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1) Introduction

Before I get down to the business of exposition, I'd
like to offer a little motivation. I want to show that there
are one or two places in homotopy theory where we strongly
suspect that there 1s somethling systematic going on, but
where we are not yet sure what the system 1is.

The first question concerns the stable J-homomorphlsm.

I recall that this is a homomorphism

J: vP(SO) > vi = 7. (s"), n large.

r+n

It is of interest to the differential topologists. Silnce
Bott, we know that vr(SO) is periodic with period 8:

r=1 2 3 4 ) 6 T 8 9...

i
N

m.(30) , O Z 0 0 0 Z 2, Z

2 2...

On the other hand, vi is not known, but we can nevertheless
ask about the behavior of J. The differential topologilsts

prove:
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Theorem: If r =4k - 1, so that 7 (SO) = Z, then J(w_(S0))
= Zm where m is a multiple of the denominator of qk/ék
(B, being in the k" Bernoulll number, )

Conjecture: The above result 1s best possible, 1.e.

J(vr(SO)) = Z where m 1s exactly this denomlnator.

Status of conjecture: No proof in sight.

Conjecture: If r = 8k or 8 + 1, so that

T.(80) = Zy, then J(rr(SO)) = Zps

Status of conjecture: Probably provable, but this is

work in progress.

The second question is somewhat related to the first;
it concerns vector fields on spheres. We know that s” admits
a continuous field of non-zero tangent vectors if and only if
n is odd. We also know that if n = 1,3,7 then S" is
parallelizable: that is, Sn admits n continuous tangent
vector fields which are linearly independent at every point,.
The question is then: for each n, what is the maximum
number, r(n), such that S” admits r(n) continuous tangent
vector fields that are linearly independent at every point?
This is a very classical problem in the theory of fibre
bundles. The best positive result is due to Hurwitz, Radon
and Eckmann who construct a certain number of vector fields
by algebralc methods. The number, p(n), of fields which they
construct is always one of the numbers for which vr(SO) is
not zero (0,1,3,7,8,9,11....). To determine which, write
n+ 1= (2t +1)2Y: then p(n) depends only on v and increasing

v by one increases p(n) to the next allowable value.



Conjecture: This result 1s best possible: i.e.

1]

p(n) = r(n).

Status of conjecture: This has been confirmed by Toda

for v< 11.

It seems best to consider separately the cases in which
p(n) =8k -1, 8, 8 + 1, 8k + 3. The most favourable case
appears to be that in which p(n) = 8k + 3. I have a line of
investigation which gives hope of proving that the result 1s
best possible in this case.

Now, I. M. James has shown that if 591 admits

r-fields, then SEq-l

admits r + 1 fields. Therefore the
proposition that p(n) = r(n) when p(n) = 8k + 3 would imply
that r(n) < p(n) + 1 in the other three cases. This would
seem to show that the result is 1n sight in these cases also:
elther one can try to refine the inference based on James'

result or one can try to adapt the proof of the case

p(n) = 8k + 3 to the case p(n) = 8k + 1.



2) Primary operations

It 1s good general philosophy that 1f you want to show
that a geometrical constructlon is possible, you go ahead and
perform 1t; but if you want to show that a proposed geometric
construction 1s impossible, you have to find a topological
invariant which shows the impossibility. Among topological
invariants we meet first the homology and cohomology groups,
with their additive and multiplicative structure. Afte that
we meet cohomology operations, such as the celebrated

Steenrod square. I recall that this is a homomorphism

i

st H'(X,Y;2,) = B

X,¥;2,)

defined for each pair (X,Y) and for all non-negative integers

1 and n. (Hn is to be interpreted as singular cohomology.)

The Steenrod square enjoys the following properties:

1) Naturality: if £:(X,¥) » (X,Y) is a map, then
f*(Sqiu) = Sqif*u.

2) Stability: if 5: Hn(Y;ZQ) > Hn+l(X,Y;22) is the
coboundary homomorphism of the pair (X,Y), then
Sq” (6u) = 6(Sq™u)

3) Properties for small values of 1.

i) Sqou = u

i1) Sqlu = pu where g 1s
the Bockstein coboundary assoclated with the exact

sequence O - 22 -> 24 -> 22 »> 0,



4) Propertles for small values of n.

i) 1ifn=1 Sqiu u2

11) 1if n < 1 Sqtu

= 0.
5) Cartan formula:
i k
sa-(uv) = 3 (sq’u)+(sd%v)
J+k=1
6) Adam relations: if 1 < 2j then
i Ko b
sa'sq’ = = A, sd¥sq
k+t) = 1+3
k>2 4

where the xk ) are certain binomial coefficients which one
k) )

finds in Adam's paper [1].
References for these properties are found in Serre[2]). These
properties are certainly sufficient to characterize the
Steenrod squares axiomatically; as a matter of fact, 1t is
sufficlent to take fewer properties, namely 1, 2, and 4(i).
Perhaps one word about Steenrod's definition is 1in

order. One begins by recalling that the cup-product of

cohomology classes satisfies

7) uev = (-1P%%.u  where

u € BP(X;2Z) and v € HY(X;2).
However the cup-product of cochains does not satisfy this
rule. One way of proving this rule is to construct, more or
less explicitly, a chain homotopy: to every pair of cochains,

X, ¥, one assigns a cochaln, usually written XxsqX, 80 that

6(xvuyy) = xy - (-1)P%x



6

1f x and y are cocycles of dimension p and q respectively.
Therefore if x 1s a mod 2 cocycle of dimension m

n-1

B(xw x) = xx + xx =0 mod 2. We define Sq "X = (x &%},

the mod 2 cohomology class of the cocycle x w.x. Steenrod's

1
definition generalized this procedure.

The notion of a primary operation is a bit more
general. Suppose given n,m,G,H where n,m are non-negative
integers and G and H are abelian groups. Then a primary

operation of type (n,m,G,H) would be a function
o: HY(X,Y;6) = H™(X,Y;H)

defined for each pair (X,Y) and natural with respect to
mappings of such pairs.
Similarly, we define a stable primary operation of

degree i. This is a sequence of functions:
¢ H(x,¥;6) - H"(x,v;H)

defined for each n and each pair (X,Y) so that each function
¢n is natural and ¢n+16 = 6¢n where & is the coboundary
homomorphism of the pair (X,Y). From what we have assumed 1t
can be shown that each function ¢n is necessarily a
homomorphism.

Now let's take G = H = 22. Then the stable primary
operatlions form a set A, which is actually a graded algebra
because two such operations can be added or composed in the

obvious fashion. One should obviously ask, "What is the

structure of A?"



Theorem 1. (Serre) A is generated by the Steenrod
squares Sqi.

(For this reason, A is usually called the Steenrod
algebra, and the elements a € A are called Steenrod operations.)
More precisely, A has a Zgwbasis consisting of the

operations

i i i

Sq ¥8q %...3q ©

where 11,...,1 take all values such that

t

281 (Q<r<t) and i, > o.

The empty product i1s to be admitted and interpreted as the
identity operation.

(The restriction 1r > 21r+1 is obviously sensible in
view of property 6) listed above.) There is an analogous
theorem in which 22 is replaced by Zp.

i 1

Remark: The products Sq l‘..Sq t

considered above are called
admissible monomials. It is comparatively elementary to show

that they are linearly independent operations. For example,

n
take X = X RPW, a Carteslan product of n coples of real
1
(infinite dimensional) projective spaces: 1let Xy € Hl(RPw;Za)

be the generators in the separate factors (1 = 1,...,n), so
that H#(X;ZQ) 1s a polynomial algebra generated by XyseresXoe
Then Serre and Thom have shown that the admissible monomials

of a given dimension d take linearly independent values on
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the class x = Xy*X5ee0tX, € Hn(X;ZE) if n is sufficiently
large compared to d.

1¢

The computation of Sqil... *3q on the class x is
reduced by the Cartan formula to the computation of other
iterated operations on the X;'s themselves. Properties 3(1),
4(1) and (11) imply that 8q0x; = x,, Sq'x; = x5, and

quxi =0 for j > 1. The Cartan formula then allows us to
compute iterated operations on the xi's. The detalls are
omitted.

The substance, then, of Theorem 1 is that the
admissible monomials span A, This is proved by using
Eilenberg-MaclLane spaces.

I recall that a space K is called an Eilenberg-MacLane
space of type (m,n)--written K € K(m,n)--if and only if

T if r =n

-

0 otherwlse.
It follows, by the Hurewicz Isomorphism Theorem (if n > 1)
that H (K) = O for r < n and H_(X) ¥ 7. Hence H"(K;7) =
Hom (m,m), and H'(K;7) contains an element b", the funda-
mental class, corresponding to the identity homomorphism
from ™ to w.

Concerning such spaces K, we have
Lemma 1. Let (X,Y) be "good" pair (e.g. homotopy equivalent
to a CW-pair.) Let Map (X,Y;K,ko) denote the set of homotopy
classes of mappings from the pair (X,Y) to the pailr (K,ko),

ko being a point of K. Then this set 1s in one-to-one



corraspondence with Hn(X,Y;W). The correspondence is given
by assigning to each class, {f}, of maps the element £ b".
This lemma 1s proved by obstruction theory and 1s

classical, see e. g. [3].

Lemma 2. There 1s a one to one correspondence between coho-

mclogy operations ¢, as defined above, and elements ¢ of

H"(G,n;H). The correspondence is given by ¢ = ¢(v™). The

notation H"(G,n;H) means the cohomology groups (coefficients H)

of an Ellenberg-MacLane space of type (G,n), this depends

only on G, n and H. b" is the fundamental class in ' (G,n;G).
This lemma follows from the first rather easily for

n

"nice pailrs. But a general pair can be replaced by a C-W

palr without affecting the singular cohomology.

There is a similar corollary for stable operations.
In order to state it, I need to recall that if K € K(G,n) then
its space of loops, OQK, is an Eilenberg-liacLane space of type
(G,n-1). The suspension o: H'(K) —> (7K) is defined
as follows:

Let K denote the space of paths in K. Then we have
T: (LK,7?K) = (K,pt), the map that assigns to each path its
endpoint. The map ¢ 1s the composition:

*

H'(K) <~ H"(K,pt) N H" (LK, K) <—E 2L (k).

