seek appropriate .B-modules to map into (AI(8q1A + 8q2A))*. We
take Lx to be the following submodule.

Suppose, as an inductive hypothesis, that we have constructed Lr and mapped it to
{Aj{8q1A +8q2A))* so that Lr contains a submodule L'r which maps isomorphically to
the following submodule.

Then using the algebra structure of (AI{8qrA + 8q*(A))*, we can map the tensor square
(Lr)

2 to (A/iSq'-A + Sq2A))*. Now (L'r)
z does not map isomorphically to its image; the

kernel K is a submodule which (with an obvious notation) we may display as follows.

Let us form the quotient {Lr)
2jK; this quotient maps to (A^Sq^A +Sq2A))*, and has

the following submodule M.

C r + 2 ® f r +

We now construct Lr+1 by adjoining to (Lr)
2/K the following submodule.

(Of course we identify M with the part of the new submodule which has the &-base
£?+2, £?+!•) We take L'r+1 to be the new submodule we adjoined. This completes the
induction.

The result of this induction is that H(Lr; Sq1) has dimension 1 over F2, and its
generator maps to the homology class of £f4 \ while H(Lr; Sq01) has dimension 1 over
F2, and its generator maps to the homology class of g?+1.

32 PSP 80
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By using the algebra structure of {A[{Sq1A + Sq2A))*, as before, we can construct

a map (l+L1)(l+La)(l+La)... + (AI(8?A+8q*A))*;

this map induces an isomorphism of H( ; Sq1) and H( ; Sq01), and is therefore a stable
equivalence by the theorem of Adams and Margolis. Dualizing exactly as in the proof
of Theorem 3-12, we find

where Kr = L~x. Finally, by calculating the invariants given in the proof of Theorem
3-7, we see that „ T_1

while Kr = L-1 ~ S^ 1 / 2 ' - 1 for r > 2.

This completes the proof of Proposition 3-13.

4. Calculation of Ext. In this section we will prove the following two results.

PROPOSITION 4-1. Ext^f (A/AQ0+AQX, A/AQQ + AQJ) = 0 provided s > 0, t-s is
odd and t — s> —2p+l.

PROPOSITION 4-2. Assume that p = 2, and M is one of the following four A-modules:

A/iASqi+ASq2), A/ASq2, A/ASq3, A/iASq^ASq^q3).

Then Ext%*(Jf,M) = 0 for s > 0, t-s = -l.

Proof of Proposition 4-1. Let B = E[QQ, Qx], as in (3-1). Then A is free as a right
J3-module, and we have

By a standard change-of-rings theorem, we have

Ext8/ (A ®B Fp, M) ~ Ext# (F,, M).

If we take M = A ®B¥p, then by Proposition 3-12 it is stably equivalent to a sum of
modules ~LaIb with a + b even and a + b ̂  0. By Lemma 3-8, we have

"LaIb) ~ Shoms(I
s-

By Table 3-9 (or by the calculations implicit in it), this is zero i£t + a — s + bis odd and
greater than —2p+l. This proves Proposition 4-1.

The reader may notice how little use we have made of the precise details in Pro-
position 3-12, and may perhaps wonder if we could not rearrange the proof so as to
omit much of section 3. So far as Proposition 4-1 goes this would be possible; in order
to prove Proposition 4-1, it is sufficient to know merely the following about

M is bounded below, H(M; Qo) = 0 in even negative degrees and H(M; Qx) = 0 in odd
degrees. Unfortunately, similar remarks do not apply to Proposition 4-2. I t can be
shown by counter-examples] that to prove Proposition 4-2 |we need to know, at least,
that M is stably equivalent to a sum of modules each finitely generated over B. For
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this we have to use the proof of Proposition 3-13; and if we have to use the proof, it
seems unnecessarily obscure not to state what the proof proves.

We next prove Proposition 4-2, so far as it concerns the module

M = AI(ASqx + ASq2).

This is parallel to the proof of Proposition 4-1. Let B be Alt as in (3-2). Then A is free
as a right module over B, and we have

By the same change-of-rings theorem, we have

Ext8/(A ®BF2, M) ~ Extfc* (F2,M).

