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ON THE GROUPS J(X)-IV 

J. F. ADAMS 

(Recehwf 6 My 1965) 

$1. INTRODUCTION 

FROM ONE POINT of view, the present paper is mainly concerned with specialising the results 

on the groups J(X), given in previous papers of this series [3,4,5], to the case X = S”. It can, 

however, be read independently of the previous papers in this series; because from another 

point of view, it is concerned with the use of extraordinary cohomology theories to define 

invariants of homotopy classes of maps; and this machinery can be set up independently 

of the previous papers in this series. We refer to them only for certain key results. 

From a third point of view, this paper represents a very belated attempt to honour the 

following two sentences in an earlier paper [2]. “However, it appears to the author that 

one can obtain much better results on the J-homomorphism by using the methods, rather 

than the results, of the present paper. On these grounds, it seems best to postpone discussion 

of the J-homomorphism to a subsequent paper.” I offer topologists in general my sincere 

apologies for my long delay in writing up results which mostly date from 1961/62. 

I will now summarise the results which relate to the homotopy groups of spheres. 

For this one needs some notation. The stable group Lim z,+,(P) will be written rr:. The 
n-.X 

stable J-homomorphism is thus a homomorphism 

J : n,(SO) + ?T,“. 

THEOREM 1.1. Zf r 5 0 mod 8 and r > 0 (so that q(S0) = Z,), then J is a monomorphism 
and its image is a direct summand in x”;. 

Before considering the case r = 1 mod 8, we need a preliminary result. Suppose that 

r 3 1 or 2 mod 8. Then any mapf: Sq+r + Sq induces a homomorphism 

j*: R;(Y) -+ R$(S”“), 

where the functor I?; is that due to Grothendieck-Atiyah-Hirzebruch [lo, 11,2]. We have 

I?W(P) = z, R&Sq+r) = z2. 

THEOREM 1.2. Suppose that r z 1 or 2 mod 8 and r > 0. Then JZ~ contains an element 
p,, of order 2, such that any map f : Sq + * + Sq representing p, induces a non-zero homomorphism 

OfiQp 

The elements pr may be described more precisely than is done in this theorem. We have 

pL1 = q and /12 = qg, where q is (as usual) the generator of ~7. The elements or constitute a 
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Therefore the composite 

A.S2’A.S4’A. ...~z’(S-1)A:S2’“Y-+ I- 

induces an isomorphism of i?,, and is essential for ecery s. 

For f = 1 this result is related to Toda’s sequence of elements rs E ~ls(~-~,~_~ 116,171, 

as will be explained in $12. 

From the point of view of history or motivation, the sequence of ideas in this paper 

may be ordered as follows. Suppose given a map f: X+ Y. We may form the mapping 

cone Y u/ CX; by studying the group Kc( Y u/ CX) and the homomorphism 

cl1 : Kc( Y UJ CX) -+ N*(Y uJ CX; Q) 

we may sometimes succeed in distinguishing Y u, CX from Y v SX; thus we may some- 

times show that f is essential. This method was presumably known to Atiyah and Hirze- 

bruch (ca. 1960/61); it is given in [6] (for the case in which X and Y are spheres) and was 

published by Dyer [13]. See also [19]. We touch on it in $7 of this paper. 

One next realises that in the preceding construction, the possible Chern characters that 

can arise are severely limited by the fact that Kc. Y u/ CX) admits operations Yk. This 

observation leads to a proof of the non-existence of elements of Hopf invariant one (mod 2 

and modp); this proof was given in [6], and was first published by Dyer 1131. We touch 

on it in $8 of this paper. It should be said, however, that the most elegant proof by K-theory 

of the non-existence of elements of Hopf invariant one is somewhat different; see [8]. 

One next realises that the essential phenomenon we have to study is the short exact 

sequence 
R,(Y) +- R,( Y u/ CX) + Rc( SX) 

of groups admitting operations Yk. The class of this short exact sequence yields an element 

of a suitable group 
Ext’(&(Y), R&X)). 

This element gives an invariant off. If Kc( Y uJ CX) is torsion-free this approach is equiva- 

lent to that using the Chern character; if Kc( Y u/ CX) has torsion this approach is better 

than that using the Chern character. We therefore adopt this as our basic approach. It 

has been sketched in [7], and will be fully explained in $3. 

In the above, we can of course use 17, instead of & The use of R, and the use of 

spaces with torsion gives the extra power needed to prove results such as Theorems 1.1, 1.3. 

Once we realise that our invariants should take values in suitable Ext’ groups, certain 

properties of the invariants become very plausible. Our invariants carry composition prod- 

ucts (of homotopy classes) into composition products (in Ext) ($3); they carry Toda 

brackets (in homotopy) into Massey products (in Ext) (§$4,5). These products enable one 

to perform many calculations. 

The arrangement of the paper is as follows. Since we make constant use of cofibre 

sequences 

XL Y+ YUfCX-+SX... , 
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we devote $2 to them. In $3 we define our invariants and give their basic properties. 

$04, 5 are devoted to their properties on Toda brackets, as indicated above. So far the work 

has been done for a quite general cohomology theory; in $$6,7 we specialise to the case of 

l& and I?a. 57 contains the main theorem about the cases in which X and Y are spheres 

and R is torsion-free. $8 contains the relationship between the invariants of $7 and the 

classical Hopf invariant in the sense of Steenrod. $9 considers the case needed for Theorems 

1.1, 1.3, in which X and Y are spheres but Z? is not torsion-free. In $10 we discuss the value 

of our invariants on the image of J. In $11 we work out the general theory of 9$4,5 (about 

Toda brackets) for the special cases which most concern us. In $912 we prove Theorem 1.7 

and discuss related matters; since the same machinery serves to discuss certain 2-primary 

phenomena, we also prove Theorem 1.2 there. In $12 we also give a number of examples 

and applications; the reader’s attention is particularly directed to these, since they provide 

essential motivation. 

Since drafting the body of this paper, I have become aware of Toda’s paper [ 191, which 

has a considerable overlap with the present paper. I am very grateful to Toda for a letter 

about his results. 

Toda defines an invariant 

CHnfk : 7C2n+2k-l(S2”) + Q/z 

which is presumably the same as the invariant ec discussed in this paper. He also defines 

an invariant CH*4mf2h, which is presumably the same (up to a certain constant factor) as 

the invariant ek discussed in this paper. 

To give Toda proper credit for his priority, I offer the following concordance of results. 

Corollary 7.7 of this paper is to be found in Toda’s paper, and is the essential step in the 

proof of his Theorems 6.3, 6.5(i) and (ii) which give restrictions on the values that can be 

taken by his invariants (compare 7.14, 7.15 of this paper). Proposition 7.20 of this paper is 

Theorem 6.5 (iii) of [19]. Corollary 8.3 of this paper is Theorem 6.7 of [19]. The case 

A = C of Theorem 11.1 of this paper is Theorem 6.4 of [19]. Theorem 12.11 of this paper 

is contained$nI6.8 of [19]. 

52. COFIBERINGS 

As explained in the introduction, this paper will make much use of sequences of 

cofiberings. We shall therefore devote this section to summarising some ‘material about 

cofibre sequences, following [15]. We need only deal with “good” spaces; for the applica- 

tions, it would be sufficient to consider finite CW-complexes. 

Let f: X-r Y be a map. We can construct from it a cofibering 

X:Y:Y”,cX. 

Here i is an injection map; and Y uJ CX is the space obtained from Y by attaching CX, 

the cone on X, using f as attaching map. 
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Iterating this construction, we can construct 

Y~o.“,Cx)~(Y”&x)“~CY 

and (setting 2 = Y uf CX) 

Z~+(ZuiCY):(ZuicY)ujcz. 

Now the space (Y uf CX) vi CY is homotopy-equivalent to the suspension SX; and 

similarly, the space (Z Vi CY) Uj CZ is homotopy-equivalent to SY. In order to avoid 

errors of sign in what follows, it is desirable to use the “same” homotopy equivalence in 

the two cases. If we do this, then the map 

k:(YuJCX)UiCY-*(ZuiCY)ujC% 

corresponds to 

-Sf:SX --+ SY. 

(This is easy to check; or see [15, p. 309, Satz 41.) We shall therefore take the following as 

our basic cofibre sequence. 

.f i -Sf 
x+ Y-+ Yu,cxLsx---*sY.. 

This construction has various obvious properties, which we record for use later. 

PROPOSITION 2.1. If f N g, then we can construct the following homotopy-commutative 

diagram, in which all the vertical arrows are homotopy equivalences. 

x~Y:Y",cx~sx~~:sY 

11 ,li i, j jr li 
x-r Y-, Yu,CX -+sx 

1 
-.% I --+ SY 

PROPOSITION 2.2. Given a commutative diagram 

.I 
X--+1 

i;l I 
k 

/’ 

X’-t )” 

we can construct the following commutative diagram. 

These obvious and elementary propositions are special cases of the more general 

results proved in [15, pp. 311-3161. 

PROPOSITION 2.3. Given 

x:r:z, 
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we can construct the following commutative diagram. 
/ i 

X+Y-+ Yu,CX Lx -Sf -+ SI 

‘1 gf’j i’ 1 j' l\ -S(gf)sgl 
x-+z-+z ugfCX+SX -+ sz 

fl ,ll i” 1 j..s.f/ -Sg 11 
Y+z-+zu,cY+sY -+ sz 

This follows from two applications of Proposition 2.2. 

PROPOSITION 2.4. For each r, we can construct the following homotopy-commutative 
diagram, in which all the vertical arrows are homotopy equivalences. 

Sri Sj 

S’Y---+ S’(YUrCX) - -+ sr+‘x 

1 
I I I 

(-1)r 
i ’ i’ 

S’Y---+ (FY) up. C(FX)-+ sr+lx 

This proposition is easy to check, provided we use the “reduced” cone and suspension. 

The map (- 1)’ of S’+l X arises as a permutation of the suspension coordinates. 

$3. DEFINITION AND ELEMENTARY PROPERTIES OF THE INVARIANTS d, e 

In this section we shall define our basic invariants d and e. We shall also establish the 

elementary properties of these invariants. 

We shall suppose given a half-exact functor in the sense of [12]. For example, the 

functor may be one component of a (reduced) extraordinary cohomology theory. More 

precisely, k is to be a contravariant functor defined on (say) the category of finite CW- 
complexes and homotopy classes of maps, and taking values in some abelian category 

[14], say A. If 

XLYLZ 

is a cofibre sequence, then 
i* j* 

k(X) +- k(Y) +- k(Z) 

is to be an exact sequence in the abelian category A. It follows that we may identify 

k(X v Y) with the direct sum k(X) 0 k(Y) in the category A; see [12, p. 11. 

Now suppose given a map f : X+ Y between (say) finite connected C W-complexes. 

We can consider the induced homomorphism 

f*: k(Y) -+ k(X). 

If we take X = Y = S” and take k to be H”( ; Z), then the invariant f * gives us the degree 

off. We therefore regard 
f*: k(Y) -+ k(X) 

as “the degree off, measured by k-theory”. We define 

Kf) = .f * E Hom(k( Y), k(X)). 

Here Hom(M, N) means the set of maps from M to N in the abelian category A. 
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The invariant e(f) will be defined when d(f) = 0 and d(Sf) = 0. In this case we use 

the map f: X-, Y to start the following cofibre sequence. 

XL Y: Y”/CX:SX%Y 

Since we assume that f * = 0 and (S’)* = 0, the functor k yields the following short exact 

sequence in the abelian category A. 
i* jr 

o+li(Y)tk(Y ufCX)ck(SX)cO 

In an abelian category we can define Ext’ by classifying short exact sequences; therefore 

the short exact sequence above yields an element of 

Ext’(k( Y). k(S)). 

We call this element e(f). The letter e stands for “extension”, and goes well with d. 

For example, let us consider the case in which k = A*( ; Z,) and A is the category 

of graded modules over the mod 2 Steenrod algebra. Let us take X = Smf”--l, Y = Sm. 

Given a mapf: Sm+n-l --f S”, we are led to consider the following short exact sequence. 

O+R*(Sm; ZZ)+-IS*(S,“ufemi”; Z2)+IT*(Sm+“; Z2)+-0 

As an extension of modules over the Steenrod algebra, this is completely determined by the 

Steenrod square 
Sq”: H”(S” uf e”‘+“; Z,) -+ Hm+n(S” uf emi”; Z,). 

We therefore recover Steenrod’s approach to the mod 2 Hopf invariant. 

The invariant e(f) may thus be regarded as a “Steenrod-Hopf invariant” in which 

ordinary cohomology has been replaced by k-theory. 

We have just defined 
cl(,f) E Ext’(k( Y), k(X)) 

(if we interpret Ext’(M, N) as meaning Hom(M, N)), and 

e(f) E Ext’(k(I’), k(SX)). 

One would naturally hope to construct a third invariant, which should be defined when 

suitable d and e invariants vanish, and should take values in 

Ext’(k( Y), QS’X)). 

Similarly for a fourth invariant, and so on. However, we will not pursue this line of thought 

any further here. 

In later sections we will give examples and applications of the invariants d and e, 

and develop the resources to do practical calculations with them. For the moment we con- 

sider the elementary properties of these invariants. 

PROPOSITION 3.1 (a). Iff N g, then d(f) = d(g). 

(b) Iff- g and e(f) is defined, the e(g) is de$ned and e(f) = e(g). 

Proof. Part (a) is obvious. Part (b) is proved by applying the functor k to the diagram 

given in Proposition 2.1. 
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We now consider the situation in which we have two maps 

x:u:z. 

