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1) Introduction 

Before I get down to the business of exposition, I'd 

like to offer a little motivation. I want to show that there 

are one or two places in homotopy theory where we strongly 

suspect that there is something systematic going on, but 

where we are not yet sure what the system is. 

The first question concerns the stable J-homomorphism. 

I recall that this is a homomorphism 

J: ~ (SQ) ~ ~S = ~ + (Sn), n large. r r r n 

It is of interest to the differential topologists. Since 

Bott, we know that ~ (SO) is periodic with period 8: 
r 

r = 1 2 3 

Z 

4 

o 

5 

o 

6 7 8 9· . · 

o z 

On the other hand, ~S is not known, but we can nevertheless 
r 

ask about the behavior of J. The differential topologists 

prove: 
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Th~~: If I' = ~ - 1, so that 'IT"r(SO) ~ 2, then J('IT"r(SO)) 

= 2m where m is a multiple of the denominator of ~/4k 

(l\. being in the Pc th Bepnoulli numher.) 

Conject~~: The above result is best possible, i.e. 

J('IT"r(SO)) = 2m where m 1s exactly this denominator. 

status of conJectuI'e ~ No proof in sight. 

Q9njecture Eo If I' = 8k or 8k + 1, so that 

'IT"r(SO) = Z2' then J('IT"r(SO)) = 22 , 

status of conjecture: Probably provable, but this is 

work in progl'ess. 

The second question is somewhat related to the first; 

it concerns vector fields on spheres. We know that Sn admits 

a continuous field of non-zero tangent vectors if and only if 

n is odd. We also know that if n = 1,3,7 then Sn is 

parallelizable: that is, Sn admits n continuous tangent 

vector fields which are linearly independent at every point. 

The question is then: for each n, what is the maximum 

number, r(n), such that Sn admits r(n) continuous tangent 

vector fields that are linearly independent at every point? 

This is a very classical problem in the theory of fibre 

bundles. The best positive result is due to Hurwitz, Radon 

and Eckmann who construct a certain number of vector fields 

by algebraic methods. The number, p(n), of fields which they 

construct is always one of the numbers for which 'IT"r(SO) is 

not zero (0,1,3,7,8,9,11 •••• ). To determine which, write 

n + 1 = (2t +1)2 v: then p(n) depends only on v and increasing 

v by one increases p(n) to the next allowable value. 
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Conjectu~: This result is best possible: i.e. 

p(n) = r(n). 

§tatus of conjecture: This has been confirmed by Toda 

for v< 11. 

It seems best to consjder separately the cases in which 

p(n) = Bk - 1, Bk, 8k + 1, Bk + 3. The most favourable case 

appears to be that in which p(n) = Bk + 3. I have a line of 

investigation which gives hope of proving that the result is 

best possible in this case. 

Now, I. M. James has shown that if Sq-l admits 

r-fields, then s2q-l admits r + 1 fields. Therefore the 

proposition that p(n) = r{n) when p(n) = 8k + 3 would imply 

that r(n) ~ p(n) + 1 in the other three cases. This would 

seem to show that the result is in sight in these cases also: 

either one can try to refine the inference based on James' 

resul t or one· can try to adapt the proof of the case 

p(n) = Bk + 3 to the case p(n) = Bk + 1. 
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2) Primary operations 

It is good general philosophy that if you want to show 

that a geometrical construction is possible, you go ahead and 

perform it; but if you want to show that a proposed geometric 

construction is impossible, you have to find a topological 

invariant which shows the impossib:l.li ty. Among topological 

invariants we meet first the homology and cohomology groups, 

with their additive and multiplicative structure. Afte that 

we meet cohomology operations, such as the celebrated 

Steenrod square. I recall that this is a homomorphism 

i n ( ) ll+i ( ) Sq : H X,Y;Z2 ~ H X,YjZ2 

defined for each pair (X1Y) and for all non-negative integers 

i and n. (If is to be interpreted as singular cohomology.) 

The Steenrod square enjoys the following properties: 

1) Naturality: if f: (X,Y) ~ (X,Y) is a map, then 

f*(Sqiu) = sqif*u. 

2) Stability: if 5: Hn (Y;Z2) ~ Hn+l (X 1 Y;Z2) is the 

coboundary homomorphism of the pair (X,Y), then 

Sqi(5U) = 5(Sqi u) 

3) Properties for small values of i. 

i) SqOu = u 

ii) SqlU = ~u where ~ is 

the Bockstein coboundary associated with the exact 

sequence ° ~ Z2 ~ Z4 ~ Z2 ~ 0. 
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5) 

6) 
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Properties for small values of n. 

i) if n i i 2 
= Sq u = u 

ii) if n < i i Sq U l!:: O. 

CRrtc=.n formula: 

i Sq (u·v) = Z (Sqju). (Sqkv) 
j+k=i 

Adam relations: if i < 2j then 

SqiSqj k v. 
= Z ~~,1 sq "Sq"" 

k+t = i+j 
k)22 

where the ~'k,,", are certain binomial coefficients which one 

finds in Adam's paper [1]. 

References for these properties are found in Serre[2]. These 

properties are certainly sufficient to characterize the 

Steenrod squares axiomatically; as a matter of fact, it is 

sufficient to take fewer properties, namely 1, 2, and 4(i}. 

Perhaps one word about Steenrod's definition is in 

order. One begins by recalling that the cup-product of 

cohomology classes satisfies 

7 } u • v = (-1)P qv • u whe re 

u € ~(X;z) and v e Hq(X;Z). 

However the cup-product of cochains does not satisfy this 

rule. One way of proving this rule is to construct, more or 

less explicitly, a chain homotopy: to every pair of cochains, 

x, y, one assigns a cochain, usually written x~lx, so that 
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if x and yare cocycles of dimension p and q respectively. 

Therefore if x is a mod 2 cocycle of dimension m 

( ) n-l) I) x '""Ix = xx ± xx ::; 0 mod 2. We def:lne Sq x::; (x .... lx I 

th8 mod 2 cohomology class of the cocycle xulx. steenrod's 

definition generalized this procedure. 

The notion of a primary operation is a bit more 

general. Suppose given n,m,G,H 'ftJhere n,m are non-negative 

integers and G and H are abelian groups. Then a primary 

operation of type (n,m,G,H) would be a flli,ction 

$: ~(X,Y;G) -> ~(X,Y;H) 

defined for each pair (X,Y) and natural with respect to 

mappings of such pairs. 

Similarly, we define a stable primarJ operation of 

degree i. This is a sequence of functions: 

defined for each n and each pair (X,y) so that each function 

$n is natural and ~n+ll) = I)$n where I) is the coboundary 

homomorphism of the pair (X,Y). From what we have assumed it 

can be shown that each function $n is necessarily a 

homomorphism. 

Now let's take G ::; H = Z2. Then the stable primary 

operations form a set A, which is actually a graded algebra 

because two such operations can be added or composed in the 

obvious fashion. One should obviously ask, "What is the 

structure of A?II 
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Theorem 1. (Serre) A is generated by the Steenrod 

squares sqi. 

(For this reason, A is usually called the steenrod 

algebra, and the elements a e A al"e called Steenrod operations.) 

More precisely, A has a z2-basis consisting of the 

operations 

where i 1, ••• ,it take all values such that 

(1 i r < t) and it > O. 

The empty product is to be admitted and interpreted as the 

identity operation. 

(The restriction ir ~ 2ir+1 is obviously sensible in 

view of property 6) listed above.) There is an analogous 

theorem in which Z2 is replaced by zp' 

Remark: 
i l it 

The products Sq ••• Sq considered above are called 

admissible monomials. It is comparatively elementary to show 

that they are linearly independent operations. For example, 

n 
go 

take X = X RP , a Ca~tesian product of n copies of real 
1 

( 1 go ) infinite dimensional) projective spaces: let xi e H (RP jZ2 

be the generators in the separate factors (i = l, ••• ,n), so 

* that H (XjZ2) is a polynomial algebra generated by x1, ••• ,xn ' 

Then Serre and Thorn have shown that the admissible monomials 

of a given dimension d take linearly independent values on 
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the class x = xl ·x2 ••• ·xn e Hn(X;Z2) if n is sufficiently 

large compared to d. 

i l 
The computation of Sq ••• 

i 
'Sq t on the class x is 

reduced by the Cartan formula to the computation of other 

iterated operations on the xi's themselves. Properties 3(i), 

4(i) and (ii) imply that SqOXi 1::1 xi' SqlXi = xi, and 

SqJXi = 0 for j > 1. The Cartan formula then allows us to 

compute iterated operations on the xi's. The details are 

omitted. 

The substance, then, of Theorem 1 is that the 

admissible monomials span A. This is proved by using 

Eilenberg-MacLane spaces. 

I recall that a space K is called an Eilenberg-MacLane 

space of type (~,n)--written K e K(~,n)--if and only if 

if I' = n 

otherwise. 

It follows, by the Hurewicz Isomorphism Theorem (if n > 1) 

that Hr(K) = 0 for r < nand Hn(X) ~~. Hence Hn(K;~) : 

Hom (~,~), and ~(K;~) contains an element bn , the funda­

mental class, corresponding to the identity homomorphism 

from ~ to ~. 

Concerning such spaces K, we have 

Lemma 1. Let (X,Y) be "good" pair (e.g. homotopy equivalent 

to a CW-pair.) Let Map (X,YjK,kO) denote the set of homotopy 

classes of mappings from the pair (X,Y) to the pair (K,kO)' 

kO being a point of K. Then this set is in one-to-one 
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correspondence with Hn(XJY;~). The correspondence is given 

* n by assigning to each class J (f)J of maps the element f b • 

This lemma is proved by obstruction theory and is 

classical, see e. g. [3]. 

Lemma 2. There is a one to one correspondence between coho­

mclogy operations ~, as defined above J and elements Cm of 

~(GJnjH). The correspondence is given by ~ -> ~(bn). The 

notation Hm(GJn;H) means the cohomology groups (coeff'icients H) 

of an E:tlenberg-M.acLane space of type (G,n), this depends 

only on GJ nand H. bn is the fundamental class in H?(GJn;G). 

This lemma follows from the first rather easily for 

"nice II pairs. But a general pair can be replaced by a C-W 

pair without affecting the singular cohomology. 

There is a similar corollary for stable operations. 

