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ON THE GROUPS J(X)—IV

J. F. ADAMS

(Received 6 July 1965)

§1. INTRODUCTION

FROM ONE POINT of view, the

X0M ON f present paper i )
on the groups J(X), given in previous papers of this series [3, 4,
however, be read independently of the previous papers in this serles, because from another
point of view, it is concerned with the use of extraordinary cchomology theories to define
invariants of homotopy classes of maps; and this machinery can be set up independently

of the previous papers in this series. We refer to them only for certain key results.
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From a third point of view, this paper represents a very belated attempt to honour the
following two sentences in an earlier paper [2]. “However, it appears to the author that
one can obtain much better results on the J~homomorphism by using the methods, rather
than the results, of the present paper. On these grounds, it seems best to postpone discussion
of the J-homomorphism to a subsequent paper.”” I offer topologists in general my sincere
apologies for my long delay in writing up results which mostly date from 1961/62.

I will now summarise the results which relate to the homotopy groups of spheres.
For this one needs some notation. The stable group Lim =, ,(S") will be written 75, The

n—o:

stable J-homomorphism is thus a homomorphism

Toucanow 1 1 Ifvr = O snd R and r ~ O (cen that w (SN = 7.\ thon T ic a monnmarnhicn

LOEUREM 1.1, Iy 7 = Vb O Gl ¢~ U oU indes 1,000 ) Loy gy siiliv v b0 G TTIONOIOT PricSiTt
and its image is a direct summand in 5.
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r=1or2mod 8. Then any map f: S?+" — §? induces a homomorphism
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THEOREM 1.2. Suppose that r =1 or 2 mod 8 and r > 0. Then =3 contains lement
Hes 0] order 2, such that any map f - irciic A [ NS

of K%.

The elements p, may be described more precisely than is done in this theorem. We have
p; = n and p, = ny, where 7 is (as usual) the generator of nj. The elements 1, constitute a
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systematic family of elements, generalising # and 5 ; they have interesting properties, which
I hope to discuss on another occasion. I am indebted to M. G. Barratt for ideas about
systematic families of elements.

THEOREM 1.3. Suppose that r = 1 mod 8 and r > 1 (so that n(SO) =Z,). ThenJ is a
monomorphism and n5 contains a direct summand Z, + Z,, one summand being generated
by u, and the other being Im J.

The case r = 1 is exceptional, in that the two summands coincide.

THEOREM 1.4. Suppose that r = 2 mod 8 and r > 0. Then 13 contains a direct summand
Z, generated by yu,.

THEOREM 1.5. Suppose r = 4s — 1 = 3 mod 8, so that n(SO) = Z. Then the image of J
is a cyclic group of order m(2s), and is a direct summand in =3,

In this theorem, m(t) is the numerical function discussed in [4, §2]. More explicitly,
let B, be the sth Bernoulli number; then m(2s) is the denominator of B,/4s, when this
fraction is expressed in its lowest terms.

The direct sum splitting will be accomplished by defining (§7) 2 homomorphism

ey = Zpizs)
such that
epJ :1(SO) = Z,,, (25
is an epimorphism.

THEOREM 1.6. Suppose r =4s — 1 = 7 mod 8, so that n(SO) =Z. Then the image of J

is a cyclic group of order either m(2s) or 2m(2s). Moreover, there is a homomorphism
eR:iTy = Zyias)
such that
epd :1(SO) = Z,,3
is an epimorphism.

It follows that if the order of Im J is m(2s), then Im J is a direct summand; this happers
(for example) if r = 7 or 15. In any event, the subgroup of elements of odd order in Im J is
a direct summand in 5.

It will not be proved in this paper, but by more delicate arguments one can show that
even for r = 7 mod 8, the group =} splits as (Ker eg) + Z,(,s); however, I do not know how
the subgroup Im J lies with respect to this splitting.

The invariants (such as eg) which we shall introduce have convenient properties, and
lend themselves to a variety of calculations; examples will be given in §§11, 12. They are
not restricted to maps between spheres. The following result provides rather a striking
example. We take p to be an odd prime, g : S~ —» §247! to be a map of degree p’, and
Y to be the Moore space S7™' U, e?%. Thus K(Y) = Z,;. S*Y will mean the 2r-fold sus-
pension of Y; we take r = (p — 1)p/ 1.

THEOREM 1.7. For suitable q there is a map

A:S¥7Y Y
which induces an isomorphism
A*: R(Y) > R(S¥Y).
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Therefore the composite
A.STA.8%A. .. SHeTU4.8Y L Y
induces an isomorphism of K, and is essential for every s.

For f=1 this result is related to Toda’s sequence of elements a, € 73, _4),-; [16,17],
as will be explained in §12.

From the point of view of history or motivation, the sequence of ideas in this paper
may be ordered as follows. Suppose given a map f: X - Y. We may form the mapping
cone Y u, CX; by studying the group K(Y u, CX) and the homomorphism

ch:K(Y U, CX)—» HXY u,CX; Q)

we may sometimes succeed in distinguishing ¥ U, CX from Y v SX; thus we may some-
times show that fis essential. This method was presumably known to Atiyah and Hirze-
bruch (ca. 1960/61); it is given in [6] (for the case in which X and Y are spheres) and was
published by Dyer [13]. See also [19]. We touch on it in §7 of this paper.

One next realises that in the preceding construction, the possible Chern characters that
can arise are severely limited by the fact that K(Y U, CX) admits operations W*. This
observation leads to a proof of the non-existence of elements of Hopf invariant one (mod 2
and mod p); this proof was given in [6], and was first published by Dyer {13]. We touch
on it in §8 of this paper. It should be said, however, that the most elegant proof by K-theory
of the non-existence of elements of Hopf invariant one is somewhat different; see [8].

One next realises that the essential phenomenon we have to study is the short exact

sequence
RAY)e—RKA(Y U, CX)—K(SX)
of groups admitting operations W*. The class of this short exact sequence yields an element
of a suitable group
Ext'(K(Y), K(SX)).

This element gives an invariant of f. If K(Y U, CX)is torsion-free this approach is equiva-
lent to that using the Chern character; if K.(Y U, CX) has torsion this approach is better
than that using the Chern character. We therefore adopt this as our basic approach. It
has been sketched in [7], and will be fully explained in §3.

In the above, we can of course use Ky instead of K. The use of K and the use of
spaces with torsion gives the extra power needed to prove results such as Theorems 1.1, 1.3,

Once we realise that our invariants should take values in suitable Ext! groups, certain
properties of the invariants become very plausible. Our invariants carry composition prod-
ucts (of homotopy classes) into composition products (in Ext) (§3); they carry Toda

brackets (in homotopy) into Massey products (in Ext) (§84,5). These products enable one
to perform many calculations.

The arrangement of the paper is as follows. Since we make constant use of cofibre
sequences

H
X->Y->Yu,CX->SX..,
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we devote §2 to them. In §3 we define our invariants and give their basic properties.
§§4, 5 are devoted to their properties on Toda brackets, as indicated above. So far the work
has been done for a quite general cohomology theory; in §§6, 7 we specialise to the case of
R and K. §7 contains the main theorem about the cases in which X and Y are spheres
and K is torsion-free. §8 contains the relationship between the invariants of §7 and the
classical Hopf invariant in the sense of Steenrod. §9 considers the case needed for Theorems
1.1, 1.3, in which X and Y are spheres but K is not torsion-free. In §10 we discuss the value
of our invariants on the image of J. In §11 we work out the general theory of §§4, 5 (about
Toda brackets) for the special cases which most concern us. In §§12 we prove Theorem 1.7
and discuss related matters; since the same machinery serves to discuss certain 2-primary
phenomena, we also prove Theorem 1.2 there. In §12 we also give a number of examples
and applications; the reader’s attention is particularly directed to these, since they provide
essential motivation.

Since drafting the body of this paper, 1 have become aware of Toda’s paper [19], which
has a considerable overlap with the present paper. I am very grateful to Toda for a letter
about his results.

Toda defines an invariant
CH"*k: 7T2n+2k~1(52") - Q/Z

which is presumably the same as the invariant e; discussed in this paper. He also defines
an invariant CH,*"*2" which is presumably the same (up to a certain constant factor) as
the invariant ey discussed in this paper.

To give Toda proper credit for his priority, I offer the following concordance of results.
Corollary 7.7 of this paper is to be found in Toda’s paper, and is the essential step in the
proof of his Theorems 6.3, 6.5(i) and (ii) which give restrictions on the values that can be
taken by his invariants (compare 7.14, 7.15 of this paper). Proposition 7.20 of this paper is
Theorem 6.5 (iii) of [19]. Corollary 8.3 of this paper is Theorem 6.7 of [19]. The case
A = C of Theorem 11.1 of this paper is Theorem 6.4 of [19]. Theorem 12.11 of this paper
is contained}in’6.8 of [19].

§2. COFIBERINGS

As explained in the introduction, this paper will make much use of sequences of
cofiberings. We shall therefore devote this section to summarising some ‘material about
cofibre sequences, following [15]. We need only deal with “good” spaces; for the applica-
tions, it would be sufficient to consider finite CW-complexes.

Let f: X — Y be a map. We can construct from it a cofibering
s i
X->Y->Yu,CX.

Here i is an injection map; and Y U, CX is the space obtained from Y by attaching CX
the cone on X, using f as attaching map.
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Iterating this construction, we can construct

i j
Y= (Yu,CX)-»(Yu,CX)u,CY
and (setting Z = Y u, CX)
k

i
Z 5 (Zu,CY) > (Zu,CY)u,CZ.

Now the space (Y u, CX)u; CY is homotopy-equivalent to the suspension SX; and
similarly, the space (Z u; CY) u; CZ is homotopy-equivalent to SY. In order to avoid
errors of sign in what follows, it is desirable to use the ““same” homotopy equivalence in
the two cases. If we do this, then the map

k:(Y U, CX)u;CY »(Zu,CY)u,;CZ
corresponds to
—~S5f:SX - SY.
(This is easy to check; or see [15, p. 309, Satz 4].) We shall therefore take the following as
our basic cofibre sequence.
roo J ~sf
X->Y->Yu,CX>S8X—>SY..
This construction has various obvious properties, which we record for use later.

PROPOSITION 2.1. If f~ g, then we can construct the following homotopy-commutative
diagram, in which all the vertical arrows are homotopy equivalences.

I i j S
X-=Y->Yu,CX>S8X—>SY

R

X->Y->Yu,CX »SX——SY

PROPOSITION 2.2. Given a commutative diagram

S
X-Y

hl lk
e

X/ N )//
we can construct the following commutative diagram.

-5

S i J S
X->Y—-> Yu,CX -»SX — SY

hl I kl i 1 J' Shi *Sf'Skl

X' =Y >Yu,.CX' > 8X'—s SY’

These obvious and elementary propositions are special cases of the more general
results proved in [15, pp. 311-316].

ProrosiTION 2.3. Given

f ]
X->Y->7Z,



—Z U, CX->S8X - SZ

, gll N

Y—»Z——»Z\LCY—»SY — SZ

This follows from two applications of Proposition 2.2.

ProPOSITION 2.4. For each r, we can construct the following homotopy-commutative
diagram, in which all the vertical arrows are homotopy equivalences.
sri N

S'Y —— S(Y U ,CX)

1

- Sr+1X

. | L e
i ¥ J +

Vv
SY —(57Y) ug C(S"X)—— S"*1X

is easy to check, nrovided we use the “reduced’ cone and suspension
115 easy to check , provided we use the “'reduce P

i
The map (—1)" of S™*! X arises as a permutation of the suspension coordinates.

§3. DEFINITION AND ELEMENTARY PROPERTIES OF THE INVARIANTS 4, e

In this section we shall define our basic invariants d and e. We shall also establish the
elementary properties of these invariants.

functor may be one component of a (reduced) extraordmary cohomology theory More
precisely, k is to be a contravariant functor defined on (say) the category of finite CW-

complexes and homotopy classes of maps, and taking values in some abelian category
[14], say 4. If

X->Y->Z
is a cofibre sequence, then
i‘ J‘
(X)) e k(Y)—k(Z)
is to be an exact sequence in the abclian 4. It follows that we may identify

k(X vY) with the direct sum k(X) @ k(Y) in

w1

Now suppose given a map f: X — Y between (say) finite connected CHW-complexes.
We can consider the induced homomorphlsm

o~
3.
\
!
~
~—

If we take X = Y = S” and take k to be H"( ; Z), then the invariant f* gives us the degree

of f. We therefore regard
SE k(YY) > k(X)
as “the degree of f, measured by k-theory”. We define
d(f) = f* € Hom(k(Y), k(X)).
Here Hom(M, N) means the set of maps from M to N in the abelian category 4.
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P 1 ha Aafinmad whan A
< 1 UL JULjluivug wilicil u\J } —
the map f: X — Y to start the following cofibre sequence.
i 1 —QI’
xiys YU,CX 5 SX—>SY
Since we assume that f* =0 and (Sf)* = 0, the functor k yields the following short exact
sequence in the abelian category 4.
i* J*
0—k(Y)«=k{(Y U CX)«—k(S§X)«0
In an abelian category we can define Ext! by classifying short exact sequences; therefore
the short exact sequence above yieids an element of

Ext'(k(Y). k(SX)).
We call this element e(f). The letter e stands for “extension’, and goes well with 4.