We aim to show that the invariants d and e send composition products (in homotopy) into 

composition products, i.e. Yoneda products, in Ext groups. 

PROPOSITION 3.2 (a). We have 

d(gf) = d(f)d(g)* 

(b) If e(f) is dejned then so is e(gf), and we have 

e(g_f) = e(f)d(g). 

(c) If e(g) is dejned then so is e(gf), and we hare 

4gf) = d(Sf)e(g). 

Here statements (b) and (c) use the pairing of Ext’ and Ext’ to Ext’. 

Proof. All the statements about invariants d are obvious. For the rest, we apply the 

functor k to the diagram given in Proposition 2.3, and we obtain the following commutative 

diagram. 
k( Y) + k( Y U,f CX) +- k(SX) 

8’ T T T 1 

k(Z)+k(Zu,, CX)+k(SX) 

1 T T T (SS)' k(Z)+- k(Z u,c Y) +k(SY) 

If e(fl is defined, it is represented by the top row; similarly for e(gf) and the middle row; 

similarly for e(g) and the bottom row. By definition of the products in Ext, this shows that 

4sf) = e(.l)*g” 
in case (b), and 

4s.f) = (V)**e(s) 

in case (c). This completes the proof. 

For our next proposition, we assume that X is a co-H-space, for example, a suspension. 

That is, we are provided with a map 

A:X+XvX 

of type (1, 1). This allows us to define the sum of two (base-point-preserving) maps 

.f,g:X+ Y; 

by definition, f + g is the composite 

A /vs P 
x-+xvx-+YvY-+Y, 

where ,U is a map of type (1, 1) in the dual sense. 

PROPOSITION 3.3 (a). We have 

d(f + g) = d(f) + d(g). 
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(b) Zfe(f‘) and e(g) are dejined then so is e(f + g), and 

e(f + g> = e(f) + e(g). 

In part (b), the sum occurring on the right-hand side is, of course, the Baer sum in 
Ext’. 

Proof. All the statements about invariants cl are obvious. For the rest, we may identify 

k( Y v Y) with the direct sum k(Y) @ k(Y), and k(S(X v X)) with k(SX) 0 k(SX). In this 

way we can identify the sequence 

X(Yv Y,+/c((Yv Y)u,.,~~C(X \/ X))+-k(S(X v X)) 

with the direct sum of the sequences 

k(Y) + k( Y uf CX) +- k(SX) 

k(Y) +-- k( Y ug CX) + k(SX). 

That is: if e(j) and e(g) are defined, so is e(J’ v g), and it can be identified with the “external” 

sum e(f) @ e(g). According to Proposition 3.2, we have 

e(f + 9) = G(f v g)A) 

= (SA)*e(f v g)/l* 

= (SA)*(e(f) 0 e(s))/l*. 
But with our identifications, 

@A)*: k(SX) @ k(SX) -+ k(SX) 

is a map of type (1, 1) in the category A, and 

p*:k(Y)-tk(Y)@k(Y) 

is a map of type (I, 1) in the dual sense. Thus the element 

(SA)*(e(f) 0 e(s))p* 

is the Baer sum of e(f) and e(g). This completes the proof. 

We will now discuss the behaviour of our invariants under suspension. For this pur- 

pose we shall suppose that for some integer r, k(S’X) is known as a function of k(X). For 

example, when we take k(X) = i?,-(X) [lo, 11,2], we shall take r = 2; when we take k(X) = 

R,(X) we shall take r = 8. If we took k(X) = A*(X; 2,) we could take r = 1. More 

formally, we shall suppose given a functor T, from the abelian category A to itself, which 

preserves exact sequences; and we shall suppose given an isomorphism 

k(S”X) z T/;(X) 

natural for maps of X. We shall allow ourselves to identify k(.SX) and T/c(X) under this 

isomorphism. 

Since the functor T preserves exact sequences, it defines a function 

T:Ext’(M, N) -+ Ext’(TM, TN). 

This function is actually a homomorphism. 
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PROPOSITION 3.4 (a). We have 

d(S’f) = Td(f). 

(b) Ife(f) is defined, then so is e(Sy), and we have 

e(S’f) = (- l)‘Te(f). 

Proof. All the statements about the invariant d are obvious. For the rest, we apply 

the functor k to the diagram given in Proposition 2.4 and use the fact that kS’ = Tk. 

We now define stable track groups by 

Map,(X, Yj = Dir Lim Map(S”‘X, S”lY). 
n*m 

We also define stabilised Horn groups in the abelian category A by iterating T and taking 

direct limits; thus, 

Hom,(M, N) = Dir Lim Hom(T”M, T”N). 
n-rso 

Similarly, we define stabilised Ext’ groups by iterating the homomorphism (- 1)‘T and 

taking direct limits; thus, 

Exti(M, N) = Dir Lim Ext’(T”M, T”N). 
“+f.C 

PROPOSITION 3.5 (a). The invariant d defines a homomorphism from Map,(X, Y) to 

Homs(k( Y), k(X)). 

(b) The invariant e defines a homomorphism from the subgroup Ker d n Ker(dS) of 
Map,(X, Y) to Exti(k( Y), k(SX)). 

This follows immediately from Propositions 3.1, 3.3, 3.4. 

The pairing of Ext groups used in Proposition 3.2 are evidently compatible with the 

operations T on Ext’ and (- 1)‘T on Ext’ ; therefore these pairings pass to the limit. With 

this interpretation, Proposition 3.2 continues to give the value of the invariants d, e on a 

composite gf of stable homotopy classes. 

64. MASSEY PRODUCTS IN HOMOLOGICAL ALGEBRA 

In $3 we showed that the d and e invariants map composition products (in homotopy) 

into composition products (in homological algebra). In $5 we shall show that the d and e 

invariants map Toda brackets (in homotopy) into Massey products (in homological alge- 

bra). Of course it is necessary to begin by defining these Massey products, and that is the 

object of this section. 

If we could work in a category containing sufficient projectives, so that we could use 

projective resolutions, the construction of Massey products would present no difficulty. 

Unfortunately, we have to work in a category which is not known to contain enough pro- 

jectives. We have therefore to construct our Massey products without using projectives. 

In a work on homological algebra it would be desirable to show that if we accidentally have 

enough projectives, then the definitions which do not use projectives coincide (up to sign) 
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with those which do use projectives. However, for present purposes we need not discuss 

this question; I hope that the definitions given below will commend themselves by their 

inherent plausibility and by the applications given in $5. 

We shall suppose given four objects L, M, N and P of an abelian category, and three 

elements 
c( E Ext”(L, M) 

p E Extb(M, N) 

y E Ext’(N, P) 
such that 

pz = 0 in Ext’+b(L, N) 

YP = 0 in ExtbfC(M, P). 

Our object is to define the Massey product (y, p, a}, which should be an element of 

Ext n+b+c-l(L* P) 
y Ext a+b-l(L, N) + (Extb+c-l(M, P))sc’ 

Here the group Ext aCb-l(L, N) is to be interpreted as zero if a + b - 1 < 0, and similarly 

for Extb+‘-’ (M, P). It is sufficient for us to consider the cases in which a, b, c and 

a+b+c-lareeacheitheroorl. 

Case 1. b = 1. (Perhaps this should be counted as three cases.) In this case we can 

represent fl by a short exact sequence, as follows. 

O+NiE-irM-tO 

This leads to the following exact sequences, in which the boundary maps coincide, up to 

sign, with multiplication by p. 

Ext”(L, N) f Ext’(L, E) 1, Ext”(L, M): Ext”+‘(L, N) 

Ext’(M, P) : Ext’(E, P) f Ext’(N, P) : Ext’+ ‘(M, P) 

Since Pa = 0 and y/? = 0, we can write SI, y in the form 

;I = jz’, i’ = y’j 

where 
x’ E Ext”(L, E), ‘r” E Ext”(E, P). 

We have only to take the element 

y’a’ E Ext”+‘(L, P), 

It is easy to check that its indeterminacy is 

y Ext”(L, N) + (Ext’(M, P,)u, 
as given above. 

Case 2. b = 0, a + c = 1. Perhaps this should be counted as two cases. They are 

somewhat special, because they are low-dimensional. Suppose first that a = 0, c = 1. Let 
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be an extension representing y. Then the fact that r/3 = 0 allows us to factor p : M + N 

through j; using also the fact that /3a = 0, we obtain the following diagram. 

This yields an element of 

,p 

1’ 
’ i 

I 

/’ /f: 
// /p 

L:M+N 

Hom(L, P) 

(Hom(M, P))x 

The case a = 1, c = 0 is dual. Let 
i 

0 + M -+ E’+ L + 0 

be an extension representing a; then we can construct the following diagram. 

II&NL P 

4 

7 7 

E/’ /’ 

/ 

’ /’ I 
L 

This yields an element of 
Hom(L, P) 

y Hom(L, N) ’ 
Cuse3. 6=0,a=c= 1. Let 

i’ ” 

O+P+FFtN-tO 

be extensions representing a, y. The most convenient way to define an element of Ext’(L, P) 

and check that it has the correct indeterminacy is to chase the element fi E ExtO(M, N) 

back through the following diagram. 

Ext’(L, N) -: Ext’(E, N) .: Ext’(M, N) : Ext’(L, N) 

Y I Y I 
Ext’(M, P): Ext’(L, P) : Ext’(E, P) 

The reader may wonder why we do not place an equal emphasis on the following dual 

diagram. 
i’ ., 

Ext’(M, P) -+ Ext’(M, F) : Ext’(M, N) : Ext’(M, P) 

I 
I 

* a 

Ext’(L, N): Ext’(L, P) 
i’ I i 
+ Ext’(L, F) : Ext’(L, N) 

The reason is that the element obtained from this diagram is the negative of that obtained 

from the first one. To prove this (and also for later use) it is convenient to give a direct 
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construction of the required extension. Let us factor p in the form 

p = j'@ = 4i; 

we obtain the following commutative diagram. 

e 
i' I I ., 4 J 

We now form the maps 

and define 

O-+P+F+N-+O 

(i.0) (4,-i') 

hJ ---+E@F- -+N 

G = Ker(h -0 
Im(i, 0) ’ 

We check that we have an exact sequence 

O+P-+G~L+O, 

yielding an element of Ext’(L, P). By taking merely Ker(S, -j’) or Coker(i, t?), we obtain 

elements of Ext’(E, P) and Ext’(L, F). It is now easy to check that these are precisely the 

elements we want in chasing round the upper diagram, and their negatives are the elements 

we want in chasing round the lower diagram. 

Finally, let us suppose given a functor T from our abelian category to itself, as in $3 

above. Then it is clear that all the constructions above are compatible with T. 

55. TODA BRACKETS, I 

In this section we shall show that the d and e invariants send Toda brackets (in homo- 

topy) into Massey products (in homological algebra). For this purpose we shall generally 

suppose given four CW-complexes W, X, Y and Z, and three maps 

f 9 h 

such that hg - 0, gf- 0. 

W-+X-+Y-+Z 

First suppose given a specific homotopy 

I:1 x w+ I 

such that l(0, w) is constant and 
1(1, w) = gfw. 

Then we can define a map 
G:Xu/CW+ Y 

by 
G(x) = g(x) (x E X) 

G(t, w) = I(r, w) (t E I, 1v E W). 

Again, we can define a map 
F:SW+ Yu,CX 

by 
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These maps figure in the following diagram. 
sy 

xurcw Yu,CX 

I 

X +Y 

Here the two triangles are homotopy-commuyative, and the parallelogram becomes homo- 
topy-commutative if one inserts the map 

-l:SW+SW. 

If we suppose given also a specific homotopy hg - 0, we can construct similarly the 

right-hand half of the following diagram. 
Sf se 

SW -+ SW -+ SY 

X +Y +Z 

The Toda bracket {h, g,f} is the comiosite 
h 

HF:SW+Z. 

(5.1) 

LEMMA 5.2 (a). Suppose that e(Sf) and e(g) are defined. Then a homotopy gf - 0 is such 
that e(F) is deJCined, if and om’y ifit is such that e(G) is de$ned. 

(b) Suppose that e(Sg) and e(h) are defined. Then a homotopy hg N 0 is such that e(r) 
is defined ifand only ifit is such that e(H) is defined. 

Proof. We have the following diagram, in which the columns are exact and 
j*F* = -G*i*. 

W-9 

(-Sf)’ 
1 

k(SW) F* 

1 

- k(Y u,CX) 

j* 
I 

i* 

k(Xu, CW) z k(Y) 
I 

I 8’ 

k(X) 
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According to the data, j* is mono and i* is epi. Therefore F* = 0 if and only if G* = 0. 

Similarly for (SF)* and (SG)*. This proves part (a); substituting X5 YtZ for 

IV: X > Y, we obtain part (b). 

We can now state the main result of this section. 

THEOREM 5.3 (i). Suppose that e(f) is defined. Then 

d{h, g,f> = -{e(f), d(g), d(h)}. 

(ii) Suppose that e(g) is defined. Then 

d{h, g,f> = {d(Sf), e(g), d(h)}. 

(iii) Suppose that e(h) is defined. Then 

d{h, gJ> = - (d(Sf), d(Sg), e(h)). 

(iv) Suppose that e(Sf) and e(g) are defined, and that we only ‘consider homotopies 
gf m 0 such that e(F) is defined (or equivalently, by Lemma 5.2 (a), such that e(G) is defined). 
Then e(h, g, f} is defined and 

e{h, g,f> = {e(Sf), e(g), d(h)). 