In order to state itJ I need to recall that if K € K(GJn) then 

its space of loops J OK, is an Eilenberg-rlfacLane space of type 

(GJn-l). The suspension a: ~(K) ->(0K) is defined 

as follows: 

Let K denote the space of paths in K. Then we have 

~: (LKJ~K) -> (K,pt)J the map that assigns to each path its 

endpoint. The map a is the composition: 

v* 0 
~(K) <- ~(KJpt) --> Hm(LKJQK) <-- ~-l(~K). 

The arrows which point the wrong way are convenIently 1so-

morph1sms so can be reversed J the last one J OJ 1s such because 

LK is a contractible space. 
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Lemma 3. There is a 1-1 correspondence between stable 

primary opaI'a tions" as considered above" and sequences of 

elements en+i € Hl1+i (G"rljH) (one for each n) such that 

aen+i = en- 1+i • 

We may rephrase this. For n sufficiently large the 

groups ~+i(G"n;H) may be identified under the map a for it 

is then an isomorphism. Any of these isomorphic groups can 

be called the listable Eilenberg-MacLane group of degree ill. 

The lemma then asserts that stable pl"imary operations of 

degree i co~respond one to one with the elements stable of 

the Eilenberg-MacLane group of degree i. For Theorem I" 

then" it remains to calculate these groups in the case 

Theorem 2. (Serre) 

algebra" having as generators the classes 

where il" ••• "it take all values such that 

i) i1 ~ 2i2".·."it _l ~ 2it 

ii) ir < i r +l + ••• + it + n for each r. 

The empty sequence is agaln allowed and interpreted as 

indicating the fundamental class bn • 

Remark: These restrictions are obviously sensible in view of 

properties 4 and 6 above. The conditions are not all inde-

pendent but this does not worry us. 
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The proof of the theorem proceeds by induction on n. 

* We know that H (K(Z2,1);Z2) is a polynomial algebra on one 
1 00 ) generator b because RP qualifies as a K(Z2,1. The 

'* inductive step consists in arguing from H (Z2,n;Z2) to 

* H (Z2,n+l;Z2) by applying the little Borel theorem to the 

f'1bering ()K -> LK -> K mentioned above where K £ K(z2,n+l). 

Let me recall the little Borel theorem. 

* Classes f l ,f2, ••• ,fi , ••• in H (F;Z2) are said to fOl~ 

a simple system £t genera~ if and only if the products 

£1 £2 e * 
f1 f2 ••• fnn (£1 = 0, or 1) form a Z2-basis for H (F;Z2)· 

Theorem 3. (Borel) Let F -> E ->B be a fibration 

with B simply connected and E contractible. Let bl ,b2, ••• 

* be classes In H (BiZ2) such that only a finite number of them 

lie in anyone group Hn (B;Z2) ~ such that (o(bi )} is a 

*() * simple system of generatol"'s in H FjZ2. Then H (BiZ2) is a 

polynomial algebra generated by.bl ,b2, •••• 

For example, in H*(Z2,ljZ2) the classes bl , (b~)~, 

(bl)4. ( 1)8 ~ b , ••• form a simple system of generators. Also 

in H*(Z2,2;Z2) we have the classes b2, Sql b2, Sq2Sql b2, ••• 

and 0(b2 ) = bl 

o(Sql b2 = Sql a(b2 ) = Sql(bl ) = (bl )2 

a(Sq2Sql b2 ) = Sq2a(Sq1bl ) = Sq2(bl )2 = (b1 )4 

etc. 

* Hence H (Z2,2;Z2) is a polynomial algebra generated by ii'; 
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b2 Sqlb2. 2 1 2 , • Sq Sq b , •••• In a similar way, one argues from 

K(Z2,n) to K(z2,n+l). 

The little Borel theorem is most conveniently proved 

by using the comparison theorem for spectral sequences. In 

fact, in the situation of the little Borel theorem, we have 

two spectral sequences: the first is the spectral sequence of 

the fibering, and the second is our idea of what the first 

ought to be. We wish to prove these coincide--which is just 

what the comparison theorem is for. 

However, you have to choose your comparison theorem. 

The version given by John Moore [4] won't do, because in that 

version, you have to start on the chain level, and here we 

wish to start with the E2 terms. The version given by 

Chris Zeeman [5] will do very nicely. Zeeman's proof, 

however, can be greatly simplified in the special case when 

the Eoo terms are trivial, and this is the case we need 

(in fact, it's the only case I've ever needed.) 

Before stating the comparison theorem, we recall 

some notation. A spectral sequence contains a collection of 

groups E~,q 00 ~ r ~ 2, p,q integers (Ours will satisfy 

EP,q = 0 if P < 0 or q < 0.) It also contains differentials r 

d : EP,q -) EP+r , q-r+l such that d ud = 0 and such that r r r r r 
** ** H(Er jdr ) = Er +l • A map, f, between one spectral sequence 

(E~,q) and another (E~,q) is a collection of homomorphism 

f: EP,q -) EP,q which commute with the d 's in an obvious way. r r r 
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Theorem 4. Comparison Theorem fo~ Spectral Sequences. 

Let f be a map bet~"J'een two spectral sequences E~' q and 

~,q such that: 

i) If f: E~'o ~ ~,o for p < P 

Then f: E~,q ~ ~,q for piP, all q 

ii) EP,q = ° EP,q = ° except for (p,q) = 0,0) in 
00 00 

which case 

Then for all p. 

Proof: The proof is by induction on p. The result 

is true for both p - ° and p = 1 by assumption because 

and similarly for E, and f is 

an isomorphism on these E terms. Now assume that 
00 

where B~,q = 1m d2 and 2~,q = Ker d2 , and H2 = 2~,q/B~,q = E~,q 

(The tedious superscripts will sometimes be omitted in what 

follows.) Since d3 is defined on E~,q, 1m d3 and Ker d3 give 

rise to subgroups B3 and 23 such that ° CB2 C B3 C 23 C 22 C E~,q. 

This process continues; in general we have ° = Bl C B2 c ..• C 

Bp C 2q+l C Zq ••• C 22 C Zl = E~,q. The quotient group 

Zq+l/Bp is E~,q, hence zero in our case, at least if 
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(p,q) :/: (0,0). The boundary map dr give an isomorphism 

(z /Z )p,q = (B IB )p+r,q-r+l 
r-l r ---) r r-l 

Lemma 4. Under the isomorphism f: E~,q -> E'~,q )which holds 

for p ~ p) Br corresponds to Br and Zr corresponds to Zr 

for p + r < P. 

Proof: Again by induction. For r = lour conventions 

make it trivial. For r = 2 it is also clear. The inductive 

step is made by inspecting the following diagram in which 

p ~ P. 

(Z /B )p-r,q+r-l 
r-l r-l 

zlr 

d 
2:> 

d 
(Z /B )p-r, q+r-l a,", EP- r , q+r-l r) 

r-l r-l ) 

Returning to the main line of argument, we now consider the 

group EP,q where 2 p + q == P q~ 1. By the lemma Bp (= Zq+l) 

is preserved by f and so is Zq. Therefore (z /Z )p,q is 
q q+l 

mapped isomorphically by f. But 

(Z /z )p,q = (B /B )p+l,O • 
q q+l -a--> q+l q 

q+l 

Therefore (Bq+1/Bq )P+1,0 is mapped isomorphica1ly by f 

(for 1 ~ q ~ p). Now EP+l,O has the composition series 
2 

° = Bl C B2 C ••• CBp+1 = Zl = E~+l,O. We have just shown that 
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all the successive quotients are mapped isomorphically by fJ 

therefore E~+l,O is mapped isomorphically by f. This 

completes the induction and proves the theorem. 

We can now give the proof of theorem 3. The E2 term 

of the spectral sequence of the fibering F -) E -) B is 

E~,q = HP {B} ® Hq{F) where Z2 coefficients are understood and 

~means tensor with respect to Z2. (By assumption Hq(F) is 

finitely generated.) In other words, the cup-pI'oduct 

E~'O ® E~,q gives an isomorphism. We will now construct 

another spectral seque~ce and apply the comparison theorem. 

The condition on EP,q is satisfied because E is a contractible 
00 

space. 

We first construct E~Jq(i} as follows. Let the 

dimension of bi be tie Let E~,q(i) have a basis consisting 

~ mt1 ,o _ _mti,ti-l 
of elements bi € E2 (i) fi~ € E2 (i). Define the 

differential dr so that dr = 0 for 2 < r < ti and 

( '7> ..-m) _..-mo +1 
dr liol - i for r = tie 

* * 0 Then Er+i (i) has a basis consisting of one element 1 = Di ° 

We set dr = 0 for r ) tio 

We no\'l define E by 

~** -*,*() -**() '£!'r = Er 1 (3) E 2 ® ° 0 • 0 • 

With the understanding that this is to be interpreted as the 
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direct limit of the finite tensor products. We define dr 

by the usual formula. 

Note that H(E;*) = H(E;* (1) ® ... ) 

= H(E;* (1) ® (J* (2)) ® ••• 

-*,*() -** ( ) 
"" Er+ 1 1 ® Er+l 2 

-* * "" E J r+l 

@ ••• 

We will no~ define a map -* * *J* Q r: Er ' -) Er • Because of our 

assumption about the relation of the classes fi to the 

classes bi , we have 

for r < ti 

for r = ti 

vie therefore construct 9 r by setting 

E i Yli _ E j _ m j _ Ek mk 
9 r (r i b i ® f j b j ® ... {x) f tC bk ) 

. . . E m 
f k(b ) k 

k k 

It is immediate that the maps 9r commute with the dr 

To apply the comparison theorem we need only check 

that if 92 : E~'O -) EP,O is an 
2 isomorphim for ps.p 

then 92 : E~,q -) E~,q is an isomorphism for all q and 

p ~ P. This is immediate from the follwoing: 
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cup-product 
EP,O ® ~Iq S EP1q 

Z " Z > 2 

:: 921 ~ i 92 :: i92 -
EP,O 

2 (~ E~lq -> EP"q 
2 

-* 0 *10 The comparison theorem then implies that 92 : E21 --> E2 = 

* * H (B;22 ) is an isomorphism. Ther'efore H (B;Z2) is a 

polynomial algebra generated by the bi • This completes 

the proof. 

Remark: In the above theorem, the coefficients need 

not be 22 , an analogous theorem is valid for coefficients in 

any commutative ring with identity. 