The arrows which point the wrong way are conveniently iso-
morphisms so can be reversed, the last one, 6, 1s such because

LK 1s a contractible space.
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ILemma 3. There is a 1-1 correspondence between stable

primary operations, as consildered above, and sequences of

elements ™1 ¢ gt

0en+1 - en-1+i.

G,n;H) (one for each n) such that

We may rephrase this. For n sufficiently large the
groups Hn+i(G,n;H) may be ildentified under the map ¢ for it
is then an isomorphism. Any of these isomorphlc groups can
be called the "stable Ellenberg-MacLane group of degree i".
The lemma then asserts that stable primary operations of
degree 1 correspond one to one with the elements stable of
the Eilenberg-MacLane group of degree i. For Theorem 1,
then, 1t remalns to calculate these groups in the case

G=H-= 22.

Theorem 2. (Serre) H (2 n;Zg) is a polynomial

2.‘
algebra, having as generators the classes
i i i

1

Sq “Sq 2...Sq b

bn
where 11,...,1t take all values such that

1) 1. > 21

1 i

21 i, >0

preceadi g 2 2l t

i1) 1, <17+ .. +1 +n for eachr.

The empty sequence is agaln allowed and interpreted as
indicating the fundamental class p".

Remark: These restrictions are obviously sensible in view of
properties 4 and 6 above. The conditions are not all inde-

pendent but this does not worry us.
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The proof of the theorem proceeds by inductlon on n.
We know that H*(K(Ze,l);ze) is a polynomial algebra on one
generator bl because RP” qualifies as a K(Zg,l), The
inductive step consists in arguing from H*(Zz,ngza) to
H'(Z,,n+13Z,) by applying the little Borel theorem to the
fibering QK —> LK —> K mentioned above where K € K(Z,,n+l).

Let me recall the little Borel theorem.

Classes fy,f55e005f5,000 1in H*(F;Za) are said to form

a simple system of generators if and only 1f the products
€ € "
£5° ves fn“ (€ = 0, or 1) form a Z,-basis for H (F;Z).

£y

Theorem 3. (Borel) Let F—> E ->B be a fibration
with B simply connected and E contractible. Let bl,bg,...
be classes in H*(B;Zz) such that only a finite number of them
lie in any one group Hn(B;Ze) and such that [o(bi)] is a
simple system of generators in H*(F;Za). Then H*(B;ZQ) is a

polynomial algebra generated by-bl,be,... .

For example, in H*(Zz,l;zg) the classes bl, (b; ?,

’ (bl 8, «ss form a simple system of generators. Also

in H*(Z2,2;22) we have the classes b2, Sqlbz, Sqesqlbg, ces

and  o(b%) = bt

(bl 4

1.2 1

0(8q*0° = sqto(v?) = st (pl) = (p1)?
0(8a°5q*b%) = sq®a(sqtbt) = s¢®(b1)? = (b1)*
etc.

Hence H*(22,2;22) is a polynomial algebra generated by .



2 1.2 241

b™, Sq@°b", Sq Sq be,... + In a similar way, one argues from

K(Zz,n) to K(Z,,n+1).

2

The littie Borel theorem is most conveniently proved
by using the comparison theorem for spectral sequences. In
fact, in the situation of the little Borel theorem, we have
two spectral sequences: the first is the spectral sequence of
the filbering, and the second is our idea of what the first
ought to be. We wish to prove these coincide--which is just
what the comparison theorem is for.

However, you have to choose your comparison theorem.
The version given by John Moore [4] won't do, because in that
version, you have to start on the chain level, and here we
wish to start with the Eo terms. The version given by
Chris Zeeman [S5] will do very nicely. Zeeman's proof,
however, can be greatly simplified in the special case when
the E, terms are trivial, and thils is the case we need
(in fact, it's the only case I've ever needed.)

Before stating the comparison theorem, we recall
some notation. A spectral sequence contains a collection of
groups Eg’q w>r>2, p,q integers (Ours will satisfy
EP’d =0 if p <0 or q < 0.) It also contains differentials

. wPsq _ pbtr, g-r+l . _
dr' Er > Er such that dr dr = 0 and such that
* ¥
r*;

* %

d r+l

H(E =E .. A map, f, between one spectral sequence

)

{(EP°9} and another {FEP’%} is a collection of homomorphism
r r

f: Eg’q - fg’q which commute with the dr's in an obvious way.
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Theorem 4. Comparison Theorem for Spectral Sequences.

Let f be a map between two spectral sequences Eg,q and
Eﬁ’q such that:
1) 1If f£: EB*C = E’° forp P

Then f: Eg,q = Eg,q for p < P, all ¢q
D =
11) Ew’q =0 Eg,q = 0 except for (p,q) = 0,0) in

which case

.

0,0 . =0,0
f: Ew’ = Ew’

Then f: Eg’o = Eg’o for all p.

Proof: The proof is by induction on p. The result
is true for both p = 0 and p = 1 by assumption because

0,0 _ 50,0 ;ng 1,0

2 )
an isomorphism on these E, terms. Now assume that

1,0
[vo]

E E E>’Y, and similarly for E, and f 1s

r: £5°° = B8O for p < P. Recall that 0cBS %25 b d

where Bp,q = Im d

P,q _ »Psq pPsq joge|
5 and Z5’* = Ker dy, and Hy = Z5 /B2 = E

2 2 3
(The tedious superscripts will sometimes be cmitted in what

follows.) Since d; is defined on Eg’q, Im d; and Ker d; glve

rise to subgroups B

and Z. such that O CB.CB, CZ CZQCEp’q.

3 3 2 3 3 2

This process continues; in general we have O = B1<:B2c;...c,

- = wPsd
Bp“~zq+l<:2q"'C:22C:zl E2 . The gquotient group

ZQ+1/Bp is Eg,q, hence zero in our case, at least if
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(p,q) # (0,0). The boundary map d, give an isomorphism

bsQ o p+r,q-r+l
(2 1/2:)7 2 5 (BB )

Lemma 4. Under the isomorphism f: Eg’q - Eg’q Jwhich holds

for p £ P) Br corresponds to Er and Zr corresporids to 7&

for p + r < P.

Proof: Agaln by induction. For r = 1 our conventions
make it trivial. For r = 2 1t 1s also clear. The inductive
step is made by inspecting the following diagram in which
p < P.

d mono
p-r,qt+r-1 . _p-r,q+r-1 "r, -p,q P,4d /mPsa
(2, 1/Bp )" = E, —= B’ —> By’ 7/B.l]

it Lok

d mono Psq
= p-r,q+r-l, p-r,q+r-1_"ry +P,q =P, q
(Zp1/Bpg)™ 7 BT > Ep > By’ /B,

Returning to the main line of argument, we now consider the
p,q = =
group E2 where p + q P o> 1. By the lemma Bp ( ZQ+1)

p,q
i b3 . h f Z /2 is
s preserved by f and so is Zq Therefore ( q/ q+l)

mapped isomorphically by f. But

z /7 )% F (s )P0
(/24" =5 (B /o)

q+l

g+l

Therefore (B /Bq)p’*'l’O is mapped i1isomorphically by f

g+l

(for 1 < q < P). Now Eg+l’o has the composition series

0 =B,CByC.eaCB_ 1 =2 = ES*l’O. We have just shown that

1 2 ~Tp+l
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all the successive quotients are mapped 1somorphically by f,
therefore Eg+1’o is mapped isomorphically by f. This
completes the induction and proves the theorem.

We can now give the proof of theorem 3. The E2 term
of the spectral sequence of the filbering ¥ —> E = B 1is

Eg’q = Hp(B)(:)Hq(F) where 22 coefficients are understood and

® means tensor with respect to Z (By assumption HY(F) 1is

o
finltely generated.) 1In other words, the cup-product
Eg,0<:)Eg,q gives an isomorphism. We will now construct
another spectral sequence and apply the comparison theorem.
The condition on Eg,q 1s satisfied because E is a contractible
space.

We first construct Eﬁ’q(i) as follows. Let the
dimension of b, be t;. Let Eg’q(i) have a basis consisting

mt. ,0 mt,,t, -1
of elements E? € E2(1) 1 TEE? € E, 1 i(i). Define the

differential dr so that dr =0 for 2 < r < ti and

dr(TiB?) = BT+1 forr =t

-X-,*
r+l1
We set dr =0 for r > ti.

Then E (1) has a basis consisting of one element 1 = 5;).

We now define E by

—% %

B, =E  (1)@E (2)® -vee-

With the understanding that this is to be interpreted as the
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direct limit of the finite tensor products. We define d

by the usual formula.

* ¥ - ¥
)

Note that H(Ef H(E, LME...)

=HE ()@E (@)@ -

—% ¥ p—

= Ewil(l) & Er+l(2) & ...

4

it

_..-X-,*

Er+1

It

We willl now define a map © o E;’* -> E;’*. Because of our

assumption about the relation of the classes fi to the

classes bi , we have

Q

=
)
I

0] for r < ti

d fy = {bi] for r = t,

We therefore construct Qr’ by setting

m. 3 m

€ €E. m
=1+l =JxJ wWTF Ky K
er(xi b, T (DT, by @ .o DT D)
€ m, € m € m
i v L o J J k k
= f; [bi) fj {bJ} eee I [bk]

It is immediate that the maps Qr commute with the dr .

To apply the comparison theorem we need only check

that if ©,: Eg’o - Eg’o is an isomorphim for p < P

then 6,: Eg,q - Eg’q is an isomorphism for all g and

p < P. This is immediate from the follwoilng:
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cup-product

5° ® Rt —F—— 5
*o,|@ J,ee = 192
0 @ E'¢ - > £BQ
The comparison theorem then implies that 92: E;’O —_> E;’O =

H*(B;Zg) is an isomorphism. Therefore H*(B;Ze) is a
polynomlal algebra generated by the bi' This completes
the proof.