For example, let us sider the case in which k = A*(  ;Z,) and A4 is the category

of graded modules over the mod 2 Steenrod algebra. Let us take X = $™*""!, Yy =8"
Given a map f: S™*""! - S™ we are led to consider the following short exact sequence.

0+—H*(Sm, ZZ)(__H*(SmU em+n; Zz)(__ﬁ*(sm+n; 22)4—0

AS an CXICHSIOH OI HIOUUICS over the DltCﬂrO gcord, [HIS lb Lompluely Getermmea Dy [ne
Steenrod square

We therefore recover Steenrod’s approach to the mod 2 Hopf invariant.

The invariant e(f) may thus be regarded as a *‘Steenrod-Hopf invariant” in which
ordinary cohomology has been replaced by k-theory.
We have just defined
d(f) e Ext®(k(Y), k(X))
(if we interpret Ext’(M, N) as meaning Hom(M, N)), and
e(f) e Ext'(k(Y), k(SX)).
One would naturally hope to construct a third invariant, which should be defined when
suitable d and e invariants vanish, and shouid take values in
Ext?(k(Y), k(S2X)).
Similarly for a fourth invariant, and so on. However, we will not pursue this line of thought
any further here.
In later sections we will give examples and applications of the invariants d and e,
and develop the resources to do pract1cal calculations with them. For the moment we con-

sider the elementarv nroperties of these variants
sider the elementar Y properues tnese invariants.

PROPOSITION 3.1 (a). If f~ g, then d(f) = d(g).
(b) If f~ g and e(f) is defined, the e(g) is defined and e(f) = e(g).

Proof. Part (a) is obvious. Part (b) is proved by applying the functor k to the diagram
given in Proposition 2.1.
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We aim to show that the invariants d and e send composition products (in homotopy) into
composition products, i.e. Yoneda products, in Ext groups.

PROPOSITION 3.2 (a). We have
d(gf) = d(f)d(g).
(b) If e(f) is defined then so is e(gf), and we have
e(gf) = e(f)d(g).

(c) If elg) is defined then so is e(gf), and we hare

e(gf) = d(Sf)e(g).
Here statements (b) and (c) use the pairing of Ext® and Ext! to Ext!.
Proof. All the statements about invariants & are obvious. For the rest, we apply the

functor k to the diagram given in Proposition 2.3, and we obtain the following commutative
diagram.
KY) e~ k(Y U, CX) «—k(5X)
g* 1
K(Z)—kZ v, CX)—k(SX)
lI I I(Sf)‘
KZ)e—KZu,CY) «k(SY)

If e(f) is defined, it is represented by the top row; similarly for e(gf) and the middle row;
similarly for e(g) and the bottom row. By definition of the products in Ext, this shows that
e(gf )= e([)-g*

in case (b), and
e(gf) = (Sf)*-e(g)
in case (c). This completes the proof.
For our next proposition, we assume that X is a co-H-space, for example, a suspension.

e SILALNE, WY Ui

That is, we are provided with a map

of type (1, 1). This allows us to define the sum of two (base-point-preserving) maps
fig:X—-Y;
by definition, f + g is the composite
A fvyg [
X->XvX—YVvY-oY,
where u is a map of type (1, 1) in the dual sense.

PROPOSITION 3.3 (a). We have
d(f + g) =d(f) + d(g).
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#linae on o of £ 1 2\ .t
inen so is e\j + gj), ana
e(/+ g) =e(f) + e(g).
In part (b), the sum occurring on the right-hand side is, of course, the Baer sum in
Ext!,

Proof. All the statements about invariants d are obvious. For the rest, we may identify
k(Y v Y) with the direct sum k(Y) @ k(Y), and k(S(X v X)) with k(SX) @ k(SX). In this
way we can identify the sequence

KYVY)—=k((YV Y)u,, CX v X))—k(S(X v X))

with the direct sum of the sequences
Y)—k(Yu,CX)—k(5X)
k(YYe=k(Y U, CX) —k(SX).

That is: if e( f) and e(g) are defined, so is e(f v g), and it can be identified with the “external”
sum e( f) @ e(g). According to Proposition 3.2, we have

e(f + ) = e(u(f v g)A)
= (SA)*e(f v gn*
= (SAY (e(f) @ e(@)u™.
But with our identifications,
(SAY*: k(SX) ® k(SX) - k(SX)
is a map of type (1, 1) in the category A, and

7y, H

1 k(Y) = k(Y) @ k(Y)
is a map of type (1, 1) in the dual sense. Thus the element
(SAY*(e(f) @ e(g))u*
is the Baer sum of e(f) and e(g). This completes the proof.

We will now discuss the behaviour of our invariants under suspension. For this pur-

pose we shall suppose that for some integer r, k(S"X) is known as a function of k(. X). For

Puse il SUPpOsL LAl 100 SOOI ML das o TUHLLI0N O

example, when we take k(X) = K(X) [10, 11, 2], we shall take r = 2; when we take k(X )=
RKa(X) we shall take r = 8. If we took k(X)= H*(X;Z,) we could take r =1. More
formally, we shall suppose given a functor 7, from the abelian category A to itself, which
preserves exact sequences; and we shall suppose given an isomorphism

k(S™X) = Tk(X)

" .
natural for maps of X. We shall allow ourselves to identify 4(S"X) and Tk(X) under this
isomorphism
t A=fi Frrmati e
Since the functor 7T preserves exact sequences, it defines a function

This function is actually a homomorphism,
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PROPOSITION 3.4 (a). We have
d(S’f) = Td(f).
(b) If e(f) is defined, then so is e(S'f), and we have
e(Sf) =(=1)Te(f).

Proof. All the statements about the invariant d are obvious. For the rest, we apply
the functor k to the diagram given in Proposition 2.4 and use the fact that kS"™ = 7Tk.

We now define stable track groups by
Mapy(X, Y) = Dir Lim Map(S"X, $"Y).

n— o

We also define stabilised Hom groups in the abelian category A by iterating 7" and taking
direct limits; thus,

Homg(M, N) = Dir Lim Hom(T"M, T"N).
Similarly, we define stabilised Ext! groups by iterating the homomorphism (—1)'7 and
taking direct limits; thus,
Exti(M, N) = Dir Lim Ext!(T"M, T"N).
PROPOSITION 3.5 (a). The invariant d defines a homomorphism from Maps(X, Y) to
Homg(k(Y), k(X)).

(b) The invariant e defines a homomorphism from the subgroup Ker d n Ker(dS) of
Mapg(X, Y) to Exti(k(Y), k(SX)).

This follows immediately from Propositions 3.1, 3.3, 3.4.

The pairing of Ext groups used in Proposition 3.2 are evidently compatible with the
operations 7 on Ext® and (—1)'T on Ext'; therefore these pairings pass to the limit. With
this interpretation, Proposition 3.2 continues to give the value of the invariants d, e on a
composite gf of stable homotopy classes.

§4. MASSEY PRODUCTS IN HOMOLOGICAL ALGEBRA

In §3 we showed that the d and e invariants map composition products (in homotopy)
into composition products (in homological algebra). In §5 we shall show that the 4 and e
invariants map Toda brackets (in homotopy) into Massey products (in homological alge-
bra). Of course it is necessary to begin by defining these Massey products, and that is the
object of this section.

If we could work in a category containing sufficient projectives, so that we could use
projective resolutions, the construction of Massey products would present no difficulty.
Unfortunately, we have to work in a category which is not known to contain enough pro-
jectives. We have therefore to construct our Massey products without using projectives.
In a work on homological algebra it would be desirable to show that if we accidentally have
enough projectives, then the definitions which do not use projectives coincide (up to sign)



ON THE GROUPS J(X)—IV 31

with those which do use projectives. However, for present purposes we need not discuss
this question; I hope that the definitions given below will commend themselves by their
inherent plausibility and by the applications given in §5.

We shall suppose given four objects L, M, N and P of an abelian category, and three
elements

o € Ext%(L, M)
B € Ext(M, N)
y € Ext(N, P)
such that
Bx=0  in Ext***L, N)
yB=0 in Ext’* (M, P).
Our object is to define the Massey product {7, B, «}, which should be an element of
EXta+b+C—1(L, P)
y Ext**?~Y(L, N) + (Ext®* " Y(M, P))a’
Here the group Ext®*®7Y(L, N)is to be interpreted as zero if @ + b — 1 <0, and similarly

for Ext?*<~! (M, P). It is sufficient for us to consider the cases in which a, b, ¢ and
a+ b + ¢ — 1 are each either 0 or 1.

Case 1. b= 1. (Perhaps this should be counted as three cases.) In this case we can
represent 8 by a short exact sequence, as follows.
i
0-oN->E->M-0
This leads to the following exact sequences, in which the boundary maps coincide, up to
sign, with multiplication by f.
Ext*(L, N)—»Ext“(L b)—»Ext“(L M)—»Ext““(L N)
Ext‘(M, P) — Ext“(E, P) » Ext°(N, P) - Ext** (M, P)
Since Bo = 0 and yf = 0, we can write «, y in the form

a=ja', y=7yi
where
x' e ExtY(L, E), v € Ext(E, P).

We have only to take the element
y'o’ € Ext** (L, P).
It is easy to check that its indeterminacy is

y Ext*(L, N) + (Ext‘(M, P))a,
as given above.

Case2. b=0, a+ c=1. Perhaps this should be counted as two cases. They are
somewhat special, because they are low-dimensional. Suppose first that a =0, ¢ =1, Let

i J
0->P—>E—-N-0
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through j; using also the fact that fa = 0, we obtain the following diagram.
P
7
/ 1
/ i
/!
/s E
/ 2
/ l
/ j
/ /s
L - M- N
This yields an element of
ITAm (T DY
1101 1\1_4, }

The case a =1, ¢ = 0 is dual. Let
i

J
0-M-SE->L->0

be an extension representing «; then we can construct the following diagram.

This yields an ¢lement of

P
0-M-E—-L->0
0>P—F=N-0
be extensions representing &, y. The most convenient way to define an element of Ext'(L, P)
and check that it has the correct indeterminacy is to chase the element 8 € Ext°(M, N)
back through the following diagram.
J 7 a
Ext(L, N) - Ext°(E, N) - Ext®(M, N) - Ext!(L, N)
, 2 .,
a J i
Ext°(M, P) —» Ext!(L, P) — Ext!(E, P) —» Ext!(M, P)
The reader may wonder why we do not place an equal emphasis on the foliowing dual
diagram.
, v i i ) v .
Ext®(M, P) - Ext®(M, F) — Ext°(M, N) - Ext'(M, P)
b IJ, [ aJ, i aJ,
Ext°(L, N) - Ext}(L, P) » Ext(L, F) » Ext}(L, N)
The reason is that the element obtained from this diagram is the negative of that obtained
from the first one. To prove this (and also for later use) it is convenient to give a direct
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construction of the required extension. Let us factor § in the form
B=j0=¢i;
we obtain the following commutative diagram.

J

0O- M- E—-L-0

T
i J
0-P->F->N->0
We now form the maps
(.9 (6.~ i
M —E®F > N

and define
_ Ker(¢, —j)
Im(i, 6)
We check that we have an exact sequence
0-P->G->L-0,

33

yielding an element of Ext'(L, P). By taking merely Ker(¢, —j') or Coker(i, 8), we obtain

elements of Ext!'(E, P) and Ext'(L, F). It is now easy to check that these are precisely the

elements we want in chasing round the upper diagram, and their negatives are the elements

we want in chasing round the lower diagram.

Finally, let us suppose given a functor T from our abelian category to itself, as in §3

above. Then it is clear that all the constructions above are compatible with 7.

§5. TODA BRACKETS, 1

In this section we shall show that the ¢ and e invariants send Toda brackets (in homo-
topy) into Massey products (in homological algebra). For this purpose we shall generally

suppose given four CW-complexes W, X, Y and Z, and three maps
S g h
WoX->Y>Z
such that Ag ~ 0, gf ~ 0.

First suppose given a specific homotopy

LIXW-SY
such that /(0, w) is constant and
I(1, w) = gfw.
Then we can define a map
G XU, CW-Y
by
G(x) = g(x) (xeX)
G(t, w)y=1I(t, w) (tel, we W).
Again, we can define a map
F:SW YU, CX
by
(21, fw)

\_ (
Ftw=\e-uw
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These maps figure in the following diagram.
sf
SW

s

XY
Here the two triangles are homotopy-commutative, and the parallelogram becomes homo-
topy-commutative if one inserts the map

—1:SW — SW.

If we suppose given also a specific homotopy hg ~ 0, we can construct similarly the
right-hand half of the following diagram.

hid Sg

Xu,CW Yu,CX Zu,CY (5.1)

X > Y A
g h
The Toda bracket {A, g, f} is the composite
HF:SW - Z.

LemMa 5.2 (a). Suppose that e(Sf) and e(g) are defined. Then a homotopy gf ~ O is such
that e(F) is defined, if and only if it is such that e(G) is defined.

(b) Suppose that e(Sg) and e(h) are defined. Then a homotopy hg ~ 0 is such that e(I')
is defined if and only if it is such that e(H) is defined.