I now wish to turn to Milnor's work [6]. Milnor 

remarks that the steenrod algebra is in fact a Hopf algebra. 

I recall that a Hopf algebra is a graded algebra which is 

provided with a diagonal homomorphism (of algebras) 

t: A-> A ® A. In our case the diagonal t is going to be 

defined by the Cartan-formula 5) so that t(Sqi) = 

z SqJ ® Sqk. In general, for any element a € A, there is 
j+k=i 

a unique element Z a'@a" € A@A 
r r r 

a(u·v) = Z a'(u)-a"(v). 
r r r 

We define 

such that 

tea) = z a' Ii'a". r~ r 
r 

I'd 

better add a word about how this is proven_ It is pretty 

clear that there is such a formula when u and v have some 

fixed dimensions--say p and q, because it is sufficient to 
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examine the case where u and v are the fundamental classes in 

K(Z2'P) x K(Z2,Q). After that, one has to see that the 

formula is independent of the p and q. We omit the details. 

We ought to check that t is a homomorphism, but this 

just amounts to saying that the two ways of computing 

(a·b)(u·v) are the same. We ought to check that t is 

associative, but this just amounts to saying that the two 

ways of computing a(uvw) are the same. Similarly t has a 

co-unit. Thus A is a Hop!' algebra. 

With any Hop!' algebra A over a field K, you can 

associate the vector space dual: 

Assuming that A is finitley generated in each dimension, the 

structure maps 

q> 'I/t 
A ® A -> A A -> A ® A 

(where q> denotes multiplication in the algebra A) transpose to 

give 

* * * q> * 
A @A <- A 

* * 'I/t * * A <- A ®A • 

Hence A* is a Hopf algebra. 

In our case, the Steenrod Algebra A has a commutative 

diagonal map but a non-commutative product. By passing to 

* the dual we get an algebra A with a commutative product, but 
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a non-commutative diagonal map. For many purposes this is a 

considerable advantage. 

Theorem 5 (Milnor) * The Hopf algebra A , dual to the 

steenrod Algebra, is a polynomial algebra on generators Ei of 

dimension 2i - 1 (i = 1,2, ••• ). Since the diagonal map 

* cp is a homomorphism it is completely specified by giving its 

values on the generators: These are 

* cp ;1 ::I ;l@l + 10El 

* cp ;2 = ;2®1 
2 

+ ;1 ® El + 1 ® ;2 

* 2k 
(where EO ::I 1) cp Ei = ~ Ej @;k 

j+k=i 

advantage 
One. /. of this theorem is that it completely determines 

the multiplicative structure of A without imposing any strain 

on the memory. 

Sketch of proof: We first define the elements Ei 

which are linear functions from A to Z2. Consider again the 

space Rpoo 1 00 and let x E H (RP ;Z2) be * the generator of H • I 

00 2i 
claim that for any a E A we have ax ::I ~ A.iX , A.i E 22 • 

i==O 

If this is true then A.i E Z2 is a function of a having values 

in Z2 and is clearly linear, so we can define ;i(a) = A.i • 

The simplest proof that ax has this form is as 

follows. First recall the definition of a primitive element 
* 00 00 00 00 H (RP ; Z2) • \Je have a product may }l: RP x RP -> RP. And 
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* ,.-'" h is called primitive if ~ h = h<.f.!)l + 1 ®h. ffhen we easily 

check the following: 

i) x is primitive 

ii) If h is primitive, ah is primitive. 

iii) The space of primitive elements is spanned by 

2i 
i = 0,1,2, ••• Hence ax has the form stated. x • 

We now wish to show that the monomials 

r l r 2 r * 
~l ~2 "'~nn (ri ~ 0) form a vector space basis for A. For 

n 
this purpose we resurrect our old friends X = X RP~, our 

i=l 

classes xi corresponding to the generators in HI of each 

factor, and x = xl ••• xn € Hn (X;Z2)' We have previously 

considered the use of the Cartan formulae to compute a(x). 

The elegant way of writing this result is 
i l 

~i ···~i )(a) xi 

i i 
2 2 2 n 

2 n 
x2 ••• xn 

We have previously remarked that the admissible monomials a 

of a fixed degree (small with respect to n) take linearly 

indpendent values on x. But this means that a is determined 

by the values (~i 
1 

r l r k * 
~l "'~k span A • 

~i ···~i )(a). Therefore the monomials 
2 n 

Since there are precisely the right number 

* of these in each dimension they form a basis for A • 

It remains to establish the formula for the diagonal 

* map ~. This amounts to asking: 
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21 
if (ab)x = Z A1x , what is Ai in terms of a and b? 

(ab) (x) :::I a (bx) 

r"' a (2: 
k 

2k 
~k(b)x ) 

2k 
= Z ~k(b)a(x ). 

k 
2k 

But a(x ) can be expanded by the universal rule for 

We obtain 

0 k 0 k+J 2k 2k+J 
Z ~k(b) (z ~j (5) x~ ) = Z ~k(b)~j (a) x Therefore 
k j k,j 

2k 
(ab) = Z ~k(b)~j (a) which is equivalent to what we 

k+.j=m 

want. 



22 

3) Stable HOj',10toPY Theory 

There is a number of phenomena in homotopy theor~ 

",hich 2.re indeYlendent of the precise dirrensions considered, 

provided that the dimensions are large enough. For example, 

nn+l(Sn) - Z2 for n > 2. Such phenomena, in general, 

are called stable. Cne can also point to more complicated 

theorems (e.g. about spectral soquences) such that each clause 

of the theorem is true for sufficiently large n, but there 

is no n which makes all the clal'.ses of the t~1.eorem trll.e 

at once. In l1roving such a theorem, if you don't ta~re care, 

you rapidI7" find Y01.11'self carrying a large number of explic it 

conditions n > N(p, q, r, ••• ), which are not only tedious 

bu.t basically irrelevant. \'Tbat 11e Hant is a standard con­

vention that we are only considering what happens for 

sufficiently large n. One a1Jproach is to wor!{ in a suit­

ably constructed category, in which the objects are not 

spaces but "stable objects" of some sort. For example, the 

S-theory of Spanier and llliiteheud is such a c8.tegory. 

However S-theory is too restrictive In some Hays. 

I'll give an e::ample. For our purposes, it will be quite 

essential that our category should contain stable Eilenberg­

MacLane objects K(G,oo)o But there are no such objects 

in S .. theory. ll.gain: in one of his papers on c01)ordism, 

Milnor wisfl.es to consider the "stable Thorn complexes ll 1-1S0, 

HSU corresponding to the croups SO and U. These are 
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jnstifiable objects, but they don't exist inside S-theory. 

I DBnt to go ahead and construct a stable category. 

NQ'tov I should warn you the t tb.e pro)er definitions here 

a1"e still a matter for nmch plee.surable arcumentation 

among the ex·)erts. The debate is betl!leen tHO attitudes, 

1rThich I'll personif;.T 2S the tortoise and the hare. The 

hare is an idealist: his preferred position is one of 

elegant and all embracing generality. He wants to build 

a new heaven and a new earth and no half-measures. If he 

had to cunstruct the real numbers he'd begin b~T taking all 

sequences of rationals, a.nd only introduce that tiresome 

condition about convergence when he was absolutely forced 

to. 

The tor"i:ioise, on the other hand, takes a much more 

restrictive view. He says that his modest aim is to make 

a cleaner statement of ).a:1ovm theorems, and he'd like to put 

a lot of restrictions on his stable objects so as to be 

sure that his category has all the good properties he may 

need. Of course, the tortoise tends to put on more restric­

tions than are necessary, but the truth is that the restric­

tions rrive him confidence. 

You can decide which side you're on by contemplating 

the Spanier-1,-lhitehead dual of an EilenberG-NacLane object. 

This is a "coml)lex" with "cells II in all stable dimensions 

from -00 to -n. According to the hare, Eilenberg-
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I1a.cLane objec ts are good, Spanier-,·Thi tehec.d duali ty is good, 

therefore this is a good object: And if tl'e necative dimen-

sions lrJ'Orry ~~ou, l'e leaves yop to decide Hhether you aT'S a 

tortoise or a chicken. According to the tortoise, on the 

other hand, the first theorem in stable homotopy t~eory is 

the Hurewicz Isomorphism Theorem, and this object has no 

dimension at allwhere that theorem is anpl:icable, and be 

doesn't ~ind the hare ~ltroducing this o~ject as long as 

he is allovred to exclude it. Talre the nasty thing awayl 

Now let's see hOH these attitlJ.des worlr out in nrac-

tice. • • [Tbe hare proceeds by 8i ving cons tr-L'.ctions Hhich 

Dass from given categorieE' to new, enlarc;ec1 cat;e[,ories; 

some remarl{s on this subject have been removed from these 

notes. ] 

Now let's take a more middle-of-the-road line. This 

time He talk about various sorts of spectra. A spectr'l1ill 

is a sec1uence of spaces 'He thinlc of v 
.ll.n +l as having 

higher dimension than " .II. n and wish to have some comparison 

bebv-een Xn and Xn+l - The easiest H2:y is to Sl'1)'"ose given 

maDs betvleen Sv 
.I\. 

n and ~r 

.II. 
n+l or bableen V 

.flo 
n and 

(Here SX = suspension of X;, n X = loop space of X). 

This gives four cases_ 

1) 

2) 

l' : SX -> X n n n+l 

g : n 
v SA"?' ./\.n+l -> n 
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h . X -> n· n 

1, • 
"~n· 
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(l J~.L+l 

Maps of type 1) correspond 1-1 to mans of type 3) so approaches 

1) an.d 3) are equivalent and we get three sorts of spectra. 

We may wish to deal with spectra which converge, in 

some sense. The easiest definition is to say that fn is an 

equivalence up to dimension n + vn vrhere vn tends to 

ini':tni ty with n. This has analngu,es in the other sorts of 

spec tra; but ~_f' the rnaps are equivalences, the ir direction 

is immaterial. 

H01Vever, this definition has disl:?,dvantages. For exal'11ple, 
n~ 

suppose that we have a sequence of S"iectra = {X n } • Try 

to form the one-point union V Jcm = { V V m }. Tllen we have 
m m n 

to deal with maps V f~ which are equivalences u~ to dimen­
m 

sion n + Min (v m); but min (v m) need not tend to in-
m n m n 

finity with n. 