Remark: In the above theorem, the coefficlents need
not be 22, an analogous theorem is valld for coefficients in
any commutative ring with identity.

I now wish to turn to Milnor's work [6]. Milnor
remarks that the Steenrod algebra is in fact a Hopf algebra.
I recall that a Hopf algebra 1s a graded algebra which is
provided with a diagonal homomorphism (of algebras)
¥: A—> A(:)A. In our case the diagonal y 1is golng to be
defined by the Cartan-formula 5) so that W(Sqi) =

b qucg)qu. In general, for any element a € A, there is
JHk=1

a unique element % al(x)a) € AG®A such that
a(uev) = i aé(u)~a;(v). We define wy(a) = i a%(g)a;. I'd

better add a word about how this is proven. It is pretty
clear that there is such a formula when u and v have some

fixed dimensions--say p and q, because 1t 1s sufficient to
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examine the case where u and v are the fundamental classes in
K(Zg,p) X K(ZQ,q). After that, one has to see that the
formula is independent of the p and q. We omit the details.

We ought to check that ¢ 1s a homomorphism, but this
Just amounts to saying that the two ways of computing
(a*b)(u+v) are the same. We ought to check that y is
assoclative, but this Just amounts to saying that the two
ways of computing a(uvw) are the same. Similarly vy has a
co-unit. Thus A is a Hopf algebra.

With any Hopf algebra A over a field K, you can

associate the vector space dual:
Ar = Hom, (A, ,K
g = Homy (Ac,K).

Assuming that A 1s finitley generated in each dimension, the

structure maps
P v )
ARA—> A A—> A®A

(where ¢ denotes multiplication in the algebra A) transpose to
give
* *
? U4
A ® Y — 2" A — 2 @At
Hence A* i1s a Hopf algebra.
In our case, the Steenrod Algebra A has a commutative
dilagonal map but a non-commutative product. By passing to

the dual we get an algebra A* with a commutative product, but
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a non-commutative diagonal map. For many purposes this 1is a

conslderable advantage.

Theorem 5 (Milnor) The Hopf algebra A*, dual to the
Steenrod Algebra, 1s a polynomlal algebra on generators &1 of
dimension 21 -1 (i=1,2,...). Since the diagonal map
¢* is a homomorphism it is completely specified by giving 1ts

values on the generators: These are

o't = £ B+ 1D

Wty = @1+ G DE Y 1D,

* oK

¢ E; = j+i=i €J ® €, (where &O = 1)

advantage
One./. of this theorem 1s that 1t completely determines

the multiplicative structure of A without imposing any strain
on the memory.

Sketch of proof: We first define the elements ﬁi

which are linear functions from A to 22. Consider again the

space RP” and let x € Hl(RPw;Z be the generator of H'. I

o)

0 i
claim that for any a € A we have ax = X A x2 s Ay € 22.

1=0 *
If thls 1s true then xi € 22 is a function of a having values
in 22 and is clearly linear, so we can define &i(a) = xi.
The simplest proof that ax has thils form 1s as
follows. PFirst recall the definition of a primitive element

* oo o] o0 o0
H (RP ;Z2,). We have a product may p: RP x RP —> RP . And
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h is called primitive if u*h = h X1 + 1 &)h. Then we easily
check the following:
i) x 1is primitive
1ii) If h 1s primitive, ah is primitive.
i1i) The space of primitive elements is spanned by
2i
X i=0,1,2,... . Hence ax has the forin stated.

We now wish to show that the monomials

1,2 ."n *
El €5 eeofy (ri > 0) form a vector space basis for A . For
n (o8]
thils purpose we resurrect our old friends X = X RP , our
i=1

classes Xy corresponding to the generators in H1 of each

factor, and x = XqeeeX € Hn(X;ZZ). We have previously

n
considered the use of the Cartan formulae to compute a(x).

The elegant way of writing this result is
1 i
1 2

ax = 3 (éi €y «ueby Y(a) x Xo  eeeXg

1 2 n
We have previously remarked that the admissible monomials a

of a fixed degree (small with respect to n) take linearly
indpendent values on x. But this means that a is determined
by the values (ﬁi €y +--8 )J(a). Therefore the monomials

1 2 n

r r
ety

of these in each dimension they form a basis for a*.

K span A*. Since there are precisely the right number

It remains to establish the formula for the diagonal

map ¢*- This amounts to asking:
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i
1f (ab)x = 2 xixg , what is X, 1n terms of a and b?
But (ab)(x) = a(bx)

5 £ ()2 )
Halzk X

k

2 ).

l/\:

But a(x2 ) can be expanded by the universal rule for

expanding a(xlxz...x n)’ We obtain

2
K K+J oK oK+]J
= €. (b) (= 63 (a) x ) = 2 €. (b)ET (a) x . Therefore
k J K,J J
Qk
(ab) = = &k(b)éj (a) which is equivalent to what we

k+Jj=m

want.
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3) Stable Honotony Theory

There is a number of phenomena in homotony theory
which 2re indenendent of the precise dimensions considered,
provided that the dimensions are large enough. For example,
wn+1(Sn) = Z, for n >2 . B3uch phenomena, in general,
are called stable. Cne can also pcint to nore complicated
theorems (e.g. about spectral scquences) such that each clause
of the theorem is true for sufficiently large n, but there
is nc n which makes all the clauvses of the theorem true
at once. In nroving such a theorem, if wou don't take care,
you rapidly find yvourself carrying a large number of explicit
conditions n > N(p, q, r, «e.), which are not onlv tedious
but basically irrelevant. What we want is a standard con-
vention that we are only considering what happens for
sufficlently large n . One awnroach is to work in a suit-
ably constructed category, in which the objects are not
spaces but'"stable objects" of some sort. For example, the
S-theory of Spanier and Whitehead is such a category.

However S-theory is too restrictive in some ways.
I'11l give an example. For our purposes, it will be quite
essential that our category should contain stable Eilenberge
MacLane objects K(G,00), But there are no such objects
in S-theory. Again: 1in one of his papers on cobhordism,
Milnor wishes to consider the "stable Thom cormplexes" SO,

MSU corresponding to the groups SO and U + These are
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justifiable obhjects, but they don't exist inside S-theory.

I wvant to so ahead and construct a stable category.
Now I should warn you that tre vrooer definitlons here
are still a matter for mich pleasurable argumentation
among the exHerts. The debate is between two attitudes,
which I'1l personifv 2s the tortolse and the hare. The
hare is an idealist: his preferred position is one of
elegant and all embracing generality., He wants to build
a new heaven and a new earth and no half-measures. If he
had to construct the real numbers he'd begin by taking all
secuences of rationals, and only introduce that tiresome
condition about convergence when he was absolutely forced
to.

The tortoise, on the other hand, takes a much mnore
restrictive view. He says that his modest aim is to malwe
a cleaner statement of !mown theorems, and he'd like to put
a lot of restrictions on his stable objects so as to be
sure that his category has all the good properties he may
need. Of course, the tortoise tends to put on more restric-
tions than are necessary, hut the truth is that the restric-
tions give him confldence.

You can decide which side you're on by contemplating
the Snanier-Whitehead dual of an Eilenberg-MacLane object.
This is a "comnlex" with "cells" in all stable dimensions

from -o0c0 to -n . According to the hare, Eilenberg-
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llacLane ohjects are good, Spanier-'"hitehead duality is good,
therefore this is a good object: And if tle negative dimen-
sions worry vou, bhe leaves you to decide whether vou are a
tortoise or a chiclen., According to the tortoise, on the
other hand, the first theorem in stable homotopy theory is
the Hurewicz Isomorphism Theorem, and this object has no
dimenslon at all where that theorem is anplicable, and he
doesn't wind the hare introcducing this obiect as long as

he is allowed to exclude it. Take the nasty thing away!

Now let's see how these attitudes work out in prac-
tice... [The hare nroceeds by giving constructions which
pass from given categories to new, enlarged categories;
some remarks on this subject have been removed from these
notes.]

Now let's take a more middle-of'-the~road line., This
time we talk about various sorts of spectra. A spectrum
is a secuence of spaces {Xn}. Ve think of Xn+1 as having

higher dimension than X and wish to have some comparison

The easiest wey is to sunnose given

between Xn and Xn+1'
A ~r - hd his
maps between SAn and a1 or between h and ¢ Lpe1

(Here SX = suspension of X; QX = loon space of X).

This gives four cases.

1) f Skn —> X

n n+l

2) g X —> SX
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5) hn: Xn —> ) An_,_l

4) kn: 0 Xn+l — Xn

Maps of type 1) correspond l-1 to maps of type 3) so aprroaches
1) and 3) are equivalent and we get three sorts of snectra.

We may wish to deal with spectra which converge, in
some sense, The easiest definition is to say that fn is an
equivalence up to dimension n + v n where Vo tends to
infinity with n. This has analogues in the other sorts of
spectra; but if the maps are equivalences, their direction
is irnmaterial.

However, this definition has disadvantages. TIor exawple,
sunpose that we have a sequence of s»Hectra ) Gl {XE} . Try

to form the one-point union V X" = {V V?i}. Then we have

m mn
to deal with maps V fﬁ which are egquivalences un to dimen=

sion n + Min ('vg)m; but min ("ﬁ) need not tend to in-
finity withm N ;

Now, actually, we have to deal with such constructions,
The obvious escape i3 to specify how fast v, should tend to
infinity., This leads to my chosen definition which is pretty
far toward the tortoise end of the scale. It's modeled on
Je He Co Whitehead's idea of building up a comrlex by attach-

ing cells.,

I define a stable complex, X, to be a sequence of

xr

c-w-comnlexes X, wnich have the following propertles:
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i) Xn has one vertex and has other r-cells only
for n<r <2n - 2.

ii) The 2n - 3 skeleton (Xn)2n-5 is the reduced
suspension Xn_litsl .

[Here X#Y means the "smashed" product = X xY/I Y
where X v Y denotes the one point union of two spaces joined
at their base points.]