(v) Suppose that e(Sf) and e(h) are defined. Then e{h, g, f} is defined and 

e{h, q,fI = -{e(V), d(Sg), e(h)). 

(vi) Suppose that e(Sg) and e(h) are defined, and that we only use homotopies hg N 0 
such that e(H) is defined (or equivalently, by Lemma 5.2 (b), such that e(Y) is defined). Then 
e{h, g, f} is defined and 

e{h, gJ1 = - {d(S’f), e(Sg), e(h)). 

Proof. We tackle first the three cases in which the Massey product is defined by case 
(1) of $4, viz. the cases (ii), (iv) and (vi). For this purpose the objects L, M, E, N and p 
of $4 case (1) take the following values. 

L M E N P 
Case (ii) k(Z) k(Y) k( Y ug CX) k(SX) k(SWj 
Case (iv) k(Z) k(Y) k( Y ug CX) k(SX) k(S2 Wj 
Case (vi) k(Z) k(S Y) k(S( Y u, CX)) k(S2X) k(S2 W) 

It is to be noted that in case (vi), the invariant e(Sg) is defined to be the short exact 

sequence 
i’* 

k(SY)+--- k(SY uss CSX) z k(S’X); 

but by Proposition 2.4, this is the same as 

(SO* -WY 

k(SY)+----- k(S( Y ug CX)) - k(S2X). 

We have now to construct 

a’ E Ext”(L, E), y’ E Extc(E, P) 
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as in 44 case (1). For this purpose we give the following values. 

I’ I 

Case (ii) cl(H) &) 

Case (iv) d(H) e(F) 
Case (vi) e(H) - d(SF) 

The fact that these values have the required properties is proved by applying Propo- 

sitions 3.1, 3.2 to the formulae 

Hi N Ii, jF - Sj; (Sj)(SF) - S’f 

where i, j are the maps appearing in 

r-: Yv,CX-LX. 

Using Proposition 3.2 again for the composite HF, we find the following results. In 

case (ii), d(HF) represents the Massey product. In case (iv) e(HF) is defined, and represents 

the Massey product. In case (vi) e(HF) is defined, and -e(HF) represents the Massey 

product. This completes cases (ii), (iv) and (vi). 

We tackle next the two cases in which the Massey product is defined by case (2) of $4, 

viz. the cases (i) and (iii). For this purpose the objects L, M, E, N and P of $4 case (2) 

take the following values. 
L M E N P 

Case (i) k(Z) k(Y) k(X uJ C W) k(X) k(SW) 
Case (iii) k(Z) k(=‘) k(Z uh CY) k(SX) k(SW) 

We have now to construct diagrams as in $4 case (2). The appropriate diagrams are 

obtained from Diagram 5.1, and are as follows. 

Case (i) k(SW) 

Case (ii) 

w> 

(.%7)’ (S/Y 
k(SY) --a k(SX)-+ k(S W) 

i’ I 
i* 
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In both cases we see that -d(HF’) represents the Massey product. This completes 

cases (i) and (iii). 

Finally, we tackle case (v). We first check that e(HF) is defined. The fact that (HF)* = 0, 

under the hypotheses given, follows by chasing round the following commutative diagram, 

in which the columns are exact. 
r* 

I<(SX) - k(Z Uh c Y) 

(SW 
I 

i* 
- (HF)' -- k(Z) 

jr 1 I h* 
G* 

k(X u/ CW) -- .vY) 

Similarly for the fact that (S(HF))* = 0. 

We now recall that in case (v) the Massey product is defined by case (3) of 54. For this 

purpose the objects considered in $4 take the following values. 

L = k(Z), M = k(SY), N = k(SX), P = k(PW), 

E = k(Z Uh CY), 

1 = e(h), B = (Q)*, y = e(Sf). 

We start with the element -e(HF) in Ext’(L, P). Its image in Ext’(E, P) is -e(HF)i*. By 

Proposition 3.2 this is 
- e(iHF) = e(r . Sf) 

= e(Sf). r* 

= 7.l-*. 

But the element I* in ExtO(E, N) projects to (Sg)* = /I in ExtO(M, N). Therefore -e(HF) 

qualifies as a representative for the Massey product. This proves case (v), and completes 

the proof of Theorem 5.3. 

Perhaps it should be pointed out that Theorem 5.3 is consistent with the behaviour 

of d, e under suspension S’ (as in §3), because of the behaviour of Toda brackets under 

suspension : 
Y(/z, g,f} c (- l)‘{S’h, S’g, S’f). 

In our applications r will always be even, so the signs (- 1)’ can be forgotten, 

$6. AN ABELIAN CATEGORY 

The construction of $3 requires a half-exact functor k taking values in an abelian 

category A. In the applications we shall take k(K) to be the Grothendieck-Atiyah-Hirze- 

bruch group R,,(X) [lo, 1 I] equipped with its operations Yk [2]. We shall therefore need 

to consider I?,,(X) as an object in a suitable abelian category A. Actually the category A 

will depend on A, where A = R or C; but we shall not display the symbol A in the nota- 

tion. It is the object of this section to define the category A. 
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By definition, an object of the category A is to be a finitely-generated abelian group 
M provided with endomorphisms 

Y’:M+M 

(one for each integer k) and satisfying the following axioms. 

(6.1) y’k.y’ = yk[ 

(6.2) Y’o=O, Y”=l and (ifh=R)Y-‘=l. 

(6.3) For each x E M and y E Z, the mod q value of Y’“x is periodic in k with period 
qe for some e = e(x, q). 

In this axiom, and below, the statement ‘f(k) is periodic in k with period q”’ means 
simply “kI = k2 mod qe implies f(k,) =f(k,)“. It is not asserted that qe is the smallest 
possible period. In particular the condition is true for q = 0 in a trivial way. 

By definition, a map in the category A is to be a homomorphism 0 : M+ N of abelian 
groups which commutes with the operations Yk. 

EXAMPLE 6.4. The functor I?,, associates to each finite connected CW-complex X an 
abelian group Z?,,(X) provided with endomorphisms Yk, and associates with each map 
f : X 4 Y an induced homomorphism 

f*: R,(Y) -+ R,(X). 

The functor R,, takes values in the category A = A(A). In fact, axioms (6.1) and (6.2) are 
satisfied, according to [2 Theorem 5.1 (v), (vii)]; and axiom (6.3) is satisfied, according to 
[5 Theorem 5.11. 

PROPOSITION 6.5. The category A defined above is an abelian category, in the sense of 
[14, Chapter IX]. 

The only point which requires detailed proof is the following. 

LEMMA 6.6. Zf M is an object in A, and N is a subgroup of M closed under the operations 
Yk, then N satisfies axiom (6.3). 

Proof. This follows the lines of [5 Lemma 6.51. Consider the subgroup S, of elements 
x in M such that q’x E N. This an increasing sequence of Z-submodules in the finitely- 
generated Z-module M, therefore convergent. That is, there exists t such that x E M, 

4 l+rx E N imply q’x E N. Now we use axiom (6.3) for M; given y E N, there is an f such 
that the value of Y”y in M/q”lM is periodic in k with period q(‘+‘)‘. That is, if 
k E 1 mod qfr+l)‘, we have 

yky - y*y = q’+‘x 

for some x in M. By our choice of t, this shows that 

Yky - Y’y E qN. 

We have only to take e = (t + l)J This completes the proof. 

In $3, we assumed that k(S’X) could be calculated in terms of k(X) by a functor T 
from A to A. It is clear what functor T we should take in the category A described above. 
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If M is an object in A, then the abelian group underlying TM is the same as that underlying 
M, but the operation Yk in TM is k*’ times that in M (where r = 2 if A = C and r = 8 if 
A = R). It is clear that these new operations satisfy axioms (6.1), (6.2) and (6.3). Similarly, 
if f: M-a N is a map in A, then Tf is to be the same homomorphism as f; this clearly 
commutes with the new operations. 

It is now clear that we have an isomorphism 

&(S’X) EJ TZ?,(X) 

natural for maps of X; see [2 Corollary 5.31. 

The theory given in 993-5 can now be applied to the functors k = I?, and k = &. 

97. AN INVARIANT DEFINED USING THE CHERN CHARACTER 

We are now in a position to apply the theory given in $53-6. To give applications, we 
shall begin by taking the spaces X and Y to be spheres of suitable dimension, so that we 
obtain information about stable homotopy groups of spheres. We shall write d,, e, for 
the invariants obtained by taking k = I?,, where A = R or C. 

We start with a preliminary discussion of the invariants d,, (7.1, 7.2). Next we show 
that the invariant ec can be described in a more elementary way using the Chern character. 
As remarked in the introduction, there is considerable overlap at this point with work of 
Dyer [13]. We will discuss the relationship between e, and the invariants dR, e, (7.14, 
7.18). We will also give substantial information about the values taken by these invariants 
(e.g. 7.15, 7.16). There remain certain cases in which the invariant eR is independent of 
ec; we postpone these cases to $9. 

We begin by considering the invariant d,,. Let 0 be an element of ns; choose a repre- 
sentative map 

f:Sq+*_)Sq 

for 8. A priori, 

d,(f) =j* : I?*(sy + l?*(sq+‘) 

depends on the residue class of q (mod 2 if A = C, mod 8 if A = R). I claim that it is 
sufficient to consider the case q z 0 (mod 2 if A = C, mod 8 if A = R). In fact, suppose we 
know d,,(f) in this case. Let P be a point; then Rz(Sq) is a free module over K:(P), on one 
generator which lies in I?x(Sq) = R,,(Sq). Therefore 

d,(f) =f* : If;(Y) + X;(Sq+y 

determines 
f* : I?;ysy 4 l?,f(Sq+r), 

which is the same as 

d,(S’f) = (S’f)* : I?;(Sq+t) + R:(Sq+t+r). 

PROPOSITION 7.1. dh is zero on $ for r > 0 unless A = R and r s 1 or 2 mod 8. 
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First proof. By the above argument, dA defines a homomorphism from rcz to G, where 

i 

Z ifA=Candr=Omod2 

G= o 
orifA=Randrr0,4modB 

ifA=Candr=lmod2 
or if A = R and r E 3,5,6,7 mod 8. 

Since rrs is a finite group, d* must be zero. 

Secondproof. It is sufficient to consider the case of a map f: Sq” + Sq, where q, r are 

divisible by 2 if A = C, by 4 if A = R. Then the groups R,,(Sq), I?,,(Sq+‘) are Z, and their 

operations Yk are given by 

Y’x = kfqx, \y’sx = k+(q+rlx 

respectively. If r > 0, the only homomorphism commuting with the operations is zero. 

We now consider the case A = R, r E 1 or 2 mod 8. We take as our basic invariant 

the homomorphism 
d ,:7&Z, 

obtained by considering maps 
f: sq+r-+ S? 

with q E 0 mod 8. (It is understood, of course, that if we later wish to apply the theorems 

of $93, 5 we shall still have to use the invariant dR appropriate to spheres of the dimensions 

which actually arise). 

THEOREM 7.2. Assume r z 1 or 2 mod 8 and r > 0. Then the invariant 

d, : z; -+ Z2 
is an epimorphism; we have 

$ = Z, + Ker d,, 

where the subgroup Z, is generated by fir. 

This theorem includes Theorems 1.2 and 1.4. Its proof is deferred to $12. 

We will now give an elementary construction, using the Chern character, for an in- 

variant which we will later prove equivalent to ee. This invariant has already been described 

in [6, 131. See also [19]. 

Suppose given a map f: SZnml + Szq, where n > q > 0. If A = R we assume that n 

and q are even. We use f to start the following cofibre sequence. 

S Zn- 1: s24 f s24 “J e2n L S2” ._I?: s2q + 1 

Applying &, we obtain the following exact sequence. 
i* 

0 +-- &p) + R*(Pq Uf 2”): R,(P) co 
EZ EZ 

The group R,,(S2q uJ e’“) is therefore Z + Z; we can choose generators <, 9 so that c 

projects to the generator of R,(S2q), and v is the image of the generator in R,(S”‘). 

As in 141, we write chc for the Chern character 

ch : K,(X) --f H*(X; Q), 
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and ch, for the composite 

Let 
KG) -: 

Cl! 

K,(X) --f H*(X; Q). 

41 

hzq E Hzq(SZq uf ezn; Z) 
h2” E H2”(Szq uJ e2”; Z) 

be cohomology generators, corresponding under i*, j* to the generators in Hzq(Szq; Z), 

Hz’(S2”; Z). Then in H*(Szq u,~ e’“; Q) we must have formulae of the following form. 

(7.3) 
C/l i” = u h24 + 10 A. 2rl . 2n h2” 

ch,g = a2,h2” 

Here we have 

i 

1 ifA = C and I’ = 0 mod 2 
a,= lifh= Randr-Omod8 

\2 ifA = R and r = 4 mod 8. 

(The coefficient a,, is introduced into the term 3.a2,h2” for technical convenience). The 

coefficient A = A(f) is some rational number. Of course, A depends on the choice of 5; we 

can replace t by 5 + NV, where N is any integer; this replaces 3, by A + N. To obtain an 

invariant off we have therefore to consider the coset {A(f)} of A(f) in Q/Z, the rationals 

mod 1. 

EXAMPLE 7.4. Take A = C and take f to be the Hopf map from S3 to S’. Then S2 uJ e4 

is CP’, the complex projectice plane. We may take (; to be the canonical line bundle minus 

the trivial line bundle. Then 

ch< = eX - 1 = x + +.x2, 

If Acre x is the cohomology generator. Thus use hare i. = 3 and {J.(f)> = + mod 1. 