Now, actually, we have to deal with such constructions. 

The obvious escape is to specify how fast v n 
should tend to 

infinit:r. This lead8 to my chosen definition which is pretty 

far toward the tortoise end of the scale. It's modeled on 

J. H. C. Hhitehead's idea of building np a com""'lex by attach-

ing cells. 

I define a stable complex, X, to be a sequence of 

c-vJ'-com~)lexes Xn lJhich have the fol101vine properties: 
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i) Xn has one vertex and has other r-cells only 

for n ~ r ~ 2n - 2. 

ii) The 2n - 3 skeleton (X )2n-3 is the reduced 
n 

suspension X l~sl. n-
[Here X#Y means t~le "sma.shed" product = X >t:Y/X >JY 

where X v Y denotes the one point u.nion of two spaces joined 

at their base points.] 

A ~ f: X --> Y between two such stable objects is 

a sequence of maps: 

f· X ->Y n· n n such that 

f t X :#= Sl = n n-l 

liITe can compose maps in the obvious fashion. 

A homotopy h: f "" g between two such maps is a se­

quence of homotopies 

h : ( I )( X ) 2n-2 
n n -> Yn keeping 

base points fixed and commuting with ~sl in the obvious 

fashion. 

This is equivalent to defining homotopy in terms of 

an object "I ~ XII defined as follows: 

I x X 2n-2 
= ( nil x X ) 

o 
xo = vertex of 

1fhenever I want to apply notions from the general theory of 

categories, the word morphism is to be interpreted as a homo-
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topy class of mappings. But we allow ourselves to keep the 

notion of maps so that we may speak of inclusion maps, etc. 

Exwmple of a stable object. The stable sphere of 

dimension r. 

We have x = Sn+r 
n for n 2: r + 2 

Xn = pt. otherwise. 

\.ve ha.ve to assume that r 2: o. 

Warning. Since spheres of positive dimension only 

are available in this category it is not always possible to 

desuspend an object. nlis is a great blemish from the hare's 

point of view. 

With this category I wish to do three things. 

1) To justify it by shovdng that at least some pheno­

mena of classical stable homotopy theory go over into this 

category. 

2) To make it familiar, by showing that some of the 

familiar theorems for spaces go over into this category. 

3) To lay the foundations for the next lecture by 

obtaining those properties of the category which I require. 

We wish to show that this category does allow us to 

consider some of the phenomena \<J'hich are considered in class i-

cal stable homotopy theory. 
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Theorem 1. If K,L are CW complexes with one 

vertex and positive dimensional cells for n < r < 2n - 2 

then there exist stable objects X, Y such that Xn 1s 

one of the same homotopy type as K and Xr+l = Xr"#S 
I for 

r ~ n, and similarly for Y and L. Furthermore, if X, Y 

have these properties, then Map(X, y) is in one-one 

correspondence with Map (K, L). 

This follows from the classical suspension theorems, 

and I wish to say no more about it. 

[The notes for the remainder of this lecture have been 

revised in order to reorganize the proofs.] 

Both in stable and in unstable homotopy theory we may 

take the maps f: X -) Y , divide them into homotopy classes, 

and so form a set Map (X,y). This set we make into a group 

(in favourable cases), and such groups figure in certain 

exact sequences. It is here that a ce~tain basic difference 

between stable and unstable homotopy theory arises. In 

unstable homotopy theory we take groups Map(X,y), and first 

we try to make exact sequences by varying X. What we need 

is a pair (XI ,X2 )--that is, an inclusion map with the 

homotopy extension property. Secondly, we try to make exact 

sequences by varying Y. In this case we need a fibering, 

that is, a projection map with the homotopy lifting property. 

In cohomology the pair gives an exact sequence; the 

fibering gives a spectral sequence. In stable homotopy 
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theory the distinction disappears: we have just one sort of 

exact sequence of spaces. In order to construct such exact 

sequences, suppose given a map f: X -) Y between stable 

complexes. Then we can construct a new stable complex 

Y UfCX. (Here CX is intended to suggest "the cone on X ", 

and Y U fCX is intended to suggest "y with the cone CX 

attached to Y by means of the map f.") The definition is 

( ) ( ...u. )2n-2 Y U fCX n = Yn U f I -rr-Xn • 
n 

(Here I = [0,1] , with basepoint 0.) 

As indicated above, this construction gives rise to 

two exact sequences. We will prove this below, but we have 

first to consider the special case in which Y is a 

"point" p (that is, Yn is a point for all n) and f 

is the "constant map" y. We write SX for the resulting 

stable complex P U yCX , and regard this as the "suspension" 

in our category. It is clear that a map f: Xl -) X2 

induces a map Sf: SXl -) SX2 ' and similarly for homotopies. 

Lemma 1. S: Map (X,Y) -) Map (SX,SY) is a one-to-one 

correspondence. 

Remark 1. The hare would always arrange matters so 

that this lemma would be a triviality. W"ith the present 

details, it seems to need proof. 

Remark 2. Our proof will involve desuspension. 

Suppose given a CW-pair K,L of dimension at most (2n-2), 
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and a space Y which is (n-l)-connected; suppose given a 

map f: Sl # K -> Sl::t:\: Y , and a deformation h of 

f I Sl # L into a suspended map 1 ~ g (for some g: L -) Y .) 

Then we can extend the deformation h and the desuspension 

g over K. In fact, the map f is equivalent to a 

map f: K -) O(SI it Y) ; we are given a deformation h of 

f IL into a map g: L -> Y C ').(Sl # Y) , and we are asked -to extend h,g over K; this is trivially possible, since 

'lTr(Q(Sl it: Y)" Y) = 0 for r < 2n • 

Similar remarks apply, when we are given a map 

f: Sl '# K it Sl -) Sl :jl:y :j:t. 31 , and asked to deform it into 

a suspension 1"# g #" 1 , or to extend a deformation already 

given on Sl,# L #Sl. One has only to replace <1(Sl ~ Y) 

by n2 (Sl"# Y '* Sl ) • 

Remark 3. The effect of the definition of SX is that 

Remark 4. We shall deduce lemma 1 from the following 

lemma. 

Lemma 2. Suppose given a pair K"L of stable complexes, a 

map f: SK -) SY (consisting of f n : (SK)n -) (SY)n) , 

a map g: L -) Y (consisting of gn-l! Ln_l -) Yn- l ) and 

a sequence h = (hn ) of homotopies 
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such that the hn commute with itSl. Then the maps g 

and h can be extended from L to K so as to preserve 

these properties. 

Proof. We proceed by induction over n. Suppose that 

the maps and hr have been extended over K for 

r < n - 1 • We are given fn+l: Sl ~ Kn 11=' Sl -) Slil Yn~t:sl , 

and we wish to construct a certain deformation of it into a 

map 1 :If. gt/ 1 . 
n By the data, we are given the deformation 

over Ln. We are also given the deformation over 

~-l 11= Sl C Kn (by applying :f:!:Sl to hn_l .) We thus 

obtain a deformation compatibly defined over Ln U (Kn_l i~Sl). 

By remark 2, the deformation can be extended over ~ • 

This completes the induction. 

We now turn to the proof of lemma 1. We first prove 

that S: Map (X,Y) -) ~1ap (SX,SY) is an epimorphism. 

Suppose given a map f: SX -) SY ; we apply lemma 2, talcing 

K to be X, L to be a "point", g and h trivial. The 

lemma provides a map g: X -) Y such that Sg - f . 

Secondly, it is necessary to prove that 

S: Map (X,Y) -) Map (SX,SY) 

is monomorphic. Suppose given two maps f l ,f2 : X -) Y such 

that Sfl ~ Sf2 ; we will apply lemma 2 again. We take K to 

be the stable complex "I x X" , and L to be its two end; 

we define g: L -) Y using fl and f2 ' and we define 

f: SK -) SY by using the homotopy Sfl ..., Sf2 . The 
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homotopies hn can be taken stationary on L. Lemma 2 

provides an extension of g over "I x X" , that is, a 

homotopy f l .... f2 in our categol'Y. This completes the 

proof of lemma 1. 

For r > 2 the sets 

form abelian groups, and the product is independent of which 

"suspension coordinate" in SrX is used to define the 

product. (In fact, the arguments which one usually uses 

for spaces apply, because the constructions involve 

suspension coordinates "on the left J
II and commute with the 

operation itSl "on the right" used in defining our category. 

It is illuminating to recall that in a category where 

direct sums and direct products always exist and coincide, 

the "sum of two morph1sns" can be defined purely in terms of 

composition. (Given two morphisms f,g: X -> Y J one 

considers 

f)l(g l~l 

X -> Y x y->y Y -) Y .) 

In our category direct sums and direct products do exist and 

coincide; given two stable complexes X and Y, one can 

define X v Y by 
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This is a stable complex which fulfils the axioms both for a 

direct sum X v Y and a direct product X x Y (at least, 

as soon as it is equipped with the obvious structure maps.) 

The proof that X vY is ~ direct product may be 

performed by imhedding XnV Yn in Xn x Yn • The desired 

constructions can easily be performed in Xn x. Yn ' and then 

deformed into Xn V Yn ,s:t.nce TT"r(Xn x Yn,Xn v Yn ) = ° for 

r < 2n. Details are omitted. 

To sum up, we have made our category into an abelian 

category, and we are entitled to use the following definition. 

Definition: 

for any n such that n ~ 0, n + r > O. (It is not 

assumed that r ~ ° .) 
We will now proceed to obtain t.he two exact sequences 

mentioned above. We recall that given any map f: X -> Y we 

constructed a stable complex Y UfCX ; we now write 

M = Y U fCX ; we have obvious maps 

j q 
Y->M->SX. 

Theorem 2. The. sequences 

i) 
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ii) 

are exact. 

To prove this, v-:e follow Puppe I s method. 

Lemma 3. The sequence 

f* j* 
Map (X, U) (-- Map (Y, U) (- Map (M" U) 

is exact. 

The proof is trivial. 

Lemma 4. 'llhe sequence 

(a) 
j 

CY ~> 
,i 

is equivalent (up to signs) to the sequence 

(b) x ~> Y L..) M .L) SX Sf> SY Sj> SM --> . . . 

. . . 

(In sequence (a) each term is constructed from the previous 

two terms as Y LJ fCX is constructed from X ~> Y .) 