Proof. We have the following diagram, in which the columns are exact and
J¥F* = —G*i*,

k(SX)
(=SS )‘l -
K(SW) —— K(Y U, CX)
j. l'i

G*

KX u;CW) «— KY)

k(X)
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According to the data, j* is mono and i* is epi. Therefore F* =0 if and only if G* =0.
Similarly for (SF)* and (SG)*. This proves part (a); substituting X —a—r YLZ for
WL X —g—> Y, we obtain part (b).
We can now state the main result of this section.
THEOREM 5.3 (i). Suppose that e(f) is defined. Then
d{h, g,f} = —{e(f), d(g), d(h)}.
(ii) Suppose that e(g) is defined. Then
d{h, g,f} = {d(Sf), e(9), d(h)}.
(iii) Suppose that e(h) is defined. Then
d{h, g,f} = —{d(Sf), d(Sg), e(n)}.

(iv) Suppose that e(Sf) and e(g) are defined, and that we only ‘consider homotopies
af ~ 0 such that e(F) is defined (or equivalently, by Lemma 5.2 (a), such that ¢(G) is defined).
Then e{h, g,f} is defined and

eth, g.f} = {e(Sf), e(g), d(h)}.
(v) Suppose that e(Sf) and e(h) are defined. Then e{h, g,f} is defined and
e{h’ q, f} < = {e(sf)9 d(sg)’ e(h)}

(vi) Suppose that e(Sg) and e(h) are defined, and that we only use homotopies hg ~ 0
such that e(H) is defined (or equivalently, by Lemma 5.2 (b), such that e(I') is defined), Then
e{h, g,f} is defined and

e{h, g,f} = —{d(S*f), e(Sg), e(h)}.

Proof. We tackle first the three cases in which the Massey product is defined by case
(1) of §4, viz. the cases (ii), (iv) and (vi). For this purpose the objects L, M, E, N and P
of §4 case (1) take the following values.

L M E N P
Case (ii) k(Z) K(Y) k(Y v, CX) k(SX) k(SW)
Case (iv)  k(Z) k(Y) k(Y u,CX) k(SX) k(S*W)

Case (vi) k(Z) Kk(SY) Kk(S(Yu,CX)) Kk(S2X)  k(S2W)

It is to be noted that in case (vi), the invariant e(Sg) is defined to be the short exact

sequence
i N
kK(SY)—k(SY Us, CSX) — k(S?X);
but by Proposition 2.4, this is the same as
(siy* ~(SQ*
k(SY)e——k(S(Y U, CX)) ——k(S*X).
We have now to construct

o’ € Ext(L, E), v’ € Ext(E, P)
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as in §4 case (1). For this purpose we give the following values.
al 'Y,
Case (ii) d(H) d(F)
Case (iv) d(H) e(F)
Case (vi) e(H) —d(SF)

The fact that these values have the required properties is proved by applying Propo-

sitions 3.1, 3.2 to the formulae
Hi~h, jF~5Sf, (Sj(SF)~ S*f
where /, j are the maps appearing in
i J
Y-Yyu,CX - SX.

Using Proposition 3.2 again for the composite HF, we find the following results. In
case (ii), d(HF) represents the Massey product. In case (iv) e(HF) is defined, and represents
the Massey product. In case (vi) e(HF) is defined, and —e(HF) represents the Massey
product. This completes cases (ii), (iv) and (vi).

We tackle next the two cases in which the Massey product is defined by case (2) of §4,
viz. the cases (i) and (iii). For this purpose the objects L, M, E, N and P of §4 case (2)
take the following values.

L M E N P
Case (i) k(Z) kK(Y) KX u,CW) k(X) k(SW)
Case (iii) kKZ) k(SY) k(Z v, CY) k(SX) k(SW)

We have now to construct diagrams as in §4 case (2). The appropriate diagrams are

obtained from Diagram 5.1, and are as follows.

Case (1) k(SW)

/ J*

—(HF)’//
/KX U, CW)
/ 2 .
G*/ i*

/
/ h* /et

1(Z) = k(Y)——— k(X)

.. (Sg)* SshH»
Case (ii) K(SY) —— k(SX)—— k(SW)
pa

7
7/ /
/

j* 7/
/= /

k(Z u,,CY/) /
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In both cases we see that —d(HF) represents the Massey product. This completes
cases (i) and (iii).

Finally, we tackle case (v). We first check that e(HF)is defined. The fact that (HF)* = 0,
under the hypotheses given, follows by chasing round the following commutative diagram,

in which the columns are exact.
rt

k(SX) e———K(Z L, CY)
S li‘
+ —(HF)*
K(SW) e k(Z)
jt hi

G*

KX U, CW)e——Kk(Y)
Similarly for the fact that (S(HF))* = 0.
We now recall that in case (v) the Massey product is defined by case (3) of §4. For this
purpose the objects considered in §4 take the following values.
L =k(Z), M = k(SY), N =k(§X), P = k(S?*W),
E=k2Zu,CY),
x=-e(h), pB=(Sg9), y = e(Sf).
We start with the element —e(HF) in Ext'(L, P). Its image in Ext!(E, P)is —e(HF)i*. By
Proposition 3.2 this is
~e(iHF) = e(I'.Sf)
=e(Sf).T*
=v.T*
But the element I'* in Ext°(E, N) projects to (Sg)* = f in Ext®(M, N). Therefore —e(HF)
qualifies as a representative for the Massey product. This proves case (v), and completes
the proof of Theorem 5.3.

Perhaps it should be pointed out that Theorem 5.3 is consistent with the behaviour
of d, e under suspension S” (as in §3), because of the behaviour of Toda brackets under
suspension:

Sh,g,f} =(—=1Y{S"h, S'g, S'f}.

In our applications r will always be even, so the signs (—1)" can be forgotten.

§6. AN ABELIAN CATEGORY

The construction of §3 requires a half-exact functor k taking values in an abelian
category 4. In the applications we shall take k(K) to be the Grothendieck-Atiyah—Hirze-
bruch group K ,(X) [10, 11] equipped with its operations W* [2]. We shall therefore need
to consider K,(X) as an object in a suitable abelian category A. Actually the category A4
will depend on A, where A = R or C; but we shall not display the symbol A in the nota-
tion. It is the object of this section to define the category A.
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M provided with endomorphisms
YoM M

(one for each integer k) and satisfying the following axioms.
6.1 WE gt
6.2) Y0'=0, W¥'=1 and (ifA=R) ¥ !=1.
(6.3) For each x € M and ¢ € Z, the mod ¢ value of W*x is periodic in k with period

or some e = e(x, a).
i AR VA

n this axiom, and below, the statement “f(k) is periodic in k with period ¢
h

cmnly “L —= L. maod 22 imnlies £l Y = (- \? If ie nat accartad that €
SINp1y /) = /£, MCG § HNPalSs jWy) = Juwiy) « il 1§ NIOL asserica

possible period. In particular the condition is true for ¢ = 0 in a trivial way.

b.i

e

means

ic a gmallact
ulat g 1§ Ui SMaucsi

By definition, a map in the category 4 is to be a homomorphism 8 : M — N of abelian
groups which commutes with the operations P*.

EXAMPLE 6.4. The functor K, associates to each finite connected CW-complex X an
abelian group K,(X) provided with endomorphisms W*, and associates with each map
f: X Y an induced homomorphism

[ RA(Y) = Ry(X).

The functor K, takes values in the category A = A(A). In fact, axioms (6.1) and (6.2) are
satisfied, according to [2 Theorem 5.1 (v), (vii)]; and axiom (6.3) is satisfied, according to
[5 Theorem 5.1}.

PROPOSITION 6.5. The category A defined above is an abelian category, in the sense of
[14, Chapter IX].

D .
LeMMA 6.6. If M is an ob] ct in A, and Nisa subgrou of M closed under the operations
, ,

Proof. This follows the lines of [5 Lemma 6.5]. Consider the subgroup S, of elements

- Py s = AT TMhic me; thorsancing aamITat s I PO | IR |
b lll IVI bubll tnat q ./‘ < I¥. 111y all lllblcabllls sLyjuLinge Ul L'buUmUuulcb lll lllc llllllviy'

generated Z-module M, therefore convergent. That is, there exists ¢ such that x € M,

"“lv € N imply ¢'x e N. Now we use axiom (6.3) for M; given y € N, there is an f such

A2ipay A & ot Al VD, 20D il

that the value of ¥*p in M/¢***M is periodic in k with period q“'”)f . That is, if
k = I'mod ¢“**Y/, we have

\I;ky - \Ply = qt+l
for some x in M. By our choice of ¢, this shows that
Yy — Ply e gN.

We have only to take e = (¢ + 1)f. This completes the proof.

In §3, we assumed that k(S"X) could be calculated in terms of k(X) by a functor T
from A4 to A. It is clear what functor T we should take in the category A described above.
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M is an object in A, then the abelian group underlying T is the same as that underlying
M, but the operation W* in TM is k* times that in M (where r =2 if A=Cand r= 8 if
A =R Ttic clear that th new anarafinneg caticfu aviame (6 1Y (A N and (63 Similarly
A =R). Itisclear thatt ew operations satisfy axioms (6.1), (6.2) and (6.3). Similarly,

if f: M— N is a map in 4, then Tf is to be the same homomorphism as f; this clearly
commutes with the new ooeratlons

It is now clear that we have an isomorphism
KA(S"X) = TR \(X)
natural for maps of X; see [2 Corollary 5.3].
The theory given in §§3-5 can now be applied to the functors k = Ky and k = K.

§7. AN INVARIANT DEFINED USING THE CHERN CHARACTER

We are now in a position to apply the theory given in §§3-6. To give applications, we
be

egin by falnncr the snaces X and Y to be snheres of suitable dimension, so that we

Oy wasill HIC spates A pPRtics QAIACASION, iial

shall
obtain mformatlon about stable homotopy groups of spheres. We shall write d,, e, for
the invariants obtained by taking k = K,, where A = R or C.

We start with a preliminary discussion of the invariants d, (7.1, 7.2). Next we show

e in
riant 2. can be described in a more elementary wav ugine the Chern
riant - can bDe gescribed 1n a more eiementary way using the Chern

As remarked in the introduction, there is considerable overlap at this point with work of
Dyer [13]. We will discuss the relationship between e. and the invariants dg, eg (7.14,
7.18). We will also give substantial information about the values taken by these invariants
(e.g. 7.15, 7.16). There remain certain cases in which the invariant e, is independent of
ec; we postpone these cases to §9.

We begin by considering the invariant d,. Let  be an element of =5; choose a repre-
sentative map
f:89"" > 89
for 6. A priori,
da(f) =f*: R\(8Y) > KA(57*)
depends on the residue class of ¢ (mod 2 if A= C, mod 8 if A= R). I claim that it is

farnd D€ A r AO'{'A‘

— M
\lllUU L 11 Iy — L/, MMoa oii A = I\}-

A(SD. Therefnre

dp(f) =1*: R3S - RR(5**")
f*: K389 - KF'(s*n,

dA(S'f) = (S‘f)* : KR (Sq+t) N KR(Sq+t+r).

PROPOSITION 7.1. d, is zero on =¥ for r > 0 unless A= R and r = 1 or 2 mod 8.
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First proof. By the above argument, d, defines a homomorphism from 73 to G, where

Z ifA=Candr=0mod?2
orif A=Rand r=0,4mod8
0 ifA=Candr=1mod2
orif A=Rand r=3,5,6,7mod 8.

G =

Since n3 is a finite group, d, must be zero. _

Second proof. It is sufficient to consider the case of a map f: §**" — $9, where g, r are
divisible by 2 if A = C, by 4 if A = R. Then the groups K,(59), K,(§**") are Z, and their
operations W* are given by

Wi = ktlx,  Wix = kAT
respectively, If r > 0, the only homomorphism commuting with the operations is zero.

We now consider the case A= R, r =1 or 2 mod 8. We take as our basic invariant

the homomorphism

de:mi—Z,
obtained by considering maps

fi827" 5 57
with ¢ = 0 mod 8. (It is understood, of course, that if we later wish to apply the theorems
of §§3, 5 we shall still have to use the invariant dy appropriate to spheres of the dimensions
which actually arise).

THEOREM 7.2. Assume r =1 or 2 mod 8 and r > 0. Then the invariant
dR . ﬂf -3 ZZ
is an epimorphism; we have
nd =7, + Ker dg,
where the subgroup Z, is generated by .
This theorem includes Theorems 1.2 and 1.4, 1ts proof is deferred to §12.

We will now give an elementary construction, using the Chern character, for an in-
variant which we will later prove equivalent to .. This invariant has already been described
in [6, 13]. See also [19].

Suppose given a map f: $*"~' — §29, where n>¢>0. If A= R we assume that n
and g are even. We use f to start the following cofibre sequence.

SZn—l i Slq _l) SZq Uf eZn _,’ SZ"—:——f-) SZq+l
Applying K,, we obtain the following exact sequence.
~ i‘ g j‘ ~
0 — KA(S?) — K\(SM U e KR8 <0
~Z ~7
The group K (S u F; e*") is therefore Z + Z; we can choose generators &, 5 so that &
projects to the generator of K,(S%9), and 7 is the image of the generator in K,(S?").
As in [4], we write ch¢ for the Chern character

ch: Kc(X) > H¥(X; Q),
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K o(X) — Ke(X) > H (X Q).

hle H.’.q(SZq P 32"; Z)
hln e HZn(SZq U reln; Z)

be cohomology generators, corresponding under i*, j* to the generators in H 29(S24; 7),

1729 Q20 7N Tlam 10 ITR0C20 ., 5200 O we meiich have formu
17\ 4 ). LIKRLN IN 117 Uyp €, ) WO MUSt 11dve 10111

73) chpl = ay h* + },02,,112,"
L chan = ayh"
Here we have

(1ifA=Candr=0mod?2

={l1fA = Rand r =0 mod 8
[2if A= Randr = 4 mod 8.