A map f: X —>7Y between two such stable objects is

& sequence of maps:

fn: Xn — Yh such that

12
£l X, FS =1 ;1.

We can compose maps in the obvious fashion.
A homotopy h: f ~- g between two such maps is a se-

quence of homotopies

)2n-2

hn: (I x'Xn —> Y keeping

base points fixed and commuting with #FSI in the obvious
fashion.
This 1s equivalent to defining homotopy in terms of

an object "I » X" defined as follows:

2n-2
x = vertex of Xn

_ (I x X
(I x Xn)n = ( n/I X XO o)

Whenever I want to apply notions from the general theory of

categories, the word morphism is to be interpreted as a homo-
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topy class of mapprings. But we allow ourselves to keep the
notion of maps so that we may speak of inclusion maps, etc.

Example of a stable object. The stable sphere of

dimension r.
Sn+r

We have Xn for n>r + 2

X
n

pt. otherwise.

We have to assume that r > O.

Warning. Since spheres of positive dimension only
are available in this category 1t is not always possible to
desuspend an object. This is a great blemish from the hare!s

point of view.

With this category I wish to do three things.

1) To justify it by showing that at least some pheno=-
mena of classical stable homotopy theory go over into this
category.

2) To make it familiar, by showing that some of the
familiar theorems for spaces go over into thils category.

3) To lay the foundations for the next lecture by

obtaining those properties of the category which I require.

We wish to show that this category does allow us to
consider some of the phenomena which are considered in classi-

cal stable homotopy theory.
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Theorem 1. If K,L are CW complexes with one
vertex and positive dimensicnal cells forn < r < 2n - 2
then there exist stable objects X, Y such that Xn is
one of the same homotopy type as K and X, = XP##SI for
r > n, and similarly for Y and L. Furthermore, if X, Y
have these properties, then Map(X, ¥) 1s in one-one
correspondence with Map (K, L).

This follows from the classical suspension theorens,

and I wish to say no more about it,.

[The notes for the remainder of this lecture have been
revised 1n order to reorganize the proofs.]

Both in stable and in unstable homotopy theory we may
take the maps f: X = Y , divide them into homotopy classes,
and so form a set Map (X,Y). This set we make into a group
(in favourable cases), and such groups figure in certain
exact sequences. It is here that a certain basic difference
between stable and unstable homotopy theory arises. 1In
unstable homotopy theory we take groups Map(X,Y), and first
we try to make exact sequences by varying X . What we need
is a pair (Xl,xe)-—that is, an inclusion map with the
homotopy extension property. Secondly, we try to make exact
sequences by varying Y . In this case we need a filbering,
that is, a projection map with the homotopy liftfing property.
In cohomology the pair gives an exact sequence; the

fibering gives a spectral sequence. In stable homotopy
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theory the distinction disappears: we have just one sort of
exact sequence of spaces. In order to construct such exact
sequences, suppose given a map f: X = Y Dbetween stable
complexes. Then we can construct a new stable complex

Y UpCX. (Here CX 1is intended to suggest "the cone on X ",
and Y U,CX 1is intended to suggest "Y with the cone CX
attached to Y by means of the map f.") The definition is

' 2n-2
(Y ufcx)n = (Yn qfnl =H=xn) .

(Here I = [0,1] , with basepoint 0 .)

As indicated above, this construction gives rise to
two exact sequences. We will prove this below, but we have
first to consider the special case in which Y 1is a
"point" p (that is, Y ~1s a point for all n ) and f
is the '"constant map" y . We write SX for the resulting
stable complex P k)yCX , and regard this as the 'suspension"

in our category. It is clear that a map f: Xl - X2

induces a map Sf: SXl - SX2 s and similarly for homotopiles.

Lemma 1. S: Map (X,Y) = Map (SX,SY) 1is a one-to-one

correspondence.

Remark 1. The hare would always arrange matters so
that this lemma would be a triviality. With the present
detalls, it seems to need proof.

Remark 2. Our proof will involve desuspension.

Suppose given a CW-pair K,L of dimension at most (2n-2) ,
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and a space Y which 1s (n-1)-connected; suppose given a
map f£: ST K-> sty , and a deformation h of
fISl4# L into a suspended map 13 g (for some g: L—> Y .)
Then we can extend the deformation h and the desuspension
g over K . 1In fact, the map f 1s equivalent to a
map E: K- Q(Slfﬁ'Y) ; we are given a deformation h of
zlL into amap g: L > YC Q(Sli#=Y) , and we are asked
to extend ﬁ,g over K ; this 1s trivially possible, since
vr(q(slrﬂzy),y) =0 for r < 2n .

Similar remarks apply, when we are glven a map
f: Slf#iK #st > sty 4#31 , and asked to deform it into
a suspension 13 g 1 , or to extend a deformation already
given on Sl:#:L #Fsl . One has only to replace Q(Sl=ﬁ Y)
by af(s'# v #sh).

Remark 3. The effect of the definition of SX 1s that
(sx), = (8T #Hx )2 = gl 205 o gl x| 45t .

Remark 4. We shall deduce lemma 1 from the followlng

lemma.

Lemma 2. Suppose given a pair K,L of stable complexes, a
map f: SK —> SY (consisting of f: (SK)n = (8Y),)

amap g: L > Y (consisting of g L > Y and

n-1° “n-1 n-1 )

a sequence h = {hn} of homotopiles

, . 1 1, .1 1 ol 1
hy_q: 1#e 1 ~ £ [STHL $ks™: s HL Hs >s Hy _ H#s
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such that the hn commute with ##Sl . Then the maps g
and h can be extended from L to K so as to preserve
these properties.

Proof. We proceed by induction over n . Suppose that
the maps gr and hr have been extended over K for

Ywg st - sty st

r<n-1. Wearegiven f ,: 3
and we wish to construct a certain deformation of it into a
map 1 3 g, ¥ 1 . By the data, we are given the deformatlon
over Ln . We are also given the deformation over
Kn_li# stc K. (by applying #s1 to ho 4 .) We thus
obtain a deformation compatlibly defined over Ln L)(Kn_l T#Sl).
By remark 2, the deformation can be extended over Kn .
This completes the induction.

We now turn to the proof of lemma 1. We first prove
that S: Map (X,Y) —> Map (SX,SY) is an epimorphism.
Suppose given a map f: SX — SY ; we apply lemma 2, taking
K tobe X, L tobea "point", g and h trivial. The
lemma provides a map g: X —> Y such that Sg ~ [ .

Secondly, 1t is necessary to prove that

S: Map (X,Y) — Map (SX,SY)

is monomorphic. Suppose given two maps fl’fz: X = Y s8such

that Sfl ~ Sf, ; we will apply lemma 2 again. We take K ¢to

2
be the stable complex "I x X" , and L to be its two end;
we define g: L — Y using fl and f2 , and we define

f: SK = 8Y by using the homotopy Sf1 ~ Sf2 . The
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homotopies hn can be taken stationary on L . Lemma 2
provides an extension of g over "I x X" , that is, a
homotopy fl ~ f2 in our category. This completes the
proof of lemma 1.

For r > 2 the sets
Map (S7X,S"Y)

form abelian groups, and the product is independent of which
"suspension coordinate" in SY¥X is used to define the
product. (In fact, the arguments which one usually uses
for spaces apply, because the constructions involve
suspension coordinates "on the left," and commute with the
operation ﬂ#Sl "on the right" used in defining our category.
It 1is 1l1luminating to recall that in a category where
direct sums and direct products always exlist and coincide,
the "sum of two morphisms" can be defined purely in terms of
composition. (Given two morphisms f,g: X = Y , one
considers

fxg 1vl
X—> ¥xY¥—=Y ¥Y—> Y .)

In our category direct sums and direct products do exist and
coincide; given two stable complexes X and Y , one can

define Xwv Y by

(xVth=xann.
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This is a stable complex which fulfils the axioms both for a
direct sum X v Y and a direct product X x Y (at least,
as soon as it is equipped with the obvious structure maps.)

The proof that X v Y 1s a dilrect product may be
perfermed by imbedding Xn\J Yn in X, x Yn . The desired
constructions can easily be performed in Xn X Yn , and then
deformed into X, Vv Y , since Wr(Xn x Y.,X, v’Yn) =0 for
r <2n . Detalls are omitted.

To sum up, we have made our category into an abelian
category, and we are entitled to use the following definition.

Definition:

n+r.

T (X,Y) = Map (s"77%,s"y)

for any n such that n> 0, n+r > 0 . (It is not

assumed that r > 0 .)

We will now proceed to obtain the two exact sequences
mentioned above. We recall that given any map f: X = Y we
constructed a stable complex Y L)fCX 5 we now write
M=Y k)fCX ; we have obvious maps

J q
Y—> M— SX .

Theorem 2. The.seguences

¥*

¥* *
f ;
1) em (5,0) 1w (5,0) b7 (mu) 7 (X,0) ..
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s Iy Qy
ii) ...vr(V,X) —> 'rrI,(V,Y) — Trr(V,M) —_— vI,_l(V,X) e

are exact.
To prove this, we follow Puppe's method.

Lemma 3. The sequence

* *

f
Map (X,U) <—- Map (Y,U) <— Map (M,U)
is exact.
Tne proof is trivial.

Lemma 4. The sequence

3 3
(2) xis v (veo) BN (vrpox) Y 25 ...

is equivalent (up to signs) to the sequence

) xifs vds mELs sx 35 gy 84y aw—s ...

(In sequence (a) each term is constructed from the previous

two terms as ¥ U.CX is constructed from X £—> Y .)

It is clear that lemmas 3 &and 4 suffice to prove the
exactness of the sequence (1) in theorem 2: moreover,
lemma 4 has a similar application to sequence (ii) in
theorem 2.

The proof of lemma 4 1is unaltered from the usual case.

It is sufficient to consider the first four maps in the
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sequence. The required constructions can be performed
"on the left" and commute with the operation :#Sl used

in defining our category.

Lemma . The sequence

e————

(sr)

*

q
Map (SW,M) —> Map (SW,SX) > Map (SW,SY)

is exact.