It is clear that lemmas 3 and 4 suffice to prove the 

exactness of the sequence (i) in theorem 2: moreover, 

lemma 4 has a similar application to sequence (ii) in 

theorem 2. 

The proof of lemma 4 is unaltered from the usual case. 

It is sufficient to consider the first four maps in the 
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sequence. The required constructions can be performed 

"on the left" and commute with the operation #Sl used 

in defining our category. 

Lemma 5. The seq"uence 

q* (Sf)* 
Map (SW,M) --) Map (SW,SX) > Map (SW,SY) 

is exact. 

This lemma show that if we map SW into the sequence 

(a) of lemma 4, we have exactness at the fourth term 

(Y UfCX) U jCY. Since all subsequent terms are also 

"fourth terms," we have exactness at all subsequent terms 

also. This still assumes that the "test-space" SW is 

suspended at least once; but even so, it proves part (ji) of 

theorem 2. 

Proof of lemma 5. Suppose given a map A € Map (SW,SX) 

such that (Sf)*A = O. By lemma 1, we can take a repre­

sentative map for A which is of the form Sg, \'There 

g: W --> X is a map such that fg ~ 0 ; that is, 

W ~) X L) Y can be factored through w.l..) cw..!l.) Y , 

where CW is the "cone on W" and h is a "homotopy." We 

can now construct a map m: SW --) M = Y U fCX such that 

qm ~ Sg. In fact, we decompose SW into two "cones" 

c+w = "[O,~ J~ W" and C W. On C+W we define m by 
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taking Cg: C+W --> CX ; on C W we define m to be h. 

This completes the proof. 

In this category we have homology and cohomology 

theories defined in the obvious way. We have 

these groups all become equal after a while, and we define 

the limit to be Hm(X) , where X = (Xn ) • Similarly for 

the homology maps induced by morphisms. We can define the 

boundary maps for a pair because our version of suspension 

has been chosen to commute with o. Similar remarks apply 

to cohomology. 

We now turn to the question of Eilenberg-MacLane 

objects in this category. 

Theorem 3. Suppose that F = Z Ft 
t~O 

is a free 

graded module over the Steenrod algebra A with finitely 

many generators in each dimension. Then there exists stable 

complex K such that: 

(i) * H (KjZ2) ~ F as an A-module, and 

(ii) r * ~r(X,K) ~ HomA(F,H (X;Z2)) 

for each stable complex X . 

(The symbol Hom~ denotes the set of A-maps that 

lower the degree by r. It is understood that the 

isomorphism in (ii) is induced by assigning to the map 
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f: ~n+rX --) SnK the associated cohomology homomorphism, 

composed with appropriate suspension isomorphism.) 

Proof. We can construct a stable Eilenberg-MacLane 

complex of type (Z2Jn) by following J. H. C. Whitehead's 

procedure J attaching listable cells ll to kill "stable groups". 

By forming the one point union K = V Ki of such objects, 
i 

we can arrange it that is the required free 

A-module. The clause about ~r(X,K) is just the 

re-expression in a new guise of lemma I of the last lecture-­

or of the corresponding assertion for maps into a Cartesian 

proudct of Eilenberg-MacLane spaces. 
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4) A~plications of Homological Algebra to Stable Homptopy 

Theory 

I ought to begin by running tp~ough the basic notions 

of homological algebra in the case where we have graded 

modules over a graded algebra A. Ilet M be su.ch a module, 

i.e. M = Z Mt • 
o<t < 00 

Mt is finitely 

generated. A resolution of M is a chain complex 

in which i) each C s is a fl'ee graded module over A 

ii) each d is an A-map preserving gradation 

r M if s = 0 
~ 
10 if s>O 
\. 

This amounts to the same thing as requiring a map 

so that 

o <- M <!... C 
o 

c:::: d C - 1 <- ••• <-C <- ••• s 

(:'. C -> H .... 0 

is exact at every stage. Such chain complexes always exist 

and they are unique up to chain equivalence. 

Remark: For the case in which we are interested 

A = mod 2 Steenrod algebra. Also, in this case, there is no 

d5.stinction between "free A modules" and "pro jec tive A 

modules iI. 

Let N be another such module: Then define 

Hom X (C s ' N) = those (graded) A-maps f: Cs -> N 
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which lO1oV'er degree by t" i.e. 

as u5ual, maps ind~ced by d, 

Hom! (Co' N) d~~> Hom! (Cl " N) 

He define 

f (C) C Nt' s u u .. 

-'!. 

vJe have, 

d ft t 
-> ••• -> Hom A (C S ' N) -> •• 

t in Hom A (CS ' N). 

The notation is justified since any two resolutions of 11 

are ehain equivalent, and therefore the groups Ext~"t(M, N) 

depend only on the objects displayed. 

:!'Text 101e go back to stable homotopy theory. Wo will 

write H-!:-(X) for H~~(XJ Z2) to abbreviate notation. '.rle 

recall that any map f: X -> Y induces an A-map f-!~: H~~(Y) -> 

HJ,} (X) • So we get a function: Hap (X, y) -> Hom ~ (If~ (Y) ,H-!:- (X) ) • 

This function is moreover a homomorphism. It is in general 

nei ther a monomorphism nor an epimorphism. In order to com­

pute Map (X, y) by homological methods we need further 

terms. A general formulation is the following. 

Theorem 1. Under suitable conditions on X, Y there 

exists a spectral sequence whose E~,t term is 

Ext~" t (H-!:- (y)" H-!:- (X) ) and which converges to 2 rr r (X, y). 

The details are as follows: 

i) If G is an abelian group, then 2G means the 

quotient of G by the subgroup of elements of odd order. 

It is clear that elements of odd order play no part in our 

stUdies which are confined to the prime 2. 

ii) The elements in Es"t which give a composition 
00 

series for 2 If r (X, y) are those for which t - s = r. That 



40 

is, the "tctal degree" in tha spoctral sequence is t-s. 

The filtration of 211r(X, y) is a decreasing one, so, for 

example, 

F IF .... El,r+l 
1 2 = 00 

etc. 

iii) The differential dr raises s by r and decreases 

t-s by 1. 

It is perhnps desirable to give an example of this 

spectral sequence. Let us take x = y = So. The term 

is then Ext~,t{Z2' Z2) (which is rechristened Hs,t(A) 

for brevity). I recall that Hl'~(A) can be identified 
~-!. 

with the space of prim~tive elements in Aft. 

2i 
element ~i thus gives us a generator hie 

The primitive 

In H-l:-:~ (A) 

vie can define cup products and this alloVls us to write down 

part of a basis for Hs,t(A)e 

4 

3 

2 

I 

s 
o 

h4 
0 I 3 

hoh3 

h3 
0 

1~=h2h o 2 h 2h o 3 

h 2 
0 ~ hoh2 h2 

2 ho:'l3 

h hI h2 h3 0 

1 

o 1 2 3 4 5 6 7 

t-s ----> 

blanks arc to be interpreted as 0 ~roups for s < 4 

t-s < 7 -
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The differentials in this part of the table are all zero, 

yielding a result in good agreement with the known values 

of 2 1T r (S 0, So): 

r = 0 1 2 3 4 5 6 7 

Z Z2 Zg Z8 0 0 Z2 Z16 

Returning to the theorem, we must state suitable con-

ditions on X and Y. We may distinguish two halves to our 

'Hork: 

a) Setting up the spectral sequence. This is more 

or less formal. I shall assume that H~:- (y) is finitely 

generated in each dimension because I'll have to assume it 

later an~7Way. It is possible, however, that He mtght be able 

to elimj.nate this restriction for this part of the 1>J·ork. 

b) Proving the convergence of the spectral sequenoe. 

Existing proofs require the foll01·dng conditions. 

(I) X, the object rr.apped, must be ftni toly dimensional, 

say Xr +l = SX for r .?: N, some N. r 
(II) H-l~ (y) must be finitely generated in each dimension, 

as assumed above. 

It is, perhaps, an interesting exercise for the experts 

to try to reformulate the theorem so as to relax these con-

ditions. THO changes are fairly obvious. You can replace 

I believe behaves better with respect to limits; and you 

can redefino 2G by replacing "subgroup of elements of odd 
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ordor 11 by II sub gr O'l'-p of elements divisible by arbitrarily 

high pOI'Jers of 2. II These changes however do not suffice to 

overcome cer·tain obvious counterexamples. (Por eX2Jnple, 

suppose Y has only one integral homology group Hhich is 

the group of rationals mod 1.) I have no idea "That happens 

if you replace the coefficient field. Z2(or Zp) by the 

integers or the reals mod lQ (The case Zp is analogous 

to the case Z2') 

Just for variety, hOlvover, I want to give a simple 

and explicit proof of convergence, which works under conditions 

even more restrictive than I have already stated. 'rhat is, 

I shall as murre: 

(III) H~:' (Y) is a free module over the exterior algebra 

E generated by Sql. This is equivalent to supposing that 

H~:' (Y; Z) has no eloments of 00 order, and all its elements 

of order 2f are actually of order 2. 

This evidently excludes the case so I 

must give one or tHO examples to show that it does not ex-

clude all cases of interest. 

Ex. l~ Y is the st~ble object corresponding to 

RP2tjRP2u. This example is relevant to the vector field 

problem. 

Ex. 2. Set up an exact sequence 

so that II (So So) ~ 1T (So M) 
r' r+l' n 

r > 0 
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for t - s > 0 and s > o. 

Condition III is satisfied by. M. 

the 

Settil~ up the spectral sequence 

Supnose given an object Y and a sequence of order 2, 

C fS are free modules over A. s I don't yet need to 

suppose that it is a resolution. 

By a realization of this soquence, I mean 

1) a sequence of Eilenberg-MacLane objects Ks such 

that 
., ... 

II" (K ) as C 
s s 

and K s 

while 

2) a sequence of objects such that 

3) mc.ps f : M 1 -> K s s- s such that 

~>M 
s 

f 
s+l K 

> s+l induces the map d: Cs +l --> Cs' 
., ... 

f : M 1 -> K 
0-0 

induces the map 8: C -> H" (Y). o 

In general, I don't assert that a sequence of order 2 

has a realization: but if the sequence is a resolution, then 

it does. Viz. 