If we take M = A ®BF2, then by Proposition 3-13 it is stably equivalent to a sum of
modules Ea/6JC with a + b = 0 mod 4 and a + b ^ 0. By Lemma 3-8, we have

Ext%* (F2, E
aiVc) ~ tfhom^ (7s-6J-°, S*+°).

By Tables 3-10, 3-11 (or by the calculations implicit in them) this is zero if

t + a — s + b = — 1 mod 4 and t + a — s + b^ — 1 .

This proves that
~Extsj (A/ASqi + ASq*, A/ASq^ + ASq2) = 0

for s > 0, t — s = — 1.
We next wish to deduce from this result the other three cases of Proposition 4-2. For

this we use algebraic arguments analogous to the topological arguments one would
use if one wished to prove that (with the notation of section 1) [Y, Y] is essentially
independent of d. First we need a subsidiary result.

LEMMA 4-3.

(i) Bxts^(A/ASq1 + ASq2,AIASq1) = 0 for s>0,t-s>~5.
(ii) ExVj(A/ASq^IPA/ASq2) = 0 for s > 0, t-s > -5.

Proof, (i) As before, the usual change-of-rings theorem gives

Ext^iA/ASqi + ASq^A/ASq1) £ Ext^ (F^A/ASq1).

Now of course we have an exact sequence

0 -> A/ASq1 -> YrxA -> Z^A/ASq1 -> 0

in which Yr^A is free over B, and therefore injective. Proceeding dually to the proof of
Lemma 3-8, and in particular applying Lemma 3-3 (c), we get

But by direct calculation,
/ShomB(S« A/ASq1) = 0

for u < 5. This proves part (i).
32-2
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(ii) Let Ao be the subalgebra of A generated by Sq1; its augmentation ideal Io is 2.
The usual change-of-rings theorem gives

S Extsi*(F2,

Now a trivial analogue of Lemma 3-8 shows that

E x t ^ (F2, ̂ AjASq2) ~ £hom^o (F2)

But by direct calculation,
ShomAa(Z

u,A/ASq2) = 0

for u < 3. This proves the lemma.
We now use the following exact sequence, which arises in the mod 2 cohomology of

the Postnikov system for bo, as in section 2.

0 -> XZA/ASq* -> A/ASq1 -> A/ASql + ASq2 -» 0.

From this, we get the following two exact sequences.

' ASq2)

I n the first exact sequence, using our previous result on the left-hand group and Lemma
4- 3 (i) on the right-hand group, we see that the middle group is zero for s > 0 , t — s = — 1.
Now the second exact sequence, using Lemma 4-3 (ii) on the left-hand group, shows that

2 Q l ^ I t f ) = 0
for s > 0, t — s = — 1.

Now we use the following exact sequence.

0 -> WA/ASq3 -> J?A -> IPAIASq* ~> 0.

Since T,2A is both projective and injective, this shows that for s > 0 we have

S4-

This group is therefore zero for s > 0 , i — s = — 1.
Finally we use the exact sequence

0 "* S 7 . g . A
Aata.-» Z*A -> 2 4 - J 4 I ^ 0,ASq1 + ASq*Sqz ASq3
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and this shows similarly that]

(
S ' AStf + ASqS<?

for s > 0. This completes the proof of Proposition 4-2.
Similar arguments work for the exact sequence

* S ASq 1

but for our purposes this is not necessary.

5. Proof of Theorem 1 • 1. In this section we will prove Theorem 1 • 1; so we assume that
X and Y are as in Theorem 1 • 1. To deal with the difficulties over the convergence of the
Adams spectral sequence, our plan is to approximate X by finite spectra W71, and
construct maps/71: WTC -> Y. In order to make the maps/71 compatible as we vary n,
we plan to use the known endomorphisms of the fixed spectrum Y. We take these
points in order.

PROPOSITION 5-1. Let ~X.be a spectrum whose homotopy groups are finitely generated
modules over A, and bounded below. Then X is equivalent to a smash-product MA A W,
where MA is a Moore spectrum for the group A, and W is a spectrum whose skeletons W71

are all finite.
Broadly speaking, this result says that any p-local spectrum X is the localization of

a global spectrum W, and any ^-complete spectrum X is the completion of a global
spectrum W. We should perhaps only sketch the proof, since the result should appear
in any complete treatment of localization and completion (compare (9,13)). But for
completeness we give at least a sketch.