It is easy to establish the properties of the invariant (A(f)} directly, by following the 

pattern of $3; but in fact this is not necessary, as we will establish that the invariant {n(S)} 

is equivalent to the invariant e(f) introduced in $3 (see Proposition 7.8). We will first 

show that the invariant {A(f)> determines e(f), by using the Chern character to compute 

the operations Yk in S2q uI e’“. 

PROPOSITION 7.5. With the notation itztroduredabore, the operations Yk in R,,(S2q u, e*q) 
are given by the following formulae. 

(7.6) 

Proof. Since 
c/t,: f?,,(S2q u/ e2”) -+ H*(S2q u/ e2n; Q) 

is monomorphic, the formulae can be checked by applying ch, to both sides, using (7.3). 

To evaluate ch,Ykt( one uses [2 Theorem 5.1 (vi)]. 

COROLLARY 7.7. The rational number A has the form z/k, where .z E Z and h is the highest 

common factor of the expressions k” - kq as k runs ocer Z. 

This follows immediately, since the coefficients A(k” - hq) must be integers. 
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In order to discuss the invariant e(f) we must now compute the appropriate Ext group. 

We write M, N for the objects R,,(S2q), I?A(S2n) of the abelian category A; thus the abelian 

group underlying A4 is Z and its operations are given by 

‘I!‘x = kqx; 
similarly for N, in which 

Ykx = k”x. 

The following proposition computes Ext’(M, N). 

PROPOSITION 7.8. There is a monomorphism 

O:Ext’(M, A’) + Q/Z 
such that for any map 

f :s2n-1 _+s24 

we have 
e(e(_f)) = (W)). 

The image of 8 is the subgroup of cosets {z/h}, where z, h are as in Corollary 7.7. 

The following proposition computes Extk(M, N). 

PROPOSITION 7.9. There is a monomorphism 

0,: Ext;(M, N) + Q/Z 

such that for any map 
f: szn- 1 _+ s24 

we have 
Ue(.f)) = W)l. 

The image of 8s is the subgroup of cosets {z/m(t)}, where z E Z, t = n - q, and the numerical 
function m(t) is as in [4 $21. 

The explicit definitions of 0,8, will be given during the course of the proof. We 

begin by explaining the use of factor sets in studying our extensions. 

Suppose given an extension 
OtM+EtN+O 

in the category A, where N, A4 are as above. Then we can choose generators 5, q in E so 
that 5 projects to the generator in M and q is the image of the generator in N. The opera- 

tions in E must be given by formulae of the following form. 

(7.10) 
‘Pki = kq< + c(k)q 
Y?tj = k”rl 

The integers c(k) constitute a “factor set” describing the operations Yk in the extension E. 

LEMMA 7.11. This factor set has the form 

(7.12) c(k) = A(k” - kq) 

for some Iz E Q. 

This lemma shows that the “abstract” algebraic extensions are described by the same 
formulae that we have already found in the “concrete” topological situation. 
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Proof of Lemma 7.11. By Axiom (6.1) we have in E the relation YkY’ = Yk’. This 
yields 

c(H) = c(k)l’ + c(l)k”. 
Interchanging k and I, we find 

c(kl) = c(l)k’ + c(k)/“. 

Choosing I so that 1” - lq # 0, we find 

c(k) = 
c(l)(k” - kq) 

1” - 14 * 

That is, 
c(k) = A(k” - kq) 

for some rational 1. This proves the lemma. 

If we replace g by c + NV, we replace the factor set c(k) by c(k) + N(k” - kq). This 
replaces L by L + N. 

It is now clear how to define 
0 :Ext’(M, N) + Q/Z; 

by definition, the function 8 will assign to any extension E the coset {J,} in Q/Z given by 
formulae (7.10) and (7.12). The equation 

e(e(f)) = {4_f)> 

follows immediately by comparing formulae (7.6), (7.10) and (7.12). 

We have to remark that 0 is a homomorphism; in fact, it is not hard to check that the 
Baer sum in Ext’(M, N) corresponds to addition of factor sets, i.e. to addition in Q/Z. 
It is also clear that 0 is a monomorphism. 

It remains to discuss the image of 8. It is clear that in Lemma 7.11 the rational number 
1 has the form z/h, as in Corollary 7.7. We require the converse result. 

LEMMA 7.13. Each rational A of the form z/h arises by formulae (7. lo), (7.12) from some 
extension E and some choice of 5. 

Proof. We use the formulae (7.10) and (7.12) to define operations Yk on the free abelian 
group generated by 5 and q. We easily check that these operations satisfy axioms (6.1) to 
(6.3). This gives the extension E required. 

This completes the proof of Proposition 7.8. It remains to check that our proceedings 
are compatible with suspension. We easily check from our formulae that if M and N are 
as above, then the following diagram is commutative. 

Ext’(M, N) 

Therefore 8 passes to the limit and defines a monomorphism 

8, : Ext;(M, N) + Q/Z 

such that &(e(f)) = V(f)>, as required. It remains to discuss the image of &. Let n and q 
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tend to infinity so that their difference n - q = t remains constant. Then according to 

[4 $21, the integer h increases, and ultimately attains a constant value, namely m(t). This 

completes the proof of Proposition 7.9. 

We shall now regard our invariant e(f) as taking values in the rationals mod 1, in the 

case under discussion. We repeat that this is the case X = S*“-i, Y = S2q, where n and q 

are even if A = R. 

At this point we possess a choice of invariants defined on the r-stem z”, for r E 3 mod 4. 

In fact, by considering eR(f) for maps f: S2q+r -+ S2q with 2q E 0 mod 8 we obtain one 

invariant, say ek; by considering eR(f) for maps f: S2q+’ -+ S2q with 2q E 4 mod 8 we 

obtain another invariant, say e& We also have the invariant e&f) for mapsf: S2q+r + S2q. 

We must discuss the relations between these invariants. 

PROPOSITION 7.14. If r E 7 mod 8 thm 

If Y E 3 mod 8 then 

e% = 2ec = 4ek :nf -+ Q/Z. 

Proof, Consider the following diagram. 

0 c R,(S2q) t I?~(.S*~ uJ e*“) +-- R,(S*“) +-0 

I 
c’ 

I 
c 

I 
c” 

0 t R,(S24) +- R,(S2q uJ e’“) +-- R,(S*“) t-0 

Let us identify I?*(S*3 with Z; then the map c’ is multiplication by 1 if 2q z 0 mod 8, by 

2 if 2q E 4 mod 8. Similarly for c”. So if 2q E 0 mod 8 we have 

+(f) = c”. edf); 
if 2n z 0 mod 8 we have 

eR(f) = e=(f). c’. 

Similarly, consider the following diagram. 

0 i- Rc(S*ll) +- RC(S2q uI e*“) +- R,(S*“) t-0 

I 
r’ 

I 
r 

I 
r” 

0 +- R,(S2q) +- I?,(S*’ uf e*“) +- R,(S*“) +-0 

This is a diagram in the category A, since r commutes with ‘I” [9]. The map r’ is multipli- 

cation by 2 if 2q s 0 mod 8, by 1 if 2q = 4 mod 8. Similarly for r”. So if 2q s 4 mod 8 

we have 

eR(.f) = r”e,(f): 
if 2n s 4 mod 8 we have 

cc(f) = I. r’. 

This yields the results stated; actually it gives two proofs for each. 

We will now describe the values taken by the invariants considered in Proposition 7.14. 
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Inspecting Toda’s tables [18, pp.186-1881 we see that 

ek: 7$ + 2&, 

ek : ns --) Zz4e 
and 

ek: nsl --) Go4 

are isomorphisms, while 
ek: rrS5 + Z4s0 

and 
ek: nfg + Z,,, 

are epimorphisms with kernel Z,. Toda gives the elements t/lc in $, and C? E (v, v + E, a) 
in 7~:~ as generating Zz summands; these elements are annihilated by e;, as we see using 
Proposition 3.2 and Theorem 5.3 (v). 

We have still to describe the invariant e, on the r-stem for r z 1 mod 4. In this case 
the integer m(t) occurring in Proposition 7.9 is 2, and so ec gives a homomorphism from 
rcs to Z,. We have already remarked that if r = 1 mod 8 the invariant dR gives a homo- 
morphism from rrf to Z,. 

THEOREM 7.18. rf’r = 1 mod 8 we-have 

ec = d,:rc~+Z2. 

The behaviour of dR has been described in Theorem 7.2. The proof of this theorem is 
deferred to $12. 

For completeness we describe the value of this invariant on the image of the J-homo- 
morphism. 

PROPOSITION 7.19. Suppose Y = 1 mod 8. Then the composite 

e,J = d,J: n,.(SO) + Z, 

is an isomorphism for r = 1 and is zero for r > 1. 

For r = 1 the J-homomorphism becomes an isomorphism from n,(SO) = Z, to 

7~: = Z2. The value of dR on rrf is well known, and the value of ec is given by Example 7.4. 
For r > 1 the proof of this proposition is deferred to $10. 

PROPOSITION 7.20. Zf r G 5 mod 8 we have 

ec=O:7$+Z2. 

This will follow immediately from Proposition 7.1, by using the following lemma. 

LEMMA 7.21. Suppose given f: SZq+’ + Szq with 2qEOmod8 and r_=lmod4. If 
dR(f) E 0, then e,-(f) = 0. 

proof. Consider the following diagram. 

~,(~2~ir)11WR(S2q)+WR(S2qyle2q+r+1)+RR(S211+’+’) = Z, or 0 

I I 
z 

1 
r?,(S2q+r)~RC(S2q)tI?C(S2qufe2q+r+1)tRC(S 2q:r+l)=Z 

1 

If f * = 0, the diagram provides a splitting of the extension ec(n. 
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88. RELATION WITH THE HOPF INVARIANT 

In this section we shall establish the relation between the invariant ec discussed in 87 
and the Hopf invariant (mod 2 or modp) in the sense of Steenrod. As mentioned in the 
introduction, this leads to a proof, first published by Dyer [13], of the non-existence of 
elements of Hopf invariant one (mod 2 or modp). 

We first recall the definition of the Hopf invariant in the sense of Steenrod. As in 97, 
we take a map f: S2n-1+ Szq and form Szq u / e”‘. Let p be a prime; and suppose that 
n-q=k(p-l), h w ere k is an integer. Then in H*(Szq u, e’“; ZP) we have a formula 
of the following form. 

(8-l) Pkphzq = pph2 1 

Here Pk is the Steenrod reduced power (interpreted as SqZk if p = 2); the homomorphism 

p: H”(X; Z) --) 25*(X; Z,) 

is induced by the quotient map Z + Z, of coefficients; the classes hzq and /z2” are generators 
in H*(S’” uI e”‘; Z), as in $7; and ,U is some element of Z,. 

It is easy to see that ,U is an invariant off. We will now show that the value of p is 
determined by et(f). For this purpose we define Q6 to be the additive group of rationals 
with denominators prime top; then we have a unique homomorphism p’ : Q; -+ Z, extending 
the quotient map Z + Z,. 

PROPOSITION 8.2. We have 

pkec(f) E QI, 

P = -P’(Pkec(f)). 

Proof. Formula (7.3) states that 

cht = hzq + Ah’“, 

where e,-(f) = {A.}. We now appeal to [l, Theorems 1, 21. The statements of this paper 
involve a further numerical function; we set 

M(r) = r-j pp- l’. 
P 

(This function is written m(r) in [l], but it is different from the function m(t) of [4 423.) 
In our application, we take the integer “r” of [l] to be k(p - 1). Theorem 1 of [l] now 
states that the class M(r)Ah2” is integral; that is, M(r)2 E Z; thus pkL E QL. Moreover, in 
[l, Theorem 21, the class “chq,et” must be hzq, and the class “~h~,~t” must be M(r)Ah2”. 

Thus [I, Theorem 2 part (5)] gives 

M(r) 
p(M(r)Ahzn) = pk X(Pk)phzq. 

Here x means the canonical anti-automorphism of the Steenrod algebra. But in the complex 
Szq vf e”’ decomposable Steenrod operations are zero; thus 

X(Pk)phzq = - Pkphzq. 

Since M(r)/pk is an integer prime to p, this leads at once to the result given. 
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COROLLARY 8.3. The Hopf invariant in the sense of’ Steenrod is zero except in the 
following cases; 

(a) p = 2, k = 1, 2 or 4; 

(b) p is odd, k = 1. 

It is (of course) classical that non-zero values can occur in the exceptional cases given. 

Proof. According to Proposition 7.9, we have e,-(f) = {z/m(t)} where z E Z and 

t = k(p - 1). We have only to check that m(t) contains the prime p to the power (k - 1) 

at most-except in the exceptional cases. This follows from the explicit definition of m(t) 

given in [4, $21. 

COROLLARY 8.4. The stable group x”;,_~ contains an element M with pee = 0 and 
et(a) = - l/p mod 1. 

In fact, thep-component of rr;,- j is known to be Z,; and it is known that we can choose 

a generator x whose Hopf invariant is 1 modp. 

The same argument shows that we can find elements in the 2-components of ~7, rrs 

and rcf whose ec-invariants are 4 mod 1, $ mod + and & mod 4. 

99. THE INVARIANT Ed ON THE r-STEM FOR r -0,l mod8 

In this section we will add to the discussion of $7 by discussing the invariant eR as it 

applied to maps f: Szq+’ -+ S2q with r s 0 or I mod 8 and 2~ = 0 mod 8. The results are 

stated in Theorems 9.4, 9.5. 