This lemma show that 1f we map SW 1nto the sequence
(a) of lemma 4, we have exactness at the fourth term
(Y UfCX)lJJCY . Since all subsequent terms are also

i

"fourth terms," we have exactness at all subsequent terms
also. This still assumes that the "test-space" SW is
suspended at least once; but even so, it proves part (ii) of
theorem 2.

Proof of lemma 5. Suppose given a map A € Map (SW,SX)

such that (Sf),A» =0 . By lemma 1, we can take a repre-
sentative map for A which is of the form Sg, where

g: W—> X 1is a map such that fg ~ O ; that is,

WwE> x Ly v can be factored through W —=> oW > v ,

where CW 1is the "cone on W' and h is a "homotopy." We
can now construct a map m: SW —> M = Y{JfCX such that
gn ~ Sg . In fact, we decompose SW into two "cones"

C,W = "[0,5]#W" and C_W . On C,W we define m by
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taking Cg: c+w —> CX ; on C W we define m to be h .
This completes the proof.

In this category we have homology and cohomology
theorles defined in the obvious way. We have

i
l)....f...}}{

~>0oo;

c
v Hm+n(xn) — Hm+n+1(Xn 3 m+n+l(Xn+l)

these groups all become equal after a while, and we define
the 1imit to be Hm(X) , where X = [Xn} . Similarly for
the homology maps induced by morphisms. We can define the
boundary maps for a pair because our version of suspension
has been chosen to commute with o . Similar remarks apply
to cohomology.

We now turn to the question of Eilenberg-MacLane

obJects in this category.

Th . that F = F
eorem 3 Suppose tgb t

graded module over the Steenrod algebra A with finitely

is a free

many generators in each dimension. Then there exists stable
complex K such that:

(1) H*(K;Z2) & F as an A-module, and

(11) 7 (X,K) = Hom} (F,H (X;2,))

for each stable complex X .

(The symbol HomX denotes the set of A-maps that
lower the degree by r . It 1s understood that the

isomorphism in (ii) 1is induced by assigning to the map
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f: S“*rx —_— SnK the assoclated cohomology homomorphism,
composed with appropriate suspension isomorphism.)

Proof. We can construct a stable Ellenberg-MacLane
complex of type (Zg,n) by following J. H. C. Whitehead's
procedure, attaching "stable cells" to kill "stable groups".

By forming the one point union K =V Ki of such objects,
i

we can arrange 1t that H*(K;Zz) is the required free
A-module. The clause about Wr(X,K) is just the
re-expression in a new guise of lemma 1 of the last lecture--
or of the corresponding assertion for maps into a Cartesian

proudct of Ellenberg-MacLane spaces.
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4) Anplications of Homological Algebra to Stable Homotopw

Theory

I ought to begin by running through the basic notions
of homological algebra in the case where we have graded
modules over a graded algebra A , Tet M be such a module,

= 3 © il 3
iee M . Moo AL Mo M. Mo is finitely

generated. A resolution of M 1is a chain complex

d
Co e Cl <= 02 < gee < CS<—-

in which 1) each Cs is a free graded module over A
ii) each d 1s an A-map preserving gradation

M if 8 =0
4

111) H_(C) = <
{0 if s>0

This amounts to the same thing as requiring a map €: C0 -> M
so that

0 =M <S¢ <0 L <=0 < ees
o) 1 s

is exact at every stage. Such chain complexes always exist
and they are unique up to chain equivalencec.

Remark: For the case in which we are interested
A = mod 2 Steenrod algebra. Also, in this case, there 1s no
distinction between "free A modules" and "projective A

modules™.
It N be another such module: Then define

Hom | (G , N) = those (graded) A-maps f: C, —> N
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which lower degree by t, i.e. f(CS)u C'Nu_t . We have,

as usual, maps induvced by d,

N 3 a* t
Hom (CO, N) 2> Hom K (Cl’ N) ==—> 4o => Hom , (Cs’ N) =5,

t

We define Ext 5’°(M, ¥) = Ker a'/Im d° in Hom , (C_, N).

S’
The notation is justified since any two resolutions of M

are ehaln equivalent, and thereforo the groups Exti’t(M, N)
depend only on the objects displayed.

Vext we go back to stable homotopy theorye. Weo will
write H'(X) for H* (X, ZB) to abbreviate notation. We
recall that any map f: X => Y 1induces an A-map f%: H*(Y) ->
B (X)e So wo get a function: Map (X, ¥Y) —> HomX(H#(Y),H%(X)).
This function is moreover a homomorphism. It is in general
neither a monomornhism nor an epimorphisme. In order to com-
pute Map (X, ¥) by homological methods we necd further
terms, A general formulation is the following.

Theorem 1., Under suitable conditions on X, Y there
exlsts a spectral secquence whose Eg’t term 1s
Extift(H*(Y), H* (X)) and which converges to 2TTT(X, Y).

The details are as follows:

i) If G is en abelian group, then ,G means the
quotient of G by the subgroup of elements of odd order.

It is clcar that eclements of odd order play no part in our

gstudies which are confined to the prime 2.

s,t
00

2TTr(X, Y) are those for which t - s

ii) The elements in E which give a composition

gseries for re That
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is, the "tctal degree" in the spoctral sequence is t-g.
The filtration of 2Trr(X, Y) is a decreasing one, so, for

example,

< O,
2y Xy YI/Fy & By

1,r+l
F/Fy = B etce

iii) The differential d, raises 8 by r and decreases

t-s by 1.

J

It is perhaps desirable to give an example of this
spectral sequences ILet us take X =Y = s®, The Eg% term
is then Bxt$2%(z,, 2,) (which is rechristened H°2%(a)
for brevity). I recall that Hl’*(A) can be identified
with the space of primitive elements in A*. The primitive
element gii thus gives us a generator h,. In H(4)
we can define cup products and this allows us to write down

part of a basis for g+ %),

4 3

4
hJ h h,

3 5. 2 2
3 h0 h.l-hohz hohs

2 2 2 \
2| B By | hyhy By | b
- ho hl h2 hs

S

oy 1

0 1 2 3 4 5 6 /4

tes —————

blanks are to be interpreted as O groups for s <
tes < 7
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The differentials in this part of the table are all zero,

vielding a result in good agreement with the known values

of 21'rr(5", s%):

r = 1 2 3 4 5 6 7

0
g Iy %25 Zg 2 %16

Returning to the theorem, we must state sultable con-
ditions on X &and Y. We may distinguish two halves to our
work:

a) Setting up the spectral sequence. This 1s more
or less formal. I shall assume that H*(Y) is finitely
generated in each dimension because I'11 have to assume it
later anyway. It 1s possible, however, that we might be able
to eliminate this restriction for this part of the work.

b) Proving the convergence of the spectral sequencec.

Existing proofs require the following conditions.

(I) X, the object mapped, must be finitely dimensional,
say Xr+1 = SXr for » >N, some N,

(TI) H(Y) rust be finitely generated in each dimension,
as assumed abovee.

It is, perhaps, an interesting exerclse for the experts
to try to reformulate the theorem so as to relax these con-
ditions. Two changes are fairly obvious. You can replace
ExtSPE* (), BY0) vy  Bxt}rC(H,(X), Hx(Y)) which
T belisve behawes better with respect to 1limits; and you

can redecfine .G by replacing "subgroup of elements of odd

2
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order" by "subgrovp of elements divisible by arbitrarily
high powers of 2," These changes however do not suffice to
overcome certain obvious counterexamples. (For example,
suppose Y has only one integral homology group which 1s
the group of rationals mod 1l.) I have no idea what bhapnens
if you replace the coefficient field Zg(or zp) by the
integers or the reals mod 1. (The case Zp is analogous
to the case Zy.)

Just for variety, however, I want to givea simple
and expliclt proof of convergence, which works under conditions
even more restrictive than I have already stated. That is,
I shall assume:

(III) H (Y) 1s a free module over the exterior algebra
E generated by Sql. This 1s equivalent to supposing that
H%(Y; Z) has no elements of oo order, and all its elements
of ordecr 2f are actually of order 2.

This evidently excludes the case X =Y = SO, so I
rnust give one or two examples to show that it does not ex-
clude all cases of interest,

Exe le Y 1is the stable object corresponding to
P\Pgt/‘RPgu o« This example is relevant to the vector field

problem,

Exe 2o Set up an exact sequence

s L~ x(z, 0) —> 1 = K(Z, O) TR

0

so that 0 (s%, %) = T (s°, m) r >0

+1
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2= 3%
end Eth’t(Zzg 22) x| EXtA 1’t (H (M) s Zg)
for t « 8 >0 and s > O,

Condition III is satisfied bv M,

Setting up the spectral sequence

Suprnose given an object Y and a sequence of order 2,

3 € a
Y <
H'(Y) < CO < C1

oo g g CS < s where

the Cs's are free modules over A, I don!t yet need to
suppose that it is a resolution.

By a realigzation of thls sequence, I mean

1) a seguence of Eilenberg-MacLane objects Ks such

%

“ =
that H (K ) ® C

2) a sequence of objects M, svch that M_l =Y

3) meps £t Ms-l —> K such that Ms = K UfsCMs-l
fs+1

> Ks+1 induces the map d: Cs+l——> CS,

3*
while f : M, —>X_ induces the map €: C  —> H (¥),

Jg
and K > M
S S

In general, I don't agsert that a sequence of order 2
has a realization: but if the sequence is a resolution, then
it does. Vigz,

We can choose an Eilenberg-MacLane object KO such

T.x. = . —
that H (KO) C, and amap f_ : ¥ —>K_  inducing

€: C, —> H*(Y). This follows from the last theorem of
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last lecture. We form the "quotient" Mo =K U, CY,

We look at the exact sequence

<— B (V) < BP(K) <—gpr HU(M) <——
£, Po

(YA

o

Since f; coincides with € which is onto, ps is a

monomorphism and H”(MO) coincides with Z, = Ker € .