I t clearly follows from Proposition 5-1 that if X is as assumed there, then X is a
module spectrum over the ring spectrum MA. I t is convenient to begin by proving at
least part of this.

As in section 1, we define the map X ->• MA A X to be the composite

X ~ S° A X ~ MZ A X -> MA A X,

where the last map is induced by the injection Z -» A.

LEMMA 5-2. (i) Let X fee a spectrum whose homotopy groups are finitely generated
modules over A, and bounded below. Then there is a map v: MA A X - > X such that the
composite v

X -> MA A X • X
is homotopic to the identity.

(ii) Moreover, the induced map of homotopy groups

v*: A ® ?rr(X)-> 7rr(X)
is the A-module action map.

Much more is true, but we state just what is needed for the proof of Proposition 51.
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I t is convenient to continue with subsidiary results. For example, part (ii) of Lemma
5-2 will follow immediately from part (i) by using the following result.

LEMMA 5-3. Let A be a A-module, and B a finitely generated A-module; then any
homomorphism 6: A -> B of abelian groups is a homomorphism of A-modules.

Proof. If A = Z(p) this follows by trivial algebra; if A = Zp it follows because 6 is
continuous for the ^J-adic topology.

LEMMA 5-4. Let Vbea vector-space over the field Q of rational numbers; and let A be an
abelian group which is complete and Hausdorff for the p-adic topology (e.g. a finitely
generated module over Zp). Then

Homz (V,A) = 0, Extz (V,A) = 0.

Proof. The assertion about Horn is trivial; and since V is a direct sum of copies of Q>
it is sufficient to prove Extz (Q,A) = 0. We construct a Z-free resolution of 0

as follows. Let Cv Go be Z-free on bases {6J, {cj, i > 1; define d, e by

Applying Homz ( , A) we get an exact sequence

0 «- Extz (Q,A) «- n A+L-Tl A,
« = 1 « = 1

where 8{at) = {at - (i +1) ai+1}.
00

Our problem, then, is to take a vector {at} e JJ A and solve the equations
i = l

+1 (*= 1,2,3, ...)•

The solution is _ j!

the series converges to a unique limit in A because we assume the ^j-adic topology on
A is complete and Hausdorff. This proves the lemma.

Proof of Lemma 5-2. The homotopy groups of X are in any case modules over Z(pj;
so the map X -> M Z ^ A X is an equivalence, because the induced map of homotopy

is iso. Thus the map X -> MZ(j3) A X has an inverse MZ(j)) A X -> X, unique up to
homotopy.

In the £>-complete case A = Zp, we note that the quotient Z^/Z^j is a vector-space
O; therefore H*(MZp A X, MZ(p) A X) is a vector-space over 0- In view of Lemma 5-4,
the universal coefficient theorem yields

H*(MZp A X, MZfe) A X; ̂ (X)) = 0.
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Now obstruction theory shows that there is a unique map MZ^ A X - > X extending the
map MZ(p) A X ^ - X obtained above.

This proves part (i) of Lemma 5-2, and part (ii) follows as remarked above.

Proof of Proposition 5-1. Alas, we have to divide cases. First we consider the ^-local
case A = Z(py We proceed by induction over n. Suppose constructed a finite w-skeleton
Wm and a map en: Wn -> X such that the homomorphism

A ®nr{Wn) > A ® nr(X) -> 7Tr(X)

is iso for r < n and epi for r = n. Consider the homomorphism

Its kernel is a finitely generated module over Z, and therefore we can find a finite
number of maps ff Sn -> W*1 which generate it. Construct V by attaching to Wm stable
(n + l)-cells E™+1, using themaps/j as attaching maps; since the composites enft: Sm->X
are null homotopic, we can extend the map en: W" -»• X over V. The induced homo-
morphism .-, __

w«(V) -> nn(X)

is now monomorphic. Since localization preserves exactness, we infer that

A ® 7Tn(V) -> A ® 7Tn(X)-^ 7Tn(X)

is also mono. (At this point there seems to be no such simple argument for the
^-complete case.)