There are of course other possibilities for the dimensions of the spheres; one of them 

will actually arise in the proof of Proposition 12.17. The earnest student may consider 

the e,-invariants of maps f: S”-’ -+ S’, where n, t run over the congruence classes 0, 1, 

2 and 4 mod 8, so obtaining 16 cases. He will find that all the resulting invariants are 

determined by those we consider in this paper. 

We will begin by computing the Ext groups which arise in our case. As before, let M 

be the object of the abelian category A in which the underlying group is Z and the opera- 

tions are given by 

‘Ic’~x = k4s. 

Let N be the similar object in which the underlying group is 2 and the operations are given 

by 

‘I”x = k”x. 

Let N’ be the quotient object N/vN, where v is some positive integer; thus the abelian 

group underlying N’ is 2,. We shall consider only the case A = R, and so we assume that 

q and n are even. 

We have already computed Ext#4, N), which is a cyclic group (Proposition 7.9). 

The next result computes Exti(M, N’). 
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PROPOSITION 9.1. The quotient map N + N’ induces an isomorphism 

Ext$(M, N)/v Ext;(M, N): Ext;(M, N’). 

It follows that we may represent E.&M, N’) as the group of rationals z/m(t) module 1 
and v/m(t), where z E Z and t = n - q. 

Proof. The exact sequence 

O+N+N-+N’-*O 

induces an exact sequence 

Ext’(M, N): Ext’(M, N) -+ Ext’(M, N’) 

and so (passing to direct limits) an exact sequence 

Ext;(M, N) : Ext;(M, N) -+ Ext;(M, N’). 

All that is required is to show that the map 

Ext;(M, N) -+ Ext;(M, N’) 

is epi. By splitting N’ into p-components, we see that it is sufficient to consider the case 
v =pf. 

Suppose then that v =p/, and suppose given an exact sequence 

O+--McEtN’tO 

in the category A. We may choose in E an element < projecting to the generator in M; 
we may write q for the image in E of the generator in N’. The operations Yk in E must be 
given by formulae of the following form. 

(9.2) 
Ykl = kq< + c(k)q 
Y’kr] = k”rl 

Here the coefficients c(k) lie in Z,, and constitute a “factor set”. 

We now invoke Axiom 6.3, which shows that the value of c(k) modulo v = p/ is 
periodic in k with period p’/ for some e. Now the multiplicative group G of residue classes 
prime top, modulo p”, is cyclic ifp is odd ; let I be a generator for G, or for G/{ ) 1} if p = 2. 
From the equation Ykt = Y’Y’, we find 

(9.3) c(kl) = l?(k) + k’%(l) mod v. 

(Compare the proof of Lemma 7.11.) By induction over r, we find that 

1’” - 1’4 

mod v. 

Since we have assumed we are in the case A = R, we have YVk = Yk, and thus 

li” - 1’4 

4 - 1’) = 1._ 40 mod v. 

(Recall now that n and q are even.) We have thus shown that 

c(k) = (k” - kq>p mod v 
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for all k prime to p, where /J is the rational number c(l)/(l” - 13. It is now easy to see that 

we have 
c(k) = (k” - kq)A mod v 

for all k prime to p, where 1 is a rational number whose denominator is a power of p. 

Next recall that the class of E in Ext:(M, N’) is not affected by applying the “eight-fold 

suspension operator” T (see $3). Suppose we do this t times; then the equation 

c(k) = (k” - k”)j. mod v 

(valid for k prime to p) becomes 

k4’C%(k) = (k” tJf _ k0 Ir)jb mod v 

(for k prime to p). We can easily choose t large enough to satisfy the following two 
conditions. 

(i) k4’c(k) = 0 mod v wherever k is divisible by p. 

(ii) (kn+4t - k,+“)i is integral and d ivisible by v whenever k is divisible by p. 

The equation 
kJq/‘) = (,“+4, - ,,+4y mod v 

will thus be true for all k. We have shown that the factor set k”c(k) has the form con- 

sidered in 97; thus E represents an element in the image of 

Ext;(M, N) -+ Ext;(M, N’). 

This colmpletes the proof. 

As a particular case of Proposition 9.1, we may put v = 2. Then the operations Y’ in 

N’ are independent of n, being given by 

We have 

yk,x = 
1 
; (k odd) 

(k even). 

Exti(M, Iv’) g zz. 

In this case the proof given above specialises a little. Equation (9.3) shows that the factor 

set c(k) gives a homomorphism from G, the multiplicative group of odd numbers modulo 

2’f, to the additive group 2,. We arrive at two factor sets; the zero factor set, and that 

given by 

c(k) = 
( 

0 fork= +l mod8 
1 fork= $-3mod8. 

The latter represents the non-zero element of Extk(M, N’). 

Next, let f:,S2q+’ -+ S2q be a map with r = 0 or 1 mod 8 and 2q s 0 mod 8. Then we 

have 
R,(&+) = M, 6-Q 2g+r+ 1) = N’ 

and so 
e&j E Ex&M, N’) = Z,. 

Thus eR gives a homomorphism from Ker dR c rrS to 2,. 
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THEOREM 9.4. If r z 0 or 1 mod 8 and r > 1 then eR maps Ker dR onto Z,, and Ker ea 

is a direct summand in Ker dR. 

We note that if r = 0 mod 8 then Ker dR = 7cf, by Proposition 7.1. If r G 1 mod 8 

then Ker dR is a direct summand in n:, by Theorem 7.17, and therefore Ker eR is a direct 

summand in 7~:. 

Theorem 9.4 will follow immediately from the following result. 

THEOREM 9.5. If r E 0 or 1 mod 8 and r > 1 then the composite 

e,J : n,(SO) + Z, 
is an isomorphism . 

(Note that eR is defined on Im J, by Proposition 7.19.) 

We see that Theorem 1.1 will follow immediately from Theorem 9.5; also Theorem 1.3 

will follow immediately from Theorems 7.2 and 9.5. The proof of Theorem 9.5 will be 

given in $10. 

$10. THE VALUES OF THE INVARIANTS ON THE IMAGE OF J 

In $07, 9 we have introduced certain invariants; in this section we shall compute the 

values which they take on the image of the stable J-homomorphism 

J : n,(SO) -+ 7-c;. 

Our main object, then, is to prove Theorems 7.16, 7.19 and 9.5. 

We will first show that if we use an element in the image of the J-homomorphism as 

an attaching map, then the resulting two-cell complex is, in fact, a Thorn complex. More 

precisely, suppose given a map q : S’ * SO(q). We can apply the “Hopf construction” J 

to cp; we obtain the map 
J$: Sq+r+ S4 

and the two-cell complex 
x = Sq “,+eqtr+‘, 

On the other hand, we can use cp to define an Eq bundle over Srtl, and so obtain a Thorn 

complex, which actually has the form 

Y = Sq” eq+r+l. 

LEMMA 10.1. The complexes X and Y are homotopy-equivalent. With suitable choices 

of‘ sign in the constructions given above, we can choose the equivalence to have degree + 1 

on both cells. 

I believe that this lemma was known to earlier workers, for example, Atiyah (ca. 

1960); see also [13, p.3701. 

Proof. We first discuss the Thorn complex Y. The Eq-bundle over St ’ can be obtained 

from Eq u (I?+’ x Eq) by identifying each point (x, y) in 5’ x Eq with the point (cpx)y in 

Eq. (Here SO(q) acts on Eq in the usual way.) We can now obtain the Thorn complex by 

further identifying Sq-’ u (Ertl x Sqml) to a single point. 
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We now discuss the Hopf construction. To construct the map Jq, we realise Sqfr as 
the boundary of E”l x Eq. We map S’ x Sq-’ to Sq-’ by 

(J4)k Y) = (&)Y (y E 9-l); 

we extend to a map from S’ x Eq to the upper hemisphere E4, of Sq, say 

(J$)(x, Y> = (dJX>Y (Y E Eq); 

we also extend it to a map from E' + ’ x Sq-’ to the lower hemisphere Eq_ of Sq. (Actually 
this construction differs in sign from the one the author would usually prefer.) 

The complex X is now 
9 U,& (Er+ l x 9). 

It will not alter its homotopy type if we identify Eq_ to a point. By doing this we obtain 
precisely the description given above for Y. This completes the proof. 

Proof qf Theorem 7.16. We may start from a real bundle p over S’+l, where r = 4s, 
such that j? represents a generator of R,(S”). With the notation of $7, this is expressed 
by the equation 

ch,,cj3 = a4sh4s. 

We may suppose that the structural group of /? is Spin(q), where q is divisible by 8. 

We now consider the Thorn complex Sq u eq+4s corresponding to p, and we make use 
of the Thorn isomorphism 40~ [4 441. In KR(Sq u eq+4s) we have the element ~~1; more- 
over, with the notation of [4 992, 51 we have 

‘p;*ch,cp,l = 1 + +x2sa4sh4s 

[4, Proposition 5.21. That is, we have 

ch,cp,l = hq + +a2saq+4shq+4s. 

We may take cpK1 for our generator 5. This yields 

ek(JP) = :s mod 1, 

which proves Theorem 7.16. 

Proof of Theorem 7.19, for the case r > 1. As in the previous proof, we may start 
with a real bundle j? over Sr+l, with structural group Spin(q), where q is divisible by 8. 
As above, we obtain a generator ‘pK1 in R,(Sq uJg eqtrtl ), which restricts to the generator 
in RR(Sq). Therefore the generator in RR(Sq) is annihilated by (J/?)*; that is, dR(JB) = 0. 
Lemma 7.21 now shows that ecJP = 0. 

First proof of Theorem 9.5. As in the two previous proofs, we may start from a real 
bundle j? over St’ such that /3 represents a generator of R,(S”‘), and we may obtain a 
generator cpxl in RR(Sq u JB eqtrtl ). We now wish to calculate Yk~,l (at least for k odd). 
By [4 $5, especially Theorem 5.151, we have 

C& VqQJ = #/I 

ifkE+lmod8 
ifkr +3mod8. 
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With the notation of $9, this gives 

yky = 4 ifk=flmodS 

5+V ifk= +3mod8. 

If we recall the description of Ext;(M, N) given in $9, this shows that eR@ is non-zero. 

A second proof of Theorem 9.5 will be given in $12. 

$11. TODA BRACKETS, II 

The main purpose of this section is to show explicitly how the theorems of $5 apply 

to the invariants of $7. The spaces we shall deal with wilI thus be spheres; and we shall 

stay in those dimensions where the invariants e, take values in Q/Z, the rationals mod 1. 

We will begin by stating the main results, without proofs. The following result, which 

is typical, will be obtained by specialising Theorem 5.3 (v). 

THEOREM 11.1. Suppose given integers a > b > c > 0, which are even if A = R. Suppose 
given f : SzsW2 --) SZb-1, ,!, : s2b-1 ~ ~2” and q E 2 such that h(qz) N 0 and (qz)f N 0. Then 

e,{h, qkf) = -qe (We,(h) mod 1. 

We pause to check that both sides of this equation are well-defined as rationals mod I. 

The indeterminacy of {h, qt, f } is 

hn2,_,(Szb-’ ) + n2b(s2c)sf, 

and therefore (using (3.2) and (7.1)) e,,{h, qz,f) is well-defined as a rational mod 1. If we 

change the fraction representing e,(Sf) by 1, we change qe,(Sf) e,,(h) by qe,(h), which is 

an integer since h(ql) N 0; similarly if we change the fraction representing e,,(h) by 1. 

Thus -qe,(Sf)e,(h) is well-defined mod 1. 

In applying Theorem 11.1 in the case A = R, we have to distinguish when the invariant 

eR means ek, and when it means ei, according to the dimensions of the spheres concerned. 

Examples on Theorem 11 .l. With the notation of Example 7.17, we have 

{j3, 24, js] = 4% 

G3, 24, I%> = 2ljit 

{j3, 24,2ljJ = 80j1, mod 9~ 

{j7, 24&j,] = 2ji, mod t,rrc 

etc. 

In order to state the results obtained by specialising Theorem 5.3 (iv) and (vi) we 

need a little number theory. The numerical function m(t) will be as in [4 $21; as we shall 

need the explicit definition in our proofs, we recall it now. We write v,(n) for the exponent 

to which the prime p occurs in n, so that 

n = 2Mn)3~(n)5MO . . . . 

For odd mimes p we set 

VpW)) = ‘: + v (t) 

if t f 0 mod (p - 1) 

P if t = 0 mod (p - 1). 
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Forp=2weset 

vz(m(t)) = : + ,,2(f) 
iftgOmod2 
if t E 0 mod 2. 

In order to avoid worrying about signs in what follows, we remark that this definition is 

equally valid if t is negative; only the case t = 0 need be excluded. Thus we have 

m( - t> = m(t). 

We shall suppose given two even integers u, u; the cases u = 0, u = 0 and u = v are 

excluded. 

LEMMA 11.2. There exists a rational number 6(u, v) such that for suJ?cientlJ large t 

(depending on u and v), and for all k E Z we have 

(k*+, - k’) - 6(u, u)(k,+” - k’) 3 0 mod m(u)m(o - u). 

The congruence is to be interpreted as meaning that the left-hand side is an integer 

multiple of m(u) m(v - u). 

We shall not only prove that 6(u, v) exists; we will give a definition for 6(u, o) which 

allows one to compute it easily. I am indebted to Dr. B. J. Birch for conversations about 

an earlier version of this lemma. 

We recall from [4, $21 that for sufficiently large t, the highest common factor of the 

numbers (k’+” - k’) (as k runs over Z) is m(v). This shows that the property stated in 

Lemma 11.2 characterises 6(u, v) up to an integer multiple of m(u) m(v - u)/m(v). 