We can choose an Eilenberg-MacLane object Ko such 

that H~:' (K ) = C 
o 0 

and a map f : Y -> K o 0 
inducing 

8: Co -> H~:' (Y) • This follows from the last theorem of 
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las t lec tnre • \ve form the "quotient" 

~"Je look at the exact sequence 

<- Ht (y) <-,- Ht (K) <--,:- Ht 01 ) <--
f . 0 • 

o Po 

Since f~} coincides 'j,·dth € which is onto, ~} is a o Po 

monomorphism and H~}(No) coincides with Zo = Ker € • 

d €~} ( Since Cl --> Co --> H Y) --> 0 is exact we have a map 
.;~ 

d: Cl -> Ker € = H (1-10 ). \-Je can fj.nd Kl , an Eilenberg-

HacLane object such that H~} (K1 ) = C1 and a map f 1 : Mo -> K1 

such that f~ = d. As above, if we form M1 = Kl Uf1CMo ' 

H;}(~) = Zl = Ker dlcl • We continue, by induction" 

forming a sequence of spaces Ms and m.aps f : M 1 -> K s s- s 
so that and 

realizes 

o<-Z l~C <-Z <--0 s- s s • 

Given a realization, we can apply the functor iit(X;.) 

we obtain exact sequences 

This gives an exact triangle: 
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(In order to avoid trouble it is convenient to get our so-

quences exact for all s, even s < 0. This is dono by 

making a convention that 

< 0, 

fol' S < 0.) 

Next I ~mark that this construction 1s natural. 

Sup~ose I have a map m: Y -> Y inducing mi:": H{l- (Y) <- n{:- (y) 

and that I have two sequences of order two connected by a 

ladder of maps, as follows: 

H-!l-(y) 4--- C o ~Cl ~C <-2 • • • 

m· 

*J i Ao r Al l A2 

H{:- CY) <- 0 <-0 <-o 1 o <-2 ••• 

(Such a ladder 'lrTi11 always exist if {C s } is a resolution.) 

We '\vi11 define the notion of a realization of such a laddor. 

This consists of a sequence of maps g : K ->K and a s s s 
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sequence of maps ms: Ms --> Ms with the following properties. 

1) = (for each s. ) 

2) m -1 :::: m: Y -> Y • 

3) For each s, the following diagram is homotopy 

commutative. 

f js qs 
M s-l 

...§...> K -> M -> SM 
s-l s s 

ImS _ 1 1 gs lm~ 
, 
I Sms_l 

.J,. 
f js qs M s-l 
.....§....> if -> M -> SM s-l s s 

If we have such a realization of a ladder, then we 

shall obtain induced maps of all our exact sequences, and 

hence a map of sp ctral sequences. On El tho map is in­

duced by the maps AS. If we assume that we started with 

two resolutions, then the induced map on E2 is given by 

-the induced map of Ext. In particular, if we take Y = Y, 

we see that our spectral sequence is defined up to a canonical 

isomorphism. 

Lemma 1. If {C s } is a resolution, then such a ladder can 

be realized. 

The proof is by induction over s. Suppose given 

m 1: M 1 -> MI. Since Ks is an Eilenberg.HacLane s- s- s-
object we can construct g:K ->K s s s 

.. 
such that ).. .... = g • 

s s 
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We no,\-, wish to show that gsfs = 1s ms_1 (up to homotopy). 

Since x s is an Eilenberg-MacLane object, it is sufficient 

to show that the induced cohomology maps are equal. Since 

} '* i~ ( ) if- ( ) {Cs is a resolution, r 1: H M 1 --> H K 1 s- s- s- is a 

monomorphism and it thus suffices to show that 
-!~ ~~?} 

j l' g = s-l s s 
that d)" = s 

a a F~ 
js-l ms _l s • 

A. s-l d (using 

This follows from the assumption 

the inductive hypothesis). 

Given that g l' - l' m s s - s s-l (up to homotopy), the 

whole of the diagram required by condition 3 follmvs by an 

obvious geomotric argument. 

I now wisb to consider the convergence of this 

spectral sequence. By recalling the theory of exact couples, 

one writes down a portion of the rth derived couple. 

( qr = r-fold iteration of the map .. q,l'. ) 
,i" 

Im q: : 'iT"t+r (X, Ms+r ) -> 11" t (X, Ms) J 
i J (def:t.n~d. by 3i E- into tho sec ond group) 

Es,t o 

r+l o a sub quotient of iTt(X, Ks) 
1-----

If F (defined by fil- from the first group) 

lm q: Trt (X, M 1) -> '1i.t (X, li 1) 
~.. s- -r s-r-

lm q: : TJ" t+l (X, Ms) -> ...".. t-r+l (X" I'1s _r ) 
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If r is la.rge compared with s, then the ra.nge 

and domain of Q can be identified with subgroups of 

1ft (X, M 1) = Tr~ (X, y); the subgroups give the filtration 
-s - v-s 

defined by the images of Trt (X, Ms ). 

Por convergence, then,it remains only to prove the 

follmdng lemma. 

consists of elements of odd order. 

Since the spectral sequence is an invariant, it is sufficient 

to do this for a favorably chosen resolution. At this point 

I recall the hypothesis that Hil- (y) is free over the ex-

tcrior algebra E generated by 1 Sq • We prove below that 

this allows us to find a resolution such th~t Z = 0 s,t 
for t < 2s + 2. Hence Ht(Ms ; Z2) = 0 for t < 2s + 2. 

and (by Serre's mod C theorems) 

7T" (So 1'1) is an odd torsion group for t < 2s + 2 
t ' s 

Hence 11" t (VS~ ; M ) s is an odd torsion group for t < 2s 

where VSo 
i is a one point union of copies of So. If 

+ 2 

X 

is finite dimensional, we deduce by exact sequence arguments 

that 

Trt(X J Ms) is an odd torsion group for t < 2s + 2 - C J 

where c is a constant depending on X. Therefore 

1T t+r (X, r.1s+r ) is an odd torsion group for 

t + r < 2s + 2r + 2 - Cj for a given s and t, this is 
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true for sufficiently large r. 

Lemrna 3. Existence of a "nice" resolution. 

Remark 1. M is free over E if and only if the 

homology of the module M with respect to Sql as boundary 

operator is o. 

Remark 2. In an exact sequence 

, , , 
o -> M -> 11 -> M -> 0, 

if two of the tel'ms are free over E, then the thh'd is 

also. 

Proof: Remark 1 and the exact homology sequence. 

Remark 3. If is free over E and 

o <-l-l<L c <- ••• 
o <- ° <­s • • • is a resolution, 

then each Zs is free over E. 

Proof: Follows by induction on s, applying 

remark 2 to the sequence o <-Z s-l <- Os <- Zs <- 0 

and the fact that Cs is free over A which qua left 

morolle over E is itself a free E module. 

Remark 4. vIe can choose Os inductively so that 

Z = 0 for t < 2s + 2. s,t 
Proof: Suppose . . . , C s-l chosen such that 

Z = 0 for t < 2s. Choose E-free generators s-l,t 
in 

ators hI' ••• hn 

Z 1 • s- ,2s 
in 

Take corresponding 
1 

C 2 • S inc e Sq ql ' s, s 

A-free gener-
1 

••• , Sq qn 
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are linearly independent, we have introduced no cycles in 

C Introduce no more A-fl'ee generators in s,2s + 1 • 

C than are needed to map onto the remaining E free s,2s + 1 
generators in Z • We therefore have Z = 0 s-1,2s + 1 s,t 
for t < 2s + 2 whatever is done in higher dirnensions. 

I want next to consider products in the spectral 

sequence. In the E2 term of the special case X = Y = SO 

we have the cup products of homological algebra for 

E~,t = Hs,t(A) = Ext~,t(Z2,Z2) • We also have products 

o 0 in 2~r(3,3) ; the product structure is given geometri-

cally by the composition of maps. It is a theorem that one 

can introduce products into the whole of the spectral 

sequence, compatible with these two products in E2 and 

Eoo ' and so that d 
r 

is a derivation, of course. This 

result is already in my paper in the Commentarii Mathematici 

Helveticl [7]. However, the result should be some~hat more 

general. Consider three stable complexes X, Y, Z, so that 

we have three spectral sequences 

ExtS,t(H*(Z),H*(Y)) ===> 2~*(Y'Z) 
s 

ExtS,t(H*(Z),H*(X)) ~ 2rr*(X,Z) 
s 
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One H01l.ld hope that there would be a pairing which pairs 

the f:lrst two sy.>ectral sequences to the third, and vrhich is 

compatible with the composition product. 

and the cup-product in homological algebra. I have never 

written out any details for this generalized case, but I 

believe that Puppc, in Chicago, is preparing a paper VJhich 

will include this. 

My next topic is cohomology operations of the nth 

kind. I will be rather brief because it is not yet certain 

hoVJ far it is necessary to develop the theory. For example, 

for some purposes, you can take the spectral sequence that 

I have already developed, and use the differentials dn : 

as a substitute for cohomology operations of the nth 

kind. It is probably more satisfying to be somewhat more 

general. We have universal examples for primary operations, 

namely Eilenberg-}1acLane objects. It is natural to see 

what we can construct using as our universal examples n-

fold e:~tensions of Eilenberg-MacLane objects. The correspond­

ing notion in the category of spaces would be an iterated 

fibering. '~Te would begin by taking a map f l : Ko -> Kl 

of Eilenberg-MacLane spaces, and then construct the induced 

fibering. In the stable category we take a map f 1 : Ko -> Kl 

and cons truc t 
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K o 

Now we take K2 and construct 

1\ 
f2 
-> K2 

P2 
-> M2 

CJ.2 
-> 

• · • · • 
f Pn Cln 

N: 1 ...lL>K -> H -> n- n n 

••• 

S~ 

SMn_l 

If lve look at this, we see that it is the same sort of thing 

we previously called a IIrealization," because we kept a 

little spare generality in hand for this purpose. (Strictly, 

to fix up tho details, I have to 

that M_l is a "point"; I also 

for s > n.) 1.-Te can look at the 

realization. The first term 

Hom ~ (Co' H-l1-(X)) 