We now take a finite number of maps gf Sn+1 ->• X which generate 77-n+1(X) as a
A-module. We construct W m + 1 = y y v g ^

i

and we extend the map V -=• X over Wn+1 by using the map g} on S™+1. This ensures
that the homomorphism

W ^

is epi. This completes the induction, and constructs a spectrum W with finite skeletons
W™ and a map e: W -> X such that

A ® 77r(W) > A ® nr(X) •+ nr(X)

is iso for all r. Let Ĵ : MA A X ->• X be as in Lemma 5-2; then the composite

MA A W -^X MA A X —^> X

induces on homology groups the isomorphism just mentioned, and so is an equivalence.
This completes the j9-local case.

Secondly we consider the ^-complete case A = Zp. The homotopy groups rrr(X) are
finitely generated modules over Zp. We can find subgroups <rr <= nr(X) which are
finitely generated modules over Z(p) and such that the composite

Zp ® <rr • Zp ® nr(X) - • nr(X)
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is iso for each r. (Take the whole of the ̂ -torsion subgroup of nT(X), and one summand
Z(p) for each summand Xp in nr(K).) The quotient nr(K)/crr is a direct sum of copies of
Zp/Z(p), and is a vector space over 0- We can find a generalized Eilenberg-MacLane
spectrum E such that 7rr(E) ~ nr(K)/(rr for each r, and we can find a map/: X -> E such
that/induces on homotopy groups the projection nr(X.) -> nr(X)/(rr. Let F be the fibre
of/; then the injection i: F -> X induces on homotopy groups the injection crr -> nr(X).

Alternatively, instead of using a fibering to realize the exact sequence

0 -> <rr -> nr(X) -• nr(X)/<rr -> 0,

it is slightly more in line with general theory to use a pullback diagram to realize the
following Cartesian square.

<rr = Z(P) ® °V •* ZP ® «r S

1 I
O <8> <rr -> Qp ® <rr

(Here Qp is the field of p-adic numbers.) But really it makes no difference.
In any case, let v: MZp A X -»• X be as in Lemma 5-2; then the composite

P P 1 > X
induces an isomorphism of homotopy groups, and so is an equivalence.

By the ^>-local case, which we have already established, we can find a spectrum W
with finite skeletons such that F ~ MZ(j)) A W. Then we have

X = MZp AF ~ MZp A MZ(p) A W.

But since Zp ® Z(p) ~ Zp, MZP A MZ(j)) is again a Moore spectrum MZp. This completes
the proof.

One benefit which we obtain from having W" finite is the following result, which is
more or less standard.

LEMMA 5-5. Let W" be a finite spectrum and Y a spectrum whose homotopy groups
nr(Y) are finitely generated modules over A. Consider maps f:Wn-+Y such that

is zero for all r. Then such maps fall into finitely many homotopy classes.

Proof. Let YQ be the rationalization of Y. Since YQ is a generalized Eilenberg—
MacLane spectrum, the hypothesis

/* = 0:77r(W")®O-^^(Y)® 0 for all r

implies that the composite W" >• Y -> YQ is nullhomotopic. Now the obvious map

is iso when Wre is finite ((2), Proposition 6-7, p. 202). Therefore such maps/lie in the
torsion subgroup of [W™,Y]. But under the given hypotheses [Wn, Y] is a finitely
generated A-module, so its torsion subgroup is finite. This proves the lemma.

We will now discuss the endomorphisms of the fixed spectrum Y.
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LEMMA 5-6. Let m be an integer for which 7rm(Y) ~ A. Then there is a map <j>{m): Y -> Y

with the following properties:
(i) 0(m)»: H*(Y; Fp) «- tf *(Y; F,) is zero.
(ii) ^(m)+: nt(Y) -> 7rt(Y) is a multiple of p for all t.
(iii) ^(m)*: ^ ( Y ) -> ^ ( Y ) is zero for 2r < m, while for 2r — m it is multiplication

by a non-zero scalar SmeA.
The proof we give is not intended to lead to the best possible value for 8m. Such a value

would be relevant if we wished to consider [Y, Y], and we do know the right numbers,
but they are not relevant for our present purposes. This modest aim allows us to use
a shorter proof. In particular, the reader will see that while the proof below may
appear to be constructed with the complex case in mind, it is true word for word in the
real case also, though in a rather wasteful way.