We shall need to refer to the following further properties of 6(u, 21). 

LEMMA 11.3. 

(i) 6(-u, -v) E 6(u, v) mod m(u) m(v - u)/m(u). 

(ii) 6(u, v) + 6(u - u, u) E 1 mod m(u) m(v - u)/m(u). 

(iii) 6(u, tl) = s 
1 

for some integer y = y(u, v). 

(iv) 6(u, 0) = 1 + 
y’m(v - u) 

nz(v) 

for some integer y’ = y’(u, v). 

The following result may be obtained by specialising Theorem 5.3 (iv). 

THEOREM 11.4. Suppose giuen even integers a>b>c>O. Suppose given 

f: Szae2+ Szbml, g : Szb-’ -+ Szc and q E Z such that (qr)g - 0 and gf - 0. Then 

e,(ql, s,f > = -96eA(Sf)eA(g) mod 1 and q/m(a - c) 

where 6 = 6(a - b, a - c) (Mlith the notation of Lemma 11.2). 

As for Theorem 11.1, we have to check that both sides are well-defined modulo 1 

and q/m(a - c). For the left-hand side this is easy. Altering 6 by m(a - b) m(b - c)/m(a - c) 

alters the right-hand side by an integer multiple of q/m(a - c), since m(a - b) e,(Sf) and 
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m(b - c) eA(g) arc integers. Altering e,(Sf) by 1 alters the right-hand side by 

( m(b - c) 
q l+y’------- 

m(n - c) 1 e*(g) 

(using Lemma 11.3 (iv)); since qe,(g) and m(b - c)c,(g) are integers this is zero mod 1 

and q/m@ - c). Altering e,,(g) by 1 alters the right-hand side by 

nr(a - h) 
4Y ~ e,(V) 

m(a - c) 

(using Lemma 1 I .3 (iii)); since m(a - h) e,(sf) IS an integer, this is zero mod q/(ma - c). 

The following result may be obtained by specialising Theorem 5.3 (vi). 

THEOREM 11.5. Suppose given even integers a > b > c > 0. Suppose given 

g : Szae2 --t SZb-‘, h : Szh-’ + Szc and q E Z such that hg - 0 nudg(ql) N 0. Then 

eA{h, g, 41) = - qde,(Sg)e,,(h) mod 1 and q/m(a - c) 

lchere 6 = 6(b - c, a - c) (with the notation of Lemma 11.2). 

As before, we have to check that both sides are well-defined modulo 1 and q/m(a - c). 

This is done exactly as for Theorem 11.4. 

In applying Theorems 11.4 and 11.5, we have again to distinguish when the invariant 

eR means ek, and when it means e;. 

Examples on Theorem 11.5. With the notation of Example 7.17, we have 

etc. 

{j3, ?i3, 12) = 0 

{.j7,.j3, 24) = -j,, 

{.k j,, 240) = 7j,, 

{.iI13j3, 241 = -4jIs 

{.j7, 2j:, 120: =.iIs 

G3,.iIIl 5041 = -4jI, 

The calculation of these examples requires 
will be provided later in this section. 

mod 12j, 

mod 24j,, 

mod 24j,, 

mod 24j,, and VK 

mod l?Oj,, and VK 

mod 24j,, and ‘1~ 

a knowledge of the coefficients 6, which 

Theorems I 1.4 and 11.5 are equivalent. In fact, if CI and fi belong to odd-dimensional 

stable groups, then we have 

by a theorem of Toda [18, p.26 (3.4) (i) or p.33 (3.9) (i)]. Th e reader is warned not to suppose 

that this remark makes the equivalence completely obvious; in the case A = R we still have 

to distinguish when eR means the invariant ek, and when it means ei; we have then to use 

Proposition 7.14. However, these details lead to the required result. It will therefore be 

sufficient to prove one of these theorems and deduce the other. Similarly, we will state 

corollaries of only one of these theorems. 
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Other checks on our work are provided by the identities 

{a, 4”? P> = {P,4r, a> 
and 

[18, p.26 (3.4) (ii) or p.33 (3.9) (ii)]. The first is consistent with Theorem 11 .l ; the second 
is consistent with Theorems 11.1, 11.4 and 11.5, as we see using Lemma 11.3 (ii). 

We will now state two corollaries of Theorem 11.5 which are useful in dealing with 
p-components of stable homotopy groups. We retain the notation and assumptions of 
Theorem 11.5. 

COROLLARY 11.6. Let p be an oddprime such that a - b and b - c are divisible by p - 1. 

Then we have 

b-c 
eA{h, g, 411 = -q a-c e,@g)e,(h) 

as an equation in the p-adic numbers module 1 and q/m(a - c). 

The case in which a - b and b - c are divisible by (p - 1) is, of course, the only case 
of interest if we are studying p-components. 

COROLLARY 11.7. Let p = 2. Then we have 

e,Ck g,qzl = --4 a--c b - ’ (1 + w2g)e,,(Sg>eA(h) 

(where w is any odd number and g = 1 + vz(a - b)) as an equation in the Zadic numbers 
modulo 1 and q/m(a - c). 

It is no great surprise that the case p = 2 is exceptional. 

In both corollaries, the phrase “modulo 1 and q/m(a - c)” refers to multiples of 1 and 
q/m(a - c) byp-adic integers. The use ofp-adic numbers is not essential, but it is convenient; 
it allows us to invert numbers prime to p, modulo a high power of p, without stating exactly 
which high power of p is required. 

A further check on our work is now provided by the following observation. Suppose 
given a generator y E ~_r(S0), a map 8 : S4r’4s-2 --) S4r-1 and an integer q such that 
y0 N 0, 8(qt) N 0. Then we can form in 7c4r+4s_1 (SO) the Toda bracket {y, 0,ql). Let 
y’ E n4,+,,_r(SO) be a generator; then we have 

{Y ,R 411 = -qe&Wy ’ mod q. 

(Whether e,(S0) is an invariant ek or eL depends on the parity of r). In 7cir+4s_1 we shall 
have 

J{Y 5 0% 41 = (JY 9 6 41, 
that is, 

- qe,(SQ)JY’ = (Jr, tz4). 

We may now apply ek to both sides, using Theorem 7.16 and [4, Theorem 2.51. The results 
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should agree modulo 1 and q/m(2r + 2s). Calculating in 
yield 

- VRW) P-1 
4p(r + s) ’ 

providing that 2r and 2s are divisible by p - 1; otherwise 0. 
bers, both sides yield 

provided r 2 3. 

the p-adic numbers, both sides 

Calculating in the 2-adic num- 

The remainder of this section is organised as follows. We begin with the number theory, 
leading up to the proofs of Lemmas 11.2 and 11.3. Then we prove Theorems 11 .I, 11.4 
and 11.5. Corollaries 11.6 and 11.7 then follow easily. 

LEMMA 11.8. Let p be an odd prime, let k be an integer prime to p, and let a, b, c be 
integers divisible by (p - 1). Then we have 

(a - b)k” + (b - c)k” + (c - a)kb = 0 mod ph+ 2, 

where h = vP(a - b) + v,(b - c) + v&c - a). 

LEMMA 11.9. Let p = 2, let k be an odd integer, and let a, b, c be even integers. Then 
we have 

(a - b)k” + (b - c)k” + (c - a)kb c .52h+3 mod 2h+4 
where 

1 

0 e= ifk= &l/nod8 
1 ifk c 5-3 mod 8 

and h = v2(a - b) + v,(b - c) + v2(c - a). 

We prove Lemma 11.9; the proof of Lemma 11.8 is similar but slightly simpler. 

Without loss of generality we may assume that 

vz(a - b) =f 

v,(b - c) =f+ g 

v2(c - a) =f 

where f 2 1, g 2 1. Thus h = 3f + g. Set d = 2”; by adding a constant to a, b and c we 
may assume they are all divisible by d. Set K = kd; then K E 1 mod 2/+‘. Hence 

K”‘d - Kb’d s (a _ b)/d 
K-l 

mod 21’2. 

(Without loss of generality we may assume a > b; expand the left-hand side in powers of 
K.) Thus 

k”--kb=(K-l)(a-b)/d mod 22f +4 
and 

(b - c)(k” - kb) = (K - l)(a - b)(b - c)/d mod 231+g+4 

We now consider the sum of 2g consecutive powers of K. I claim we have 

K e+l +Ke+Z+.+. +Ke+Zez28+e2/+C7+l mod 2J+g+2 
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where E is as above. In fact, suppose that K 3 1 mod 29+2 but K f 1 mod 24+3, where 

4, >f if k s _+ 1 mod 8 and q5 =fif k _= 53 mod 8. Then the 2g numbers 
re+ 1 k ) P2, . ..) K17+24 

give the 2g residue classes 1 + q24+2 mod 2$+g+2. Hence their sum is 

2” + +(29)(29+ l)2++ 2 mod 24fgf2. 
This proves the assertion. 

Arguing as above, we find 

mod 2ftgf2 

Thus 
z (6 - c)/d + c2J’tgf’ mod 2s+gt2. 

and 
kb - kc E (K - t)(b - c)/d -t- e22J+q+3 mod 22J+g+4 

(a - b)(kb - k’) = (K - l)(a - b)(b - c)/d + ~~~~~~~~ mod 23/+9+4 

Thus 
(b - c)(k” - kb) - (n - h)(kh - k”) = ~2~+ 3 mod 2ht4, 

which proves the lemma. 

We now define 6(u, 0). As above, let u, u be two even integers; the cases u = 0, u = 0 

and u = u are excluded. We propose to define the rational number 6(u, c) modulo 

m(zc) m(v - u)/m(v) by giving a finite number of congruences. Each congruence will be 

written as a congruence in the p-adic integers, holding modpf where 

f = v,m(n) + Vp177(U - 21) - v,nt(v). 

The primes p to be considered are those which divide ~1(1*), nz(u) or m(t: - u). We stipulate 

that the denominator of 6(u, V) is to contain no other primes; thus the definition given for 

a@, u) amounts to defining an integer (namely the numerator of 6(u, u)) by a finite set of 

congruences modulo powers of different primes. This is always legitimate. 

We now give the congruences. 

Case (i). p is odd; (p - 1) does not divide u or z’, but divides u - u. 

Take 

(11.10) 6(u, z:) = 1 mod pJ. 

Case (ii). p is odd; (p - 1) divides just one of U, v and therefore does not divide (v - u). 
Take 

(11.11) 6(u, 0) = 0 mod p”. 

Case (iii). p is odd; (p - 1) divides both of U, u and therefore divides u - U. Take 

(11.12) 6(u, v) = u/v mod ps. 

Case (iv). p = 2. Take 

(11.13) 6(u, a) = (1 + 02g)u/v mod 2s 

where o is any odd number and 8 = 1 + v2(u - u). (Note that altering o by 2 does not 

affect the result mod 2’.) 
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Proof of Lemma 11.2. It is sufficient to verify the congruence in the p-adic numbers 

for a finite number of primes p, namely those mentioned above. For each prime p the 

congruence will be true for k divisible by p providing we choose 1 large enough; we may 

therefore restrict attention to the case k f 0 mod p. In all cases we have given definitions 

of the form 6 E 6’ mod pf, where 

f = \‘pin(ll) + V$?l(C - II) - vp(G’); 

and we have 

k ‘+” _ k’ E 0 mod prpCV). 

Thus we have 
,(k’+’ - k’) E ,‘(k,+” - k’) mod ph 

where h = v,m(u) + v,m(u - u). We may therefore replace 6 by 6’ in checking the con- 

gruence. 

Case (i). p is odd; (p - 1) does not divide u or t:, but divides u - U. We have 

k f+Il _ kf+U 3 0 mod pVP’“(” - 11) 

i.e. 
k t+U _ k’ _ kt+c _ k’ mod p 

v,m(c-u) 
. 

Since 6' = 1 and v,m(u) = 0 in this case, this is the result required. 

Case (ii). p is odd; (p - 1) divides just one of U, t’ and therefore does not divide (C - u). 

We have 
k’+” _ k’ = 0 mod p”~‘@‘)~ 

Since 6’ = 0 and v,m(c - u) = 0 in this case, this is the result required. 

Case (iii). p is odd; (p - 1) divides both of U, t: and therefore divides (C - u). Lemma 

11.8 gives 

u(k’+’ _ k’) E U(/~‘+” _ k’) mod ph+ 2, 

where h = v,(u) -I- v,(u) + v&u - u). This gives 

kf+” _ k’ E ! (kt+, _ k’) mod p’, 
c 

where 1 = v,m(u) + v,m(c - u). Since 6’ = u/v in this case, this is the result required. 

Case (iv). p = 2. Lemma 11.9 gives 

,(k,+” _ k’) _ a(kf+’ _ k’) 3 a2”+3 mod 2hi4 

where h = v2(u) +- ~~(0) + vz(c - u). We have 

u(k’+” - V) =_ c2’ mod 2’+l 

where r = vz(u) + vz(u) + 2. Thus we have 

o(k’+” - k’) - ~(1 + 02g)(k’+“ - k’) = 0 mod 2ht4 

where CO is any odd number and g = I + vz(z: - u). This gives 

k f+“ _ k’ E ; (1 + 02g)(k’+” _ k’) mod 2’ 
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where I= v&(u)) + v&t(v - u)). Since 6’ =I (1 + 02~) in this case, this is the result 
V 

required. This completes the proof. 

Proof of Lemma 11.3. 