(The coefficient a,, is introduced into the term la,,/i*" for technical convenience). The
coefficient A = A(f) is some rational number. Of course, 4 depends on the choice of &; we
can replace & by & + Nn, where N is any integer; this replaces 2 by A + N. To obtain an
invariant of f we have therefore to consider the coset {A(f)} of A(f) in Q/Z, the rationals

mod 1.

ExAMPLE 7.4. Take A = C and take f to be the Hopf map from S to S*. Then S* U, ¢*
is CP?, the complex projective plane. We may take & to be the canonical line bundle minus
the trivial line bundle. Then

ché =¥ — 1 = x + 157,

ey Ve

where x is the cohomology generator. Thus we have A =% and {}{(f)} = % mod 1.

It is easy to establish the properties of the invariant {i(f)} directly, by following the
pattern of §3; but in fact this is not necessary, as we will establish that the invariant {(/)}
is equivalent to the invariant e( f) introduced in §3 (see Proposition 7.8). We will first
show that the invariant {A(f)} determines e(f), by using the Chern character to compute
the operations P* in %7 U, &>

PROPOSITION 7.5. With the notation introduced above, the operations W* in K ,(S%1 U ; e21)
are given by the following formulae.

WEE = k¢ + A(K" — k%)
Py = k.

cha: RA(S* U ey » HY (S U e?; Q)
is monomorphic, the formulae can be checked by applying ch, to both sides, using (7.3).
To evaluate ch,¥*¢ one uses [2 Theorem 5.1 (vi)l.

COROLLARY 7.7. The rational number A has the form z/h, where z € Z and h is the highest
common factor of the expressions k" — k? as k runs over Z.

This follows immediately, since the coefficients A(k" — A%) must be integers.
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In order to discuss the invariant e(f) we must now compute the appropriate Ext group.
We write M, N for the objects K,(52%), K,(S?") of the abelian category 4; thus the abelian
group underlying M is Z and its operations are given by
Wy = kix;
similarly for N, in which
Wex = k"x.
The following proposition computes Ext!(M, N).
PROPOSITION 7.8. There is a monomorphism

0:Ext'(M, N)- Q/Z
such that for any map
f . SZn— 1 N SZq
we have
&e(f)) = {A1)}-

The image of 0 is the subgroup of cosets {z[h}, where z, h are as in Corollary 7.7.

The following proposition computes Extl(M, N).

PROPOSITION 7.9. There is a monomorphism

O0s:Exty(M, N)—> Q/Z
such that for any map
f SZn— 1 — SZq
we have
Os(e( ) = {A()}.

The image of Oy is the subgroup of cosets {z/m(t)}, where z € Z, t = n — q, and the numerical
Sunction m(?) is as in [4 §2].

The explicit definitions of 8, 65 will be given during the course of the proof. We
begin by explaining the use of factor sets in studying our extensions.

Suppose given an extension
O—M—E«N&Q
in the category A, where N, M are as above. Then we can choose generators &, » in E so
that £ projects to the generator in M and 7 is the image of the generator in N. The opera-
tions in E must be given by formulae of the following form.
W = K9 + (k)
Yy = k"

The integers c(k) constitute a “factor set” describing the operations ¥* in the extension E.

(7.10)

LemMA 7.11. This factor set has the form
(7.12) c(k) = A(k" — k)
Sfor some A € Q.

This lemma shows that the “abstract” algebraic extensions are described by the same
formulae that we have already found in the “concrete” topological situation.
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Proof of Lemma 7.11. By Axiom (6.1) we have in E the relation W*¥! = W*, This
yields
c(kl) = (k) + c(DK".
Interchanging k and /, we find
c(kl) = c(Dk? + c(k)I".
Choosing / so that I" — 17 # 0, we find
(k" — k%)
W=
That is,
c(k) = Ak" — k9)
for some rational A. This proves the lemma.

If we replace £ by & + Nn, we replace the factor set c(k) by c(k) + N(k" — k7). This
replaces 4 by A + N.

It is now clear how to define

0:Ext'(M,N)—> Q/Z;
by definition, the function ¢ will assign to any extension E the coset {A} in Q/Z given by
formulae (7.10) and (7.12). The equation
0(e()) = {A()}
follows immediately by comparing formulae (7.6), (7.10) and (7.12).

We have to remark that 6 is a homomorphism; in fact, it is not hard to check that the
Baer sum in Ext'(M, N) corresponds to addition of factor sets, i.e. to addition in Q/Z
It is also clear that @ is a monomorphism.

It remains to discuss the image of 6. It is clear that in Lemma 7.11 the rational number
A has the form z/h, as in Corollary 7.7. We require the converse result.

LemMA 7.13. Each rational . of the form z/h arises by formulae (7.10), (7.12) from some
extension E and some choice of &.

Proof. We use the formulae (7.10) and (7.12) to define operations W* on the free abelian
group generated by £ and 5. We easily check that these operations satisfy axioms (6.1) to
(6.3). This gives the extension E required.

This completes the proof of Proposition 7.8. It remains to check that our proceedings
are compatible with suspension. We easily check from our formulae that if M and N are
as above, then the following diagram is commutative.

Ext!(M, N)
\

\ @
! Y Q/zZ
4 )

Ext!(TM, Tz\f)
Therefore 8 passes to the limit and defines a monomorphism
05 :Exti(M, N) - Q/Z
such that O5(e(f)) = {A(f)}, as required. It remains to discuss the image of f5. Let n and ¢
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, the integer A increases, and ultimately attains a constant value, namel
completes the nrnnf of Proposition 7.9.

We shall now regard our invariant e(f) as taking values in the rationals mod 1, in the

3
cace 1indar dicaiegin We repeat that this is the case X = c2n 1 Y = qu whare 22 and ~
VAaOob Uil um\,uamuu YyL 1vpual tllat 11iis i8S ¢ Cas WIICIL /I allu q
are even if A = R.

At this point we possess a choice of invariants defined on the r-stem 75 for r = 3 mod 4.
In fact, by considering eg(f) for mapq f:8%9%" 5 S% with 2g = 0 mod 8 we obtain one
......... ot At fas tmame £+ 02a+r qu it Y. — A
lllVd—llallt, ba_y ﬁR, U_y bUllDlUClllls CR\J } 101 llldpb J WILLL Lq ==
obtain another invariant, say e;. We also have the invariant ec(f) for maps f: S

We must discuss the relations between these invariants,

mod 8 we
q+r _)qu.

ProposiTION 7.14. If r = 7 mod 8 then

ec=ep=ep:m - Q|Z.
If r = 3 mod 8 then

and

ep = 2e

3

Proof. Consider the following diagram.
0 — K(52) « Kp(S* U e™) « Rg(S*") 0
0= Re(82) e~ Re(S¥ U, )~ R(S*") -0

Let us identify K,(S?9) with Z; then the map ¢’ is multiplication by 1 if 2g =0 mod 8, by

SHAN 7 H f I M 1 e

2 if 2g = 4 mod 8. Similarly for ¢”. So if 2g = 0 mod 8 we have

(N = " o (F)-
\JJ) =Y -SRI />

[

o)
if 2n = 0 mod 8 we have

er(f) = ec(f).c".
Similarly, consider the following diagram.
Ol—ﬁc(b )(—Kc( Ufe )‘—Kc(b“)‘—‘u
0 Kr(827) — Kx(S* U, e e~ Kp(S*) 0

This is a diagram in the category A, since r commutes with ¥* [9]. The map r’ is multipli-
cation by 2 if 2¢ =0 mod 8, by 1 if 29 =4 mod 8. Similarly for . So if 2¢g =4 mod 8
we have

er(f) =r"edf):
if 2n = 4 mod § we have

This yields the results stated; actually it gives two proofs for each.

We will now describe the values taken by the invariants considered in Proposition 7.14.
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THEOREM 7.15. If r = 4s — 1, then the image of
ep > Q7

is precisely the subgroup of cosets {zjm(2s)} (z € Z); that is it is, a cyclic group of order m(2s).

It follows from Proposition 7.9 that the image of ey is contained in the subgroup
indicated. In order to prove that the image of e} is the whole of this subgroup, we compute
e on the image of the J-homomorphism.

THEOREM 7.16. If r = 4s — 1, then the value of the composite

exJ 1 (SO)—> Q/|Z

on a suitable generator of n,(SO) is Yo, mod 1.

In these theorems, the numerical function m(f) and the rational number }o,, are as
in [4 §2]. That is,

B
— _1 s—17s
%aZS ( ) 4S’

where B, is the s Bernoulli number. Theorem 7.16 thus reproves the result of Milnor
and Kervaire, as improved by Atiyah and Hirzebruch [10]. The value of «,, mod 1 is
explicitly given by [4 Theorem 2.5}, which was proved for this purpose. We recall from
[4 Theorem 2.6] that the denominator of 1a,,, when this fraction is expressed in its lowest
terms, is precisely m(2s). Theorem 7.15 will therefore follow from Theorem 7.16. The
proof of Theorem 7.16 is deferred to §10.

I believe that Theorem 7.16 was known to earlier workers, for example, Atiyah (ca.
1960/61); see also Dyer [13, Theorem 1 and formulae on p.370].

Theorems 1.5, 1.6 will follow immediately from Theorems 7.15, 7.16 and [4 Theorem
3.7]. Suppose for example that r =4s — 1 = 3 mod 8. Then by Theorems 7.15, 7.16 we

have the following diagram.
S

TE"
7\
i// \\e,
/ N
/ epi N
ImJ = Zngzs)

But by [4 Theorem 3.7] the image of J is cyclic of order dividing m(2s). Therefore the dia-
gram provides a direct sum splitting. Similarly for the case r =7 mod 8, except that [4
Theorem 3.7] only states that the order of Im J divides 2m(2s).

We will substitute a few small numbers in Theorem 7.16 in order to provide examples.
For r = —1 mod 4, let us take the generator in 7,(SO), and let its image under
J: @, (S0)- 15 be j,. Then we have:

ExAMPLE 7.17.

erls = 7%
erj7 = —740
erji1 = 567
€rf1s = —ato
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Inspecting Toda’s tables [18, pp.186-188] we see that
e;! : 7'C§ - Z24-’
er:m5 = Zs40
and
er: 31— Zsos
are isomorphisms, while
er:n3s > Zago
and
er: Mo > Zogs
are epimorphisms with kernel Z,. Toda gives the elements nx in ni5 and & € {v, ¥ + &, 6}
in n}, as generating Z, summands; these elements are annihilated by ey, as we see using
Proposition 3.2 and Theorem 5.3 (v).

We have still to describe the invariant e on the r-stem for r = 1 mod 4. In this case
the integer m(#) occurring in Proposition 7.9 is 2, and so e; gives a homomorphism from
75 to Z,. We have already remarked that if » = 1 mod 8 the invariant dj gives a homo-
morphism from 75 to Z,.

THEOREM 7.18. If r =1 mod 8 we_have

. ec=dR:TCf'—)Zz-

The behaviour of d; has been described in Theorem 7.2. The proof of this theorem is
deferred to §12.

For completeness we describe the value of this invariant on the image of the J-homo-
morphism.

PROPOSITION 7.19. Suppose r = 1 mod 8. Then the composite

ecJ = dRJ:TCr(SO) - Zz
is an isomorphism for r = 1 and is zero for r > 1.

For r =1 the J-homomorphism becomes an isomorphism from =#,(SO)=2Z, to
n$ = Z,. The value of di on =} is well known, and the value of e is given by Example 7.4.
For r > 1 the proof of this proposition is deferred to §10.
PROPOSITION 7.20. If r = 5 mod 8 we have
ec = 0 M TCE -> Zz.
This will follow immediately from Proposition 7.1, by using the following lemma.
LemMa 7.21. Suppose given f: S*1*" —» 8* with 2q =0mod8 and r=1mod4. If
d(f) =0, then ec(f)=0.
Proof. Consider the following diagram.
I o
KR(SZQ+r)4—KR(SZq)<—KR(qu Uy e24+r+1)‘__KR(SZq+r+ l) — Z2 or O
<3 0
IZC(SZq+r) ‘_I‘ZC(SZq)(_I'ZC(SZq Uf e2q+r+ 1) ‘_KC(qu+r+ 1) =7
If f* = 0, the diagram provides a splitting of the extension ec(f).
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§8. RELATION WITH THE HOPF INVARIANT

In this section we shall establish the relation between the invariant e discussed in §7

and the Hopf invariant (mod 2 or mod p) in the sense of Steenrod. As mentioned in the

introduction, this leads to a proof, first published by Dyer {13], of the non-existence of
elements of Hopf invariant one (mod 2 or mod p).