Since C1 §;> C0 §L> H'(Y) —> 0 1is exact we have a map

d: C;—> Ker € = H*(MO). We can find X;, an Eilenberg-

MacLane object such that H (K C, and amap f,: M —K

1) =€ 1* M 1

such that fl = d« As &bove, if we form Mi = K1 ufcho s

H*(Ml) = 2, = Ker dlcl o We continue, by induction,

forming a sequence of spaces MS and meps fS: Ms-l —> K

s
so that Ms = KS U C Ms-l and

fS

i p
M 1 S s K 2. M realizes
Se s 8

d
0 <——-Zs_1 <> CC

~

< ZS < 0 .

Given a realization, we can apply the functor 'ﬂ%(X;o)

we obtain exact sequences

f LYl p A2, q 1)
S . gt s 2
_>nﬂ%(x, Ms— ) s “E(X’ Ks) > ‘ﬂf(x, MS)___> ﬂ%-l(les-f

1

This gives an exact triangle:



q.u
S M (X, M) s S W (X, M)
s,.t t ? S S"t t ) S"l
P, L.
Z‘TTt(X’ Ks)
s,%

(In order to avoid trouble it is convenient to get our se-
quences exact for all s, even s < O, This is dono by

making a convention that

q Y3
g3 e
> Tt-—lu" M

~

T!’t(X, Ks) =0 for < 0, 'ﬂt(X; Ms) s-l)

for s < 0.)

Next I remark that this construction 1s natural,
Suppose I have a map m: ¥ —> ¥ dinducing m : H (¥) <— H (T)
and that I have two sequences of order two connected by a

ladder of mans, as follows:

m
H'(Y) <«—— Co<———Cl<-———02 G e e
H' (YY) <— Co < Cl < Cy < oo

(Such a ladder will alwavs exist if {CS} is a resolution,)
We will define the notion of a realization of such a ladder.

This consists of a sequence of maps Bg' Ks —_ K-s and a
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sequence of maps m MS —_— ﬁs with the following properties.

5 Ag (for each s.)

=
OQ\
i

2) mq=mY—>Y,

3) For each s, the following diagram is homotopy

commutative,.
f J q
S - s S
am1 —> hs — Ms ——> SMS“_1
m g m ‘Sm
Sel s 8 ! Seel
7 3 s v
— - J - a -—
T 2> F 2 M L5 sH
s=1 S s Sl

If we have such a realization of a ladder, then we
shall obtain induced maps of all our exact sequences, and
hence 2 map of sp ctral sequences. On El the map 1s in-
duced by the maps 'As « If we assume that we started with
two resolutions, then the induced map on E2 is given by
the induced map of Ext. In particular, if we take Y = ?,
we see that our spectral sequence is defined up to a canonical

isomorphism.

Lerma 1. If {CS} is a resolution, then such a ladder can
be realized,

The proof is by induction over s. Suppose given
me_q? Ms-l —_— MS-_1 ¢ Since Ks is an Eilenberg=MacLane

object we can construct gs: KS — KS such that xg =gy e
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We now wish to show that g f = fs m,_q (up to homotopy).

Since Ks is an Eilenberg-MacLane object, it is sufficient

to show that the induced cohomology maps are equal, Since

* 3 ]
{cgl 1s a resolution, f_ ,: H (M _4) —> B (K ;) is a

monomorrhism and it thus suffices to show that

3 # % _ .a a =
js-l fs € js--l ms-lfs ¢

that dks = A

This follows from the assumption

g1 4 (using the inductive hypothesis),

Given that g f = fsn%-l (up to homotopy), the

whole of the diagram required by condition 3 follows by an

obvious geometric argument.

I now wlsh to consider the convergence of this

gpectral sequence. By recalling the thsory of exact covples,

one writes down a portion of the rth derived couple.

( q: = r-fold 1teration of the map q..)

Im qr

* :'ﬂ%+r(X, Ms+r) —_°”Ft(x’ Ms)

1\ J (deflned by J, into the second group)

s,t. R X
Eni1? @ sub quotient of T (X, K )

’i F (defined by f, from the first group)

r

Im gy @ T (X, M) —> 7 (X, M

s-r—l)

T Q (defined by aq,)

r r
. X — T
Im Q. Tepy Ko M) —> (X, M)
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If r 1s large compared with s, then the range
and domain of Q can be identified with subgroups of
T%_S(X, M) = 'U;_S(X, Y); the subgroups give the filtration
defined by the images of TTf(x, M,).

For convergence, then,it remains only to prove the

following lerma.

~ r‘ v Lad
Temma. 2. I; Im q : 'u%+r(X, M) > 'U&(X, MS)

s+r

conslists of elements of odd order.

Since the spectral sequence is an invariant, it is sufficient
to do this for a favorably chosen resolution. At this point
I recall the hypothesis that H'(Y) 1s free over the ex-
terior 2lgebra E generated by Sql. We prove below that
this allows us to find a resolution such that Zs,t =0

for t < 2s + 2. Hence Ht(Ms; Z2) =0 for t < 2s + 2,

and (by Serre's mod C theorems)
7Tt(S°, MS) is an odd torsion group for t < 2s + 2

Hence TTt(ng s NS) is an odd torsion group for t < 2s + 2

where VS? is a one point union of copies of s, I X
is finite dimensional, we deduce by exact sequence arguments
that

TTt(X, MS) is an odd torsion group for t < 2s + 2 - ¢,
where c¢ 1is a constant depcnding on X. Therefore

1Tt+r(X, Ms+r) is an odd torsion group for

t+r <28 +2r+2 ~-c¢; for agiven s and t , this is
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true for sufficlently large r.
Lemma 3. Existence of a mice" resolution.,

Remork 1« M is free over E 1f and only if the
homology of the module M with respect to Sq1 as boundary
operator 1is O.

Remark 2. In an exact seguence

t 1y
O=>M —-—>M=—>M —>0,

if two of the terms are free over E, then the third is
also,
Proof: Remark 1 and the exact homology sequence.
Remark 3. If M 1is free over E and
0 <— M <§— CO < gas < CS <= ..o 1s a resolution,
then each ZS is free over E.
Proof': Follows by induction on s, applying
remark 2 to the sequence O <h—Zs_l <L Cs S ZS < 0

and the fact that C, 1s free over A which qua left

modile over E is itself a free E module.

Remark 4. We can choose CS inductively so that

Zs,t =0 for t < 28 + 2,

Proof: Suppose Co’ ceny Cs~1 chosen such that
ZS 1.6 = 0 for t < 2s. Choose E-free generators
=<

m
dys sees Ay in Zs-l,zs . Take corresponding A-free gener-

1

3 1
ators hl’ v hn in Cs,zs . Since Sqg Qys oo Sq a,
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are linearly inderendent, we have Introduced nc cveles in
C « Introduce no more A-free generators in
s,28 +1

C. 5 than are needed to map ont¢ the remalning E free
8,28 +1
generators in Zs-l,zs +1° We therefore have Zs,t =0
for t < 2s + 2 whatever is done in higher dirensions.

I want next to consider products in the spectral
sequence., In the E2 term of the special case X =Y = SO
we have the cup products of homological algebra for

8,t

Es

= Hs’t(A) = Extz’t(zz,ze) . We also have products
in 2Wr(SO,SO) ; the product structure is given geometri-

cally by the composition of maps. It i1s a theorem that one
can introduce products into the whole of the spectral
sequence, compatible with these two products in E2 and

E, » and so that dr is a derivation, of course. This
result 1s already in my paper in the Commentarii Mathematici
Helveticl [7]. However, the result should be somewhat more
general. Consider three stable complexes X, Y, Z2, so that

we have three spectral sequences
Ext® ¥ (8" (2), 0" (¥)) => ,7,(¥,2)
]
Ext® O (0" (¥), B (X)) = m, (%,¥)
S

mxt> T (u*(2), 5% (x)) :§:> T (X,2)
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One would hope that there would be a pairing which pairs
the first two svwectral sequences to the third, and which is

compatible with the compositlon producte.

and the cup=-product in homological algebra, I have never
written out any details for thils generalized case, but I
believe that Puppe, in Chicago, 1is preparing a paper which
will include this.

My next topic is cohomology operations of the nth
kinde I will be rather brief because it is not yet certain
how far 1t 1s necessary to develop the theory. For example,
for some purposes, vou can take the spectral sequence that
I have already developed, and use the differentials dn.

as a substitute for cohomology operations cf the nth
kind. It is probably more satisfying to be somewhat more
general, We have universal examples for primary operations,
namely Eilenberg-MacLane objects. It is natural to see

what we can construct using as our unlversal examples n-

fold extensions of Eilenberg-MacLane objects. The correspond-
ing notion in the category of spaces would be an iterated
fibering., We would begin by taking a map fl: K0 -—¢-K1

of Ellenberg-MaclLane spaces, and then construct the induced

fiberinges In the stable category we take a map flﬁ K0 _— Kl

and construct



¥ 1o o ook vook Rk ——s
"0 Ml 1 f o} o) e

Now we take K2 and construct

T q
m 2. K, fe . M, - sM,

T P
n n n
M —> K —> M ——>SM

n=1
If we look at this, we see that it is the same sort of thing
we previously called a "realization," because we kept a
little sparoc generality in hand for this purpose. (Strictly,
to fix up the details, I have to define MO to be Ko so
that M, is a "soint"; I also have Ks to be a "point"
for s >n.) We can look at the spectral sequence of this

realization. The first term is

Hom y (C,, E*(X))

% e

es o

v|
Hom X (cn, H™ (X)) where I have

written C_ for H%(KS). Now suppose that C is an A-face

module on generators c, (L =1, vee, m): Then an A map
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f: C

> 4" (X) 1s determined by giving the elements

f(ci) ¢ H' (X), With this interpretation, each homomorphism
d% may be interpreted as a primary operation, from m
variables to m' varlables. Consequently each d2 may be
regerded as a function frcem the kernel of one primary opera-
tion to the cokernel of another primery operation., I am go-
ing to offer you the differential dn as defining an opera=-
tion of the nth kind, and I ought to verify that this agrees

with onet'!s notion of the usual procedure with universal

exampless Our procedure is given by the following diagram:

(q, )1 =
'ﬂ;+n_l(X, Mn-l) 3% > | subgroup of TTf(X, Mo)
\
\» Fo=1, ///;” J = identity
7T;+n_1(X, Kn) E;’t (subgroup of TTt(X, Ko)

That is, you realize a cohomology m-tuple by a map from

StX into KO: you 1ift this, if you can, to a map, p , into
the universal example, M _,: you now regard f%:Cn->H#(Mn_1)
as giving you a m'-tuple in H*(Mn_l) and you take the image
of this m'-tuple by u* in H*(X). This is precisely one's
ordinary notion of the procedure for defining an operation

by means of a universal example. One comment is called for;

I have supposed given the realization consisting of the

Msls and the Ks's. This supposition involves an irreducible

element of geometry; for n > 3, not every chain complex
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d

C > Cn—l —> Cl —

n 0

can be realized by Ks's and Ms's. C.R.F. Maunder has
developed the theory in this direction., He has defined
exiomatically the notion that an operation, & , 1is associw
ated with a chain comnlex Cn—> coes —> CO. He proves, for
example, that if & 1s associated with Cr—> coe —> C1 -> C

o

and ¥ is assoclated with Cé —> a0 => Ci - Cé s and if

C, = C; , then 8 % 1is associated with

C C
>7 (o] S
C - sew _..>C ___....._....._.\C’ !