(i) The congruence 

6(-U, -u) = 6(u, u) mod m(u)m(o - u)/m(u) 

follows immediately by inspecting the congruence (11.10) to (11.13). 

(ii) For sufficiently large t we have 

k ‘+’ - k’s 6(u, v)(k’+” - k’) 

kt+” _ k’+” E 6(U _ u, -u)(k’ _ k,+“) 

mod m(u) m(v - u). Subtracting, we obtain 

k *+” - k’ = (a(~, v) + 6(u - u, -u))(k’+” - k’) 

mod m(u) m(v - u). Since the highest common factor of the expressions (k’+” - k’) is 
m(v), we find 

S(u,v)+6(u-0, -v)=l mod m(u)m(u - u)/m(u). 

The result now follows by part (i). 

Alternatively, we can check part (ii) from the congruences (11.10) to (11.13). 

(iii) For sufficiently large t we have 

(k’+” - k’) z 6(u, u)(k’+” - k’) 

mod m(v) m(v - u). For sufficiently large t, the highest common factor of the expressions 

(k ‘+” - k’) is m(u) and that of the expressions (kc+” - k’) is m(v). Taking linear combina- 
tions, we find 

Nm(u) = 6(u, u)m(u) 

mod m(u) m(v - u), for some integer N. Hence the result. 

Alternatively, we can check part (iii) from the congruences (11 .lO) to (11.13). 

(iv) This follows immediately from (ii) and (iii). 

This completes the proof of Lemma 11.3. 

Proof of Theorem 11.1. We have to evaluate the Massey product {e,(Sf), q, e,(h)} 
according to the definition of $4, Case 3. In that section we have objects L, M, N and P 
in our abelian category; in the present application they all have the underlying group 2, 
and they have operations given by Ykx = k’x, Ykx = kbx, \ykx = kbx and Ykx = k”x 
respectively. We write 1, p, v, n for their respective generators. We also have in mind two 
extensions 

OtLtE+MtO 

OtNtFtPtO 
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given by the following formulae. 

Ykl = k’l’ + e’(k* - kc)p 

‘4”~’ = k*v’ + e”(k’ - k*)n. 

Here rZ’, v’ are elements lifting ;1, v and e’, e” are rationals representing e,(h), e,(,$f). 
According to $4, Case 3 we have to construct maps 

O:M+F, 4:E-+ N; 

we do so by the following formulae. 

e(p) = qv’ - qe”n 

4(A’) = qe’v 

4(p) = qv. 

(Note that qe’ and qe” are integers.) According to $4, Case 3 we have to consider an exten- 
sion G; in it we construct a lifting 1” of A by 

A” = (A’, qe’v’). 

We then compute in G the formula 

‘PA” = k’l” + qe’e”(k” - kC)n. 

We conclude that in this case the Massey product in Ext’ is given by 

{e,(V), 4, e,(h)] = qe’eN. 

Theorem 11.1 thus follows from Theorem 5.3 (v). 

We have given this proof of Theorem 11 .l because it seems in keeping. However, it 
is possible to give an ad hoc proof using an intermediate space SZb-’ u, e2*, on the lines 
to be explained in $12 [cf. 6,7. In Proposition 6 of 7 a minus sign has been left out by mis- 
take.] If one defines e,, using the Chern character, it is not necessary to use the operations 
Y k in proving Theorem 11.1. By contrast, in proving Theorems 11.4, 11.5 it seems essential 
to use the operations Yk and number-theory. In fact, the number-theory we have given 
may be interpreted as an investigation of what limitations the Yk impose on the Chern 
characters in a 3-cell complex 

9’” e2U+U) ” e2”+“). 

This gives a partial answer to questions raised by Dyer [13, second paragraph on p.3711. 

Proof of Theorem 11.5. We have first to verify the conditions of Theorem 5.3 (vi). 
With the notation of $5, we have to show that for any choice of homotopy hg hr 0, the 
invariant e,(H) is defined. In our case we have 

H: SZb- 1 “, e2a- 1 --f sZc_ 

Since a and b are even, the exact sequence 

K, (s2b-r )+E?,(S’*-’ Uge2a-1)+R~(S211-1) 
shows that 

R,(S2b-1 ugeza-l) = 0. 

Hence d,,(H) = 0. It follows that d,,(SH) = 0. 
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We have now to evaluate the Massey product (q, e,(Q), e,(h)} according to the 

definition pf $4, Case 1. In that section we have objects L, M, N and P in our abelian cate- 

gory; in the present application they all have the underlying group 2, and they have opera- 

tions given by Ykx = kCx, Ykx = kb.x, Ykx = k”x and Yk.az = k”x respectively. We write 

1, p, v, n for their respective generators. We also have in mind two extensions u E Ext’(L, M), 

/I E Ext’(M, N) given by the following formulae. 

Ykl,’ = k’R’ + e’(kb - k’)p 

Ykp’ = kbp’ + e”(k” - kb)v. 

Here A’, $ are elements lifting R, ~1 and e’, e” are rationals representing e,(h), e,(Sg). We 

also have in mind a homomorphism y E ExtO(N, P) given by 

r(v) = qz. 

We have next to construct CI’ E Ext’(L, E), y’ E Ext’(E, P) lifting c(, y (where E is the 

extension representing p.) 

A suitable extension a’ is defined by the following formula. 

Ykr = k”E,” + e’(kb - kC)p’ + e’e”(d(k” - kc) - (kb - kC))v. 

Here 1” is a lifting of A, and 6 = 6(b - c, a - c) (with the notation of Lemma 11.2). Lemma 

11.2 plays a crucial role; it shows that the coefficient of v is an integer. (We may suppose 

that c is sufficiently large, because the result is not affected by suspension-provided of 

course that the number of suspensions is divisible by 2 or 8.) It is necessary, of course, 

to check that the formula satisfies Axioms (6.1), (6.2) and (6.3). The need to satisfy 

Axiom (6.1) accounts for the formula given. 

A suitable homomorphism y’ is defined by the following formulae. 

~‘01’) = qe”n: 

y’(v) = qn. 

(Note that qe” is an integer). It is necessary, of course, to check that y’ commutes with Yk. 

The need to do this accounts for the formula given for 7’01’). 

We have next to compute the extension 

y’sl’ E Ext’(L, P). 

This is characterised by the following formula. 

YkJ” = k’l” + qe’e”d(k” - k’)n. 

We conclude that in this case the Massey product in Ext’ is given by 

{q, e*(Q), e,(h)) = qe’e”6 

modulo the indeterminacy of the Massey product; that is, modulo 1 and q/m(a - c). 
Theorem 11.5 thus follows from Theorem 5.3 (vi). 

Theorem 11.4 may be deduced from Theorem 11.5 (as remarked above), or proved 

similarly. For the convenience of any reader who wishes to do the latter, we record 

formulae for 
a‘, E Ext’(L,E), Y’E Ext’(E,P) 
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with a notation similar to that used above. 

a’L = qc(’ - qe’v 

y’p,” = k’p” + e’(kb - k”)$ + e’e”((k“ - kb) - S(ky - k’))n 

Ykv’ = k’v’ + e”(kP - kb)rr. 

Proof of Corollaries 11.6, 11.7. These follow from Theorem 11.5 by applying the 

homomorphism from the rationals to the p-adic numbers and using (11.12) (11.13). 

$12. EXAMPLES 

In this section we will give various examples and illustrations of our general methods, 

and prove certain results whose proof was deferred in earlier sections. To begin with, our 

work is directed towards proving Theorem 1.7. 

We can actually make Theorem 1.7 a little more complete. As in 41, let p be an odd 

prime, let g : S24-’ + S2q-’ be a map of degree p/, and let Y be the Moore space 

S2q-’ ug ezq. Thus R,(Y) = Z,,. 

THEOREM 12.1. There is a map 
A:S2’Y -+ Y 

(fbr suitable y) such that the image of 

A* : R,(Y) -+ R,(P Y) 

is Z,, (where 1 g t $f), if and only zfr is dicisible by (p - 1)~‘~I. 

It is clear that this includes Theorem 1.7 (take t =f). We will show how to deduce 

Theorem 12.1 from Theorem 1.7. 

First, suppose that there is a map A : S2’Y -+ Y such that the image of A* is Z,,. Then 

A* commutes with the operations Yk, which are given in Y and S2’ Y by the formulae 

‘Pkx = kYs, Yk.u = kq+ry I . 

Therefore we have kq+’ = kq modp’; so r is divisible by (p - 1)~‘~‘. 

Secondly, suppose that r is divisible by (p - 1)~‘~’ and Theorem 1.7 is true. Set 
Y’ = S2q-’ uh e2q, where h is a map of degree p’. Then by Theorem 1.7 there is a map 

A’: S2’Y’ + Y’ 

inducing an isomorphism of I?,. We have only to take A to be the composite 

Szpi A’ i 

py--_, S2’Y’ + y' -+ y 

where i, j are obvious maps such that j* : R,(Y) --) R,( Y’) is an epimorphism and 

i* : I?,( Y’) -+ Rc( Y’) is a monomorphism. 

This completes the deduction of Theorem 12.1 from Theorem 1.7. We proceed with 

lemmas needed for the proof of Theorem 1.7. First we consider the cofibering 

.32”-- l&Z”_ 1 ;p- lYJ r2”, 
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where f is a map of degree m. If A = R, we assume that n is even; thus we shall certainly 
have d& = 0, d&2) = 0. 

PROPOSITION 12.2. e,i is the class of the extension 
-III 

ocz,cz t-zto, 

in which all the abelian groups have operations ‘4” defined by 

Ykx = k”x. 

Proof. If we continue the cofibre sequence, it becomes 

i -SP 

we have only to apply R,. 

SZVIUf e2n, sZn_, S2"; 

For the next proposition, we suppose given a diagram of the following form, 

S 2n- lu, ezn 
/ \ 

V 

/’ 
‘lG \ g 

S Zn-l_ + ;2, 

(Here we have written S2”-l u, e2” instead of S2”-l us e2”, where f is a map of degree 
m.) If A = R, we assume that n and q are even. Thus K,,(S2’r) = Z and kA(S2”-’ u, e’“) 
= Z,,,; we can regard d,,(G) as an integer mod m. We can also regard eA(g) as a rational 
mod 1; since mg N 0, me,,(g) is an integer mod m. 

PROPOSITION 12.3. We have 

or equivalently 
d,,(G) = -me,(g) mod m 

edd = - id,,(G) mod 1. 

Proof. This proposition is a special case of Proposition 3.2 (b), which states that 

e(Gi) = e(i) d(G). 

The element e(i) has been given in Proposition 12.2; one has only to compute the product 
e(i) d(G), which is an easy exercise in homological algebra. 

LEMMA 12.4. Let p be an oddprime, m = pf, and r = (p - 1)~~. Then there is an element 
a E I&_~ satisfying the following conditions. 

(i) ma = 0. 

1 
(ii) ecu = - - . 

m 
(iii) The Toda bracket (m, a, m> is zero mod m&. 

Proof. For f = 1 the result is easy; we have only to take a to be an element of Hopf 
invariant one mod p in rt$_3. Then (i), (ii) are given by Corollary 8.4 and (iii) follows 
from the fact that the p-component of 7&,-Z is zero. 
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For any f we can take CI to be a suitable element in Im J, using Theorem 1.5 or 1.6 to 
obtain (i), (ii). Condition (iii) follows from the fact that {m, c(, m} is an element of order 2 
[18, p.26 (2.4) (i), p.33 (3.9) (i)]. 

Lemma 12.4 supplies the data for the following lemma, which we shall also use with 
m = 2. 

LEMMA 12.5. Suppose given a E I&_ 1 and m E Z such that 

(i) mci = 0, 

(ii) cccl = - i, 

(iii) {m, u, m} = 0 mod m&. 

Then for suitably large q there exist maps A which make the following diagram homotopy- 
commutative; andfor any such A we have d,(A) = 1. 

s24’2r- 1 “, e2q+ 2r t szq- 1 “, e2q 

iT OL 1’ 
szq+zr- 1 

-+,2’, 

Proof. Conditions (i), (iii) enable one to construct the diagram. By Proposition 12.3 
and condition (ii) we have d&A) = 1. Hence d,(A) = 1. 

Theorem 1.7 follows immediately from Lemmas 12.4, 12.5. Since A induces an iso- 
morphism of Kc, so does the composite 

A. S2’A. S4’A . . . . S2@-1),4:S2rsy_, y; 

Indeed we have 
d,(A. S”A. S”‘A. . . . Szr@- “A) = 1. 

Therefore this composite is essential for every s. 

Under the assumptions of Lemma 12.5, we construct a map 
c( .S2q+2rs-l +szq 

S. 

by the following diagram. 
_4..$2’A...S2’(.-*),4 

S Zq+Zrs-1 “,e2q+2rs 
3 S2q-1 urn e2q 

iT I j m.9 
s24+2rs- 1 -+ s2q 

We have ~1~ = a. The map cr, has order dividing m, since it can be extended over 
S29+2”-’ u, e2q+2rs. The maps u, satisfy the equation 

(12.6) %+r o {us, m, a,]. 

The case in which m is an odd prime p and r = p - 1 has been studied by Toda [16, 171. 

PROPOSITION 12.7. Under the assumptions of Lemma 12.5, the maps a, are all essential; 
indeed we have 

da,) = - i mod 1. 
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This improves and generalises a result of Toda [17]. 

related to Toda’s proof; however, it is hoped that the 

found more conceptual. 

Presumably the present proof is 

presentation given here may be 

Proofs. (i) Apply Proposition 12.3 to the diagram which defines CC,. (ii) Alternatively, 

apply Theorem 11.1 to equation (12.6) and use induction. 