We first recall the definition of the Hopf invariant in the sense of Steenrod. Asin §7,

we take a man f S§27-1 _, €29 and form S U, e?", Let 2 be a prime; and suppose that

o lap ; 2O ~5t & pPRiiat, alG S%v PP YSy as

n—q = k(p — 1), where k is an integer. Then in H*(Sz" U, e Z,) we have a formula
of the following form.

8.1 P*oh?1 = pph® "

Here P* is the Steenrod reduced power (interpreted as Sg* if p = 2); the homomorphism
p:H*(X;Z)> H"X; Z,)

is induced by the quotient map Z — Z,, of coefficients; the classes h*? and 4*" are generators

in H*(S?* Uy e%"; Z), as in §7; and u is some element of z,

It is easy to see that p is an invariant of . We will now show that the value of u is
determined by e (f). For this purpose we define Q, to be the additive group of rationals

with denominators prime to p; then we have a unique homomorphlsm p' t Q,— Z,extending
the quotient map Z - Z,.

ProPOSITION 8.2. We have

Proof. Formula (7.3) states that
ché = h*1 4 Ah?",

where ec(f) = {A}. We now appeal to [1, Theorems 1, 2]. The statements of this paper
involve a further numerical function; we set

M(r) = H p[r/p—ll_
4

(This function is written m(r) in [1], but it is different from the function m(¢) of [4 §2].)
In our application, we take the integer “r” of [1] to be k(p — 1). Theorem 1 of [1] now
states that the class M(r)Ah*" is integral; that is, M(r)A € Z; thus p*l € ;- Moreover, in
[1, Theorem 2], the class “ch, 4& must be h?%, and the class “ch, ,&” must be M(r)Ah®".

et FENY oo

Thus {i, Theorem 2 part (5)] gives

p(M(P A7) = MO

1"

—— 2(PY)ph*.

Here y means the canonical anti—automorphis of the Steenrod algebra. But in the complex
ZE thus

qu. s 2n Ao minnin sonlels Qénnien et PR
D Up€ accomposaoic Steenrod upcxauuua arc

x(PY)ph*t = — P* h"’

Since M(r)/p* is an integer prime to p, this leads at once to the result given.
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COROLLARY 8.3. The Hopf invariant in the sense of Steenrod is zero except in the
Sfollowing cases;

@p=2k=12o0r4;
(b) pisodd, k =1.
It is (of course) classical that non-zero values can occur in the exceptional cases given.

Proof. According to Proposition 7.9, we have e (f) = {z/m(t)} where zeZ and
t =k(p — 1). We have only to check that m(¢) contains the prime p to the power (k — 1)
at most—except in the exceptional cases. This follows from the explicit definition of m(r)
given in [4, §2].

COROLLARY 8.4. The stable group w3, s contains an element o with pa = 0 and
ela) =—1/pmod 1.

In fact, the p-component of n3, _; is known to be Z,; and it is known that we can choose
a generator « whose Hopf invariant is 1 mod p.

The same argument shows that we can find elements in the 2-components of =, n
and n§ whose ec-invariants are § mod 1,  mod 4 and % mod 3.

§9. THE INVARIANT e¢g ON THE r-STEM FOR r =0, 1 mod 8

In this section we will add to the discussion of §7 by discussing the invariant e, as it
applied to maps f: §24*" - S%9 with r =0 or 1 mod 8 and 2g = 0 mod 8. The results are
stated in Theorems 9.4, 9.5.

There are of course other possibilities for the dimensions of the spheres; one of them
will actually arise in the proof of Proposition 12.17. The earnest student may consider
the eg-invariants of maps f: S"~! — §, where », ¢ Tun over the congruence classes 0, 1,
2 and 4 mod 8, so obtaining 16 cases. He will find that all the resulting invariants are
determined by those we consider in this paper.

We will begin by computing the Ext groups which arise in our case. As before, let M
be the object of the abelian category 4 in which the underlying group is Z and the opera-
tions are given by

Py = kix.
Let N be the similar object in which the underlying group is Z and the operations are given
by

Wiy = k™.
Let N’ be the quotient object N/vN, where v is some positive integer; thus the abelian

group underlying N’ is Z,. We shall consider only the case A = R, and so we assume that
q and n are even.

We have already computed Ext{(M, N), which is a cyclic group (Proposition 7.9).
The next result computes Exti(M, N).
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PROPOSITION 9.1. The quotient map N — N’ induces an isomorphism

Exti(M, N)/v Ext}(M, N) > Ext}(M, N').

It follows that we may represent Exti{(M, N') as the group of rationals z{m(t) modulo 1
and vim(t), whereze Z and t = n —q.

Proof. The exact sequence

v
O->N->N->N->0
induces an exact sequence

Ext!(M, N) - Ext'(M, N) > Ext!(M, N)

and so (passing to direct limits) an exact sequence

ExtY(M, N) > Ext}(M, N) - Ext;(M, N).
All that is required is to show that the map
Exti(M, N) — Ext}(M, N')
is epi. By splitting N’ into p-components, we see that it is sufficient to consider the case
v=pl.
Suppose then that v = p/, and suppose given an exact sequence
O0—M—E«—N «0

in the category 4. We may choose in E an element & projecting to the generator in M;
we may write # for the image in E of the generator in N’. The operations ¥* in E must be
given by formulae of the following form.

WRE = K9 + c(k)n

¥ = k™

Here the coefficients c(k) lie in Z,, and constitute a “factor set”.

9.2)

We now invoke Axiom 6.3, which shows that the value of c(k) modulo v =p’ is
periodic in k with period p®/ for some e. Now the multiplicative group G of residue classes
prime to p, modulo p®/, is cyclic if p is odd; let / be a generator for G, or for G/{+1} if p = 2.
From the equation ¥* = ¥*¥!, we find

(9.3) c(kl) = lc(k) + k"c(]) mod v.
(Compare the proof of Lemma 7.11.) By induction over r, we find that
LU
o= T (D) mod v.
Since we have assumed we are in the case A = R, we have ¥ % = ¥*, and thus
N =T
(=N = T () mod v.

(Recall now that n and g are even.) We have thus shown that
c(k) = (k" — k9u mod v
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for all k prime to p, where p is the rational number c(J)/(" — [9). It is now easy to see that
we have
c(k) = (k" — kA mod v

for all k prime to p, where 4 is a rational number whose denominator is a power of p.
Next recall that the class of E in Ext}(M, N’)is not affected by applying the “eight-fold
suspension operator” T (see §3). Suppose we do this ¢ times; then the equation
(k) = (k" — k)4 mod v
(valid for k prime to p) becomes
k¥e(k)y = (K" — k14492 mod v

(for k prime to p). We can easily choose ¢ large enough to satisfy the following two
conditions.

(i) k*c(k) = 0 mod v wherever & is divisible by p.
(i) (k"** — k***)] is integral and divisible by v whenever k is divisible by p.

The equation
k¥e(k) = (""" — k"), modv

will thus be true for all k&. We have shown that the factor set k*¢(k) has the form con-
sidered in §7; thus E represents an element in the image of

Exti(M, N) - Exti(M, N').
This completes the proof.

As a particular case of Proposition 9.1, we may put v = 2. Then the operations ¥* in
N’ are independent of n, being given by

B k odd
Wiy = 0 Ek even)).
We have
Exti(M, N) = Z,.
In this case the proof given above specialises a little. Equation (9.3) shows that the factor
set ¢(k) gives a homomorphism from G, the multiplicative group of odd numbers modulo
2¢/, to the additive group Z,. We arrive at two factor sets; the zero factor set, and that
given by
o(k) = 0 for k= 4+1 mod 8
1 for k = 4+3 mod 8.

The latter represents the non-zero element of Extg(M, N').

Next, let f: $?4*" — $%4 be a map with r =0 or 1 mod 8 and 2g = 0 mod 8. Then we
have
KR(SZ‘I) — M, KR(SZq+r+ 1) = N’
and so
er(f) € Exti(M, N') = Z,.

Thus ey gives a homomorphism from Ker dy < ng to Z,.
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THEOREM 9.4. If r =0 or 1 mod 8 and r > 1 then ex maps Ker dy onto Z,, and Ker eg
is a direct summand in Ker dy.

We note that if r =0 mod 8 then Ker dy = n¥, by Proposition 7.1. If r = 1 mod 8
then Ker dy is a direct summand in =}, by Theorem 7.17, and therefore Ker e is a direct
summand in 75,

Theorem 9.4 will follow immediately from the following result.
THEOREM 9.5. If r =0 or 1 mod 8 and r > 1 then the composite

e m(SO) > Z,
is an isomorphism.

(Note that eg is defined on Im J, by Proposition 7.19.)

We see that Theorem 1.1 will follow immediately from Theorem 9.5; also Theorem 1.3
will follow immediately from Theorems 7.2 and 9.5. The proof of Theorem 9.5 will be
given in §10.

§10. THE VALUES OF THE INVARIANTS ON THE IMAGE OF J

In §§7, 9 we have introduced certain invariants; in this section we shall compute the
values which they take on the image of the stable J-homomorphism

J:m,(SO) — 5.
Our main object, then, is to prove Theorems 7.16, 7.19 and 9.5.

We will first show that if we use an element in the image of the J-homomorphism as
an attaching map, then the resulting two-cell complex is, in fact, a Thom complex. More
precisely, suppose given a map ¢ : S"— SO(g). We can apply the “Hopf construction” J
to ¢; we obtain the map

J:S - 54
and the two-cell complex
X =S890,ettrtl
On the other hand, we can use ¢ to define an E? bundle over $**!, and so obtain a Thom
complex, which actually has the form

Y =S7uettrtl

LeMMA 10.1. The complexes X and Y are homotopy-equivalent. With suitable choices
of sign in the constructions given above, we can choose the equivalence to have degree +1
on both cells.

1 believe that this lemma was known to earlier workers, for example, Atiyah (ca.
1960); see also [13, p.370].

Proof. We first discuss the Thom complex Y. The E%bundle over S"*! can be obtained
from E?y (E™"! x E% by identifying each point (x, y) in $" x E7 with the point (¢x)y in
E?. (Here SO(g) acts on E? in the usual way.) We can now obtain the Thom complex by
‘further identifying $77! U (E™*! x §971) to a single point.
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We now discuss the Hopf construction. To construct the map Jo, we realise SS9t as
the boundary of E**! x E% We map S" x S77! to §47! by

UP)x, ) =(px)y (yeST™h;

we extend to a map from S" x E? to the upper hemisphere E% of 9, say

P)x, ) =(px)y  (yeE%);
we also extend it to a map from E™*! x S97! to the lower hemisphere E7_ of S%. (Actually
this construction differs in sign from the one the author would usually prefer.)

The complex X is now
ST, (ETH x S9).

1t will not alter its homotopy type if we identify E2_to a point. By doing this we obtain
precisely the description given above for ¥. This completes the proof.

Proof of Theorem 7.16. We may start from a real bundle f over $**1, where r = 4s,
such that f represents a generator of Kx(S'*1). With the notation of §7, this is expressed
by the equation

chyef = ay h*.
We may suppose that the structural group of § is Spin(g), where g is divisible by 8.

We now consider the Thom complex $? U e?*** corresponding to f5, and we make use

of the Thom isomorphism ¢y [4 §4]. In Kx(S? U e?**) we have the element @x1; more-
over, with the notation of [4 §§2, 5] we have

on 'chrogl = 1 + to,.a, 8%
[4, Proposition 5.2]. That is, we have

q+4s

chrpgl = h* + Yoy,a, 4 45h
We may take @l for our generator £. This yields
er(JP) = o, mod 1,
which proves Theorem 7.16.
Proof of Theorem 7.19, for the case r > 1. As in the previous proof, we may start
with a real bundle 8 over S**!, with structural group Spin(g), where g is divisible by 8.
As above, we obtain a generator @1 in Kg(S? Uy, €77 1), which restricts to the generator

in Kp(S9). Therefore the generator in Kr(S% is annihilated by (JB)*; that is, dg(JB) = 0.
Lemma 7.21 now shows that ecJg = 0.

First proof of Theorem 9.5. As in the two previous proofs, we may start from a real
bundle B over S"*! such that B represents a generator of Kx(S™*!), and we may obtain a
generator @xl in Kg(S? U ,, €7*7*1). We now wish to calculate W o1 (at least for k odd).
By [4 §5, especially Theorem 5.15], we have

og "Proxl = p*p

_{1 if k= +1mod$
“W+p ifk=+3modSs.
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With the notation of §9, this gives
‘P"f:é if k=41 mod 8
E+n if k= +3 mod 8.
If we recall the description of Exti{(M, N) given in §9, this shows that egJf is non-zero.
A second proof of Theorem 9.5 will be given in §12.

§11. TODA BRACKETS, I

The main purpose of this section is to show explicitly how the theorems of §5 apply
to the invariants of §7. The spaces we shall deal with will thus be spheres; and we shall
stay in those dimensions where the invariants e, take values in Q/Z, the rationals mod 1.

We will begin by stating the main results, without proofs. The following result, which
is typical, will be obtained by specialising Theorem 5.3 (v).

THEOREM 11.1. Suppose given integers a > b > ¢ > 0, which are even if A = R. Suppose
given f: 82972 5 §2-1 p: §271  §% gnd q € Z such that h(qi) ~ 0 and (q1)f ~ 0. Then

ealh, g1, f} = —qe (Sf)ex(h)  mod 1.