J, d-l1-

I d~~ 

" 

tl 
Hom ~ (en' H-l:- (x) ) 

is 

define Mo to be Ko so 

have K to be a "point" s 
spectral sequence of this 

where I have 

written Cs for H-l:-{Ks ). NO't-J suppose that C is an A-face 

module on generators c i (i = 1, ••• , m): Then an A map 
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" .. f: C -> H"(X) is determined by giving the elements 

f(ci) € Hi}{X). With this interpretation, each homomorphism 
~~ d may be interpreted as a primary operation, from m 

variables to m' variables. Consequently each d2 may be 

regarded as a function from the kernel of one primary opera­

tion to the cokernel of another primary operation. I am go­

ing to offer you the dif.ferential dn as defining an opera­

tion of the nth kind, and I ought to verify that this agrees 

with onels notion of the u.sual procedure with universal 

examples. Our procedure is given by the following diagram: 

1Tt +n_l (X, Mn_l ) 
(q,!, ) 11-1 ,,, 

Tft (X, Moll > subgroup of 

\ )'I \ F = fi~ J = identity 
~ / 

-rT".t+n-l (X, Kn) Eo,t 
n (subgroup of TT t (X, Ko) 

That is, you realize a cohomology m-tuple by a map from 

stx into Ko: you lift this, if you can, to a map, ~, into 
-'t.. -" .. 

the universal example, M 1: you now regard f": C ->H" (M ) 
n- n n-l 

as giving YOll a m'-tuple in Hi~ (M ) 
n-l and you take the image 

., 
H-l:' eX) • of this ro'-tuple by "#~ in This is precisely one's ~ 

ordinary notion of the procedure for defining an operation 

by means of a universal example. One comment is called for; 

I have supposed given the realization consisting of the 

1<1 t. S 
S 

and the K 's. s This supposition involves an irreducible 

element of geometry; for n ~ 3, not every chain complex 
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M fS 
S • 

C.R.F. Maunder has 

developed the theory in this direction. He has defined 

axiomatically the notion that an operation, I, is associ-

ated with a chain complex Cn-> ••• -> Co. He proves, for 

example, that if m is associated 't-Jith Cr -> ••• -> Cl -> Co 

and r is associated with C~ -> ••• -> c{ -> c~, and if 

C = C ' then O:~ is associated with 
0 s , 

C = Ct 

..7' 0 S 
~ct _> C t C -> ••• -> C ••• -> • r 1 s-l 0 

Similarly, he shows that the Spanier-Whitehead dual, c m , 

of is associated with a chain complex cC -> cCl -> ••• ->cC o r 
constructed from 

process. 

-> C o by a well dofined algebraic 
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Appendix to Lecture 4 

The following table gives a Z2 basis for ns,t(A) in 

the range of (s,t) indicated. The following differentials 

are knOl'ln: 

d3 (hOh4) = hOg 

2 2 
d3 (hOh4) = hog 

d3 (hOh2h4) = hOh2g 

2 2 
d3 (hOh2h4) = hOh2g· 

The notation Px implies that this element corresponds under 

a periodicity isomporphism to the element x. 
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5) Theorems of 'p~..!'iodicity and approximation in homological 

algebra. 

Let us begin by contrasting the spectral sequence I 

have developed with the classical method of killing homotopy 

groups, as aTJpJ ied to the calculation of stable homotopy groups. 

Both depend on a knowledge of the stable Eilenbspg-MacLane 

groups Hn+q( 1T, nj G) (n > q) for some rr and G. Neither 

of them is an algorithm. By an algorithm I would mean a 

procedure that comes provided with a guarantee that you can 

always co~pute any required group by doing a finite amount or 

work following the instructions blindly. In the case of the 

method of killing homotopy groups, you have no idea how far 

you can get before you run up against some ambiguity and don't 

know how to settle it. In the case of the spectral sequence, 
s t .. H. ..'I;.. 

the si tuation is clearer: the groups ExtA' (H" (Y), H" (X) ) 

are recursively computable up to any given dimension; what 

is left to one's intelligence is finding the differentials 

in the spectral sequence, and the group extensions at the 

end of it. 

This account would be perfectly satisfying to a 

mathematical logician: an algorithm is given for computing 

Ext1,t (H~:·(Y), H~~(X)); none is given for computing dr. 

Tho practical mathematician, however, is forced to admit 

that the intelligence of mathematicians is an asset at least 

as reliable as their willingness to do large amounts of tedious 

mechanical work. The bistory of the subject shows, in fact, 
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that 't..rheneyer a chance ha.s arisen to show tha.t a differontlal 

dr is no~-zero, the experts have fallen on it with shouts 

of joy - "Here is an interesting phenomenon! Here is a 

chance to do some nice, clean researchl lf - and they have solvod 

the problem in short order. On the other hand, the calcu-
s t lation of ExtA' groups is necessa.ry not only for this 

spectral sequence, but also for the study of cohomolo~J 

operations of the nth kind: each such group can be calculated 

by a large affiount of tedious mechanical work: but the process 

finds few people willing to take it on. 

In this situation, what we want is theorems which tell 

us the ve.lue of the Ext1,t groups. Now it is a fact that 

the Ext~,t groups enjoy a certain limited amount of periodi­

city, and I would like to approach this topic in historical 

order. 

First recall that last time I wrote down a basis for 

Ext~,t (Z2' Z2) for small sand t: 

4 b 4 
0 

h3h o 3 

3 h 3 h 2h 2 
0 o 2 hoh3 

2 h 2 
0 ~ hoh2 h 2 

2 hoh3 

s 1 h hI h2 h3 0 

0 1 

0 I 2 3 4 5 6 7 

t - s -> 
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It WQS implied that Ext1,t(Z2' Z2) = 0 for larger values 

of' s in the range 0 < t - s ~ 7. This is actually a 

theoreM, whlch is proved in [7]. 

Theorem 1. There is a numerical function, r(s), 

such that: 

(i) Ext~ .. t(Z2' Z2) = 0 for s < t < f(s) 

(ii) f(s) ~ 2s 

(iii) f (s + S to) 2:f(s) +f(sl) 

(iv) f(O) = 0, fell = 2, f(2) = 4, f(3) = 6, 1'(4) = 

The published proof of this theorem is by induction, and 

11 

the induction involves Extl,t (M, Z2) for A-modules M 

other than Z2. We consider the exterior algebra E gener-
1 ated by Sq , so that we have an injection 

i: E -> A • 

This induces 

(For example, if M = Z2' then Ext ~,t(Z2' Z2) is a poly­

nomial algebra with ho as its gene~ator. In general, if 

M is a module over E, then sql: If -> M is a boundary 

operator on N and Ext~' t eM .. Z2) '!! Ht - s 00 for s > 0, 

where H~r- denotes the homology with respect to Sql). 

What one proves, then is the following. 
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Thoorem 2. Snppose :t-r = 0 for t < m . with the t , 

samo function f(s) as in theorem 1, the map 

* : Ext1,t (M, Z2) Ex~,t(M; Z2) i : -> 

is an isomorphism for t < m + f(s). 

In the srume paper, I also conjecture that for 

s = 2n (n ~ 2) the best possible value of f(s) is 

f(2n ) = 3- 2n - 1. This conjecture is actually true. As 

a matter of fact, some correspondence with Liulevicius in­

volved me in extended calculations which strongly suggested 

that the best possible function f(s) is given b~ 

l' (4n) = 12n - 1 

f(4n + 1) = l2n + 2 

f(4n + ~) = l2n + 4 

f(4n + 3) = l2n + 6. 

(for n > 0) 

This is actually true, so that the function f(s) which gives 

the "edge" of the E2 diagram is periodic with period 4 in 

s and with period 12 in t. The period in t _ s is 

therefore 8, and. this strongly rem.inds us of Bott' s rc-

suI ts. 

As a matter of fact more is true. ..Not only is tho 

"edge" of the E2 diagram periodic, but the groups near 

the edge are periodic: i.e. in a neighborhood No of the 

line t = 3s, we have HS ' t (A)" Hs+4, t+12(A). 

More still is true. In a bigger neighborhood, Nk , 
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of the line t = 3s" the groups Hs,t(A) are periodic with 

period 4. 2k in s" 12' 2k in t. The union. of these 

nelghborhooc.s, Uk" is the area t < g(s) where 

4s ~ g(s) ~ 6s. (Possibly g(s) = 2£(s)" but I cannot 

give the exact value until I have refined my methods a 

little.) 

Again, these periodicity theorems should not be 

restricted to the case of E xt~' t(Z2" Z2)' We should deal 

".lith Ext !,t (M, Z2)' \,-fe deal with the case in which M 

is free over E, the exterior algebra generated by Sql: 

Theorem 2 shows that this is indispensable in the general case. 

Although this condition is n.ot satisfied by the module Z2' 

periodicity results for Ext s" t (Z A 2' 
from the following formula. 

can be deduced 

E'xt~,t(Z2' Z2) 2§ Ext~,t(.Z2' Z2) + Ext~-l'~(I{A)/A Sql,Z~. 

Hore I(A)/A Sql is a free left module over E. 

Well, nowl let us see somo details. In whnt followa, 

Sql. Sq2, ••• , sq2r A 
r 

will denote the algebra generated by , 

when r is finite; Aco will denote A. Note that 

Ao = E. For our first results, we assur:le that L is a 

loft module over A , that L is free qua left module over r 

Ao , and that L = 0 t fer t < .e • 

Theorem 3. (Vanishinp:) o' Ar ( 
T0rs , t Z2' L) and 

Ext~,t (L, Z2) are zero if t < .e + T(s) where T is tho 
r 
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numerical .function defined by 

T(4k) = 12k 

T(4k + 1) = 12k + 2 

T(4k + 2) = 12k + 4 

T(4k + 3) = 12k + 7 

Theorem 4. (Apuroximution). The maps 

I,,: 
-,~ 

and i~~: Ext~'pt(L, Z2) <- Ext~;t(L, Z2) are isomorphisms 

if 0 < P < r, s > 1 and t < l + T ( s -1) + 2 p +1 • 

I will not give complete proofs, but I will try to 

give some of the ideas. 

a) B It is not too laborious to compute Tor and 

ExtB where B is a small subalgobra of A. For example, 

suppose we consider the case of Theorem. 3 in which r = I 

(so B = Al ' a finite algebra genera.ted by Sql and 

Sq2) and let L = Ao· Than we can make an explicit resolu-

tion of A over 
0 Al ' and we can see that theorem 3 is 

true. 

b) If theorem 3 is true in the special case r = R 

(some fixed value) and L = A , 
0 

then it is true for r = R 

whatever L is. 