EXAMPLE 12.8. We note that in [16, 171 Toda’s elements cz, depend on the choice of ul, 
which Toda does not@x; similarly, there is a choice for his element a;. However, we may take 
the choices so that 

e,(u,) = - 1 
P’ 

ec(uip) = - 1. 
P 

Then the coeflicient 6 in Corollary 11.6 explains the coeflicients which arise in Toda’s formulae 

for 
{a,, CL,, P> and I&, u,, PI 

[16, Theorem 4.17 (ii)]. 

We will now show how the invariant e, applies to maps f: S2’-‘Y -+ Y, where Y = 

S2q-’ u, e 2q for some odd p rime p. We must first calculate the appropriate Ext groups. 

As in 99, let M be the object in A whose underlying group is 2 and whose operations are 

given by Y“x = kqx; and let M’ be the quotient object M/PM, whose underlying group is 

Z,. Similarly for N’, with q replaced by q + r. 

PROPOSITION 12.9. We have 

Ext;(M’, N’) = tp + Zp 
if r E 0 mod (p - 1) 
if r f 0 mod (p - 1). 

Proof. The exact sequence 
P 

O-+M+M+M’+O 

induces the following exact sequence. 

Hom(M, N’) f: Hom(M, N’) + Ext’(M’, N’) -+ Ext’(M, N’) L Ext’(M, N’) 

Passing to direct limits, we obtain the following exact sequence. 

Hom,(M, N’) 2 Hom,(M, N’) -+ Extt(M’, N’) --) Exti(M, N’) 4 Exti(M, N’) 

The group Extk(M, N’) has been computed in Proposition 9.1; it is Z, if r E 0 mod (p - l), 

0 otherwise. (In $9 we assumed A = R; but this is not necessary if v is odd). The group 

Hom,(M, N’)iseasy to compute; it is Z, if r s 0 mod (p - l), 0 otherwise. This completes 

the proof in the case r$O mod (p - 1). If r = 0 mod (p - l), we consider the functor 

from A to the category of abelian groups defined by forgetting the operations Yk; this gives 

the following diagram. 

0 -+ Hom,(M, N’) -+ Exti(M’, N’) -+ Exti(M, N’) + 0 

P I I i i 
0 + Hom(Z, Z,) + Ext’(Z,, Z,) --+ 0 

This shows that the exact sequence for Exti(M’,N’) splits. 
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COROLLARY 12.10. (of the proof). Zf r z 0 mod(p - l), Extl(M’, N’) has a base con- 

sisting of the following two elements. 

(i) An extension with underlying group Z,,, and operations Ykx = kqx. 

(ii) An extension with underlying group Z, + Z, and operations 

q+< = 1‘74’ + ,l(kQ+’ - k’)n 

for 1 = l/m(r). 

In fact, the element (i) represents a generator coming from Hom,(M, N)‘, while the 

element (ii) maps to zero in Ext’(Z,, Z,) and to a generator in Ext’(M, N’). 

As above, let Y = Szq-’ up ezq for some odd prime p. 

THEOREM 12.11. Zf r = 0 mod (p - 1) then the stable track group ~Wczp’(S~~-’ Y, Y) 

contains a direct summand Z, + Z,. 

Prooj: Let /? : S-’ Y+ Y be the map which appears in the cofibre sequence 

S-‘Y5 Y-+S2q-1yp2e2q+ Y. 

Then e&3) is the extension mentioned in Corollary 12.10 (i). Let A : S2’Y+ Y be a map 

with d,(A) = 1, as above. Then by Proposition 3.2 (c) we have 

ec(B . SW ’ A) = b(A). edP>, 

which is again the extension mentioned in Corollary 12.10 (i). 

To construct the other generator, let y : S2’+2r+’ -+ S2’ be an element in Im J such that 

m(r)+(r) = 1 mod p. 

Then we can form the map 
1 A y : Y A S2’f2’-’ -+ Y A P, 

where A A B is the “smash product” A x B/A v B. If et(y) is represented by an extension 

E, then e&l A y) is represented (up to sign) by the extension E/pE; this is the extension 

mentioned in Corollary 12.10 (ii). 

Since all elements of MapS(S2’-’ Y, Y) have order dividing p, this proves Theorem 

12.11. 

Remark 12.12. In proving Theorem 12.11, we could have used A . S2r/l instead of 

p. S-IA. By Proposition 3.2 (b) we would then have 

e,(A . S’*p) = ec(S2r@). d,(A), 

giving an extension with underlying group Z,, and operations Y’x = kqirx. Thus the 

invariant ec serves to distinguish between A. S2rp and p. SmlA if r $0 mod p(p - l), 

but not if r = 0 mod p(p - 1). It might be interesting to know if these two elements are 

equal for r _= 0 mod p(p - 1). The groups Map$( Y, Y) would perhaps repay study, since 

phenomena which in spheres appear as Toda bracketsappearin Mapi( Y, Y) ascompositions. 

One could presumably obtain the analogue of Theorem 12.11 for Moore spaces 

S2q-’ up, ezq, or S2q-’ u2 ezq. In the latter case one would need to use I?,. 

We now pass on to study 2-primary phenomena. To begin with we prove the following 

result. 
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THEOREM 12.13. 

ec(cLss+ 1) = 3 mod 1. 

Proof. Let a be 

J. P. ADAMS 

For each s 2 0 there is an element pg,+ 1 of order 2 in $,+I such that 

the element of order 2 in zs. Since eZ : 7~; + ZzdO is an isomorphism, 

we have e,-(a) = f mod 1. Also, by a delicate result of Toda [18, p.31 Corollary 3.71 we 

have 

(2, @, 21 = xrl mod 2 
= 0 mod 2, 

since a is divisible by 2 and 2~ = 0. Thus we can apply Lemma 12.5 to construct a map A. 

Now we have the following diagram. 
A.S8A...+S8(S-‘)A 

szq+k3s-1 
U2e 

2q+as + s24- 1 
U2 e2q 

4 

/’ 
\ 

i/ ‘ii 
/ 

11s 
s2q+f3s- 1 + s$q 

iI 
B >S2”_2 s24- 1 _ 

We define p’ss + 1 to be the composite 

q.A.S8A. ...S6@-1)A.i. 

We have p1 = q. The map pSsfl has order dividing 2, since it can be extended over 
s2q+as-1 “* e2q+8s* Since e,-(q) = 3 mod 1, Proposition 12.3 shows that d&j) = 1 mod 2. 

Hence 
d,(ij.A.S%l. ...S8’“-1)A) = 1 mod 2. 

A second application of Proposition 12.3 now yields 

Alternatively, we can 

in which e&cc,) = 3 mod 1 

ec(p8s+ 1) = 3 mod 1. 

obtain the same result by applying Theorem 11 .l to the equation 

p8.7+ 1 E h 2, d’> 

by Proposition 12.7. 

Proof of Theorem 7.18. Suppose r G 1 mod 8. Then by Theorem 12.13 the homo- 

morphism 
e,:nS-+ Z, 

is an epimorphism. But we also have 
d .:.;+z, 

and Ker dR c Ker e, by Lemma 7.21. Therefore dR = e,. This proves Theorem 7.18. 

We have just shown that 

dRpg,+l Z 0. 

(It is possible to show this directly from the construction of p8s+l, but this is unnecessary.) 

PROPOSITION 12.14. If r 3 1 mod 8 and s z 1 mod 8 then the composite pips is non- 
zero ; indeed 

d&r& z 0. 

This proposition generalises the behaviour of the composite 41. The proof is 

immediate. 
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Proof of Theorem 7.2. Let us define ~s~+~ to be one of the composites considered in 

Proposition 12.14, for example, yips,+ I. Then we have shown that for r E I,2 mod 8 and 

r > 0 we have dRp, # 0. Thus dR is an epimorphism; and since ,u, is of order 2, rrf splits as 

a direct sum 2, + Ker dR, where the subgroup Z, is generated by p,. 

EXAMPLE 12.15. Suppose that 8 E &_, is an element such that m(4t)e,(8) is odd. 

Then for r E I,2 mod 8 the composite 8~~ is essential; indeed 

e,(b) f 0. 

Proof. By Theorem 3.2 (c) we have 

e&k) = M&,&V. 

Let us use the notation of $9; then eR(0) is a generator of the 2-component of ExtL(M, N) 

and the homomorphism dR(pr) may be identified with the quotient map N + N’. So accor- 

ding to the discussion in $9, d&J. e&l) represents a generator of Ext&V, N’). 

This example provides a second proof for Theorem 9.5. In fact, let y be a generator 

for rc,+i(SO) (U > 0). Then the generators for rcs,(SO), n,,+,(SO) can be written as 

composites yq, y~+rl; and we have 

J(V) = J(Y)rl 

J(Yr?rl) = J(Y)?& 

Thus Theorem 9.5 follows from Example 12.15. 

EXAMPLE 12.16. Ifr E 1 mod 8 then (2, p,, 2) is non-zero; indeed d,{2, pr, 2) # 0. 

This example generalises the behaviour of (2,~, 2). The reader will find that it is an 

easy application of Theorem 5.3 (i). Alternatively, of course, one can quote [18, p.31 

Corollary 3.71 to show that (2, p,, 2) = PJ mod 2 and use Proposition 12.14. 

PROPOSITION 12.17. If r E 2 mod 8 and s E 1 mod 8 then the composition prpS is non- 

zero; indeed 

ek(wJ = f mod 1. 

This proposition generalises the behaviour of the composite rlnq. 

Proof. Let 
.f: S*“- I -9 SZ’, g:s*‘+sQ 

be maps representing II,, p,, where 2q - 0 mod 8, 2t E 2 mod 8, 2n - 1 = 3 mod 8. We 

have to consider the invariant eR(f). We have the following diagram. 

Z, = RR(S2’) c r?,(S” uf e*“) +-- g,(S2”) = Z 

rpi 

I T r T is0 
Z = &(S*‘) +-- &(S2’ uI e’“) c Rc(S’“) = Z 

Let 5, q be generators in Z?c(S” Us e’“). Then since e=(f) = $ mod 1 we have (for a suitable 

choice of 5) 

yr-‘t = (-l)‘( + $((-l>” - (-1)‘)q 

= -<+q. 
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Now in RR(S2’ uI e’“) we have rY’ = r; thus we have 2rt = rq. Thus eR(f) is the non- 

trivial extension 

in which all the groups are given operations ‘I? by the formula Y“x = k”~. 

We must now compute the product eR(f) d&), where 

dR(g) : R,(Py --+ R,(P) 

is the epimorphism Z -+ Z,. We easily find that eR(f) dR(g) is the extension corresponding 

to the rational + mod 1. 

PROPOSITION 12.18. If r E 1 mod 8 and s E 1 mod 8 then any representative of the 
Toda bracket {p,, 2, pS} is an element of order 4; indeed e&, 2, p,} = + mod 4. 

This proposition generalises the behaviour of {q, 2, r}. 

Proojl We have just shown that the indeterminacy of {II,, 2, p,} consists at least of 

the integers 3 mod 1. By Theorem 11.1 we have 

ec{pL,, 2, CL,) = -3.2. t mod 1 
zz t mod 1. 

By Proposition 7.14 this is equivalent to 

ek&, 2, cc,) = $ mod 3. 

On the other hand, we have 

2L 2, &> = (2, cl0 2)/l, mod 0. 

This actually gives qpr pS; but at all events it is an element of order 2 at most, so {a, 2, cl,} 

has order dividing 4. This completes the proof. 

EXAMPLE 12.19. Suppose given an even integer m and an element 8 E 7~: (where 
r E - 1 mod 8) such that mtl = 0 and me,(Q) is odd. Then for s E 1 or 2 mod 8 we have 
(0, m, pS> # 0; indeed 

d,{e, m, 14 z 0. 

Proof. If s 5 1 mod 8 we can make an easy calculation using Theorem 11.1: 

e&t 4 cl,> = -+A~>~&c,> 

= 3 mod 1. 

Ifs = 2 mod 8 then d,{8, m, p,} depends only on e&9), m and d&), by Theorem 5.3 
(iii); so we may substitue /~~.-iq for pS, and then 

(0, m, II,} = {e, m, A-~>v 

So the result follows from the case s s 1 mod 8. 

Our final example is of interest in connection with certain rather technical manipula- 
tions with Toda brackets; this is perhaps not the place to expIain the project from which 
these manipulations come, although the reader is assured that they are not without purpose. 
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We suppose given an element 0 in zf for r = 2f-1 - 1, such that 218 = 0, e,(Q) = 2-f 
and 80 = 0. For example, there is such an element if f= 5. We assume ~“2 4, so that 
r=-lmod8. 

By [18, p.30, Theorem 3.61 there are elements p, cp in the 2-component of zn2r_1 (where 
2r - 1 = 2’ - 1) such that 

P E te,e,2”] 
and 

2~ + 2’4~ E {e,2f, ej. 

EXAMPLE 12.20. In the last equation the element 40 cannot be zero; irldeed we have 

eR(y) = 2-f-’ mod 2-/. 

Proqf. By Theorem 11.1 we have 

e,{B, 2s, O} = -2-1. 
By Corollary 11.7 we have 

e,{O, e,2f} = -2s.:(1 + 2J-l)2-f2-f mod 3 
= -(2-‘-l + $) mod f. 

Thus 
e,(2p) = -2-’ + 4 mod 1. 

Hence 
e,(q) = 2-/-l mod 2-“. 

This completes the proof. 
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