We pause to check that both sides of this equation are well-defined as rationals mod 1.

The indeterminacy of {4, q1, f} is

hTtza—1(S*°71) + 7,4(S%)SS,
and therefore (using (3.2) and (7.1)) e {h, g1, f} is well-defined as a rational mod 1. If we
change the fraction representing e,(Sf) by 1, we change ge,(Sf) e (k) by ge,(h), which is
an integer since h(q:) ~ O; similarly if we change the fraction representing e (%) by 1.
Thus —ge, (Sf)ea(h) is well-defined mod 1.

In applying Theorem 11.1 in the case A = R, we have to distinguish when the invariant
e means ey, and when it means eg, according to the dimensions of the spheres concerned.

Examples on Theorem 11.1. With the notation of Example 7.17, we have

{j39 24’]3} = 40./7
{J3 24, 10j;} = 21j,,
{J3>24,21jy1} = 80jy5 mod nK
{j7a 2409j7} =2j15 mOd TIK
etc.

In order to state the results obtained by specialising Theorem 5.3 (iv) and (vi) we
need a little number theory. The numerical function m(z) will be as in [4 §2]; as we shall
need the explicit definition in our proofs, we recall it now. We write v,(n) for the exponent
to which the prime p occurs in #, so that

n = 2%2(M3vamgvs(nm)

For odd primes p we set
_ [0 ift£0mod(p—1)
vom(B) = {1 +v, () ifr=0mod (p—1).
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For p = 2 we set
, 1 if % 0 mod 2
va(m(n) = {2 +vy(t)  ift=0mod 2.
In order to avoid worrying about signs in what follows, we remark that this definition is
equally valid if ¢ is negative; only the case f=0 need be excluded. Thus we have
m(—1t) = m(t).

We shall suppose given two even integers u, v; the cases u =0, v =0 and u = v are
excluded.

LEMMA 11.2. There exists a rational number &(u, v) such that for sufficiently large t
(depending on u and v), and for all k € Z we have

K — kY — 6(u, o) (K = K =0 mod m(u)m(v — u).

The congruence is to be interpreted as meaning that the left-hand side is an integer
multiple of m(u) m(v — u).

We shall not only prove that (i, v) exists; we will give a definition for d(u, v) which
allows one to compute it easily. I am indebted to Dr. B. J. Birch for conversations about
an earlier version of this lemma.

We recall from [4, §2] that for sufficiently large ¢, the highest common factor of the
numbers (X'** — k") (as k runs over Z) is m(v). This shows that the property stated in
Lemma 11.2 characterises 6(u, v) up to an integer multiple of m(u) m(v — u)/m(v).

We shall need to refer to the following further properties of é(u, v).
LeEMMA 11.3.

(i) o(—u, —v) = &(u, v) mod m(u) m(v — u)/m(v).

(i) o(u, v) + 8(v — u, v) = 1 mod m(1) m(v — w)/m(v).

ym(u)
m(v)

Sfor some integer y =7y(u, v).

(iii) o(u, v)=

y'm(v — u)
m(v)

Sfor some integer y' = y'(u, v).

(iv) o(u,v) =1+

The following result may be obtained by specialising Theorem 5.3 (iv).

THEOREM 11.4. Suppose given even integers a>b>c>0. Suppose given
S 8% 8271 g 8§27, §2¢ and q € Z such that (q1)g ~ 0 and gf ~ 0. Then

ea{qr, g, f} = —qdex(Sf)ea(g)  mod 1 and q/m(a — c)
where 8 = 6(a — b, a — ¢) (with the notation of Lemma 11.2).

As for Theorem 11.1, we have to check that both sides are well-defined modulo 1
and g/m(a — c). For the left-hand side this is easy. Altering é by m(a — b) m(b — c)/m(a — c)
alters the right-hand side by an integer multiple of g/m(a — c), since m(a — b) e,(Sf) and
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m(b — c) e,(g) are integers. Altering e,(Sf) by 1 alters the right-hand side by
,m(b —¢)
q(l + Y )eA(g)
m(a — ¢)

(using Lemma 11.3 (iv)); since ge,(g) and m(b — c)e,(g) are integers this is zero mod 1
and g/m(a — c). Altering e,(g) by 1 alters the right-hand side by

m(a — b
ay

; ex(Sf)

mia — ¢
(using Lemma 11.3 (iif)); since m(a — b) e,(Sf) is an integer, this is zero mod g/(ma — ).
The following result may be obtained by specialising Theorem 5.3 (vi).

THEOREM 11.5.  Suppose given even integers a>b>c>0. Suppose given
g: 8% 25 8% h S, 8% and g € Z such that hg ~ 0 and g(gi) ~ 0. Then

e {h, g, qi} = —qgde,(Sg)e,(h) mod 1 and g/m(a — c)
where 6 = 6(b — ¢, a — c) (with the notation of Lemma 11.2).

As before, we have to check that both sides are well-defined modulo 1 and g/m(a — c¢).
This is done exactly as for Theorem 11.4.

In applying Theorems 11.4 and 11.5, we have again to distinguish when the invariant
eg means ey, and when it means ey.

Examples on Theorem 11.5. With the notation of Example 7.17, we have

{js, 23,12} =0 mod 12j,
{73247 = —jus mod 24j,

{Jasj7, 240} = Tj;4 mod 24j 4

{i11.J3, 24} = =45 mod 24j,5 and yx

{7, 2j7, 120} = j s mod 120j,, and yx

{J3: 711,504} = —4j, mod 24j,5 and nx

etc.

The calculation of these examples requires a knowledge of the coefficients 8, which
will be provided later in this section.

Theorems 11.4 and 11.5 are equivalent. In fact, if « and B belong to odd-dimensional

stable groups, then we have
{2, By qr} = {q1, B, 2}

by a theorem of Toda [18, p.26 (3.4) (i) or p.33 (3.9) (i)]. The reader is warned not to suppose
that this remark makes the equivalence completely obvious; in the case A = R we still have
to distinguish when ez means the invariant ey, and when it means ej; we have then to use
Proposition 7.14. However, these details lead to the required result. It will therefore be
sufficient to prove one of these theorems and deduce the other. Similarly, we will state
corollaries of only one of these theorems.
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Other checks on our work are provided by the identities

{o, g1, B} = {B, q1, &}

and
{(x’ ﬁ’ ql} - {Ba qi, o} + {ql, a, B} =0

(18, p.26 (3.4) (ii) or p.33 (3.9) (ii)]. The first is consistent with Theorem 11.1; the second
is consistent with Theorems 11.1, 11.4 and 11.5, as we see using Lemma 11.3 (ii).

We will now state two corollaries of Theorem 11.5 which are useful in dealing with
p-components of stable homotopy groups. We retain the notation and assumptions of
Theorem 11.5.

COROLLARY 11.6. Let p be an odd prime such that a — b and b — c are divisible by p — 1.
Then we have

 en(Sg)ea(h)

a—=c¢

exth, g, q1} = —¢q

as an equation in the p-adic numbers modulo 1 and q/m(a — c).

The case in which @ — b and b — ¢ are divisible by (p — 1) is, of course, the only case
of interest if we are studying p-components.

COROLLARY 11.7. Let p = 2. Then we have
b—c
ealh, g, g1} = —q —— (1 + w2%)ex(Sg)ea(h)

(where o is any odd number and g = 1 + v,{a — b)) as an equation in the 2-adic numbers
modulo 1 and q/m(a — c).

It is no great surprise that the case p = 2 is exceptional.

In both corollaries, the phrase ‘“modulo 1 and g/m(a — ¢)” refers to multiples of 1 and
g/m(a — c) by p-adic integers. The use of p-adic numbers is not essential, but it is convenient ;
it allows us to invert numbers prime to p, modulo a high power of p, without stating exactly
which high power of p is required.

A further check on our work is now provided by the following observation. Suppose
given a generator y € 1y, (SO), a map 0:S**4~2 %1 and an integer ¢ such that
y6 ~ 0, B8(g1) ~0. Then we can form in 7,,44,-,(SO) the Toda bracket {y, 0, qi1}. Let
7’ € M4p+45—1(SO) be a generator; then we have

{r,0,q1} = —qeg(SO)y’"  mod q.

(Whether eg(S0) is an invariant ey or ey depends on the parity of ). In n3,, 4_, we shall
have

J{y, 0,9} ={Jy,0, 4},
that is,

—qex(S0)Jy" = {Jy, 0, q}.
We may now apply e} to both sides, using Theorem 7.16 and [4, Theorem 2.5]. The results
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should agree modulo 1 and g/m(2r + 2s5). Calculating in the p-adic numbers, both sides
yield

p—1
dp(r +s)’
providing that 2r and 2s are divisible by p — 1; otherwise 0. Calculating in the 2-adic num-
bers, both sides yield

—qex(S0)

~aex($0)(3 + g

provided r = 3.

The remainder of this section is organised as follows. We begin with the number theory,
leading up to the proofs of Lemmas 11.2 and 11.3. Then we prove Theorems 11.1, 11.4
and 11.5. Corollaries 11.6 and 11.7 then follow easily.

LemMA 11.8. Let p be an odd prime, let k be an integer prime to p, and let a, b, ¢ be
integers divisible by (p — 1). Then we have
(@a=bke+(b—-0k*+(c—a)k’=0  mod p"*?,
where h = v,(a — b) + v,(b — ¢) + v,(c — a).
LEmMMA 11.9. Let p = 2, let k be an odd integer, and let a, b, ¢ be even integers. Then
we have
(a—bkS+(b—0k*+ (c—a)kP =e2"*>  mod 2"**
where
[0 if k= +1mod8
*U  ifk= +3mod8
and h = vy(a — b) + v,(b — ¢) + v,(c — a).
We prove Lemma 11.9; the proof of Lemma 11.8 is similar but slightly simpler.

Without loss of generality we may assume that

vila—b)=f
vb—c=f+yg
vice—a)=f

where f= 1,9 = 1. Thus A= 3f+g. Set d=2'; by adding a constant to a, b and ¢ we
may assume they are all divisible by d. Set K = k¢; then K = 1 mod 2/ *2. Hence
K@ld _ gbrd
TK—-1
(Without loss of generality we may assume a > b; expand the left-hand side in powers of
K.) Thus

=(a—b)d mod?2/*2

k*— kb= (K — 1)(a — b)/d mod 22/*4
and
(b—c)k*—k)=(K —1)a—b)b—c)/d mod?23+e+4,

We now consider the sum of 29 consecutive powers of K. I claim we have
Kt 4 KeP2 . 4+ KeP2 =29 4 g2/ Het! mod 2/*et2
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where ¢ is as above. In fact, suppose that K =1 mod 2¢*2 but K # 1 mod 2°*3, where
¢>fif k=4 1mod 8 and ¢ =fif k = +3 mod 8. Then the 2¢ numbers
Ke+1 Ke+2 Ke+zg
give the 27 residue classes 1 + ¢2%*? mod 2¢*9*2, Hence their sum is
29+ 42927 1H)2%*2 mod 29792,
This proves the assertion.
Arguing as above, we find
KP4 — Kl b—c

= = (29 + 27797 1) 57 mod 2/*e+?
=(b—c)d+ 2 Hot? mod 2/%9+2,
Thus
' —kf=(K — )b —c)fd + 22/ %9+3 mod 22/ *e+e
and
(a — b)k" — k) = (K — D)(a — b)(b ~ ¢)jd + 23/ +9+3 mod 23/*9+4,
Thus

(b — )k — kb)Y — (a — b)(Kk® — k) = g2"+3 mod 2°*4,
which proves the lemma.

We now define d(u, v). As above, let u, v be two even integers; the cases u =0, v =0
and u=v are excluded. We propose to define the rational number 6(u, v) modulo
m(u) m(v — u)/m(v) by giving a finite number of congruences. Each congruence will be
written as a congruence in the p-adic integers, holding mod p’ where

f=vm@u) + v,m{v — u) — v,m(v).
The primes p to be considered are those which divide m(u), m(v) or m(v ~ u). We stipulate
that the denominator of d(u, v) is to contain no other primes; thus the definition given for
d(u, v) amounts to defining an integer (namely the numerator of &(u, v)) by a finite set of
congruences modulo powers of different primes. This is always legitimate.

We now give the congruences.

Case (i). pis odd; (p — 1) does not divide u or v, but divides v - wu.
Take

(11.10) (u, v) =1 mod p’.

Case (ii). pis odd; (p — 1) divides just one of «, v and therefore does not divide (v — ).
Take

(11.11) Su,v) =0 mod p’.

Case (iii). p is odd; (p — 1) divides both of u, v and therefore divides v — u. Take
(11.12) 6(u, v) = ufv mod p’.

Case (iv). p =2. Take
(11.13) 8(u, v) = (1 + w2%u/v mod 2/

where w is any odd number and g = 1 4+ v,(v — u). (Note that altering w by 2 does not
affect the result mod 27.)
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Proof of Lemma 11.2. 1t is sufficient to verify the congruence in the p-adic numbers
for a finite number of primes p, namely those mentioned above. For each prime p the
congruence will be true for k divisible by p providing we choose ¢ large enough; we may
therefore restrict attention to the case k # 0 mod p. In all cases we have given definitions
of the form é = &' mod p’, where

f=v,m) + v (e — u) — v, ()
and we have
K" —k'=0  mod p'*™.