T 1 g-1 "7 e 77 Co ¢

Similarly, he shows that the Speniler-Whitehead dual, c¢ @ ,
of @& 1s associated with a chain complex cCo-> cCl—b...->qu
constructed from Cr > cee —> CO by a well defined algebraic

process.
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Appen@ix to Lecture 4

The following table gives a 2. basis for H°’(

5 A) in

the range of (s,t) indicated. The following differentials

are known:
dyh, = hohg
dg(hgh,) = hog
ds(hgh4) = hgg

dg(hyh,) = hog

dS(hOh2h4) = hohzg

hZh.h

2
3( o2 4)

d hohzg‘

it

The notation Px implies that this element corresponds under

a perlodicity isomporphism to the element x.
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5) Theoroms of periodicity and approximation in homological

algebra.

Let us begin by contrasting the spectral sequence I
have developed with the classical method of killing homotopy
groups, as anplied to the calculation of stable homotopy groups.
Both depend on a knowledge of the stable Eilenberg-MacLanc
groups H™2(1r, n; G) (n > q) for some T and G . Neither
of them is an algorithm. By an algorithm I would mean a
procedure that comes provided with a guarantee that you can
always compute any required group by doing a finite amount of
work following the instructions blindly. In the case of the
method of killing homotopy groups, you have no idea how far
you can get before you run up against some ambiguity and don't
know how to settle it. In the case of the spectral sequence,
the situation is clearer: the groups Extz’t(H%(Y), g (X))
are recursively computable up to any given dimension; what
1s left to one's intelligence 1s finding the differentials
in the spectral sequence, and the group extensions at the
end of it,

This account would be nerfectly satisfying to a
mathematical logician: an algorithm is given for computing
Extz’t(H*(Y), H*(X)); none is given for computing dr.

The practical mathematician, however, 1s forced to admit
that the intelligence of mathematicians is an asset at least
28 reliable as thelr willingness to do large amounts of tedious

mechanical work. The history of the subject shows, in fact,
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that whenever a chance has arisen to show that a differcntial
dr 1is non-gzero, the experts have fallen on it with shouts

of joy - "Here is an intercsting phenomenon! Here is a

chance to do some nice, clean researchl!" - and they have solved
the problem in short order. On the other hand, the calcu-
lation of Extz’t groups 1s necessary not only for this
spectral scquence, but also for the study of cohomology

th kind: each such grcup can be calculated

operations of the n
by a large amount of tedious mechanical work: but the process
finds few people willing to take it on.

In this situation, what we want 13 theorems which tell
us the vealue of the Eth’t groups. Now it is a fact that
the Extz’t groups enjoy a certain limited amount of periodi-
city, and I would like to approach this topic in historical
order,

First recall that last time I wrote down a basis for

ExtSs b (Z,, Z,) for small s and t:

A
4| nt hn,
5| nd n%n,, hZh,

T 2| n? h¥ | nh, hZ | hh,

s 1 hO h1 h2 h':,>
ol 1

o 11 T3 3 s | 5 1 6 7

t = 8 —>
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It was implied that Extz’t(zg, Z,) = 0 for larger values

2
of 8 in the range 0 < t - s < 7. This is actually a

theorem, which is proved in [ 7 1.

Theorem 1. There is a numerical function, f(s),
such thet:

(1) Extz’t(zg, 22) =0 for s <t < f(s)

(11) f£(s) > 2s
(111) £(s + s") > £(s) + £(s?)
(iv) f£(0) =0, £(1) =2, £(2) = 4, £(3) =6, £(4) =11

The published proof of this theorem is by induction, and

the induction involves Extz’t (M, 22) for A-mcdules M

other than 2 We consider the exterior algebra E gener-

2 L]
ated by Sql, so that we have an injection

i:E——""“>AQ
This induces

1% ExsSe b0, 2,) —> ExtS? (i, 2,)

(For example, if M = Z,, then Ext E’t(zz, Zz) is a poly-
nomlal algebra with hO as its generator. In general, if
M 1is a module over E, then Sqlz M e—> M 1is a boundary

HSS(M) for s > O,

R

operator on M and Extg’t(M, Zg)
where H° denotes the homology with respect to Sql).

What one proves, then is the following.
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Thoorem 2, Suppose Mt =0 for t <m; with the

same function f(s) as in theorem 1, the map

A2,
v

1*: (Ext3 T (M, 2,)) —> Ext3r T 2,)

o)
is an isomorphism for t <m + f£(s).

In the same paper, I also conjecture that for
s = 2%(n > 2) the best possible value of f(s) is
£(2™) =3.2% . 1, Tris conjecture is actually true. As
a matter of fact, some correspondence with Liulevicius in-
volved me in extended calculations which strongly suggested

that the best possible function f(s) is given by

£(4n) = 12n - 1 (for n > 0)
f(4n + 1) = 12n + 2
f4n + 2)

I

12n + 4

i

f(4n + 3) 12n + 6,

This 1is actually true, so that the function f£(s) which gives
the "edge" of the E, diagram 1is periodic with period 4 in
s and with period 12 in t. The period in t-s 1is
therefore 8, and this strongly reminds us of Bott's re-
sults,

As a matter of fact more is true, .Not only is the
"edge" of the E2 diagram periodic, but the groups ncar
the edge are periodic: 1.e. in a neighborhood NO of the
line t = 33, we have Hs’t(A) s gst4, t""']‘E(A).

More still is true. In a bigger neighborhood, Nk’
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of the line t = 3s, the groups HZ?Y(A) are periodic with

k k

reriod 4 s 2 in s, 12 « 2 in t. The union of these

neighborhoocs, I, Is the area t < g(s) where
4s < gls) < 6s. (Possibly g(s) = 2f(s), but I cannot
give the cxact value until I have refined my methods a
little.)

Again, these periodicity theoroms should not be

restricted to the casc of Iixtzft(zz, Z We should deal

o).
with Ext$’® (M, 2,). Vo doal with tho case in which M
is free over E, the exterior algecbra generated by Sqlz
Theorem 2 showsthat this is indispensable in the general case.
Although this conditlon is not satisfied by thc module Zg,
periodicity rcsults for E}ctz’t(zg, 22) can be decduced

from the followling formula,

, s,t ~ s,t s=1,%t 1
Ext,’ (2., Z ==ExtE’(22,22)+-ExtA "(IM)ﬂXSq,ZQ.

2° 2)
Here I(A)/A Sq1 is a free left module over E.

Well, nowy let us sce some details. In what foIlows,r
Ar will denote the algebra generated by Sql, Sq2, ssey ng
when r is finite; Aoo will denote A . DNote that
AO =% . For our first results, we assure that L 1is a
left module over Ar’ that L 1is free qua left module over

AO s and that L_ = 0 for t< £ .

t

Theorem 3. (Vanishing). Toﬁirt(zz, L) and
3

s,t

A
r

Ext (L, 22) are zero if t < £ + T(s) where T 1is the



numerical function defined by

T(4k) = 12k

T(4k + 1) = 12k + 2
T(4k + 2) = 12k + 4
T(4k + 3) = 12k + 7

Theorem 4. (Approximation). The maps

Ap Ar

i,: Tor s,t(zz’ L) —> Tors,t(ZZ’ L)

and 1% Ext:z}f(L, 2,) <— Ext52°(L, 2,)  are isomorphisms

if 0< p <r, s>1 and t < ¢ + T(s-1) + 2 p+1.

I will not give complete proofs, but I will try to
give scme of the ideas.

a) It is not too laborious to compute TorB and
ExtB where B 1s a small subalgebra of A, TFor example,
suppose we consider the case of Theorem 3 in which r =1

(so B = A; , a finite algebra generated by Sq1 and

qu)

and let L = AO. Then we can make an explicit resolu-
tion of Ao over A1 , &and we can see that theorem 3 1is
true.

b) If theorem 3 1s true in the special case r =R
(some fixed value) and L = A, then it is true for r =R
whatever L 1is.

In fact, if we are given theorem 3 for the Ar module

Ao’ then by exact sequences we can obtain theorem 3 for
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any Ar-madule AO, then by exact sequernces we can cbtain
theorem 3 for any Ar~module which can be written as a
finite extension of modules isomorphic to AO. This is
sufficient.