Proof of Lemma 5-6. The spectrum Y admits a map

\J*:Y->Y

for each integer k prime to p (or even for each unit k in Z(33)). The induced map

is multiplication by kr. If we take a A-linear combination £ A^**, the induced map
i

is multiplication by 2 Ai(ii)
r. Let r run over the range d < 2r < TO, where d is as in

i

section 1. By taking as many i's as there are r's, and suitable coefficients A^eZ^), we
can ensure t h a t •*-.•> /?%, ^ r J - «

SAjfi! ; / = 0 for d < 2r < m,
t

while for 2r = m we have 2 Ai(fci)
r = A,

i

where A is the determinant of the matrix whose (i, r)th entry is (k^. After removing
from A a power of J[ kx which is a unit in Z(p), we obtain a Vandermonde determinant,

i

and this can be made non-zero by choosing the kt distinct.
We can now satisfy all the conditions by taking

<j>{m) = p 2 A^**.
i

This proves the lemma.
Let m run over the integers for which nm(Y) ~ A. By Lemma 5*3 we have

Homz(7rm(X),7Tm(Y)) = HomA (nm(X), nm(Y)),

which, by our standing assumptions, is a finitely generated A-module. If we take it
mod Sm (where 8m is as in Lemma 5-6) we get a finite group; let

aml> am2. • • • : tfm(X) -> 7Tm{Y)

be a finite set of homomorphisms containing one representative from each residue
class mod Sm.
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We suppose given an isomorphism

d:H*(X;Fp)^ H*(Y; Fp)
as in Theorem 1-1.

LEMMA 5-7. For each n there is a mapf = fn: Wm -> Y with the following properties.
(i) The induced mapf* of mod p cohomology is the composite

#*(W»; Fp) <- H*(X; Fp) J— H*(Y; Fp).
i®f«

(ii) The map A ® nr(W
n) • A ® 7Tr(Y) -> nr(Y)

is isofor r <n, epifor r = n.
(iii) For each m such that 7Tm{Y) ~ A and m < nthe isomorphism

TTJK) «-=- A ® nm(W") ™> A ® 77m(Y) -> nm{Y)

is one of the representatives ami chosen above.

Proof. First recall that Y is the spectrum bgA obtained by introducing coefficients A
into a spectrum bg, and that the map bg -> bgA induces an isomorphism

We define the ̂ .-module map <j> so that the following diagram is commutative.

; F,) JL. H*{Y; Fp)

We begin by showing that there is a map Ww -^- bg whose induced map of modp
cohomology is 0.

In fact, the spectrum bg admits an Adams resolution of the conventional sort. By
mapping any spectrum X into this resolution we obtain an 'Adams spectral sequence';
of course we assert nothing about the convergence of this spectral sequence. However,
the spectral sequence is functorial for maps of X; and the usual theorem for identifying
its E2 term is valid, for this depends only on hypotheses of finite generation in the
Adams resolution, and the Adams resolution of bg is conventional. The isomorphism

H*(X; Fp) JL H*(Y; Fp) - ^ #*(bg; F,)

gives an element of the term 2?§° of the spectral sequence for X. All differentials dr are
zero on this element, by Proposition 4-1 or 4-2 according to the case. By functoriality
using the map Wn -> X, all differentials dr are zero on the element ^ in the term 2?§° of
the spectral sequence for Wn. But the spectral sequence for Wm is convergent in the
usual way, because W71 is a finite complex. So there is a map Wm ->• bg which induces
the map <j> of cohomology. By taking the composite

we get a map/ : W -> Y which satisfies clause (i) of the conclusion.
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Next we show that any such map/satisfies clause (ii) of the conclusion. The map

W -> MA A W ^ > X

induces isomorphisms of mod p cohomology; the map

JEr'(W»;Fp)<-£r'(W;Fp)

is iso for r < n, mono for r = n. I t follows that the induced map

f*:H-(W";Fp)^H'(Y;Fp)

is iso for r < n, mono for r = n. Le t / be the composite

MA A W» - ^ MA A Y —!». Y

where v is as in Lemma 5-2; then the restriction off to Wn is homotopic to / . I t follows
t h a t / * : H'{MA A W»; F,) <- H'{Y; Fp)

is iso for r < n, mono for r = n. By the usual device of a mapping-cylinder, we can
assume t h a t / is an embedding; actually we do this only in order to write relative
groups, and we could equally well use the corresponding groups of the map / . In any
case, we h a v e TTWIT- •»* A «*» r> \ r> c

Hr(Y, MA A Wn; Fp) = 0 for r < «.
By duality, we have

Hr(Y, M A A W " ; F,) = 0 for r < n.