Thus we have
St — KN = 8'(KY — kY mod p"

where h = vm(u) + vm(v — u). We may thercfore replace é by ¢" in checking the con-
gruence.

Case (i). pis odd; (p — 1) does not divide u or v, but divides v — u. We have

k!+v _ kt+u = 0 mOd pv,m(v—u)

kl+u _ kr = kt+r - kt mod pvpm(v-—u)'
Since 8’ = 1 and vym(u) = 0 in this case, this is the result required.

Case (ii). pisodd; (p — 1) divides just one of u, v and therefore does not divide (v — u).
We have
' —k'=0 mod p*rm®,

Since &' = 0 and vm(r — u) = 0 in this case, this is the result required.

Case (iii). pis odd; (p — 1) divides both of u, v and therefore divides (v — ). Lemma
11.8 gives
ok — k) = w(k = kY mod p't?,

where h = v (u) + v,(v) + v,(v — u). This gives
kt+u___ktEl_'t_(kf+v__kt) mod pl,
v

where [ = v, m(u) + vym(v — u). Since 8" = ufv in this case, this is the result required.
Case (iv). p =2. Lemma 11.9 gives '
ok — k) —u(k'*C — k') = &2 mod 2#*#
where A = v,(#) + v,(v) + v,(v — u). We have
k"' —k')=¢€2"  mod 27*?
where r = v,(u) + v,(v) + 2. Thus we have
ok — k) — u(l + w29)(k'"" — k') =0  mod 2"**

where o is any odd number and g = 1 + v,(¢v — u). This gives

KT k= % (1 + wzg)(k!‘*v —_ kt) mod 2!
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where = v,(m(u)) + v,(m(v — u)). Since &’ =—l; (1 + w29 in this case, this is the result

required. This completes the proof.

Proof of Lemma 11.3.

(i) The congruence

o(—u, —v) = (u, v) mod m(u)ym(v ~ w)/m(v)

follows immediately by inspecting the congruence (11.10) to (11.13).

(ii) For sufficiently large ¢ we have

kt+u _ kt = é(u, v)(kH-u - kt)
kt+u — kt+v = 5(u -, ___U)(kt - kt+v)
mod m(u) m(v — u). Subtracting, we obtain
K'Y — k' = (6(u, v) + 8(u — v, —0))(K*T° — k)
mod m(u) m(v — u). Since the highest common factor of the expressions (k'*° — k%) is
m(v), we find
ou, vy +o(u —v, —v)=1 mod m(u)m(v — u)/m(v).

The result now follows by part (i).

Alternatively, we can check part (ii) from the congruences (11.10) to (11.13).

(iii) For sufficiently large ¢ we have

(kt+u . kt) = 5(“, v)(kt+v _ kt)
mod m(v) m(v — u). For sufficiently large ¢, the highest common factor of the expressions
(k*** — k*) is m(u) and that of the expressions (k**? — k') is m(v). Taking linear combina-
tions, we find
Nm(u) = d(u, v)m(v)

mod m(u) m(v — u), for some integer N. Hence the result.

Alternatively, we can check part (iii) from the congruences (11.10) to (11.13).

(iv) This follows immediately from (ii) and (iii).

This completes the proof of Lemma 11.3.

Proof of Theorem 11.1. We have to evaluate the Massey product {e,(Sf), g, e (7)}
according to the definition of §4, Case 3. In that section we have objects L, M, N and P
in our abelian category; in the present application they all have the underlying group Z,
and they have operations given by Wx =k°x, W*x = kPx, W*x =k’x and Wx = k%
respectively. We write A, u, v, # for their respective generators. We also have in mind two
extensions

O—L—E—M+0
O—N—F+«P0
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given by the following formulae.
WA = kA + e'(kP — k)
Wy = kb + e"(k® — k%)n.
Here A',v' are elements lifting 4, v and ¢’, ¢” are rationals representing e,(k), e (Sf).
According to §4, Case 3 we have to construct maps
0:M—>F, ¢:E—N;
we do so by the following formulae.
0(n) = qv' — qe'n
¢(A) = ge'v
¢(u) = gv.
(Note that ge’ and ge” are integers.) According to §4, Case 3 we have to consider an exten-
sion G; in it we construct a lifting 1" of A by
A=A, ge'v).
We then compute in G the formula
Yi" = kA" + ge'e"(k* — k)m.
We conclude that in this case the Massey product in Ext! is given by

{ea(Sf), q, e (h)} = ge'e”.
Theorem 11.1 thus follows from Theorem 5.3 (v).

We have given this proof of Theorem 11.1 because it seems in keeping. However, it
is possible to give an ad hoc proof using an intermediate space S?*~! U, e, on the lines
to be explained in §12 [cf. 6, 7. In Proposition 6 of 7 a minus sign has been left out by mis-
take.] If one defines e, using the Chern character, it is not necessary to use the operations
W* in proving Theorem 11.1. By contrast, in proving Theorems 11.4, 11.5 it seems essential
to use the operations W* and number-theory. In fact, the number-theory we have given
may be interpreted as an investigation of what limitations the ¥* impose on the Chern
characters in a 3-cell complex

Szz U e2(t+u) v e2(t+v)'

This gives a partial answer to questions raised by Dyer [13, second paragraph on p.371].

Proof of Theorem 11.5. We have first to verify the conditions of Theorem 5.3 (vi).
With the notation of §5, we have to show that for any choice of homotopy Ag ~ 0, the
invariant e,(H) is defined. In our case we have

H:SZb—l UgeZa—l . SZc.
Since a and b are even, the exact sequence
KA (SZb_l)*—KA(SZb—l Ug eZa— 1)‘_1‘21\ (SZa— 1)

shows that
R, (s» 1 Y, e~y =0.

Hence d,(H) = 0. It follows that d,(SH)=0.
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We have now to evaluate the Massey product {g, e,(Sg), e5(#)} according to the
definition of §4, Case 1. In that section we have objects L, M, N and P in our abelian cate-
gory; in the present application they all have the underlying group Z, and they have opera-
tions given by Wx = k°x, W x =k’x, W*x = k% and W*x = k% respectively. We write
4, u, v, 7 for their respective generators. We also have in mind two extensions « € Ext'(L, M),
B € Ext'(M, N) given by the following formulae.

PR = kA + e/ (kP — k)
Wy = kb + e"(k* — KP)v.
Here A/, ' are elements lifting A, ¢ and e', e” are rationals representing e,(h), e,(Sg). We
also have in mind a homomorphism y € Ext%(, P) given by
y(¥) = 4qr.

We have next to construct o’ € Ext!(L, E), ¥’ € Ext(E, P) lifting «, y (where E is the
extension representing f.)

A suitable extension « is defined by the following formula.

R = kCA" + e (kP — k' + e'e"(8(k* — k) — (Kb — k9))v.
Here A" is a lifting of 4, and 6 = 8(b — ¢, a — ¢) (with the notation of Lemma 11.2). Lemma
11.2 plays a crucial role; it shows that the coefficient of v is an integer. (We may suppose
that ¢ is sufficiently large, because the result is not affected by suspension—provided of
course that the number of suspensions is divisible by 2 or 8.) It is necessary, of course,
to check that the formula satisfies Axioms (6.1), (6.2) and (6.3). The need to satisfy
Axiom (6.1) accounts for the formula given.

A suitable homomorphism v’ is defined by the following formulae.
Y1) = qe'n
Y'(v) =qn.
(Note that ge” is an integer). It is necessary, of course, to check that y’ commutes with P*.
The need to do this accounts for the formula given for y'(¢').

We have next to compute the extension
vo' € Ext!(L, P).
This is characterised by the following formula.
YR = kA" + ge'e"d(k" — k).
We conclude that in this case the Massey product in Ext' is given by
{q, ea(Sg), e(h)} = ge'e”d

modulo the indeterminacy of the Massey product; that is, modulo | and g/m{a — ¢).
Theorem 11.5 thus follows from Theorem 5.3 (vi).

Theorem 11.4 may be deduced from Theorem 11.5 (as remarked above), or proved
similarly. For the convenience of any reader who wishes to do the latter, we record

formulae for
o, e Bxt®(L,E), 7y eExt'(E,P)
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with a notation similar to that used above.
oA =qu — ge'v
W = ku” + e (kP — kW + e'e’((k* — k°) — d(k* — k))n
YA = kb + e'(k* — KP)n.
Proof of Corollaries 11.6, 11.7. These follow from Theorem 11.5 by applying the
homomorphism from the rationals to the p-adic numbers and using (11.12), (11.13).

§12. EXAMPLES

In this section we will give various examples and illustrations of our general methods,
and prove certain results whose proof was deferred in earlier sections. To begin with, our
work is directed towards proving Theorem 1.7.

We can actually make Theorem 1.7 a little more complete. As in §l, let p be an odd
prime, let g : S27! - $247! be a map of degree p/, and let ¥ be the Moore space
§2°1 y, e, Thus K(Y)=Z,,.

THEOREM 12.1. There is a map

A:S¥Y » Y
(for suitable q) such that the image of
A*:R(Y) - KA(S*Y)
is Z (where 1 <t < f), if and only if r is divisible by (p ~ Hp' L.

It is clear that this includes Theorem 1.7 (take ¢ = f). We will show how to deduce

Theorem 12.1 from Theorem 1.7.

First, suppose that there is a map A4 : S Y — Y such that the image of A* is Z,.. Then
A* commutes with the operations W*, which are given in ¥ and S?" Y by the formulae

Yy = kix, Wy = kit
Therefore we have k%" = k% mod p*; so r is divisible by (p — 1)p* L.

-1

Secondly, suppose that r is divisible by (p — 1)p and Theorem 1.7 is true. Set
Y’ = 8%"1 yu, e, where h is a map of degree p’. Then by Theorem 1.7 there is a map
A:STY > Y
inducing an isomorphism of K.. We have only to take 4 to be the composite
s2ri A j
Ser——) Ser/—> Y >Y
where i, j are obvious maps such that j*:K(Y)—> Kd(Y’) is an epimorphism and
i*: K (Y- K(Y’) is a monomorphism.
This completes the deduction of Theorem 12.1 from Theorem 1.7. We proceed with
lemmas needed for the proof of Theorem 1.7. First we consider the cofibering

L}

I i
SZn—quzn—l_’Sﬁn—luern'
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where fis a map of degree m. If A = R, we assume that » is even; thus we shall certainly
have dgi = 0, dg(Si) =0.

PROPOSITION 12.2. e,i is the class of the extension

0—Z,—Z—Z«0,
in which all the abelian groups have operations V* defined by
Yy = k"x.

Proof. If we continue the cofibre sequence, it becomes
j -—
SZn—l Ufezn_) S2n___) S2n;
we have only to apply K,.
For the next proposition, we suppose given a diagram of the following form,

S2n— 1 Un e2n

/ \NG
i/ N\,
/

/ N
§2n-1 - S24

(Here we have written S**~! U, €*" instead of S*"~! U, e*", where f is a map of degree
m.) If A =R, we assume that n and g are even. Thus K,(§%9) = Z and K, (S*""! u,, €*")
= Z,,; we can regard d,(G) as an integer mod m. We can also regard e,(g) as a rational
mod 1; since mg ~ 0, me,(g) is an integer mod m.

PROPOSITION 12.3. We have .

d,(G) = —me,(g) mod m

or equivalently
1

= — —d,\(G d1.
ex@) = = =d(G)  mo
Proof. This proposition is a special case of Proposition 3.2 (b), which states that
e(Gi) = e(i) d(G).
The element e(i) has been given in Proposition 12.2; one has only to compute the product
e(i) d(G), which is an easy exercise in homological algebra.
LeMMA 12.4. Let p be an odd prime, m = p’, andr = (p — 1)p’. Then there is an element
o € 1t3,_, satisfying the following conditions.

(i) mo=0.
.. 1
(i) eca = — -
(iii) The Toda bracket {m, a, m} is zero mod mn3,.

Proof. For f=1 the result is easy; we have only to take « to be an element of Hopf
invariant one mod p in 7§,_5. Then (i), (ii) are given by Corollary 8.4 and (iii) follows
from the fact that the p-component of n3,_, is zero.
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For any f we can take « to be a suitable element in Im J, using Theorem 1.5 or 1.6 to
obtain (i), (ii). Condition (iii) follows from the fact that {m, , m} is an element of order 2
[18, p.26 (2.4) (i), p.33 (3.9) ())].

Lemma 12.4 supplies the data for the following lemma, which we shall also use with
m=2.

LEMMA 12.5. Suppose given o € n5,_, and m € Z such that

(i) mo =0,
1
(i) ect = — —,
m
(iii) {m, «, m} =0 mod mn3,.

Then for suitably large q there exist maps A which make the following diagram homotopy-
commutative, and for any such A we have d(A) = 1.

A
S2q+2r—l U, 62q+2r___) S2q—1 Up e2q

)

S2q+2r—1___ — S2q

Proof. Conditions (i), (iii) enable one to construct the diagram. By Proposition 12,3
and condition (ii) we have do(j4) = 1. Hence do(4) = 1.