In fac t.l if we a.re given theorem 3 for the Ar module 

A 
0' 

then by exnct sequences we can obtain theorem 3 for 
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f. -module r 
then by exact sequences vIe can obtn.in 

theorem 3 for any Ar-module which can be written as a 

finite extension of modules isomorphic to Ao. This is 

su.fficient. 

At this stage "!rle have obtained theorem 3 for the 

case r = 1. 

0) Theorem 4 tends to support theorem 3. In fact, if 

we knovl that 

A A 
• • T .. 1 (Z 
~ .. !.. or t 2' " s, L) -> 'llor s: t (Z2,L) is an isomorphism, 

A 
and tha.t 

Al 
Tor s ,t CZ2' L) = 0, then Tors: t CZ2 , L) = 0 • 

d) Theorem 3 tends to support theorem 4. In fact, 

we consider the map A~ApL --> L and define K to be its 

kernal, so thnt 

o -> K -> Ar€>A L -> L -> 0 

is an exact sequence. Then we have the following diagram 

The vertical map is an isomorphism by a standard result on 

changing rings, which is in cartan-Eilenberg [ 8 J for the 

ungraded case • Also, if Lt = 0 for t < i., then Kt = 0 

for t < .£ + 2P+l . Hence theorem 3 implies that 
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are zero for-

t < £ + 2P+1 + T(s-l) • This implies that i* is an 

isomorphism in the same range. 

Of course, in order to apply theorem 3, it is necssary 

to prove that K is free over AO' and this is one of the 

places where we rely on a firm grasp of the structure of A. 

Given these ideas, it is possible to prove theorems 3 

and 4 simultaneously by induction over the dimensions. The 

details are somewhat tricky, and I will not try to rehearse 

them here. The inference (d) goes snloothly enough; but in 

the inference (c), the conclusion of theorem 4 does not apply 

to the entire range of dimensions which we wish to consider. 

It is therefore necessary to preserve not only the conclusion 

of theorem 4 from a previous stage of induction, but also the 

;method of proof used in (d). 

Theorem 5. (Periodicity) There exists an element 

oor in Ext~,t(Z2,Z2) for S = 2r , t = 3·2r (r ~ 2) 
r 

with the following properties. 

is an isomorphism when L is Ao-free and t ~ U(s) + t 

and U(s) is a numerical function such that 4s ~ U(s) ~ 6s. 

(ii) L*(ror) = (mr _l )2 (This says that the periodicity 

maps for different r are compatible.) 
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(iii) In a certain range, where 

is an isomorphism, the periodicity isomorphism on the left is 

transported by i* to the Massey product operation 

2r 
x --> <x,hO ,hr +1> on the right. 

Remarks. I will try to make this plausible starting 

from the end and working forwards. 

The Massey product <x,y,z> 

xy = 0 and yz = O. The fact that 

is defined only when 
2r 

xho is zero when x 

lies in a suitable range is guaranteed by theorem 3. The 

fact that (for 4 ~ 2) was previously known and 

was proved by introducing Steenrod squaring operations into 

H*(A)! However, it can be deduced from theorems 3 and 4. 

I have next to recall that * H (A) can be defined as 

the cohomology of a suitable ring of co-chains, by using the 
2r 

bar-construction. In fact, h hr+l is the cohomology class 

determined by 

"'"----.. ----'" 
r --2 -times 

Therefore we have a formula 
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id A I 1 * Now cons er i: r -> A and app y to the above 

fornlula. * 2r +1 
We have 1 (~l ) = 0 , whence * p ( 1 c) = 0 and 

defines a class, in for 

t = 3·2r • One checks that mr has the property (iii). 

-~ is actually well defined by the above description. 

We now begin an argument like the former one. 

step (a). The homomorphism 

is an isomorphism for s > O. 

Proof by explicit computation. 

Step (b). The homomorphism 

> (i*-) E tS,t(L Z) Exts+r ,t+12(L,Z2) x - x ~ : x A ' 2 -> 
I 

is an isomorphism for s > 0 if L is AO-free. 

Proof: by taking successive extensions of AI-modules 

isomorphic to AO. (Since the homomorphism 

x -> X(i*~) is natural we can use arguments based on the 

Five Lemma.) 

Step (c). It is now clear that Ext:,t(L,Z2) is periodic 
r 

in the small range where it is isomorphic to 

Ext:,t(L,Z2) • We now extend this result up the dimensions 
I 

by induction. We form the exact sequence 



68 

o -) K-) A ® L -) L -) O. ExtA (A ®A L;Z2) ~ 
r Al r r 1 

ExtA (L;Z2) and this is periodic by step (b). Also, if 
1 

Lt = 0 for t < 1 , then Kt = 0 for t < Lt 4; so we can 

use the inductive hypothesis on K. 

I remark that the reason this proof does not give the 

best value of the function U(s) is that I started with 

calculations over A2 , one could perhaps extract a best 

possible value for U(s). 
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6) Comments on prospective applications of 5), Nork in 

progress" ~tc. 

Once agin" I would like to hang out a large sign 

saying "Prov1sional--Wor·k in Progress." My first remark 

however is a theorem. 

Remark 1. The theorems of the previous lecture allow 

one to put an explicit upper bound on the order of elements 

in 21Tr(So"So). In fact, we have fi1tel'ed 21Tr(So,So) so 

that the composition quotients are vector spaces over Z2' 

and we have put explicit upper bounds on the length of the 

composition series. For large r, the bound on the order of 

elements is apprixlmate1y 2(1/2 r) ; the previous best value, 

due to I. M. James, was approximately 2r for large r. 

Question 1. I've remarked that as soon as you define 

new cohomology operations you are entitled to some dividiend 

in the way of calculation and results. Stable cohomology 

operations of the nth kind are associated with free chain 

complexes over A. The work of the last lecture leads one to 

consider a lot of chain complexes over A which are periodic; 

the fundamental one is 

x_>xSqO"l x_>xSqO,l 
• •• -> A > A ----> A -> ••• • 

In more familiar notation sqO,l = Sq3 + Sq2Sql 
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One can certainly construct cohomology operations 

corresponding to the fundamental chain complex written down 

above; the proof relies on Botts' work. It is also possible 

to construct cohomology operations corresponding to a number 

of other periodic chain complexes; but the general situation 

is not clear. 

Question 2. Behavior of the J-homomorphism. One may 

calculate the groups Ext~,t (Z2,Z2) in a neighborhood of 

the line t = 3s , and it is plausible to conjecture that 

certain of these represent the image of the J-homomorphism in 

dimensions 8k, 8k + 1, 8k + 3. 

Question 3. Consider the spectral sequence 

Ext~,t(Z2,Z2) • Consider the differentials which arrive in a 

neighborhood of periodicity Nk , and originate (i) in a 

neighborhood of periodicity Nt with .e ~ k , or (ii) from 

the region of non-periodicity. Do these differentials show 

periodici ty? (I think it is implausible to suppose that they 

show periodicity with as small a period as that which obtains 

in Nk .) 

Let us make the question stronger. Can one find 
o 0 subgroups of 2~r(S,S) which display periodicity? The 

first periodicity operation should be 

x -) <x" 16 I. , 0) 

(where the bracket is a Toda bracket, and 1.,0 are generators 



71. 

for the O-stem and 7-stem): Further periodicity operations 

might be 

where gk+l is an element of the greatest possible order in 

the (2k+l - 1) stem~ and 2f is the order of gk+l • 

The whole of this question is highly speculative. 

It is quite obscure how one could ever isolate the relevant 

sugroups directly~ without bringing in the machinery 

introduced above. 

Perhaps one can isolate the essence of questions 1 

and 3 in a further question. 

Question 4. What geometric phenomena can one find 

which show a periodicity aud which on passing to algebra 

give the sort of periodiclty encountered in the last lecture? 

The question is wide open. 

Now I want to talk a little about the vector field 

question. It is classical that one can reduce this question 

to studying the homotopy theory of real projective spaces; 

let us recall how this is done. 

One may define a map 

Rpn - l -) 30(n) 

as follows. Choose a base point e in 3n- l • To each point 
n-l y € 3 ~ assign the following rotation: first reflect 

n-l 3 in the hyperplane perpendicular to e J then reflect 
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in the hyperplane perpendicular to y. Slnce y and its 

antipode give the same rotation, we have defined a map 

Rpn-l --> So(n) • 

By attention to detail, you can make the following diagram 

commutative. 

Rpn-l > SO(n) 

1 1 Rpn-l/Rpn-r-2 > 80(n)/80(n-r-l) 

I degree 1 i 
R~n-l / Rpn-2 n-l 8n- l = 8 )0 80(n)/80(n-l) = 

It follows that if we can construct a lifting 

Rpn-l/Rpn-r-2<-:-:-~ Sn-l , then the required r-field exists. 
A. 

Conversely, if the dimensions n and .,., ... are favourably 

. 

disposed, then Rpn-l/Rpn-r-2 is equivalent to SO(n)/80(n-r-l) 

up to the required dimension, so that the existence of the 

lifting A. is necessary and sufficient for the existence of 
n-l an r-field on S • We have to decide, therefore, whether 

the top-dimensional homology class in Rpn-l/Rpn-r-2 

spherical. It is sufficient to show that it is not spherical 

after suspension. 

Let us examine the spectral sequence 
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I E 

S 
ExtS,t 

1 h2 A 

h hI 

t - S-) 

Let us assume that we have n = 2m , r = Bk+4. Then 

the top and bottom cohomology classes in Rpn-l/Rpn-r-2 

correspond to 

to generators h,hl in o Ext • 

00 
in RP These correspond 

Let us calculate 4 2m-Bk-5 Sq x 

whether this is zero or not depends only on the congruence 

class mod B of 2m_Bk - 5, and Sq4X3 = 0, so Sq4X2m-Bh-5 = 0 

This gives a class hh2 in ExtS,t for s = 1, t-s = 2m - Bh - 2. 

By periodicity we get a class hll in ExtS,t for 

S = 4k + 1, t - s = 2m - 2. 

Question 5. Is d hI = 0 for r < 4k + I? Probably the r 

answer is yes. If the answer is no, then hI is not spherical 

anyway, so we donlt need to worry about this question. 

Question 6. Is hI I = drx for r < 4k +1? One hopes 

that the answer is no. 

Question 7. Is d4k+1k l = hll? One hopes that the 

answer is yes. 
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