At this stage we have obtained thecrem 3 for the
case r = 1,

6) Theorem 4 tends to suppert theorem 3. In fact, if
we know that

A A
A -1 ) r :
i,z Tors’t(zz, L) =——> Tors’t(Zz,L) is an isomorphism,

A A
1 — r =
and that Tors,t(ZZ, L) = 0, then Tors’t(Zz, L) =0 .

d) Theorem 3 tends to support theorem 4., In fact,
we consider the map An@hpL —~—> L and define K to be 1ts

kernel, so that

0 —> K ——> Amﬁhx L =—> I =—> 0

1s an exact sequence. Then we have the following dilagram

A
r r r r
Tors,t(ZE’K)—>Tors,t(;z’Ar(g>ApL)“>T°rs,t(?ziL)">Torsqut(ZQ’K>9

The vertical map 1s an isomorphism by a standard result on

changing rings, which is in Cartan-Eilenberg [ 81 for the

ungraded case. Also, 1f L =0 for ¢t < L, then K_=0

t
for t < £+ 2P+l . Hence theorem 3 implies that
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Tors’t(zz,K) and Tors_l’t(zz,K) are zero for
t < 4+ 2P 4 T(s-1) . This implies that 1, 1is an
isomorphism in the same range.

Of course, in order to apply theorem 3, it 1s necssary
to prove that K 1is free over AO, and this 1is one of the
places where we rely on a firm grasp of the structure of A.

Given these ideas, it 1s possible to prove theorems 3
and 4 simultaneously by induction over the dimensions. The
details are somewhat tricky, and I will not try to rehearse
them here. The inference (d) goes smoothly enough; but in
the inference (c), the conclusion of theorem 4 does not apply
to the entire range of dimensions which we wish to consider.
It is therefore necessary to preserve not only the conclusion
of theorem 4 from a previous stage of inductlion, but also the
;method of proof used in (d).

Theorem 5. (Periodicity) There exists an element

B, in Ext}’(z,,2,) for s=2", t=32" (r>2)
r
with the followlng properties.
r 4
(1) The map x — x&%: Exti’t(L,Z2) - Extz+2 s U+3 2 (Lﬂ%)

X r
is an isomorphism when L is Ao-free and t < U(s) + £

and U(s) 1s a numerical function such that 4s < U(s) < 6s.

(11) L*(&?) = (5r_1)2 (This says that the periodicity

maps for different r are compatible.)
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(1i1) In a certain range, where
t
(

* s,t S
i ExtA; (L,Zg) o c.xtA’

L,Z2)

is an isomorphism, the periodicity isomorphism on the left is
transported by 1* to the Massey product operation

oT
X —> <x,hO ’hr+1> on the right.

Remarks. I will try to make this plausible starting
from the end and working forwards.

The Massey product <Xx,y,z> 18 defined only when
I'I
Xy =0 and yz = O . The fact that xhg i1s zero when x

liles in a suitable range is guaranteed by theorem 3. The

2

r
fact that hyh, ., =0 (for 4 > 2) was previously known and

was proved by introducing Steenrod squaring operations into
H*(A)l However, 1t can be deduced from theorems 3 and 4.
I have next to recall that H*(A) can be defined as

the cohomology of a suitable ring of co-chalns, by using the

r
bar-construction. 1In fact, h2 hr+ is the cohomology class

1
determined by

2r+1
(e leq] «on Jeqgle] 1.

2r-times

Therefore we have a formula

2r+1
bc = [€1|51| e |€1|El I
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Now conslder 1i: Ar —> A and apply 1% to the above

* 2r+1 *
formula. We have 1 (gl ) =0, whence ®(1c) =0 and

1*c defines a class, &? in Hs’t(Ar) for s = 2%,

t = 3.2¥ . One checks that &T has the property (iii).

&k is actually well defined by the above description.
We now begin an argument like the former one.

Step (a). The homomorphism

8+4,t+12

* . s, t . .
x = x(1a) : ExtAi (Qyzz - ExtAl (AO,?Z)
1s an isomorphism for s > O.
Proof by expliclit computation.
Step (b). The homomorphism
¥ s,t s+r,t+12
x = x(1"m,) @ Ext,’ (L,Z,) = Ext" ' (L,2,)

1

is an isomorphism for s > O 1if L 1s Ao-free.
Proof: by taking successive extensions of Al—modules
isomorphic to AO . (Since the homomorphism

X = x(i*E?) is natural we can use arguments based on the

Five Lemma.)
Step (c). It is now clear that Extj’"(L,Z,) 1s periodic
r

in the small range where 1t is isomorphic to

Exti’t(L,Zz) . We now extend this result up the dimenslons
1

by induction. We form the exact sequence
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0 — k—> Ar®AlL —> L — 0. EXtAr(AP®AlL;ZE) =
ExtA (L;ZQ) and this is periodic by step (b). Also, if
1

Lt =0 for t© <1 , then Kt =0 for t < Lt4; SO we can

use the inductive hypothesis on K .

I remark that the reason this proof does not gilve the
best value of the function U(s) 1is that I started with
calculations over A, , one could perhaps extract a best

2
possible value for U(s).
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6) Comments on prospective applications of 5), work in

progress, etc.

Once agin, I would like to hang out a large sign
saying "Provisional--Work in Progress." My first remark
however is a theorem.

Remark 1. The theorems of the previous lecture allow
one to put an explicit upper bound on the order of elements
in 2Trr(SO,SO). In fact, we have filtered 2vr(SO,SO) SO
that the composition quotients are vector spaces over 22 s
and we have put explicit upper bounds on the length of the
composition series. For large r, the bound on the order of
elements 1is appriximately 2(1/2 r) ; the previous best value,

due to I. M. James, was approximately o¥ for large r.

Question 1. 1I've remarked that as soon as you define

new cohomology operatlons you are entitled to some dividiend

in the way of calculation and results. Stable cohomology

operatlions of the nth kind are associated with free chain

complexes over A. The work of the last lecture leads one to

conslder a lot of chain complexes over A which are perilodic;

the fundamental one 1s

x—>xSqo’1 x—->xSqO’1

LI ) -">A >A >A"-> L) .

0,1 3

In more familiar notation Sq = Sq + SqQSql .
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One can certainly construct cohomology operations
corresponding to the fundamental chain complex written down
above; the proof relies on Botts' work. It is also possible
to construct cohomology orerations corresponding to a number
of other periodic chain complexes; but the general situation
is not clear.

Question 2. Behavior of the J-homomorphism. One may

calculate the groups Exti’t (22,22) in a neighborhood of
the line t = 3s , and it is plausible to conjecture that
certain of these represent the image of the J-homomorphism in
dimensions 8k, 8k + 1, 8k + 3.

Question 3. Consider the spectral sequence

Ext ZAs2

S’t( »Z~) . Consider the differentials which arrive in a
2°72

A
neighborhood of periodicity Nk’ and originate (1) in a

neighborhood of periodicity N, with £ > k , or (ii) from

7
the region of non-periodicity. Do these differentlals show
periodicity? (I think it is implausible to suppose that they
show periodicity with as small a period as that which obtains
in Nk')

Let us make the question stronger. Can one find

subgroups of 2'rrr,(SO,SO) which display periodicity? The

first periodicity operation should be
X —> <x,16i,0>

(where the bracket is a Toda bracket, and (,0 are generators
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for the O-stem and T-stem). Further periodicity operations

might be

where Berl is an element of the greatest possible order in

k+1 f

the (2 - 1) stem, and 2 1is the order of Byl

The whole of thils question is highly speculative.
It is quite obscure how one could ever isolate the relevant
sugroups directly, without bringing in the machinery
introduced above.

Perhaps one can 1solate the essence of questions 1
and 3 1n a further question.

Question 4. What geometric phenomena can one find

which show a perlodicity and which on passing to algebra
give the sort of periodicity encountered in the last lecture?
The question 1s wide open.

Now I want to talk a little about the vector field
question. It is classical that one can reduce this question
to studying the homotopy theory of real projective spaces;
let us recall how this is done.

One may define a map

rRP" 1 — s0(n)

as follows. Choose a base point e in gh-t

y € gh-1 , assign the following rotation: first reflect

. To each point

Sn—l 1

in the hyperplane perpendicular to e, then reflect s
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in the hyperplane perpendicular to y . Since y and its

antipode give the same rotation, we have defined a map

rRP" Y 5 so(n) .

By attention to detail, you can make the following diagram

commutative.

n-1

RP > 30(n)

rp~t /RpP T2 > 50(n)/s0(n-r-1)
l
v, _ _, degree 1 _
rRPPL/RpP2 2 g% 75 s0(n)/s0(n-1) = sPL .

It follows that 1f we can construct a 1lifting

rpP "L /RpRT2 ——> 377 | then the required r-field exists.

Conversely, 1f the dimensions n and »r are favourably

n-r-2

disposed, then RP®"!/RP is equivalent to SO(n)/SO(n-r-1)

up to the required dimension, so that the existence of the

lifting M 1s necessary and sufficient for the exlistence of

an r-field on Sn-1 . We have to decide, therefore, whether

the top-dimensional homology class in RPn'J‘/RPn'P"2
spherical. It 1s sufficient to show that it 1s not spherical
after suspension.

Let us examine the spectral sequence

Exty’ " (B (REVI/RPVTTE),2,) = ri(REMT/REP TR
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ht!

Ext}’ ¥ (5" (REPL/RPVTE) 5 2,)

h h!

t-8 —

Let us assume that we have n = 2" , r = 8k+4 . Then

the top and bottom cohomology classes in RPn'l/RPn'r"2

m m
correspond to x2 ’l, x? -8k-5 in RP. . These correspond

m
to generators h,h' in Ext® . Let us calculate Sq4x2 '8k'5:

whether this 1s zero or not depends only on the congruence

m
class mod 8 of 2™-8k - 5, and Sq*x° = 0, so Sg*x® "5 - o
s,t

This gives a class hh2 in Ext for s =1, t-s = o™ _ 8h - 2.
By periodicity we get a class h'' in Exts’t for
S=4k+1,t -8 =2"-2,

Question 5. 1Is drh' =0 for r < 4k + 1? Probably the

answer 1s yes. If the answer is no, then h' 1s not spherical
anyway, so we don't need to worry about this question.

Question 6. Is h'!' = d_x for r < 4k +1? One hopes

that the answer is no.

| - t!
Question 7. Is d4k+lk = h''? One hopes that the

answer 1s yes.
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