Theorem 1.7 follows immediately from Lemmas 12.4, 12.5. Since A induces an iso-
morphism of K, so does the composite
A.S¥A.5%A4. .. .S¥ETVL.8Y 5 Y,
Indeed we have
do(A.S*A.SYA4. ... S*e~UY) = 1.
Therefore this composite is essential for every s.
Under the assumptions of Lemma 12.5, we construct a map

<xs:S2q+2rs—1 - S2q

by the following diagram.
AS2rq ...82r(s-1)4
SZq+2rs—l Upn e2q+2rs — SZq—l Up eZq

i i
S2q+2rs—-1 N S2q

We have a; =a. The map o, has order dividing m, since it can be extended over
S2at2rs=1, ?9*2's  The maps «, satisfy the equation

(12.6) g+ € {0, M, 4}
The case in which m is an odd prime p and r = p — 1 has been studied by Toda [16, 17].

PROPOSITION 12.7. Under the assumptions of Lemma 12.5, the maps o are all essential;
indeed we have

1
ec(a) = — P mod 1.
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This improves and generalises a result of Toda [17]. Presumably the present proof is
related to Toda’s proof; however, it is hoped that the presentation given here may be
found more conceptual.

Proofs. (i) Apply Proposition 12.3 to the diagram which defines «,. (ii) Alternatively,
apply Theorem 11.1 to equation (12.6) and use induction.

EXAMPLE 12.8. We note that in [16, 17] Toda’s elements o, depend on the choice of o,
which Toda does not fix; similarly, there is a choice for his element «,. However, we may take
the choices so that

1
eclay) = — ;: ec(“.’—p) = — ;2' .

Then the coefficient 8 in Corollary 11.6 explains the coefficients which arise in Toda's formulae

for

[16, Theorem 4.17 (ii)].

We will now show how the invariant e; applies to maps f: S~ 1Y - ¥, where ¥ =
§%41 U, e* for some odd prime p. We must first calculate the appropriate Ext groups.
Asin §9, let M be the object in 4 whose underlying group is Z and whose operations are
given by W*x = k%; and let M’ be the quotient object M/pM, whose underlying group is
Z,. Similarly for N’, with g replaced by g + r.

{O(,, &g, p} and {“;p’ Uy p}

PROPOSITION 12.9. We have
N ot
Proof. The exact sequence
O-MHMoM 50
induces the following exact sequence.
Hom(M, N') 4 Hom(M, N') - Ext'(M’, N') —» Ext'(M, N) iR Ext'(M, N')

Passing to direct limits, we obtain the following exact sequence.

p p
Homg(M, N') » Homg(M, N') —» Ext}(M’, N') - Ext}(M, N') —» Ext}(M, N")
The group Extg(M, N’) has been computed in Proposition 9.1; it is Z,, if r =0 mod (p — 1),
0 otherwise. (In §9 we assumed A = R; but this is not necessary if v is odd). The group
Homg(M, N')iseasy to compute; it is Z, if » = 0 mod (p — 1), O otherwise. This completes
the proof in the case rZ0mod(p —1). If r =0 mod (p — 1), we consider the functor
from A to the category of abelian groups defined by forgetting the operations W*; this gives
the following diagram.
0 - Homg(M, N') = Bxti(M’, N') - Ext{(M, N') -0
|

-

0 - Hom(Z, Z,) — Ext'(Z,,Z,) —— 0
This shows that the exact sequence for Extg(M’,N’) splits.

v
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ALl AT/

COROLLARY 12.10. (of the proof). If r = O mod(p — 1), Extg(M', N') has a base con-
sisting of the following two elements.

(i) An extension with underlying group Z,. and operations Py = kix.

(ii) An extension with underlying group Z, + Z, and operations

W = ki + Ak — k)

Jor A = 1/m(r).

In fact, the element (i) represents a generator coming from Homg(M, N)', while the
element (ii) maps to zero in Ext'(Z,, Z,) and to a generator in Ext'(M, N').

As above, let ¥ = S%"! U, €% for some odd prime p.

THEOREM 12.11. If r = O mod(p — 1) then the stable track group Map>(S*"~'Y, Y)

contains a direct summand Z, + Z,,.

Proof. Let B: 57 'Y — Y be the map which appears in the cofibre sequence

]
ST'Yo Y- SM 1y,
Then e.(f) is the extension mentioned in Corollary 12.10 (i). Let 4 :S*Y — Y be a map
with d.(4) = 1, as above. Then by Proposition 3.2 (c) we have
ec(. 571 ) = de(A).ec(),
which is again the extension mentioned in Corollary 12.10 (i).

To construct the other generator, let y : §2'*2r*1 — §%* be an element in Im J such that

n(re(MN =1 mod »
AV A OAN V4 ¥

Then we can form the map
1/\'))ZY/\ SZt+2r_1—'>Y/\ S?.t’

where A A Bis the “smash product” 4 x B/ A v B. If ec(y) is represented by an extension
E, then ex(1 A7) is represented (up to sign) by the extension E/pE; this is the extension
mentioned in Corollary 12.10 (ii).

Since all elements of MapS(S?"~'Y, ¥) have order dividing p, this proves Theorem
12.11.

Remark 12.12. In proving Theorem 12.11, we could have used A.S?'8 instead of

B.S7'A4. By Proposition 3.2 (b) we would then have
ec(4.8¥f) = ec(S*B).dc(A),

giving an extension with underlying group Z,. and operations W*x = k?*"x. Thus the
invariant e serves to distinguish between 4.S*B and B.S7'4 if r#0 mod p(p — 1),
but not if ¥ = 0 mod p(p — 1). It might be interesting to know if these two elements are
equal for r = 0 mod p(p — 1). The groups Map3(Y, Y) would perhaps repay study, since
phenomena which in spheres appear as Toda bracketsappearin Map3( Y, Y)ascompositions.

One could presumably obtain the analogue of Theorem 12.11 for Moore spaces
82710, e, or S27! U, %% In the latter case one would need to use K.

We now pass on to study 2-primary phenomena. To begin with we prove the following
result.
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1
o1

[ ]

T ear 1 2
neEUKemM 1 Jd.

ec(ptgs+1) = Y mod 1.
Proof. Let o be the element of order 2 in 75, Since e} : 75 = Z, 4, is an isomorphism,
we have e(«) = $ mod 1. Also, by a delicate result of Toda [18, p.31 Corollary 3.7] we

{2,0,2} = an mod 2
=0 mod 2,
since « is divisible by 2 and 2¢# = 0. Thus we can apply Lemma 12.5 to construct a map A.

Now we have the following diagram.
A-S84...+88(s-1)4

SZq+85—1 U2e2q+8s N SZq—l U2e2q
ES ,I A~ \\
/ \, =
i }'/ i \"
as "4 "
SZq+Ss—1 - ., S SZq-i -y §2a-2

We define pg, ., to be the composite
7.A4.884....88¢6714 i,
We have p; =#. The map pg,.; has order dividing 2, since it can be extended over
S2at8s-1 ), 29785 Since ex(n7) = + mod 1, Proposition 12.3 shows that d () = 1 mod 2.
Hence . o
de(@.A.S°A....S¢ V4 =1 mod 2.
A second application of Proposition 12,3 now yields

eclttgs+1) = % mod 1.

v. we can obtain the same rest
y, We can obtain the same res

Alternativel
Hgs+1 € {7], 2’ as}’
in which eq(2,) = 4 mod 1 by Proposition 12.7.
Proof of Theorem 7.18. Suppose r =1 mod 8. Then by Theorem 12.13 the homo-

morphism
ec:ns > Z,
is an epimorphism. But we also have
dR: nf d 22
and Ker dp = Ker e by Lemma 7.2i. Therefore dg = ¢.. This proves Theorem 7.18,
We have just shown that
dgiigs+1 # 0.
(It is possible to show this directly from the construction of pg,., but this is unnecessary.)
PROPOSITION 12.14. If r=1mod8 and s =1 mod8 then the composite p.u, is non-
zero;, indeed
dgr(petts) # 0.
This proposition generalises the behaviour of the composite ny. The proof is
immediate.
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Proof of Theorem 7.2. Let us define pg,,, to be one of the composites considered in
Proposition 12.14, for example, nug,,;. Then we have shown that for r = 1, 2 mod 8 and
r > 0 we have dyu, # 0. Thus dy is an epimorphism; and since g, is of order 2, n5 splits as
a direct sum Z, + Ker dg, where the subgroup Z, is generated by p,.

EXAMPLE 12.15. Suppose that 0 € n§,_, is an element such that m(4f)eg(0) is odd.
Then for r = 1, 2 mod 8 the composite Ou, is essential; indeed
ex(0p,) # 0.
Proof. By Theorem 3.2 (¢) we have
eR(Blur) = dR(.ur)eR(O)'
Let us use the notation of §9; then eg(0) is a generator of the 2-component of Extg(M, N)

and the homomorphism dg(y,) may be identified with the quotient map N — N'. So accor-
ding to the discussion in §9, dg(,) . ex(6) represents a generator of Extg(M, N').

This example provides a second proof for Theorem 9.5. In fact, let v be a generator
for mg,_(SO) (u>0). Then the generators for mg,(SO), ng,,,(SO) can be written as
composites vy, ynn; and we have

J(ym) = J(y)m

J(ynm) = J(y)nm.
Thus Theorem 9.5 follows from Example 12.15.
ExaMPLE 12.16. If r = 1 mod 8 then {2, u,, 2} is non-zero, indeed dg{2, u,, 2} # 0.
This example generalises the behaviour of {2, 5, 2}. The reader will find that it is an

easy application of Theorem 5.3 (i). Alternatively, of course, one can quote [18, p.31
Corollary 3.7] to show that {2, u,, 2} = 5 mod 2 and use Proposition 12.14.

ProposITION 12.17. If r =2 mod 8 and s = 1 mod 8 then the composition uu, is non-
zero,; indeed
er(pepts) =% mod 1.
This proposition generalises the behaviour of the composite nny.

Proof. Let
f SZn—l — SZt, g: SZt - SZq

be maps representing u,, y,, where 29 =0mod 8, 2t =2mod 8, 2n — 1 =3 mod 8. We
have to consider the invariant egx(f). We have the following diagram.
Z, = Rp(S%)— Kg(S* vpet)—Kp(S™ =2
epi r iso
Z=K(S*)—RKRA(S* U ;e «—K(S™ =2
Let &, n be generators in K (S?** U 7 €*". Then since e(f) =  mod 1 we have (for a suitable
choice of &)
P = (=D + (=) = (=D'm
=—¢+1n.
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Now in Kg(S% U, €*") we have r'¥ ™' = r; thus we have 2r¢ = ry. Thus eg(f) is the non-
trivial extension

2
0—2,«—Z—Z0

in which all the groups are given operations W* by the formula W x = k"x.

We must now compute the product eg(f) dr(g), where
dr(9): Rg(S*%) » Kg(5%)

is the epimorphism Z —» Z,. We easily find that ex(f) dg(g) is the extension corresponding
to the rational 4 mod 1.

ProposiTiON 12.18. If r=1mod8 and s=1mod8 then any representative of the
Toda bracket {p,, 2, 1.} is an element of order 4; indeed ex{p,, 2, 1.} = 4 mod .

This proposition generalises the behayiour of {3, 2, n}.
Proof. We have just shown that the indeterminacy of {u,, 2, p;} consists at least of
the integers 4 mod 1. By Theorem 11.1 we have
eC{ﬂr! 2! “s} = _%2% mod 1
=14 mod 1.
By Proposition 7.14 this is equivalent to
ex{th, 2, p} =4 mod 4.
On the other hand, we have

2{p> 2, psy = {2, 231, mod 0.

This actually gives nu, ug; but at all events it is an element of order 2 at most, so {g,, 2, i}
has order dividing 4. This completes the proof.

ExAMPLE 12.19. Suppose given an even integer m and an element 0 € nS (where
r = —1 mod 8) such that mf =0 and meg(0) is odd. Then for s =1 or 2 mod 8 we have
{6, m, p} # 0; indeed

dR{Oa m, us} ?é 0'
Proof. If s =1 mod 8 we can make an easy calculation using Theorem 11.1:
eC{ga m, ﬂs} = _meC(G)eC(ﬂs)
=4 mod 1.

If s = 2 mod 8 then dgr{8, m, p;} depends only on ex(8), m and dg(y,), by Theorem 5.3
(iii); so we may substitue u,_n for u,, and then

{05 m, .us} = {0’ m, Aus—l}r"
So the result follows from the case s = 1 mod 8.

Our final example is of interest in connection with certain rather technical manipula-
tions with Toda brackets; this is perhaps not the place to explain the project from which
these manipulations come, although the reader is assured that they are not without purpose.
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We suppose given an element § in 7} for r =271 — 1, such that 2/6 =0, ex() =277
and 80 = 0. For example, there is such an element if f=15. We assume f= 4, so that

r=—1mod8.

By [18, p.30, Theorem 3.6] there are elements p, ¢ in the 2-component of n,,_, (where
r—1=2_ l\ such that
pel0,0,2}
and
20+ 20 e{6,27,0).

ExaMpLE 12.20. In the last equation the element ¢ cannot be zero; indeed we have
ep(p)=2"7"1 mod 277,

er{0,0,2y = =27 41 + 2/ "2~ 127/ mod %
=-Q27"+) mod 3.
Thus
Q2o)=—-2"7+1 mod 1.
Hence
ep(@)=2"7"1 mod 277,
This completes the proof.
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