We now argue by induction over r; suppose TTS(Y, MA A W71) = 0 for s < r, where
r < n. Then the Hurewicz theorem gives

7rr(Y,MAAW")®F3, = 0.

The homotopy sequence of the pair (Y, MA A W") gives a short exact sequence of
g r o u p s 0 - • A ->7rr(Y, M A A W » ) - > £ - > 0

in which A and B are finitely generated modules over A. We have B ® Fp = 0, so B = 0
(either by Nakayama's Lemma or by the structure theory for finitely generated
modules). Hence the map A ->• 77-r(Y, MA A W71) is iso, and the argument of the last
sentence shows that nr(Y, MA A Wn) = 0. This completes the induction, which shows
that nr(Y, MA A W71) = 0 for r < n, and establishes clause (ii) of the conclusion.

I t remains to take our map / : Wra -> Y and modify it so as to satisfy clause (iii).
We do this by induction over m. Suppose that/0: W71 ->• Y satisfies clauses (i) and (ii),
and also satisfies clause (iii) in degrees m' < m. Let us replace /0 by

where AeA and <j){m) is as in Lemma 5-6. This process does not affect

I t does not affect clause (ii), either because clause (ii) follows from clause (i), or because
we alter . ,•,,,_ x , , n

/ ( W » ) ( Y )
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by a multiple of p. I t does not affect the induced isomorphisms nm,(K) -> nm.(Y) for
m' < m. However by varying A we can make the induced isomorphism

nm(X)-+nm(Y)

run over a residue class mod Sm, so by a suitable choice of A we can make it one of the
representatives ami. This completes the induction and proves the lemma.

For the next lemma, we suppose that 7rn(Y) ® 0 = 0 (as happens, for example,
when n is odd).

LEMMA 5-8. The maps f: W71 -> Y with the properties stated in Lemma 5-7 fall into
finitely many homotopy classes.

Proof. If/ is as in Lemma 5*7, then the induced homomorphism

/ , : w«(W») ® 0 -+ TT*(Y) ® 0

is wholly determined by the amt in Lemma 5-7. (In fact, 7rr(W
m) ® 0 = 0 for r > n,

while 7fn(Y) ® 0 = 0 by assumption.) There are only a finite number of ra's to be
considered, and for each m only a finite number of ami, so there are only a finite number
of possibilities for the induced homomorphism

But for each induced homomorphism there are only finitely many homotopy classes
of maps/ , by Lemma 5-5. This proves the lemma.

LEMMA 5-9. We can choose a sequence of maps /2»+1: W2n+1 -> Y with the properties
stated in Lemma 5-7 so thatf*n+1\W2""1 ~ f^^for each n.

Proof. If we take a map / : W^ -> Y with the properties stated in Lemma 5-7, then
for any n < N the restriction f\ W71 also has these properties.

Suppose, as an inductive hypothesis, that we have chosen/271"1: W2ra~x -» Y so that
for an infinity of iV,/271"1 extends to some map gN: W^ -> Y with the properties stated
in Lemma 5-7. (The induction starts when 2n—l < d; then there are maps gNfor all N
by Lemma 5-7, and their restrictions to W27l-1 are all necessarily null homotopic.)
Consider the restrictions gr̂ W271"1"1 of these maps gN. They he in a finite set of homotopy
classes by Lemma 5-8. So at least one homotopy class arises for an infinity of gN.
Choose /2n+i in such a homotopy class. This completes the induction and proves the
lemma.

Proof of Theorem 1-1. The map

is epi; therefore the sequence of maps/27l+1 of Lemma 5-9 arises from a map/00: W ->• Y.
From clauses (i) and (ii) of Lemma 5-7 we see that the map of cohomology induced by
/°° is the composite

; ¥p) *- #*(X; Fp) JL- H*(Y; Fp),
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and that (if v is as in Lemma 5-2) the composite

IA/00 v

M A A W — - > M A A Y > Y

is an equivalence. It only remains to take our map / : X -> Y to be the composite
lA/°° _ , , „ v

Y.
This completes the proof.
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